[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998012550A1 - Capteur de gaz - Google Patents

Capteur de gaz Download PDF

Info

Publication number
WO1998012550A1
WO1998012550A1 PCT/JP1997/003262 JP9703262W WO9812550A1 WO 1998012550 A1 WO1998012550 A1 WO 1998012550A1 JP 9703262 W JP9703262 W JP 9703262W WO 9812550 A1 WO9812550 A1 WO 9812550A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gas
oxygen
concentration
detection
Prior art date
Application number
PCT/JP1997/003262
Other languages
English (en)
French (fr)
Inventor
Yunzhi Gao
Akira Kunimoto
Yongtie Yan
Hideyuki Kurosawa
Yukio Nakanouchi
Norio Miura
Noboru Yamazoe
Masaharu Hasei
Original Assignee
Kabushiki Kaisha Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Riken filed Critical Kabushiki Kaisha Riken
Priority to EP97940392A priority Critical patent/EP0862056B1/en
Priority to DE69735302T priority patent/DE69735302T8/de
Priority to JP10514504A priority patent/JP3090479B2/ja
Publication of WO1998012550A1 publication Critical patent/WO1998012550A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Definitions

  • the present invention relates to a gas sensor that can be used as a gas sensor, particularly a nitrogen oxide sensor that detects a nitrogen oxide concentration in combustion gas.
  • the principle of the present invention can be widely applied to gas detection other than nitrogen oxides.
  • NOx emitted from internal combustion engines such as automobiles and combustion equipment such as thermal power plants and plants causes photochemical smocks and acid rain, is harmful to human respiratory organs, and is a major source of pollution to the global environment. ing. For this reason, the detection of harmful gases such as NOx has become an important issue, and there is a need for a gas sensor that can be used in a variety of use environments, as well as reducing the size and cost of measuring instruments.
  • a current sensor has been reported as a sensor that can detect NOx concentration in high-temperature exhaust gas from automobiles (SAE TECNI CAL PAPER 960334).
  • SAE TECNI CAL PAPER 960334 two chambers are provided in the ion conductor, and the oxygen concentration in the measurement atmosphere is reduced to almost zero by the oxygen pump in the first chamber! ⁇ 0 2 was reduced to NO, oxygen ionized caused by - reducing to N0 2 of NO in the resulting NO and measurement atmosphere by voltage application pressure to the N0 2 reducing the electrode provided on the second chamber
  • This sensor detects the NOx concentration by detecting the current. Since the oxygen pump to reduce the N0 2 to NO in order to detect the NOx concentration is applied in the sensor, NOx concentration detected is greatly influenced by the concentration of oxygen remaining with the performance of the oxygen pump, and NO N0 2 is not possible to detect the respective concentrations.
  • Japanese Patent Application Laid-Open No. 6-160324 proposes a sensor using tin oxide as a gas-sensitive body. Only And also because the gas sensitivity to NO and N0 2 are different, it is impossible to detect the NOx concentration in the measurement atmosphere, NO, N0 2 coexist in the sensor.
  • Japanese Patent Application Laid-Open No. 4-142455 proposes a mixed potential type NOx sensor in which a sensing electrode and a reference electrode are provided on an ion conductor and a potential difference between electrodes is measured in a test gas. I have.
  • the gas sensors proposed so far use a catalyst or an oxygen pump to oxidize NO or reduce NO 2 in order to detect the NOx concentration in the measurement atmosphere. And have in NO of NOx contained in the atmosphere is a total NOx concentration by detecting either NO or N0 2 from varied to either one N0 2. Therefore, can not you to detect the concentration of NO and N0 2, respectively, also, the NOx concentration to be detected, it is difficult to detect an accurate NOx concentration largely depends on the performance of the catalyst or oxygen pump Met.
  • the conventional mixed potential type nitrogen oxide sensor has NO and NO together with oxygen;
  • the electrode potential of a coexisting gas of oxygen and nitrogen oxide is measured using an electrode active for one or both of them.
  • the electrode potential of only the same electrodes oxygen (air) the equilibrium potential of NO is negative, the equilibrium potential of N0 2 are positive. Therefore, in the case of the sum of NO and N0 2 in the same electrode and you'll detected as NOx, mixed potential of the sensing electrode in response to the concentration of NO changes in the negative direction, in response to the concentration of N0 2 It will change in the positive direction. Therefore, it is canceled to each other potential changes in the case where NO and N0 2 are simultaneously present, to it is difficult to reflect the concentration of NOx, since the potential change in total is reduced, also easy to be affected by noise .
  • the conventional mixed potential type nitrogen oxide sensor requires a highly active electrode material in the equilibrium state of the detection electrode, and the output signal is not always sufficient. Even with a mixed-potential total NOx detection sensor, there is a potential problem that deterioration of NOx conversion capability directly leads to a decrease in sensor output. It is an object of the present invention to provide a gas sensor that can obtain a stable output regardless of the state of NOx and that is effective for NOx detection that is not easily affected by fluctuations in NOx conversion capability.
  • Ki Ki out to detect N0 2 and NO concentration in at least the measurement atmosphere, and to provide a sensor which can accurately detect the NOx concentration.
  • the present invention provides a change in electrode potential caused by NO and N0 2 in the test gas in the same direction, it is possible to detect the total NOx, and an object to provide a sensor having improved sensitivity of the sensor .
  • At least two electrodes are fixed to a solid electrolyte substrate, at least one first electrode is arranged in an atmosphere of a gas to be detected, and at least one electrode is biased.
  • a gas sensor is provided which polarizes by applying a current or a bias voltage, and measures a gas component concentration in a detection target gas by measuring a potential change of the polarized electrode.
  • the electrodes function as sensing electrodes, reference electrodes and auxiliary electrodes.
  • One electrode may combine two or three functions.
  • the nitrogen oxide sensor according to the present invention comprises an ion-conductive solid electrolyte, an oxygen discharge electrode fixed to the solid electrolyte and active for oxygen, and an oxygen discharge electrode fixed to the solid electrolyte and active for oxygen. It has a sensing electrode, a measurement oxygen discharge electrode fixed to the solid electrolyte and active against oxygen and NOx gas, and a reference electrode fixed to the solid electrolyte.
  • the first chamber is formed by the oxygen discharge electrode and the oxygen detection electrode.
  • the second chamber is formed by the composite sensing electrode and the measurement oxygen discharge hail electrode, and gas diffusion holes are provided between the measurement atmosphere and the first chamber and between the first and second chambers to detect oxygen.
  • the oxygen discharge electrode is controlled by the electromotive force between the electrodes to keep the oxygen concentration of the measurement gas supplied to the first and second chambers constant, and a constant current is passed between the measurement oxygen discharge electrodes in the second chamber.
  • measuring and reference electrode based on the change in NO concentration and N0 2 concentration It detects a change in potential between the use oxygen discharge electrode for detecting the NOx concentration.
  • NOx concentration in the measurement gas is converted to NO and N0 2 Rukoto is NO and N0 2 concentration is detected by the not necessarily required potential between the reference and measuring oxygen discharge electrode pole Therefore, it is possible to detect the NOx concentration.
  • FIG. 1 is a sectional view of Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view in which a heater is provided in the first embodiment of the present invention.
  • FIG. 3 (a) is a sectional view of Embodiment 2 of the present invention.
  • FIG. 3 (b) is a modification of FIG. 3 (a).
  • FIG. 4 is a sectional view of Embodiment 3 of the present invention.
  • FIG. 5 is a sectional view of Embodiment 4 of the present invention.
  • FIG. 6 is a sectional view of Embodiment 5 of the present invention.
  • FIG. 7 is a sectional view of Embodiment 6 of the present invention.
  • FIG. 8 is a current-potential curve of a platinum electrode in Example 1.
  • FIG. 9 is a diagram showing the NOx concentration dependency of the NOx sensor output in the fourth embodiment.
  • FIG. 10 is a diagram showing the NOx concentration dependency of the NOx sensor output in the fourth embodiment.
  • FIG. 11 is a sectional view of a nitrogen oxide sensor according to the present invention.
  • FIG. 12 is a cross-sectional view of another nitrogen oxide sensor according to the present invention.
  • the first 3 is a diagram showing an N0 2 concentration dependence of the electromotive force of the composite sensing electrode.
  • FIG. 14 is a diagram showing the NOx concentration dependence of the potential between the oxygen discharge electrode and the reference electrode.
  • FIG. 1 shows a diagram of the most basic embodiment of the present invention.
  • the detection electrode 32 as the first electrode which is active with respect to the detection target gas at least in a state polarized on the yttria-stabilized zirconia solid electrolyte substrate 31, is inactive with respect to the detection target gas, or does not contact the detection target gas.
  • a reference electrode 33 for example, a Pt electrode
  • an auxiliary electrode 34 as an electrode for applying a third bias
  • the bias current value may be set so that the polarization potential is between 0.3 and 0.4 V (excluding 0 V).
  • the potential of the detection electrode 32 can be set between 0.4 V and 1.2 V.
  • FIG. 2 is a sectional view of a practical embodiment in which this embodiment is integrated with a heater 37 in order to provide a self-heating function.
  • a chamber 38 that communicates with the atmosphere of the gas to be detected and a chamber 39 that communicates with the atmosphere are defined by a solid electrolyte substrate 31 and ceramic substrates 40 and 40, and ceramic spacers 41 and 41 are arranged at appropriate places.
  • the heater 37 is embedded in the ceramic substrate 40.
  • the solid electrolyte does not necessarily need to be an yttrium-stabilized zirconia solid electrolyte substrate, but must be ionic-electrically connected, capable of conducting at least the same type of ions.
  • the detection electrode or reference electrode is forcibly applied with a current or voltage from the outside, and when electrochemically polarized, at least the detection target gas must have activity. In other words, when it is not polarized, it need not be active in the detection target gas.
  • the auxiliary electrode 34 is a counter electrode for introducing a current or voltage to the electrode to be polarized in order to polarize the detection electrode 32 or the reference electrode 33.
  • the auxiliary electrode 34 must be ionically connected to the electrode to be polarized via a solid electrolyte.
  • FIG. 3 (a) shows an embodiment in which the structure of the gas sensor of the present invention is simplified.
  • a zirconia solid electrolyte substrate 31 is a sensing electrode 32 that is at least polarized and active against the test gas species as a first electrode, and a reference electrode that is stable in air.
  • a dual-purpose electrode 42 that also functions as an auxiliary electrode is placed, and a constant current is applied between the electrodes 32 and 42 using a constant current power supply, and the voltage change between the electrodes 32 and 42 is measured. By doing so, the concentration of the test gas species is detected. It is preferable to set the current or potential as described above. By doing so, it is possible to simplify the configuration of the sensor.
  • a detection electrode 32 and a dual purpose electrode 42 inert to the detection target gas are arranged in a gas chamber 38 communicating with the detection target gas atmosphere.
  • dual-purpose electrodes 43, 43 also functioning as a detection electrode, a reference electrode, and an auxiliary electrode are fixed to a solid electrolyte substrate 31 so as to be disposed in a gas chamber.
  • Fig. 5 shows another example.
  • the composite electrodes 44, 44 having the functions of the detection electrode and the reference electrode are fixed to the solid electrolyte substrate 31 so that the composite electrode 44, 44 is located on the gas chamber 38 side and the auxiliary electrode 34 as the counter electrode is located on the air chamber 39 side.
  • the zirconia solid electrolyte substrate 31 has a detection electrode 44 that is active for the test gas species in an equilibrium state, a reference electrode 44 that is active for NOx in a polarized state, and a counter electrode 34. Place.
  • the detection electrode and the reference electrode While applying a current between the reference electrode 44 and the auxiliary electrode 34 as a counter electrode, at least the potential change between the detection electrode and the reference electrode when the detection electrode and the reference electrode are exposed to the gas to be measured is measured.
  • the detection electrode and the reference electrode respond in the positive and negative directions, respectively, and the sum of their absolute values is detected as a sensor output, so that high sensor sensitivity can be obtained.
  • two power sources are used to polarize the electrode 44 and the electrode 44 respectively to the optimal polarization state (the same direction or the opposite direction), and the change in the potential difference between the electrode 44 and the electrode 44 due to NOx at this time is measured. And detect the total NOx concentration. That is, at least one electrode 44 that is active in the gas to be detected in a polarized state, and the other electrode 44 that is active in the gas to be detected in at least a polarized state and is in the same atmosphere as the electrode. Are fixed to the ion-conductive solid electrolyte 31, and the one electrode 44 and the other electrode 44 are simultaneously polarized by respective power supplies.
  • An auxiliary electrode 34 as a counter electrode is arranged on the atmosphere chamber 39 side.
  • FIG. 7 shows a sensor configuration that takes these factors into account.
  • the oxygen sensor electrode 45 and its counter electrode 46 are arranged in the measurement space and on the atmosphere side with an electrolyte interposed, and both electrodes 47 and 48 of the oxygen pump are formed in the measurement space and outside the measurement space with the electrolyte interposed therebetween.
  • the oxygen concentration in the measurement space is detected using an oxygen sensor, and the applied voltage of the oxygen pump is adjusted based on the obtained electromotive force signal, thereby changing the amount of oxygen pumped or discharged to change the oxygen. Is controlled to be constant.
  • the sensitivity difference of against the NO and N0 2 to place the oxygen inert electrodes 49, 50 for converting or N0 2 converts NO to N0 2 to NO in the measurement space, of which The counter electrode 50 is placed outside the measurement space with an electrolyte interposed.
  • the presence ratio of the oxygen concentration and NO and N0 2 in terms of the constant accurately detect the total NOx by the sensing electrodes.
  • a NOx sensor having the structure shown in Fig. 1 was fabricated by the following method to demonstrate the principle of this measurement.
  • a platinum detection electrode 32 was formed on the upper surface of the ion-conductive solid electrolyte 31, and a reference electrode 33 and a counter electrode 34 were formed on the atmosphere side. Heating the sensor to 6 00 ° C, in nitrogen balance 4% oxygen, and this N0 2 certain stomach 200 ppm is N0 2 the addition of 400 ppm, was measured polarization curves using the potentiation O Star bract.
  • Figure 8 shows the results. 0 to 0. 3V oxidation current that depends on the N0 2 concentrations potential region was clearly observed.
  • the platinum electrode is N0 2 the force constant current which does not show the response of the electrode potential at all flow to the detection electrode with respect, it can be seen that the electrode potential changes greatly. For example, flowing a constant current of 0. 3 6 mA to the detection electrode, switch the N0 2 concentration in the gas containing 4% oxygen in the order of 0, 200 ⁇ Beauty 400 ppm, the electrode potential corresponding to the change in concentration Then, it was confirmed that the voltage changes in the order of 0.247V, 0.163V, and 0.108V.
  • Example 2 The upper surface of Jirukonia solid electrolyte 3 1 to prepare a metal oxide electrode of NiCr 2 0 4 and sensing electrode 32, to form a platinum reference electrode 33 and the counter electrode 34 on the opposite surface, the sensor having the structure as shown in Figure 1 was prepared.
  • a voltage is applied between the detection electrode 32 and the counter electrode 34 using a DC voltage stabilized power supply so that the detection electrode is positive and the counter electrode is negative.
  • a high resistance voltmeter for measuring a potential is connected between the detection electrode 32 and the reference electrode 33.
  • the sensor was heated to 550 ° C, is introduced as an air-based 20 0 ppm of NO or 200 ppm of N0 2 the gas to be detected.
  • Table 1 shows the results obtained in this way.
  • the value obtained by subtracting the potential value measured in the case of only air from this potential value is taken as the sensitivity, and it is clear that this sensitivity changes depending on the voltage applied between the detection electrode 32 and the counter electrode 34. .
  • sensitivity applied voltage versus the N0 and N0 2 when the 0 mV and one 7 mV respectively 22. to 6 mV when a voltage of 300 mV is applied between the sensing electrode and the counter electrode, sensitivity one 23 5 mV and 1 21.3 mV.
  • a sensing electrode 44 made of a Pt-Rh alloy electrode and a platinum reference electrode 44 are arranged on the top surface of the zirconia solid electrolyte 31 and a counter electrode 34 is formed on the opposite surface to produce a sensor having the structure shown in Fig. 5. did. Heat the sensor to 600 ° C, apply a specified hail pressure between the counter electrode 34 and the reference electrode 44 so that the counter electrode is positive and the reference electrode side is negative, and apply various concentrations in 4% oxygen. introducing a NO or N0 2 gas, or by applying a predetermined voltage between the electrode 44 and the electrode 34 by using a stabilized power supply through a resistance, measuring the potential difference variation between the electrode 44 and the electrode 44 did.
  • Fig. 9 shows the obtained results.
  • a sensor with the structure shown in Fig. 3 (a) was fabricated by forming a pt-Rh alloy electrode on the top surface of the zirconia solid electrolyte to serve as a detection electrode, and forming a platinum reference electrode on the opposite surface. This is heated to 550 ° C, and a constant current of 0.1 ⁇ is applied between the detection electrode and the reference electrode using a constant current power supply so that the detection electrode is positive and the counter electrode is negative. Polarize the sensing electrode. Introducing various concentrations of NO or N0 2 gas at 4% in oxygen, and measuring the output variation of the sensor. The results obtained are shown in Figure 10 (straight line 1.2).
  • a Pt-Rh alloy electrode and a platinum reference electrode were formed on the same surface on the side in contact with the test gas, and a NOx sensor having the structure shown in Fig. 4 was fabricated.
  • the measurement was performed under the same conditions as the above.
  • the results are shown in FIG. 10 (straight line 3.4).
  • a NOx sensor having the structure shown in Fig. 6 was fabricated, and currents of 0.1 ⁇ A and _0.3 A were applied to sensing electrodes 1 and 2, respectively, and the same temperature, oxygen concentration and NOx concentration It was measured under such conditions.
  • the results are shown in FIG. 10 (lines 5, 6). From this result, the sensor has a substantially similar activity against NO and N0 2, the slope of sensitivity curves was confirmed that increased.
  • Pt-Rh can be used as the pole sensing electrode, and Pt is preferably used as the reference electrode and the auxiliary electrode as the counter electrode.
  • One of the combined electrode and Pt-Rh, the other one may be a Cr 2 0 3.
  • FIG. 11 a further embodiment of the nitrogen oxide sensor according to the present invention will be described with reference to FIGS. 11 and 12.
  • FIG. 11 is a further embodiment of the nitrogen oxide sensor according to the present invention.
  • FIG. 11 shows an advanced configuration of the nitrogen oxide sensor according to the present invention.
  • the nitrogen oxide sensor according to the present invention comprises an ion-conductive solid electrolyte 1, an oxygen discharge electrode 2 fixed to the solid electrolyte and active against oxygen, and an oxygen discharge electrode 2 fixed to the solid electrolyte and active against oxygen.
  • the detection electrode 3 an active composite sensing electrode 4 with respect to fixed to the solid electrolyte or one oxygen and N0 2 gas, is fixed to the solid electrolyte and oxygen and active measuring oxygen discharge electrode with respect to NOx gas 5
  • An oxygen discharge electrode 2 and an oxygen detection electrode 3 are formed in the first chamber 7a, and a composite detection electrode 4 and a measurement oxygen discharge electrode 5 are formed in the first chamber 7a.
  • the measurement atmosphere, the first chamber, and the first and second chambers are formed in the two chambers 7b and are covered with the ceramic spacer 11 and the ceramic substrate 9 to form diffusion holes 8a and 8b, respectively.
  • the basic basic configuration of the configuration in FIG. 11 corresponds to FIG.
  • the oxygen discharge electrode 2 is preferably made of a material active only on oxygen. Also, only oxygen as possible the oxygen partial pressure in the first chamber 7a constant at N0 and N0 2 or less voltage reduction reaction of the electrode by NO and N0 2 that even active is applied does not occur with respect to It is formed in the first chamber so that the amount of emission can be obtained.
  • the other electrode 2a is connected to the ceramic spacer 11 It is covered with a plate 10 and is placed at a position where it comes into contact with the air atmosphere via an opening 12 at one end.
  • the oxygen detection electrode 3 is formed in the first chamber 7a, and the other electrode 3a is formed at a position in contact with the atmosphere.
  • Composite sensing electrode 4 is formed of an oxide of transition metal to oxygen and N0 2, the current collector is formed Ri by the platinum.
  • the counter electrode for the composite sensing electrode 4 shares the reference electrode 6 for the measurement oxygen discharge electrode 5 formed in the second chamber.
  • the measurement oxygen discharge electrode 5 is formed in the second chamber, and is formed of platinum.
  • the counter electrode 5a for the measurement oxygen discharge electrode is formed of platinum and is formed at a position in contact with the atmosphere.
  • the reference electrode 6 made of platinum is formed at a position in contact with the air atmosphere.
  • the ionic conductor 1 is an oxygen ionic conductor, and is applicable to a solid electrolyte obtained by adding a stabilizer to an oxide such as hafnium oxide, zirconium oxide, or thorium oxide, or bismuth oxide. From the viewpoint of stability and chemical stability, stabilized zirconia using a stabilizer such as yttrium oxide, magnesium oxide, or calcium oxide is preferable.
  • the measurement gas flows into the first chamber 7a through the diffusion hole 8a, and further flows into the second chamber 7b through the diffusion hole 8b.
  • the diffusion hole may have one fine hole or a plurality of diffusion holes. Further, it may be a porous body.
  • the oxygen detection electrode may be formed in the second chamber 7b.
  • Measurement gas is a constant oxygen partial pressure in the first chamber 7a flows into the second chamber 7b, NO or N0 2 concentration is detected by the composite sensing electrode 4 provided in the second chamber. NO Oh Rui N0 2 concentration is detected as a potential difference between the reference electrode 6. Further, a constant current flows between the measurement oxygen discharge electrode 5 provided in the second chamber 7b and its counter electrode 5a. Voltage is applied as described above, and the hail between the measurement oxygen discharge electrode 5 and the reference electrode 6 is measured.
  • the constant current value set between the measurement oxygen discharge electrode 5 and the counter electrode is a range of the current value and the voltage value that do not become the limit current value at least in the current potential curve for oxygen in the second chamber. , reduction reaction of NO and N0 2 are set so that a sufficient voltage to produce.
  • the potential of the reference electrode 6 is constant because it is in contact with the atmosphere where the oxygen concentration is constant.
  • the measuring oxygen discharge electrode 5 are active to oxygen and NOx, oxygen concentration and the potential within a certain second chamber 7b is dependent on the concentration of NO and N0 2.
  • Change in potential for NO and N0 2 concentration can be detected NOx concentration in the measurement atmosphere without using the composite sensing electrode 4 if the same. Further if it desired to detect the NO or N0 2 each concentration, or when a change in the potential of the measuring oxygen discharge electrode 5 and the reference electrode 6 is different between NO and N0 2 are or NO detected by the composite sensing electrode 4 N0 2 concentration based on the NO contact and N0 2 concentration of the reference electrode 6 and the measuring oxygen discharge electrode 5 potential, can NO and N0 2 concentration in the measurement gas detection, to detect the NOx concentration.
  • the ceramic substrate 9 covering the first chamber 7a and the second chamber 7b is made of the same material as the ion-conductive solid electrolyte 1, and the oxygen discharge electrode 2 and its Even if the counter electrode 2a or the composite detection electrode 4 and the counter electrode are formed on the ion-conductive solid electrolyte substrate 9, there is no problem in the operation of the sensor of the present invention.
  • the nitrogen oxide sensor of the present invention uses a solid electrolyte, it needs to be heated to a predetermined temperature.
  • the sensor may be heated by high-temperature exhaust gas, It can be operated by heating to a temperature.
  • heating by a self-heating device is preferable.
  • a heater for self-heating may be formed directly on the ceramic substrate 9, or a substrate in which a heater is embedded with ceramic or the like may be bonded on the ceramic 9. In the structure shown in FIG. 11, the ceramic substrate 10 A self-heating device can be attached on top.
  • the nitrogen oxide sensor shown in Fig. 11 was manufactured by the following method and its performance was evaluated.
  • An 8 mol% yttria-stabilized zirconia substrate 1 of 4 ⁇ 50 ⁇ 0.2 mm was used.
  • the lead portion of each electrode was formed by screen printing, baked, and the Pt wire was welded to form a lead wire.
  • a Cr 2 O 3 film was formed on the zirconia substrate 1 by a sputtering method, and Pt was further fixed thereon to form a composite sensing electrode 4.
  • N0 2 Concentration dependence of the same electromotive force even when allowed to coexist 100 ppm of NO was obtained. Therefore, N0 2 concentration by the composite sensing electrode regardless of whether or not the operation and NO coexist in the oxygen discharge electrode was confirmed to be able to detect.
  • the relationship between the time of N0 2 concentration and the electromotive force is expressed by the following equation.
  • Oxygen discharge electrode 2 and oxygen detection electrode 3 are operated in a measurement gas with an oxygen concentration of 0.5 ° Zo at a sensor temperature of 600 to control the oxygen concentration in the first chamber to 0.1%.
  • Figure 14 shows the relationship between the NOx concentration and the potential between the measurement oxygen discharge electrode 5 and the reference electrode 6 when a voltage was applied so that mA 'current flowed. If the .smallcircle of NOx N0 2 only contained in the measurement gas, N0 ⁇ the case of only a constant concentration of NO (50 ppm) when the ⁇ mark contains, constant concentration N0 2 (50 ppm) is indicated by a beautiful mark. N0, N0 2 concentration potential change between the logarithm to the electrodes of the varied proportionally. Also it shows the potential change proportional to N0 2 or N0 concentration logarithm in a certain amount of NO or N0 2 presence. From these results, the relationship between NOx concentration and potential can be expressed by the following equation.
  • the oxygen exhaust electrode 2 and the oxygen detection electrode 3 were operated in the measurement gas of various NOx concentrations with an oxygen concentration of 0.5% at a sensor temperature of 600 to control the oxygen concentration in the first chamber to 0.1%, and the oxygen for measurement A voltage was applied so that a current of 0.05 mA flowed through the electrodes 5 and 5a, and the electromotive force of the composite detection electrode and the potential between the measurement oxygen discharge electrode 5 and the reference electrode 6 were measured.
  • N0 2 N0 concentration and the electromotive force and the potential at the measurement gas at that time, further N0, N0 2 concentration determined from (1) and (2) shown in Table 2. (Table 2)
  • the electromotive force of a composite sensing electrode corresponds to N0 2 concentrations, further potential and NO concentration determined from N0 2 concentration determined by the combined detection electrode between the measuring oxygen discharge electrodes 5 and the reference electrode, the measurement gas Almost matched with the concentration.
  • the nitrogen oxide sensor according to the present invention the total NOx amount and the NO in the exhaust gas in the one element without converting by oxidation or reduction of NO and N0 2 to NO or N0 2 either gas species N0 2. Each concentration can be detected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

明細書
ガスセンサ
技術分野
本発明は、ガスセンサ、特に燃焼ガス中の窒素酸化物濃度を検出する窒素 酸化物センサに利用できるガスセンサに関するものである。 本発明の原理は 窒素酸化物以外のガス検知にも広く適用することができる。
背景技術
自動車を初めとした内燃機関と火力発電所、プラント等の燃焼機器から排 出される NOx が光化学スモックゃ酸性雨の原因になるほか、人間の呼吸器 に有害であり、地球環境の大きな汚染源とされている。 このため、 NOx 等の 有害ガスの検知は重要な課題となり、測定機器の小型化、低コスト化、さら に、各種使用環境に対応できるガスセンサが求められている。
近年、 自動車排ガス中に直接挿入して連続検知が行える全固体型 NOx セ ンサが注目を集め、幾つかの研究結果を報告されている。 例えば、 自動車 の高温排気ガス中の NOx 濃度を検出できるセンサとして電流式のセンサが 報告されている (SAE TECNI CAL PAPER 960334 )。 このセンサは、 イオン 伝導体に 2室を設け、第 1室で酸素ポンプにより測定雰囲気内の酸素濃度を ほぼゼロにすると共に !^02を NO に還元し、第 2室に設けた電極に電圧を印 加して N02の還元により生じた NOおよび測定雰囲気中の N02の NOへの還 元により生じる酸素をイオン化して電流を検出して NOx 濃度を検出するセ ンサである。 このセンサにおいても NOx濃度を検出するために N02を NOに 還元する酸素ポンプが適用されているため、検出される NOx 濃度は、酸素 ポンプの性能と残存する酸素濃度に大きく左右され、 NO と N02それぞれの 濃度を検出することができない。
一方、各種酸化物の半導体特性を利用して電気伝導度が変化する半導体 式のセンサも NOxセンサとして報告されている。 例えば特開平 6— 1 6032 4号公報では、酸化錫をガス感応体に用いたセンサが提案されている。 しか し、このセンサにおいても NOと N02に対するガス感度が異なるため、 NOと N02とが共存する測定雰囲気中の NOx濃度を検出することはできない。 これとは別に、特開平 4 - 1 42455号公報では、イオン伝導体に感知電極と 参照電極を設置し、被検ガス中で鼋極間の電位差を測定する混成電位型 NOxセンサが提案されている。 このセンサでは、 NOや N02に対して感度を 示すものの、 NOと N02に対する感度極性が相反するために、 NOと N02が共 存する被検ガスにおいてはお互いの出力がキャンセルしあい、 NOxの濃度を 正確に検出できない。即ち総 NOx濃度の検知ができないことになる。 その 対策として、本発明者らはジルコニァ固体電解質体に測定ガス雰囲気に連 通する内部空所を設け、 NOx中の NO或いは N02をどちらか一方に単ガス 化して検知する総 NOxセンサを提案した(特願平 8— 854 1 9号、特願平 8 一 1 65 1 05号)。 これはジルコニァ固体電解質内に一室或いは二室の缶室 を形成し、少なくとも一室内で電気化学的酸素ポンプ或いは触媒体により NOx ( NOと N02が主成分)を NOに還元、或いは N02に酸化させ、その単ガ ス化された NOxを検知する方式(混成電位型の総 NOxセンサ)である。 し かしながら、 NOxが完全に単ガス化されない場合は、 NOと N02が混在し、そ れぞれお互いに干渉しあうことは明白である。 例えば、 NOxを単ガス化する に足る変換触媒能力が劣化してきた場合には、この劣化が直接センサ出力 の変動をきたす原因となる。
このようにこれまでに提案されているガスセンサは、測定雰囲気中の NOx 濃度を検出するために触媒や酸素ポンプなどを用いて NO の酸化あるいは N02の還元を生じさせている。 そして雰囲気中に含まれる NOxを NOあるい は N02いずれか一方に変化させてから NOあるいは N02いずれかを検知し て総 NOx濃度としている。 このため、 NOと N02との濃度をそれぞれ検出す ることができず、また、検出される NOx 濃度は、触媒や酸素ポンプの性能に 大きく依存して正確な NOx濃度を検出することが困難であった。
又、これまでの混成電位型窒素酸化物センサは、酸素とともに、 NOと NO;; に、或いはこれらのいずれか一方に対して活性な電極を用いて、酸素と窒 素酸化物の共存ガスの電極電位を測定するものであった。 しかし、同一電 極の酸素(空気)のみの電極電位に対して、 NOの平衡電位が負となり、 N02 の平衡電位が正となっている。 このため、同一電極で NOと N02の和を NOx として検知しょうとする場合では、検知極の混成電位が NOの濃度に対応し て負の方向に変化し、 N02の濃度に対応して正の方向に変化することとなる。 従って、 NOと N02が同時に存在する場合では電位変化はお互いにキャンセ ルされて、 NOxの濃度を反映することは困難であるし、トータルの電位変化 は小さくなるので、ノイズにも影響されやすい。
発明の開示
前述の如く、従来の混成電位型窒素酸化物センサは検知電極の平衡状態 で高活性な電極材料が必要とされ、出力信号が必ずしも充分とは言えない。 また混成電位型の総 NOx検知センサでも、 NOxの変換能力の劣化が直接、 センサ出力の低下をきたす潜在的な課題がある。 本発明は N Oxの存在状態 に関わらず、安定した出力が得られ、また NOx の変換能力の変動に影響さ れにくい NOx検知に有効なガスセンサを提供することを目的としている。 本発明は、少なくとも測定雰囲気中の N02と NO濃度を検出することがで き、正確に NOx濃度を検出できるセンサを提供することを目的とする。
さらに、本発明は被検ガス中の NO及び N02による電極電位の変化を同一 方向にし、トータルの NOxを検出することができ、かつセンサの感度を向上 したセンサを提供することを目的とする。
本発明によれば、前述した目的を達成するために、少なくとも二つの電極 を固体電解質基板に固定し、少なくとも一方の第 1の電極を検知対象ガス 雰囲気中に配し、少なくとも一方の電極をバイアス電流或いはバイアス電圧 を印加することで分極させ、その分極した電極の電位変化を測定すること により検知対象ガス中のガス成分濃度を測定するガスセンサが提供される。 電極は検知電極、参照電極及び補助電極としての機能をもたせるが、一 つの電極が二つの又は三つの機能を併用してもよい。
さらに、本発明による窒素酸化物センサは、イオン導電性の固体電解質と、 固体電解質に固定されかつ酸素に対して活性な酸素排出電極と、固体電解 質に固定されかつ酸素に対して活性な酸素検知電極と、固体電解質に固定 されかつ酸素および NOxガスに対して活性な測定用酸素排出電極と、固体 電解質に固定された参照極を有し、酸素排出電極と酸素検知電極で第 1室 を形成し、複合検知極と測定用酸素排出雹極で第 2室を形成し、測定雰囲 気と第 1室および第 1室と第 2室の間にはそれぞれガス拡散孔を備え、酸素 検知電極間の起電力により酸素排出電極を制御して第 1室および第 2室に 供給される測定ガスの酸素濃度を一定とし、第 2室の測定用酸素排出電極 間に一定の電流を通電し、 NO濃度および N02濃度の変化に基づく参照極と 測定用酸素排出電極との間の電位の変化を検出して NOx濃度を検出する。 本発明の構成によれば、測定ガス中の NOx濃度は、 NOや N02に変換され ることは必ずしも必要でなく測定用酸素排出電極と参照極間の電位により NOおよび N02濃度が検出されるので、 NOx濃度の検知を行うことができる。 さらに NOおよび N02濃度に対する測定用酸素排出電極と参照極との電位 応答が異なる場合には、複合検知極によって N02あるいは NO濃度を検知 する手段を設けることにより測定ガス中の NOあるいは N02濃度が検出され、 NOx濃度の検出を行うことができる。
図面の簡単な説明
第 1図は、本発明の実施形態 1 の断面図である。
第 2図は、本発明の実施形態 1 にヒータを配した断面図である。
第 3 ( a)図は、本発明の実施形態 2の断面図である。
第 3 ( b )図は、第 3 ( a)図の変形例である。
第 4図は、本発明の実施形態 3の断面図である。
第 5図は、本発明の実施形態 4の断面図である。
第 6図は、本発明の実施形態 5の断面図である。 第 7図は、本発明の実施形態 6の断面図である。
第 8図は、実施例 1における白金電極の電流一電位曲線である。
第 9図は、実施例 4における NOx センサ出力の NOx 濃度依存性を示す図 である。
第 1 0図は、実施例 4における NOxセンサ出力の NOx濃度依存性を示す図 である。
第 1 1図は、本発明による窒素酸化物センサの断面図である。
第 1 2図は、本発明による他の窒素酸化物センサの断面図である。
第 1 3図は、複合検知極の起電力の N02濃度依存性を示す図である。
第 1 4図は、酸素排出電極と参照極間の電位の NOx 濃度依存性を示す図 である。
発明を実施するための形態
図 1 に本発明の最も基本的な実施形態の図を示す。 イットリア安定化ジル コニァ固体電解質基板 3 1に少なくとも分極した状態で検知対象ガスに対し て活性な第 1の電極としての検知電極 32、検知対象ガスに対して不活性、 或いは検知対象ガスに接しない、電位安定な第 2の電極としての参照電極 3 3、 (例えば Pt電極)及び第 3のバイアスを印加するための電極としての補 助電極 34を形成する。 尚、センサ構成は固体電解質基板の代わりに固体電 解質チューブを用いて構成されても、何ら本発明から逸脱するものでないこ とは明白である。 更に、第 1の電極と第 3の電極の間に所定電流 35を流し ながら、第 1の電極と第 2の電極の間の電圧変化 36を測定することによつ て、被検対象ガスの濃度を検知する。 ここで、バイアス電流の電流源の安定 性はセンサの安定性に直接関与するので、精度と安定性の高いものを使用 することが望ましい。 なお、バイアス電流値は分極電位が一 0. 3から 0. 4 V ( 0Vを除く)の間になるように設定すればよい。 一方、酸素の影響を低減 することと外界ノイズに対するセンサの安定性を向上することを考慮すれば、 検知電極 32の電位を 0. 4V〜 1 . 2Vの間に設定することもできる。 一方、 補助電極 34を検知電極 32と同一の空間に配置することによって、電流に よって生じた酸素の濃度変化を低減することができる。
この実施形態を自己加熱機能を付与するために、ヒータ 37と一体化した 実用的な実施形態の断面図は第 2図に示す。補助電極 34を別空所に設け て、検知電極に対する影響を無くすことができる。
検知対象ガス雰囲気に通じる室 38と、大気に通じる室 39は、固体電解質 基板 31とセラミックス基板 40、 40とにより区画され、適所にセラミックス製 のスぺーサ 4 1、 4 1を配置する。 ヒータ 37はセラミックス基板 40内に埋設さ せる。
固体電解質は必ずしもイットリウム安定化ジルコニァ固体電解質基板であ る必要はないが、少なくとも同一種のイオンを伝導できる、イオン電気的に 接続されている必要がある。 検知電極或いは参照電極は外部より強制的に 電流あるいは電圧がかけられており、電気化学的に分極されている状態で は少なくとも検知対象ガスに活性を有する必要がある。 言い換えれば、分極 していない場合には、検知対象ガスに活性でなくともよい。 補助電極 34は 検知電極 32或いは参照電極 33を分極するために、分極させる電極に電流 あるいは電圧を導入するための対極である。 ここで補助電極 34は必ず分 極する電極と固体電解質を介してイオン電気的に接続されている必要があ る。 このような電極と固体電解質 31との基本構成からなる状態で、分極さ れた検知電極 32或いは参照電極 33との間で起電力に起因する電位差を 測定すると従来の単なる混成電位検出方法に比べて非常に大きな出力が 得られることが見い出された。 また、従来と全く異なることは、 NOと 02を 検知する場合、 NOxの種類に関係なく全て同一の感度極性を持つことであ る。 すなわち、従来では NOと N02ではそれぞれ逆方向の出力を持ち、混在 している場合はお互いにキャンセルしあい、総 NOx濃度はおろか N0や N02 濃度も検出できなかった。 本発明法によれば、感度が増大し、その出力方 向は同一になり、さらに感度の大きさも殆ど大差のないものが得られる。 従 つて、本発明法による NOx検知で容易に総 NOx濃度を検出することができ る。 この検出方式のガスセンサを用いれば、対象ガスは特に NOxに限定され ることはないことは明白である。
第 3 (a)図に本発明のガスセンサの構造を簡略化した実施形態を示す。 ジ ルコニァ固体電解質基板 3 1に第 3 (a)図のように少なくとも分極した状態 で被検ガス種に対して活性な第 1の電極としての検知電極 32と、大気中で 電位安定な参照電極と補助 ¾極としての機能を兼ね備える兼用電極 42を 配置し、更に、電極 32と電極 42の間に定電流電源を用いて所定電流を流 し、電極 32と電極 42の間の電圧変化を測定することによって、被検ガス種 の濃度を検知する。 電流、或いは電位の設定は前述のように行うことが好 ましい。 このようにすれば、センサの構成を簡素化することが可能である。 第 3 (b)図は、検知電極 32検知対象ガスに不活性な兼用電極 42とを検 知対象ガス雰囲気に通じるガス室 38内に配したものである。
第 4図に示す例は、検知電極、参照電極及び補助電極としての機能を兼 ね備える兼用電極 43、 43をガス室 38に配されるよう固体電解質基板 3 1 に固定させたものである。
バイアス電流を両電極 43、 43でそれぞれ◦. 05〜0. 5Vと— 0. 03〜一 0. 5Vの領域に調節すれば、一方の電極 43が他方の電極 43と逆方向の応 答の出現によって、センサの感度が更に向上される。 これと共に、検知機能 をなす電極とこれの対極としての参照電極の表面の酸素濃度が両電極の酸 素の酸化、還元反応によって、分極による酸素濃度の変化がより小さくなる。 第 5図に別の例を示す。 本例では検知電極と参照電極との機能を兼ね備 える複合電極 44、 44をガス室 38側に且つ対極としての補助電極 34を大 気室 39側に位置するよう固体電解質基板 3 1に固定させる。 一方の感知電 極 44の近傍に配置した他方の電極 44と電極 34の間に所定のバイアス電流 を流すことによって、参照電極とした第 2の電極 44に被検対象ガスに対す る、検知電極 44と相反する電位応答を現出させるとともに、電解質中の検 知電極近傍の酸素イオンポテンシャルを変化させ、センサの感度を更に向上 させる。 即ち、この例では、ジルコニァ固体電解質基板 3 1に第 5図のように 平衡状態で被検ガス種に対して活性な検知電極 44と、分極した状態で NOxに活性な参照電極 44及び対極 34を配置する。 参照電極 44と対極と しての補助電極 34間に電流を流しながら、少なくとも検知電極と参照電極 を被挨ガスに曝した際の検知電極と参照電極間の電位変化を測定する。検 知電極と参照電極がそれぞれ正と負の方向に応答しその絶対値の和をセン ザの出力として検知され、高いセンサ感度を得ることが可能となる。
本発明のもう一つ実施形態を第 6図を参照して述べる。 更なるセンサ出力 の改善と干渉ガスの影響を排除するには、検知電極と参照電極との機能を 兼ね備える一方の電極 44と他方の電極 44とを同時に異なる電流を用いて 分極させる方法がある。 実施形態 2の中に、電極 32と電極 42の間に電流 を流して、その際の相反する感度を検出する方法を述べたが、同一電流で 必ずしもそれぞれの最適分極状態が得られるとは限らない。 本実施形態は 二つの電源を用いて、電極 44と電極 44をそれぞれ最適分極状態(同方向 あるいは逆方向)に分極し、 この時の NOx による電極 44と電極 44間の電 位差変化を測定し、総 NOx の濃度を検出する。 即ち、少なくとも分極され た状態において検知対象ガスに活性を有する一方の電極 44と、少なくとも 分極された状態において検知対象ガスに活性を有し且つ前記電極と同一雰 囲気中にある他方の電極 44とが、イオン伝導性固体電解質 3 1に固定され た構成からなり、且つこの一方の電極 44及び他方の電極 44を同時にそれ ぞれの電源によって分極させる。 対極としての補助電極 34を大気室 39側 に配す。
本発明の実用的な実施形態について第 7図を参照して述べる。 被検ガス 中の酸素酸化或いは還元によって、分極された電極電位が変化し、 NOx濃 度が正確に検出できないため、酸素濃度を一定に制御する必要がある。 又、 電極材料の違いによって電極触媒能も変化し、 NOと N09に対する感度の差 _ q _
異も予想される。 このため、被検ガス中の酸素濃度及び NOと N02の存在比 をできるだけ一定にすることが望ましい。 第 7図にこれらのことを考慮した センサ構成を示す。 酸素センサ電極 45とその対極 46を測定空間内と大気 側に電解質を介在して配置し、酸素ポンプの両電極 47、 48をそれぞれ測 定空間内と測定空間外に電解質を介在して形成する。 更に、酸素センサを 用いて測定空間中酸素濃度を検出し、得られた起電力信号を基づいて酸素 ポンプの印加電圧を調節することによって、酸素の汲み込み量或いは吐き 出し量を変化させ、酸素の濃度を一定に制御する。 一方、 NOと N02に対す る感度の違いについて、 NOを N02に変換する或いは N02を NOに変換する ための酸素に不活性な電極 49、 50を測定空間中に配置し、これの対極 50 を測定空間外に電解質を介在して配置する。 このように、酸素濃度及び NO と N02の存在比を一定にした上で、検知電極によって総 NOxを正確に検出 する。
(実施例 1 )
第 1図に示すような構造を有する NOxセンサを下記の方法により作製して、 本測定原理を実証した。 イオン伝導性固体電解質 3 1の上表面に白金検知 電極 32、大気側に参照電極 33と対極 34をそれぞれ形成した。 センサを 6 00°Cに加熱し、窒素バランス 4%の酸素中、及びこれに 200 ppm の N02或 いは 400 ppmの N02 添加し、ポテンシォスタツトを用いて分極曲線を測定 した。 その結果を図 8に示す。 0〜0. 3Vの電位領域に N02の濃度に依存す る酸化電流が明確に観測された。 通常電流を流さない場合では、 白金電極 は N02に対して電極電位の応答は全く示さない力 一定の電流を検知電極 に流し、電極電位が大きく変化することが分かる。 例えば、検知電極に 0. 3 6 mAの一定な電流を流し、 4%酸素を含むガス中に N02の濃度を 0、 200及 び 400 ppm の順に切り換えると、電極電位が濃度の変化に対応して、 0. 2 47V、 0. 1 63V, 0. 1 08Vの順で変化することを確認した。
(実施例 2) ジルコニァ固体電解質 3 1の上面に NiCr204の金属酸化物電極を作製して 検知電極 32とし、反対面に白金参照電極 33と対極 34を形成し、第 1図の ような構造を有するセンサを作製した。 検知電極 32と対極 34の間に検知 電極の方が正、対極の方が負になるように直流電圧安定化電源を用いて電 圧をかけておく。 一方、検知電極 32と参照極 33の間に電位を測定するた めの高抵抗電圧計を接続する。センサを 550°Cに加熱し、空気ベースの 20 0 ppmの NO或いは 200 ppmの N02を被検ガスとして導入する。検知電極 32と対極 34との間の印加電圧を表 1 に示す各所定値に調整してから、検 知電極の電極電位を参照電極に対して測定する。 このようにして得られた 果を表 1に示す。
(表 1 )検知電極と対極間の印加電圧による検知電極の電位変化
Figure imgf000012_0001
印加電圧の変化によって、空気中における検知電極の電位は変化するが、 200 ppmの N0及び N02の導入することによって電極電位は更に変化する。 この電位値から空気のみの場合で測定した電位値を引いて得た値を感度と し、この感度が検知電極 32と対極 34間に印加した電圧に依存して変化す ることが明らかである。 例えば、印加電圧が 0 mV の時の N0 及び N02に対 する感度はそれぞれ一 7 mVと 22. 6 mVに対し、 300 mV の電圧を検知極 と対極の間に印加すると、感度が一 23. 5 mV と一 2 1 . 3 mV となった。 即 ち、 NOに対する感度を高めたとともに、 N02に対する感度を正方向から負に 変えることもできた。 このことを利用して、従来の NOと N02に対して異なる 方向の応答は同一方向にすることができ、 トータル NOx の測定に有利であ ることが明らかである。
(実施例 3)
ジルコニァ固体電解質 3 1の上面に Pt- Rh 合金電極で作製した検知電極 44と白金参照電極 44とを配し、反対面に対極 34を形成し、第 5図のよう な構造を有するセンサを作製した。 センサを 600°Cに加熱し、対極 34と参 照電極 44の間に対極の方が正、参照電極側が負になるように所定の雹圧 を印加し、 4%の酸素中でいろいろな濃度の NO或いは N02ガスを導入し、又 は電気抵抗を介して安定化電源を用いて電極 44と電極 34の間に所定電 圧を印加し、電極 44と電極 44の間の電位差変化を測定した。 得られた結 果を第 9図に示す。 この結果から、分極させる前の平衡状態(E=0V)に比べ ると、分極した状態(E=0.4V, E= 1 V)の NOと N02に対する感度とその傾きが 大幅に増加したことが確認された。 NO と N02に対して感度は異なるが、こ れはセンサに付加するガス変換部によって単ガス化してから測定すれば解 決することが可能である。
(実施例 4)
ジルコニァ固体電解質の上面に pt- Rh合金電極を作製して検知電極とし、 反対面に白金参照電極を形成し、第 3 ( a)図のような構造を有するセンサ を作製した。 これを 550°Cに加熱し、検知電極と参照電極の間に検知電極 の方が正、対極の方が負になるように定電流電源を用いて 0. 1 μ Α の一定 の電流を流し、検知電極を分極させる。 4 %の酸素中でいろいろな濃度の NO 或いは N02ガスを導入し、センサの出力変化を測定した。 得られた結果 を第 1 0図に示す(直線 1. 2)。 又、 Pt- Rh 合金電極と白金参照電極を被検 ガスに接する側の同一面形成し、第 4図に示す構造の NOxセンサを作製し、 前述の測定と同様な条件で測定した。 結果を第 1 0図に示す(直線 3. 4)。 さらに第 6図のような構造を有する NOx センサを作製し、検知電極 1と 2に それぞれ 0. 1 μ Aと _ 0. 3 Aの電流を流し、先と同様な温度、酸素濃度 及び NOx濃度などの条件で測定した。結果を第 10図に示す(直線 5, 6)。 この結果から、このセンサは NO と N02に対してほぼ同様な活性を持ち、感 度曲線の傾きは増大したことが確かめられた。
尚、前述した例において、極知電極として、 Pt-Rhを用いることができ、参 照電極と対極としての補助電極として Ptを用いるとよい。 兼用電極の一方 を Pt- Rhとし、他方を Cr203とさせるとよい。
以下、本発明による窒素酸化物センサのさらなる実施形態を第 1 1図及び 第 1 2図について説明する。
第 1 1図は、本発明による窒素酸化物センサの発展的な構成を示す。 本発 明による窒素酸化物センサは、イオン伝導性の固体電解質 1と、固体電解質 に固定されかつ酸素に対して活性な酸素排出電極 2と、固体電解質に固定 されかつ酸素に対して活性な酸素検知電極 3と、固体電解質に固定されか つ酸素および N02ガスに対して活性な複合検知電極 4と、固体電解質に固 定されかつ酸素および NOx ガスに対して活性な測定用酸素排出電極 5と、 固体電解質に固定された参照極 6とよりなり酸素排出電極 2と酸素検知電 極 3とが第 1室 7aの中に形成され、複合検知極 4と測定用酸素排出電極 5 とが第 2室 7bの中に形成され、測定雰囲気と第 1室および第 1室と第 2室と は、セラミツクススぺーサ 1 1とセラミックス基板 9に覆われ、それぞれ拡散孔 8a、 8bが形成される。 尚、第 1 1図の構成の原理的な基本構成は第 1図に 相当する。
酸素排出電極 2は酸素のみに活性な材料で構成されることが好ましい。 ま た、 N0 や N02に対して活性であっても印加される電極により NO や N02の 還元反応が生じない電圧以下で第 1室 7a内の酸素分圧を一定にできるだ けの酸素排出量が得られるように第 1室に形成される。 もう一方の電極 2a は測定雰囲気と接触しないようにセラミツクススぺーサ 1 1とセラミックス基 板 1 0により覆われ、一端の開放部 1 2を介して大気雰囲気と接触位置に配 置される。 酸素検知電極 3は、第 1室 7a内に形成し、 もう一方の電極 3aは、 大気雰囲気に接触する位置に形成される。 複合検知極 4は、酸素および N02に対して活性な遷移金属の酸化物により形成され、集電体は、 白金によ り形成される。 複合検知極 4に対する対極は、第 2室に形成される測定用酸 素排出電極 5に対する参照極 6を共有する。 測定用酸素排出電極 5は第 2 室内に形成され、 白金により形成する。 測定用酸素排出電極に対する対極 5aは白金により形成され、大気雰囲気と接する位置に形成される。 また、 同様に白金による参照極 6も大気雰囲気に接する位置に形成される。
イオン伝導体 1は、酸素イオン伝導体であり、酸化ハフニウム、酸化ジルコ 二ゥム、酸化トリウムなどの酸化物に安定化剤を添加した固体電解質あるい は酸化ビスマスなどが適用でき、熱的な安定性や化学的な安定性の点で酸 ィ匕イットリウム、酸化マグネシウム、酸化カルシウムなどの安定化剤を用いた 安定化ジルコニァが好ましい。 測定ガスは、拡散孔 8aを介して第 1室 7aに 流入し、さらに拡散孔 8bを介して第 2室 7bに流入する。 ここで拡散孔は、 微細な孔が 1つ形成されていても良く複数であってもよい。 また、多孔体で あってもよい。
少なくとも第 1室 7a内に流入した測定ガス中の酸素が酸素排出電極 2に よって排出され、第 1室 7a内の酸素分圧が一定となるようなもので有れば よい。 さらに第 1室 7a内の酸素分圧は、第 1室 7a内に形成した酸素検知電 極 3により検出され、第 1室内の酸素分圧が一定となるように酸素排出電極 2の電圧を制御する手段を備える。 この場合、酸素検知電極は第 2室 7bに 形成されていても良い。
第 1室 7aで一定の酸素分圧とされた測定ガスは、第 2室 7bに流入し、第 2 室に設けた複合検知極 4により NOあるいは N02濃度が検出される。 NO あ るいは N02濃度は、参照極 6との電位差として検知される。 さらに第 2室 7b に設けた測定用酸素排出電極 5とその対極 5a間には一定の電流が流れる ように電圧が印加され、測定用酸素排出電極 5と参照極 6との間の雹位が 測定される。 ここで、測定用酸素排出電極 5と対極との間に設定される一定 の電流値は、少なくとも第 2室内の酸素に対する電流電位曲線において限 界電流値とならない電流値および電圧値の範囲であり、 NOと N02の還元反 応が生じるのに十分な電圧値となるように設定される。 参照極 6は酸素濃 度が一定の大気中と接しているためその電位は一定である。
一方、測定用酸素排出電極 5は、酸素および NOxに対して活性であり、酸 素濃度が一定の第 2室 7b内でその電位は NOと N02の濃度に依存する。 NO と N02濃度に対する電位の変化が同じであれば複合検知極 4を用いること なく測定雰囲気中の NOx濃度を検出することができる。 さらに NOあるいは N02それぞれの濃度を検知したい場合、あるいは測定用酸素排出電極 5と 参照極 6との電位の変化が NOと N02とで異なる場合には、複合検知極 4で 検知した NOあるいは N02濃度と測定用酸素排出電極 5と参照極 6の NOお よび N02濃度に基づく電位から、測定ガス中の NOおよび N02濃度を検知で き、 NOx濃度を検出する。
本発明の別法として図 1 2に示すように第 1室 7 aおよび第 2室 7bを覆う セラミックス基板 9をイオン伝導性の固体電解質 1と同じ材質で構成し、酸 素排出電極 2とその対極 2aあるいは複合検知電極 4とその対極をイオン導 電性の固体電解質基板 9上に形成しても本発明のセンサの動作上問題とす るところはない。
本発明の窒素酸化物センサは、固体電解質を用いていることから所定温 度に加熱することが必要とされるが、高温の排気ガスにより加熱しても良く、 自己加熱装置を付加して所定温度に加熱させて動作することもできる。 特 に安定した性能を得るためには、 自己加熱装置による加熱が好ましい。 たと えば、セラミックス基板 9上に直接自己加熱のためのヒータ一を形成しても 良く、さらにセラミックス等でヒーターを埋め込んだ基板をセラミックス 9上に 張り合わせてもよい。 また、第 1 1図に示す構造では、セラミックス基板 1 0 上に自己加熱装置を張り合わせることもできる。
(実施例 5)
第 1 1図に示す窒素酸化物センサを下記の方法により作製してその性能を 評価した。 4 x 50 x 0.2 mm の 8 mol %イットリア安定化ジルコニァ基板 1を 用いた。 ジルコニァ基板 1上にガラスフリットの添加された Ptペーストを用い それぞれの電極のリード部をスクリーン印刷法により形成して焼成し Pt線を 溶接してリード線とした。 その後、ジルコニァ基板 1にスパッタリング法により Cr203膜を形成してさらにその上に Ptを固着して複合検知極 4を形成した。 また、酸素排出電極 2、酸素検知極 3、測定用酸素排出電極 5、参照極 6、 およびそれぞれの電極の対極 2a、 3a、 5aをガラスフリツ卜の入っていない 微粉の Pt ペーストを用いたスクリーン印刷法により形成し焼成した。 なお、 複合検知電極の対極は第 1 1図に示した参照極を用いず、第 2室 7b内に新 たに設けた第 1 2図の構造とした。 さらにジルコニァ基板 1とセラミックス基 板 9、 1 0をセラミツクススぺ一サ 1 1および拡散孔 8a、 8bを高融点のガラス を用いて張り合わせた。 さらにセラミックス基板 9にヒータ一を埋め込んだセ ラミックス基板をガラスにより貼り付けた。
センサ温度を 600°Cに設定した各種測定ガス中で酸素排出電極 2の作動 の有無の時の N02濃度と複合検知電極間の起電力との関係を第 13図に示 す。 図中、測定ガス中の酸素濃度を 0. 1 %—定とした場合の N02濃度と複 合検知電極間の起電力との関係を〇印で示す。 また、測定ガス中の酸素濃 度を 0.5 %—定とし、第 1室内の酸素濃度が 0. 1 %になるように酸素検知 電極 3および濃度酸素排出電極 2により制御した N02濃度と複合検知電極 間の起電力の関係を ·印、さらに同様な条件で 100 ppm の NOを共存させ た場合の N02濃度と複合検知電極間の起電力の関係を騸印で示す。 酸素 排出電極および酸素検知電極を動作させて第 1室内の酸素濃度を制御して も酸素排出電極を動作させない場合とほとんど同じ N02濃度に対する起電 力の変化を示し、 N02濃度の対数に比例した起電力変化が得られた„ また、 100 ppmの NOを共存させた場合も同様な起電力の N02濃度依存性が得 られた。 このことから、酸素排出電極の動作および NO共存の有無に関わら ず複合検知極によって N02濃度が検知できることを確認した。 また、この時 の N02濃度と起電力との関係は次式で表せる。
起電力(EMF) = 57.631og(N02濃度(ppm))— 49.37…… (1)
センサ温度 600 として酸素濃度 0.5°Zoの測定ガス中で酸素排出電極 2 および酸素検知電極 3を動作させて第 1室内の酸素濃度を 0.1%に制御し、 測定用酸素排出電極 5と 5aに 0.05 mA' の電流が流れるように電圧を印加 した時の NOx濃度と測定用酸素排出電極 5と参照極 6間の電位との関係を 図 14に示す。 測定ガス中に含まれる NOx が N02のみの場合を〇印、 N0の みの場合を參印、一定濃度の NO (50 ppm)が含まれる場合を□印、一定濃 度の N02 (50 ppm)が含まれる場合を麗印で示した。 N0、 N02濃度の対数 に電極間の電位変化は比例して変化した。 また、一定量の NOあるいは N02 共存下においても N02あるいは N0濃度の対数に比例した電位変化を示し ている。 これらの結果から、 NOx濃度と電位との関係は次式で表すことがで さる。
電位(mV) =— 11.251og(NO 濃度(ppm))— 13.571og(N02濃度(ppm)) + 62.78…… (2)
さらにセンサ温度 600でとして酸素濃度 0.5%の各種 NOx 濃度の測定ガ ス中で酸素排出電極 2および酸素検知電極 3を動作させて第 1室内の酸素 濃度を 0.1%に制御し、測定用酸素排出電極 5と 5aに 0.05 mA の電流が 流れるように電圧を印加し、複合検知電極の起電力および測定用酸素排出 電極 5と参照極 6間の電位を測定した。 その時の測定ガス中での N02、 N0 濃度と起電力及び電位、さらに(1)および(2)から求めた N0、 N02濃度を 表 2に示す。 (表 2)
Figure imgf000019_0001
複合検知電極での起電力は N02濃度に対応し、 さらに測定用酸素排出電 極 5と参照極間の電位と複合検知電極により求めた N02濃度より求めた NO 濃度は、測定ガス中の濃度とほとんど一致した。 このように 2つ出力値を検 出してマイコン等によって演算処理することにより排気ガス中の N02濃度、 NO濃度を検出でき正確に NOx濃度を検出できることを確認した。
本発明による窒素酸化物センサでは、 NO や N02を酸化あるいは還元して NO あるいは N02いずれかのガス種に変換することなく 1個の素子で排気ガ ス中の総 NOx量と NOと N02それぞれの濃度を検出することができる。

Claims

請求の範囲
1.検知対象ガス中のガス成分濃度を測定するガスセンサにおいて、 少なくとも二つの電極を固体電解質基板に固定し、少なくとも一方の第 1 の電極を検知対象ガス雰囲気中に配し、少なくとも一方の電極をバイアス電 流又はバイアス電圧を印加して分極させ、その分極した電極の電位を測定 することを特徴とするガスセンサ。
2.少なくとも分極された状態において検知対象ガスに活性を有する第 1の 電極としての検知電極と、
検知対象ガスに不活性或いは検知対象ガスに接しない第 2の電極としての 参照電極と、
該検知電極を分極するためのバイアス電流又はバイアス電圧を印加する第 3の電極としての補助電極とが、
イオン伝導性固体電解質に固定された構成からなり、
該検知電極と該補助電極との間に所定の電流を流し、或いは所定の電圧 を固定抵抗を介して印加しながら、該検知電極と該参照電極との間の電位 差を測定して、検知対象ガスの濃度を検知することを特徴とするガスセンサ。
3.少なくとも分極された状態において検知対象ガスに活性を有する第 1の 電極としての検知電極と、
検知対象ガスに不活性あるいは検知対象ガスに接しない参照電極と補助 電極としての第 2の電極とが、
イオン伝導性固体電解質に固定された構成からなり、
該検知電極と該第 2の電極との間に所定の電流を流し、或いは所定の電 圧を印加し該検知電極を分極した状態で、該検知電極と該第 2の電極との 間の電位差を測定して、検知対象ガスの濃度を検知することを特徴とする ガスセンサ。
4.分極されてない状態においても検知対象ガスに活性な検知電極であり参 照電極である第 1の電極と、 少なくとも分極された状態において検知対象ガスに活性を有し且つ電極と 同一雰囲気中にあり且つ同質の第 2の電極と、
該第 2の電極を分極するためのバイアス電流またはバイアス電圧を印加す る第 3の電極としての補助電極とが、
イオン伝導性固体電解質に固定された構成からなり、
該第 2の電極と該補助電極との間に所定の電流を流し、或いは所定の電 圧を印加しながら、該第 1の電極と該第 2の電極との間の電位差を測定して、 検知対象ガスの濃度を検知することを特徴とするガスセンサ。
5.少なくとも分極された状態において検知対象ガスに活性を有する検知電 極であり、参照電極である第 1の電極と、
少なくとも分極された状態において検知対象ガスに活性を有し且つ前記 第 1の電極と同一雰囲気中にあり且つ同質の第 2の電極と、
両電極を同時に分極するためのバイアス電流又はバイアス電圧を印加する 第 3の電極としての補助電極とが、
イオン伝導性固体電解質に固定された構成からなり、
且つ第 1と第 2の電極が検知対象ガスに対して異なる分極出力特性を有す る電極を用い、あるいは異なる分極出力特性を生ずるように、第 1と第 2の 電極との間、及び該第 2の電極と該補助電極との間に所定の電流を流し、 或いは所定の電圧を印加しながら、第 1と第 2の電極との間の電位差を測定 して、検知対象ガスの濃度を検知することを特徴とするガスセンサ。
6ノ少なくとも分極された状態において検知対象ガスに活性を有する検知電 極であり参照電極である第 1の電極と、
少なくとも分極された状態において検知対象ガスに活性を有し且つ前記 第 1の電極と同一雰囲気中にあり且つ同質の第 2の電極と、
第 1と第 2の電極を同時に分極するためのバイアス電流又はバイアス電圧 を印加する第 3の電極としての補助電極とが
イオン伝導性固体電解質に固定された構成からなり、 第 1と第 2の電極が検知対象ガスに対して相反する分極出力特性を生ずる ように、第 1と第 2の電極との間、及び該第 2の電極と該補助電極との間に 所定の電流を流し、あるいは所定の電圧を印加しながら、第 1と第 2の電極 との間の電位差を測定して、検知対象ガスの濃度を検知することを特徴と するガスセンサ。
7.少なくとも分極された状態において検知対象ガスに活性を有し、検知電 極であり、参照電極であり且つ補助電極である第 1の電極と、
少なくとも分極された状態において検知対象ガスに活性を有し且つ前記 第 1の電極と同一雰囲気中にあり且つ同質の第 2の電極とが、
イオン伝導性固体電解質に固定された構成からなり、
且つ第 1と第 2の電極を同時に分極するために、第 1と第 2の電極が検知 対象ガスに対して相反する分極出力特性を生ずるように、第 1と第 2の電極 との間に所定の電流を流し、或いは所定の電圧を固定抵抗を介して印加し ながら、第 1と第 2の電極との間の電位差を測定して、検知対象ガスの濃度 を検知することを特徴とするガスセンサ。
8.少なくとも分極された状態において検知対象ガスに活性を有する第 1の 電極と、
少なくとも分極された状態において検知対象ガスに活性を有する第 2の電 極とが、同一物質で構成されていることを特徴とする請求項 1乃至請求項 7 の何れか 1項に記載のガスセンサ。
9.前記記載の電極の電極電位を分極曲線の 0. 0〜0. 4Vの平坦な領域に 入るように、各電極のうち少なくとも二つの電極間に所定の電流を流し、或 いは所定の電圧を印加しながら、電極間の電位差を測定して、検知対象ガ スの濃度を検知することを特徴とする請求項 1乃至請求項 8の何れか 1項に 記載のガスセンサ。
1 0.前記記載の電極の電極電位を分極曲線の 0. 4〜 1. 2Vの分極電流上 昇領域に入るように、各電極のうち少なくとも二つの電極間に所定の電流 を流し、或いは所定の電圧を印加しながら、電極間の電位差を測定して、検 知対象ガスの濃度を検知することを特徴とする請求項 1乃至請求項 8の何 れか 1項に記載のガスセンサ。
1 1 .前記記載のイオン伝導性固体電解質がジルコニァを主体とする酸素ィ オン伝導体からなる請求項 1乃至請求項 1 0の何れか 1項に記載のガスセン サ。
1 2.前記記載の検知対象ガスが NOあるいは N02を主成分として含む窒素 酸化物である請求項 1乃至請求項 1 1の何れか 1項に記載のガスセンサ。
1 3.酸素イオン伝導性を有するジルコニァ固体電解質体に一室或いは二室 の測定ガス雰囲気に連通する内部空所を設け、少なくとも第 1の電極或い は第 2の電極を該内部空所に設置し、さらに該内部空所に NOx を変換する ための電気化学的酸素ポンプ或いは触媒体を形成した構成であって、 前記電極が設置される内部空所にて検知対象ガスの NOxが NOと、!^02或 いは N02以上の過酸化窒素とに一定の比率で存在するように該酸素ポンプ 或いは触媒体を機能させ、該第 1の電極或いは第 2の電極を分極した状態 にて NOxを検知する窒素酸化物センサ。
1 4.酸素イオン伝導性を有するジルコニァ固体電解質体に一室或いは二室 の測定ガス雰囲気に連通する内部空所を設け、少なくとも第 1の電極或い は第 2の電極を該内部空所に設置し、さらに該内部空所に NOx を変換する ための電気化学的酸素ポンプ或いは触媒体を形成した構成であって、 前記電極が設置される内部空所にて検知対象ガスの NOx が NO または、 NO,あるいは N02以上の過酸化窒素の単体ガスに変換されるように該酸素 ポンプあるいは触媒体を機能させ、該第 1の電極或いは第 2の電極を分極し た状態にて NOxを検知する窒素酸化物センサ。
1 5.酸素イオン伝導性を有するジルコニァ固体電解質体に一室或いは二室 の測定ガス雰囲気に連通する内部空所を設け、少なくとも第 1の電極或い は第 2の電極を該内部空所に設置し、さらに該内部空所に NOx を変換する ための電気化学的酸素ポンプ或いは触媒体を形成した構成であって、 罨気化学的酸素ポンプにより酸素を該内部空所へ汲み込み、或いは内部 空所内の酸素を吐き出すことにより、 当該内部空所の酸素濃度が 0. 1〜3 0%に制御された窒素酸化物センサ。
1 6.前記記載の第 1の電極と第 2の電極の少なくとも一方の電極が、 Ni又 は Crを構成元素として含む酸化物、或いは Ni又は Crを構成元素として含 む酸化物とジルコニァ固体電解質との混合体からなる請求項 1乃至請求項 8の何れか 1項に記載の窒素酸化物センサ。
1 7.前記記載の第 1の電極と第 2の電極の少なくとも一方の電極が、】r 電 極、 Rh電極、 Pt と Irとの合金電極、 Pt と Rh との合金電極である貴金属 電極、或いは前記貴金属とジルコニァ固体電解質との混合体とからなる請 求項 1乃至請求項 8の何れか 1項に記載の窒素酸化物センサ。
18. イオン導電性の固体電解質 1と、固体電解質に固定されかつ酸素に対 して活性な酸素排出電極 2と、固体電解質に固定されかつ酸素に対して活 性な酸素検知電極 3と、固体電解質に固定されかつ酸素および NOx ガスに 対して活性な測定用酸素排出電極 5と、固体電解質に固定された参照極 6 を有し、酸素排出電極 2と酸素検知電極 3を第 1室 7 aに形成し、測定用酸 素排出電極 5を第 2室 7bに形成し、測定雰囲気と第 1室および第 1室と第 2 室との間には、それぞれガス拡散孔を備え、酸素検知電極間の起電力によ り酸素排出電極 2を制御して第 1室および第 2室に供給される測定ガスの酸 素濃度を一定とし、第 2室の測定用酸素排出電極 5間に一定の電流を通電 し、 NO濃度および N02濃度の変化に基づく参照極 6と測定用酸素排出電極 5との間の電位の変化を検出して NOx 濃度を検出することを特徴とする窒 素酸化物検出センサ。
19.固体電解質に固定されかつ酸素および N02ガスに対して活性な複合検 知電極 4を第 2室に形成し、測定ガス中の N02濃度に基づく起電力を複合検 知極により検出し、検出した N02濃度および測定用酸素排出電極 5により 検出した NOx濃度により NO濃度および NOx濃度を検出する請求項 18記 載の窒素酸化物検出センサ。
20.固体電解質に固定されかつ酸素および NO ガスに対して活性な複合検 知電極を第 2室に形成し、測定ガス中の NO濃度に基づく起電力を複合検知 極により検出し、検出した NO濃度および測定用酸素排出電極 5により検出 した NOx濃度により N02濃度および NOx濃度を検出する請求項 1 8記載の 窒素酸化物検出センサ。
2 1 .酸素排出電極 2を酸素検知電極 3と対向して配置して第 1室とした請 求項 1 8乃至請求項 20の何れか 1項記載の窒素酸化物検出センサ。
22.酸素検知電極を第 2室に設けた請求項 1 8又は 2 1記載の窒素酸化物 検出センサ。
23. N02濃度に基づく複合検知極の起電力を参照極を基準として起電力を 検出する請求項 1 9記載の窒素酸化物検出センサ。
24. N02濃度に基づく複合検知極の起電力を第 2室内に対極を設け、対極 を基準として起電力を検出する請求項 1 9記載の窒素酸化物検出センサ。
25. NO 濃度に基づく複合検知極の起電力を参照極を基準として起電力を 検出する請求項 20記載の窒素酸化物検出センサ。
26. N0濃度に基づく複合検知極の起電力を第 2室内に対極を設け、対極を 基準として起電力を検出する請求項 20記載の窒素酸化物検出センサ。 27.複合検知極は、酸化物層と集電体とを備えた請求項 1 9又は請求項 20 記載の窒素酸化物検出センサ。
28.酸化物層は、酸素および N02あるいは酸素および N0 に活性な遷移金 属元素の複合酸化物により形成され、集電体は白金からなる請求項 27記 載の窒素酸化物検出センサ。
29.酸素排出電極 2は、酸素イオン伝導体と 1対の電極により構成され、陰 極は第 1室内に配置され、第 1室内の測定ガス中の酸素を排出する請求項 1 8乃至請求項 28の何れか 1項に記載の窒素酸化物検出センサ。
30.測定用酸素排出電極 5は、酸素イオン伝導体と 1対の電極により構成さ れ、陰極は第 2室内に配置され、酸素および NOx を分解して酸素イオンを 排出する請求項 1 8乃至請求項 29の何れか 1項に記載の窒素酸化物検出 センサ。
PCT/JP1997/003262 1996-09-17 1997-09-16 Capteur de gaz WO1998012550A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97940392A EP0862056B1 (en) 1996-09-17 1997-09-16 Gas sensor
DE69735302T DE69735302T8 (de) 1996-09-17 1997-09-16 Gas sensor
JP10514504A JP3090479B2 (ja) 1996-09-17 1997-09-16 ガスセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26506196 1996-09-17
JP8/265061 1996-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/469,239 Continuation US6551497B1 (en) 1996-09-17 1999-12-22 Measuring NOx concentration

Publications (1)

Publication Number Publication Date
WO1998012550A1 true WO1998012550A1 (fr) 1998-03-26

Family

ID=17412051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003262 WO1998012550A1 (fr) 1996-09-17 1997-09-16 Capteur de gaz

Country Status (5)

Country Link
US (1) US6551497B1 (ja)
EP (1) EP0862056B1 (ja)
JP (2) JP3090479B2 (ja)
DE (1) DE69735302T8 (ja)
WO (1) WO1998012550A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242014A (ja) * 1998-02-25 1999-09-07 Toyota Central Res & Dev Lab Inc 窒素酸化物センサ
JP2001091493A (ja) * 1999-09-22 2001-04-06 Riken Corp ガスセンサ
US7153401B2 (en) * 2002-05-13 2006-12-26 The Regents Of The University Of California Current-biased potentiometric NOx sensor for vehicle emissions
JP2009092501A (ja) * 2007-10-09 2009-04-30 Yazaki Corp ガスセンサ及びガス検出装置
JP2009150895A (ja) * 2007-12-21 2009-07-09 Robert Bosch Gmbh 迅速に動作する広帯域排気ガスセンサ
JP2013238418A (ja) * 2012-05-11 2013-11-28 Nippon Soken Inc 粒子状物質検出素子及び粒子状物質検出センサ

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150322A (en) 1998-08-12 2000-11-21 Shell Oil Company Highly branched primary alcohol compositions and biodegradable detergents made therefrom
DE19947240B4 (de) * 1999-09-30 2004-02-19 Robert Bosch Gmbh Verfahren zum Betrieb einer Mischpotential-Abgassonde und Schaltungsanordnungen zur Durchführung der Verfahren
DE10007010C2 (de) * 2000-02-16 2003-04-17 Daimler Chrysler Ag Sensoreinheit zur Bestimmung der Abgasrückführungsrate einer Brennkraftmaschine
DE10048031B4 (de) * 2000-09-26 2004-04-29 Epiq Sensor-Nite N.V. Verfahren zur Bestimmung des NOx-Gehaltes eines Messgases
CA2400882A1 (en) * 2001-09-03 2003-03-03 Tomonori Kondo Gas sensor
CA2411292A1 (en) 2001-11-09 2003-05-09 Noboru Ishida Hydrogen sensor
US6843900B2 (en) * 2002-01-03 2005-01-18 The Ohio State University Potentiometric NOx sensors based on yttria-stabilized zirconia with zeolite modified electrode
US6764591B1 (en) * 2002-02-01 2004-07-20 The Ohio State University Potentiometric sensors comprising yttria-stabilized zirconia and measurement method of total NOx sensing without CO interference
CA2429977A1 (en) * 2002-05-27 2003-11-27 Shinko Electric Industries Co., Ltd. Sensor and device for detecting sulfur
US20050155871A1 (en) * 2004-01-15 2005-07-21 Grant Robert B. Electrochemical sensor
DE102004013852A1 (de) * 2004-03-20 2005-12-01 Robert Bosch Gmbh Sensorelement zur Bestimmung der physikalischen Eigenschaft eines Messgases
US20080017510A1 (en) * 2004-05-26 2008-01-24 Nair Balakrishnan G NOx Gas Sensor Method and Device
JP4895048B2 (ja) * 2004-05-26 2012-03-14 マイクロリン エルエルシー NOxガスセンサーの方法及び装置
US20060231422A1 (en) * 2005-04-14 2006-10-19 Honeywell International Inc. Switched gas sensor
US20060231420A1 (en) * 2005-04-19 2006-10-19 The Regents Of The University Of California Explosives detection sensor
US7575709B2 (en) * 2005-04-19 2009-08-18 Los Alamos National Security, Llc Tape-cast sensors and method of making
US20080006532A1 (en) * 2005-04-19 2008-01-10 Rangachary Mukundan Ammonia and nitrogen oxide sensors
US7611612B2 (en) * 2005-07-14 2009-11-03 Ceramatec, Inc. Multilayer ceramic NOx gas sensor device
US7820028B2 (en) * 2005-09-02 2010-10-26 Honeywell International Inc. Oxides of nitrogen gas sensors and methods
US7828956B2 (en) * 2006-01-09 2010-11-09 Ford Global Technologies, Llc Method for measuring concentrations of gas moieties in a gas mixture
EP2008089A2 (en) * 2006-04-14 2008-12-31 Ceramatec, Inc. Apparatus and method for measuring nitric oxide in exhaled breath
US8177957B2 (en) * 2006-08-22 2012-05-15 Lawrence Livermore National Security, Llc Multiple frequency method for operating electrochemical sensors
EP2115402A2 (en) * 2007-02-16 2009-11-11 Ceramatec, Inc. Nox sensor with improved selectivity and sensitivity
EP2201357B1 (en) * 2007-10-09 2022-09-21 University of Florida Research Foundation, Inc. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors
KR101052618B1 (ko) 2008-09-30 2011-07-29 주식회사 시오스 장기 신호 안정성을 갖는 질소산화물 가스센서
EP2330410A4 (en) * 2008-09-30 2013-01-16 Iljin Copper Foil Co Ltd NITROGEN OXIDE GAS SENSOR
KR101133267B1 (ko) 2008-09-30 2012-04-05 주식회사 시오스 질소산화물 가스센서
WO2010038990A2 (ko) * 2008-09-30 2010-04-08 일진소재산업(주) 질소산화물 가스센서
JP5192031B2 (ja) * 2010-12-27 2013-05-08 日本特殊陶業株式会社 ガスセンサ
US9164080B2 (en) 2012-06-11 2015-10-20 Ohio State Innovation Foundation System and method for sensing NO
US10036724B2 (en) * 2013-08-21 2018-07-31 Denso Corporation Gas sensor
JP2015045581A (ja) * 2013-08-28 2015-03-12 株式会社日本自動車部品総合研究所 ガス濃度検出装置
JP5910683B2 (ja) 2013-08-30 2016-04-27 株式会社デンソー ガス濃度検出装置
JP5892135B2 (ja) * 2013-09-24 2016-03-23 株式会社デンソー ガス濃度検出装置
JP6169763B2 (ja) * 2013-12-16 2017-07-26 株式会社Soken ガスセンサ
JP6101669B2 (ja) * 2013-12-16 2017-03-22 株式会社日本自動車部品総合研究所 ガスセンサ
JP6305832B2 (ja) 2014-06-04 2018-04-04 株式会社デンソー 特定ガス濃度検出方法
JP6350359B2 (ja) * 2014-06-16 2018-07-04 株式会社デンソー ガスセンサ
JP6352215B2 (ja) * 2014-07-10 2018-07-04 株式会社デンソー ガスセンサ素子
DE102014214368A1 (de) * 2014-07-23 2016-01-28 Siemens Aktiengesellschaft Gassensor zur Detektion von NO und/oder NO2 und Betriebsverfahren für einen solchen Gassensor
DE102014214398A1 (de) * 2014-07-23 2016-01-28 Siemens Aktiengesellschaft Gassensor und Verfahren zur Detektion von Sauerstoff
JP6558109B2 (ja) * 2014-07-25 2019-08-14 株式会社デンソー ガス濃度検出装置
JP6410398B2 (ja) * 2014-09-02 2018-10-24 株式会社Soken ガスセンサ素子
JP6390560B2 (ja) * 2014-10-01 2018-09-19 株式会社デンソー ガス濃度検出装置
WO2016052707A1 (ja) * 2014-10-01 2016-04-07 株式会社デンソー ガス濃度検出装置
JP6344229B2 (ja) * 2014-12-17 2018-06-20 株式会社デンソー ガスセンサ及びその製造方法
JP6418120B2 (ja) 2015-02-12 2018-11-07 株式会社デンソー ガスセンサ
JP6311686B2 (ja) * 2015-10-08 2018-04-18 トヨタ自動車株式会社 多ガス検出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338154A (ja) * 1986-08-04 1988-02-18 Ngk Insulators Ltd NOxセンサ
JPH046459A (ja) * 1990-04-25 1992-01-10 Mitsubishi Electric Corp ガスセンサー
JPH05288710A (ja) * 1991-10-23 1993-11-02 Osaka Gas Co Ltd 窒素酸化物センサ
JPH07209249A (ja) * 1993-11-30 1995-08-11 Riken Corp 窒素酸化物センサ
JPH07234203A (ja) * 1994-02-23 1995-09-05 Osaka Gas Co Ltd 窒素酸化物センサ装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2861926A (en) * 1953-02-26 1958-11-25 Mine Safety Appliances Co Electrochemical method and apparatus for gas detection
JPS55154450A (en) * 1979-05-19 1980-12-02 Nissan Motor Co Ltd Air-fuel-ratio detector
JPS55155859A (en) * 1979-05-25 1980-12-04 Towa Kogyo Kk Method of waterproofing
JPS6118857A (ja) * 1984-07-06 1986-01-27 Ngk Insulators Ltd 電気化学的セルの製造方法
JPH065222B2 (ja) * 1985-05-09 1994-01-19 日本碍子株式会社 電気化学的素子
JP2582586B2 (ja) * 1987-09-11 1997-02-19 株式会社ユニシアジェックス 内燃機関の空燃比制御装置
JP2636883B2 (ja) * 1988-04-30 1997-07-30 日本碍子株式会社 NOx濃度測定装置
JPH04142455A (ja) 1990-10-02 1992-05-15 Osaka Gas Co Ltd 窒素酸化物センサとその使用方法
JP2844286B2 (ja) 1992-10-23 1999-01-06 株式会社山武 窒素酸化物検出素子およびその製造方法
US5480535A (en) * 1992-12-28 1996-01-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Thin film multilayered air/fuel ratio sensor
US5401372A (en) * 1993-04-26 1995-03-28 Ceramatec, Inc. Electrochemical catalytic reduction cell for the reduction of NOx in an O2 -containing exhaust emission
US5409591A (en) * 1993-09-24 1995-04-25 Baker; Charles K. Selective electrochemical detector for nitric oxide and method
SE513477C2 (sv) * 1993-11-08 2000-09-18 Volvo Ab Sensor för detektering av kväveoxidföreningar
WO1995014226A1 (en) * 1993-11-19 1995-05-26 Ceramatec, Inc. Multi-functional sensor for combustion systems
US5672811A (en) * 1994-04-21 1997-09-30 Ngk Insulators, Ltd. Method of measuring a gas component and sensing device for measuring the gas component
JP2885336B2 (ja) * 1994-04-21 1999-04-19 日本碍子株式会社 被測定ガス中のNOx濃度の測定方法及び測定装置
JP3067532B2 (ja) * 1994-07-14 2000-07-17 松下電器産業株式会社 電気化学素子及び窒素酸化物濃度測定装置
JP3450084B2 (ja) * 1995-03-09 2003-09-22 日本碍子株式会社 可燃ガス成分の測定方法及び測定装置
JP3128114B2 (ja) 1996-04-08 2001-01-29 株式会社リケン 窒素酸化物検出装置
JP3293741B2 (ja) 1996-06-06 2002-06-17 株式会社リケン NOxセンサ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338154A (ja) * 1986-08-04 1988-02-18 Ngk Insulators Ltd NOxセンサ
JPH046459A (ja) * 1990-04-25 1992-01-10 Mitsubishi Electric Corp ガスセンサー
JPH05288710A (ja) * 1991-10-23 1993-11-02 Osaka Gas Co Ltd 窒素酸化物センサ
JPH07209249A (ja) * 1993-11-30 1995-08-11 Riken Corp 窒素酸化物センサ
JPH07234203A (ja) * 1994-02-23 1995-09-05 Osaka Gas Co Ltd 窒素酸化物センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0862056A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242014A (ja) * 1998-02-25 1999-09-07 Toyota Central Res & Dev Lab Inc 窒素酸化物センサ
JP2001091493A (ja) * 1999-09-22 2001-04-06 Riken Corp ガスセンサ
US7153401B2 (en) * 2002-05-13 2006-12-26 The Regents Of The University Of California Current-biased potentiometric NOx sensor for vehicle emissions
JP2009092501A (ja) * 2007-10-09 2009-04-30 Yazaki Corp ガスセンサ及びガス検出装置
JP2009150895A (ja) * 2007-12-21 2009-07-09 Robert Bosch Gmbh 迅速に動作する広帯域排気ガスセンサ
JP2013238418A (ja) * 2012-05-11 2013-11-28 Nippon Soken Inc 粒子状物質検出素子及び粒子状物質検出センサ

Also Published As

Publication number Publication date
JP3090479B2 (ja) 2000-09-18
JP2000321238A (ja) 2000-11-24
DE69735302T8 (de) 2007-03-01
EP0862056B1 (en) 2006-02-22
DE69735302D1 (en) 2006-04-27
EP0862056A1 (en) 1998-09-02
DE69735302T2 (de) 2006-10-12
EP0862056A4 (en) 1999-06-02
JP3871497B2 (ja) 2007-01-24
US6551497B1 (en) 2003-04-22

Similar Documents

Publication Publication Date Title
JP3871497B2 (ja) ガスセンサ
KR100319010B1 (ko) 가스센서
US5763763A (en) Method and sensing device for measuring predetermined gas component in measurement gas
JP3128114B2 (ja) 窒素酸化物検出装置
JPH01277751A (ja) NOx濃度測定装置
EP1635171B1 (en) Hydrocarbon sensor
EP0227257B1 (en) Electrochemical device
JP2003517605A (ja) 電気化学的測定センサ
JPH0827247B2 (ja) 広帯域空燃比センサおよび検出装置
US20030121800A1 (en) Sensor element of a gas sensor for determining gas components
US6346178B1 (en) Simplified wide range air fuel ratio sensor
JP2002139468A (ja) ガスセンサ
JPH11166911A (ja) 空燃比センサ
JP4625261B2 (ja) ガスセンサのセンサ素子
JPH09297119A (ja) 窒素酸化物検知装置
JPH1048179A (ja) NOx検知装置
JPH1090220A (ja) ガス成分濃度検知器
JP2002005883A (ja) 窒素酸化物ガスセンサ
JP2000214130A (ja) ガス濃度測定方法
JP3086211B2 (ja) 窒素酸化物センサ
JP2000039419A (ja) 窒素酸化物センサ
JP3696494B2 (ja) 窒素酸化物センサ
JP3774059B2 (ja) 炭化水素センサ
JP3371358B2 (ja) 酸素ガス・一酸化炭素ガスセンサ、酸素・一酸化炭素測定装置及び酸素・一酸化炭素測定方法
US10859526B2 (en) Gas sensor with a pump cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1997940392

Country of ref document: EP

Ref document number: 09068742

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997940392

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1997940392

Country of ref document: EP