[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998011719A1 - Image pickup device - Google Patents

Image pickup device Download PDF

Info

Publication number
WO1998011719A1
WO1998011719A1 PCT/JP1996/002626 JP9602626W WO9811719A1 WO 1998011719 A1 WO1998011719 A1 WO 1998011719A1 JP 9602626 W JP9602626 W JP 9602626W WO 9811719 A1 WO9811719 A1 WO 9811719A1
Authority
WO
WIPO (PCT)
Prior art keywords
image signal
digital image
signal
converting
processing
Prior art date
Application number
PCT/JP1996/002626
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuji Nishimura
Yasushi Takagi
Akihito Nishizawa
Toshiro Kinugasa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/002626 priority Critical patent/WO1998011719A1/en
Publication of WO1998011719A1 publication Critical patent/WO1998011719A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/21Intermediate information storage
    • H04N1/2104Intermediate information storage for one or a few pictures
    • H04N1/2112Intermediate information storage for one or a few pictures using still video cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to an imaging device, and more particularly to an imaging device i of all-soft processing suitable for still image capturing.
  • a conventional imaging apparatus photoelectric conversion is performed by using an imaging element such as a CCD (Charge Coupled Device), and digital processing is performed on the image to obtain a predetermined digital image signal.
  • an imaging element such as a CCD (Charge Coupled Device)
  • the analog output signal output from the CCD is converted into a digital signal by AZD conversion, and then a digital image signal is generated using a dedicated LSI or the like that performs predetermined signal processing.
  • Such an imaging device is provided with hardware for performing a predetermined operation necessary for generating a digital image signal, and has a feature that high-speed processing can be performed.
  • Such an apparatus is described in, for example, Japanese Patent Application Laid-Open No. 2-280496.
  • an LSI for performing signal processing of such an imaging device and an image quality control thereof are described in, for example, pages 391 and 362 of the 1991 Annual Conference of the Institute of Television Engineers of Japan. ing. Such an LSI not only performs signal processing for generating a video signal from the signal output by the CCD, but also generates a CCD drive pulse for controlling the exposure time of the image sensor and reading of the signal. I have.
  • This LSI is mainly for capturing moving images. Meanwhile, devices for capturing still images have also been developed. It is described in the 1995 Photographic Society of Japan, Fine Image Symposium, Final Report, pp. 59-62.
  • An object of the present invention is to increase the degree of freedom of the ⁇ signal processing in an imaging device. Another object of the present invention is to increase the degree of freedom in signal processing, to enhance the functions of the imaging device without extra components, and to enhance the operability thereof.
  • the camera signal processing and the image compression processing in the imaging device are all performed by software.
  • the image pickup apparatus of the present invention converts the optical signal formed by the optical system into an analog image signal and outputs the converted image signal, and converts the analog surface image signal output from the photoelectric converter into a first image signal.
  • a second type that holds a D-converting means for converting the image signal into a digital image signal and outputting the digital image signal, and a program representing an arithmetic procedure for performing a camera process for converting the image signal into a predetermined output format and an image compression process.
  • the first digital image signal output from the AZD conversion means and the first digital image signal output from the AZD conversion means are subjected to an operation for performing camera processing and image compression processing to generate a second digital image signal.
  • the second digital image signal is output to the outside, and the first digital image signal is subjected to an operation based on a program stored in the second memory means.
  • Digital image signal Controlling the arithmetic means to generate And control means for controlling the interface means so as to output the second digital image signal to the outside.
  • the content of the signal processing is stored as a program in the second memory means, thereby making the signal processing into software.
  • control means of the imaging apparatus of the present invention performs an operation based on the program held in the second memory means at least 600,000 times per second on the first digital image signal, and outputs the second digital image signal. Control the way you perform.
  • control stage for signal processing has the minimum necessary processing capability, the total processing time required for signal processing can be reduced to within one second.
  • the imaging device of the present invention operates the control means at a predetermined timing, and includes an oscillation circuit for generating a reference clock for operating the photoelectric conversion means and the A / D conversion means in synchronization with the timing. Further prepare.
  • the image pickup apparatus of the present invention includes a character mode input means for changing a process until conversion to a predetermined output format and switching to a character mode for photographing a black and white image at a high resolution. .
  • the second digital image signal is set so that there is no variation in the signal amount of the R, G, and B signals, or only the Y signal.
  • the above processing is easily performed by the software-based processing.
  • the imaging apparatus of the present invention changes the process of converting to a predetermined output format, and switches to a special effect mode for switching to a special effect mode for photographing while emphasizing an arbitrary area in the screen.
  • a password input means When the special effect mode is input, control is performed so that the fill characteristics change according to an arbitrary area in the screen.
  • the above processing is also easily performed by software processing.
  • the imaging apparatus of the present invention is provided with a setting change terminal for changing a process until conversion into a predetermined output match by an input from an external device to switch a shooting mode.
  • the parameters of the photographing mode stored in the rewritable memory means are rewritten.
  • the imaging apparatus K of the present invention includes a setting change terminal for changing a process until conversion into a predetermined output format by an input from an external device and setting a new shooting mode.
  • the imaging apparatus of the present invention includes a setting change terminal for performing version up of camera processing or image compression processing by input from an external device.
  • an integrated circuit which is constituted solely by the arithmetic means, the control means, and the second memory means of the imaging apparatus of the present invention is removable.
  • the version of camera processing or image compression processing can be improved by replacing it with another integrated circuit that has improved performance.
  • FIG. 1 is a block diagram showing a first embodiment of the imaging device of the present invention.
  • FIG. 2 is a diagram showing a color filter array in the imaging device of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration of a ghost image control path in the first embodiment of the imaging device of the present invention.
  • FIG. 4 is a diagram illustrating operations and operations performed when capturing a still image in the imaging device of the present invention.
  • FIG. 5 is a diagram illustrating a flow of signal processing
  • FIG. 5 is a diagram illustrating a flow of generating a luminance and color difference signal in the imaging device of the present invention
  • FIG. 6 is a second diagram of the imaging device of the present invention.
  • FIG. 1 is a block diagram showing a first embodiment of the imaging device of the present invention.
  • FIG. 2 is a diagram showing a color filter array in the imaging device of the present invention.
  • FIG. 3 is a block diagram illustrating a configuration of a ghost image control path in the first
  • FIG. 7 is a block diagram of an imaging apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a block diagram of an imaging apparatus according to a third embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating a configuration of a CCD control circuit according to the present embodiment.
  • FIG. 9 is a block diagram illustrating an imaging apparatus according to a fourth embodiment of the imaging device K of the present invention.
  • FIG. 11 is a block diagram of an imaging device showing a fifth or sixth embodiment of the imaging device of the present invention, and FIG. Fig. 2 (a) shows the characteristics of the optical aperture one-pass filter when the CCD color filter array of the image pickup device shown in Fig. 2 is shown in Fig. 2 (a).
  • FIG. 13 is a diagram showing images before and after applying the effect, and FIG. 13 is a diagram showing an appearance of the imaging device of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an imaging device according to the present invention.
  • 1 is a lens
  • 2 is a CCD
  • 3 is an amplification circuit
  • 4 is an AZD conversion circuit.
  • Reference numeral 5 denotes a buffer memory for writing the first digital image signal output from the AZD conversion circuit 4.
  • Reference numeral 6 denotes an image control circuit that performs signal processing, image input / output control, and the like, and 8 denotes an image memory that holds generated image signals.
  • Reference numeral 9 denotes an interface circuit that communicates with an external computer or the like and outputs a second digital image signal generated by the imaging apparatus of the present invention. 10 denotes a generated second digital image signal.
  • the light incident on the lens 1 forms an image on the imaging surface of the CCD 2.
  • the CCD 2 has a large number of pixels on its imaging surface, performs photoelectric conversion in each element, generates a pixel signal, and sequentially outputs the pixel signal.
  • color filters with a fixed pattern are arranged.Each * ⁇ ⁇ indicates a specific color filter It is configured to photoelectrically convert only color light.
  • Figure 2 shows such a color filter array pattern. In this embodiment, a filter that transmits three primary colors R (red), G (green), and B (blue) as shown in FIGS. 2A and 2B is used. Outputs analog image signals including three types of discrete pixel signals B.
  • a color filter array mainly composed of complementary colors having high light utilization may be used.
  • the amplifying circuit 3 amplifies the above-mentioned image signal and outputs it.
  • well-known noise reduction processing such as CDS (Correlated Double Sampling) may be performed.
  • the AZD conversion circuit 4 converts the analog image signal into a first digital image signal.
  • the first digital image signal is written into the buffer memory 5, and the written first digital image signal is subjected to signal processing by the image control circuit 6, and the second digital image signal is processed in the second format in accordance with a predetermined format. Is generated.
  • the buffer memory 5 normally holds the input image signal for one screen (one frame), an image corresponding to one part of the screen (for example, several lines) according to the processing capability of the image control circuit 6 Reading and writing may be repeated sequentially while holding the signal, or a memory of a capacity that can hold image signals for several screens may be used, and the still image You may comprise so that continuous photography is possible.
  • FIG. 3 is a block diagram showing the configuration of the image control circuit 6.
  • 30 is a CPU (Central Processing Unit)
  • 31 is an arithmetic circuit
  • 32 is a RAM (Random Access Memory)
  • 33 is R. 0 M (Read Only Memory)
  • 34 is the I / 0 port.
  • the rain image control circuit 6 includes the above components, but may be configured using a general-purpose microcomputer DSP (Digital Signal Processor) integrating these components or a dedicated LSI.
  • DSP Digital Signal Processor
  • Still image capturing is started when the user presses the operation switch 11 of the image capturing apparatus.
  • the operation switch in the imaging apparatus of the present invention can realize two different switch states, that is, a half-depressed state and a fully-depressed state.Firstly, when the operation switch is kept in a half-depressed state, Here, exposure control and white balance control are performed. Also, when there is an autofocus mechanism, the autofocus control is performed here. When these controls are completed, the user is notified of the completion of the preparation for shooting by display or sound. Here, when the user pushes the operation switch completely, a still image is captured.
  • FIG. 4 is a diagram showing a flow of an operation when capturing a still image and a signal processing performed by the image control circuit 6.
  • S1 of FIG. 4 it is detected that the switch is half-pressed. If the switch is half-pressed, the process proceeds to the next step S2, where the driving of the CCD is started, and the photoelectrically converted key in the CCD is started.
  • the analog image signal is stored.
  • S3 the stored analog image signal is read from the CCD.
  • the analog image signal read from the CCD is converted to a digital image signal via the amplifier circuit 3 and the A / D converter circuit 4 separately from the signal processing flow.
  • image control is performed on the written digital image signal. Circuit 6 controls exposure.
  • Exposure control is a process for controlling the exposure time of the CCD (the shutter speed of the electronic shutter) to an appropriate value. For this reason, the signal levels of the two image signals are compared with a predetermined reference value, and the shutter speed in reading the next analog image signal from the CCD is set so that the signal level approaches an appropriate value. In S5, if the signal level is an appropriate value, it is determined that the exposure control has been completed, and the process proceeds to the next process. If the exposure control has not been completed, the process returns to S3. This feedback control is performed until the exposure control is completed.
  • the generated signals, U, and V are read from the image memory 8, and both stationary image compression is performed based on a method such as JPEG (Joint Photographic Expert Group).
  • the compressed image signal is written into the image memory 8 again.
  • the image signal thus generated is recorded on the recording medium 10.
  • the image signals to be recorded are usually still images, but moving images (continuous still images) may be recorded. While the recording medium 1 0 using a semiconductor memory such as a hula Tsu Shumemori, other good c these recording media even with hard Dodi disk Ya magnetic tape, but can generally be interchangeable child removed is,
  • the imaging device K [fil-defined one may be used.
  • a recording medium, such as a memory card, from which data in the memory can be read by an external device such as a personal computer may be used.
  • the primary color filters R, G, and B are provided for each pixel, so that if the pixel signals are filtered, the signals R, G, and B can be generated. Filtering is performed by multiplying adjacent signals of the same type by appropriate coefficients and adding them.
  • the luminance signal Y may be obtained by multiplying the pixel signals R, G, and B of several adjacent pixels by an appropriate coefficient and adding them.
  • the signals R, G, and B can be obtained, for example, as follows.
  • the signals R, G, and B can be obtained even when the complementary color filter is used.
  • S111 the generated signals R, G, and B are multiplied by the gain obtained in S7 in FIG. 4 to perform white balance correction.
  • the processing of S110 and S111 may not be performed individually but may be performed simultaneously.
  • gamma correction is performed on the white balance corrected signals R, G, B and the signal Y.
  • the gamma correction is performed according to a table representing input / output characteristics based on the gamma characteristics.
  • the gamma correction is described in p. 362 of the Proceedings of the 1971 Annual Meeting of the Television Society of Japan, and is the same in principle.
  • color signals U and V are generated.
  • the signals U and V are calculated by multiplying the luminance signal Y generated by the following equation (7) and the color difference signals R-Y and ⁇ - ⁇ obtained by calculating the signals R, G and B by a predetermined coefficient. Can be generated.
  • the signals Y, U, and V can be obtained. like this Such processing is performed by the image control circuit shown in FIG. FIG. 3 is the same as the configuration of a general microcomputer, and the above processing is performed according to the program written in R0M33.
  • the image control circuit performs the camera processing and image compression processing until the CCD output signal is converted into a predetermined output format, that is, the above-described Y, U, and V signals.
  • the total processing time required for performing both processes is preferably less than 1 second, considering continuous shooting in the same scene. If the processing time is longer than this, the shutter chance may be missed, so that the usability is deteriorated. In order to perform high-speed camera signal processing within one second, it is necessary for the CPU that performs signal processing to have a certain processing capability.
  • the amount of operation necessary for performing the two-image compression process in the above camera signal processing is considered. Assuming that the number of pixels to be encoded is 3.8 million pixels per second, it is stated in 48, No. 1, PP 31-37 (1994) in the Journal of the Institute of Television Engineers of Japan. Approximately 130 for discrete cosine transform and approximately 50 MOPS (Mega Operation Per Second) for variable-length coding, and the compression of still images when other processing is included. Processing requires more than 200 MOPS. In the present invention, considering that a still image having a size of 640 ⁇ 480 pixels generally handled on a personal computer is generated in one second, the sampling format of the Y, U, and V signals is considered.
  • the amount of computation required to perform the plane image compression process is 200 MOPS or more when the number of pixels to be encoded is 3.8 million pixels per second based on the above. When the number is 600,000 pixels per second, it is about 30 MOPS or more.
  • the amount of computation required to perform camera signal processing other than image compression processing I can. This is mainly a matrix operation such as filtering, and if the filter processing is performed with a filter size of 5 x 5 pixels, the filter processing includes 25 multiply-accumulate operations . Even if one operation is one processing, the amount of operation differs depending on the processing content, so the same amount of operation as image compression processing is required, and as a result, it is necessary to perform camera signal processing other than image compression processing The computational complexity is about 30 MOPS.
  • the signal processing of still ft ' is performed by the image control circuit 6, and this signal processing is software processing in which the processing content is described by a program. Therefore, by changing the software, the content of the signal processing can be changed without changing the configuration of the imaging device, and an imaging device with a high degree of freedom in processing can be provided. Therefore, image quality and functions can be improved without increasing the circuit scale. In particular, image quality and functions can be set by input from external devices, so it is convenient to use. These will be described later.
  • FIG. 6 is a block diagram showing the configuration of the imaging device according to the present invention.
  • 40 is an oscillation circuit
  • 41 is a frequency dividing circuit.
  • Other parts are the same as those shown in the first embodiment.
  • the clock for CCD driving and the basic clock frequency of the image control circuit 6 may be different, but in this embodiment, the clock generated by the oscillation circuit 40 for the image control circuit 6 is used.
  • the clock divided by the frequency dividing circuit 41 is input to the CCD driving circuit 7 and the AZD converting circuit 4, and is configured to operate in synchronization with the image control circuit 6.
  • the signal from the CCD Signal processing in synchronization with the readout of the signal, the operation timing control when the image signal output from the CCD is taken into the image control circuit can be simplified, and the buffer memory 5 shown in the first embodiment can be used. Without using it, the image signal after AZD conversion can be taken directly into the image memory.
  • FIG. 7 is a block diagram showing the configuration of the imaging device according to the present invention.
  • 50 is a CCD control circuit.
  • Other parts are the same as those shown in the first or second embodiment.
  • FIG. 8 is a block diagram showing the configuration of the CCD control circuit 50.
  • the CCD control circuit 50 is obtained by integrating an amplifier circuit 3, an AZD conversion circuit 4 and a CCD drive circuit 7 with an I / F circuit 60 for communicating with the image control circuit 6 via the bus 12 It is.
  • the control of the CCD can be performed from the image control circuit 6 via the CCD control circuit 50. For this reason, the image signal output from the CCD can be written into the image memory 8 at an arbitrary time, thereby further increasing the degree of freedom in processing.
  • FIG. 9 is a block diagram illustrating a configuration of an imaging device according to the present invention.
  • 70 is a shutter
  • 71 is an autofocus control circuit
  • 72 is a strobe.
  • Other parts are the same as those shown in the embodiment of FIG.
  • highly accurate exposure control by the mechanical shutter 70 and the strobe 72 can be performed by the accurate focus control by the focus control circuit 71.
  • FIG. 10 is a block diagram showing a configuration of an imaging device according to the present invention.
  • reference numeral 13 denotes a mode switching switch, which allows selection of switching among normal mode, character mode, high dynamic range mode, and special effect mode.
  • . 14 is an optical low-pass filter, 15 is polarized light It is a board.
  • the optical low-pass filter 14 is omitted in the block diagrams of FIGS. 1, 6, 7, and 9 because it does not directly relate to the operation of the embodiment described above. Other parts are the same as those shown in the embodiment of FIG. The other parts may be as shown in FIGS.
  • the mode switching will be described. First, the mode is selected by the mode switch.
  • the mode switching switch may be a normal dial type switch or another push type switch.
  • the operation after the mode selection is performed is the same as that of the embodiment described above, but the content of the signal processing performed by the imaging device differs depending on the selected mode.
  • normal signal processing is performed by the same operation as that of the embodiment described above.
  • the character mode is a mode for capturing a monochrome image of a document or the like at a high resolution.
  • the signal processing in the character mode will be described.
  • the luminance signal is generated based on the following equation (8) instead of the above-mentioned equation (7).
  • a signal equivalent to a video signal obtained when an image is captured by a black and white CCD that does not have a false signal (moire) based on the difference in sensitivity between color filters is not generated, and the resolution is improved. Can be. Up The process of setting the above coefficients can be easily performed by the software process of the image control circuit II.
  • the effect of the optical aperture one-pass filter may be removed when the character mode is selected, so that the resolution is further improved.
  • a polarizer 15 may be used. In this case, by adjusting the angle of the polarizing plate, it is possible to enable or disable the one-pass filter by allowing or not allowing human light to pass through. This is described in, for example, Japanese Patent Publication No. 58-141 16. Also, to eliminate the effects of the optical low-pass filter, a polarizer is not used, and the optical one-pass filter is mechanically operated when the character mode is selected by interlocking with the mode switching switch. May be removed from the optical path.
  • Fig. 11 shows the characteristics of the optical low-pass filter when the C C D color filter array is as shown in Fig. 2 (a).
  • fs is the pixel sampling frequency in CCD. Therefore, f s / 3 is a spatial frequency having three pixels as one cycle.
  • the optical aperture one-pass filter in this case has a characteristic that traps enter fs 3 and eliminates the moiré by removing in advance the frequency component fs Z 3 that causes moire in the color signal.
  • the resolution near s Z 3 is lower than the resolution other than fs Z 3. If a luminance signal is generated by the processing as in equation (8), moire does not occur in f s / 3, and thus such an optical aperture one-pass filter becomes unnecessary. If this optical low-pass filter is removed, the response near f s / 3 is greatly improved, and the resolution can be improved.
  • generating a luminance signal using equation (8) is for a case where a CCD equipped with a primary color filter is used.
  • a CCD equipped with a primary color filter For example, the complementary color filter shown in Fig. 2 (c) is used. If there is a river with a evening CCD, the following formula is used.
  • Coefficients Km, Kg, Kc, and Ky applied to each pixel multiplication have primary color filters As in the case of using a CCD, the ratio of the coefficients may be determined so as to be half proportional to the integral value of each west element.
  • the special effect mode is selected by the mode switching switch.
  • the center of the screen has a normal filter characteristic
  • the periphery of the center of the screen has another filter characteristic, so that the periphery of the center of the screen can be blurred.
  • Such processing is performed in the filtering of S110 in the signal processing flow shown in FIG.
  • the area for changing the characteristics of the mouth-to-mouth filter can be set arbitrarily. This is performed by rewriting the program relating to the coordinate axes in the image control circuit.
  • the operation is performed by inputting from a button from an imaging device or input from a personal computer using a mouse or a keyboard (accordingly, a low-pass filter).
  • the process of fixing the area to change the characteristics of the image and the process of extracting a specific subject such as a person from the screen and blurring the background can be performed.
  • (A) shows the image before the special effect is applied,
  • (b) shows the image with the special effect applied, and
  • (b) uses the ordinary filtering for the person in the center of the screen.
  • the surrounding area of the person is subjected to filtering with a strong mouth-to-pass fill, and the surrounding area of the person is blurred.
  • FIG. 10 is a block diagram showing a configuration of an imaging device according to the present invention.
  • 16 in the figure is a setting change terminal.
  • FIG. 13 is a diagram showing the appearance of an imaging device according to the present invention.
  • 100 is an imaging device
  • 1 is a lens
  • 11 is an operation switch
  • 16 is a setting change terminal
  • 17 is an optical finder.
  • the first mode of use is mode switching.
  • a normal mode, a character mode, a special effect mode, or the like for performing normal shooting is selected and switched in the same manner as described in the previous embodiment.
  • an extra configuration for switching the mode such as a switch is required as the mode is increased, and the operation for that is also complicated. Therefore, in this use mode, a setting change device is connected to the setting change terminal 16, and the processing from input from the setting change device to conversion into a predetermined output format performed by the image control circuit is changed. Switch the mode.
  • a rewritable memory such as an EEPROM is provided in the imaging device using a communication software of the setting change device and the imaging device, and the mode setting parameters stored therein are provided. Change the data.
  • a specific mode set at the time of photographing is performed, so that the imaging device does not require an extra configuration for switching the mode such as a switch.
  • the user can easily perform operations on the device itself during shooting. For the latter, for example, if the setting change device is used to switch to the character mode, the imaging device can be operated without switching to the character mode during imaging. Character mode shooting is automatically performed simply by operating the operation switch.
  • the second mode of use is the setting of a new mode.
  • the user can set a new dedicated mode adjusted to the desired image quality by Pi. If this is to be done during the main operation of the imaging device, an extra configuration for setting a new mode is required, and the operation for that is also complicated. Therefore, in this usage mode as well, a setting change device is connected to the setting change terminal 16 and the processing from input from the setting change device to conversion to a predetermined output format performed by the I-plane image control circuit. Change the process and set a new mode.
  • a rewritable memory such as EEPR0M is provided in the imaging device ⁇ using the setting change device and the communication software of the imaging device, and the new mode stored therein is provided.
  • the setting parameters specifically, parameters such as brightness, sharpness, color saturation, hue, and white balance related to image quality control are changed.
  • the new mode is set by the setting change device, it is not necessary to set the new mode at the time of imaging or to switch from each mode described above. By simply operating the operation switch, shooting in the dedicated mode is automatically performed. Also, the information about the dedicated mode once set can be conveniently stored in a setting change device such as a personal computer.
  • the third mode of use is version-up. Improving the performance of imaging devices, specifically image quality and processing speed, and improving the functions of imaging devices, specifically new With the development of new shooting modes, users can change the software only and upgrade the version. Also in this usage mode, a setting change device is connected to the setting change terminal 16 and the version of camera processing or image compression processing performed in the image control circuit is performed by input from the setting change device S.
  • a rewritable memory such as a flash memory is used instead of R ⁇ M33 shown in FIG.
  • the above ⁇ manpower, setting changing device is performed by the communication software Touwea of Apurikeshi 3 down software Bok and imaging device setting change apparatus.
  • the user only has to operate the mouse or keyboard on the screen in accordance with the instructions of the application software, and the camera processing or the image compression processing that has been upgraded in the rewritable memory can be performed.
  • a program to execute is written.
  • the imaging device may be configured so that the entire microcomputer part can be replaced, and the imaging device may be replaced with a microcomputer having improved performance or a new function to perform version up. This is possible for the first time because all processing is performed by the microcomputer.
  • the version is updated by the software or by the hardware as described above, only the part related to the microcomputer is changed, so the other parts are not affected and the version is updated.
  • the operation of the software is also the operation of the mouse and keyboard on the screen of the personal computer in the software, and the operation of the hardware is only replacement of the microcomputer, which affects other parts than replacing the conventional DSP or LSI. It can be done easily without giving
  • the above setting change terminal can be shared with an interface for connecting to a computer.
  • the imaging apparatus of the present invention performs all signal processing by software, and therefore has a high degree of processing freedom. For this reason, dedicated hardware such as a camera DSP is not required, and the cost can be reduced. Also, the content of the signal processing can be changed without changing the configuration of the device.
  • it can be photographed in the character mode, so that both black and white images can be photographed at a high resolution.
  • shooting can be performed in the special effect mode, so that any area in the screen can be emphasized when shooting.
  • the image quality and functions can be set by input from an external device to a setting change terminal.
  • the shooting mode can be switched. This eliminates the need for an extra configuration for switching the mode, and allows the imaging device to be downsized.
  • the specific mode that has been switched in advance is performed at the time of shooting, so operation on the device body is simple.
  • a new shooting mode can be set. This eliminates the need for an extra configuration for setting a new mode or switching to another shooting mode, and thus allows the imaging apparatus to be downsized.
  • the operation of the device itself is easy because the dedicated mode processing set in advance is performed during shooting.
  • camera processing or image compression processing can be upgraded.
  • the processing level of the imaging device can be raised as needed with the development of the software. For example, it can support high pixel still and moving image processing in the future.
  • the version up of force camera processing or image compression processing can also be performed by replacing both image control circuits.
  • the processing level of the imaging device can be raised as needed with the development of microcomputers and the like. For example, it can handle high pixel still images and moving image processing in the future.
  • the above version up can be performed without affecting parts other than the image control circuit. Also, the version up operation is as simple as operating the mouse and keyboard on a personal computer and replacing the microcomputer itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

A camera processing for changing the format of the image signals photo-electrically converted and digitized by a CCD into a predetermined output format and an image compression processing are performed. The operations for the processings are executed by an arithmetic means according to a program where the procedure of the operations are written. Thus a still picture is generated in a software manner. The degree of freedom of the signal processing in the image pickup device is raised, and accordingly the quality of image picked up by the image pickup device and the functions and operability of the device are enhanced without any additional units.

Description

細 書  Book
撮像装置 技術分野 Imaging equipment Technical field
本発明は撮像装置に係り、 特に静止画撮像に好適なオールソフ ト処理 の撮像装 i に関する。 背景技術  The present invention relates to an imaging device, and more particularly to an imaging device i of all-soft processing suitable for still image capturing. Background art
従来の撮像装置は、 C C D (Charge Coupled Device)等の撮像素子を川 いて光電変換を行ない、 これにデジタル処理を施して所定のデジタル両 像信 を得るものであった。 このような撮像装置においては、 C C Dが 出力したアナ口グの信号を A Z D変換してデジタルの信号に変換した後- 所定の信号処理を行なう専用の L S I等を用いてデジタル画像信号を生 成する。 このような撮像装置は、 デジタル画像信号を生成するために必 要な所定の演算を行なうためのハ一 ドウユアを備えたものであり、 高速 の処理が行えるという特徴をもつ。 このような装置に関するものは、 例 えば特開平 2— 2 8 0 4 9 6に記載されている。 また、 このような撮像 装置の信号処理を行う L S Iやその画質制御に関するものは、 例えば 1 9 9 1年テレビジョ ン学会年次大会予稿集の第 3 6 1 頁及び 3 6 2頁に 記載されている。 このような L S I は、 C C Dが出力する信号からビデ ォ信号を生成するための信号処理の他、 撮像素子の露光時間や信号の読 み出しを制御するための C C D駆動パルスの発生も行なつている。 なお、 この L S I は主として動画を撮像するためのものである。 一方、 静止画 を撮像するための装置も開発されており、 これに関するものは、 例えば 1 9 9 5年、 日本写真学会、 ファイ ンイメージシンポジウム了'稿集、 第 5 9頁から 6 2頁に記載されている。 In a conventional imaging apparatus, photoelectric conversion is performed by using an imaging element such as a CCD (Charge Coupled Device), and digital processing is performed on the image to obtain a predetermined digital image signal. In such an imaging device, the analog output signal output from the CCD is converted into a digital signal by AZD conversion, and then a digital image signal is generated using a dedicated LSI or the like that performs predetermined signal processing. . Such an imaging device is provided with hardware for performing a predetermined operation necessary for generating a digital image signal, and has a feature that high-speed processing can be performed. Such an apparatus is described in, for example, Japanese Patent Application Laid-Open No. 2-280496. Further, an LSI for performing signal processing of such an imaging device and an image quality control thereof are described in, for example, pages 391 and 362 of the 1991 Annual Conference of the Institute of Television Engineers of Japan. ing. Such an LSI not only performs signal processing for generating a video signal from the signal output by the CCD, but also generates a CCD drive pulse for controlling the exposure time of the image sensor and reading of the signal. I have. This LSI is mainly for capturing moving images. Meanwhile, devices for capturing still images have also been developed. It is described in the 1995 Photographic Society of Japan, Fine Image Symposium, Final Report, pp. 59-62.
しかし、 上記従来技術においては、 撮像装置の信 処理が専用の ドウ アで構成されているため信号処理の 由度が小さいという問題が あった。 このため、 複数種類の C C Dに対応したり、 新たに画質や機能 を高めよう とする場合には新しい ドウエアを開発しなければならず. またその分、 操作も煩雑にならざるを得なか た 発明の開示  However, in the above-described conventional technology, there is a problem in that the signal processing of the imaging apparatus is configured by a dedicated window, so that the degree of freedom of the signal processing is small. For this reason, new software must be developed in order to support multiple types of CCDs or to enhance the image quality and functions. Also, the operation must be complicated accordingly. Disclosure of
本発明の目的は、 撮像装置における^号処理の自由度を高めることに ある。 また、 信号処理の自由度を高めることに伴い、 余分な構成を伴わ ずに撮像装置の兩質ゃ機能を高め、 さらにはその操作性も高めることに ある。  An object of the present invention is to increase the degree of freedom of the ^ signal processing in an imaging device. Another object of the present invention is to increase the degree of freedom in signal processing, to enhance the functions of the imaging device without extra components, and to enhance the operability thereof.
上記目的を達成するため、 本発明では、 撮像装置におけるカメラ信号 処理や画像圧縮処理を全てソフ 卜ウエアによつて行うようにした。  In order to achieve the above object, in the present invention, the camera signal processing and the image compression processing in the imaging device are all performed by software.
すなわち本発明の撮像装置は、 光学系によって結像された光信号をァ ナ口グ画像信号に変換して出力する光電変換手段と光電変換手段から出 力されたアナログ面像信号を第 1のデジタル画像信号に変換して出力す る Αノ D変換手段と画像 号を所定の出カフォーマツ 卜に変換するカメ ラ処理及び画像圧縮処理を行うための演算の手順を表すプログラムを保 持する第 2のメモリ手段と A Z D変換手段から出力された第 1 のデジ夕 ル画像信号にカメラ処理及び画像圧縮処理を行うための演算を施し第 2 のデジタル画像信 ¾·を生成する演算手段と演算手段で生成された第 2の デジタル兩像信^を外部に出力するィ ン夕一フエ一スチ段と第 1のデジ タル画像信号に第 2のメモリ手段に保持されたプログラムに基づく演算 を施し第 2のデジタル画像信号を生成するように演算手段を制御し、 第 2のデジタル画像信号を外部へ出力するようにィンターフェース手段を 制御する制御手段を備える。 That is, the image pickup apparatus of the present invention converts the optical signal formed by the optical system into an analog image signal and outputs the converted image signal, and converts the analog surface image signal output from the photoelectric converter into a first image signal. A second type that holds a D-converting means for converting the image signal into a digital image signal and outputting the digital image signal, and a program representing an arithmetic procedure for performing a camera process for converting the image signal into a predetermined output format and an image compression process. The first digital image signal output from the AZD conversion means and the first digital image signal output from the AZD conversion means are subjected to an operation for performing camera processing and image compression processing to generate a second digital image signal. The second digital image signal is output to the outside, and the first digital image signal is subjected to an operation based on a program stored in the second memory means. Digital image signal Controlling the arithmetic means to generate And control means for controlling the interface means so as to output the second digital image signal to the outside.
信号処理の内容はプログラムとして第 2のメモリ手段に保持されてお り、 これによつて信号処理をソフ トウェア化している。  The content of the signal processing is stored as a program in the second memory means, thereby making the signal processing into software.
また本発明の撮像装置の上記制御手段は第 1のデジタル画像信号に第 2のメモリ手段に保持されたプログラムに茈づく演算を 1秒あたり 6 0 0万回以上施し第 2のデジタル画像信号を^成するように演^手段を制 御する。  Further, the control means of the imaging apparatus of the present invention performs an operation based on the program held in the second memory means at least 600,000 times per second on the first digital image signal, and outputs the second digital image signal. Control the way you perform.
このように信号処理を る制御于-段が必要最小限の処理能力を持って いれば、 信号処理を行うのに要する 卜一タルの処理時間を 1秒以内にす ることができる。  If the control stage for signal processing has the minimum necessary processing capability, the total processing time required for signal processing can be reduced to within one second.
また本発明の撮像装置は制御手段を所定のタイ ミ ングで動作させ、 該 タイ ミ ングに同期して光電変換手段及び A / D変換手段を動作させるた めの基準クロックを発生する発振回路をさらに備える。  Further, the imaging device of the present invention operates the control means at a predetermined timing, and includes an oscillation circuit for generating a reference clock for operating the photoelectric conversion means and the A / D conversion means in synchronization with the timing. Further prepare.
これにより光電変換手段からの信号の読み出しと同期した信号処理が 可能となり、 動作速度を向上させることができるとともに、 信号処理に おける制御が容易になる。  This makes it possible to perform signal processing in synchronization with reading of a signal from the photoelectric conversion means, thereby improving operating speed and facilitating control in signal processing.
また本発明の撮像装置は所定の出カフォーマツ トに変換するまでの過 程を変更し、 白黒の画像を高い解像度で撮影するための文字モー ドに切 り換えるための文字モー ド入力手段を備える。  Further, the image pickup apparatus of the present invention includes a character mode input means for changing a process until conversion to a predetermined output format and switching to a character mode for photographing a black and white image at a high resolution. .
文字モー ド入力時には第 2のデジタル画像信号は R、 G、 B信号の信 号量のばらつきがないように、 あるいは Y信号のみであるように設定さ れる。 上記処理はソフ トウユア処理によって容 に行われる。  At the time of character mode input, the second digital image signal is set so that there is no variation in the signal amount of the R, G, and B signals, or only the Y signal. The above processing is easily performed by the software-based processing.
また本発明の撮像装置は所定の出カフォーマツ 卜に変換するまでの過 程を変更し、 画面内の任意の領域を強調して撮影するための特殊効果モ 一ドに切り換えるための特殊効果モ一 ド入力手段を備える。 特殊効果モ一 ド入力時には画面内の任意の領域に応じてフィル夕特性 が変化するよう に制御される。 上^処理も ソフ 卜ウェア処理によって容 易に行われる。 Further, the imaging apparatus of the present invention changes the process of converting to a predetermined output format, and switches to a special effect mode for switching to a special effect mode for photographing while emphasizing an arbitrary area in the screen. A password input means. When the special effect mode is input, control is performed so that the fill characteristics change according to an arbitrary area in the screen. The above processing is also easily performed by software processing.
また本発明の撖像装置は外部機器からの入力により所定の出力フ 才一 マッ トに変換するまでの過程を変更して撮影モー ドを切り替えるための 設定変更端子を備える。  Further, the imaging apparatus of the present invention is provided with a setting change terminal for changing a process until conversion into a predetermined output match by an input from an external device to switch a shooting mode.
入力の際は書き換え可能なメモリ手段に記憶されている撮影モ一 ド凼 有のパラメ一夕を書き換える。  At the time of input, the parameters of the photographing mode stored in the rewritable memory means are rewritten.
また本発明の撮像装 Kは外部機器からの入力により所定の出力フ ォー マツ 卜に変換するまでの過程を変更して新たな撮影モー ドを設定するた めの設定変更端子を備える。  Further, the imaging apparatus K of the present invention includes a setting change terminal for changing a process until conversion into a predetermined output format by an input from an external device and setting a new shooting mode.
入力の際は書き換え可能なメ モ リ手段に記憶されている新たな撮影モ 一ド固ィ ίのパラメータを書き換える。  At the time of input, the parameters of the new shooting mode specific stored in the rewritable memory means are rewritten.
また本発明の撮像装置は外部機器からの入力によりカメ ラ処理あるい は画像圧縮処理のバージョ ンアツプを果たすための設定変更端子を備え る。  Further, the imaging apparatus of the present invention includes a setting change terminal for performing version up of camera processing or image compression processing by input from an external device.
入力の際は書き換え可能なメモリ手段に記憶されている信 -処理を実 行するためのプログラムを書き換える。  At the time of input, the program for executing the signal processing stored in the rewritable memory means is rewritten.
また本発明の撮像装置の演算手段と制御手段と第 2のメモリ手段とで 単一的に成り立つ集積回路は取り外し可能である。  In addition, an integrated circuit which is constituted solely by the arithmetic means, the control means, and the second memory means of the imaging apparatus of the present invention is removable.
従って、 性能の上がった別の柒積回路と取り替えるこ とにより、 カメ ラ処理あるいは画像圧縮処理のバージョ ンアップを果たすこ とができる < 図面の簡単な説明  Therefore, the version of camera processing or image compression processing can be improved by replacing it with another integrated circuit that has improved performance.
図 1 は、 本発明の撮像装置の第 1 の実施形態を示すブロ ック図であり、 図 2は、 本発明の撮像装置における色フィルタ配列を示す図であり、 図 3は、 本発明の撮像装置の第 1の実施形態における幽-像制御 路の構成 を^すブロック図であり、 図 4は、 本発明の撮像装置における静止画を 撖像するときの操作と信号処理のフローを示す図であり、 図 5は、 本発 明の撮像装置における輝度、 色差信号の生成のフロ -を小-す図であり、 図 6は、 本発明の撮像装置の第 2の実施形態を示す撮像装置のブロック 図であり、 図 7は、 本発明の撮像装置の第 3の実施形態を示す撮像装 のブロック図であり、 図 8は、 本発明の撮像装置の第 3の実施形態にお ける C C D制御回路の構成を示すブロック闵であり、 図 9は、 本発明の 撖像装 Kの第 4の実施形態を示す撮像装置のブロック図であり、 図 1 0 は、 本発明の撮像装置の第 5または第 6の実施形態を示す撮像装置のブ ロック図であり、 図 1 1は、 本発明の撮像装置の C C Dの色フィルタ配 列を図 2 ( a ) に示したものとするときの光学口一パスフィルタの特性 を示す図であり、 図 1 2は、 特殊効果モ一 ドによる特殊効果を施す前と 施した後の映像を示す図であり、 図 1 3は、 本発明の撮像装置の外観を 示す図である。 発明を実施するための最良の形態 FIG. 1 is a block diagram showing a first embodiment of the imaging device of the present invention. FIG. 2 is a diagram showing a color filter array in the imaging device of the present invention. FIG. 3 is a block diagram illustrating a configuration of a ghost image control path in the first embodiment of the imaging device of the present invention. FIG. 4 is a diagram illustrating operations and operations performed when capturing a still image in the imaging device of the present invention. FIG. 5 is a diagram illustrating a flow of signal processing, FIG. 5 is a diagram illustrating a flow of generating a luminance and color difference signal in the imaging device of the present invention, and FIG. 6 is a second diagram of the imaging device of the present invention. FIG. 7 is a block diagram of an imaging apparatus according to a third embodiment of the present invention. FIG. 8 is a block diagram of an imaging apparatus according to a third embodiment of the present invention. FIG. 9 is a block diagram illustrating a configuration of a CCD control circuit according to the present embodiment. FIG. 9 is a block diagram illustrating an imaging apparatus according to a fourth embodiment of the imaging device K of the present invention. FIG. 11 is a block diagram of an imaging device showing a fifth or sixth embodiment of the imaging device of the present invention, and FIG. Fig. 2 (a) shows the characteristics of the optical aperture one-pass filter when the CCD color filter array of the image pickup device shown in Fig. 2 is shown in Fig. 2 (a). FIG. 13 is a diagram showing images before and after applying the effect, and FIG. 13 is a diagram showing an appearance of the imaging device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1の実施形態について説明する。 図 1は本発明による撮像 装置の構成を示すブロック図である。 同図において 1 はレンズ、 2は C C D、 3は増幅回路、 4は A Z D変換回路である。 5は A Z D変換回路 4が出力する第 1のデジタル画像信号を書き込むバッファメモリである。 6は、 信号処理や画像の入出力制御等を行う画像制御回路であり、 8は 生成された画像信号を保持する画像メモリである。 9は外部のコンビュ —タ等と通信を行って、 本発明の撮像装置が生成した第 2のデジ夕ル画 像信号を出力するインタ一フヱ一ス回路、 1 0は、 生成した第 2のデジ タル画像信号を記録しておくための記録媒体、 1 1は操作スィ ッチであ る。 A first embodiment of the present invention will be described. FIG. 1 is a block diagram showing a configuration of an imaging device according to the present invention. In the figure, 1 is a lens, 2 is a CCD, 3 is an amplification circuit, and 4 is an AZD conversion circuit. Reference numeral 5 denotes a buffer memory for writing the first digital image signal output from the AZD conversion circuit 4. Reference numeral 6 denotes an image control circuit that performs signal processing, image input / output control, and the like, and 8 denotes an image memory that holds generated image signals. Reference numeral 9 denotes an interface circuit that communicates with an external computer or the like and outputs a second digital image signal generated by the imaging apparatus of the present invention. 10 denotes a generated second digital image signal. A recording medium for recording digital image signals of the You.
次に本実施形態において静止画を撮像する場合の動作について説明す る。  Next, an operation when capturing a still image in the present embodiment will be described.
レンズ 1 に入射した光は C C D 2の撮像面上に結像する。 C C D 2は、 その撮像面に多数の画素を有し、 各々の阿素において光電変換し、 ί素 信号を生成して顺次出力する。 C C D 2の撮像面にはカラーの画像 号 を生成するため -定のパターンを持った色フィル夕が配列されており、 各し *ί桌は、 この色フィル夕の稗類に応じた特定の色光のみを光電変換す るように構成されている。 このような色フィルタ配列のパターンを図 2 に示す。 本実施形態では図 2 ( a ) 、 ( b ) のような 3原色光 R (赤) 、 G (緑) 、 B (青) を透過するフィル夕を用いており、 C C D 2は R、 G、 Bの 3種類の離散的な画素信号を含むアナログの画像信号を出力す る。 なお、 図 2 ( a ) 、 ( b ) の色フィル夕配列の他に、 図 2 ( c ) や ( d ) に示す M g (マゼンタ) 、 C y (シアン) 、 Y e (黄色) 等、 光 利用率の高い補色系の色を主体とした色フィルタ配列を用いても良い。 増幅回路 3では上記した画像信号を増幅して出力する。 なお、 ここで C D S ( Correlated Double Sampl ing ) 等、 公知の低雑音化処理を行な つても良い。 次に A Z D変換回路 4においてアナ口グ画像信号を第 1の デジタル画像信 に変換する。 この第 1のデジタル画像信号は、 バッフ ァメモリ 5に書き込まれ、 さらに書き込まれた第 1のデジタル画像信号 に対して画像制御回路 6が信号処理を施し、 所' のフォーマツ 卜に従つ て第 2のデジタル画像信号を生成する。 なお、 バッファメモリ 5は、 通 常、 1画面 ( 1 フレーム) 分の入力画像信号を保持するが、 画像制御回 路 6の処理能力に応じて画面の 1部 (例えば数ライン) に対応する画像 信号を保持して順次読み書きを繰り返しても良いし、 また、 数画面分の 画像信号を保持できる容量のメモリを使用し、 後述するように静止画の 連写ができるように構成しても良い。 The light incident on the lens 1 forms an image on the imaging surface of the CCD 2. The CCD 2 has a large number of pixels on its imaging surface, performs photoelectric conversion in each element, generates a pixel signal, and sequentially outputs the pixel signal. In order to generate a color image signal on the imaging surface of the CCD 2, color filters with a fixed pattern are arranged.Each * ί 桌 indicates a specific color filter It is configured to photoelectrically convert only color light. Figure 2 shows such a color filter array pattern. In this embodiment, a filter that transmits three primary colors R (red), G (green), and B (blue) as shown in FIGS. 2A and 2B is used. Outputs analog image signals including three types of discrete pixel signals B. Note that, in addition to the color fill arrays shown in FIGS. 2 (a) and (b), Mg (magenta), Cy (cyan), Y e (yellow), etc. shown in FIGS. 2 (c) and (d) A color filter array mainly composed of complementary colors having high light utilization may be used. The amplifying circuit 3 amplifies the above-mentioned image signal and outputs it. Here, well-known noise reduction processing such as CDS (Correlated Double Sampling) may be performed. Next, the AZD conversion circuit 4 converts the analog image signal into a first digital image signal. The first digital image signal is written into the buffer memory 5, and the written first digital image signal is subjected to signal processing by the image control circuit 6, and the second digital image signal is processed in the second format in accordance with a predetermined format. Is generated. Although the buffer memory 5 normally holds the input image signal for one screen (one frame), an image corresponding to one part of the screen (for example, several lines) according to the processing capability of the image control circuit 6 Reading and writing may be repeated sequentially while holding the signal, or a memory of a capacity that can hold image signals for several screens may be used, and the still image You may comprise so that continuous photography is possible.
以下、 両像制御回路 6が行う信号処理について説明する。 図 3は画像 制御回路 6の構成を示すブロ ッ ク図であり、 3 0 は C P U (Central Process ing Uni t ) , 3 1 は演算回路、 3 2は R A M (Random Access Memory) . 3 3は R 0 M (Read On ly Memory) , 3 4は I / 0ポー トである。 雨像制 御回路 6は以上の構成要素から成るが、 これらを一体化した汎用のマイ コンゃ D S P (Digi tal Signal Processor) , または専用の L S I を用い て構成しても良い。  Hereinafter, the signal processing performed by both image control circuits 6 will be described. FIG. 3 is a block diagram showing the configuration of the image control circuit 6. 30 is a CPU (Central Processing Unit), 31 is an arithmetic circuit, 32 is a RAM (Random Access Memory), and 33 is R. 0 M (Read Only Memory), 34 is the I / 0 port. The rain image control circuit 6 includes the above components, but may be configured using a general-purpose microcomputer DSP (Digital Signal Processor) integrating these components or a dedicated LSI.
次に静止画撮像の操作、 及び処理について説明する。 静止画撮像は、 ユーザ一が撮像装置の操作スィ ッチ 1 1を押すことにより開始する。 本 発明の撮像装置における操作スィ ツチは半分押し込んだ状態と全部押し 込んだ状態の 2段階の異なるスイ ツチ状態を実現可能とするものであり、 まず最初に操作スィツチを半分押し込んだ状態を保つと、 ここで露光制 御及びホヮィ トバランス制御が行われる。 またォー トフォ一カス機構が ある場合もここでオー トフォーカス制御が行われる。 これらの制御が完 了すると、 ユーザ一に撮影の準備が完了したことを、 表示や音声で知ら せる。 ここでユーザ一が操作スィ ッチを完全に押し込むと、 静止画の撮 像が行われる。 図 4は、 静止画を撮像するときの操作及び画像制御回路 6が行う信号処理のフローを示す図である。 図 4の S 1 においてスイ ツ チが半押しの状態であることを検知し、 半押し状態であれば次の処理 S 2に移り、 C C Dの駆動を開始し、 C C D内において光電変換されたァ ナログ画像信号の蓄積を行なう。 S 3では蓄積されたアナログ画像信^ を C C Dから読み出す。 C C Dから読み出されたアナ口グ画像信号は信 号処理のフローとは別に、 上記増幅回路 3、 上記 A / D変換回路 4を介 してデジタル画像信号に変換された後、 図 1のバッファメモリ 5に書き 込まれる。 S 4では、 書き込まれたデジタル画像信号に対して画像制御 回路 6で露光制御を行なう。 露光制御は、 C C Dの露光時間 (電子シャ ッ夕のシャ ツ夕速度) を適正な値に制御する処理である。 このため、 両 像信号の信 レベルを所定のリ ファ レンス値と比較し、 これが適正な侦 に近づく よう に次の C C Dからのアナログ画像^号の読み出しにおける シャ ツタ速度を設定する。 S 5において、 信号レベルが適正な値であれ ば露光制御が終了したと判定し、 次の処理に進む。 露光制御が完了して いなければ、 S 3に戻る。 露光制御が完了するまでこのフィー ドバック 制御を行なう。 Next, a still image capturing operation and processing will be described. Still image capturing is started when the user presses the operation switch 11 of the image capturing apparatus. The operation switch in the imaging apparatus of the present invention can realize two different switch states, that is, a half-depressed state and a fully-depressed state.First, when the operation switch is kept in a half-depressed state, Here, exposure control and white balance control are performed. Also, when there is an autofocus mechanism, the autofocus control is performed here. When these controls are completed, the user is notified of the completion of the preparation for shooting by display or sound. Here, when the user pushes the operation switch completely, a still image is captured. FIG. 4 is a diagram showing a flow of an operation when capturing a still image and a signal processing performed by the image control circuit 6. In S1 of FIG. 4, it is detected that the switch is half-pressed. If the switch is half-pressed, the process proceeds to the next step S2, where the driving of the CCD is started, and the photoelectrically converted key in the CCD is started. The analog image signal is stored. In S3, the stored analog image signal is read from the CCD. The analog image signal read from the CCD is converted to a digital image signal via the amplifier circuit 3 and the A / D converter circuit 4 separately from the signal processing flow. Written to memory 5. In S4, image control is performed on the written digital image signal. Circuit 6 controls exposure. Exposure control is a process for controlling the exposure time of the CCD (the shutter speed of the electronic shutter) to an appropriate value. For this reason, the signal levels of the two image signals are compared with a predetermined reference value, and the shutter speed in reading the next analog image signal from the CCD is set so that the signal level approaches an appropriate value. In S5, if the signal level is an appropriate value, it is determined that the exposure control has been completed, and the process proceeds to the next process. If the exposure control has not been completed, the process returns to S3. This feedback control is performed until the exposure control is completed.
S 6において、 適正値に設定されたシャ ツ夕速度による露光を行ない、 アナログ画像信号を C C Dから読み出す。 C C Dから読み出されたアナ ログ画像信号は信号処理のフローとは別に、 上記埒幅回路 3、 上記 A / D変換回路 4を介してデジタル画像信号に変換された後、 図 1 のバッフ ァメモリ 5 に書き込まれる。 S 7では、 書き込まれたデジタル画像信号 に対して画像制御回路 6でホワイ 卜バラ ンス制御を行なう。 ホワイ トバ ラ ンス制御では、 デジタル画像信 ¾ "から後述するように生成する信号 R、 G、 B各々のバラ ンスが適正値となるようなゲイ ンを求める。 ホワイ ト バラ ンス制御が終了すると、 撮影の準備が完了し、 操作スィ ッチをオン できる状態にあることを知らせるため、 S 8において制御終了信号を発 生する。  In S6, exposure is performed at the shutter speed set to an appropriate value, and an analog image signal is read from the CCD. The analog image signal read from the CCD is converted into a digital image signal via the above-mentioned bandwidth circuit 3 and the A / D conversion circuit 4 separately from the signal processing flow, and then the buffer memory 5 in FIG. Is written to. In S7, the image control circuit 6 performs white balance control on the written digital image signal. In the white balance control, a gain is obtained such that the balance of each of the signals R, G, and B generated from the digital image signal becomes an appropriate value as described later. When the white balance control ends, A control end signal is generated in S8 to notify that the preparation for shooting is completed and the operation switch can be turned on.
S 9において操作スィ ッチがオン状態になったかどうか検出する。 ォ ン状態であれば、 S 1 0で再度アナ口グ画像信号を C C Dから読み出す c C C Dから読み出されたアナ口グ画像信号は信号処理のフ口一とは別に. 上記増幅回路 3、 上記 A Z D変換回路 4を介してデジタル画像信号に変 換された後、 図 1 のパ'ッファメモリ 5に書き込まれる。 S I 1 では、 書 き込まれたデジ夕ル画像信号に対して画像制御回路 6で輝度信号 Yと、 色差信号 U、 Vを生成する。 この S 1 1 における詳細な処理については 後述する。 生成した信号 Y、 U、 Vは面像メモリ 8に齊き込まれる。In S9, it is detected whether the operation switch has been turned on. If O emissions state, Ana port grayed image signal read out from the c CCD reading again Ana port grayed image signal S 1 0 from the CCD is separate from the full opening one signal processing. The amplifier circuit 3, the After being converted into a digital image signal via the AZD conversion circuit 4, it is written into the buffer memory 5 in FIG. In SI 1, a luminance signal Y and color difference signals U and V are generated by the image control circuit 6 for the written digital image signal. For detailed processing in this S 1 1 It will be described later. The generated signals Y, U, and V are input to the area image memory 8.
S 1 2では、 生成した信 ¾· Υ、 U、 Vを画像メモリ 8から読みだし、 J P E G ( Joint Photographic Expert Group)等の方式に基づき静止両の 画像圧縮を行なう。 ) 縮された豳像信号は、 再び画像メモリ 8に書き込 まれる。 S 1 3では、 こう して 成した画像信号を記録媒体 1 0に記録 する。 記録する画像信号は通常、 静止画であるが、 動両 (連続する静止 画) を記録しても良い。 記録媒体 1 0はフラ ッ シュメモリ等の半導体メ モリを用いるが、 その他、 ハー ドディ スクゃ磁気テープを用いても良い c これらの記録媒体は、 一般に取り外して交換するこ とが可能であるが、 撮像装 K内に [fil定されたものでも良い。 メモリ カー ドのように、 パーソ ナルコンピュータ等の外部装置でメモリ内のデータを読むこ とが可能な 記録媒体を用いても良い。 In S12, the generated signals, U, and V are read from the image memory 8, and both stationary image compression is performed based on a method such as JPEG (Joint Photographic Expert Group). The compressed image signal is written into the image memory 8 again. In S13, the image signal thus generated is recorded on the recording medium 10. The image signals to be recorded are usually still images, but moving images (continuous still images) may be recorded. While the recording medium 1 0 using a semiconductor memory such as a hula Tsu Shumemori, other good c these recording media even with hard Dodi disk Ya magnetic tape, but can generally be interchangeable child removed is, In the imaging device K, [fil-defined one may be used. A recording medium, such as a memory card, from which data in the memory can be read by an external device such as a personal computer may be used.
次に、 図 4の S 1 1 における輝度信号 Yと色差信号 U、 Vを生成する 処理について図 5を用いて説明する。 S 1 1 0では、 輝度^号 Yと色信 号 R、 G、 Bを生成するためのマ ト リ クス処理とフィル夕 リ ングを行う。 本実施形態において用いる C C Dは、 各画素に原色フィルタ R、 G、 B を設けているので、 これらの画素信号にフィルタ リ ングを行えば信号 R、 G、 Bを生成できる。 フィルタ リ ングは、 隣接する同一種類の信号につ いて適当な係数を掛けて加算するこ とによって行なう。 また、 輝度信号 Yは、 隣接する数画素の画素信号 R、 G、 Bに適当な係数を掛けて加算 して求めれば良い。  Next, a process of generating the luminance signal Y and the color difference signals U and V in S11 in FIG. 4 will be described with reference to FIG. In S110, matrix processing and filtering for generating the luminance ^ signal Y and the color signals R, G, B are performed. In the CCD used in the present embodiment, the primary color filters R, G, and B are provided for each pixel, so that if the pixel signals are filtered, the signals R, G, and B can be generated. Filtering is performed by multiplying adjacent signals of the same type by appropriate coefficients and adding them. The luminance signal Y may be obtained by multiplying the pixel signals R, G, and B of several adjacent pixels by an appropriate coefficient and adding them.
なお、 原色フィルタを用いた場合は、 以上のようにして輝度 号 Yと 信号 R、 G、 B  When the primary color filter is used, the luminance signal Y and the signals R, G, B
が得られるが、 図 2の ( b ) ( c ) に示したような補色フィルタを用い る場合には信号 R、 G、 Bを求めるために以下のようなマ ト リ クス演算 を行なう必要がある。 以下、 色信号 M g、 G、 C y、 Y eから信号 R、 G、 Bを生成する方法について説明する。 補色信号 M g、 C y、 Y e と 号 R、 G、 Bとの関係は以下の式で表すことができる。 However, when using complementary color filters such as those shown in (b) and (c) of Fig. 2, it is necessary to perform the following matrix operation to obtain signals R, G, and B is there. Hereafter, from the color signals M g, G, C y, Y e to the signal R, A method for generating G and B will be described. The relationship between the complementary color signals Mg, Cy, and Ye and the signals R, G, and B can be expressed by the following equations.
M g = R + B ( 1 )  M g = R + B (1)
C y = G + B ( 2 )  C y = G + B (2)
Y e = G + R ( 3 )  Y e = G + R (3)
したがって、 信号 R、 G、 Bは例えば以下のようにして求めることがで きる。 Therefore, the signals R, G, and B can be obtained, for example, as follows.
R = Y e +Mg - C y ( 4 )  R = Y e + Mg-C y (4)
G = G - Mg + C y + Y e ( 5 )  G = G-Mg + C y + Y e (5)
B = C y +Mg - Y e ( 6 )  B = C y + Mg-Y e (6)
以上のようにして、 補色フィルタを用いた場合にも信号 R、 G、 Bを求 めることができる。 As described above, the signals R, G, and B can be obtained even when the complementary color filter is used.
S 1 1 1では、 生成した信号 R、 G、 Bに、 図 4の S 7において求め たゲインを掛けてホワイ トパ'ラ ンス補正を行う。 但し、 S 1 1 0、 S 1 1 1の処理は個別に行なわず、 同時に行っても良い。  In S111, the generated signals R, G, and B are multiplied by the gain obtained in S7 in FIG. 4 to perform white balance correction. However, the processing of S110 and S111 may not be performed individually but may be performed simultaneously.
さらに、 S 1 1 2では、 ホワイ トバランス補正を行った信号 R、 G、 Bと信号 Yにガンマ補正を行なう。 ガンマ補正は、 ガンマ特性に基づく 入出力特性を表すテーブルに従って行なう。 なお、 ガンマ補正について は 1 9 9 1年テレビジョ ン学会年次大会予稿集の第 3 6 2頁に記載があ り、 原理的にこれと同じである。  In S112, gamma correction is performed on the white balance corrected signals R, G, B and the signal Y. The gamma correction is performed according to a table representing input / output characteristics based on the gamma characteristics. The gamma correction is described in p. 362 of the Proceedings of the 1971 Annual Meeting of the Television Society of Japan, and is the same in principle.
S 1 1 3では、色羌信号 U、 Vを生成する。信号 U、 Vは、下記の( 7 ) 式で生成する輝度信号 Yと、 信号 R、 G、 Bを演算して得られる色差信 号 R— Y、 Β— Υに所定の係数をかけて演算することにより生成するこ とができる。  In S113, color signals U and V are generated. The signals U and V are calculated by multiplying the luminance signal Y generated by the following equation (7) and the color difference signals R-Y and 、 -Υ obtained by calculating the signals R, G and B by a predetermined coefficient. Can be generated.
Υ = 0. 3 R + 0. 6 G + 0. 1 Β ( 7 )  Υ = 0.3 R + 0.6 G + 0.1 Β (7)
以上のようにして、 信号 Y、 U、 Vを求めることができる。 このよう な処理は、 13に示した画像制御回路によって行う ものである。 図 3は 一般的なマイコンの構成と同様であり、 上記の処理は R 0M 3 3に書か れたプログラムに従って行われる。 As described above, the signals Y, U, and V can be obtained. like this Such processing is performed by the image control circuit shown in FIG. FIG. 3 is the same as the configuration of a general microcomputer, and the above processing is performed according to the program written in R0M33.
また、 上記のカメラ信 処理として、 画像制御回路は、 C C Dの出力 信号を所定の出力フォーマッ トつま り上記の Y、 U、 V信号に変換する までのカメ ラ処理と画像圧縮処理を行う力 これら両方の処理を行うの に要する トータルの処理時間は、 同一シー ンで連続撮影を行う場合を考 慮すると、 1秒以内であるこ とが望ま しい。 これ以 hの処理時間がかか ると、 シャ ッターチヤ ンスを逃すこ とが起こ り得るため、 使い勝手が悪 く なる。 カメ ラ信号処理を 1秒以内の高速で行うには、 信号処理を行う C P Uが一定の処理能力を持つこ とが必要となる。  In addition, as the above-described camera signal processing, the image control circuit performs the camera processing and image compression processing until the CCD output signal is converted into a predetermined output format, that is, the above-described Y, U, and V signals. The total processing time required for performing both processes is preferably less than 1 second, considering continuous shooting in the same scene. If the processing time is longer than this, the shutter chance may be missed, so that the usability is deteriorated. In order to perform high-speed camera signal processing within one second, it is necessary for the CPU that performs signal processing to have a certain processing capability.
そこで、 上記カメラ信号処理の内、 兩像圧縮処理を行うのに必要な演 算量を考える。 符号化する画素数を 1秒あたり 3 8 0万画素とした場合、 テレビジョ ン学会誌 V o に 4 8, N o . 1 , P P 3 1 - 3 7 ( 1 9 9 4 ) に述べられているよう に、 離散コサイ ン変換で約 1 3 0、 可変長符 号化で約 5 0 MO P S (Mega Operation Per Second) の演算量を必要と し、 その他の処理を含めると、 静止画の圧縮処理には 2 0 0 MO P S以 上の演算量を必要とする。 本願発明において、 パーソナルコンピュータ 上で一般に扱う 6 4 0 x 4 8 0画素のサイズの静止画 1枚を 1秒で生成 するこ とを考えると、 Y信号、 U信号、 V信号のサンプリ ングフォーマ ッ ト力 4 : 2 : 2であるならば 6 4 0 x 4 8 0 x 2 = 6 1 4 4 0 0より 符号化する画素数は 1秒あたり約 6 0万画素である。 従って、 面像圧縮 処理を行うのに必要な演算量は、 上記に基づけば符号化する画素数が 1 秒あたり 3 8 0万画素の場合 2 0 0 MO P S以上であるから、 符号化す る画素数が 1秒あたり 6 0万画素の場合約 3 0 MO P S以上である。 また画像圧縮処理以外のカメラ信号処理を行うのに必要な演算量を考 える。 これは主として、 フィルタ リ ング等のマ ト リ クス演算であり、 フ ィ ル夕サイズ 5 x 5画素のフィル夕処理を行なう ものとすれば、 フィル 夕処理は 2 5回の積和演算を含む。 1演算を 1処理としても、 処理内容 によつて演算量は異なるため、 画像圧縮処理と同程度の演算量が必要と なり、 結果、 画像圧縮処理以外のカメ ラ信^処理を行うのに必要な演算 量は約 3 0 MO P Sである。 Therefore, the amount of operation necessary for performing the two-image compression process in the above camera signal processing is considered. Assuming that the number of pixels to be encoded is 3.8 million pixels per second, it is stated in 48, No. 1, PP 31-37 (1994) in the Journal of the Institute of Television Engineers of Japan. Approximately 130 for discrete cosine transform and approximately 50 MOPS (Mega Operation Per Second) for variable-length coding, and the compression of still images when other processing is included. Processing requires more than 200 MOPS. In the present invention, considering that a still image having a size of 640 × 480 pixels generally handled on a personal computer is generated in one second, the sampling format of the Y, U, and V signals is considered. If the output power is 4: 2: 2, then 64 x 480 x 2 = 6 144 000 The number of pixels to encode is about 600,000 per second. Therefore, the amount of computation required to perform the plane image compression process is 200 MOPS or more when the number of pixels to be encoded is 3.8 million pixels per second based on the above. When the number is 600,000 pixels per second, it is about 30 MOPS or more. Also consider the amount of computation required to perform camera signal processing other than image compression processing. I can. This is mainly a matrix operation such as filtering, and if the filter processing is performed with a filter size of 5 x 5 pixels, the filter processing includes 25 multiply-accumulate operations . Even if one operation is one processing, the amount of operation differs depending on the processing content, so the same amount of operation as image compression processing is required, and as a result, it is necessary to perform camera signal processing other than image compression processing The computational complexity is about 30 MOPS.
従って、 上記のカメラ信号処理を 1秒以内で行なう には、 最低 6 0 M O P Sの演算量が必要である。 このような演算を C P Uで行なう場合、 1 M0 P S = 1 M I P S (Mega Instraction Per Second) と仮定すれば、 C P U性能として最低 6 O M I P Sが要求される。  Therefore, in order to perform the above-described camera signal processing within one second, a computation amount of at least 60 MOPS is required. When such an operation is performed by the CPU, assuming that 1 M0PS = 1 MIPS (Mega Instraction Per Second), a minimum 6 OMIPS is required as the CPU performance.
以上説明したよう に、 本実施形態では、 画像制御冋路 6によって静止 ft'の信号処理を行つており、 この信号処理はその処理内容がプログラム によって記述されたソフ トウェァ処理である。 従って、 ソフ トウエアを 変更するこ とによって撮像装置の構成を変えるこ となく信号処理の内容 を変更するこ とができ、 処理の自由度が高い撮像装置を提供できる。 こ のため、 回路規模を増大せずに画質や機能を高めることができる。 特に 画質や機能を外部機器からの入力によつて設定するこ とができるので使 い勝手が良い。 これらについては後述する。  As described above, in the present embodiment, the signal processing of still ft 'is performed by the image control circuit 6, and this signal processing is software processing in which the processing content is described by a program. Therefore, by changing the software, the content of the signal processing can be changed without changing the configuration of the imaging device, and an imaging device with a high degree of freedom in processing can be provided. Therefore, image quality and functions can be improved without increasing the circuit scale. In particular, image quality and functions can be set by input from external devices, so it is convenient to use. These will be described later.
次に、 本発明の第 2の実施形態について説明する。 図 6は本発明によ る撮像装置の構成を示すブロ ック図である。 ^図において 4 0は発振回 路、 4 1 は分周回路である。 他の部分は第 1の実施形態で示したものと 同一である。 一般に、 C C D駆動用のクロ ッ ク と画像制御回路 6の基本 クロ ックの周波数は異なっていてもよいが、 本実施形態では、 画像制御 回路 6用の発振回路 4 0の発生するクロ ッ クを分周回路 4 1で分周した クロッ クを C C D駆動回路 7、 AZD変換回路 4に入力し、 画像制御回 路 6 と同期して動作するように構成した。 これによつて C C Dからの信 号の読み出しと同期した信号処理が可能となり、 C C Dが出力する画像 信号を画像制御回路に取り込むときの動作タイ ミ ングの制御が節単にな り、 第 1の実施形態で示したバッファメモリ 5を用いず、 A Z D変換後 の画像信号を直接画像メモリに取り込むことができる。 Next, a second embodiment of the present invention will be described. FIG. 6 is a block diagram showing the configuration of the imaging device according to the present invention. ^ In the figure, 40 is an oscillation circuit, and 41 is a frequency dividing circuit. Other parts are the same as those shown in the first embodiment. In general, the clock for CCD driving and the basic clock frequency of the image control circuit 6 may be different, but in this embodiment, the clock generated by the oscillation circuit 40 for the image control circuit 6 is used. The clock divided by the frequency dividing circuit 41 is input to the CCD driving circuit 7 and the AZD converting circuit 4, and is configured to operate in synchronization with the image control circuit 6. As a result, the signal from the CCD Signal processing in synchronization with the readout of the signal, the operation timing control when the image signal output from the CCD is taken into the image control circuit can be simplified, and the buffer memory 5 shown in the first embodiment can be used. Without using it, the image signal after AZD conversion can be taken directly into the image memory.
さらに本発明の第 3の実施形態について説明する。 図 7は本発明によ る撮像装置の構成を示すプロック図である。 同図において 5 0は C C D 制御回路である。 他の部分は第 1 または第 2の実施形態で示したものと 同一である。 図 8はこの C C D制御回路 5 0の構成を示すプロック図で ある。 C C D制御回路 5 0は、 増幅回路 3、 A Z D変換回路 4及び C C D駆動回路 7に、 バス 1 2を介して画像制御回路 6 との通信を行なう I / F回路 6 0を設けて一体化したものである。 本実施形態では、 C C D 制御回路 5 0を介して画像制御回路 6から C C Dの制御が 由に行なえ る。 このため C C Dの出力する画像信号を任意の夕イ ミ ングで画像メモ リ 8に書き込むことができ、 処理の自由度がさらに高くなる。  Further, a third embodiment of the present invention will be described. FIG. 7 is a block diagram showing the configuration of the imaging device according to the present invention. In the figure, 50 is a CCD control circuit. Other parts are the same as those shown in the first or second embodiment. FIG. 8 is a block diagram showing the configuration of the CCD control circuit 50. The CCD control circuit 50 is obtained by integrating an amplifier circuit 3, an AZD conversion circuit 4 and a CCD drive circuit 7 with an I / F circuit 60 for communicating with the image control circuit 6 via the bus 12 It is. In the present embodiment, the control of the CCD can be performed from the image control circuit 6 via the CCD control circuit 50. For this reason, the image signal output from the CCD can be written into the image memory 8 at an arbitrary time, thereby further increasing the degree of freedom in processing.
さらに本発明の第 4の実施形態について説明する。 図 9は本発明によ る撮像装置の構成を示すプロック図である。 同図において 7 0はシャ ツ 夕、 7 1はオー トフォーカス制御回路、 7 2はス トロボである。 他の部 分は図 7の実施形態で示したものと同一である。 本実施形態では、 メカ 二カルなシャ ツタ 7 0やス トロボ 7 2による精度の良い露光制御ゃォ一 トフォーカス制御回路 7 1 による精度の良いピン 卜合わせを行なうこと ができる。  Further, a fourth embodiment of the present invention will be described. FIG. 9 is a block diagram illustrating a configuration of an imaging device according to the present invention. In the figure, 70 is a shutter, 71 is an autofocus control circuit, and 72 is a strobe. Other parts are the same as those shown in the embodiment of FIG. In the present embodiment, highly accurate exposure control by the mechanical shutter 70 and the strobe 72 can be performed by the accurate focus control by the focus control circuit 71.
さらに本発明の第 5の実施形態について説明する。 図 1 0は本発明に よる撮像装置の構成を示すプロック図である。 同図における 1 3はモー ド切り替えスィッチであり、 これによつて、 ノーマルモー ド、 文字モー ド、 高ダイナミ ック レンジモー ド、 特殊効果モ一ドの各モー ドの切り替 え選択が可能である。 また、 1 4は光学ローパスフィルタ、 1 5は偏光 板である。 なお光学ローパスフ ィ ルタ 1 4は、 図 1、 6、 7、 9のプロ ック図では先に説明した実施形態の動作に直接関係しないので省略して ある。 他の部分は図 1 の実施形態で示したものと同一である。 なお他の 部分を図 6、 7、 9のようなにしても良い。 次にモー ドの切り替えにつ いて説明する。 まず、 モー ド切り替えスィッチによりモー ドの選択を行 う。 モー ド切り替えスィ ツチは通常のダイヤル式のスィ ツチとしても良 いし、 その他のプッシュ式のスィッチでも良い。 モー ド選択を行った後 の操作は、 既に説明した実施形態の場合と同様であるが、 撮像装置が行 う信号処理の内容は、 選択されたモー ドによって異なる。 モー ド切り替 えスィ ッチでノーマルモー ドを選んだ場合には、 既に説明した実施形態 と同様の動作で通常の信号処理を行なう。 Further, a fifth embodiment of the present invention will be described. FIG. 10 is a block diagram showing a configuration of an imaging device according to the present invention. In the figure, reference numeral 13 denotes a mode switching switch, which allows selection of switching among normal mode, character mode, high dynamic range mode, and special effect mode. . 14 is an optical low-pass filter, 15 is polarized light It is a board. The optical low-pass filter 14 is omitted in the block diagrams of FIGS. 1, 6, 7, and 9 because it does not directly relate to the operation of the embodiment described above. Other parts are the same as those shown in the embodiment of FIG. The other parts may be as shown in FIGS. Next, the mode switching will be described. First, the mode is selected by the mode switch. The mode switching switch may be a normal dial type switch or another push type switch. The operation after the mode selection is performed is the same as that of the embodiment described above, but the content of the signal processing performed by the imaging device differs depending on the selected mode. When the normal mode is selected by the mode switching switch, normal signal processing is performed by the same operation as that of the embodiment described above.
次にモー ド切り替えスィ ツチで文字モ一 ドを選んだ場合について説明 する。 文字モー ドは、 文書等の白黒の画像を高い解像度で撮影するため のモー ドである。 文字モー ドにおける信号処理について説明する。 文字 モー ドでは、 解像度を向上させるため、 輝度信号を上述した ( 7 ) 式で はなく以下の ( 8 ) 式に基づいて生成する。  Next, the case in which the character mode is selected by the mode switching switch will be described. The character mode is a mode for capturing a monochrome image of a document or the like at a high resolution. The signal processing in the character mode will be described. In the character mode, in order to improve the resolution, the luminance signal is generated based on the following equation (8) instead of the above-mentioned equation (7).
Y = K r - R + K g - G + K b - B ( 8 )  Y = Kr-R + Kg-G + Kb-B (8)
ここで、 ( 8 ) 式の係数 K r、 K g、 K bは I由 ί素 R, G, Βを 1画面積 分した値を I r、 I g、 l b として、 K r、 K g、 K bが各々 I r、 I g、 I bに半比例するように決めればよい。 すなわち、 K r = αノ I r、 K g = / I g、 K b = a / I bである。 但し αは比例^数である。 この ように輝度信号を生成することによって、 文書等の白黒の被写体を撮像 した場合に起こる R、 G、 Bの各画素の信号量のばらつきをなくすこと ができ、 色フ ィル夕が配列されていない白黒の C C Dで撮像したときの 映像信号と等価なものが得られるので、 色フ ィ ル夕の感度の違いに基づ く偽信号 (モアレ) が発生せず、 解像度を向 ヒさせることができる。 上 記の係数を設定する処理は画像制御回路內のソフ 卜ウェア処理によって 容易に行う こ とができる。 Here, the coefficients K r, K g, and K b in equation (8) are K r, K g, K r, K g, K b may be determined so as to be respectively proportional to Ir, Ig, and Ib. That is, Kr = α, Ir, Kg = / Ig, and Kb = a / Ib. Where α is a proportional number. By generating a luminance signal in this way, it is possible to eliminate variations in the signal amounts of the R, G, and B pixels that occur when a black-and-white subject such as a document is imaged, and the color filters are arranged. A signal equivalent to a video signal obtained when an image is captured by a black and white CCD that does not have a false signal (moire) based on the difference in sensitivity between color filters is not generated, and the resolution is improved. Can be. Up The process of setting the above coefficients can be easily performed by the software process of the image control circuit II.
さ らに、 文字モー ドでは、 輝度信号の生成のみを行い、 色信 -の生成 は行わないようにしても良い。 この場合には、 文字モー ド選択時に光学 口一パスフィルタの効采を除去するよう にすればよ く 、 これによつて解 像度は更に向上する。 光学口一パスフ ィ ル夕の効果を除去するには、 偏 光板 1 5を用いれば良い。 この場合、 偏光板の角度を調整するこ とによ り人射光を通したり、 通さなかつたり して、 口一パスフィルタを有効に したり、 無効にしたりするこ とができる。 なお、 これについては、 例え ば、 特許公開公報 5 8— 1 4 1 1 6に述べられている。 また、 光学ロー パスフ ィルタの効果を除去するには、 偏光板を用いずに、 モー ド切り替 えスィ ッチと連動させて、 文字モー ドが選択されたときに機械的に光学 口一パスフィルタを光路から取り除く ようにしても良い。  Further, in the character mode, only the luminance signal may be generated, and the chrominance signal may not be generated. In this case, the effect of the optical aperture one-pass filter may be removed when the character mode is selected, so that the resolution is further improved. In order to eliminate the effect of the optical aperture-one-pass filter, a polarizer 15 may be used. In this case, by adjusting the angle of the polarizing plate, it is possible to enable or disable the one-pass filter by allowing or not allowing human light to pass through. This is described in, for example, Japanese Patent Publication No. 58-141 16. Also, to eliminate the effects of the optical low-pass filter, a polarizer is not used, and the optical one-pass filter is mechanically operated when the character mode is selected by interlocking with the mode switching switch. May be removed from the optical path.
C C Dの色フィルタ配列を図 2 ( a ) に示したものとするときの光学 ローパスフィルタの特性を図 1 1 に示す。 同図において f sは C C Dに おける画-素のサンプリ ング周波数である。 従って f s / 3は、 3画素を 1周期とする空間周波数である。 この場合の光学口一パスフィルタは、 f sノ 3に トラ ップが入る特性を有しており、 色信号にモアレを発生さ せる周波数成分 f s Z 3を予め除去してモア レをなくすものであるが、 この場合 s Z 3付近の解像度は f s Z 3以外の解像度に比べて低下し てしまう。 ( 8 ) 式のような処理によつて輝度信号を生成すれば f s / 3にモアレが生じないので、 このような光学口一パスフィルタは不要と なる。 この光学ローパスフィルタを除去すれば f s / 3付近のレスボン スが大幅に改善されるので、 解像度を向上させることができる。  Fig. 11 shows the characteristics of the optical low-pass filter when the C C D color filter array is as shown in Fig. 2 (a). In the figure, fs is the pixel sampling frequency in CCD. Therefore, f s / 3 is a spatial frequency having three pixels as one cycle. The optical aperture one-pass filter in this case has a characteristic that traps enter fs 3 and eliminates the moiré by removing in advance the frequency component fs Z 3 that causes moire in the color signal. However, in this case, the resolution near s Z 3 is lower than the resolution other than fs Z 3. If a luminance signal is generated by the processing as in equation (8), moire does not occur in f s / 3, and thus such an optical aperture one-pass filter becomes unnecessary. If this optical low-pass filter is removed, the response near f s / 3 is greatly improved, and the resolution can be improved.
なお、 ( 8 ) 式を用いて輝度信号を生成するのは、 原色フィルタを備 えた C C Dを用いる場合であり、 例えば図 2 ( c ) に示した補色フィ ル 夕を備えた C C Dを川いる場合には、 次式となる。 Note that generating a luminance signal using equation (8) is for a case where a CCD equipped with a primary color filter is used. For example, the complementary color filter shown in Fig. 2 (c) is used. If there is a river with a evening CCD, the following formula is used.
Y = Km - M g + K g - G + K c ' C y + K y ' Y e ( 9 ) 各画素倍号にかかる係数 Km、 K g、 K c、 K yは、 原色フィルタを備 えた C C Dを用いる場合と同様に各西素 号の積分値に半比例するよう に係数の比率を決めればよい。  Y = Km-Mg + Kg-G + Kc'Cy + Ky'Ye (9) Coefficients Km, Kg, Kc, and Ky applied to each pixel multiplication have primary color filters As in the case of using a CCD, the ratio of the coefficients may be determined so as to be half proportional to the integral value of each west element.
次にモー ド切り替えスィ ツチで特殊効果モ一 ドを選んだ場合について 説明する。 特殊効果モー ドでは、 両面内の任窓の場所で口一パスフ ィ ル 夕の特性を切り替えることができる。 例えば画面の中央は通常のフィル 夕特性とし、 画面の中央周辺は別のフ ィ ルタ特性として、 画面の中央周 辺をぼかすことができる。 このような処理は、 図 5に示した信- ¾·処理の フローにおける S 1 1 0のフィルタ リ ングにおいて行なう。 口一パスフ ィルタの特性を変更する領域は任意に設定することができる。 これにつ いては画像制御回路内で座標軸に関するプログラムを書き換えることに よつて行う 、 操作に関しては撮像装置からのボタンによる入力あるい はパーソナルコンピュータからのマウスやキーボー ドによる入力で行う( 従ってローパスフィルタの特性を変更する領域を固定した処理や、 画面 の中から特定の被写体、 例えば人物を抽出し、 その背景をぼかすような 処理を行える。 図 1 2に特殊効果モー ドにより特殊効果を施した映像の 様子を示す。 ( a ) が特殊効果を施す前の映像であり、 ( b ) が特殊効 果を施した映像である。 ( b ) では画面中央の人物には通常のフィルタ リ ングを行い、 人物の周辺部分には口一パスフィル夕を強くかけたフィ ルタ リ ングを行って、 人物の周辺部分をぼかしている。 このような特殊 効果モ一 ドでは人物の周辺部分に対して被写界深度を浅く して撮像した 場合と同様の効果が得られる。 上記のような特定の領域でフイルクの特 性を変更する処理は画像制御回路内のソフ トウエア処理によって容易に 行うことができる。 さらに本発明の第 6の実施形態について説明する。 図 1 0は本発明に よる撮像装置の構成を示すプロ ッ ク図である。 同図における 1 6は設定 変更端子である。 また、 図 1 3は本発明による撮像装置の外観を示す図 である。 同図において 1 0 0は撮像装置であり、 1 はレンズ、 1 1 は操 作スィ ッチ、 1 6は設定変更端子、 1 7は光学ファイ ンダーである。 図 1 3に示すように設定変更端子 1 6にパーソナルコンピュータ等の設定 変更装置 1 0 1 を接続するこ とによって、 以下のような使用形態をとる ことができる。 Next, the case where the special effect mode is selected by the mode switching switch will be described. In the special effects mode, you can switch the characteristics of the mouth-to-pass filter at the window on both sides. For example, the center of the screen has a normal filter characteristic, and the periphery of the center of the screen has another filter characteristic, so that the periphery of the center of the screen can be blurred. Such processing is performed in the filtering of S110 in the signal processing flow shown in FIG. The area for changing the characteristics of the mouth-to-mouth filter can be set arbitrarily. This is performed by rewriting the program relating to the coordinate axes in the image control circuit. The operation is performed by inputting from a button from an imaging device or input from a personal computer using a mouse or a keyboard (accordingly, a low-pass filter). The process of fixing the area to change the characteristics of the image and the process of extracting a specific subject such as a person from the screen and blurring the background can be performed. (A) shows the image before the special effect is applied, (b) shows the image with the special effect applied, and (b) uses the ordinary filtering for the person in the center of the screen. In this case, the surrounding area of the person is subjected to filtering with a strong mouth-to-pass fill, and the surrounding area of the person is blurred. In this mode, the same effect can be obtained as when the image is taken with a shallower depth of field relative to the surrounding area of the person. It can be easily done by software processing inside. Further, a sixth embodiment of the present invention will be described. FIG. 10 is a block diagram showing a configuration of an imaging device according to the present invention. 16 in the figure is a setting change terminal. FIG. 13 is a diagram showing the appearance of an imaging device according to the present invention. In the figure, 100 is an imaging device, 1 is a lens, 11 is an operation switch, 16 is a setting change terminal, and 17 is an optical finder. By connecting a setting change device 101 such as a personal computer to the setting change terminal 16 as shown in FIG. 13, the following usage form can be obtained.
第 1 の使用形態はモー ドの切り替えである。 この使用形態では先の実 施形態で説明したのと同様にして通常の撮影を行う ノーマルモー ド、 文 字モー ドあるいは特殊効果モー ド等のどれかを選択し切り替える。 しか し先の実施形態の場合はモー ドを増やすのに伴いスィ ッチなどモー ドを 切り替えるための余分な構成が必要となってしまい、 そのための操作も 煩雑になってしまう。 そこで、 本使用形態では、 設定変更端子 1 6に設 定変更装置を接続し、 設定変更装置からの入力で、 画像制御回路で行う 所定の出力フォーマツ 卜に変換するまでの処理過程を変更して、 モー ド の切り替えを行う。 なお上記の入力の際は、 設定変更装置と撮像装置の 通信用ソフ トウヱァを用いて、 撮像装置内に E E P R O M等の書き換え 可能なメモリを設け、 この中に記憶されるモー ド設定用のパラメ一タを 変更する。 このようにしてモー ドを予め切り替えるこ とによって、 撮影 時には設定された特定のモー ドの処理が行われるため、 スイ ツチなどモ ― ドを切り替えるための余分な構成を必要としない分、 撮像装置を小形 化でき、 また、 ユーザーが特定のモー ド (例えば文字モー ド) を使用す るだけでよい場合には撮影時の装置本体での操作も簡単に行う こ とがで きる。 後者については、 例えば設定変更装置で文字モー ドに切り替えて おけば、 撮像の際に文字モー ドに切り替えなおすこ となく撮像装置の操 作スィ ツチを操作するだけで文字モー ドの撮影が自動的に行われる。 第 2の使用形態は新モー ドの設定である。 通常撮像装置を使用してい ると、 ユーザーは自分独自の映像を作りたい場合が多々ある。 そこで、 この使用形態ではユーザーが好みの画質に調整した専用の新しいモー ド を Pi由に設定できるよう にした。 これを撮像装 ¾本休で行おう とすると 新しいモー ドを設定するための余分な構成が必要となってしまい、 その ための操作も烦雑となってしまう。 そこで、 本使用形態でも、 設定変更 端子 1 6に設定変更装置を接続し、 設定変更装置からの入力で、 I面像制 御问路で行う所定の出カフォ一マツ 卜に変換するまでの処理過程を変更 して、 新たなモー ドの設定を行う。 なお上記の入力の際は、 設定変更装 置と撮像装置の通信用ソフ トウエアを用いて、 撮像装置內に E E P R 0 M等の書き換え可能なメモリを設け、 この中に記憶される新たなモー ド 設定用のパラメータ、 具体的には画質制御に関する明るさ、 鮮鋭度、 色 の飽和度、 色相、 ホワイ トバラ ンス等のパラメ一夕を変更する。 このよ うにして新たなモー ドを予め設定するこ とによって、 撮影時には設定さ れた専用のモー ドの処理が行われるため、 スイ ツチなど新しいモー ドを 設定したり、 上述した各モー ドとの切り替えを行う ための余分な構成を 必要としない分、 攆像装置を小形化でき、 また、 撮影時の装置本体での 操作も簡単に行う こ とができる。 後者については、 例えば設定変更装置 で新モー ドを設定しておけば、 撮像の際に新モー ドをわざわざ設定した り、 上述した各モー ドからの切り替えを行ったりする必要もなく 、 撮像 装置の操作スィ ツチを操作するだけで専用のモー ドの撮影が自動的に行 われる。 また、 いったん設定した専用のモー ドについての情報はパーソ ナルコンピュータ等の設定変更装置で保存するこ ともでき便利である。 第 3の使用形態はバ一ジョ ンアップである。 撮像装置の性能、 具体的 には画質、 処理速度などが向上したり、 撮像装置の機能、 具体的には新 たな撮影モー ドなどが開発されるのに伴い、 ユーザ一がソフ トウヱァの みを変更してバージョ ンアップをするこ とができるようにした。 本使用 形態でも、 設定変更端子 1 6に設定変更装置を接続し、 設定変更装 Sか らの入力により画像制御回路内で行うカメ ラ処理あるいは画像圧縮処现 のバージョ ンアップを行う。 なお、 この場合は図 3に示した R〇 M 3 3 の代わりにフラッ シュメモリ等の書き換え可能なメモリが用いられる。 そして上 ^人力は、 設定変更装置、 設定変更装置側のアプリケーシ 3 ン ソフ 卜及び撮像装置の通信用ソフ トウヱァによって行われる。 ユーザ一 はアプリケーショ ンソフ 卜の指示に従つて画面上でマウスやキーボ一 ド による操作をすればよ く 、 これにより上記書き換え可能なメモリ内にバ —ジョ ンアップしたカメ ラ処理あるいは両像圧縮処理を実行するための プログラムが書き込まれる。 The first mode of use is mode switching. In this use mode, a normal mode, a character mode, a special effect mode, or the like for performing normal shooting is selected and switched in the same manner as described in the previous embodiment. However, in the case of the first embodiment, an extra configuration for switching the mode such as a switch is required as the mode is increased, and the operation for that is also complicated. Therefore, in this use mode, a setting change device is connected to the setting change terminal 16, and the processing from input from the setting change device to conversion into a predetermined output format performed by the image control circuit is changed. Switch the mode. At the time of the above input, a rewritable memory such as an EEPROM is provided in the imaging device using a communication software of the setting change device and the imaging device, and the mode setting parameters stored therein are provided. Change the data. By switching the mode in advance in this way, a specific mode set at the time of photographing is performed, so that the imaging device does not require an extra configuration for switching the mode such as a switch. In addition, if the user only needs to use a specific mode (for example, character mode), the user can easily perform operations on the device itself during shooting. For the latter, for example, if the setting change device is used to switch to the character mode, the imaging device can be operated without switching to the character mode during imaging. Character mode shooting is automatically performed simply by operating the operation switch. The second mode of use is the setting of a new mode. When using an imaging device, users often want to create their own images. Therefore, in this mode of use, the user can set a new dedicated mode adjusted to the desired image quality by Pi. If this is to be done during the main operation of the imaging device, an extra configuration for setting a new mode is required, and the operation for that is also complicated. Therefore, in this usage mode as well, a setting change device is connected to the setting change terminal 16 and the processing from input from the setting change device to conversion to a predetermined output format performed by the I-plane image control circuit. Change the process and set a new mode. At the time of the above input, a rewritable memory such as EEPR0M is provided in the imaging device を using the setting change device and the communication software of the imaging device, and the new mode stored therein is provided. The setting parameters, specifically, parameters such as brightness, sharpness, color saturation, hue, and white balance related to image quality control are changed. By setting a new mode in advance in this way, the dedicated mode that has been set is performed at the time of shooting, so that a new mode such as a switch can be set, and each mode described above can be set. Since an extra configuration for switching between the two is not required, the imaging device can be downsized, and the operation on the device main body at the time of shooting can be easily performed. In the latter case, for example, if the new mode is set by the setting change device, it is not necessary to set the new mode at the time of imaging or to switch from each mode described above. By simply operating the operation switch, shooting in the dedicated mode is automatically performed. Also, the information about the dedicated mode once set can be conveniently stored in a setting change device such as a personal computer. The third mode of use is version-up. Improving the performance of imaging devices, specifically image quality and processing speed, and improving the functions of imaging devices, specifically new With the development of new shooting modes, users can change the software only and upgrade the version. Also in this usage mode, a setting change device is connected to the setting change terminal 16 and the version of camera processing or image compression processing performed in the image control circuit is performed by input from the setting change device S. In this case, a rewritable memory such as a flash memory is used instead of R〇M33 shown in FIG. The above ^ manpower, setting changing device is performed by the communication software Touwea of Apurikeshi 3 down software Bok and imaging device setting change apparatus. The user only has to operate the mouse or keyboard on the screen in accordance with the instructions of the application software, and the camera processing or the image compression processing that has been upgraded in the rewritable memory can be performed. A program to execute is written.
なお、 別の実施形態として、 撮像装置をマイコン部分全体を交換でき るものと し、 性能の向上した、 あるいは新たな機能のついたマイコンと 交換してバージョ ンアップを行っても良い。 これはマイコンで全ての処 理を行うが故に初めて可能となるこ とである。  As another embodiment, the imaging device may be configured so that the entire microcomputer part can be replaced, and the imaging device may be replaced with a microcomputer having improved performance or a new function to perform version up. This is possible for the first time because all processing is performed by the microcomputer.
バージョ ンァップを上述のようにソフ トウヱァによつて行おう とハ一 ドウヱァによって行おう と変更されるのはマイコンに関する部分に限ら れるのでそれ以外の部分には影響を与えることなく、 バージョ ンアップ のための操作もソフ トウヱァではパーソナルコンピュー夕の画面上での マウス、 キーボー ド等での操作、 ハ一 ドウヱァではマイコンの取り替え だけであり、 従来からの D S Pや L S I を取り替えるより も他の部分に 影響を与えるこ となく 、 簡単に行える。  When the version is updated by the software or by the hardware as described above, only the part related to the microcomputer is changed, so the other parts are not affected and the version is updated. The operation of the software is also the operation of the mouse and keyboard on the screen of the personal computer in the software, and the operation of the hardware is only replacement of the microcomputer, which affects other parts than replacing the conventional DSP or LSI. It can be done easily without giving
なお、 上記の設定変更端子をコンピュータと接続するためのィ ンター フエースと共通化するこ とも可能である。 産業上の利用可能性 The above setting change terminal can be shared with an interface for connecting to a computer. Industrial applicability
本発明の撮像装置は信 処理を全てソフ トウエアによって行うので処 理の ^由度が高い。 このためカメラ D S Pなどの専用のハ ー ドウエアは 不要となり低コス ト化できる。 また信号処理の内容を装置の構成を変え ることなく変更できる。  The imaging apparatus of the present invention performs all signal processing by software, and therefore has a high degree of processing freedom. For this reason, dedicated hardware such as a camera DSP is not required, and the cost can be reduced. Also, the content of the signal processing can be changed without changing the configuration of the device.
後者については具体的には回路規模を増大せずに雨 Kや機能を高める ことができる。  For the latter, it is possible to increase the rain K and function without increasing the circuit scale.
例えば、 文字モー ドで撮影でき、 これによつて白黒の両像を高い解像 度で撮影することができる。  For example, it can be photographed in the character mode, so that both black and white images can be photographed at a high resolution.
また特殊効果モー ドで撮影でき、 これによつて画面内の任意の領域を 強調して撮影することができる。  In addition, shooting can be performed in the special effect mode, so that any area in the screen can be emphasized when shooting.
さらに具体的には画質や機能は外部機器から設定変更端子への入力に よって設定することができる。  More specifically, the image quality and functions can be set by input from an external device to a setting change terminal.
例えば、 撮影モー ドを切り替えることができる。 これにより、 モー ド を切り替えるための余分な構成は不要となるため、 撮像装置を小型化で きる。 また撮影時には予め切り替えた特定のモー ドの処理が行われるた め装置本体での操作は簡単にすむ。  For example, the shooting mode can be switched. This eliminates the need for an extra configuration for switching the mode, and allows the imaging device to be downsized. In addition, the specific mode that has been switched in advance is performed at the time of shooting, so operation on the device body is simple.
また、 新たな撮影モー ドを設定することができる。 これにより新たな モー ドを設定したり、 別の撮影モー ドとの切り替えを行うための余分な 構成は不要となるため、 撮像装置を小型化できる。 また撮影時には予め 設定した専用のモー ドの処理が行われるため装置本体での操作は簡単に すむ。  Also, a new shooting mode can be set. This eliminates the need for an extra configuration for setting a new mode or switching to another shooting mode, and thus allows the imaging apparatus to be downsized. In addition, the operation of the device itself is easy because the dedicated mode processing set in advance is performed during shooting.
また、 カメラ処理あるいは画像圧縮処理のバージョ ンアップをするこ とができる。 これにより、 ソフ トの開発に伴い、 撮像装置の処理レベル を随時上げることができる。 例えば今後の高画素静止両ゃ動画処理に対 応できる。 なお、 力メ ラ処理あるいは画像圧縮処理のバ一ジョ ンアツプは両像制 御回路の取り替えによっても行える。 これにより、 マイコン等の開発に 伴い、 撮像装置の処理レベルを随時上げるこ とができる。 例えば今後の 高画素静止画や動画処理に対応できる。 In addition, camera processing or image compression processing can be upgraded. As a result, the processing level of the imaging device can be raised as needed with the development of the software. For example, it can support high pixel still and moving image processing in the future. It should be noted that the version up of force camera processing or image compression processing can also be performed by replacing both image control circuits. As a result, the processing level of the imaging device can be raised as needed with the development of microcomputers and the like. For example, it can handle high pixel still images and moving image processing in the future.
上述のバージョ ンアツプは画像制御回路以外の部分には影響がなく行 える。 またバージョ ンアツプの操作もパ一ソナルコンピュータでのマウ スゃキーボー ドによる操作及びマイコン自体の取り替えだけで済み簡 1 ί である。  The above version up can be performed without affecting parts other than the image control circuit. Also, the version up operation is as simple as operating the mouse and keyboard on a personal computer and replacing the microcomputer itself.

Claims

請求の範囲 l . 光学系によって結像された光 -号をアナログ画像借号に変換して出 力する光電変換手段と、 Claims l. Photoelectric conversion means for converting the light formed by the optical system into an analog image signal and outputting the analog image signal,
前記光^変換手段から出力されたアナログ画像信 を第 1 のデジタル 画像信号に変換して出力する A Z D変換手段と、  AZD conversion means for converting the analog image signal output from the optical conversion means into a first digital image signal and outputting the first digital image signal;
幽'像信号を所定の出カフォーマッ 卜に変換するカメ ラ処理及び画像圧 縮処理を行うための演算の手順を ¾すプログラムを保持する第 2のメ モ リ手段と、  Second memory means for holding a program for performing a calculation process for performing a camera process for converting a ghost image signal into a predetermined output format and an image compression process;
前記 A / D変換手段から出力された第 1 のデジタル両像信号に前記力 メラ処理及び前記画像圧縮処现を行うための演算を施し第 2のデジタル 画像信 を生成する演算手段と、  Calculating means for performing an operation for performing the image processing and the image compression processing on the first digital image signals output from the A / D conversion means to generate a second digital image signal;
前記演算手段で^成された第 2のデジタル画像信号を外部に出力する イ ンターフエース手段と、  Interface means for outputting the second digital image signal generated by the arithmetic means to the outside,
前記第 1 のデジタル画像信号に前記第 2のメ モ リ手段に保持されたプ 口グラムに基づく 演算を施し前記第 2のデジタル画像信^を/ 1成するよ うに前記演算手段を制御し、 前記第 2のデジタル画像信号を外部へ出力 するよう に前記ィ ンターフェ一ス手段を制御する制御手段を備えたこ と を特徴とする撮像装置。  Performing an arithmetic operation on the first digital image signal based on the program held in the second memory means, and controlling the arithmetic means so as to form the second digital image signal by one; An imaging apparatus, comprising: control means for controlling the interface means so as to output the second digital image signal to the outside.
2 . 前記撮像装置は、 前記 A Z D変換手段から出力された第 1 のデジ夕 ル画像信号を保持する第 1 のメ モリ手段と、 2. The image pickup apparatus includes: first memory means for holding a first digital image signal output from the AZD conversion means;
前記演算手段で生成された第 2のデジタル i 像信号を保持する第 3の メ モ リ手段をさ らに備えるこ とを特徴とする請求項 1 に記載の撮像装置 < The imaging device according to claim 1, further comprising a third memory unit that holds a second digital i image signal generated by the arithmetic unit.
3 . 前記第 3のメモリ ^段が前記第 1 のメモリ手段にもなつているこ と を特徴とする請求項 2に記載の撮像装置。 3. The imaging device according to claim 2, wherein the third memory stage also serves as the first memory means.
4 . 前記演算手段と前記制御手段とが単一の染積回路で成り立つている ことを特徴とする請求項 1に記載の撮像装置。 4. The arithmetic means and the control means are constituted by a single dyeing circuit 2. The imaging device according to claim 1, wherein:
5 . 前記演算手段と前記制御手段と前記第 2 のメ モ リ手段とが —の集 積回路で成り立つていることを特徴とする請求項 1 に記載の撮像装置。 5. The imaging apparatus according to claim 1, wherein the arithmetic means, the control means, and the second memory means are constituted by a negative integration circuit.
6 . 前記撮像装置は、 前記第 2のデジタル画像信号を複数記録するため の記録媒体をさらに備え、 前記制御手段は、 該第 2のデジタル画像 -号 の該¾録媒体への齊き込み及び該記録媒体から外部への読みだしを制御 することを特徴とする請求項 1に記載の撮像装置。 6. The imaging apparatus further includes a recording medium for recording a plurality of the second digital image signals, and the control unit controls the recording of the second digital image signal into the recording medium. 2. The imaging device according to claim 1, wherein reading from the recording medium to the outside is controlled.
7 . 前記カメラ処理はフィルタ処理を含むこ とを特徴とする請求項 1 に 記載の撮像装置。  7. The imaging apparatus according to claim 1, wherein the camera processing includes a filter processing.
8 . 前記光電変換手段は R (赤) 、 G (緑) 、 B (青) の 3種類の画素 を有し、 前記第 1のデジタル画像信号は該 3種類の両素に対応する R、 G、 Bの信号を含み、 前記第 2のデジタル画像信号は R、 G、 Bの信号 を含むか、 または輝度信号 Y、 色差信号 C r 、 C bを含むことを特徴と する請求項 1 に記載の撮像装置。  8. The photoelectric conversion means has three kinds of pixels of R (red), G (green), and B (blue), and the first digital image signal has R, G corresponding to the three kinds of elements. And the second digital image signal includes R, G, and B signals, or includes a luminance signal Y and a chrominance signal Cr, Cb. Imaging device.
9 . 前記光電変換手段は M g (赤) 、 G (緑) 、 C y (シアン) 、 Y e (黄色) の 4種類の画素を有し、 前記第 1のデジタル画像信号は該 4種 類の画素に対応する M g、 G、 C y、 Y eの信号を含み、 前記第 2のデ ジタル画像信号は R、 G、 Bの信号を含むか、 または輝度信号 Y、 色差 信号 C r 、 C bを含むことを特徴とする請求項 1 に記載の撮像装置。 9. The photoelectric conversion means has four kinds of pixels of Mg (red), G (green), Cy (cyan), and Ye (yellow), and the first digital image signal is the four kinds of pixels. The second digital image signal includes signals of R, G, and B, or the luminance signal Y, the color difference signal C r, and M g, G, C y, and Y e corresponding to the pixels of The imaging device according to claim 1, further comprising Cb.
1 0 . 光学系によって結像された光信号をアナログ画像信号に変換して 出力する光電変換手段と、 10. A photoelectric conversion unit that converts an optical signal formed by the optical system into an analog image signal and outputs the analog image signal.
前記光電変換手段から出力されたアナログ画像信号を第 1のデジ夕ル 画像信号に変換して出力する A Z D変換手段と、  AZD conversion means for converting the analog image signal output from the photoelectric conversion means to a first digital image signal and outputting the first digital image signal,
画像信号を所定の出カフォ一マツ トに変換する力メラ処理及び画像圧 縮処理を行うための演算の手順を表すプログラムを保持する第 2のメ モ リ手段と、 前 ¾ A D変換手段から出力された第 1 のデジタル阿像信号に前記力 メ ラ処理及び前記幽—像圧縮処理を行うための演算を 1 秒あたり 6 0 0万 回以上施し第 2のデジタル画像信号を^成する演算手段と、 Second memory means for holding a program representing a calculation procedure for performing image processing and image compression processing for converting an image signal into a predetermined output format; Previous 演算 The first digital image signal output from the AD conversion means is subjected to at least 600,000 times per second to perform the force camera processing and the ghost image compression processing, and the second digital image is processed. Arithmetic means for generating a signal;
前記演算手段で生成された第 2のデジタル画像信号を外部に出力する イ ンタ一フヱ一ス手段と、  Interface means for outputting the second digital image signal generated by the arithmetic means to the outside,
前記第 1 のデジタル画像信号に前記第 2のメモリ手段に保持されたプ ログラムに基づく演算を 1秒あたり 6 0 0万回以上施し前記第 2のデジ 夕ル画像信号を生成するよう に前記演算手段を制御し、 前 ¾第 2のデジ 夕ル ί ί像信 ^を外部へ出力するよう に前記ィ ンターフ ェ一ス手段を制御 する制御手段を備えたことを特徴とする撖像装置。  The first digital image signal is subjected to an operation based on a program held in the second memory means at least 600,000 times per second to generate the second digital image signal. An imaging apparatus comprising: control means for controlling the interface means so as to control the means and output the second digital image signal to the outside.
1 1 . 前記カメ ラ処理及び前記画像圧縮処理を行うための演算は 1 秒以 內で実施されるこ とを特徴とする請求項 1 0に記載の撮像装置。  11. The imaging apparatus according to claim 10, wherein the calculation for performing the camera processing and the image compression processing is performed in one second or less.
1 2 . 光学系によって結像された光信号をアナログ画像信号に変換して 出力する光 1変換手段と、  1 2. Light 1 conversion means for converting an optical signal formed by the optical system into an analog image signal and outputting the analog image signal;
前 光電変換手段から出力されたアナログ画像信 -を第 1 のデジタル 画像信号に変換して出力する A Z D変換手段と、  AZD conversion means for converting an analog image signal output from the photoelectric conversion means into a first digital image signal and outputting the first digital image signal;
画像信^を所定の出カフォ一マツ トに変換する力メ ラ処理及び両像圧 縮処理を行うための演算の手順を表すプログラムを保持する第 2のメ モ リ手段と、  Second memory means for holding a program representing a procedure of an operation for performing a force-measurement process for converting an image signal into a predetermined output format and a dual-image compression process;
前記 A / D変換手段から出力された第 1 のデジタル画像信号に前記力 メ ラ処理及び前記画像圧縮処理を行うための演算を施し第 2のデジタル 画像信号を生成する演算手段と、  An arithmetic unit for performing an operation for performing the force camera process and the image compression process on the first digital image signal output from the A / D conversion unit to generate a second digital image signal;
前記演算手段で生成された第 2のデジタル画像信号を外部に出力する イ ンターフヱ一ス^段と、  An interface for outputting the second digital image signal generated by the arithmetic means to the outside,
前記第 1 のデジタル両像信号に前記第 2のメモ リ手段に保持されたプ ログラムに基づく演算を施し前記第 2のデジタル画像信号を生成するよ う に前記演算手段を制御し、 前記第 2のデジタル画像信号を外部へ出力 するよう に前記ィ ンターフェース手段を制御する制御手段と、 The first digital dual image signal is subjected to an operation based on a program held in the second memory means to generate the second digital image signal. Control means for controlling the arithmetic means and controlling the interface means so as to output the second digital image signal to the outside,
前 制御手段を所定のタイ ミ ングで動作させ、 該タイ ミ ングに同期し て前記光電変換手段及び前記 A Z D変換手段を動作させるための基準ク ロ ッ クを発生する発振回路を備えたこ とを特徴とする撮像装置。  An oscillator circuit for operating the control means at a predetermined timing and generating a reference clock for operating the photoelectric conversion means and the AZD conversion means in synchronization with the timing. Characteristic imaging device.
1 3 . 光学系によって結像された光信号をアナログ画像信号に変換して 出力する光電変換手段と、  13. Photoelectric conversion means for converting the optical signal formed by the optical system into an analog image signal and outputting the analog image signal;
前記光 ¾変換手段から出力されたアナログ画像信号を第 1 のデジタル 画像信号に変換して出力する Aノ D変換手段と、  A / D conversion means for converting the analog image signal output from the light-to-light conversion means into a first digital image signal and outputting the first digital image signal;
画像信号を所定の出力フォーマツ 卜に変換するカメ ラ処理及び画-像圧 縮処理を行うための演算の手順を表すプログラムを保持する第 2のメモ リ手段と、  Second memory means for holding a program representing a procedure of an operation for performing a camera process for converting an image signal into a predetermined output format and an image-image compression process;
前記 A Z D変換手段から出力された第 1 のデジタル画像信号に前記力 メラ処理及び前記画像圧縮処理を行うための演算を施し第 2のデジタル 画像信号を生成する演算手段と、  An arithmetic unit for performing an operation for performing the image processing and the image compression process on the first digital image signal output from the AZD conversion unit and generating a second digital image signal;
前記演算手段で生成された第 2のデジタル画像信号を外部に出力する イ ンタ一フヱ一ス手段と、  Interface means for outputting the second digital image signal generated by the arithmetic means to the outside,
前記第 1 のデジタル画像信号に前記第 2のメモリ手段に保持されたプ ログラムに基づく演算を施し前記第 2のデジタル画像信号を生成するよ うに前記演算手段を制御し、 前記第 2のデジタル雨像信号を外部へ出力 するように前記イ ンタ一フユ一ス手段を制御する制御手段と、  Controlling the arithmetic means to generate the second digital image signal by performing an arithmetic operation on the first digital image signal based on a program held in the second memory means; Control means for controlling the interface means so as to output an image signal to the outside;
前記所定の出力フォーマツ 卜に変換するまでの過程を変更し、 白黒の 画像を高い解像度で撮影するための文字モー ドに切り換えるための文字 モー ド入力手段を備えたこ とを特徴とする撮像装置。  An image pickup apparatus, comprising: a character mode input means for changing a process up to the conversion to the predetermined output format and switching to a character mode for photographing a black and white image at a high resolution.
1 4 . 前記文字モー ド入力時には、 前記第 2のデジタル画像信号は Y信 号のみであることを特徴とする請求項 1 3に記載の撮像装置。 14. The imaging device according to claim 13, wherein, when the character mode is input, the second digital image signal is only a Y signal.
1 5 . 前記文字モー ド入力時には、 前;†d第 2のデジタル画像 号は R、 G、 B信号の信 ^量のばらつきがない 号であるこ とを特徴とする請求 1 3に記載の撮像装笸。 15. The imaging method according to claim 13, wherein, at the time of inputting the character mode, the second digital image signal has no variation in the signal amounts of R, G, and B signals. Equipment.
1 6 . 光学系によって結像された光信 ¾ "をアナログ両像^号に変換して 出力する光電変換手段と、  16. A photoelectric conversion means for converting the optical signal formed by the optical system into an analog image signal and outputting the signal.
前記光電変換手段から出力されたアナ口グ画像 号を第 1 のデジタル 画像信号に変換して出力する A / D変換手段と、  A / D conversion means for converting the analog image signal output from the photoelectric conversion means into a first digital image signal and outputting the first digital image signal,
画像信号を所定の出カフォーマツ トに変換する力メ ラ処理及び画像圧 縮処埋を うための演算の手順を表すプログラムを保持する第 2のメモ リ手段と、  Second memory means for holding a program representing a procedure of an operation for converting an image signal into a predetermined output format and for performing image compression and embedding;
前記 Aノ D変換手段から出力された第 1 のデジ夕ル画像信号に前;!己力 メ ラ処理及び前記画像圧縮処理.を行うための演算を施し第 2のデジ夕ル 画像信号を生成する演算手段と、  The first digital image signal output from the A / D conversion means is subjected to an operation for performing self-impression processing and the image compression processing to generate a second digital image signal. Computing means for performing
前記演算 ΐ段で生成された第 2のデジタル両像信号を外部に出力する イ ンタ一フエース手段と、  Interface means for outputting the second digital dual image signal generated in the operation step to the outside,
前記第 1 のデジタル画像信号に前記第 2のメモリ手段に保持されたプ 口グラムに基づく演算を施し前記第 2のデジタル画像信号を ^成するよ うに前記演算手段を制御し、 前記第 2のデジタル画像信号を外部へ出力 するように前記ィ ンタ一フエース手段を制御する制御手段と、  Performing an arithmetic operation on the first digital image signal based on a program stored in the second memory means, controlling the arithmetic means so as to generate the second digital image signal, and Control means for controlling the interface means so as to output a digital image signal to the outside;
前記所定の出力フォーマツ トに変換するまでの過程を変更し、 画面内 の任意の領域を強調して撮影するための特殊効果モー ドに切り換えるた めの特殊効果モー ド入力手段を備えたこ とを特徴とする撮像装置。  A special effect mode input means for changing a process up to the conversion to the predetermined output format and switching to a special effect mode for taking a picture by emphasizing an arbitrary area in the screen is provided. Characteristic imaging device.
1 7 . 前記特殊効果モー ド入力時には、 前記カメ ラ処理中に前記画面内 の任意の領域に応じてフィルタ特性が変化するこ とを特徴とする請求項 1 6 に記載の撮像装置。  17. The imaging device according to claim 16, wherein, at the time of inputting the special effect mode, a filter characteristic changes according to an arbitrary area in the screen during the camera processing.
1 8 . 光学系によって結像された光信号をアナログ画像信号に変換して 出力する光電変換手段と、 1 8. Convert the optical signal formed by the optical system into an analog image signal Photoelectric conversion means for outputting;
前記光電変換手段から出力されたアナログ画像 ^号を第 1 のデジタル 幽—像信号に変換して出力する A Z D変換手段と、  AZD conversion means for converting the analog image ^ output from the photoelectric conversion means into a first digital image signal and outputting the signal;
両像信^を所定の出カフォーマツ 卜に変換するカメ ラ処理及び幽—像圧 縮処理を行うための演算の手順を表すプログラムを保持する第 2のメモ リ 段と、  A second memory stage holding a program representing a procedure for performing a camera process for converting both image signals into a predetermined output format and a ghost image compression process;
前記 A Z D変換手段から出力された第 1 のデジ夕ル画像信号に前記力 メ ラ処理及び前記画像圧縮処理を行うための演算を施し第 2のデジ夕ル 画像信号を生成する演算手段と、  An arithmetic unit for performing an operation for performing the force camera process and the image compression process on the first digital image signal output from the AZD conversion unit to generate a second digital image signal;
前記演算^段で生成された第 2のデジタル画像^号を外部に出力する イ ンタ一フ 一ス手段と、  Interface means for outputting the second digital image ^ generated in the operation step to the outside,
前記第 1 のデジタル画像信号に前記第 2のメモリ手段に保持されたプ ログラムに基づく演算を施し前記第 2のデジタル画像信号を生成するよ うに前記演算手段を制御し、 前記第 2のデジタル画像信号を外部へ出力 するよう に前記ィ ン夕一フェース手段を制御する制御手段と、  Controlling the arithmetic means to generate the second digital image signal by performing an arithmetic operation on the first digital image signal based on a program stored in the second memory means; Control means for controlling the interface means so as to output a signal to the outside;
外部機器からの入力により前記所定の出カフォーマツ トに変換するま での過程を変更して撮影モー ドを切り替えるための設定変更端子を備え たこ とを特徴とする撮像装置。  An imaging apparatus comprising: a setting change terminal for changing a process of converting to a predetermined output format by an input from an external device to switch a shooting mode.
1 9 . 前記撮像装置は、 前記撮影モー ド固有のパラメータを記憶するた めの ¾き換え可能なメモリ手段をさらに備え、 該パラメータを書き換え るこ とによって該撮影モー ドを切り換えるこ とを特徴とする請求項 1 8 に 己載の撮像装置。  19. The imaging apparatus further includes a switchable memory means for storing parameters unique to the shooting mode, and switches the shooting mode by rewriting the parameters. The imaging device according to claim 18.
2 0 . 前記撮影モー ドの 1つは、 白黒の画像を高い解像度で撮影するた めの文字モー ドであるこ とを特徴とする請求¾ 1 8に記載の撮像装置。  20. The imaging apparatus according to claim 18, wherein one of the photographing modes is a character mode for photographing a black-and-white image at a high resolution.
2 1 . 前記撮影モー ドの 1つは、 画面内の任意の領域を強調して撮影す るための特殊効果モ一 ドであることを特徴とする請求項 1 8に記載の撮 像装置。 21. The photographing method according to claim 18, wherein one of the photographing modes is a special effect mode for photographing by emphasizing an arbitrary area in a screen. Imaging device.
2 2 . 光学系によって結像された光信号をアナログ兩像信^に変換して 出力する光霄変換手段と、  2 2. An optical signal converting means for converting the optical signal formed by the optical system into an analog dual image signal and outputting the signal;
前記光電変換手段から出力されたアナログ画像信号を第 1 のデジタル 【曙像信号に変換して出力する A / D変換手段と、  A / D conversion means for converting the analog image signal output from the photoelectric conversion means into a first digital signal
画像信 -を所定の出カフォーマツ トに変換する力メ ラ処理及び両像圧 縮処理を行うための演算の手順を表すプログラムを保持する第 2のメ モ リ手段と、  A second memory means for holding a program representing a procedure of an operation for performing a force camera process for converting an image signal into a predetermined output format and an image compression process;
m記 A / D変換手段から出力された第 1 のデジタル画像信号に前記力 メ ラ処理及び前記画像圧縮処理を行うための演算を施し第 2のデジタル 画像^号を生成する演算手段と、  (c) calculating means for performing an operation for performing the force camera processing and the image compression processing on the first digital image signal output from the A / D conversion means to generate a second digital image signal;
前記演算手段で生成された第 2のデジタル两像信号を外部に出力する イ ン夕一フヱ一ス手段と、  An interface means for outputting the second digital image signal generated by the arithmetic means to the outside;
前記第 1 のデジタル画像信号に前記第 2のメモリ T-段に保持されたプ ログラムに基づく演算を施し前記第 2のデジタル画像信号を生成するよ うに前記演算手段を制御し、 前記第 2のデジタル画像信号を外部へ出力 するように前記イ ンターフエース手段を制御する制御手段と、  Controlling the arithmetic means to generate the second digital image signal by performing an operation on the first digital image signal based on a program stored in the second memory T-stage; Control means for controlling the interface means so as to output a digital image signal to the outside;
外部機器からの入力により前記所定の出カフォーマツ 卜に変換するま での過程を変更して新たな撮影モー ドを設定するための設定変更端子を 備えたこ とを特徴とする撮像装置。  An image pickup apparatus, comprising: a setting change terminal for changing a process up to conversion to the predetermined output format by an input from an external device to set a new shooting mode.
2 3 . 前記撮像装置は、 前記新たな撮影モー ド固有のパラメータを記憶 するための書き換え可能なメモリ手段をさ らに備え、 該パラメータを書 き換えるこ とによって前記新たな撮影モー ドを設定するこ とを特徴とす る請求項 2 2に記載の撮像装置。  23. The imaging apparatus further includes a rewritable memory unit for storing parameters unique to the new shooting mode, and sets the new shooting mode by rewriting the parameters. The imaging device according to claim 22, wherein the imaging device is used.
2 4 . 前記新たな撮影モー ドは、 好みの画質で撮影するための撮影モー ドであるこ とを特徴とする請求項 2 2に記載の撮像装置。 24. The imaging apparatus according to claim 22, wherein the new shooting mode is a shooting mode for shooting with a desired image quality.
2 5 . 光学系によって結像された光 号をアナログ画像信号に変換して 出力する光電変換手段と、 25. photoelectric conversion means for converting the light image formed by the optical system into an analog image signal and outputting the analog image signal;
前記光 ¾変換手段から出力されたアナ口グ画像信号を第 1 のデジタル 画像信号に変換して出力する A / D変換手段と、  A / D conversion means for converting the analog image signal output from the light-to-light conversion means into a first digital image signal and outputting the first digital image signal;
凼像信号を所定の出力フ ォーマツ 卜に変換するカメ ラ処理及び画像圧 縮処理を行うための演算の手順を表すプログラムを保持する第 2のメモ リ手段と、  第 second memory means for holding a program representing a procedure of an operation for performing a camera process for converting an image signal into a predetermined output format and an image compression process;
前記 A D変換手段から出力された第 1 のデジタル阿像信号に前 ^力 メ ラ処理及び前記幽-像圧縮処理を行うための演算を施し第 2のデジタル 画像信号を^成する演算手段と、  An arithmetic means for performing an arithmetic operation for performing a force-measurement process and the ghost image compression process on the first digital image signal output from the AD conversion means to generate a second digital image signal;
前記演算手段で生成された第 2のデジタル両像信号を外部に出力する イ ンターフヱ一ス手段と、  Interface means for outputting the second digital dual image signal generated by the arithmetic means to the outside,
前記第 1 のデジタル画像信号に前記第 2のメモリ手段に保持されたプ ログラムに基づく演算を施し前記第 2のデジタル画像信 を生成するよ うに前記演算手段を制御し、 前記第 2のデジタル画像信号を外部へ出力 するように前記イ ンタ一フエース手段を制御する制御手段と、  Controlling the arithmetic means to generate the second digital image signal by performing an arithmetic operation on the first digital image signal based on a program held in the second memory means; Control means for controlling the interface means so as to output a signal to the outside;
外部機器からの入力により前記カメ ラ処理あるいは前記画像圧縮処理 のバ一ジョ ンアツプを果たすための設定変更端子を備えたこ とを特徴と する撮像装置。  An imaging apparatus comprising: a setting change terminal for performing a version up of the camera processing or the image compression processing in response to an input from an external device.
2 6 . 前記撮像装置は、 前記カメ ラ処理あるいは前記画像圧縮処理を実 行するためのプログラムを記憶するための書き換え可能なメモリ手段を さ らに備え、 該プログラムを書き換えるこ とによって該カメ ラ処理ある いは該画像圧縮処理のバ一ジョ ンァップを果たすこ とを特徴とする請求 項 2 5に記載の撮像装置。 26. The imaging apparatus further includes a rewritable memory means for storing a program for executing the camera processing or the image compression processing, and the camera is rewritten by rewriting the program. 26. The imaging apparatus according to claim 25, wherein the imaging apparatus performs processing or a version of the image compression processing.
2 7 . 光学系によって結像された光信号をアナログ両像信号に変換して 出力する光電変換手段と、 前^光電変換手段から出力されたアナ口グ耐像信 を第 1 のデジタル 画像信 に変換して出力する A / D変換手段と、 27. A photoelectric conversion means for converting the optical signal formed by the optical system into an analog dual image signal and outputting the signal, A / D conversion means for converting an analog image signal output from the photoelectric conversion means into a first digital image signal and outputting the first digital image signal;
画像 号を所定の出力フ ォーマツ トに変換する力メ ラ処现及び画像圧 縮処理を行う ための演算の手順を表すプログラムを保持する第 2のメ モ リ手段と、  A second memory means for holding a program representing a procedure for calculating a force camera for converting an image signal into a predetermined output format and for performing image compression processing;
前記 A / D変換手段から出力された第 1 のデジ夕ル画像 fi†号に dij記力 メラ処理及び前記両像圧縮処理を行う ための演算を施し第 2のデジ夕ル 面像信号を ^成する演算手段と、  The first digital image fi † output from the A / D conversion means is subjected to dij memo era processing and an operation for performing both image compression processing, and a second digital image surface image signal is obtained. Computing means for performing
前記演算手段で生成された第 2のデジタル画像 -号を外部に出力する イ ンタ一フヱース手段と、  Interface means for outputting the second digital image-signal generated by the arithmetic means to the outside,
前記第 1 のデジタル画像信号に前記第 2のメ モ リ手段に保持されたプ 口グラムに基づく演算を施し前記第 2のデジタル画像信号を生成するよ うに前記演算手段を制御し、 前記第 2のデジタル画像信号を外部へ出力 するように前 イ ンタ一フ ース手段を制御する制御手段を備え、 前記演算手段と前記制御^段と前,]己第 2のメ モ リ 亍-段とで単一的に成 り立つ集積回路が取り外し可能であるこ とを特徴とする撮像装置。  Controlling the arithmetic means to generate the second digital image signal by performing an arithmetic operation on the first digital image signal based on a program held in the second memory means; Control means for controlling the front interface means so as to output the digital image signal to the outside, and the arithmetic means, the control step, and the second memory means. An imaging device characterized in that a single integrated circuit can be removed.
2 8 . 前記集積回路を取り外し、 別の集積回路を取り付けるこ とによつ て前記カメ ラ処理あるいは画像圧縮処理のバージョ ンアップを果たすこ とを特徴とする請求項 2 7に記載の撮像装置。 28. The imaging apparatus according to claim 27, wherein the integrated circuit is removed and another integrated circuit is attached, thereby performing the version up of the camera processing or the image compression processing.
PCT/JP1996/002626 1996-09-13 1996-09-13 Image pickup device WO1998011719A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002626 WO1998011719A1 (en) 1996-09-13 1996-09-13 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/002626 WO1998011719A1 (en) 1996-09-13 1996-09-13 Image pickup device

Publications (1)

Publication Number Publication Date
WO1998011719A1 true WO1998011719A1 (en) 1998-03-19

Family

ID=14153813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002626 WO1998011719A1 (en) 1996-09-13 1996-09-13 Image pickup device

Country Status (1)

Country Link
WO (1) WO1998011719A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020722A (en) * 2003-06-25 2005-01-20 Quicksilver Technology Inc Digital imaging apparatus
JP2007088965A (en) * 2005-09-26 2007-04-05 Casio Hitachi Mobile Communications Co Ltd Image output device and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334784A (en) * 1989-06-30 1991-02-14 Casio Comput Co Ltd Camera having center focus function
JPH06105333A (en) * 1992-09-22 1994-04-15 Canon Inc Picture signal processor
JPH06197305A (en) * 1991-11-01 1994-07-15 Nikon Corp Electronic still camera
JPH06276471A (en) * 1993-03-22 1994-09-30 Canon Inc Recording and reproducting device
JPH07123421A (en) * 1993-10-27 1995-05-12 Canon Inc Image pickup device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334784A (en) * 1989-06-30 1991-02-14 Casio Comput Co Ltd Camera having center focus function
JPH06197305A (en) * 1991-11-01 1994-07-15 Nikon Corp Electronic still camera
JPH06105333A (en) * 1992-09-22 1994-04-15 Canon Inc Picture signal processor
JPH06276471A (en) * 1993-03-22 1994-09-30 Canon Inc Recording and reproducting device
JPH07123421A (en) * 1993-10-27 1995-05-12 Canon Inc Image pickup device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THE JOURNAL OF THE INST. OF TELEVISION ENGINEERS OF JAPAN, Vol. 48, No. 1, January 1994, KIICHI MATSUDA, FUMITAKA ASAMI, OSAMU KAWAI, "LSI for Image Encoding", p. 31-37. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005020722A (en) * 2003-06-25 2005-01-20 Quicksilver Technology Inc Digital imaging apparatus
JP4495522B2 (en) * 2003-06-25 2010-07-07 クイックシルヴァー テクノロジイ,インコーポレーテッド Digital image processing device
JP2007088965A (en) * 2005-09-26 2007-04-05 Casio Hitachi Mobile Communications Co Ltd Image output device and program
JP4718950B2 (en) * 2005-09-26 2011-07-06 Necカシオモバイルコミュニケーションズ株式会社 Image output apparatus and program

Similar Documents

Publication Publication Date Title
CN101841651B (en) Image processing apparatus, imaging apparatus and image processing method
US20110261224A1 (en) Digital camera and storage medium for image signal processing for white balance control
JP2004328117A (en) Digital camera and photographing control method
JPH1141556A (en) Digital photograph image pickup device provided with image processing unit
JP2004007133A (en) Image pickup device
JP4531007B2 (en) Image processing system
JP4279562B2 (en) Control method for solid-state imaging device
WO1998011719A1 (en) Image pickup device
JP2006166252A (en) Imaging apparatus
JP2000217123A (en) Image pickup device and image processing method for image pickup device
JP3947912B2 (en) Image signal processing device
JP3115912B2 (en) Image recording device
JP2009164723A (en) Imaging apparatus and imaging control method
JP4043379B2 (en) Imaging device
JP2000299870A (en) Digital camera
WO2005027528A1 (en) Imaging apparatus and method of measuring a color image data used therefor
JP4449692B2 (en) Electronic camera
Allen et al. Digital cameras and scanners
WO2023032484A1 (en) Imaging system, imaging terminal, and server
US7492412B2 (en) Solid-state image pickup apparatus reducing record data with reproduction image quality maintained high and a method for the same
JP2918613B2 (en) Electronic still camera device
JP2003110934A5 (en)
JP2005117276A (en) Imaging device
JPH09275527A (en) Digital still camera
JP2000115627A (en) Digital camera having exposure meter function

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase