[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998006983A1 - Conditionneur d'air - Google Patents

Conditionneur d'air Download PDF

Info

Publication number
WO1998006983A1
WO1998006983A1 PCT/JP1997/002745 JP9702745W WO9806983A1 WO 1998006983 A1 WO1998006983 A1 WO 1998006983A1 JP 9702745 W JP9702745 W JP 9702745W WO 9806983 A1 WO9806983 A1 WO 9806983A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
circuit
air conditioner
bypass
Prior art date
Application number
PCT/JP1997/002745
Other languages
English (en)
French (fr)
Inventor
Koichi Kita
Nobuo Domyo
Ryuzaburo Yajima
Kazuyuki Nishikawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US09/051,601 priority Critical patent/US6164086A/en
Priority to KR1019980702603A priority patent/KR100332532B1/ko
Priority to AU37832/97A priority patent/AU727320B2/en
Priority to EP97934716A priority patent/EP0855562B1/en
Priority to DE69726107T priority patent/DE69726107T2/de
Publication of WO1998006983A1 publication Critical patent/WO1998006983A1/ja
Priority to HK98110497A priority patent/HK1009682A1/xx

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Definitions

  • the present invention relates to an air conditioner. More specifically, the present invention relates to an air conditioner provided with a refrigerant circuit for circulating refrigerant in the order of a compressor, a condenser, a supercooling heat exchanger for supercooling the refrigerant, an expansion mechanism, and an evaporator.
  • the refrigerant circuit 301 of this type of air conditioner includes a compressor 302, a condenser 303, a double-tube heat exchanger 310 for supercooling, Main expansion mechanism 304, evaporator 305, four-way switching valve 309 and accumulator 3
  • the main circuit 3 0 6 in this order and a branch point 3 2 1 between the condenser 3 0 3 and the double-pipe heat exchanger 3 1 0 are branched from the main circuit 3 0 6.
  • a bypass circuit that passes through the expansion mechanism 3 1 2 and the double-pipe heat exchanger 3 10 and joins the main circuit 3 0 6 at a junction 3 2 2 near the inlet of the accumulator 3 08
  • a single refrigerant such as HCFC (Hide Port Fluorocarbon) 22 has been used as the refrigerant.
  • the refrigerant discharged from the compressor 302 is condensed by a condenser (for example, radiating heat to outdoor air) 303, and the mainstream refrigerant flowing through the main circuit 303 at the branch point 321 and the bypass circuit 331 It is divided into bypass flow refrigerant flowing through 3.
  • This mainstream refrigerant is supercooled by heat exchange with the bypass flow refrigerant after passing through the bypass expansion mechanism 312 in the double-pipe heat exchanger 310, and then decompressed by the main expansion mechanism 304.
  • the mainstream refrigerant is evaporated by an evaporator (for example, heat is absorbed from room air) 305, and is sucked into a compressor 302 through a four-way switching valve 309 and an accumulator 308 for gas-liquid separation. Including I will.
  • the bypass-flow refrigerant is depressurized by passing through the bypass expansion mechanism 312, and is then evaporated in the double-pipe heat exchanger 310 by heat exchange with the mainstream refrigerant. Thereafter, the bypass-flow refrigerant merges with the mainstream refrigerant at a junction point 3222 near the inlet of the accumulator 308.
  • the refrigeration effect of the mainstream refrigerant can be increased as compared to a stage where supercooling is not performed.
  • the volume flow rate of the mainstream refrigerant is reduced by branching the bypass flow from the refrigerant flow, as shown in the pressure-one-point enthalpy diagram of FIG. 11B (hereinafter referred to as the “Ph diagram”). It is possible to reduce the pressure loss ⁇ in the evaporator 304 and the suction pipe of the compressor 302 (for comparison, the pressure loss ⁇ ⁇ without supercooling is shown in FIG. 11). It is shown in A.). Therefore, the refrigeration capacity of the system can be improved.
  • FIG. 11B which is a partially enlarged view of FIG. 11B, the bypass refrigerant reaching point A and the mainstream refrigerant reaching point B merge to form a dotted state.
  • An object of the present invention has been made to further improve the refrigeration capacity than before.
  • an air conditioner is an air conditioner having a refrigerant circuit through which a refrigerant flows in the order of a compressor, a condenser, a supercooling heat exchanger, a first expansion mechanism, and an evaporator.
  • a non-azeotropic refrigerant mixture is used as the refrigerant.
  • the boiling points of the refrigerants constituting the non-azeotropic mixed refrigerant are different from each other. Therefore, in the Ph diagram showing the state of the refrigerant, the gradient (isothermal line) in the two-phase region (wet steam range) is obtained.
  • temperature gradient An inclination with respect to the specific enthalpy axis, hereinafter referred to as “temperature gradient”.
  • This two-phase temperature gradient lowers the evaporator inlet temperature compared to using a single refrigerant. Therefore, the temperature difference between the fluid (eg, indoor air) absorbed by the evaporator and the refrigerant passing through the evaporator increases, thereby increasing the heat exchange capacity of the evaporator.
  • the effect of improving the refrigerating capacity by the supercooling is further improved by an amount corresponding to the increase in the heat exchange capacity of the evaporator as compared with the case where a single refrigerant is used.
  • the refrigerant circuit branches from the main circuit between the condenser and the first expansion mechanism, and merges with the main circuit on the suction side of the compressor.
  • a bypass circuit is provided, and the bypass circuit has a second expansion mechanism.
  • the supercooling heat exchanger includes: a mainstream refrigerant flowing through the main circuit; and the bypass circuit after passing through the second expansion mechanism. Heat exchange is performed with the flowing bypass coolant.
  • the mainstream refrigerant can be supercooled with a simple circuit configuration by using the bypass flow refrigerant after passing through the second expansion mechanism.
  • the bypass circuit branches off from the main circuit between the condenser and the subcooling heat exchanger.
  • the bypass circuit is branched from the main circuit between the supercooling heat exchanger and the first expansion mechanism.
  • the supercooling heat exchanger is a counter-flow heat exchanger in which the mainstream refrigerant and the bypass-flow refrigerant flow in opposite directions across a wall having heat conductivity. is there.
  • the average temperature difference between the mainstream refrigerant, which is a non-azeotropic refrigerant, and the bypass refrigerant is relatively large on both sides of the heat transfer wall of the subcooling heat exchanger. For example, it becomes larger than the average temperature difference in the case of the parallel flow heat exchanger. As a result, the capacity of the subcooling heat exchanger is improved.
  • the supercooling heat exchanger subcools the refrigerant using the cold stored in the ice.
  • the supercooling heat exchanger supercools the refrigerant using the cold stored in the ice, so that the refrigerant can be effectively subcooled.
  • the supercooling heat exchanger of the refrigerant circuit subcools the refrigerant using cold heat supplied from another refrigerant circuit.
  • the supercooling heat exchanger of the circuit supercools the refrigerant by using cold heat supplied from another refrigerant circuit, so that the refrigerant can be effectively subcooled.
  • FIG. 1A is a diagram illustrating a configuration of a refrigerant circuit of an air conditioner according to a first embodiment of the present invention
  • FIG. 1B is a diagram illustrating a modification of the refrigerant circuit.
  • FIG. 2 is a Ph diagram showing a refrigeration cycle using the refrigerant circuit of FIG.
  • FIG. 3 is a diagram illustrating the heat exchange capacity of the evaporator in the refrigerant circuit of FIG.
  • FIG. 4A is a diagram showing a configuration of a double-pipe heat exchanger of the refrigerant circuit of FIG. 1
  • FIG. 4B is a diagram for explaining a refrigerant temperature in a counter-flow heat exchanger
  • FIG. It is a figure explaining a refrigerant temperature in a parallel flow type heat exchanger.
  • FIG. 5 is a diagram showing a configuration of a refrigerant circuit using a double-pipe heat exchanger as a gas-liquid heat exchanger for comparison with the refrigerant circuit of FIG.
  • FIG. 6 is a Ph diagram showing a refrigeration cycle using the refrigerant circuit of FIG. 7A and 7B are diagrams showing a comparison between a refrigeration cycle using the refrigerant circuit of FIG. 1 and a refrigeration cycle using the refrigerant circuit of FIG.
  • FIG. 8 is a diagram illustrating a configuration of a refrigerant circuit of an air conditioner according to a second embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of a refrigerant circuit of an air conditioner according to a third embodiment of the present invention.
  • FIG. 10 is a diagram showing a configuration of a refrigerant circuit of a conventional air conditioner.
  • FIG. 11A is a Ph diagram showing a normal refrigeration cycle without supercooling
  • FIG. 11B is a Ph diagram showing a refrigeration cycle using the refrigerant circuit of FIG. 11C is a partially enlarged view of the refrigeration cycle of FIG. 11B.
  • the air conditioner of one embodiment of the present invention includes a refrigerant circuit 1 including a main circuit 6 and a bypass circuit 13 (shown by a broken line).
  • a refrigerant circuit 1 including a main circuit 6 and a bypass circuit 13 (shown by a broken line).
  • a non-azeotropic mixed refrigerant composed of R-32Z134a or R-407C is used.
  • the main circuit 6 is a compressor 2, a condenser 3, and a double tube type as a subcooling heat exchanger. It has a heat exchanger 10, a main expansion mechanism 4 as a first expansion mechanism, an evaporator 5, a four-way switching valve 9, and an accumulator 8 in this order.
  • the bypass circuit 13 branches off from the main circuit 6 at a branch point 21 between the condenser 3 and the double-pipe heat exchanger 10 to form a bypass expansion mechanism 12 as a second expansion mechanism. It passes through the double-pipe heat exchanger 10 and merges with the main circuit 6 at a junction 22 near the inlet of the accumulator 8.
  • the double-pipe heat exchanger 10 exchanges heat between the mainstream refrigerant flowing through the main circuit 6 and the bypass refrigerant flowing through the bypass circuit 13 after passing through the bypass expansion mechanism 12.
  • the mainstream refrigerant is supercooled with a simple circuit configuration by using the refrigerant flowing through the bypass expansion mechanism 12.
  • the double-pipe heat exchanger 10 includes an inner pipe 10a and an outer pipe 1 provided concentrically outside the inner pipe 10a. 0b.
  • the flow direction of the refrigerant is such that the bypass flow refrigerant flowing in the inner pipe 10a and the main flow refrigerant flowing in the annular gap 10c between the inner pipe 10a and the outer pipe 10b have heat transfer properties.
  • the tubes are set so that they flow in opposite directions across the wall of the inner tube 10a (counter-flow heat exchanger).
  • the heat exchanger 10 is of the counterflow type in this way, as shown in FIG. 4B, the heat transfer between the mainstream refrigerant and the bypass refrigerant on both sides of the pipe wall of the inner pipe 10a is performed.
  • the average temperature difference in the flow direction becomes relatively large. For example, it becomes larger than the average temperature difference in the case of the parallel flow heat exchanger shown in Fig. 4C. As a result, the capacity of the heat exchanger 10 can be improved.
  • the refrigerant discharged from the compressor 2 shown in FIG. 1A is condensed by a condenser (for example, radiating heat to outdoor air) 3, and flows through a main circuit 6 at a branch point 21 1. And the refrigerant flowing through the bypass.
  • This mainstream refrigerant is supercooled in the heat exchanger 10 by heat exchange with the above-mentioned birefringent refrigerant after passing through the bypass expansion mechanism 12 and then by the main expansion mechanism 4. The pressure is reduced.
  • the mainstream refrigerant evaporator for example, absorbs heat from indoor air
  • bypass refrigerant flows through the bypass expansion mechanism 12 and is decompressed, and then is evaporated in the heat exchanger 10 by heat exchange with the main refrigerant. Thereafter, the bypass refrigerant merges with the mainstream refrigerant at a junction 22 near the inlet of the accumulator 8.
  • the refrigeration effect of the mainstream refrigerant can be increased as compared with a case where the supercooling is not performed.
  • the pressure-to-pressure ratio enthalpy line in Fig. 2 is compared to the case without supercooling (see Fig. 11A).
  • the pressure loss ⁇ in the evaporator 5 and in the suction-side pipe of the compressor 2 can be reduced. Therefore, the refrigeration capacity of the system can be improved.
  • the locations indicated by A, B, and C in FIG. 2 correspond to the states of points A, B, and C near the junction 22 in the refrigerant circuit 1 of FIG. 1A.
  • the gradient is isothermal in the two-phase region (wet steam range). (Inclination with respect to the relative enthalpy axis; hereinafter referred to as “temperature gradient”.) Due to the temperature gradient in the two-phase region, the inlet temperature of the evaporator 5 is lower than when a single refrigerant is used.
  • the temperature difference between the fluid absorbed by the evaporator 5 (for example, indoor air passing in contact with the fins of the evaporator) and the refrigerant passing through the evaporator 5 increases, and The heat exchange capacity of 5 increases.
  • the heat exchange capacity of the evaporator 5 increases by about 15%.
  • the effect of improving the refrigerating capacity due to subcooling is smaller than when using a single refrigerant.
  • the heat exchange capacity of the evaporator 5 can be further improved by the increased amount.
  • the bypass circuit 13 is branched from the main circuit 6 between the condenser 3 and the heat exchanger 10, and thus is subject to supercooling by the heat exchanger 10. Becomes only the mainstream refrigerant. Therefore, the size of the heat exchanger 10 can be made relatively small.
  • the bypass circuit 13 may be branched from the main circuit 6 between the heat exchanger 10 and the main expansion mechanism 4 (branch point 21A) as shown in FIG. 1B. .
  • the bypass flow refrigerant branched from the mainstream refrigerant after passing through the heat exchanger 10 enters the bypass expansion mechanism 12, the possibility that the two-phase flow enters the bypass expansion mechanism 12 is reduced. Therefore, the bypass expansion mechanism 12 operates stably without hunting.
  • the heat exchanger 10 exchanges heat between the mainstream refrigerant flowing through the main circuit 6 and the bypass refrigerant flowing through the bypass expansion mechanism 12 after being condensed by the condenser 3. ing. That is, the heat exchanger 10 basically operates as a liquid-liquid heat exchanger that exchanges heat between the mainstream refrigerant and the bypass refrigerant before passing through the condenser 3 and before passing through the evaporator 5. I have. On the other hand, as shown in Fig. 5, in order to supercool the mainstream refrigerant after passing through the condenser 5, the mainstream refrigerant in the gas phase after passing through the evaporator 5 (compressor suction side) is used for heat exchange.
  • the device 10 may be operated as a gas-liquid heat exchanger.
  • the heat exchanger 10 as shown in Fig. 1 is operated as a liquid-liquid heat exchanger, as shown in the Ph diagram of Fig. 7A, it is caused by the temperature gradient in the two-phase region. Therefore, the average temperature difference ⁇ in the flow direction in the heat exchanger 10 becomes larger than ⁇ (shown in FIG. 7) when the heat exchanger 10 is operated as a gas-liquid heat exchanger. Therefore, the size of the heat exchanger 10 can be made relatively small, and the problem of increasing the degree of superheat on the suction side of the compressor 2 (see FIG. 6) does not occur. As a result, non-azeotropic The effect of improving the refrigerating capacity by using the refrigerant can be more effectively exerted.
  • FIG. 8 shows an air conditioner according to another embodiment including a refrigerant circuit 101 for supercooling a refrigerant by using cold heat stored in ice.
  • the refrigerant circuit 101 includes a refrigerant circuit 101 including a main circuit 106 and a short circuit 113.
  • a non-azeotropic mixed refrigerant made of R-321334a or R-407C is used as the refrigerant that circulates through the refrigerant circuit 101.
  • the main circuit 106 consists of a compressor 102, an outdoor heat exchanger 103 as a condenser, a receiver 107 for temporarily storing refrigerant, a second electronic expansion valve 112, and a first expansion. It has a first electronic expansion valve 104 as a mechanism, an indoor heat exchanger 105 as an evaporator, and an accumulator 108 in this order.
  • the outdoor-side connection end 110b and the indoor-side connection end 110c of the heat storage heat exchanger 110 as a subcooling heat exchanger are connected in parallel to the second electronic expansion valve 112. ing.
  • the heat exchanger 110 for heat storage is formed by providing a cooling pipe 10a meandering in a vertical direction in a heat storage tank 109 filled with water W as a heat storage medium.
  • a first on-off valve 1 1 1 is interposed in a pipe between the main body 1 109 of the heat storage heat exchanger 110 and the outdoor connection end 110 b.
  • the short-circuit circuit 113 branches off from between the main body 109 of the heat storage heat exchanger 110 and the first on-off valve 111, and merges with the main circuit 106 near the inlet of the accumulator 8. ing.
  • a second on-off valve 114 is interposed in the short circuit 113.
  • the opening and closing of the first on-off valve 1 1 1 and the second on-off valve 1 1 4 and the opening of the first electronic expansion valve 104 and the second electronic expansion valve 1 12 depend on the operating condition of the air conditioner and Each of the thermistors Th 1, Th 2 and the pressure sensor P s are controlled by the opening / closing control means 116 in response to signals from the pressure sensor P s.
  • the opening / closing control means 116 sets the first opening / closing valve 111 closed, the second opening / closing valve 114 open, and the first electronic expansion valve 104 fully closed.
  • the degree of opening of the second electronic expansion valve 112 is controlled according to signals from the thermistor Th1 and the pressure sensor Ps.
  • the refrigerant discharged from the compressor 102 (the direction of the flow is indicated by a solid arrow in FIG. 8) is condensed by the outdoor heat exchanger 103, and the receiver 107 and the second electron After passing through the expansion valve 1 1 2 and being evaporated by heat exchange with the water W in the heat storage heat exchanger 1 10, it passes through the second open / close valve 1 1 4 of the short circuit 1 1 3 and passes through the main circuit 1 It is sucked into the compressor 2 through the accumulator 8 of 06.
  • the water W in the heat storage tank 109 is cooled by heat exchange with the refrigerant passing through the cooling pipe 110a, and adheres to the surface of the cooling pipe 110a as ice. As a result, cold heat is stored in the heat storage tank 109.
  • the first opening / closing valve 1 11 is opened, the second opening / closing valve 114 is closed, the first electronic expansion valve 104 and the second
  • the degree of opening of the electronic expansion valve 112 is controlled in accordance with signals from the thermistor Th2 and the pressure sensor Ps.
  • the refrigerant (the direction of the flow is indicated by a broken arrow in FIG. 8) discharged from the compressor 102 is condensed by the outdoor heat exchanger 103 and passes through the receiver 107.
  • the heat exchanger After that, part of the refrigerant passes through the second electronic expansion valve 112 and reaches the junction 110c as it is, but the remaining refrigerant flows from the branch point 110b to the first on-off valve 111 Then, after being supercooled by heat exchange with ice generated during the heat storage operation in the heat storage heat exchanger 110, the heat exchanger reaches the junction point 110c. At this time, the flow ratio of the refrigerant passing through the second electronic expansion valve 112 and the refrigerant ⁇ : passing through the heat storage heat exchanger 110 is determined by the opening of the second electronic expansion valve 112. The heat storage heat exchanger 110 uses the cold stored in the ice to supercool the refrigerant, so that the refrigerant passing through the cooling pipe 110a is effectively subcooled.
  • the refrigerant that has joined at the junction 110 c is decompressed by the first electronic expansion valve 104, then evaporated by heat exchange with indoor air in the indoor heat exchanger 105, and passed through the accumulator 8 to the compressor 2. Sucked into
  • the gradient (specific ratio) in the two-phase region (wet steam range) A gradient with respect to the enthalpy axis, hereinafter referred to as “temperature gradient”. Due to the temperature gradient in the two-phase region, the inlet temperature of the indoor heat exchanger 105 decreases as compared with the case where a single refrigerant is used. Therefore, the temperature difference between the indoor air absorbed by the indoor heat exchanger 105 and the refrigerant passing through the in-vehicle heat exchanger 105 increases, and the heat of the indoor heat exchanger 105 increases. Exchange capacity increases. As a result, the effect of improving the refrigerating capacity due to the subcooling can be further improved by the increase in the heat exchange capacity of the indoor heat exchanger 105 as compared with the case where a single refrigerant is used.
  • the first on-off valve 1 1 1 and second on-off valve 1 1 4 are closed by the on-off control means 1 16 and the second electronic expansion valve What is necessary is to make 1 1 2 fully open, and control the opening degree of the 1st electronic expansion valve 104 according to the signal from the thermistor Th2 and the pressure sensor Ps.
  • the refrigerant discharged from the compressor 102 is condensed by the outdoor heat exchanger 103, passes through the receiver 107, the second electronic expansion valve 112, and passes through the indoor heat exchanger. It is evaporated by 105 and sucked into the compressor 102 through the accumulator 108.
  • FIG. 9 shows an air conditioner of another embodiment including a refrigerant circuit for supercooling a refrigerant using cold heat supplied from another refrigerant circuit.
  • the air conditioner has one outdoor unit A including two devices H and I having the same configuration, and two indoor units connected to one device H of the outdoor unit A. B and C, and two indoor units D and E connected to the other equipment I of the indoor unit A.
  • One of the devices H of the outdoor unit A includes an accumulator 208, a compressor 201 driven by an inverter 206, a four-way switching valve 202, and an outdoor heat exchanger 2 0 3, a supercooling heat exchanger 2 25, a check valve 2 09 that allows the refrigerant to pass only in the minus direction (the direction indicated by the solid arrow in the figure) during the cooling operation, and a check valve 2 9
  • a heating pipe 202 is connected to an expansion mechanism 204 for heating operation connected in parallel to the cooling pipe 09.
  • the other equipment I includes an accumulator 208, a compressor 201 driven by an inverter 207, a four-way switching valve 202, an outdoor heat exchanger 203, A supercooling heat exchanger 2 25 B, a check valve 209 for allowing the refrigerant to pass in only one direction during cooling operation, and an expansion mechanism for heating operation connected in parallel to the check valve 209 204 is connected to a refrigerant pipe 205.
  • Each of the indoor units B, C, D, and E has the same internal configuration.
  • Each of the indoor heat exchangers 210 and a check valve 21 that allows the refrigerant to pass only in the opposite direction to the cooling operation during the heating operation and the cooling operation.
  • the indoor units B and C are connected in parallel with each other by refrigerant pipes 215 and 215, and the refrigerant circulates to one device H of the outdoor unit A by other refrigerant pipes 216 and 216.
  • One refrigerant circuit 217 is formed so as to be connected as possible.
  • indoor units C and D are connected in parallel to each other by refrigerant pipes 218 and 218.
  • the other refrigerant pipes 219 and 219 are connected to the other equipment I of the outdoor unit A so that the refrigerant can circulate, and another refrigerant circuit 220 is formed.
  • a pressure sensor 2 3 5 for detecting the operating state of each refrigerant circuit is provided.
  • 236 are provided.
  • a non-azeotropic mixed refrigerant composed of R-32 / 134a or R-407C is used as a refrigerant circulating in these refrigerant circuits 2 17 and 220.
  • a bypass circuit 230.230B is provided between the refrigerant circuit 211 on the equipment H side and the refrigerant circuit 220 on the equipment I side.
  • the bypass circuit 230 (having the refrigerant pipes 222 and 228) branches off from the downstream side of the outdoor heat exchanger 203 of the refrigerant circuit 220 (close to the outlet during cooling operation).
  • the bypass circuit 230B (having the refrigerant pipes 222B and 228B) branches from the downstream side of the outdoor heat exchanger 203 of the refrigerant circuit 217 (near the outlet during cooling operation).
  • the supercooling heat exchanger 2 25 is configured, for example, in the same manner as the double-pipe heat exchanger 10 shown in FIG. 4A, and includes a mainstream refrigerant flowing through the refrigerant circuit 2 17 and the refrigerant circuit 2 20. Heat is exchanged with the bypass refrigerant flowing through the branched bypass circuit 230.
  • the supercooling heat exchanger 222B exchanges heat between the mainstream refrigerant flowing through the refrigerant circuit 220 and the bypass refrigerant flowing through the bypass circuit 230B branched from the refrigerant circuit 217. I do.
  • control means (not shown)
  • the on-off valves 231 and 231B of the bypass circuits 230 and 230B are closed.
  • the refrigerant circuits 2 17 and 220 perform the cooling operation independently of each other.
  • the refrigerant discharged from the compressor 201 (the direction of the flow is indicated by a solid arrow in FIG. 9) is condensed by the outdoor heat exchanger 203 acting as a condenser. Passed through the heat exchanger 2 25 B and the check valve 209 in a state where heat exchange is not performed.
  • each indoor unit B evaporated by the indoor heat exchanger 210 functioning as an evaporator, and then passed through the accumulator 208 of the outdoor unit A, so that the compressor 2 0 sucked into 1.
  • the same can be said for the refrigerant circuit 217.
  • the control means sets the on-off valve 231 to the closed state and the on-off valve 231B to the open state, and shifts to the cooling operation in which the refrigerant circuit 220 performs supercooling.
  • a part of the refrigerant flowing through the refrigerant circuit 217 branches off and flows through the bypass circuit 230B as bypass flow refrigerant (the direction of the flow is indicated by a broken arrow in FIG. 9).
  • the subcooling heat exchanger 222B exchanges heat between the mainstream refrigerant flowing through the refrigerant circuit 220 and the bypass refrigerant flowing through the bypass circuit 230. That is, in the refrigerant circuit 220, the refrigerant discharged from the compressor 201 is condensed by the outdoor heat exchanger 203 acting as a condenser, and is supercooled by the heat exchanger 222. Then, through check valve 209. Thereafter, the pressure is reduced by the expansion mechanism 211 of each of the indoor units B and C, evaporated by the indoor heat exchanger 210 serving as an evaporator, and then passed through the accumulator 208 of the outdoor unit A. 0 sucked in 1 O
  • the refrigeration effect can be increased as compared with a case where the supercooling is not performed.
  • the two-phase region (wet steam range) in the Ph diagram shown in FIG. A gradient (a gradient with respect to the specific enthalpy axis; hereinafter referred to as “temperature gradient”) occurs in the isotherm. Due to the temperature gradient in the two-phase region, the inlet temperature of the indoor heat exchanger 210 decreases as compared with the case where a single refrigerant is used.
  • the temperature difference between the indoor air absorbed by the indoor heat exchanger 210 and the refrigerant passing through the indoor heat exchanger 210 increases, and the heat exchange of the indoor heat exchanger 210 occurs. Capacity increases. As a result, the effect of improving the refrigerating capacity due to the subcooling can be further improved by the amount of heat exchange capacity of the indoor heat exchanger 210 ⁇ compared to the case where a single refrigerant is used.
  • the control means opens and closes the on-off valve 2 31 according to the result of this determination.
  • the valve 231 B is set to the closed state, and the refrigerant circuit 217 shifts to the cooling operation in which the supercooling is performed.
  • the present invention can be applied to an air conditioner having a refrigerant circuit for performing supercooling, and is useful for improving the refrigeration capacity of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

明 細 書
空気調和機 技術分野
この発明は、 空気調和機に関する。 より詳しくは、 圧縮機、 凝縮器、 冷 媒を過冷却する過冷却用熱交換器、 膨張機構および蒸発器の順に冷媒を循 環させる冷媒回路を備えた空気調和機に関する。
背景技術
図 1 0に示すように、 この種の空気調和機の冷媒回路 3 0 1としては、 圧縮機 3 0 2、 凝縮器 3 0 3、 過冷却用の二重管式熱交換器 3 1 0、 主膨 張機構 3 0 4、 蒸発器 3 0 5、 四路切換弁 3 0 9およびアキュムレータ 3
0 8をこの順に有する主回路 3 0 6と、 上記凝縮器 3 0 3と二重管式熱交 換器 3 1 0との間の分岐点 3 2 1で主回路 3 0 6から分岐して、 バイパス 膨張機構 3 1 2と二重管式熱交換器 3 1 0とを通り、 上記アキュムレータ 3 0 8の入口近傍の合流点 3 2 2で主回路 3 0 6と合流するバイパス回路
(破線で示す) 3 1 3とを含むものが知られている。 従来は、 冷媒として H C F C (ハイ ド口クロ口フルォロカーボン) 2 2等の単一冷媒が用いら れている。 圧縮機 3 0 2から吐出された冷媒は、 凝縮器 (例えば室外空気 に放熱する) 3 0 3によって凝縮され、 分岐点 3 2 1で主回路 3 0 6を流 れる主流冷媒とバイパス回路 3 1 3を流れるバイパス流冷媒とに別れる。 この主流冷媒は、 二重管式熱交換器 3 1 0において、 バイパス膨張機構 3 1 2通過後の上記バイパス流冷媒との熱交換によって過冷却された後、 主 膨張機構 3 0 4によって減圧される。 そして、 主流冷媒は、 蒸発器 (例え ば室内空気から吸熱する) 3 0 5によって蒸発され、 四路切換弁 3 0 9お よび気液分離を行うアキュムレータ 3 0 8を通して圧縮機 3 0 2に吸い込 まれる。 一方、 バイパス流冷媒は、 上記バイパス膨張機構 3 1 2を通過し て減圧された後、 二重管式熱交換器 3 1 0において主流冷媒との熱交換に よって蒸発される。 この後、 バイパス流冷媒は、 アキュムレータ 3 0 8の 入口近傍の合流点 3 2 2で主流冷媒と合流する。
このように二重管式熱交換器 3 1 0で主流冷媒を過冷却することにより、 過冷却を行わない場台に比して主流冷媒による冷凍効果を増大できる。 ま た、 冷媒の流れからバイパス流を分岐させることによって主流冷媒の体積 流量が減少するので、 図 1 1 Bの圧力一比ェンタルピ線図 (以下 「P h線 図」 という。 ) に示すように、 蒸発器 3 0 5内および圧縮機 3 0 2の吸入 側配管での圧力損失 Δ Ρを減少させることができる (比較のため、 過冷却 を行わない場合の圧力損失 Δ Ρ。を図 1 1 Aに示している。 ) 。 したがつ て、 システムの冷凍能力を向上させることができる。 なお、 図 1 1 B中に A, B , Cで示す箇所は、 図 1 0の冷媒回路 3 0 1における合流点 3 2 2 近傍の点 A, B , Cの状態に対応している。 図 1 1 Bを部分的に拡大して 示す図 1 1 Cによって良く分かるように、 点 Aに達したバイパス流冷媒と 点 Bに達した主流冷媒とが合流して、 点じの状態が得られる。
ところで、 空気調和機の冷凍能力は常に向上させることが求められてお り、 冷凍能力アップの要求に際限はない。
発明の開示
この発明の目的は、 従来よりもさらに冷凍能力を向上させるためになさ れたものである。
上記目的を達成するため、 この発明の空気調和機は、 圧縮機、 凝縮器、 過冷却用熱交換器、 第 1の膨張機構および蒸発器の順に冷媒が流れる冷媒 回路を備えた空気調和機において、 上記冷媒として非共沸混合冷媒を用い ることを特徴とする。 この空気調和機では、 非共沸混合冷媒を構成する冷媒の沸点が互いに異 なることから、 冷媒の状態を表す P h線図において、 二相域 (湿り蒸気範 囲) で等温線に勾配 (比ェンタルピ軸に対する傾き。 以下 「温度勾配」 と いう。 ) が生じる。 この二相域の温度勾配のために、 単一冷媒を用いる場 合に比して、 蒸発器の入口温度が低下する。 したがって、 蒸発器によって 吸熱される流体 (例えば室内空気) と、 その蒸発器内を通る上記冷媒との 間の温度差が大きくなつて、 蒸発器の熱交換能力が増大する。 この結果、 過冷却による冷凍能力改善効果は、 単一冷媒を用いる場合に比して、 上記 蒸発器の熱交換能力増大分だけさらに向上する。
また、 一実施例の空気調和機では、 上記冷媒回路は、 上記凝縮器と第 1 の膨張機構との間で主回路から分岐して、 上記圧縮機の吸入側で上記主回 路と合流するバイパス回路を備えるとともに、 このバイパス回路に第 2の 膨張機構を有し、 上記過冷却用熱交換器は、 上記主回路を流れる主流冷媒 と、 上記第 2の膨張機構通過後の上記バイパス回路を流れるバイパス流冷 媒との間で熱交換を行う。
この空気調和機では、 上記第 2の膨張機構通過後のバイパス流冷媒を利 用して、 簡単な回路構成でもって主流冷媒を過冷却することができる。 さらに、一実施例の空気調和機は、 上記バイパス回路は、 上記凝縮器と 過冷却用熱交換器との間で上記主回路から分岐している。
この空気調和機では、 過冷却用熱交換器によつて過冷却される対象が主 流冷媒だけとなるので、 過冷却用熱交換器のサイズが比較的小さくて済む。 また、 他の実施例の空気調和機は、 上記バイパス回路は、 上記過冷却用 熱交換器と第 1の膨張機構との間で上記主回路から分岐している。
この空気調和機では、 過冷却用熱交換器通過後に主流冷媒から分岐した バイパス流冷媒が第 2の膨張機構に入るので、 第 2の膨張機構には二相流 が入る可能性が少なくなる。 したがって、 第 2の膨張機構はハンチングを 起こすおそれがなく、 安定に動作する。
また、 一実施例の空気調和機では、 上記過冷却用熱交換器は、 上記主流 冷媒と上記バイパス流冷媒とが伝熱性を持つ壁を挟んで互いに反対向きに 流れる対向流型熱交換器である。
この空気調和機では、 過冷却用熱交換器の伝熱性を持つ壁の両側での、 非共沸冷媒である主流冷媒とバイパス流冷媒との間の平均温度差が比較的 大きくなる。 例えば並行流型熱交換器の場合の平均温度差よりも大きくな る。 この結果、 過冷却用熱交換器の能力が向上する。
また、 他の実施例の空気調和機では、 上記過冷却用熱交換器は、 氷 蓄 えられた冷熱を用いて上記冷媒を過冷却する。
この空気調和機では、 上記過冷却用熱交換器は、 氷に蓄えられた冷熱を 用いて上記冷媒を過冷却するので、 上記冷媒を効果的に過冷却することが できる。
また、 他の実施例の空気調和機では、 上記冷媒回路の過冷却用熱交換器 は、 別の冷媒回路から供給される冷熱を用いて上記冷媒を過冷却する この空気調和機では、 上記冷媒回路の過冷却用熱交換器は、 別の冷媒回 路から供給される冷熱を用いて上記冷媒を過冷却するので、 上記冷媒を効 果的に過冷却することができる。
図面の簡単な説明
図 1 Aは、 この発明の第 1実施例の空気調和機の冷媒回路の構成を示す 図であり、 図 1 Bは、 上記冷媒回路の変形例を示す図である。
図 2は、 図 1の冷媒回路による冷凍サイクルを示す P h線図である。 図 3は、 図 1の冷媒回路における蒸発器の熱交換能力を説明する図であ o 図 4 Aは、 図 1の冷媒回路の二重管式熱交換器の構成を示す図であり、 図 4 Bは対向流型熱交換器における冷媒温度を説明する図であり、 図 4 C は並行流型熱交換器における冷媒温度を説明する図である。
図 5は、 図 1の冷媒回路との比較のために、 二重管式熱交換器を気—液 熱交換器として用いる冷媒回路の構成を示す図である。
図 6は、 図 5の冷媒回路による冷凍サイクルを示す P h線図である。 図 7 A, 7 Bは、 図 1の冷媒回路による冷凍サイクルと図 5の冷媒回路 による冷凍サイクルとを比較して示す図である。
図 8は、 この発明の第 2実施例の空気調和機の冷媒回路の構成を示す図 である。
図 9は、 この発明の第 3実施例の空気調和機の冷媒回路の構成を示す図 である。
図 1 0は、 従来の空気調和機の冷媒回路の構成を示す図である。
図 1 1 Aは、 過冷却を行わない通常の冷凍サイクルを示す P h線図であ り、 図 1 1 Bは図 1 1の冷媒回路による冷凍サイクルを示す P h線図であ り、 図 1 1 Cは図 1 1 Bの冷凍サイクルを部分的に拡大して示す図である。 発明を実施するための最良の形態
次に、 この発明の空気調和機の実施例について、 図面を参照しながら詳 細に説明する。
〔第 1実施例〕
図 1 Aに示すように、 この発明の一実施例の空気調和機は、 主回路 6と バイパス回路 (破線で示す) 1 3とを含む冷媒回路 1を備えている。 冷媒 回路 1を循環させる冷媒としては、 R—3 2 Z 1 3 4 aまたは R— 4 0 7 Cからなる非共沸混合冷媒を用いている。
主回路 6は、 圧縮機 2、 凝縮器 3、 過冷却用熱交換器としての二重管式 熱交換器 1 0、 第 1の膨張機構としての主膨張機構 4、 蒸発器 5、 四路切 換弁 9およびアキュムレータ 8をこの順に有している。 バイパス回路 1 3 は、 凝縮器 3と二重管式熱交換器 1 0との間の分岐点 2 1で主回路 6から 分岐して、 第 2の膨張機構としてのバイパス膨張機構 1 2と二重管式熱交 換器 1 0とを通り、 アキュムレータ 8の入口近傍の合流点 2 2で主回路 6 と合流している。 二重管式熱交換器 1 0は、 主回路 6を流れる主流冷媒と、 バイパス膨張機構 1 2通過後の上記バイパス回路 1 3を流れるバイパス流 冷媒との間で熱交換を行う。 つまり、 バイパス膨張機構 1 2通過後のバイ パス流冷媒を利用して、 簡単な回路構成でもって主流冷媒を過冷却するよ うになつている。 詳しくは、 二重管式熱交換器 1 0は、 図 4 Aに模式的に 示すように、 内管 1 0 aと、 この内管 1 0 aの外側に同心円状に設けられ た外管 1 0 bとを有している。 冷媒を流す向きは、 内管 1 0 a内を流れる バイパス流冷媒と、 内管 1 0 aと外管 1 0 bとの間の環状の隙間 1 0 cを 流れる主流冷媒とが、 伝熱性を持つ内管 1 0 aの管壁を挟んで互いに反対 向きに流れるように設定されている (対向流型熱交換器) 。 このように熱 交換器 1 0を対向流型とした場合、 図 4 Bに示すように、 伝熱性を持つ内 管 1 0 aの管壁の両側での、 主流冷媒とバイパス流冷媒との間の流れ方向 に関する平均温度差が比較的大きくなる。 例えば図 4 Cに示す並行流型熱 交換器の場合の平均温度差よりも大きくなる。 この結果、 熱交換器 1 0の 能力を向上させることができる。
さて、 図 1 Aに示す圧縮機 2から吐出された冷媒は、 凝縮器 (例えば室 外空気に放熱する) 3によって凝縮され、 分岐点 2 1で主回路 6を流れる 主流冷媒とバイパス回路 1 3を流れるバイパス流冷媒とに別れる。 この主 流冷媒は、 熱交換器 1 0において、 バイパス膨張機構 1 2通過後の上記バ ィ '、'ス流冷媒との熱交換によつて過冷却された後、 主膨張機構 4によって 減圧される。 そして、 主流冷媒は、 蒸発器 (例えば室内空気から吸熱する)
5によって蒸発され、 四路切換弁 9および気液分離を行うアキュムレータ 8を通して圧縮機 2に吸い込まれる。 一方、 バイパス流冷媒は、 バイパス 膨張機構 1 2を通過して減圧された後、 熱交換器 1 0において主流冷媒と の熱交換によって蒸発される。 この後、 バイパス流冷媒は、 アキュムレー タ 8の入口近傍の合流点 2 2で主流冷媒と合流する。
このように熱交換器 1 0で主流冷媒を過冷却することにより、 過冷却を 行わない場合に比して主流冷媒による冷凍効果を増大できる。 また、 冷媒 の流れからバイパス流を分岐させることによって主流冷媒の体積流量が減 少するので、 過冷却を行わない場合 (図 1 1 A参照) に比して、 図 2の圧 カー比ェンタルピ線図 (P h線図) に示すように、 蒸発器 5内および圧縮 機 2の吸入側配管での圧力損失 Δ Ρを減少させることができる。 したがつ て、 システムの冷凍能力を向上させることができる。 なお、 図 2中に A, B , Cで示す箇所は、 図 1 Aの冷媒回路 1における合流点 2 2近傍の点 A, B , Cの状態に対応している。
しかも、 冷媒回路 1を流れる非共沸混合冷媒を構成する冷媒の沸点が互 いに異なることから、 図 2に示す P h線図において、 二相域 (湿り蒸気範 囲) で等温線に勾配 (比ェンタルピ軸に対する傾き。 以下 「温度勾配」 と いう。 ) が生じる。 この二相域の温度勾配のために、 単一冷媒を用いる場 合に比して、 蒸発器 5の入口温度が低下する。 したがって、 蒸発器 5によつ て吸熱される流体 (例えば蒸発器のフィンに接して通る室内空気) と、 そ の蒸発器 5内を通る冷媒との間の温度差が大きくなつて、 蒸発器 5の熱交 換能力が増大する。 例えば図 3に示すように、 蒸発器 5の入口温度が 2 d e gだけ低下すると、 蒸発器 5の熱交換能力が約 1 5 %増大する。 この結 果、 過冷却による冷凍能力改善効果を、 単一冷媒を用いる場合に比して、 蒸発器 5の熱交換能力増大分だけさらに向上させることができる。 また、 図 1 Aに示すように、 バイパス回路 1 3は凝縮器 3と熱交換器 1 0との間 で主回路 6から分岐しているので、 熱交換器 1 0によって過冷却される対 象が主流冷媒だけとなる。 したがって、 熱交換器 1 0のサイズを比較的小 さくすることができる。
なお、 バイパス回路 1 3は、 図 1 Bに示すように、 熱交換器 1 0と主膨 張機構 4との間 (分岐点 2 1 A ) で主回路 6から分岐するようにしても良 い。 このようにした場合、 熱交換器 1 0を通過後に主流冷媒から分岐した バイパス流冷媒がバイパス膨張機構 1 2に入るので、 バイパス膨張機構 1 2には二相流が入る可能性が少なくなる。 したがって、 バイパス膨張機構 1 2はハンチングを起こすおそれがなく、 安定に動作する。
上述のように、 熱交換器 1 0は、 凝縮器 3によって凝縮された状態の、 主回路 6を流れる主流冷媒と、 バイパス膨張機構 1 2通過後のバイパス流 冷媒との間で熱交換を行っている。 すなわち、 熱交換器 1 0は、 基本的に は、 凝縮器 3通過後、 蒸発器 5通過前の主流冷媒とバイパス流冷媒との間 で熱交換を行う液一液熱交換器として動作している。 これに対して、 図 5 に示すように、 凝縮器 5通過後の主流冷媒を過冷却するために、 蒸発器 5 通過後 (圧縮機吸入側) の気相の主流冷媒を用いて、 熱交換器 1 0を気一 液熱交換器として動作させても良い。 ただし、 図 1に示したような熱交換 器 1 0を液—液熱交換器として動作させる場合は、 図 7 Aの P h線図に示 すように、 二相域における温度勾配に起因して、 熱交換器 1 0における流 れ方向に関する平均温度差 Δ Τπιが、 気一液熱交換器として動作させる場 合の Δ Τηι (図 7 Βに示す) よりも大きくなる。 したがって、 熱交換器 1 0のサイズを比較的小さくすることができ、 圧縮機 2の吸入側の過熱度が 大きくなるような不具合 (図 6参照) が生じない。 この結果、 非共沸混合 冷媒を使用することによる冷凍能力改善効果をより有効に発揮することが できる。
〔第 2実施例〕
図 8は、 氷に蓄えられた冷熱を用いて冷媒を過冷却する冷媒回路 1 0 1 を備えた別の実施例の空気調和機を示している。 この冷媒回路 1 0 1は、 主回路 1 0 6と短絡回路 1 1 3とを含む冷媒回路 1 0 1を備えている。 冷 媒回路 1 0 1を循環させる冷媒としては、 R— 3 2 1 3 4 aまたは R— 4 0 7 Cからなる非共沸混合冷媒を用いている。
主回路 1 0 6は、 圧縮機 1 0 2、 凝縮器としての室外熱交換器 1 0 3、 冷媒を一時貯留するためのレシーバ 1 0 7、 第 2電子膨張弁 1 1 2、 第 1 の膨張機構としての第 1電子膨張弁 1 0 4、 蒸発器としての室内熱交換器 1 0 5、 アキュムレータ 1 0 8をこの順に有している。 第 2電子膨張弁 1 1 2には並列に、 過冷却用熱交換器としての蓄熱用熱交換器 1 1 0の室外 側連結端 1 1 0 b, 室内側連結端 1 1 0 cが接続されている。 蓄熱用熱交 換器 1 1 0は、 蓄熱媒体としての水 Wを満たした蓄熱槽 1 0 9内に、 鉛直 方向に蛇行する冷却管 1 0 aを設けて形成されている。 蓄熱用熱交換器 1 1 0の本体 1 0 9と室外側連結端 1 1 0 bとの間の配管には第 1開閉弁 1 1 1が介挿されている。 短絡回路 1 1 3は、 蓄熱用熱交換器 1 1 0の本体 1 0 9と第 1開閉弁 1 1 1との間から分岐して、 アキュムレータ 8の入口 近傍で主回路 1 0 6と合流している。 この短絡回路 1 1 3には第 2開閉弁 1 1 4が介挿されている。 第 1開閉弁 1 1 1および第 2開閉弁 1 1 4の開 閉、 第 1電子膨張弁 1 0 4および第 2電子膨張弁 1 1 2の開度は、 この空 気調和機の運転状態および各サーミス夕 T h 1 , T h 2、 圧力センサ P s からの信号に応じて、 開閉制御手段 1 1 6によって制御されるようになつ ている。 蓄熱運転時には、 開閉制御手段 1 1 6によって、 第 1開閉弁 1 1 1が閉 状態、 第 2開閉弁 1 1 4が開状態、 第 1電子膨張弁 1 0 4が全閉状態にさ れるとともに、 第 2電子膨張弁 1 1 2の開度がサーミスタ T h 1、 圧力セ ンサ P sからの信号に応じて制御される。 このとき、 圧縮機 1 0 2から吐 出された冷媒 (流れの向きを図 8中に実線の矢印で示す) は、 室外熱交換 器 1 0 3によって凝縮され、 レシーバ 1 0 7、 第 2電子膨張弁 1 1 2を通 り、 蓄熱用熱交換器 1 1 0において上記水 Wとの熱交換によって蒸発され た後、 短絡回路 1 1 3の第 2開閉弁 1 1 4を通り、 主回路 1 0 6のアキュ ムレータ 8を通して圧縮機 2に吸い込まれる。 蓄熱槽 1 0 9内の水 Wは、 冷却管 1 1 0 aを通る冷媒との熱交換によって冷却されて、 冷却管 1 1 0 aの表面に氷として付着する。 これにより、 蓄熱槽 1 0 9に冷熱が蓄えら れる。
蓄熱回収を行う冷房運転時には、 開閉制御手段 1 1 6によって、 第 1開 閉弁 1 1 1が開状態、 第 2開閉弁 1 1 4が閉状態、 第 1電子膨張弁 1 0 4 および第 2電子膨張弁 1 1 2の開度がサーミスタ T h 2、 圧力センサ P s からの信号に応じて制御される。 このとき、 圧縮機 1 0 2から吐出された 冷媒 (流れの向きを図 8中に破線の矢印で示す) は、 室外熱交換器 1 0 3 によって凝縮され、 レシーバ 1 0 7を通る。 この後、 冷媒の一部は第 2電 子膨張弁 1 1 2を通り、 そのまま合流点 1 1 0 cに達するが、 残りの冷媒 は、 分岐点 1 1 0 bから第 1開閉弁 1 1 1を通り、 蓄熱用熱交換器 1 1 0 において蓄熱運転時に生成された氷との熱交換によって過冷却された後、 合流点 1 1 0 cに達する。 このとき、 第 2電子膨張弁 1 1 2を通る冷媒と 蓄熱用熱交換器 1 1 0を通る冷媒^:の流量比は第 2電子膨張弁 1 1 2の開 度によって定まる。 蓄熱用熱交換器 1 1 0は、 氷に蓄えられた冷熱を用い て上記冷媒を過冷却するので、 冷却管 1 1 0 aを通る冷媒を効果的に過冷 却することができる。 合流点 1 1 0 cで合流した冷媒は、 第 1電子膨張弁 1 0 4によって減圧された後、 室内熱交換器 1 0 5において室内空気との 熱交換によって蒸発され、 アキュムレータ 8を通して圧縮機 2に吸い込ま れ 。
このように蓄熱用熱交換器 1 1 0で冷媒を過冷却することにより、 過冷 却を行わない場合に比して冷凍効果を増大できる。 しかも、 室内熱交換器
1 0 5に流入する非共沸混合冷媒を構成する冷媒の沸点が互いに異なるこ とから、 図 2に示した P h線図において、 二相域 (湿り蒸気範囲) で等温 線に勾配 (比ェンタルピ軸に対する傾き。 以下 「温度勾配」 という。 ) が 生じる。 この二相域の温度勾配のために、 単一冷媒を用いる場合に比して、 室内熱交換器 1 0 5の入口温度が低下する。 したがって、 室内熱交換器 1 0 5によって吸熱される室内空気と、 その車内熱交換器 1 0 5内を通る冷 媒との間の温度差が大きくなつて、 室内熱交換器 1 0 5の熱交換能力が増 大する。 この結果、 過冷却による冷凍能力改善効果を、 単一冷媒を用いる 場合に比して、 室内熱交換器 1 0 5の熱交換能力増大分だけさらに向上さ せることができる。
なお、 蓄熱回収を行わない通常の冷房運転を行うためには、 開閉制御手 段 1 1 6によって、 第 1開閉弁 1 1 1および第 2開閉弁 1 1 4を閉状態、 第 2電子膨張弁 1 1 2を全開状態にし、 第 1電子膨張弁 1 0 4の開度をサ 一ミスタ T h 2、 圧力センサ P sからの信号に応じて制御すれば良い。 こ のとき、 圧縮機 1 0 2から吐出された冷媒は、 室外熱交換器 1 0 3によつ て凝縮され、 レシーバ 1 0 7、 第 2電子膨張弁 1 1 2を通り、 室内熱交換 器 1 0 5によって蒸発され、 アキュムレータ 1 0 8を通して圧縮機 1 0 2 に吸い込まれる。
〔第 3実施例〕 図 9は、 別の冷媒回路から供給される冷熱を用いて冷媒を過冷却する冷 媒回路を備えた別の実施例の空気調和機を示している。
この空気調和機は、 同一構成の 2つの機器類 H, Iを含む 1台の室外ュ ニッ ト Aと、 この室外ュニッ ト Aの一方の機器類 Hに接続された 2台の室 内ュニッ ト B , Cと、 室内ュニッ ト Aの他方の機器類 Iに接続された 2台 の室内ュニッ 卜 D, Eを備えている。
室外ュニッ ト Aの一方の機器類 Hは、 アキュムレータ 2 0 8と、 ィンバ —タ 2 0 7によって駆動される圧縮機 2 0 1と、 四路切換弁 2 0 2と、 室 外熱交換器 2 0 3と、 過冷却用熱交換器 2 2 5と、 冷房運転時に冷媒をー 方向 (図中に実線の矢印で示す向き) にのみ通過させる逆止弁 2 0 9と、 この逆止弁 2 0 9に並列に接続された暖房運転用の膨張機構 2 0 4とを冷 媒配管 2 0 5で接続したものである。 同様に、 他方の機器類 Iは、 アキュ ムレータ 2 0 8と、 ィンバータ 2 0 7によって駆動される圧縮機 2 0 1と、 四路切換弁 2 0 2と、 室外熱交換器 2 0 3と、 過冷却用熱交換器 2 2 5 B と、 冷房運転時に冷媒を一方向にのみ通過させる逆止弁 2 0 9と、 この逆 止弁 2 0 9に並列に接続された暖房運転用の膨張機構 2 0 4とを冷媒配管 2 0 5で接続したものである。 各室内ユニッ ト B, C , D, Eは同一内部 構成であり、 それぞれ室内熱交換器 2 1 0と、 暖房運転時に冷媒を冷房運 転時とは逆方向にのみ通過させる逆止弁 2 1 3と、 この逆止弁 2 1 3に並 列に接続された冷房運転用の膨張機構 2 1 1とを冷媒配管 2 1 2で接続し たものである。 なお、 以下では冷房運転に関して説明するものとする。 室内ユニッ ト B, Cは冷媒配管 2 1 5, 2 1 5で互いに並列に接続され つつ、 他の冷媒配管 2 1 6 , 2 1 6により室外ュニッ ト Aの一方の機器類 Hに冷媒の循環可能に接続されて一つの冷媒回路 2 1 7が形成されている。 同様に、 室内ユニッ ト C , Dは冷媒配管 2 1 8 , 2 1 8で互いに並列に接 続されつつ、 他の冷媒配管 2 1 9 , 2 1 9により室外ュニッ ト Aの他方の 機器類 Iに冷媒の循環可能に接続されて別の冷媒回路 2 2 0が形成されて いる。 各冷媒回路 2 1 7 , 2 2 0の圧縮機 2 0 1の吸入側 (室外ュニッ ト Aの冷媒入口近傍) には、 それぞれその冷媒回路の運転状態を検出するた めの圧力センサ 2 3 5 , 2 3 6が設けられている。
これらの冷媒回路 2 1 7, 2 2 0を循環させる冷媒としては、 R— 3 2 / 1 3 4 aまたは R— 4 0 7 Cからなる非共沸混合冷媒を用いている。 機器類 H側の冷媒回路 2 1 7と機器類 I側の冷媒回路 2 2 0との間には、 バイパス回路 2 3 0 . 2 3 0 Bが設けられている。 バイパス回路 2 3 0 (冷 媒配管 2 2 7 , 2 2 8を有する) は、 冷媒回路 2 2 0の室外熱交換器 2 0 3の下流側 (冷房運転時の出口近 ) から分岐して、 開閉弁 2 3 1、 膨張 機構 2 2 6、 冷媒回路 2 1 7の過冷却用熱交換器 2 2 5を通り、 冷媒回路 2 2 0のアキュムレータ 2 0 8の入口近傍でその冷媒回路 2 2 0と合流し ている。 バイパス回路 2 3 0 B (冷媒配管 2 2 7 B , 2 2 8 Bを有する) は、 冷媒回路 2 1 7の室外熱交換器 2 0 3の下流側 (冷房運転時の出口近 傍) から分岐して、 開閉弁 2 3 1 B、 膨張機構 2 2 6 B、 冷媒回路 2 2 0 の過冷却用熱交換器 2 2 5 Bを通り、 冷媒回路 2 1 7のアキュムレータ 2 0 8の入口近傍でその冷媒回路 2 1 7と合流している。 過冷却用熱交換器 2 2 5は、 例えば図 4 Aに示した二重管式熱交換器 1 0と同様に構成され、 冷媒回路 2 1 7を流れる主流冷媒と、 冷媒回路 2 2 0から分岐したバイパ ス回路 2 3 0を流れるバイパス流冷媒との間で熱交換を行う。 一方、 過冷 却熱交換器 2 2 5 Bは、 冷媒回路 2 2 0を流れる主流冷媒と、 冷媒回路 2 1 7から分岐したバイパス回路 2 3 0 Bを流れるバイパス流冷媒との間で 熱交換を行う。
過冷却を行わない通常の冷房運転時には、 図示しない制御手段によって バイパス回路 2 3 0 , 2 3 0 Bの開閉弁 2 3 1および 2 3 1 Bが閉状態に される。 このとき、 冷媒回路 2 1 7と冷媒回路 2 2 0とは互いに独立に冷 房運転を行う。 例えば冷媒回路 2 2 0において、 圧縮機 2 0 1から吐出さ れた冷媒 (流れの向きを図 9中に実線の矢印で示す) は、 凝縮器として働 く室外熱交換器 2 0 3によって凝縮され、 熱交換を行わない状態にある熱 交換器 2 2 5 B、 逆止弁 2 0 9を通る。 この後、 各室内ュニッ ト B , の 膨張機構 2 1 1によって減圧され、 蒸発器として働く室内熱交換器 2 1 0 によって蒸発され、 そして室外ュニッ ト Aのアキュムレータ 2 0 8を通し て圧縮機 2 0 1に吸い込まれる。 これは冷媒回路 2 1 7においても同様で める。
冷媒回路 2 1 7 , 2 2 0が独立に冷房運転を行っている時に、 圧力セン サ 2 3 5, 2 3 6の出力に基づいて、 例えば冷媒回路 2 1 7側で冷熱が余つ ており、 冷媒回路 2 2 0側で冷熱が不足していると判断されたとする。 こ の判断結果に応じて、 制御手段によって、 開閉弁 2 3 1が閉状態、 開閉弁 2 3 1 Bが開状態に設定され、 冷媒回路 2 2 0が過冷却を行う冷房運転に 移行する。 このとき、 冷媒回路 2 1 7を流れる冷媒の一部が分岐して、 バ ィパス流冷媒 (流れの向きを図 9中に破線の矢印で示す) としてバイパス 回路 2 3 0 Bを流れる。 この結果、 過冷却用熱交換器 2 2 5 Bは、 冷媒回 路 2 2 0を流れる主流冷媒と、 バイパス回路 2 3 0を流れるバイパス流冷 媒との間で熱交換を行う。 つまり、 冷媒回路 2 2 0において、 圧縮機 2 0 1から吐出された冷媒は、 凝縮器として働く室外熱交換器 2 0 3によって 凝縮され、 熱交換器 2 2 5によって過冷却される。 それから、 逆止弁 2 0 9を通る。 この後、 各室内ュニッ ト B , Cの膨張機構 2 1 1によって減圧 され、 蒸発器として働く室内熱交換器 2 1 0によって蒸発され、 そして室 外ュニッ 卜 Aのアキュムレータ 2 0 8を通して圧縮機 2 0 1に吸い込まれ る o
このように熱交換器 2 2 5 Bで冷媒を過冷却することにより、 過冷却を 行わない場合に比して冷凍効果を増大できる。 しかも、 室内熱交換器 2 1 0に流入する非共沸混合冷媒を構成する冷媒の沸点が互いに異なることか ら、 図 2に示した P h線図において、 二相域 (湿り蒸気範囲) で等温線に 勾配 (比ェンタルピ軸に対する傾き。 以下 「温度勾配」 という。 ) が生じ る。 この二相域の温度勾配のために、 単一冷媒を用いる場合に比して、 室 内熱交換器 2 1 0の入口温度が低下する。 したがって、 室内熱交換器 2 1 0によって吸熱される室内空気と、 その室内熱交換器 2 1 0内を通る冷媒 との間の温度差が大きくなつて、 室内熱交換器 2 1 0の熱交換能力が増大 する。 この結果、 過冷却による冷凍能力改善効果を、 単一冷媒を用いる場 合に比して、 室内熱交換器 2 1 0の熱交換能力增大分だけさらに向上させ ることができる。
なお、 冷媒回路 2 1 7 , 2 2 0が独立に冷房運転を行っている時に、 圧 力センサ 2 3 5 , 2 3 6の出力に基づいて、 上の場合とは逆に冷媒回路 2 2 0側で冷熱が余っており、 冷媒回路 2 1 7側で冷熱が不足していると判 断された場合は、 この判断結果に応じて、 制御手段によって、 開閉弁 2 3 1が開状態、 開閉弁 2 3 1 Bが閉状態に設定され、 冷媒回路 2 1 7が過冷 却を行う冷房運転に移行する。
産業上の利用可能性
本発明は、 過冷却を行なう冷媒回路を有する空気調和機に適用でき、 空 気調和機の冷凍能力を向上させるのに有用である。

Claims

請 求 の 範 囲
1. 圧縮機 (2, 102, 201) 、 凝縮器 (3. 103, 203) 、 過冷却用熱交換器 (10, 110, 225) 、 第 1の膨張機構 (4, 10 4, 211)および蒸発器 (5, 105, 210)の順に冷媒が流れる冷 媒回路 (1, 101, 217) を備えた空気調和機において、 上記冷媒 として非共沸混合冷媒を用いることを特徴とする空気調和機。
2. 請求項 1に記載の空気調和機において、
上記冷媒回路 (1) は、 上記凝縮器 (3) と第 1の膨張機構 (4) との 間で主回路 (6)から分岐して、 上記圧縮機 (2) の吸入側で上記主回路 (6) と合流するバイパス回路 (13) を備えるとともに、 このバイパス 回路 (13) に第 2の膨張機構 (12) を有し、
上記過冷却用熱交換器 (10) は、 上記主回路 (6) を流れる主流冷媒 と、 上記第 2の膨張機構 (12)通過後の上記バイパス回路 (13) を流 れるバイパス流冷媒との間で熱交換を行うことを特徴とする空気調和機。
3. 請求項 2に記載の空気調和機において、
上記バイパス回路 (13) は、 上記凝縮器 (3) と過冷却用熱交換器 (1 0) との間で上記主回路 (6)から分岐していることを特徴とする空気調 和機。
4. 請求項 2に記載の空気調和機において、
上記バイパス回路 (13) は、 上記過冷却用熱交換器 (10) と第 1の 膨張機構 (4) との間で上記主回路 (6) から分岐していることを特徴と する空気調和機。
5. 請求項 2、 3または 4に記載の空気調和機において、 上記過冷却用熱交換器 (10) は、 上記主流冷媒と上記バイパス流冷媒 とが伝熱性を持つ壁 (10 a) を挟んで互いに反対向きに流れる対向流型 熱交換器であることを特徴とする空気調和機。
6. 請求項 1に記載の空気調和機において、
上記過冷却用熱交換器 (110) は、 氷に蓄えられた冷熱を用いて上記 冷媒を過冷却することを特徴とする空気調和機。
7. 請求項 1に記載の空気調和機において、
上記冷媒回路 (217) の過冷却用熱交換器 (225) は、 別の冷媒回 路 (220) から供給される冷熱を用いて上記冷媒を過冷却することを特 徴とする空気調和機。
PCT/JP1997/002745 1996-08-14 1997-08-07 Conditionneur d'air WO1998006983A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/051,601 US6164086A (en) 1996-08-14 1997-08-07 Air conditioner
KR1019980702603A KR100332532B1 (ko) 1996-08-14 1997-08-07 공기조화기
AU37832/97A AU727320B2 (en) 1996-08-14 1997-08-07 Air conditioner
EP97934716A EP0855562B1 (en) 1996-08-14 1997-08-07 Air conditioner
DE69726107T DE69726107T2 (de) 1996-08-14 1997-08-07 Klimagerät
HK98110497A HK1009682A1 (en) 1996-08-14 1998-09-07 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8214515A JPH1054616A (ja) 1996-08-14 1996-08-14 空気調和機
JP8/214515 1996-08-14

Publications (1)

Publication Number Publication Date
WO1998006983A1 true WO1998006983A1 (fr) 1998-02-19

Family

ID=16657006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002745 WO1998006983A1 (fr) 1996-08-14 1997-08-07 Conditionneur d'air

Country Status (10)

Country Link
US (1) US6164086A (ja)
EP (1) EP0855562B1 (ja)
JP (1) JPH1054616A (ja)
KR (1) KR100332532B1 (ja)
AU (1) AU727320B2 (ja)
DE (1) DE69726107T2 (ja)
ES (1) ES2210549T3 (ja)
HK (1) HK1009682A1 (ja)
PT (1) PT855562E (ja)
WO (1) WO1998006983A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512924A2 (en) * 2003-09-05 2005-03-09 LG Electronics Inc. Air conditioner comprising heat exchanger and means for switching cooling cycle
CN104266416A (zh) * 2014-09-29 2015-01-07 特灵空调系统(中国)有限公司 多联机节流与过冷控制机构
EP2669598A4 (en) * 2011-01-26 2016-12-07 Mitsubishi Electric Corp AIR CONDITIONING DEVICE

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848537A (en) * 1997-08-22 1998-12-15 Carrier Corporation Variable refrigerant, intrastage compression heat pump
US7080522B2 (en) * 2000-01-04 2006-07-25 Daikin Industries, Ltd. Car air conditioner and car with its conditioner
CN100416187C (zh) * 2000-05-30 2008-09-03 布鲁克斯自动化公司 低温制冷系统
KR20020024497A (ko) * 2000-09-25 2002-03-30 김영호 저 압축부하형 냉방장치
KR100422336B1 (ko) * 2000-09-25 2004-03-10 김순겸 저 압축부하형 난방장치
KR20020024498A (ko) * 2000-09-25 2002-03-30 김영호 저 압축부하형 냉난방장치
FR2820987B1 (fr) * 2001-02-16 2005-06-17 Jean Luc Maire Separateur des phases liquide/gaz pour un circuit frigorifique notamment celui d'une pompe a chaleur
ES2353864T3 (es) * 2002-08-02 2011-03-07 Daikin Industries, Ltd. Equipo de refrigeración.
US6708511B2 (en) * 2002-08-13 2004-03-23 Delaware Capital Formation, Inc. Cooling device with subcooling system
AU2003295527A1 (en) * 2002-11-11 2004-06-03 Vortex Aircon Refrigeration system with bypass subcooling and component size de-optimization
KR100504498B1 (ko) 2003-01-13 2005-08-03 엘지전자 주식회사 공기조화기용 과냉확보장치
JP4143434B2 (ja) * 2003-02-03 2008-09-03 カルソニックカンセイ株式会社 超臨界冷媒を用いた車両用空調装置
KR100618212B1 (ko) * 2003-10-16 2006-09-01 엘지전자 주식회사 에어컨의 냉매 온도 제어 시스템 및 그 제어방법
KR100539570B1 (ko) * 2004-01-27 2005-12-29 엘지전자 주식회사 멀티공기조화기
WO2005073645A1 (de) * 2004-01-28 2005-08-11 Bms-Energietechnik Ag Hocheffiziente verdampfung bei kälteanlagen mit dem dazu nötigen verfahren zum erreichen stabilster verhältnisse bei kleinsten und/oder gewünschten temperaturdifferenzen der zu kühlenden medien zur verdampfungstemperatur
US20100192607A1 (en) * 2004-10-14 2010-08-05 Mitsubishi Electric Corporation Air conditioner/heat pump with injection circuit and automatic control thereof
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
EP1662213A1 (en) * 2004-11-24 2006-05-31 Daewoo Electronics Corporation Cooling system with economiser circuit
KR100623515B1 (ko) * 2004-11-24 2006-09-19 주식회사 대우일렉트로닉스 추기열교환기를 장착한 히트펌프
EP1902114A1 (en) * 2005-06-08 2008-03-26 Carrier Corporation Methods and apparatus for operating air conditioning systems with an economizer
JP3982545B2 (ja) * 2005-09-22 2007-09-26 ダイキン工業株式会社 空気調和装置
EP2000751B1 (en) * 2006-03-27 2019-09-18 Mitsubishi Electric Corporation Refrigeration air conditioning device
WO2007126523A1 (en) * 2006-03-30 2007-11-08 Carrier Corporation Transport refrigeration unit
KR100854152B1 (ko) * 2007-01-26 2008-08-26 엘지전자 주식회사 공기조화시스템
US8037713B2 (en) 2008-02-20 2011-10-18 Trane International, Inc. Centrifugal compressor assembly and method
US7975506B2 (en) * 2008-02-20 2011-07-12 Trane International, Inc. Coaxial economizer assembly and method
US7856834B2 (en) 2008-02-20 2010-12-28 Trane International Inc. Centrifugal compressor assembly and method
US9353765B2 (en) 2008-02-20 2016-05-31 Trane International Inc. Centrifugal compressor assembly and method
JP5003968B2 (ja) * 2008-03-06 2012-08-22 日立電線株式会社 過冷却器用伝熱管及びその製造方法
DE102010012869A1 (de) * 2009-03-26 2010-09-30 Modine Manufacturing Co., Racine Wärmetauschermodul
JP2010230256A (ja) * 2009-03-27 2010-10-14 Fujitsu General Ltd 冷媒間熱交換器
JP5761898B2 (ja) * 2009-03-31 2015-08-12 三菱重工業株式会社 2室用冷凍装置
JP2011133177A (ja) * 2009-12-25 2011-07-07 Fujitsu General Ltd 空気調和機
US9797639B2 (en) 2010-06-30 2017-10-24 Danfoss A/S Method for operating a vapour compression system using a subcooling value
US20130091874A1 (en) * 2011-04-07 2013-04-18 Liebert Corporation Variable Refrigerant Flow Cooling System
JP5852368B2 (ja) * 2011-08-31 2016-02-03 トヨタ自動車株式会社 冷却装置
FI123910B (fi) * 2012-03-27 2013-12-13 Jetitek Oy Rakennustekniikkajärjestelmä, menetelmä lämmön siirtämiseksi rakennuksessa ja ohjausjärjestelmä rakennustekniikkajärjestelmää varten
JP2014105890A (ja) 2012-11-26 2014-06-09 Panasonic Corp 冷凍サイクル装置及びそれを備えた温水生成装置
DE102017120811A1 (de) * 2017-09-08 2019-03-14 Voltair Gmbh Wärmetauschvorrichtung
KR102462774B1 (ko) * 2020-12-17 2022-11-02 엘지전자 주식회사 공기조화기

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116777U (ja) * 1983-01-26 1984-08-07 三菱電機株式会社 冷凍装置
JPS59153074A (ja) * 1983-02-22 1984-08-31 松下電器産業株式会社 冷凍サイクル装置
JPH01296053A (ja) * 1988-05-19 1989-11-29 Daikin Ind Ltd 空気調和装置
JPH0247671B2 (ja) * 1983-05-04 1990-10-22 Ebara Mfg Taaboreitoki
JPH02306064A (ja) * 1989-05-19 1990-12-19 Daikin Ind Ltd 蓄熱式空気調和装置の運転制御装置
JPH04324072A (ja) * 1991-04-25 1992-11-13 Sanden Corp 非共沸混合冷媒用の冷凍回路
JPH06331223A (ja) * 1993-05-21 1994-11-29 Mitsubishi Electric Corp 冷凍サイクル
JPH0875290A (ja) * 1994-09-06 1996-03-19 Hitachi Ltd ヒートポンプ式空調装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544675Y2 (ja) * 1988-05-19 1993-11-12
AU627587B2 (en) * 1989-06-16 1992-08-27 Sanyo Electric Co., Ltd. Refrigerant composition
US5056329A (en) * 1990-06-25 1991-10-15 Battelle Memorial Institute Heat pump systems
US5092138A (en) * 1990-07-10 1992-03-03 The University Of Maryland Refrigeration system
EP0499999B1 (en) * 1991-02-18 1995-12-06 Matsushita Electric Industrial Co., Ltd. Refrigerant cycling apparatus
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
JPH0539960A (ja) * 1991-08-06 1993-02-19 Tabai Espec Corp 冷凍装置
US5243837A (en) * 1992-03-06 1993-09-14 The University Of Maryland Subcooling system for refrigeration cycle
JPH0650617A (ja) * 1992-07-31 1994-02-25 Mitsubishi Heavy Ind Ltd コンテナ用冷凍ユニット
US5386709A (en) * 1992-12-10 1995-02-07 Baltimore Aircoil Company, Inc. Subcooling and proportional control of subcooling of liquid refrigerant circuits with thermal storage or low temperature reservoirs
JPH06213518A (ja) * 1993-01-13 1994-08-02 Hitachi Ltd 混合冷媒用ヒートポンプ式エアコン
JP2979926B2 (ja) * 1993-10-18 1999-11-22 株式会社日立製作所 空気調和機
CN1135341C (zh) * 1994-05-30 2004-01-21 三菱电机株式会社 制冷循环系统
JPH08166172A (ja) * 1994-12-14 1996-06-25 Sanyo Electric Co Ltd 冷凍装置
JP3463710B2 (ja) * 1995-03-27 2003-11-05 三菱電機株式会社 非共沸混合冷媒搭載の冷凍装置
JPH09196480A (ja) * 1996-01-12 1997-07-31 Hitachi Ltd 冷凍装置用液冷却器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116777U (ja) * 1983-01-26 1984-08-07 三菱電機株式会社 冷凍装置
JPS59153074A (ja) * 1983-02-22 1984-08-31 松下電器産業株式会社 冷凍サイクル装置
JPH0247671B2 (ja) * 1983-05-04 1990-10-22 Ebara Mfg Taaboreitoki
JPH01296053A (ja) * 1988-05-19 1989-11-29 Daikin Ind Ltd 空気調和装置
JPH02306064A (ja) * 1989-05-19 1990-12-19 Daikin Ind Ltd 蓄熱式空気調和装置の運転制御装置
JPH04324072A (ja) * 1991-04-25 1992-11-13 Sanden Corp 非共沸混合冷媒用の冷凍回路
JPH06331223A (ja) * 1993-05-21 1994-11-29 Mitsubishi Electric Corp 冷凍サイクル
JPH0875290A (ja) * 1994-09-06 1996-03-19 Hitachi Ltd ヒートポンプ式空調装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512924A2 (en) * 2003-09-05 2005-03-09 LG Electronics Inc. Air conditioner comprising heat exchanger and means for switching cooling cycle
EP1512924A3 (en) * 2003-09-05 2011-01-26 LG Electronics, Inc. Air conditioner comprising heat exchanger and means for switching cooling cycle
EP2669598A4 (en) * 2011-01-26 2016-12-07 Mitsubishi Electric Corp AIR CONDITIONING DEVICE
CN104266416A (zh) * 2014-09-29 2015-01-07 特灵空调系统(中国)有限公司 多联机节流与过冷控制机构

Also Published As

Publication number Publication date
EP0855562B1 (en) 2003-11-12
KR19990064122A (ko) 1999-07-26
ES2210549T3 (es) 2004-07-01
KR100332532B1 (ko) 2002-11-29
JPH1054616A (ja) 1998-02-24
EP0855562A4 (en) 2000-04-12
HK1009682A1 (en) 1999-09-17
US6164086A (en) 2000-12-26
DE69726107D1 (de) 2003-12-18
AU727320B2 (en) 2000-12-07
EP0855562A1 (en) 1998-07-29
DE69726107T2 (de) 2004-08-26
AU3783297A (en) 1998-03-06
PT855562E (pt) 2004-03-31

Similar Documents

Publication Publication Date Title
WO1998006983A1 (fr) Conditionneur d'air
JP4803199B2 (ja) 冷凍サイクル装置
WO2015029160A1 (ja) 空気調和装置
JP5992088B2 (ja) 空気調和装置
US6668569B1 (en) Heat pump apparatus
US7171825B2 (en) Refrigeration equipment
JP3894221B1 (ja) 空気調和装置
JP3087745B2 (ja) 冷凍装置
WO2015063846A1 (ja) 空気調和装置
WO2005024313A1 (ja) 冷凍装置
JPH09105560A (ja) 冷凍装置
JPH0634169A (ja) 空気調和装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
JP2001355924A (ja) 空気調和機
JP3791090B2 (ja) ヒートポンプ装置
JP3719296B2 (ja) 冷凍サイクル装置
JP2698118B2 (ja) 空気調和装置
JP6540074B2 (ja) 空気調和装置
JP2001033110A (ja) 冷凍装置
JP3991654B2 (ja) 空気調和機
JP2004347269A (ja) 冷凍装置
JP2004170048A (ja) 空気調和装置
JPH06241582A (ja) 蓄熱式冷房装置
JP2005042980A (ja) 蓄熱式空気調和装置
WO2024023874A1 (ja) 空気調和機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97191380.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019980702603

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997934716

Country of ref document: EP

Ref document number: 09051601

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997934716

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019980702603

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980702603

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997934716

Country of ref document: EP