[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998004106A1 - Method for making printed circuits and resulting printed circuit - Google Patents

Method for making printed circuits and resulting printed circuit Download PDF

Info

Publication number
WO1998004106A1
WO1998004106A1 PCT/CH1996/000263 CH9600263W WO9804106A1 WO 1998004106 A1 WO1998004106 A1 WO 1998004106A1 CH 9600263 W CH9600263 W CH 9600263W WO 9804106 A1 WO9804106 A1 WO 9804106A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed circuit
conductive tracks
conductive
tracks
layer
Prior art date
Application number
PCT/CH1996/000263
Other languages
French (fr)
Inventor
François Droz
Original Assignee
Droz Francois
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Droz Francois filed Critical Droz Francois
Priority to PCT/CH1996/000263 priority Critical patent/WO1998004106A1/en
Priority to AU62972/96A priority patent/AU6297296A/en
Priority to CA002260885A priority patent/CA2260885C/en
Publication of WO1998004106A1 publication Critical patent/WO1998004106A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07783Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being planar
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/041Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by using a die for cutting the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2847Sheets; Strips
    • H01F2027/2861Coil formed by folding a blank

Definitions

  • the present invention relates to a method of manufacturing printed circuits according to the preamble of claim 1
  • the present invention also relates to a printed circuit, for example an inductor whose turns are formed by printed circuit tracks, manufactured according to this process
  • an inductance coil with an electronic circuit, for example an integrated circuit, mounted on a printed circuit board.
  • an electronic circuit for example an integrated circuit
  • a printed circuit board Such a configuration is described for example in WO-91 / 19302
  • the coil is generally produced by winding a wire around a core.
  • Such coils are complex to produce, and therefore relatively expensive.
  • the connection between the printed circuit and the coil causes certain additional mounting difficulties and poses problems. reliability especially when these elements are integrated into a smart card which generally does not offer optimal protection against deformations and mechanical stresses
  • the thickness of the coil also often poses a problem when it must be integrated in a miniaturized device or in a smart card for which it is desired to keep the standardized thickness of 0.76mm
  • US-4,555,291 describes a method of manufacturing a coil in the form of a printed circuit essentially comprising mechanical steps A film fine metal is precut beforehand in the form of a circuit with multiple turns, leaving interconnection regions between turns to stiffen the sheet thus cut. This sheet is then laminated on a sheet of dielectric material, then a second cutting device applied to this laminate makes it possible to eliminate the interconnections by leaving only the turns of the inductance.
  • This solution is complex to implement and in particular requires two cutting operations.
  • the thickness of the precut metal film must be sufficient so that it can be transported without tearing; similarly, the width of the turns and of the intervals cut between the turns must be sufficient to ensure a minimum of rigidity in the film before lamination on the dielectric support.
  • DE-2 758204 describes a method of manufacturing a circuit, in particular an inductance in the form of a printed circuit, in which the different tracks constituting the turns of the coil are demarcated by thermomechanical machining of a synthetic film coated with a surface metal layer.
  • a heated metal tip (3) penetrates into the surface metal layer and simultaneously melts part of the synthetic layer under the metal.
  • This process is more particularly suitable for producing different kinds of devices or for coils whose thickness is not critical.
  • the thickness of the synthetic layer (1) must be thick enough to be cut by the tip (3) and simultaneously heated without being completely traversed. Regulation of the tip temperature poses additional difficulties; in addition, the metal tip (3) must move slowly enough so that the synthetic material has time to melt. This method is therefore unsuitable for manufacturing coils which must be integrated, for example, into smart cards, and the thickness of which as well as the cost and time of manufacture must be minimized.
  • the repelled metal portions are separated and electrically insulated from the non-repelled portions along shear lines defined by the stamping punch, rather than by an insulating space extending laterally on the surface of the printed circuit. In this way, by distributing the conductive tracks on different levels pushed back by the punch to different depths, it is possible to use the entire surface of the circuit and therefore to increase the density of the tracks.
  • An object of the present invention is therefore to propose an improved printed circuit manufacturing method, in particular when it is used to manufacture inductors for a smart card whose turns are formed by the conductive tracks of the printed circuit.
  • this object is achieved by means of a printed circuit manufacturing method as specified by claim 1.
  • the invention also relates to printed circuits produced by this process, in particular coils or connectors produced by this process.
  • the invention further relates to smart cards incorporating a coil made by this process and / or a printed circuit made by this process.
  • FIG. 1 a sectional view of a dielectric film coated with a surface conductive layer suitable for use with the present invention
  • FIG. 2 a sectional view of a stamping punch and of a dielectric film coated with a surface conductive layer before demarcation of the conductive tracks
  • FIG. 3 a sectional view of a dielectric film coated with a surface conductive layer after a first operation of demarcating the conductive tracks by repelling conductive material
  • FIG. 4 a sectional view of a second stamping punch and of a dielectric film coated with a surface conductive layer between the two operations for demarcating the conductive tracks
  • FIG. 5 a sectional view of a dielectric film coated with a surface conductive layer after the additional operation of demarcating the conductive tracks by cutting by means of the second stamping punch,
  • FIG. 6 a perspective view of the second stamping punch and of a portion of the dielectric film coated with a surface conductive layer after the first operation of demarcating the conductive tracks
  • FIG. 7 a perspective view of a dielectric film and of a surface conductive layer machined before rolling according to a variant of the invention
  • FIG. 8 a sectional view of a dielectric film coated on one face with several surface conductive layers, after the two operations of demarcating the conductive tracks
  • FIG. 9 a perspective view of a smart card comprising a printed circuit according to the invention.
  • FIG. 10 a perspective view of a printed circuit before folding, produced according to a variant of the invention comprising a folding step
  • Figure 1 illustrates a sectional view of a dielectric film 1 coated with a surface conductive layer 2.
  • the film 1 consists of any dielectric material, preferably a sufficiently ductile synthetic material. Depending on the application, a flexible film will be chosen or, on the contrary, a more rigid substrate.
  • the film 1 can also be made of a composite or multilayer material, for example a laminate comprising several layers of synthetic material, cardboard and / or metal.
  • the surface conductive layer 2 is applied by a known method to the film 1 and held for example by welding or by means of glue 4.
  • the glue 4 can for example be a hot glue or a cold glue; it is also possible to use as adhesive 4 a double-sided adhesive sheet or a fusible film.
  • Layer 2 is made of a suitable metal, for example copper, aluminum, silver or a conductive alloy.
  • the laminate of FIG. 1 can for example be manufactured according to one of the methods and with the materials described in the various examples of US Pat. No. 4,356,627.
  • FIG. 2 shows a sectional view of a first stamping punch 30 above the printed circuit before the first operation of demarcation of the conductive tracks.
  • the bearing surface of the stamping punch 30 facing the circuit has a low relief pattern 31, 32 corresponding to the topology of the conductive tracks of the printed circuit.
  • the stamping punch 30 is lowered by means not shown, with sufficient pressure so that the protruding portions 31 of the punch push the surface metal layer 2. Then it is raised, preferably just before or just after the recessed portions 32 of the punch do not touch the surface layer 2.
  • FIG. 3 shows the film in section after this first demarcation operation of the conductive tracks 8.
  • the protruding portions 31 of the stamping punch 30 have permanently repelled portions 33 of the surface metal layer 2 leaving the other portions 34 intact. - your.
  • the surface metal layer 2 is therefore divided by this first operation into two sets of conductive tracks 8, respectively 8 ′, distributed over two different levels A, respectively B. If necessary, it is possible to distribute the tracks over more than two different levels using a stamping punch 30 with protrusions 32 of variable height.
  • the dielectric material 1 must withstand abrupt depressions and allow the metal 2 to tear cleanly on the level change line. It is however very difficult to prevent any short circuit between tracks 8, 8 ′ when the width of these tracks is very reduced, or when the depth of repulsion between levels A and B is limited by the maximum thickness to be given to the circuit.
  • this additional operation is performed after the first demarcation operation described above.
  • this additional demarcation operation is carried out before the first demarcation operation.
  • a second stamping punch 5 (figure 4) is used.
  • the second punch stamping 5 has cutting contact surfaces 6 with the surface layer 2 on the synthetic film 1.
  • the second stamping punch 5 is lowered by means not shown, with a pressure just sufficient for the cutting contact surfaces 6 to perforate and cut the surface metal layer 2.
  • the profile of the surfaces 6 is sufficiently sharp so that the punch cutting fine cuts 7 ( Figure 5) in layer 2, without removal of conductive material as in milling processes or pushing back to depth.
  • the metallic material is here incised by the surfaces 6.
  • the notches 7 are just deep enough to pass through the metal layer 2 and the possible adhesive layer 4 and possibly touch the synthetic dielectric layer 1.
  • the notches 7 completely pass through only the surface metal layer, the bottom notches being in the middle of the adhesive layer 4.
  • the synthetic film 1 is as little weakened as necessary by the machining of the notches 7; it is thus possible to give it a minimum thickness.
  • the width of the notches 7 is chosen to be as fine as possible. If the substrate 1 is particularly flexible, the width will however be sufficient to avoid any risk of short-circuiting of the conductive tracks 8.
  • the second punch 5 preferably has insulated points 6 intended to locally cut notches 7 at critical locations.
  • the notches 7, 7 ′, 7 can be cut by means of a conventional cutting table known for example in the field of cutting self-adhesive films for advertising or other realizations.
  • the pattern of demarcations between conductive tracks is drawn beforehand using suitable software on a computer, then stored in an electronic memory. This drawing is then used to control the sequential movement of a blade on the cutting table.
  • Some cutting tables allow control of the direction of the blade in the rounding and / or back and forth movements of the blade. The shape of the blade will be chosen accordingly and according to the thickness of the metal layer to be cut.
  • the blade is sharp enough to cut the surface layer without removing conductive material or pushing it back to depth. Its width is minimal in order to allow conductive tracks 8 of maximum width to remain. The depth is just sufficient to pass through the surface metal layer without weakening the dielectric layer 1 too much, which may thus have a minimum thickness. If notches of various depths are necessary, for example to make multilayer circuits with variable patterns on the different layers, it is necessary to replace the blade at each desired change in depth. It is also possible to use a cutting table provided with several blade holders equipped with blades of different depths, or to provide means for controlling the penetration depth of the blade.
  • FIG. 6 illustrates a perspective view of the second stamping punch 5 and of a portion of the dielectric film 1 coated with a surface conductive layer after the first operation of demarcation of the conductive tracks.
  • FIG. 6 more particularly illustrates an area 40 of the circuit after stamping in which the conductive tracks 8, 8 ′ change level.
  • the conductive tracks 8, 8 ′ are distributed alternately over the two levels A and B defined by the first stamping punch 30 used in the first operation.
  • the tracks 8, 8 'then change level; the tracks 8 which occupied the upper level (not pushed back) A progressively descend to the lower level (pushed back) B and vice versa.
  • the slope of the transition zone 40 is determined by the shape given to the first stamping punch 30.
  • the additional operation of demarcating the tracks by cutting by means of a second punch 5 or a cutting table can also be used to create several sets of tracks on the same level A or B, or to share tracks 8, 8 'obtained by prior stamping and pushing and thus further increase the density of the tracks on the printed circuit.
  • FIG. 7 describes a variant of the process in which a metal film 2 is pre-machined even before lamination on the dielectric substrate 1. Holes or slots 7 are previously machined by any known method, for example by cutting, by photochemical operation or by drilling or milling, at determined locations in the conductive film 1. These holes make it possible to demarcate the neighboring conductive tracks locally at the critical locations 41 where a contact would remain if a single stamping-repelling operation was carried out.
  • the conductive film 2 is then assembled in the manner indicated above on the dielectric substrate 1, then the laminate thus obtained is placed under the first punch 30 and stamped with material repulsion, in the manner described above.
  • the two operations of demarcation of conductive tracks by cutting and by stamping-repelling are carried out successively with a single punch.
  • stamping punches are used comprising both cutting surfaces 6 first incising the conductive layer 2 and flat surfaces 31, less prominent. tes, then pushing back the material when the punch is further lowered.
  • the cutting surfaces 6 retractable, for example by means of springs. In this way, when the punch is lowered beyond a certain depth, the cutting surfaces 6 retract into the punch, without sinking further into the material when the punch continues to be lowered.
  • FIG. 8 illustrates a variant of the method applied to dielectric films coated on one face with several surface conductive layers.
  • the dielectric film 1 is coated in this example with a first metallic film 2 fixed by a first layer of adhesive 4.
  • a second metallic film 2 ' is fixed on the first film 2 by a second layer of adhesive 4'.
  • the second layer of adhesive 4 ' also acts as an insulator between the two metal layers 2 and 2'. If necessary, it is also possible to insert an additional layer of insulation between the two metal layers, for example an additional synthetic layer. It is also naturally possible to superimpose more than two metal layers 2, 2 'one above the other.
  • the first stamping punch used has permanently repelled portions 33 of the surface metal layer 2, leaving the other portions 34 of the layer intact.
  • the surface metal layers 2 are therefore displaced by this first operation on at least two different levels A, respectively B.
  • a portion 33 ′ is pushed back by the stamping punch to an intermediate level, so that the upper metal layer 2 'is pushed back into this portion 33' to a depth corresponding approximately to the position of a lower metal layer 2 not pushed back.
  • separation notches 7 must be machined during the second operation of demarcating the tracks by cutting as described above.
  • this arrangement makes it possible to produce high inductance circuits.
  • This freedom of topology can be further increased by machining notches 7 in the lower metal layers 2 before rolling the upper metal layers 2 '.
  • This process is particularly suitable for the manufacture of printed circuits, the thickness and possibly the weight of which must be minimized.
  • this method is suitable for manufacturing printed circuits intended for smart cards.
  • FIG. 9 illustrates a printed circuit for a smart card according to the invention.
  • the smart card consists of a single-sided printed circuit 21 according to the invention, corresponding for example to one of the variants illustrated in FIGS. 5, 7 or 8, and of an upper protective sheet 22.
  • the printed circuit 21 is formed of a sufficiently rigid substrate 1 and of one or more conductive surface layers 2, 2 ′, etc.
  • the underside of the printed circuit 21, not occupied by the conductive tracks, can be printed .
  • a spiral conductive track 8, 8 ' constituting an inductive element
  • a level change zone 40 similar to that discussed in connection with FIG. 6, is therefore provided. Notches 7 or partitions must be made in this zone 40 during a second demarcation operation to cut the electrical connections which would remain between neighboring spiers.
  • a housing 24 is provided in a portion of the lower sheet 21 not occupied by the conductive tracks 8, 8 ', in this example inside the inductive element 23.
  • An integrated circuit 25 is fixed in this housing 24 and connected at both ends of the inductive element 23.
  • the connection between the circuit 25 and the internal portion of the inductive element 23 can be made directly.
  • the connection with the external portion of the inductive element 23 must however be made by means of a bridge 26 over the turns 8, 8 '.
  • the bridge 26 can for example be constituted by a single wire welded over or under the conductive tracks 8, 8 '. In the case of a circuit with several conductive layers, it is also possible to use one of the metallized layers to make the bridge 26.
  • the bridge can be integrated into the substrate 1 before the conductive layers 2 are laminated.
  • the integrated circuit 25 and the inductive element 23 can be integrated on the printed circuit 21. It is for example possible to place on the circuit an accumulator (not shown) which can be recharged from the outside by means of the inductive element 23. These other components will ideally be connected to each other and with the elements 23 and 25 by means of conductive tracks machined in the manner described above in the or the surface conductive layers 2. After machining the notches 7 and connecting the various components to each other, the upper protective sheet 22 is placed on the lower sheet 21 and assembled by known means, for example by gluing, then optionally printed.
  • a hot glue will be chosen which, by melting, fills the notches 7 and thus prevents any risk of short circuits between neighboring conductive tracks.
  • the glue also makes it possible to compensate for the unevenness of the surface of the printed circuit and therefore to obtain an external surface of the smart card remarkably flat and easy to print.
  • the housing 24 for the integrated circuit 25 in the lower sheet 21 may if necessary be supplemented by a corresponding housing in the upper sheet 22. It is also possible to give up the housing 24 in the lower sheet 21, and to use a corresponding housing deeper in the upper sheet 22.
  • the upper sheet 22 and / or the lower sheet 21 are provided with a window instead of a housing, revealing on the outside of the card the circuit 25, connection lugs for circuit 25 or contacts linked to circuit 25.
  • the card could also consist of a printed circuit, for example a double-sided printed circuit, assembled between a lower protective sheet and an upper protective sheet assembled to the printed circuit by any known means. , for example by gluing.
  • FIG. 10 illustrates a printed circuit in an intermediate manufacturing step, according to an alternative method intended to facilitate the connection between the circuit 25 and the external portion 26 of the inductive element 23.
  • This variant is for example intended for security labels to protect goods, but can also be applied to smart cards or other devices.
  • a printed circuit comprising a portion in the form of an inductive element 23 is machined in the manner described above on a flexible substrate 1, for example on a cardboard support.
  • the inductive element 23 occupies only about half of the total surface of the substrate 1.
  • One of the ends 26 of the inductive element 23 extends over the other half of the sheet 21. This end can for example be formed by a discreet wire welded with the portion external of the inductive element 23.
  • this end 26 is machined by incision in the surface conductive layer 2, in the manner described above. The rest of the surface layer 2 on this half of the sheet 21 can then be peeled off, leaving only the end 26.
  • An electronic or electrical element 25 is assembled in a zone of the sheet 21 not occupied by the conductive tracks, in this example inside the inductive element 23.
  • the element 25 can for example be an integrated circuit or a fuse . It is connected to the internal portion of the inductive element 23 via a conductive contact pad 51. In addition, the element 25 is connected to a second contact pad 52 intended to establish the connection with the end 26 of the inductive element 23.
  • the inductive element 23 can for example be covered with an insulating lacquer layer or an insulating adhesive sheet.
  • the contact area 52 is however not covered by the insulating layer.
  • the sheet 21 is then folded back on itself along a folding axis 53, so that the two halves mentioned overlap.
  • the end 26 of the inductive element 23 is thus brought into electrical contact with the contact pad 52.
  • a connection is thus very simply formed between the external portion of the inductive element 23 and the element 25.
  • the two folded halves of the sheet 21 can be fixed to each other for example by gluing.
  • This process is also perfectly suited for the manufacture of flexible printed circuits. Such circuits are used, for example, to manufacture flexible connectors.
  • the method is perfectly suited whenever a maximum density of the tracks on the surface of the printed circuit must be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Credit Cards Or The Like (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A method for making a multilayer printed circuit from a dielectric substrate (1) coated with at least one metal layer (2) is disclosed. In the first step, the various conductive paths (8, 8') are marked out by means of a first swaging punch (30) which permanently stamps portions (33) of the substrate and the conductive layer and thus defines two sets of conductive paths on two different levels (A, B). In an additional marking step, notches (7) are formed between adjacent conductive paths, particularly in the areas (41) where the conductive paths change levels (A, B). The notches are formed, e.g., by means of a swaging punch (5) or a cutting table. The method is also suitable for making multilayer circuits and is particularly useful for producing flexible printed circuits, connectors, etc., as well as inductance coils (23) such as those used in smart cards.

Description

Procédé de fabrication de circuits imprimés et circuit imprimé fabriqué selon ce procédé. Method of manufacturing printed circuits and printed circuit manufactured by this method.
Domaine techniqueTechnical area
La présente invention concerne un procédé de fabrication de circuits imprimés selon le préambule de la revendication 1 En outre, la présente invention concerne également un circuit imprimé, par exemple une bobine d'inductance dont les spires sont constituées par des pistes de circuit imprimé, fabriqué selon ce procédéThe present invention relates to a method of manufacturing printed circuits according to the preamble of claim 1 In addition, the present invention also relates to a printed circuit, for example an inductor whose turns are formed by printed circuit tracks, manufactured according to this process
Technique antérieurePrior art
Dans la technique des cartes à puces et des transpondeurs, on souhaite souvent associer une bobine d'inductance à un circuit électronique, par exemple un circuit intégré, monté sur une plaque de circuit imprimé Une telle configuration est décrite par exemple dans WO-91/19302 La bobine est généralement réalisée par bobinage d'un fil autour d'un noyau De telles bobines sont complexes à réaliser, donc relativement coûteuses En outre, la connexion entre le circuit imprimé et la bobine occasionne certaines difficultés de montage supplémentaires et pose des problèmes de fiabilité notamment lorsque ces éléments sont intégrés dans une carte à puce qui n'offre généralement pas une protection optimale face aux déformations et aux contraintes mécaniques D'autre part, l'épaisseur de la bobine pose aussi souvent un problème lorsqu'elle doit être intégrée dans un dispositif miniaturisé ou dans une carte à puce dont on souhaite conserver l'épaisseur normalisée de 0,76 mmIn the chip card and transponder technique, it is often desired to associate an inductance coil with an electronic circuit, for example an integrated circuit, mounted on a printed circuit board. Such a configuration is described for example in WO-91 / 19302 The coil is generally produced by winding a wire around a core. Such coils are complex to produce, and therefore relatively expensive. Furthermore, the connection between the printed circuit and the coil causes certain additional mounting difficulties and poses problems. reliability especially when these elements are integrated into a smart card which generally does not offer optimal protection against deformations and mechanical stresses On the other hand, the thickness of the coil also often poses a problem when it must be integrated in a miniaturized device or in a smart card for which it is desired to keep the standardized thickness of 0.76mm
Pour pallier à ces difficultés, on connaît aussi des dispositifs dans lesquels les spires de l'inductance sont constituées directement par les pistes conductrices du circuit imprimé Les pistes du circuit imprimées sont généralement réalisées par voie photochimique, ce qui nécessite de nombreuses opérations coûteuses et utilise des produits polluantsTo overcome these difficulties, devices are also known in which the inductance turns are formed directly by the conductive tracks of the printed circuit. The tracks of the printed circuit are generally produced by photochemical means, which requires numerous expensive operations and uses polluting products
US-4 555 291 décrit un procédé de fabrication de bobine sous forme de circuit imprimé comprenant essentiellement des étapes mécaniques Un film métallique fin est préalablement prédécoupé sous forme de circuit à spires multiples, en laissant des régions d'interconnexion entre spires pour rigidifier la feuille ainsi découpée. Cette feuille est ensuite stratifiée sur une feuille de matériau diélectrique, puis un deuxième dispositif de coupe appliqué sur ce strati- fié permet de supprimer les interconnexions en laissant uniquement les spires de l'inductance.US-4,555,291 describes a method of manufacturing a coil in the form of a printed circuit essentially comprising mechanical steps A film fine metal is precut beforehand in the form of a circuit with multiple turns, leaving interconnection regions between turns to stiffen the sheet thus cut. This sheet is then laminated on a sheet of dielectric material, then a second cutting device applied to this laminate makes it possible to eliminate the interconnections by leaving only the turns of the inductance.
Cette solution est complexe à mettre en oeuvre et nécessite notamment deux opérations de découpe. L'épaisseur du film métallique prédécoupé doit être suffisante pour que celui-ci puisse être transporté sans se déchirer; de même, la largeur des spires et des intervalles découpés entre les spires doit être suffisante pour assurer un minimum de rigidité au film avant stratification sur le support diélectrique.This solution is complex to implement and in particular requires two cutting operations. The thickness of the precut metal film must be sufficient so that it can be transported without tearing; similarly, the width of the turns and of the intervals cut between the turns must be sufficient to ensure a minimum of rigidity in the film before lamination on the dielectric support.
D'autres procédés connus de fabrication de circuit imprimé à partir d'un film synthétique revêtu d'une couche conductrice superficielle compren- nent une opération de démarcation des différentes pistes conductrices constituant le circuit imprimé par fraisage de la couche superficielle du circuit imprimé (cf. DE-3 330 738 et US-4 138 924). Les interstices entre pistes conductrices ont donc nécessairement une largeur assez importante correspondant au moins à la largeur de l'outil de fraisage. Il n'est donc pas possible d'obtenir une densité de pistes optimale. En outre, le fraisage produit des copeaux qui doivent être soigneusement retirés pour éviter des courts-circuits éventuels entre pistes. Lorsque la couche métallique superficielle est réalisée en un matériau onéreux, par exemple en argent, il y a gaspillage de matériau.Other known methods for manufacturing a printed circuit from a synthetic film coated with a surface conductive layer include an operation of demarcation of the various conductive tracks constituting the printed circuit by milling the surface layer of the printed circuit (cf. DE-3 330 738 and US-4 138 924). The interstices between conductive tracks therefore necessarily have a fairly large width corresponding at least to the width of the milling tool. It is therefore not possible to obtain an optimal density of tracks. In addition, milling produces chips which must be carefully removed to avoid possible short circuits between tracks. When the surface metal layer is made of an expensive material, for example silver, there is waste of material.
DE-2 758204 décrit un procédé de fabrication de circuit, en particu- lier d'inductance sous forme de circuit imprimé, dans lequel les différentes pistes constituant les spires de la bobine sont démarquées par usinage thermomécanique d'un film synthétique revêtu d'une couche métallique superficielle. Une pointe métallique (3) chauffée pénètre dans la couche de métal superficielle et fait simultanément fondre une partie de la couche synthétique sous le métal. Ce procédé est plus spécialement adapté pour réaliser différentes sortes de dispositifs ou pour des bobines dont l'épaisseur n'est pas critique. L'épaisseur de la couche synthétique (1 ) doit être suffisamment épaisse pour être entaillée par la pointe (3) et simultanément chauffée sans être traversée complètement. La régulation de la température de la pointe pose des difficultés supplémentaires; en outre, la pointe métallique (3) doit se déplacer suffisamment lentement pour que le matériau synthétique ait le temps de fondre. Ce procédé est donc inadapté pour fabriquer des bobines devant être par exemple intégrées dans des cartes à puces, et dont l'épaisseur aussi bien que le coût et le temps de fabrication doivent être minimisés.DE-2 758204 describes a method of manufacturing a circuit, in particular an inductance in the form of a printed circuit, in which the different tracks constituting the turns of the coil are demarcated by thermomechanical machining of a synthetic film coated with a surface metal layer. A heated metal tip (3) penetrates into the surface metal layer and simultaneously melts part of the synthetic layer under the metal. This process is more particularly suitable for producing different kinds of devices or for coils whose thickness is not critical. The thickness of the synthetic layer (1) must be thick enough to be cut by the tip (3) and simultaneously heated without being completely traversed. Regulation of the tip temperature poses additional difficulties; in addition, the metal tip (3) must move slowly enough so that the synthetic material has time to melt. This method is therefore unsuitable for manufacturing coils which must be integrated, for example, into smart cards, and the thickness of which as well as the cost and time of manufacture must be minimized.
On connaît d'autres procédés de fabrication de circuit imprimé à partir d'un film synthétique revêtu d'une couche conductrice superficielle, dans lesquels les différentes pistes conductrices sont démarquées par étampage mécanique de ladite couche conductrice effectué au moyen d'un poinçon d'étampage. FR-2 674 724, GB-1138628, ou US-4 356 627 par exemple décrivent des variantes d'un tel procédé. Par exemple, dans US-4 356 627, un substrat diélectrique est laminé avec une couche métallique, puis comprimé par un poinçon d'étampage dont la surface d'appui contre le substrat comporte un motif en bas relief définissant la topologie des pistes du circuit. Le poinçon d'étampage repousse de manière permanente des portions du substrat et du laminé métallique. Les portions métalliques repoussées sont séparées et isolées électriquement des portions non repoussées le long de lignes de cisaillement définies par le poinçon d'étampage, plutôt que par un espace isolant s'étendant latéralement sur la surface du circuit imprimé. De cette manière, en repartissant les pistes conductrices sur des niveaux différents repoussées par le poinçon à des profondeurs différentes, il est possible d'utiliser toute la surface du circuit et donc d'augmenter la densité des pistes.Other methods of manufacturing a printed circuit are known from a synthetic film coated with a surface conductive layer, in which the various conductive tracks are demarcated by mechanical stamping of said conductive layer carried out by means of a punch. stamping. FR-2 674 724, GB-1138628, or US-4 356 627 for example describe variants of such a method. For example, in US Pat. No. 4,356,627, a dielectric substrate is laminated with a metallic layer, then compressed by a stamping punch, the bearing surface of which against the substrate comprises a bas-relief pattern defining the topology of the tracks of the circuit. . The stamping punch permanently repels portions of the substrate and the metal laminate. The repelled metal portions are separated and electrically insulated from the non-repelled portions along shear lines defined by the stamping punch, rather than by an insulating space extending laterally on the surface of the printed circuit. In this way, by distributing the conductive tracks on different levels pushed back by the punch to different depths, it is possible to use the entire surface of the circuit and therefore to increase the density of the tracks.
Toutefois, il est difficile d'obtenir par étampage des pistes conductrices de largeur très réduite. Ces procédés ne conviennent donc pas pour fabri- quer des circuits imprimés à haute densité de pistes, par exemple pour des bobines d'inductance élevée devant être logées dans un volume réduit comme celui d'une carte à puce. Un but de la présente invention est donc de proposer un procédé de fabrication de circuit imprimé amélioré, en particulier lorsqu'il est utilisé pour fabriquer des bobines d'inductance pour carte à puce dont les spires sont constituées par les pistes conductrices du circuit imprimé.However, it is difficult to obtain conductive tracks of very small width by stamping. These methods are therefore not suitable for manufacturing printed circuits with high track density, for example for high inductance coils which must be housed in a reduced volume such as that of a smart card. An object of the present invention is therefore to propose an improved printed circuit manufacturing method, in particular when it is used to manufacture inductors for a smart card whose turns are formed by the conductive tracks of the printed circuit.
Exposé de l'inventionStatement of the invention
Selon un aspect de l'invention, ce but est atteint au moyen d'un procédé de fabrication de circuit imprimé tel que spécifié par la revendication 1.According to one aspect of the invention, this object is achieved by means of a printed circuit manufacturing method as specified by claim 1.
Ce procédé permet d'éviter les inconvénients mentionnés des procédés de l'art antérieur.This method makes it possible to avoid the drawbacks mentioned of the methods of the prior art.
En particulier, il est possible avec ce procédé de fabriquer des circuits imprimés dont les pistes conductrices sont réparties sur deux niveaux ou plus mais peuvent néanmoins avoir une largeur très réduite.In particular, it is possible with this method to manufacture printed circuits whose conductive tracks are distributed over two or more levels but can nevertheless have a very reduced width.
Grâce à l'étape supplémentaire de démarcation de pistes conductrices voisines par découpe au moyen d'un outil de coupe tranchant, il est possi- ble de fabriquer des circuits à très haute densité sans risques de contacts importuns entre pistes conductrices voisines aux endroits critiques.Thanks to the additional step of demarcating neighboring conductive tracks by cutting with a sharp cutting tool, it is possible to fabricate very high density circuits without the risk of unwanted contacts between neighboring conductive tracks at critical locations.
En particulier, selon une caractéristique préférentielle, il est possible de fabriquer des circuits à très haute densité sans risques de contacts importuns entre pistes conductrices voisines aux endroits où les pistes changent de niveau.In particular, according to a preferred characteristic, it is possible to manufacture circuits with very high density without the risk of unwelcome contacts between neighboring conductive tracks at the places where the tracks change level.
L'invention concerne aussi des circuits imprimés fabriqués par ce procédé, en particulier des bobines ou des connecteurs fabriqués par ce procédé. L'invention concerne en outre des cartes à puce incorporant une bobine fabriquée par ce procédé et/ou un circuit imprimé fabriqué par ce procédé.The invention also relates to printed circuits produced by this process, in particular coils or connectors produced by this process. The invention further relates to smart cards incorporating a coil made by this process and / or a printed circuit made by this process.
Des variantes de l'invention, en particulier spécifiées par les revendications dépendantes, permettent en outre d'augmenter encore la densité des circuits obtenus et/ou l'inductance des bobines obtenues. Description sommaire des dessins.Variants of the invention, in particular specified by the dependent claims, further make it possible to further increase the density of the circuits obtained and / or the inductance of the coils obtained. Brief description of the drawings.
D'autres aspects et avantages de l'invention ressortiront de la description et des figures annexées qui illustrent:Other aspects and advantages of the invention will emerge from the description and the appended figures which illustrate:
la figure 1 , une vue en coupe d'un film diélectrique revêtu d'une cou- che conductrice superficielle convenant pour être utilisé avec la présente invention,FIG. 1, a sectional view of a dielectric film coated with a surface conductive layer suitable for use with the present invention,
la figure 2, une vue en coupe d'un poinçon d'étampage et d'un film diélectrique revêtu d'une couche conductrice superficielle avant démarcation des pistes conductrices,FIG. 2, a sectional view of a stamping punch and of a dielectric film coated with a surface conductive layer before demarcation of the conductive tracks,
la figure 3, une vue en coupe d'un film diélectrique revêtu d'une couche conductrice superficielle après une première opération de démarcation des pistes conductrices par repoussement de matière conductrice,FIG. 3, a sectional view of a dielectric film coated with a surface conductive layer after a first operation of demarcating the conductive tracks by repelling conductive material,
la figure 4, une vue en coupe d'un deuxième poinçon d'étampage et d'un film diélectrique revêtu d'une couche conductrice superficielle entre les deux opérations de démarcation des pistes conductrices,FIG. 4, a sectional view of a second stamping punch and of a dielectric film coated with a surface conductive layer between the two operations for demarcating the conductive tracks,
la figure 5, une vue en coupe d'un film diélectrique revêtu d'une couche conductrice superficielle après l'opération supplémentaire de démarcation des pistes conductrices par découpe au moyen du deuxième poinçon d'étampage,FIG. 5, a sectional view of a dielectric film coated with a surface conductive layer after the additional operation of demarcating the conductive tracks by cutting by means of the second stamping punch,
la figure 6, une vue en perspective du deuxième poinçon d'étampage et d'une portion du film diélectrique revêtu d'une couche conductrice superficielle après la première opération de démarcation des pistes conductrices,FIG. 6, a perspective view of the second stamping punch and of a portion of the dielectric film coated with a surface conductive layer after the first operation of demarcating the conductive tracks,
la figure 7, une vue en perspective d'un film diélectrique et d'une couche conductrice superficielle usinée avant laminage selon une variante de l'invention, la figure 8, une vue en coupe d'un film diélectrique revêtu sur une face de plusieurs couches conductrices superficielles, après les deux opérations de démarcation des pistes conductrices,FIG. 7, a perspective view of a dielectric film and of a surface conductive layer machined before rolling according to a variant of the invention, FIG. 8, a sectional view of a dielectric film coated on one face with several surface conductive layers, after the two operations of demarcating the conductive tracks,
la figure 9, une vue en perspective d'une carte à puce comprenant un circuit imprimé selon l'invention,FIG. 9, a perspective view of a smart card comprising a printed circuit according to the invention,
la figure 10, une vue en perspective d'un circuit imprimé avant pliage, réalisé selon une variante de l'invention comprenant une étape de pliage,FIG. 10, a perspective view of a printed circuit before folding, produced according to a variant of the invention comprising a folding step,
La figure 1 illustre une vue en coupe d'un film diélectrique 1 revêtu d'une couche conductrice superficielle 2. Le film 1 est constitué d'un matériau diélectrique quelconque, de préférence un matériau synthétique suffisamment ductile. Selon l'application, on choisira un film souple ou au contraire un substrat plus rigide. Le film 1 peut aussi être constitué d'un matériau composite ou multicouche, par exemple d'un stratifié comprenant plusieurs couches de matériau synthétique, de carton et/ou de métal.Figure 1 illustrates a sectional view of a dielectric film 1 coated with a surface conductive layer 2. The film 1 consists of any dielectric material, preferably a sufficiently ductile synthetic material. Depending on the application, a flexible film will be chosen or, on the contrary, a more rigid substrate. The film 1 can also be made of a composite or multilayer material, for example a laminate comprising several layers of synthetic material, cardboard and / or metal.
La couche conductrice superficielle 2 est appliquée par un procédé connu sur le film 1 et maintenue par exemple par soudage ou au moyen de colle 4. La colle 4 peut par exemple être une colle à chaud ou une colle à froid; il est aussi possible d'utiliser en guise de colle 4 une feuille adhésive double face ou un film thermocollant. La couche 2 est réalisée en un métal approprié, par exemple en cuivre, en aluminium, en argent ou en alliage conducteur.The surface conductive layer 2 is applied by a known method to the film 1 and held for example by welding or by means of glue 4. The glue 4 can for example be a hot glue or a cold glue; it is also possible to use as adhesive 4 a double-sided adhesive sheet or a fusible film. Layer 2 is made of a suitable metal, for example copper, aluminum, silver or a conductive alloy.
Le laminé de la figure 1 peut par exemple être fabriqué selon l'un des procédés et avec les matériaux décrits dans les divers exemples de US-4 356 627.The laminate of FIG. 1 can for example be manufactured according to one of the methods and with the materials described in the various examples of US Pat. No. 4,356,627.
La figure 2 représente une vue en coupe d'un premier poinçon d'étampage 30 au-dessus du circuit imprimé avant la première opération de démarcation des pistes conductrices. La surface d'appui du poinçon d'étampage 30 face au circuit comporte un motif en bas relief 31 , 32 correspondant à la topologie des pistes conductrices du circuit imprimé. Le poinçon d'étampage 30 est abaissé grâce à des moyens non représentés, avec une pression suffisante pour que les portions proéminentes 31 du poinçon repoussent la couche métallique superficielle 2. Ensuite, il est relevé, de préférence juste avant ou juste après que les portions en retrait 32 du poinçon ne touchent la couche su- perficielle 2.2 shows a sectional view of a first stamping punch 30 above the printed circuit before the first operation of demarcation of the conductive tracks. The bearing surface of the stamping punch 30 facing the circuit has a low relief pattern 31, 32 corresponding to the topology of the conductive tracks of the printed circuit. The stamping punch 30 is lowered by means not shown, with sufficient pressure so that the protruding portions 31 of the punch push the surface metal layer 2. Then it is raised, preferably just before or just after the recessed portions 32 of the punch do not touch the surface layer 2.
La figure 3 montre le film en coupe après cette première opération de démarcation des pistes conductrices 8. Les portions proéminentes 31 du poinçon d'étampage 30 ont repoussé de manière permanente des portions 33 de la couche métallique superficielle 2 en laissant les autres portions 34 intac- tes. La couche métallique superficielle 2 est donc partagée par cette première opération en deux jeux de pistes conductrices 8, respectivement 8', réparties sur deux niveaux différents A, respectivement B. Si nécessaire, il est possible de répartir les pistes sur plus de deux niveaux différents en utilisant un poinçon d'étampage 30 avec des proéminences 32 de hauteur variable.FIG. 3 shows the film in section after this first demarcation operation of the conductive tracks 8. The protruding portions 31 of the stamping punch 30 have permanently repelled portions 33 of the surface metal layer 2 leaving the other portions 34 intact. - your. The surface metal layer 2 is therefore divided by this first operation into two sets of conductive tracks 8, respectively 8 ′, distributed over two different levels A, respectively B. If necessary, it is possible to distribute the tracks over more than two different levels using a stamping punch 30 with protrusions 32 of variable height.
Pour garantir une isolation efficace entre les pistes 8, 8', le matériau diélectrique 1 doit supporter des enfoncements abrupts et permettre au métal 2 de se déchirer proprement sur la ligne de changement de niveau. Il est cependant très difficile d'empêcher tout court-circuit entre pistes 8, 8' lorsque la largeur de ces pistes est très réduite, ou lorsque la profondeur de repoussement entre les niveaux A et B est limitée par l'épaisseur maximale à donner au circuit.To guarantee effective insulation between the tracks 8, 8 ′, the dielectric material 1 must withstand abrupt depressions and allow the metal 2 to tear cleanly on the level change line. It is however very difficult to prevent any short circuit between tracks 8, 8 ′ when the width of these tracks is very reduced, or when the depth of repulsion between levels A and B is limited by the maximum thickness to be given to the circuit.
Ces problèmes sont résolus selon l'invention grâce à une opération supplémentaire de démarcation des pistes. Dans cet exemple, cette opération supplémentaire est effectuée après la première opération de démarcation dé- crite ci-dessus. Nous verrons plus loin une variante préférentielle dans laquelle cette opération supplémentaire de démarcation est effectuée avant la première opération de démarcation.These problems are solved according to the invention thanks to an additional operation of demarcating the tracks. In this example, this additional operation is performed after the first demarcation operation described above. We will see below a preferred variant in which this additional demarcation operation is carried out before the first demarcation operation.
Pour séparer les pistes conductrices voisines 8, 8' aux endroits critiques - par exemple aux endroits où la largeur des pistes est réduite, ou en d'autres endroits particuliers discutés plus loin en relation avec la figure 6, un deuxième poinçon d'étampage 5 (figure 4) est utilisé. Le deuxième poinçon d'étampage 5 présente des surfaces de contact coupantes 6 avec la couche superficielle 2 sur le film synthétique 1.To separate the neighboring conductive tracks 8, 8 ′ at the critical locations - for example at the locations where the width of the tracks is reduced, or at other particular locations discussed below in connection with FIG. 6, a second stamping punch 5 (figure 4) is used. The second punch stamping 5 has cutting contact surfaces 6 with the surface layer 2 on the synthetic film 1.
Le deuxième poinçon d'étampage 5 est abaissé grâce à des moyens non représentés, avec une pression juste suffisante pour que les surfaces de contact coupantes 6 perforent et découpent la couche métallique superficielle 2. Le profil des surfaces 6 est suffisamment aiguisé pour que le poinçon découpe des entailles 7 fines (figure 5) dans la couche 2, sans retrait de matière conductrice comme dans les procédés de fraisage ni repoussement vers la profondeur. La matière métallique est ici incisée par les surfaces 6.The second stamping punch 5 is lowered by means not shown, with a pressure just sufficient for the cutting contact surfaces 6 to perforate and cut the surface metal layer 2. The profile of the surfaces 6 is sufficiently sharp so that the punch cutting fine cuts 7 (Figure 5) in layer 2, without removal of conductive material as in milling processes or pushing back to depth. The metallic material is here incised by the surfaces 6.
On voit que les entailles 7 sont juste assez profondes pour traverser la couche métallique 2 et la couche de colle éventuelle 4 et éventuellement effleurer la couche diélectrique synthétique 1. Dans une variante, les entailles 7 ne traversent complètement que la couche métallique superficielle, le fond des entailles étant au milieu de la couche de colle 4. De cette manière, le film synthétique 1 est aussi peu affaibli que nécessaire par l'usinage des entailles 7; il est ainsi possible de lui donner une épaisseur minimale.We see that the notches 7 are just deep enough to pass through the metal layer 2 and the possible adhesive layer 4 and possibly touch the synthetic dielectric layer 1. In a variant, the notches 7 completely pass through only the surface metal layer, the bottom notches being in the middle of the adhesive layer 4. In this way, the synthetic film 1 is as little weakened as necessary by the machining of the notches 7; it is thus possible to give it a minimum thickness.
Pour optimiser la densité des pistes conductrices 8 sur le circuit imprimé, la largeur des entailles 7 est choisie aussi fine que possible. Si le substrat 1 est particulièrement souple, la largeur sera toutefois suffisante pour éviter tout risque de court-circuitage des pistes conductrices 8.To optimize the density of the conductive tracks 8 on the printed circuit, the width of the notches 7 is chosen to be as fine as possible. If the substrate 1 is particularly flexible, the width will however be sufficient to avoid any risk of short-circuiting of the conductive tracks 8.
Le deuxième poinçon 5 présente de préférence des pointes 6 isolées destinées à tailler localement des entailles 7 aux endroits critiques. Dans une variante particulièrement adaptée à la fabrication de plus petites séries ou de prototypes, les entailles 7, 7', 7" peuvent être découpées au moyen d'une table de découpe conventionnelle connue par exemple dans le domaine de la découpe de films autocollants pour réalisations publicitaires ou autres. Dans ce cas, le motif des démarcations entre pistes conductrices est préalablement dessiné au moyen d'un logiciel adapté sur un ordinateur, puis mémorisé dans une mémoire électronique. Ce dessin est ensuite utilisé pour commander le déplacement séquentiel d'une lame sur la table de découpe. Certaines tables de découpe permettent un contrôle de la direction de la lame dans les arrondis et/ou des mouvements de va-et-vient de la lame. La forme de la lame sera choisie en conséquence et selon l'épaisseur de la couche métallique à découper. La lame est suffisamment tranchante pour dé- couper la couche superficielle sans retrait de matière conductrice ni repoussement vers la profondeur. Sa largeur est minimale afin de laisser subsister des pistes conductrices 8 de largeur maximale. La profondeur est juste suffisante pour traverser la couche métallique superficielle sans trop affaiblir la couche de diélectrique 1 , qui pourra ainsi avoir une épaisseur minimale. Si des entailles de profondeur variées sont nécessaires, par exemple pour fabriquer des circuits multicouches avec des motifs variables sur les différentes couches, il est nécessaire de remplacer la lame à chaque changement de profondeur désiré. Il est aussi possible d'utiliser une table de découpe munie de plusieurs porte- lames équipés de lames de profondeur différentes, ou de prévoir des moyens pour contrôler la profondeur de pénétration de la lame.The second punch 5 preferably has insulated points 6 intended to locally cut notches 7 at critical locations. In a variant particularly suitable for the production of smaller series or of prototypes, the notches 7, 7 ′, 7 "can be cut by means of a conventional cutting table known for example in the field of cutting self-adhesive films for advertising or other realizations. In this case, the pattern of demarcations between conductive tracks is drawn beforehand using suitable software on a computer, then stored in an electronic memory. This drawing is then used to control the sequential movement of a blade on the cutting table. Some cutting tables allow control of the direction of the blade in the rounding and / or back and forth movements of the blade. The shape of the blade will be chosen accordingly and according to the thickness of the metal layer to be cut. The blade is sharp enough to cut the surface layer without removing conductive material or pushing it back to depth. Its width is minimal in order to allow conductive tracks 8 of maximum width to remain. The depth is just sufficient to pass through the surface metal layer without weakening the dielectric layer 1 too much, which may thus have a minimum thickness. If notches of various depths are necessary, for example to make multilayer circuits with variable patterns on the different layers, it is necessary to replace the blade at each desired change in depth. It is also possible to use a cutting table provided with several blade holders equipped with blades of different depths, or to provide means for controlling the penetration depth of the blade.
La figure 6 illustre une vue en perspective du deuxième poinçon d'étampage 5 et d'une portion du film diélectrique 1 revêtu d'une couche conductrice superficielle après la première opération de démarcation des pistes conductrices. La figure 6 illustre plus particulièrement une zone 40 du circuit après étampage dans laquelle les pistes conductrices 8, 8' changent de niveau. Dans la partie inférieure de la portion de circuit représenté, les pistes conductrices 8, 8' sont réparties alternativement sur les deux niveaux A et B définis par le premier poinçon d'étampage 30 utilisée dans la première opération. Dans la partie médiane 40, les pistes 8, 8' changent ensuite de niveau; les pistes 8 qui occupaient le niveau supérieur (non repoussé) A descendent progressivement au niveau inférieur (repoussé) B et vice-versa. La pente de la zone de transition 40 est déterminée par la forme donnée au premier poinçon d'étampage 30.FIG. 6 illustrates a perspective view of the second stamping punch 5 and of a portion of the dielectric film 1 coated with a surface conductive layer after the first operation of demarcation of the conductive tracks. FIG. 6 more particularly illustrates an area 40 of the circuit after stamping in which the conductive tracks 8, 8 ′ change level. In the lower part of the circuit portion shown, the conductive tracks 8, 8 ′ are distributed alternately over the two levels A and B defined by the first stamping punch 30 used in the first operation. In the middle part 40, the tracks 8, 8 'then change level; the tracks 8 which occupied the upper level (not pushed back) A progressively descend to the lower level (pushed back) B and vice versa. The slope of the transition zone 40 is determined by the shape given to the first stamping punch 30.
A l'endroit 41 où deux pistes voisines 8, 8' changent simultanément de niveau A, B, un contact électrique subsiste entre ces pistes, qui ne peut être supprimé par simple repoussement de matière. Ces points de contact résiduels sont séparés antérieurement ou ultérieurement par découpe, soit au moyen du deuxième poinçon d'étampage 5 à surfaces coupantes, soit au moyen d'une table à découpe traditionnelle, comme expliqué ci-dessus.At the location 41 where two neighboring tracks 8, 8 'simultaneously change level A, B, an electrical contact remains between these tracks, which cannot be removed by simple pushing of material. These residual contact points are separated before or after by cutting, either by means of the second stamping punch 5 with cutting surfaces, either by means of a traditional cutting table, as explained above.
L'opération supplémentaire de démarcation des pistes par découpe au moyen d'un deuxième poinçon 5 ou d'une table à découpe peut aussi être utilisée pour créer plusieurs jeux de pistes sur un même niveau A ou B, ou pour partager des pistes 8, 8' obtenues par étampage-repoussement préalable et augmenter ainsi encore la densité des pistes sur le circuit imprimé.The additional operation of demarcating the tracks by cutting by means of a second punch 5 or a cutting table can also be used to create several sets of tracks on the same level A or B, or to share tracks 8, 8 'obtained by prior stamping and pushing and thus further increase the density of the tracks on the printed circuit.
Au lieu d'effectuer l'opération supplémentaire de démarcation de pistes par découpe après la première opération de démarcation par étampage- repoussement, comme décrit ci-dessus, il est aussi possible d'inverser l'ordre de ces deux opérations. La figure 7 décrit une variante du procédé dans lequel un film métallique 2 est pré-usiné avant même le laminage sur le substrat diélectrique 1. Des trous ou des fentes 7 sont préalablement usinés par n'importe quel procédé connu, par exempte par découpe, par opération photochimique ou par perçage ou fraisage, en des endroits déterminés dans le film conducteur 1. Ces trous permettent de démarquer les pistes conductrices voisines localement aux endroits critiques 41 où un contact subsisterait si une seule opération d'étampage-repoussement était effectuée. Le film conducteur 2 est ensuite assemblé de la manière indiquée ci-dessus sur le substrat diélectrique 1 , puis le laminé ainsi obtenu est placé sous le premier poinçon 30 et étampé avec repoussement de matière, de la manière décrite ci-dessus.Instead of carrying out the additional operation of demarcating tracks by cutting after the first operation of demarcation by stamping-pushing back, as described above, it is also possible to reverse the order of these two operations. FIG. 7 describes a variant of the process in which a metal film 2 is pre-machined even before lamination on the dielectric substrate 1. Holes or slots 7 are previously machined by any known method, for example by cutting, by photochemical operation or by drilling or milling, at determined locations in the conductive film 1. These holes make it possible to demarcate the neighboring conductive tracks locally at the critical locations 41 where a contact would remain if a single stamping-repelling operation was carried out. The conductive film 2 is then assembled in the manner indicated above on the dielectric substrate 1, then the laminate thus obtained is placed under the first punch 30 and stamped with material repulsion, in the manner described above.
Dans une variante, il est naturellement aussi possible d'usiner des entailles dans la couche conductrice après laminage. Ces trois variantes (usinage avant laminage, après laminage ou après repoussement) peuvent aussi être combinées, des entailles ou séparations étant effectuées à différents stades.In a variant, it is naturally also possible to machine notches in the conductive layer after rolling. These three variants (machining before rolling, after rolling or after embossing) can also be combined, notches or separations being carried out at different stages.
Dans une variante non illustrée, les deux opérations de démarcation de pistes conductrices par découpe et par étampage-repoussement sont effectuées successivement avec un seul poinçon. On utilise dans ce but des poin- çons d'étampage comportant à la fois des surfaces coupantes 6 incisant tout d'abord la couche conductrice 2 et des surfaces plates 31 , moins proéminen- tes, repoussant ensuite la matière lorsque le poinçon est davantage abaissé. Pour éviter une profondeur d'incision (par les surfaces 6) beaucoup plus importante que la profondeur de repoussement (par les surfaces 31 ), il est possible de rendre les surfaces coupantes 6 rétractiles, par exemple au moyen de res- sorts. De cette manière, lorsque le poinçon est abaissé au-delà d'une certaine profondeur, les surfaces coupantes 6 se rétractent dans le poinçon, sans s'enfoncer davantage dans la matière lorsque le poinçon continue d'être abaissé.In a variant not illustrated, the two operations of demarcation of conductive tracks by cutting and by stamping-repelling are carried out successively with a single punch. For this purpose, stamping punches are used comprising both cutting surfaces 6 first incising the conductive layer 2 and flat surfaces 31, less prominent. tes, then pushing back the material when the punch is further lowered. To avoid a depth of incision (through surfaces 6) much greater than the depth of repulsion (through surfaces 31), it is possible to make the cutting surfaces 6 retractable, for example by means of springs. In this way, when the punch is lowered beyond a certain depth, the cutting surfaces 6 retract into the punch, without sinking further into the material when the punch continues to be lowered.
L'homme du métier comprendra qu'il est naturellement possible de fabriquer des circuits imprimés double face avec le procédé de l'invention, le procédé décrit ci-dessus étant appliqué à chaque face d'un circuit imprimé.Those skilled in the art will understand that it is naturally possible to manufacture double-sided printed circuits with the method of the invention, the method described above being applied to each face of a printed circuit.
La figure 8 illustre une variante du procédé appliqué à des films diélectriques revêtus sur une face de plusieurs couches conductrices superficielles. Le film diélectrique 1 est revêtu dans cet exemple d'un premier film métallique 2 fixé par une première couche de colle 4. Un deuxième film métallique 2' est fixé sur le premier film 2 par une deuxième couche de colle 4'. La deuxième couche de colle 4' agit également comme isolant entre les deux couches métalliques 2 et 2'. Si nécessaire, il est aussi possible d'intercaler une couche d'isolant supplémentaire entre les deux couches métalliques, par exemple une couche synthétique supplémentaire. Il est en outre naturellement possible de superposer plus de deux couches métalliques 2, 2' l'une au-dessus de l'autre.FIG. 8 illustrates a variant of the method applied to dielectric films coated on one face with several surface conductive layers. The dielectric film 1 is coated in this example with a first metallic film 2 fixed by a first layer of adhesive 4. A second metallic film 2 'is fixed on the first film 2 by a second layer of adhesive 4'. The second layer of adhesive 4 'also acts as an insulator between the two metal layers 2 and 2'. If necessary, it is also possible to insert an additional layer of insulation between the two metal layers, for example an additional synthetic layer. It is also naturally possible to superimpose more than two metal layers 2, 2 'one above the other.
Le premier poinçon d'étampage utilisé a repoussé de manière permanente des portions 33 de la couche métallique superficielle 2 en laissant les autres portions 34 de la couche intactes. Les couches métalliques superficielles 2 sont donc déplacées par cette première opération sur au moins deux ni- veaux différents A, respectivement B. Dans cet exemple, une portion 33' est repoussée par le poinçon d'étampage sur un niveau intermédiaire, en sorte que la couche métallique supérieure 2' soit repoussée dans cette portion 33' à une profondeur correspondant approximativement à la position d'une couche métallique inférieure 2 non repoussée. Pour éviter un contact électrique entre cette portion 33' partiellement repoussée et les portions voisines 34 non repoussées, des entailles de séparation 7 doivent être usinées au cours de la deuxième opération de démarcation des pistes par découpe telle que décrite ci-dessus.The first stamping punch used has permanently repelled portions 33 of the surface metal layer 2, leaving the other portions 34 of the layer intact. The surface metal layers 2 are therefore displaced by this first operation on at least two different levels A, respectively B. In this example, a portion 33 ′ is pushed back by the stamping punch to an intermediate level, so that the upper metal layer 2 'is pushed back into this portion 33' to a depth corresponding approximately to the position of a lower metal layer 2 not pushed back. To avoid electrical contact between this partially repelled portion 33 ′ and the adjacent non repelled portions 34, separation notches 7 must be machined during the second operation of demarcating the tracks by cutting as described above.
En connectant les différentes couches entre elles aux endroits appropriés, par exemple avec des trous métallisés, cette disposition permet de réaliser des circuits d'inductance élevée. En combinant les opérations de démarcation de pistes par étampage-repoussage et par découpe à profondeur variable sur un circuit multi-couche et éventuellement double-face, il est possible d'obtenir une très grande liberté de topologie et une densité de pistes optimale. Cette liberté de topologie peut encore être augmentée en usinant des entailles 7 dans les couches métalliques inférieures 2 avant laminage des couches métalliques supérieures 2'.By connecting the different layers together at the appropriate places, for example with metallized holes, this arrangement makes it possible to produce high inductance circuits. By combining the operations of demarcating tracks by stamping-embossing and by cutting to variable depth on a multi-layer and possibly double-sided circuit, it is possible to obtain a very great freedom of topology and an optimal density of tracks. This freedom of topology can be further increased by machining notches 7 in the lower metal layers 2 before rolling the upper metal layers 2 '.
Ce procédé convient particulièrement à la fabrication de circuits imprimés dont l'épaisseur et éventuellement le poids doivent être minimisée. Par exemple, ce procédé convient pour fabriquer des circuits imprimés destinés à des cartes à puce.This process is particularly suitable for the manufacture of printed circuits, the thickness and possibly the weight of which must be minimized. For example, this method is suitable for manufacturing printed circuits intended for smart cards.
La figure 9 illustre un circuit imprimé pour carte à puce selon l'invention.FIG. 9 illustrates a printed circuit for a smart card according to the invention.
La carte à puce est constituée d'un circuit imprimé 21 à une seule face selon l'invention, correspondant par exemple à l'une des variantes illus- trées par les figures 5, 7 ou 8, et d'une feuille supérieure de protection 22. Le circuit imprimé 21 est formé d'un substrat 1 suffisamment rigide et d'une ou plusieurs couches superficielles conductrices 2, 2', etc.. La face inférieure du circuit imprimé 21 , non occupée par les pistes conductrices, pourra être imprimée.The smart card consists of a single-sided printed circuit 21 according to the invention, corresponding for example to one of the variants illustrated in FIGS. 5, 7 or 8, and of an upper protective sheet 22. The printed circuit 21 is formed of a sufficiently rigid substrate 1 and of one or more conductive surface layers 2, 2 ′, etc. The underside of the printed circuit 21, not occupied by the conductive tracks, can be printed .
Une piste conductrice en spirale 8, 8', constituant un élément inductifA spiral conductive track 8, 8 ', constituting an inductive element
23, est usinée par étampage-repoussement selon le procédé décrit ci-dessus dans la couche conductrice. Le nombre de spires est choisi en fonction de l'inductance désirée. Le procédé d'usinage de l'invention permet de placer des pistes 8, 8' sur toute la surface du circuit imprimé et donc de loger sur une surface donnée un maximum de spires et donc d'obtenir une inductance éle- vée. Pour augmenter encore l'inductance, on choisira de préférence un circuit à plusieurs couches conductrices 2, 2', etc. selon l'exemple de la figure 8, et/ou un circuit double-face.23, is machined by stamping-embossing according to the method described above in the conductive layer. The number of turns is chosen according to the desired inductance. The machining process of the invention makes it possible to place tracks 8, 8 ′ over the entire surface of the printed circuit and therefore to accommodate on a given surface a maximum of turns and therefore to obtain a high inductance. vee. To further increase the inductance, a circuit with several conductive layers 2, 2 ′, etc. will preferably be chosen. according to the example of Figure 8, and / or a double-sided circuit.
A chaque tour de spire, il est nécessaire que les pistes 8, 8' chan- gent de niveau A, B pour éviter tout contact électrique avec la spire voisine. Une zone de changement de niveau 40, semblable à celle discutée en relation avec la figure 6, est donc ménagée. Des entailles 7 ou des séparations doivent être ménagées dans cette zone 40 au cours d'une deuxième opération de démarcation pour découper les liaisons électriques qui subsisteraient entres spi- res voisines.At each turn of the turn, it is necessary for the tracks 8, 8 'to change level A, B to avoid any electrical contact with the neighboring turn. A level change zone 40, similar to that discussed in connection with FIG. 6, is therefore provided. Notches 7 or partitions must be made in this zone 40 during a second demarcation operation to cut the electrical connections which would remain between neighboring spiers.
Un logement 24 est prévu dans une portion de la feuille inférieure 21 non occupée par les pistes conductrices 8, 8', dans cet exemple à l'intérieur de l'élément inductif 23. Un circuit intégré 25 est fixé dans ce logement 24 et connecté aux deux extrémités de l'élément inductif 23. La connexion entre le circuit 25 et la portion interne de l'élément inductif 23 peut être faite directement. La connexion avec la portion externe de l'élément inductif 23 doit en revanche être faite par l'intermédiaire d'un pont 26 par-dessus les spires 8, 8'. Le pont 26 peut par exemple être constitué par un simple fil soudé par-dessus ou par- dessous les pistes conductrices 8, 8'. Dans le cas d'un circuit à plusieurs cou- ches conductrices, il est aussi possible d'utiliser une des couches métallisées pour effectuer le pont 26. Enfin, le pont peut être intégré dans le substrat 1 avant laminage des couches conductrices 2.A housing 24 is provided in a portion of the lower sheet 21 not occupied by the conductive tracks 8, 8 ', in this example inside the inductive element 23. An integrated circuit 25 is fixed in this housing 24 and connected at both ends of the inductive element 23. The connection between the circuit 25 and the internal portion of the inductive element 23 can be made directly. The connection with the external portion of the inductive element 23 must however be made by means of a bridge 26 over the turns 8, 8 '. The bridge 26 can for example be constituted by a single wire welded over or under the conductive tracks 8, 8 '. In the case of a circuit with several conductive layers, it is also possible to use one of the metallized layers to make the bridge 26. Finally, the bridge can be integrated into the substrate 1 before the conductive layers 2 are laminated.
Suivant l'application désirée et la place résiduelle disponible sur la carte, d'autres composants que le circuit intégré 25 et l'élément inductif 23 peuvent être intégrés sur le circuit imprimé 21. Il est par exemple possible de placer sur le circuit un accumulateur (non représenté) qui pourra être rechargé depuis l'extérieur au moyen de l'élément inductif 23. Ces autres composants seront idéalement connectés mutuellement et avec les éléments 23 et 25 au moyen de pistes conductrices usinées de la manière décrite ci-dessus dans la ou les couches conductrices superficielles 2. Après usinage des entailles 7 et connexion des divers composants entre eux, la feuille supérieure de protection 22 est posée sur la feuille inférieure 21 et assemblée par des moyens connus, par exemple par collage, puis éventuellement imprimée. On choisira par exemple une colle à chaud qui en fondant remplit les entailles 7 et prévient ainsi tout risque de courts-circuits entre pistes conductrices voisines. La colle permet également de compenser les inégalités de surface du circuit imprimé et donc d'obtenir une surface externe de la carte à puce remarquablement plane et facile à imprimer.Depending on the desired application and the residual space available on the card, other components than the integrated circuit 25 and the inductive element 23 can be integrated on the printed circuit 21. It is for example possible to place on the circuit an accumulator (not shown) which can be recharged from the outside by means of the inductive element 23. These other components will ideally be connected to each other and with the elements 23 and 25 by means of conductive tracks machined in the manner described above in the or the surface conductive layers 2. After machining the notches 7 and connecting the various components to each other, the upper protective sheet 22 is placed on the lower sheet 21 and assembled by known means, for example by gluing, then optionally printed. For example, a hot glue will be chosen which, by melting, fills the notches 7 and thus prevents any risk of short circuits between neighboring conductive tracks. The glue also makes it possible to compensate for the unevenness of the surface of the printed circuit and therefore to obtain an external surface of the smart card remarkably flat and easy to print.
Le logement 24 pour le circuit intégré 25 dans la feuille inférieure 21 pourra si nécessaire être complété par un logement correspondant dans la feuille supérieure 22. Il est aussi possible de renoncer au logement 24 dans la feuille inférieure 21 , et d'utiliser un logement correspondant plus profond dans la feuille supérieure 22. Dans une variante, la feuille supérieure 22 et/ou la feuille inférieure 21 sont munies d'une fenêtre au lieu d'un logement, laissant apparaître à l'extérieur de la carte le circuit 25, des pattes de connexion du circuit 25 ou des contacts liés au circuit 25.The housing 24 for the integrated circuit 25 in the lower sheet 21 may if necessary be supplemented by a corresponding housing in the upper sheet 22. It is also possible to give up the housing 24 in the lower sheet 21, and to use a corresponding housing deeper in the upper sheet 22. In a variant, the upper sheet 22 and / or the lower sheet 21 are provided with a window instead of a housing, revealing on the outside of the card the circuit 25, connection lugs for circuit 25 or contacts linked to circuit 25.
Dans une variante, la carte pourrait aussi être constituée par un circuit imprimé, par exemple un circuit imprimé à double face, assemblé entre une feuille de protection inférieure et une feuille de protection supérieure assem- blées au circuit imprimé par n'importe quel moyen connu, par exemple par collage.Alternatively, the card could also consist of a printed circuit, for example a double-sided printed circuit, assembled between a lower protective sheet and an upper protective sheet assembled to the printed circuit by any known means. , for example by gluing.
La figure 10 illustre un circuit imprimé dans une étape intermédiaire de fabrication, selon une variante de procédé destinée à faciliter la connexion entre le circuit 25 et la portion externe 26 de l'élément inductif 23. Cette va- riante est par exemple destinée à des étiquettes de sécurité pour protéger des marchandises, mais peut aussi être appliquée à des cartes à puce ou à d'autres dispositifs. Un circuit imprimé comprenant une portion en forme d'élément inductif 23 est usiné de la manière décrite ci-dessus sur un substrat 1 flexible, par exemple sur un support un carton. L'élément inductif 23 n'occupe qu'une moitié environ de la surface totale du substrat 1. Une des extrémités 26 de l'élément inductif 23 se prolonge sur l'autre moitié de la feuille 21. Cette extrémité peut par exemple être constituée par un fil discret soudé avec la portion externe de l'élément inductif 23. Dans une variante, cette extrémité 26 est usinée par incision dans la couche conductrice superficielle 2, de la manière décrite ci-dessus. Le reste de la couche superficielle 2 sur cette moitié de la feuille 21 peut alors être décollé en ne laissant subsister que l'extrémité 26.FIG. 10 illustrates a printed circuit in an intermediate manufacturing step, according to an alternative method intended to facilitate the connection between the circuit 25 and the external portion 26 of the inductive element 23. This variant is for example intended for security labels to protect goods, but can also be applied to smart cards or other devices. A printed circuit comprising a portion in the form of an inductive element 23 is machined in the manner described above on a flexible substrate 1, for example on a cardboard support. The inductive element 23 occupies only about half of the total surface of the substrate 1. One of the ends 26 of the inductive element 23 extends over the other half of the sheet 21. This end can for example be formed by a discreet wire welded with the portion external of the inductive element 23. In a variant, this end 26 is machined by incision in the surface conductive layer 2, in the manner described above. The rest of the surface layer 2 on this half of the sheet 21 can then be peeled off, leaving only the end 26.
Un élément électronique ou électrique 25 est assemblé dans une zone de la feuille 21 non occupée par les pistes conductrices, dans cet exemple à l'intérieur de l'élément inductif 23. L'élément 25 peut par exemple être un circuit intégré ou un fusible. Il est relié à la portion interne de l'élément inductif 23 par l'intermédiaire d'une plage de contact conductrice 51. En outre, l'élé- ment 25 est relié à une deuxième plage de contact 52 destinée à établir la connexion avec l'extrémité 26 de l'élément inductif 23.An electronic or electrical element 25 is assembled in a zone of the sheet 21 not occupied by the conductive tracks, in this example inside the inductive element 23. The element 25 can for example be an integrated circuit or a fuse . It is connected to the internal portion of the inductive element 23 via a conductive contact pad 51. In addition, the element 25 is connected to a second contact pad 52 intended to establish the connection with the end 26 of the inductive element 23.
Après usinage des pistes conductrices constituant la bobine et assemblage de l'élément 25, la moitié de la feuille 21 occupée par les pistes conductrices est recouverte d'une couche isolante (non représentée). Pour cela, l'élément inductif 23 peut par exemple être recouvert d'une couche de laquage isolant ou d'une feuille adhésive isolante. La zone de contact 52 n'est toutefois pas recouverte pas la couche isolante.After machining of the conductive tracks constituting the coil and assembly of the element 25, half of the sheet 21 occupied by the conductive tracks is covered with an insulating layer (not shown). For this, the inductive element 23 can for example be covered with an insulating lacquer layer or an insulating adhesive sheet. The contact area 52 is however not covered by the insulating layer.
La feuille 21 est ensuite repliée sur elle-même selon un axe de pliage 53, en sorte que les deux moitiés évoquées se superposent. L'extrémité 26 de l'élément inductif 23 est ainsi mise en contact électrique avec la plage de contact 52. Une connexion est ainsi constituée très simplement entre la portion externe de l'élément inductif 23 et l'élément 25. Les deux moitiés repliées de la feuille 21 peuvent être fixées mutuellement par exemple par collage.The sheet 21 is then folded back on itself along a folding axis 53, so that the two halves mentioned overlap. The end 26 of the inductive element 23 is thus brought into electrical contact with the contact pad 52. A connection is thus very simply formed between the external portion of the inductive element 23 and the element 25. The two folded halves of the sheet 21 can be fixed to each other for example by gluing.
Ce procédé convient aussi parfaitement pour la fabrication de cir- cuits imprimés flexibles. De tels circuits sont utilisés par exemple pour fabriquer des connecteurs flexibles. En outre, le procédé est parfaitement adapté à chaque fois qu'une densité maximale des pistes à la surface du circuit imprimé doit être obtenue.This process is also perfectly suited for the manufacture of flexible printed circuits. Such circuits are used, for example, to manufacture flexible connectors. In addition, the method is perfectly suited whenever a maximum density of the tracks on the surface of the printed circuit must be obtained.
L'homme du métier réalisera en outre que ce procédé peut aussi être utilisé en combinaison avec n'importe quel autre procédé connu de fabri- cation de circuits imprimés. Il est par exemple possible de réaliser des cartes sur lesquels une partie des pistes conductrices sont réalisées ou démarquées par voie électrochimique par exemple, le reste étant usiné de la manière spécifiée dans les revendications.Those skilled in the art will further realize that this method can also be used in combination with any other known method of manufacturing cation of printed circuits. It is for example possible to produce cards on which part of the conductive tracks are produced or demarcated by electrochemical means for example, the rest being machined in the manner specified in the claims.
L'homme du métier réalisera que l'expression circuit imprimé est utilisée dans cette description et dans les revendications par convention, bien que l'invention s'applique surtout à des circuits et à des cartes réalisés sans étape d'impression au sens habituel. Those skilled in the art will realize that the expression printed circuit is used in this description and in the claims by convention, although the invention applies especially to circuits and cards produced without a printing step in the usual sense.

Claims

Revendications claims
1. Procédé de fabrication de circuit imprimé (21 ; 31 ) à partir d'un substrat diélectrique (1 ) revêtu d'au moins une couche conductrice superficielle (2, 2'), comprenant une première étape de démarcation de pistes conductrices par étampage de ladite couche conductrice (2) au moyen d'un premier poinçon d'étampage (30) dont la surface d'appui comporte un motif en bas relief définissant la topologie des pistes conductrices (8, 8') du circuit imprimé, de manière à repousser de manière permanente des portions (33, 33') dudit substrat diélectrique (1 ) et de ladite couche conductrice superficielle (2, 2') et à définir ainsi un premier jeu de pistes conductrices (8) sur un premier niveau (A) et au moins un deuxième jeu de pistes conductrices (8') sur au moins un deuxième niveau (B) repoussé par ledit poinçon d'étampage (30),1. Method for manufacturing a printed circuit (21; 31) from a dielectric substrate (1) coated with at least one surface conductive layer (2, 2 ′), comprising a first step of demarcating conductive tracks by stamping of said conductive layer (2) by means of a first stamping punch (30), the bearing surface of which comprises a pattern in low relief defining the topology of the conductive tracks (8, 8 ') of the printed circuit, so permanently repelling portions (33, 33 ') of said dielectric substrate (1) and of said surface conductive layer (2, 2') and thus defining a first set of conductive tracks (8) on a first level (A ) and at least one second set of conductive tracks (8 ') on at least one second level (B) pushed back by said stamping punch (30),
caractérisé en ce qu'il comporte en outrecharacterized in that it further comprises
une étape supplémentaire de démarcation de pistes conductrices voisines par découpe au moyen d'un outil de coupe tranchant (5).an additional step of demarcating neighboring conductive tracks by cutting by means of a sharp cutting tool (5).
2. Procédé selon la revendication 1 , caractérisé en ce que ladite étape supplémentaire de démarcation est effectuée uniquement localement aux endroits (41 ) où lesdites pistes conductrices (8, 8') changent de niveau (A, B).2. Method according to claim 1, characterized in that said additional demarcation step is performed only locally at the locations (41) where said conductive tracks (8, 8 ') change level (A, B).
3. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite étape supplémentaire de démarcation est effectuée avant ladite première étape.3. Method according to one of the preceding claims, characterized in that said additional demarcation step is carried out before said first step.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite étape supplémentaire de démarcation est effectuée après la- dite première étape.4. Method according to one of the preceding claims, characterized in that said additional demarcation step is carried out after said first step.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite étape supplémentaire de démarcation de pistes conductrices voisines (8, 8') est effectuée au moyen d'un deuxième poinçon d'étampage (5) présentant des surfaces de contact coupantes (6) avec ladite couche conductrice superficielle (2) et découpant simultanément des entailles (7) séparant lesdites pistes conductrices.5. Method according to one of the preceding claims, characterized in that said additional step of demarcating neighboring conductive tracks (8, 8 ') is carried out by means of a second stamping punch (5) having cutting contact surfaces (6) with said surface conductive layer (2) and simultaneously cutting notches (7) separating said conductive tracks.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que ledit outil de coupe est un couteau ou une lame découpant séquentiellement des entailles (7) séparant les pistes conductrices voisines (8, 8') selon un motif préalablement enregistré dans une mémoire électronique.6. Method according to one of the preceding claims, characterized in that said cutting tool is a knife or a blade sequentially cutting notches (7) separating the neighboring conductive tracks (8, 8 ') according to a pattern previously recorded in a electronic memory.
7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que ladite étape supplémentaire de démarcation de pistes conductrices voisi- nés (8, 8') est effectuée au moyen d'un outil de perçage ou de fraisage.7. Method according to one of claims 1 to 5, characterized in that said additional step of demarcation of adjacent conductive tracks (8, 8 ') is carried out by means of a drilling or milling tool.
8. Procédé selon la revendications précédente, caractérisé en ce que ledit substrat diélectrique (1) est revêtu de plusieurs couches conductrices superposées (2, 2') isolées mutuellement, toutes lesdites couches conductrices étant repoussées simultanément par ledit premier poinçon d'étampage (30).8. Method according to the preceding claim, characterized in that said dielectric substrate (1) is coated with several superimposed conductive layers (2, 2 ') insulated from each other, all of said conductive layers being repelled simultaneously by said first stamping punch (30 ).
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que chaque face dudit substrat diélectrique est revêtue d'une ou plusieurs couches conductrices superficielles (2), différentes pistes conductrices (8, 8') étant démarquées par étampage sur chaque face.9. Method according to one of the preceding claims, characterized in that each face of said dielectric substrate is coated with one or more surface conductive layers (2), different conductive tracks (8, 8 ') being demarcated by stamping on each face .
10. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre une étape d'usinage dans ledit film d'un logement (24) destiné à loger un composant électronique (25) connecté auxdites pistes conductrices (8, 8').10. Method according to one of the preceding claims, characterized in that it further comprises a step of machining in said film a housing (24) intended to house an electronic component (25) connected to said conductive tracks (8 , 8 ').
11. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre une étape de recouvrement d'une partie des pistes conductrices (8) par une couche isolante, et une étape de repliage dudit film électrique selon un axe de pliage (53), de manière à créer au moins un pont électrique (26) entre des portions (26, 52) des pistes électriques (8) non recouvertes par ladite couche isolante. 11. Method according to one of the preceding claims, characterized in that it further comprises a step of covering part of the conductive tracks (8) with an insulating layer, and a step of folding said electrical film along an axis folding (53), so as to create at least one electric bridge (26) between portions (26, 52) of the electric tracks (8) not covered by said insulating layer.
12. Circuit imprimé (21 ; 31) fabriqué selon le procédé d'une des revendications 1 à 11.12. Printed circuit (21; 31) manufactured according to the method of one of claims 1 to 11.
13. Bobine (23) dont les spires sont constituées par les pistes conductrices d'un circuit imprimé (21 ; 31) fabriqué selon le procédé d'une des re- vendications 1 à 11.13. Coil (23) whose turns are formed by the conductive tracks of a printed circuit (21; 31) manufactured according to the method of one of claims 1 to 11.
14. Carte à puce (20; 30) incorporant une bobine (23) selon la revendication 13 et/ou un circuit imprimé (21; 31) selon la revendication 12.14. Chip card (20; 30) incorporating a coil (23) according to claim 13 and / or a printed circuit (21; 31) according to claim 12.
15. Carte à puce (20) selon la revendication précédente, caractérisée en ce que ledit circuit imprimé (21 ) est un circuit comportant des pistes conductrices sur une première face uniquement, ladite face étant recouverte par une feuille de protection (22), la face du circuit imprimé (21) opposée à ladite face étant une face externe de ladite carte à puce.15. Chip card (20) according to the preceding claim, characterized in that said printed circuit (21) is a circuit comprising conductive tracks on a first face only, said face being covered by a protective sheet (22), the face of the printed circuit (21) opposite said face being an external face of said chip card.
16. Carte à puce (30) selon la revendication précédente, caractérisée en ce que ledit circuit imprimé (31 ) est assemblé entre une feuille de pro- tection inférieure et une feuille de protection supérieure.16. Chip card (30) according to the preceding claim, characterized in that said printed circuit (31) is assembled between a lower protective sheet and an upper protective sheet.
17. Connecteur incorporant un circuit imprimé (21 ; 31) selon la revendication 12. 17. Connector incorporating a printed circuit (21; 31) according to claim 12.
PCT/CH1996/000263 1996-07-18 1996-07-18 Method for making printed circuits and resulting printed circuit WO1998004106A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CH1996/000263 WO1998004106A1 (en) 1996-07-18 1996-07-18 Method for making printed circuits and resulting printed circuit
AU62972/96A AU6297296A (en) 1996-07-18 1996-07-18 Method for making printed circuits and resulting printed circuit
CA002260885A CA2260885C (en) 1996-07-18 1996-07-18 Method for making printed circuits and resulting printed circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CH1996/000263 WO1998004106A1 (en) 1996-07-18 1996-07-18 Method for making printed circuits and resulting printed circuit
CA002260885A CA2260885C (en) 1996-07-18 1996-07-18 Method for making printed circuits and resulting printed circuit

Publications (1)

Publication Number Publication Date
WO1998004106A1 true WO1998004106A1 (en) 1998-01-29

Family

ID=25680787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1996/000263 WO1998004106A1 (en) 1996-07-18 1996-07-18 Method for making printed circuits and resulting printed circuit

Country Status (2)

Country Link
CA (1) CA2260885C (en)
WO (1) WO1998004106A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033778A2 (en) * 1999-03-01 2000-09-06 Shinko Electric Industries Co. Ltd. Antenna frame for IC card
WO2004036969A1 (en) * 2002-10-15 2004-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for joining at least two parts
EP1742171A1 (en) * 2004-04-27 2007-01-10 Dainippon Printing Co., Ltd. Method for manufacturing sheet provided with ic tag, apparatus for manufacturing sheet provided with ic tag, sheet provided with ic tag, method for fixing ic chip, apparatus for fixing ic chip, and ic tag

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB610058A (en) * 1945-03-24 1948-10-11 Albert Ward Franklin Improvements in structural unit for radio apparatus and method of making the same
US2622054A (en) * 1946-05-11 1952-12-16 Albert W Franklin Method of making an electrical unit
GB1138628A (en) * 1965-01-14 1969-01-01 Western Electric Co A method of making a printed circuit
DE1690542A1 (en) * 1967-09-07 1971-11-18 Zucht Geb Schmidt Gisela Process for the mechanical separation of reproducible, discrete conductor tracks on insulating material covered with a conductive layer
FR2137991A1 (en) * 1971-05-18 1972-12-29 Brandi Maria
US4138924A (en) * 1975-07-12 1979-02-13 Seebach Juergen Method for the production of conductor plates
US4356627A (en) * 1980-02-04 1982-11-02 Amp Incorporated Method of making circuit path conductors in plural planes
DE3330738A1 (en) * 1983-08-26 1985-03-07 Gerhard 8912 Kaufering Rahlf Method and device for producing electrical circuits on printed-circuit boards
FR2674724A1 (en) * 1991-03-27 1992-10-02 Lecoent Fernand Method of fabricating an electronic circuit moulded in two or three dimensions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB610058A (en) * 1945-03-24 1948-10-11 Albert Ward Franklin Improvements in structural unit for radio apparatus and method of making the same
US2622054A (en) * 1946-05-11 1952-12-16 Albert W Franklin Method of making an electrical unit
GB1138628A (en) * 1965-01-14 1969-01-01 Western Electric Co A method of making a printed circuit
DE1690542A1 (en) * 1967-09-07 1971-11-18 Zucht Geb Schmidt Gisela Process for the mechanical separation of reproducible, discrete conductor tracks on insulating material covered with a conductive layer
FR2137991A1 (en) * 1971-05-18 1972-12-29 Brandi Maria
US4138924A (en) * 1975-07-12 1979-02-13 Seebach Juergen Method for the production of conductor plates
US4356627A (en) * 1980-02-04 1982-11-02 Amp Incorporated Method of making circuit path conductors in plural planes
DE3330738A1 (en) * 1983-08-26 1985-03-07 Gerhard 8912 Kaufering Rahlf Method and device for producing electrical circuits on printed-circuit boards
FR2674724A1 (en) * 1991-03-27 1992-10-02 Lecoent Fernand Method of fabricating an electronic circuit moulded in two or three dimensions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033778A2 (en) * 1999-03-01 2000-09-06 Shinko Electric Industries Co. Ltd. Antenna frame for IC card
EP1033778A3 (en) * 1999-03-01 2001-07-11 Shinko Electric Industries Co. Ltd. Antenna frame for IC card
US6557767B1 (en) 1999-03-01 2003-05-06 Shinko Electric Industries Co., Ltd. Antenna frame for IC card and process for manufacturing the same or IC card using the same
WO2004036969A1 (en) * 2002-10-15 2004-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for joining at least two parts
EP1742171A1 (en) * 2004-04-27 2007-01-10 Dainippon Printing Co., Ltd. Method for manufacturing sheet provided with ic tag, apparatus for manufacturing sheet provided with ic tag, sheet provided with ic tag, method for fixing ic chip, apparatus for fixing ic chip, and ic tag
EP1742171B1 (en) * 2004-04-27 2012-08-15 Dai Nippon Printing Co., Ltd. Method for producing sheet provided with ic tags, apparatus for producing sheet provided with ic tags, sheet provided with ic tags, method for fixing ic chips, apparatus for fixing ic chips, and ic tag

Also Published As

Publication number Publication date
CA2260885A1 (en) 1998-01-29
CA2260885C (en) 2008-09-16

Similar Documents

Publication Publication Date Title
EP0913076B1 (en) Method for making printed circuits and resulting printed circuit
EP0916144B1 (en) Method for making a transponder coil
EP3201843B1 (en) Chip card manufacturing method, and chip card obtained by said method
EP3005846B1 (en) Method for producing a printed circuit
WO1999018540A1 (en) Method for making an electronic device with chip and/or antenna and device obtained by said method
WO2000002160A1 (en) Open-worked antenna for integrated circuit card, and integrated circuit card comprising same
WO1998004106A1 (en) Method for making printed circuits and resulting printed circuit
EP2178032B1 (en) Module, chip card and corresponding manufacturing method
FR3061333A1 (en) PLASTIC THIN CARD INTEGRATING A DIGITAL FOOTPRINT SENSOR AND METHOD OF MAKING SAME
EP1433368B1 (en) Electronic circuit comprising conductive bridges and method for making such bridges
EP3020256B1 (en) Electronic module with adhesive dielectric film and method for manufacturing same
CA2293460A1 (en) Method for making a contactless smart card
EP2866173B1 (en) Method for manufacturing an electric circuit and electric circuit manufactured by said method
EP3932152A1 (en) Electronic board comprising components in cavities and split solder pads
EP0120754B1 (en) Polarized electronic component, and method for its manufacture
EP4280828A1 (en) Improved electrical connection between a flex circuit and a rigid circuit, associated connection pin
EP1623367A1 (en) Method for making a pre-laminated inlet
EP0080233A1 (en) Method of realizing an electronic circuit protected against electrostatic charges
FR2795201A1 (en) DEVICE AND METHOD FOR MANUFACTURING ELECTRONIC DEVICES HAVING AT LEAST ONE CHIP FIXED ON A SUPPORT
EP3452958A1 (en) Method for manufacturing chip cards and chip card obtained by said method
FR2602629A1 (en) FLEXIBLE PRINTED CIRCUIT WITH SURFACE COMPONENTS, AND METHOD FOR MANUFACTURING THE SAME
EP4154309B1 (en) Electric circuit for an electronic chip card module with coloured contacts and method for producing same
EP3651068A1 (en) Method for manufacturing an electronic insert for a multi-component portable support and insert obtained
EP2205053B1 (en) Printed circuit card and process for producing such a card
KR100443303B1 (en) Method of producing an electronic module and chip card therof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM

WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA