[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998000573A1 - Tole d'acier au carbone antirouille pour reservoir a carburant presentant une bonne etancheite aux gaz lors du soudage et de bonnes proprietes anticorrosion apres formage - Google Patents

Tole d'acier au carbone antirouille pour reservoir a carburant presentant une bonne etancheite aux gaz lors du soudage et de bonnes proprietes anticorrosion apres formage Download PDF

Info

Publication number
WO1998000573A1
WO1998000573A1 PCT/JP1997/002275 JP9702275W WO9800573A1 WO 1998000573 A1 WO1998000573 A1 WO 1998000573A1 JP 9702275 W JP9702275 W JP 9702275W WO 9800573 A1 WO9800573 A1 WO 9800573A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
plating
corrosion resistance
unavoidable impurities
Prior art date
Application number
PCT/JP1997/002275
Other languages
English (en)
French (fr)
Inventor
Jun Maki
Teruaki Izaki
Masahiro Fuda
Tetsuro Takeshita
Nobuyoshi Okada
Takayuki Ohmori
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP33067296A external-priority patent/JP2938402B2/ja
Priority claimed from JP33842296A external-priority patent/JP4036347B2/ja
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP97928533A priority Critical patent/EP0870847B1/en
Priority to CA002230706A priority patent/CA2230706C/en
Priority to US09/029,558 priority patent/US6673472B2/en
Priority to DE69738417T priority patent/DE69738417T2/de
Priority to AU32772/97A priority patent/AU694077B2/en
Publication of WO1998000573A1 publication Critical patent/WO1998000573A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • B32B15/015Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium the said other metal being copper or nickel or an alloy thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/12764Next to Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/27Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.]
    • Y10T428/273Web or sheet containing structurally defined element or component, the element or component having a specified weight per unit area [e.g., gms/sq cm, lbs/sq ft, etc.] of coating

Definitions

  • the present invention provides a steel sheet for a fuel tank of an automobile, which has both excellent welding airtightness and corrosion resistance after molding.
  • Vehicle fuel tanks are usually designed last, according to the design of the bodywork, and their shape has become increasingly complex in recent years.
  • the materials used for these fuel tanks are required to have extremely good deep drawing properties and to be free from cracks due to impact after molding. You.
  • a Pb-Sn alloy-plated steel sheet Japanese Patent Publication No. 57-61833
  • This material has stable chemical properties against gasoline, and has excellent press moldability due to its excellent lubricity.
  • Aluminum has a stable oxidized skin on its surface Since the film is formed, it has good corrosion resistance to gasoline and other organic acids generated when alcohol, gasoline, or the like is deteriorated.
  • the aluminum-plated steel sheet does not have an aluminum-plated layer because it is an extremely hard Fe-A1-Si intermetallic compound layer (hereinafter referred to as an alloy layer) generated at the interface between the coating layer and the steel sheet. The material is lower than the one. For this reason, cracks occur due to severe processing.
  • the present invention does not use Pb, has excellent corrosion resistance in an organic acid environment, and is expected to increase in the tank manufacturing process in the future.
  • a new fuel tank that has excellent press workability enough to withstand the expected severe pressing conditions, does not deteriorate the airtightness of the welded part, and also has corrosion resistance to organic acids after molding. It is intended to provide steel sheets for industrial use.
  • the present invention first optimizes the steel composition in order to secure the airtightness of the welded part, and specifically achieves significant performance improvement by limiting the amount of P in steel and adding B. did.
  • the present applicant has disclosed in Japanese Patent Application Laid-Open No. Sho 60-165366 a molten aluminum-coated steel sheet in which 30 ppm or less of B is added to steel. Disclosed are molten aluminum-plated steel sheets containing up to 01% added, but these inventions aim at high-temperature strength or oxidation resistance at high temperatures, and the addition of B was also for these reasons. Also, its use was naturally intended for high-temperature environments such as automotive exhaust system materials. In contrast, the present invention has found that optimizing the amounts of P and B in steel has a great effect on the improvement of welding airtightness, which is an essential property as a fuel tank material. Things.
  • the main corrosive component of the fuel tank's internal environment is formic acid, which is formed by the decomposition of fuel. Corrosion of the base material starts from the cracks in the plating and alloy layers, corrosion progresses at the interface between the base material and the alloy layer, and the plating gradually rises from the base material, leading to complete corrosion. . The corrosion progresses at the interface between the base material and the alloy layer because the potential of the alloy layer is more noble than that of the base material in the presence of formic acid, and the base material corrosion near the alloy layer is accelerated.
  • the present invention provides the following two types of solutions.
  • One is to reduce the occurrence of cracks in aluminum-plated steel sheets with high total elongation, based on the new knowledge that cracking is suppressed. It is.
  • the potential difference between the alloy layer and the base metal measured at 20 ° C in an environment of formic acid 10 Oppm and residual moisture is less than 0.35 V steel components and It is intended to control the progress of corrosion even if an alloy layer crack occurs by optimizing the corrosion components.
  • the control of the potential of the alloy layer and the base metal can be performed by adjusting the steel composition and the plating bath composition, or by performing pre-plating before melting. It is possible to add Cr to the steel surface, apply Cr pre-plating to the surface of the steel, use a clad steel, or add Zn or the like to the plating bath.
  • the gist of the present invention is as follows.
  • C 0.01% or less, S 0.2% or less, Mn: less than 0.6%, P: 0.04% or less, acid soluble A1: 0.1% or less, N: 0.01% or less, Ti, Nb 1 or 2 or more kinds in total (C + N) atomic equivalent or more and 0.2% or less, B: 0.0003 to 0.0030%, the balance being Fe and inevitable impurities, the weight% Containing 2 to 13% of Si and remaining
  • a fuel tank steel sheet for fuel tanks characterized in that its part has a coating layer composed of Al and unavoidable impurities, and is excellent in welding airtightness and corrosion resistance after molding.
  • C 0.003% or less, S 0.1% or less, Mn: 0.4% or less, P: 0.02% or less, acid soluble A1: 0.1% or less, N: 0.01% or less, 1 of Ti, Nb Species or two or more in total of (C + N) atomic equivalent or more and 0.2% or less, B: 0.0003-0.0030%, the balance being Fe and unavoidable impurities on the surface of steel sheet A steel sheet containing 2 to 13% of Si and having a coating layer composed of A1 and unavoidable impurities, with the balance being A1 and unavoidable impurities.
  • the fuel tank according to any one of (1) to (4) characterized by containing at least one or two or more of 0.05 to 0.5%, and having excellent welding airtightness and corrosion resistance after molding. Steel sheet for link.
  • the fuel tank according to any one of (1) to (5) which has an adhesion amount of the aluminum-based coating layer of 50 g Zm 2 or less per side, and has excellent welding airtightness and corrosion resistance after molding. Steel sheet for link.
  • An A1-Fe-Si based intermetallic compound layer is provided on the surface of the original plate for plating, and a plating layer comprising A1 and unavoidable impurities is provided on the surface of the original plate and contains lOOppm formic acid.
  • the difference in immersion potential between the original plate for plating and the intermetallic compound layer when the remainder is immersed in a solution composed of water and unavoidable impurities is 0.35 V or less, and is characterized by welding airtightness and molding.
  • Post corrosion resistance Excellent fuel-resistant steel plate for fuel tanks.
  • A1 The composition of the Si-based plating layer is 2% to 13% by weight of Si, 0.5 to 5% in total of one or more of Sn, Zn, Sb, and Bi, and the balance
  • At least the surface of one of the aluminum-based coating layer may, you characterized that you have a click Lome one preparative process layer of the single-sided person or 5 ⁇ 100 mg / m 2 of Cr in terms of (1) -
  • the steel sheet has a high deep drawability that can be processed into a complicated shape such as a fuel tank.
  • the content be 0.003% or less, more preferably 0.0018% or less.
  • Si has a strong affinity for oxygen and easily forms a stable oxide film on the surface during the process of melting aluminum. When an oxide film is formed, it inhibits the A1-Fe reaction in the plating bath and is called non-plating during aluminum plating. It becomes easier to form plating defects.
  • this element is also an element that hardens a steel sheet, it is preferable that the steel sheet requiring high formability as in the present invention has a small amount of 0.2% or less, more preferably 0.1% or less. More preferably, it is 0.03% or less.
  • Mn is an element effective in increasing the strength of a steel sheet, but the present invention aims at a soft steel sheet, and a smaller amount is preferred. If Mn exceeds 0.6%, it is difficult to harden the steel to produce a steel sheet with high ductility, so Mn is set to less than 0.6%, preferably to less than 0.4%. More preferably, it is less than 0.3%.
  • P is an element that segregates the grain boundaries and makes the grain boundaries brittle, and is also an element that inhibits the ductility of the steel sheet. Although the reason is not clear, it also has a large effect on the weld hermeticity. If more than 0.04% is added, even if B is added, the weld hermeticity is greatly deteriorated. Therefore, in the present invention, it is limited to 0.04% or less.
  • the desirable amount for obtaining a more stable weld tightness is 0.02% or less, and more desirably 0.01% or less.
  • N For the same reason as for C, it is preferable that N is small. From the viewpoint of ensuring formability, the upper limit of N is set to 0.01%, preferably 0.006% or less.
  • Ti, Nb This element is known as an element that fixes C and N, and a steel sheet that fixes C and N with these elements and substantially eliminates solute C and N is known as IF steel.
  • IF steel is not only soft but also excellent in deep drawability.
  • Ti is added for this purpose. It is desirable that the amount added be equal to or more than the atomic equivalent of (C + N), but when the amounts of C and N are very small, the amount of Ti may be at the impurity level. Therefore, no lower limit is set. If the amount is too large, the effect is saturated, and Ti is an element that promotes the A1-Fe reaction. If the amount is too large, the alloy layer tends to become thicker, which tends to impair the workability of the steel sheet. Therefore the upper limit 0.2%. However, since Nb is an element that raises the recrystallization temperature, it is desirable to use Ti together.
  • A1 is an element that has a strong affinity for oxygen like Si, and tends to make molten aluminum deposition difficult. Also as the acid-soluble A1 to inhibit steel sheet formability to form A1 2 0 3 based inclusions to zero.]% Or less. Although there is no particular lower limit, it is preferable to add a small amount in order to suppress the generation of surface defects due to Ti oxide, and a preferable addition range is 0.01 to 0.05%.
  • B In the present invention, it is an important element for ensuring the welding airtightness. It is known to improve secondary workability and fatigue strength when B is subjected to external force again after deep drawing, but the present inventors also added welding after aluminum plating. It has been found that the crystal structure of the welded part is modified and the airtightness of the welded part is dramatically improved. To exert this effect, 0.0001% or more is required, and the addition of B naturally has an effect on secondary workability and fatigue strength. To obtain stable performance, 0.0003% (3 ppm) or more is desirable. However, if the addition amount is too large, the hot strength becomes too high and the hot rollability decreases. Therefore, the upper limit is set to 0.0030%.
  • Cr is an element that increases the electric potential of the steel sheet, and the addition of this element can reduce the electric potential difference between the alloy layer and the original sheet. To achieve this effect, Cr must be 0.5% or more, and if the Cr content exceeds 7%, the surface concentration of the Cr-based oxide becomes remarkable in the melting process, which is a problem with ordinary processes. It becomes difficult. Therefore, this value is set as the upper limit.
  • Cu, Ni, Mo These elements can be added as needed.
  • Cu, Ni, and Mo are elements that contribute to improving corrosion resistance, and Ni and Mo in particular improve pitting corrosion resistance. To achieve these effects, Cu, Ni, and Mo must be added in an amount of 0.05% or more. There is a concern that it will cause the generation of scalp flaws. Since the effect is saturated even if Ni and Mo are added excessively, the upper limit concentration is set to 0.5% (Cu, Ni, Mo).
  • the alloy layer formed by the fusion of the molten aluminum is very hard and brittle, so that it tends to be a starting point of fracture, and also impairs the ductility of the steel sheet itself.
  • the ductility of the steel sheet is reduced by about 2 to 5 points (2 to 5%) even in a normal alloy layer of about 2 to 3 zm. Therefore, the thinner the alloy layer, the more advantageous it is for processing.
  • Si is not added in an amount of 2% or more, the effect of reducing the alloy layer is small, and if it exceeds 13%, the effect is saturated and, in addition, Si is easily electrochemically used as a cathode. An increase in this leads to deterioration of the corrosion resistance of the plating layer. For this reason, the amount of Si is limited to 2 to 13%.
  • the corrosion resistance increases and the plating adhesion and weldability tend to deteriorate.
  • the weight be 50 g / m 2 or less per side.
  • the thickness of the alloy layer is preferably thinner, as described above, because it adversely affects the ductility of the aluminum-plated steel sheet.
  • the post-plating process may include chromate treatment for primary promotion, temper rolling for adjusting the surface condition and material, and resin coating for imparting lubricity.
  • a chromate film after plating examples include an inorganic type and a type containing an organic substance, and a treatment method includes a coating method and a reaction method, and any of them may be a known one.
  • the chromate treatment mainly improves the weldability and, of course, the corrosion resistance. Adhesion amount of click Lome one Bok at this time, and per side 5 ⁇ l OOmgZ m 2 in C r terms. If it is less than 5 mg / m 2 with respect to weldability effect rather small, also the effects 1 00mg / m 2 or more is Ukara want saturated. Further, it is desirable to apply a resin film on the outermost surface.
  • This resin film contributes to lubricity, suppression of the reaction between the electrode and steel plate during resistance welding, etc., and improves the performance of formability and weldability, etc., and gives excellent performance as a fuel tank overall .
  • the organic film may be directly provided on the steel sheet, or chromate may be added to the organic film.
  • the potential difference between the alloy layer and the original plate is 0.35 V or less.
  • the measurement environment is preferably an environment containing formic acid that is close to the corrosive environment in the actual fuel tank.In this environment, the conventional aluminum-plated steel sheet had a potential difference of about 0.4 V However, in this case, as described above, corrosion tends to progress between the alloy layer and the original plate. If the potential difference is small, the progress of corrosion will be slight even if there are cracks in the plating layer and alloy layer. If the potential difference is within this range, it does not matter which of the alloy layer and the original plate is noble, but in practice, it is unlikely that the alloy layer will be lower.
  • the plating is Al-Si system, and Sn, Zn, Sb, and Bi are added in a total amount of 0.5 to 5%. You can. All of these elements are mixed into the alloy layer and lower the potential of this layer. The effect appears when a total of 0.5% or more is added. The upper limit is set to 5% because too much addition impairs the corrosion resistance of the plating layer.
  • a normal method will be used to manufacture the steel sheet.
  • the steel composition is adjusted and melted by, for example, a converter-vacuum degassing process, and the steel slab is manufactured by a continuous sintering method or the like and hot-rolled.
  • the conditions of hot rolling followed by cold rolling affect the deep drawability of the steel sheet.
  • the heating temperature during hot rolling is as low as about 1150 ° C
  • the finishing temperature of hot rolling is as low as about 800 ° C
  • the winding temperature is 600 ° C.
  • the rolling reduction of cold rolling should be as high as about 80%.
  • the steel shown in Table 1 was melted by ordinary converter-vacuum degassing to form a steel slab, then heated at 1130 to 1170 ° C, finished at 870 to 920 ° C, and wound at 600 to 630 ° C. Then, cold rolling was performed at a cold rolling rate of about 80% to obtain a 0.8 mm thick cold rolled steel strip. For some materials, the hot rolling conditions were adjusted so that they would not elongate more. Using these as materials, we performed molten aluminum plating. Molten aluminum was installed on a non-oxidizing furnace-reduction furnace type line, and annealing was also performed inside this line. The annealing temperature was set at 800 to 850 ° C.
  • the plating thickness was adjusted to about 60 g / m 2 on both sides by the gas wiping method.
  • the plating temperature at this time was 660 ° C, and Si was added to A1 as the plating bath composition.
  • Fe as an impurity may be mixed in from the strip of the plating equipment in the bath.
  • Table 2 shows the plating conditions and the performance evaluation results according to the evaluation method shown below.
  • JIS Z2241 a tensile test was performed on a JIS No. 5 test piece, and the total elongation was measured.
  • a forming test was performed with a drawing ratio of 2.4 using a cylindrical punch with a diameter of 50.
  • the screen suppressing pressure was set at 500 kg, and the formability was evaluated according to the following index.
  • a die with a hydraulic bead was attached to the tensile tester, and the bead was pulled out while holding the plate with hydraulic pressure.
  • the beads are 4 nm in diameter, semicircular, and have a pressure of 600 kgf.
  • the sample from which the bead was extracted in this way was sealed in a glass container together with the fuel, and the corrosion resistance was evaluated.
  • the test solution was gasoline + distilled water 10% + formic acid 200 ⁇ , the period was 3 months, and the temperature was room temperature. The corrosion state after the test was visually observed.
  • the cold-rolled steel strip having the components shown in Table 1 of Example 1 was used as a base plate to perform molten aluminum plating.
  • the conditions for the deposition of the molten aluminum were the same as in Example 1.
  • in dark Kino component A l- 9. 4% S i plating-out adhesion amount sided uniform was varied 50 ⁇ 120 g / m 2 on both sides.
  • a part of the manufactured aluminum-plated steel plate was subjected to chromate treatment of chromic acid-silica sol-phosphate-organic resin system, and a part of it was coated with an epoxy resin film.
  • the performance of these materials as fuel tanks was evaluated in terms of weldability, in addition to the same method as in Example 1.
  • Table 3 shows the coating composition and performance evaluation results.
  • the adhesion amount is the value on both sides
  • the film thickness is the value per one side.
  • the steels shown in Table 4 were melted by ordinary converter-vacuum degassing and turned into steel slabs, which were then subjected to hot rolling and cold rolling under normal conditions to obtain cold rolled steel sheets (thickness 0). .8 mm). Using this as a material, a molten aluminum plating was performed.
  • the non-oxidizing furnace-reduction furnace type line was used for the molten aluminum plating, and the annealing was also performed in this molten plating line.
  • the annealing temperature was set at 800 to 850 ° C. After plating, the plating thickness was adjusted to about 60 g / m on both sides by gas wiping.
  • the plating temperature at this time was 660 ° C
  • the plating bath composition was basically A 1-2% Fe, and Si was added to this.
  • the Fe in this bath is supplied from the plating equipment in the bath.
  • the performance of the aluminum-plated steel sheet produced in this way as a fuel tank was evaluated. Table 5 shows the plating conditions and performance evaluation results, using the evaluation method shown below.
  • a forming test was performed using a cylindrical punch with a diameter of 50 mm with a hydraulic forming tester at a drawing ratio of 2.3.
  • the shear suppression pressure at this time was 500 kg, and the formability was evaluated according to the following index.
  • a flat-bottomed square tube with a flange width of 30 mm, a depth of 25 mm and a size of 70 x 70 mm was formed using a crank press tester, and the flange was subjected to seam welding under the welding conditions shown below.
  • a hole was made in a part of this hole, and an internal pressure of 0.5, 1, and 1.5 atm was applied to the hole with water in water to determine air leakage from the seam weld.
  • the corrosion resistance to gasoline was evaluated.
  • the test method was as follows: A hydraulic molding tester was used to fill the sample with a flat-bottomed cylinder with a flange width of 20 miii, a diameter of 50 and a depth of 25, and the test liquid was poured into the sample through a silicone rubber ring. And closed the lid. After leaving it at room temperature for 3 months, the corrosion state was visually observed.
  • Test solution gasoline + distilled water 10% + formic acid 200ppm
  • Red color is generated 0.1 to 5% or white is generated
  • the amount of B in steel is slightly insufficient
  • the airtightness of the welded portion tends to be slightly inferior, and even when P exceeds 0.01% (Examples 2 and 6 of the present invention). , 7, 8, 11), the airtightness is somewhat inferior to those with lower P contents.
  • the amount of elements such as C, Si, and ⁇ in the steel is large (Examples 9 and 13 of the present invention), the workability tends to be slightly inferior. Therefore, if these elements are properly used, a steel sheet with higher properties can be obtained.
  • the steel shown in Table 6 (P: 0.008%, S: 0.010%) was melted by ordinary converter-vacuum degassing treatment to produce steel slabs, then heated at 1140-1180 ° C and finished at 800- Hot rolling was performed at 900 ° C and a winding temperature of 620 to 670 ° C, and cold rolling was performed at a cold rolling reduction of about 80%, to obtain a cold rolled steel strip with a sheet thickness of 0.8.
  • the non-oxidizing furnace-reduction furnace type line was used for the molten aluminum, and the annealing was also performed in the line with the molten plating.
  • the annealing temperature was set at 800 to 850 ° C.
  • the plating-out thickness sided about 60mg in Gasuwai pin ring method after-out message; adjusted to Roh m 2.
  • the plating temperature at this time was 660 ° C, and the plating bath composition was Al-9.4% Si.
  • the Fe in the bath is supplied as an impurity from the plating equipment in the bath.
  • a part of the aluminum-plated steel plate thus manufactured is subjected to a base treatment of oxalic acid-silica sol-phosphoric acid-organic resin (acrylic), and a part of it is coated with resin. Covered.
  • steel sheets with increased or decreased resin content for chromate treatment were also manufactured. The performance of such a material as a fuel tank was evaluated.
  • Table 7 and Table 8 show the plating conditions and performance evaluation results using the evaluation method shown below.
  • the analysis of the message can layer composition
  • only aluminum flashing can layer 3% NaOH + 1% A1 CI - 6 H 2 0 electrolytic stripping solution was collected in the process after the inductive coupling flop plasma atomic spectroscopy acid Quantitative analysis was performed by the analytical method (Induced Coupled Plasma-Atomic Emission Spectroscopy) to determine the Si composition in the plating layer.
  • a die with a hydraulic bead was attached to the tensile tester, and the plate was pressed with hydraulic pressure to pull out the bead.
  • the bead has a diameter of 4 ⁇ , is semicircular, and has a pressure of 600kgf.
  • the sample from which the bead was pulled out was sealed in a glass container together with the fuel, and the corrosion resistance was evaluated.
  • the test solution was gasoline + distilled water 10% + formic acid 100 ppm, the duration was 3 months, and the temperature was room temperature (20 ° C ).
  • the corrosion state after the test was evaluated in the form of the amount of Fe eluted into the test solution.
  • the cold-rolled steel strip having the components shown in Table 6 of Example 4 was used as a base plate to perform molten aluminum plating.
  • the conditions for the molten aluminum are basically A 1—9% Si.
  • elements such as Sn and Zn were added thereto.
  • about 2% of Fe as an impurity may be mixed in the plating bath (plated layer).
  • Ni-based pre-plating was performed for the part-before the aluminum plating.
  • post-treatment of Table 2 in Example 4 was performed. The performance of these materials as a fuel tank was evaluated by the evaluation method of Example 4.
  • the present invention is to provide a molten aluminum-plated steel sheet which has both corrosion resistance and press workability required as a material for an automotive fuel tank, and also has a welded part airtightness which has been a problem to date.
  • Pb-based materials are very promising as new fuel tank materials when their use becomes difficult due to environmental problems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

明 細 書 溶接気密性と成型後の耐食性に優れた燃料タ ンク用防銪鋼板 技術分野
本発明は、 自動車の燃料タ ンク用鋼板と して優れた溶接気密性と 成型後の耐食性を兼備する防錡鋼板を提供する。 背景技術
自動車の燃料タ ンクは、 車体のデザイ ンに合わせて最後に設計さ れるこ とが通常で、 その形状は近年益々複雑になる傾向にある。 ま た燃料タ ンクは自動車の重要保安部品であるため、 この燃料タ ンク に使用される材料には、 極めて優れた深絞り特性が、 更には成型後 の衝撃による割れが無いこ と も要求される。 これに加えて、 孔あき 腐食やフ ィ ルター目詰ま り に繫がる腐食生成物の生成の少ない材料 で、 しかも容易に安定して接合できる材料であるこ と も重要である これら様々な特性を有する材料と して、 従来よ り ターンシー ト と 称される Pb- Sn合金めつき鋼板 (特公昭 57-61833号公報) が主に使 用されてきた。 この材料はガソ リ ンに対して安定な化学的性質を持 ち、 かつめつ きが潤滑性に優れるためプレス成型性に優れている。 これ以外にも亜鉛めつき鋼板に厚ク ロメ 一 卜処理を施した鋼板も使 用されており、 Pb— Sn合金程ではないが、 やはり優れた加工性、 耐 食性を有している。 しかし近年環境への負荷という意味から Pbを使 用 しない材料が希求されている。
この Pbを使用 しない自動車燃料タ ンク材料の候補材の一つがアル ミ (A1— Si) めっき鋼板である。 アルミ はその表面に安定な酸化皮 膜が形成されるため、 ガソ リ ンを始めと して、 アルコールやガソ リ ン等が劣化したと きに生じる有機酸に対しても耐食性が良好である 。 しかしながら、 アルミ めつ き鋼板を燃料タ ンク材料と して使用す る際の課題が幾つかある。 その一つはプレス成型性である。 アルミ めっ き鋼板は被覆層と鋼板の界面に生成する非常に硬質な Fe— A 1 - S iの金属間化合物層 (以下、 合金層と称する) のため、 アル ミ めつ き層が無いものと比べて材質が低下する。 このため、 厳しい加工に より割れを発生しゃすい。
また、 合金層を起点と して、 めっ き剝離やめつ きのクラ ッ クを生 じゃすいという欠点もある。 めっ きにクラ ッ クが発生すると、 こ こ より内面からの腐食が進行して、 短期間に孔あきに至る可能性があ るため、 成型後の耐食性も大きな課題である。
も う一つの課題は溶接性である。 アルミ めつ き鋼板の抵抗溶接は 可能ではあるが、 やや安定性に欠ける面がある。 これに加えてアル ミ めっ き鋼板はスポ ッ ト溶接やシ一ム溶接等の抵抗溶接は可能であ るが、 溶接部の気密性に劣るという課題もある。 燃料タ ンク材は溶 接後、 燃料が漏れず、 また揮発しないように気密性が要求されるが 、 アルミ めつ き鋼板を接合後内圧をかけると接合部で破断しやすく 、 接合後の気密性に劣るという問題があった。 これは他のめっ き鋼 板、 例えばタ一ンシー 卜や亜鉛めつ き鋼板では殆ど無く 、 アル ミ め つ き鋼板のみに顕著にみられる現象である。 理由は明確ではないが 、 めっ き層の A 1 が鋼中に拡散して何らかの影響を及ぼすと思われ る。 発明の開示
本発明は、 前記の課題を解決するこ とで、 Pbを使用せず、 有機酸 環境における優れた耐食性、 タ ンク製造工程において今後増すと予 想される苛酷なプレス条件にも充分耐え得る優れたプレス加工性を 有し、 しかも、 溶接部の気密性にも劣るこ とが無く 、 成型後の有機 酸に対する耐食性も確保した新しい燃料タ ンク用防靖鋼板を提供す る ものである。
また、 本発明は、 まず溶接部の気密性を確保するために、 鋼成分 の最適化を図り、 具体的には鋼中 P量制限と B添加を行う こ とで大 幅な性能改善を達成した。
本出願人は、 特開昭 60— 1 65366号公報において、 鋼中に Bを 30 p p m 以下添加した溶融アルミ めつき鋼板を、 また特開昭 60— 1 03 1 67号 公報において Bを 0. 01 %以下添加した溶融アルミ めつ き鋼板を開示 しているが、 これらの発明は、 高温強度あるいは高温での耐酸化性 を目的と したもので、 B添加もこれらのためであった。 また、 その 用途も当然自動車排気系材料等の高温環境を想定したものであった 。 これに対して本発明は燃料タ ンク材と して必須な特性である、 溶 接気密性の改善に対して鋼中 P, B量の最適化が大きな効果を有す る こ とを知見したものである。
一方、 も う一つの課題である成型後の耐食性を大幅に改善するた めに二種類の方案を提供している。
まず成型後の燃料タ ンクの腐食がどのように進行するかを検討し 、 次のような腐食挙動を見出 した。 燃料タ ン クの内面環境の主要な 腐食成分は、 燃料が分解して生成する蟻酸である。 めっき、 合金層 のクラ ッ クを起点と して母材の腐食が始ま り、 母材と合金層の界面 を腐食が進行し、 めっきが徐々 に母材より浮き上がって全面的な腐 食に至る。 母材と合金層の界面を腐食が進行するのは、 蟻酸存在下 で合金層の電位が母材に比べて貴であり、 合金層近傍の母材腐食が 促進されるからである。
かかる知見に基づき、 腐食を軽減する方案と して二種類ある。 一 つは、 合金層のクラ ッ クを抑制するこ とであり、 も う一つは合金層 と母材の電位差を縮めるこ とである。
そこで本発明において、 次の二種類の方案を提供している。 一つ は、 高い全伸びを有するアルミ めつ き鋼板はめつ きのク ラ ッ ク発生 が抑制されるという新しい知見に基づき、 鋼成分を適正化して合金 層ク ラ ッ クを抑制するという ものである。 またもう一つは、 蟻酸 10 Oppm、 残部水分という環境で 20°Cで測定した合金層一母材の電位差 が 0.35 V以下であると腐食が進行しに く いという知見より、 鋼成分 、 めっ き成分を適正化して合金層ク ラ ッ クが発生しても腐食の進行 を抑制するという ものである。 このときの合金層一母材の電位の制 御は、 鋼成分、 めっ き浴成分の調整、 あるいは溶融めつ き前にプレ めっ きを施すこ とで可能で、 例えば鋼中に Crを添加する、 鋼の表面 に Crプレめっ きを施す、 あるいはク ラ ッ ド鋼を使用する、 めっ き浴 に Zn等を添加する等の手法が可能である。
すなわち、 本発明の要旨とするところは、 次のとおりである。
( 1 ) 重量%で、 C : 0.01%以下、 Si : 0.2%以下、 Mn : 0.6%未 満、 P : 0.04%以下、 酸可溶 A1 : 0.1%以下、 N : 0.01%以下、 Ti , Nbの 1 種または 2種以上を合計で ( C + N) の原子当量以上 0.2 %以下、 B : 0.0001〜0.0030%を含有し、 残部が Fe及び不可避的不 純物からなる鋼板の表面に、 重量%で、 Si : 2〜13%を含有し、 残 部が A1及び不可避的不純物からなる被覆層を有する こ とを特徴とす る溶接気密性と成型後の耐食性に優れた燃料タ ンク用防銪鋼板。
( 2 ) 重量%で、 C : 0.01%以下、 S 0.2%以下、 Mn : 0.6%未 満、 P : 0.04%以下、 酸可溶 A1 : 0.1%以下、 N : 0.01%以下、 Ti , Nbの 1 種または 2種以上を合計で ( C + N) の原子当量以上 0.2 %以下、 B : 0.0003〜0.0030%を含有し、 残部が Fe及び不可避的不 純物からなる鋼板の表面に、 重量%で、 Si : 2〜13%を含有し、 残 部が Al及び不可避的不純物からなる被覆層を有するこ とを特徴とす る溶接気密性と成型後の耐食性に優れた燃料タ ン ク用防锖鋼板。
( 3 ) 重量%で、 C : 0.003%以下、 S 0.1%以下、 Mn : 0.4% 以下、 P : 0.02%以下、 酸可溶 A1 : 0.1%以下、 N : 0.01%以下、 Ti, Nbの 1 種または 2種以上を合計で ( C + N) の原子当量以上 0 .2%以下、 B : 0.0003〜0.0030%を含有し、 残部が Fe及び不可避的 不純物からなる鋼板の表面に、 重量%で、 Si : 2 ~13%を含有し、 残部が A1及び不可避的不純物からなる被覆層を有する こ とを特徴と する溶接気密性と成型後の耐食性に優れた燃料タ ン ク用防銷鋼板。
( 4 ) 重量%で、 C 0.003%以下、 Si : 0.03%以下、 Mn : 0.3% 以下、 P : 0.02%以下、 N : 0.006%以下、 Ti : 0.1%以下を含有 し、 残部が Fe及び不可避的不純物からなる鋼板の表面に、 重量%で 、 Si : 2 〜13%を含有し、 残部が A1及び不可避的不純物からなる被 覆層を有し、 めっ き後の全伸びが 45%以上であるこ とを特徴とする 溶接気密性と成型後の耐食性に優れた燃料タ ンク用防銪鋼板。
( 5 ) Cr : 0.5〜 7 %, Cu : 0.05〜0.5 % , Ni : 0.05〜0.5 % , Mo
: 0.05-0.5 %の少な く と も 1 種または 2種以上を含有する こ とを 特徴とする ( 1 ) 〜 ( 4 ) のいずれかに記載の溶接気密性と成型後 耐食性に優れた燃料タ ンク用防锖鋼板。
( 6 ) アルミ系被覆層の付着量が片面当たり 50g Zm 2 以下である こ とを特徴とする ( 1 ) ~ ( 5 ) のいずれかに記載の溶接気密性と 成型後耐食性に優れた燃料タ ンク用防婧鋼板。
( 7 ) めっ き原板の表面に、 A1— Fe— Si系金属間化合物層を有し、 その表面に A1及び不可避的不純物からなるめっ き層を有し、 かつ蟻 酸 lOOppmを含有し、 残部が水及び不可避的不純物からなる溶液に浸 潰した場合の前記めつ き原板と前記金属間化合物層との浸漬電位の 差が 0.35 V以下であるこ とを特徴とする溶接気密性と成型後耐食性 に優れた燃料タ ンク用防婧鋼板。
( 8 ) A1— Si系めつき層の組成が、 重量%で、 Si : 2〜13%、 Sn, Zn, Sb, Biの 1 種または 2種以上を合計で 0.5〜 5 %含有し、 残部 が A1及び不可避的不純物からなるこ とを特徴とする ( 7 ) に記載の 溶接気密性と成型後耐食性に優れた燃料タ ン ク用防锖鋼板。
( 9 ) 少なく と も片方のアルミ系被覆層の表面に、 Cr換算で片面当 たり 5〜 100 mg/m 2 のク ロメ 一 ト処理層を有するこ とを特徴とす る ( 1 ) 〜 ( 8 ) のいずれかに記載の溶接気密性と成型後耐食性に 優れた燃料タ ンク用防锖鋼板。 ( 10) 少なく と も片方の最表面に有機樹脂被覆層を有するこ とを特徴 とする ( 1 ) 〜 ( 9 ) のいずれかに記載の溶接気密性と成型後耐食 性に優れた燃料タ ンク用防鲭鋼板。 発明を実施するための最良の形態
以下本発明を詳細に説明する。 まず鋼成分の限定理由を説明する
C : 本発明において、 燃料タ ンクのような複雑な形状に加工でき るだけの高度な深絞り性を有する鋼板であるこ とが必要である。 こ の目的のためには C量は少ないほど好ま し く 、 しかもアルミ めつ き により材質が劣化するために C量はより低い値であるこ とが要求さ れる。 C量が 0.01%を超えると所定の成型性が得られな く なるため にこの値%を上限とする。 しかし今後ますます複雑化するタ ンクの 形状を考えると、 望ま し く は 0.003%以下、 更に望ま し く は 0.0018 %以下が好ま しい。
Si : Siは酸素との親和性が強く 、 溶融アルミ めつ き工程で表面に 安定な酸化皮膜を形成しやすい。 酸化皮膜が形成されるとめっ き浴 中での A1— Fe反応を阻害してアルミ めつ き時に不めっきと呼ばれる めっ き欠陥を形成しやすく なる。 またこの元素は鋼板を硬化させる 元素でもあるので、 本発明のような高成型性を要求される鋼板と し ては 0.2%以下と少ない方が好ま しく 、 望ま し く は 0.1%以下と し 、 更に望ま し く は 0.03%以下である。
Mn : Mnは鋼板の高強度化に有効な元素であるが、 本発明は軟質な 鋼板を目的とする もので、 少ない方が好ま しい。 Mnが 0.6 %を超え る と鋼が硬化して延性に富んだ鋼板を製造するこ とは困難であるた めに、 Mnは 0.6%未満と し、 好ま しく は 0.4%未満とする。 更に望 ま し く は 0.3%未満である。
P : Pは粒界偏析して粒界を脆化させる元素で、 また鋼板の延性 を阻害する元素でもあるため、 少ない方が望ま しい。 また理由は定 かではないが、 溶接気密性に対しても影響が大き く 、 0.04%超が添 加されていると Bが添加されていても溶接気密性を大き く 劣化させ る。 従って本発明において、 0.04%以下に限定する。 溶接気密性を より安定して得るために望ま しい量は 0.02%以下、 更に望ま し く は 0.01%以下である。
N : C と同様の理由で Nも少ない方が好ま し く 、 成型性確保の観 点より Nの上限を 0.01%と し、 好ま し く は 0.006%以下とする。
Ti, Nb : この元素は C , Nを固定する元素と して知られ、 これら の元素で C, Nを固定して実質的に固溶 C, Nを無く した鋼板が IF 鋼と して知られ、 このような IF鋼は軟質であるのは勿論、 深絞り性 にも優れている。 本発明においてもこの目的で Tiを添加する。 その 添加量は ( C + N) の原子当量以上である こ とが望ま しいが、 C, N量が非常に小さいときには Ti量は不純物レベルでも良い。 従って 下限は特に設けない。 添加量が多すぎるとその効果が飽和する とと もに、 Tiは A1— Fe反応を促進する元素で、 量が多いと合金層が厚く なりやすく なり、 鋼板加工性を阻害する傾向にある。 従って上限を 0.2%とする。 但し、 Nbは再結晶温度を上昇させる元素であるため 、 Tiを併用するこ とが望ま しい。
Λ1 : A1も Siと同じ く酸素との親和性の強い元素で、 溶融アルミ め つ きを困難にする傾向がある。 また A1203 系介在物を形成して鋼板 加工性を阻害するために酸可溶 A1と して 0.】%以下とする。 下限は 特に設けないが、 Ti酸化物による表面疵発生を抑制するために若干 添加する こ とが好ま しく 、 0.01〜0.05%が好ま しい添加範囲である
B : 本発明において溶接気密性を確保するための重要な元素であ る。 Bがー度深絞り成型した後に再度外力を受ける際の二次加工性 や疲労強度を向上させるこ とは知られているが、 本発明者らはこれ に加えてアルミ めっきをした後の溶接部の結晶組織が改質されて溶 接部の気密性が飛躍的に向上するという知見を得たものである。 こ の効果を発揮するには 0.0001 %以上の添加が必要で、 また B添加に より当然二次加工性、 疲労強度にも効果がある。 安定した性能を得 るには 0.0003% ( 3 ppm)以上の添加が望ま しい。 しかし添加量が多 すぎると熱間強度が高く なりすぎて熱間圧延性が低下してしま う。 従って上限を 0.0030%とする。
Cr : Crは鋼板電位を上昇させる元素で、 この元素の添加により、 合金層一原板の電位差を減少させる こ とができる。 この効果のため には、 0.5%以上の Crが必要で、 また、 Cr量が 7 %を超えると溶融 めつ き工程で Cr系酸化物の表面濃化が著し く 、 通常のプロセスでは めっ きが困難となる。 このためこの値を上限とする。
Cu, Ni, Mo: これらの元素は必要に応じて添加するこ とができる 。 Cu, Ni, Moは耐食性向上に寄与する元素で、 特に Ni, Moは耐孔食 性を向上させる。 これらの効果が発現されるには Cu, Ni, Moで 0.05 %以上の添加が必要で、 一方、 添加しすぎると Cuの場合には熱延時 のへゲ疵発生を引き起こす懸念がある。 Ni, Moは添加しすぎても効 果が飽和するために、 上限濃度を 0.5% (Cu, Ni, Mo) とする。
次に被覆層の限定理由を説明する。 めっ き被覆層中の Si添加量で あるが、 この元素は通常合金層を薄く する目的から 10%程度添加さ れている。 前述したように溶融アルミ めつ きで生成する合金層は非 常に硬質で、 かつ脆性であるために破壊の起点となりやすく 、 鋼板 自体の延性をも阻害する。 通常の 2〜 3 z m程度の合金層でも鋼板 延性は 2〜 5 ポイ ン ト ( 2〜 5 %) 程度低下する。 従って、 この合 金層は薄ければ薄いほど加工に対して有利に働く 。 Siは 2 %以上添 加しないとこの合金層低減の効果が薄く 、 また 13%を超えるとその 効果が飽和するこ とに加えて Siが電気化学的にカ ソー ドとなりやす いことから Si量の増加はめつ き層の耐食性劣化につながる。 このた め Si量は 2〜 13%に限定する。
アルミ めつ きのめっ き付着量は、 増加するほど耐食性が増し、 一 方でめっ き密着性、 溶接性が劣化する傾向がある。 厳しい成型、 種 々の溶接を必要とする自動車燃料タ ンク材料と しては片面当り 50 g /m 2 以下であることが望ま しい。 一方、 合金層厚みは前述したよ うにアルミ めつき鋼板の延性に悪影響を及ぼすために薄い方が好ま しい。
本発明において、 鋼板の延性を向上させる こ とがアルミ めつ き層 に発生するクラ ッ クの抑制に有効である という新しい知見が得られ た。 アルミ めつ き後の鋼板の全伸びが 45%以上であると、 厳しい成 型を施してもめっ きのクラ ッ クが発生しに く く 、 従って成型後の耐 食性も向上する。 この理由から全伸びを 45%以上に限定する。 クラ ッ ク発生が抑制される理由は不明確であるが、 何らかの応力集中が 緩和されると思われる。 なお、 上限は大きい方が良い力 60%を超 える鋼板の製造は不経済であるため、 60%が事実上の上限となる。 めっ きの後行程と して、 一次防銷のク ロ メ ー ト処理、 表面状態、 材質の調整のための調質圧延、 潤滑性を付与するための樹脂被覆等 があり得る。 本発明においては、 めっ き後ク ロメ ー ト皮膜を付与す るこ とが望ま しい。 ク ロメ ー トの種類と しては、 無機系、 有機物を 含んだ系等があり、 また処理法にも塗布法、 反応法等あるが、 いず れも公知のもので構わない。 ク ロメ ー ト処理により、 主と して溶接 性が向上し、 このほか当然耐食性も向上する。 このときのク ロメ 一 卜の付着量は、 C r換算で片面当り 5 〜 l OOmgZ m 2 とする。 溶接性 に対して 5 mg/ m 2 未満では効果が小さ く 、 また 1 00mg/ m 2 以上 では効果が飽和してしま うからである。 さ らに最表面には樹脂皮膜 を付与することが望ま しい。
この樹脂皮膜は潤滑性、 抵抗溶接時の電極 -鋼板間の反応抑制等 に寄与して、 成型性、 溶接性等の性能を向上させ、 総合的に燃料夕 ンク と して優れた性能を与える。 このとき、 有機皮膜の膜厚の薄い 場合には鋼板上に直接有機皮膜を付与しても構わないし、 この有機 皮膜中にク ロメ ー トを添加しても良い。
次に合金層とめっ き原板の電位差については、 0. 35 V以下とする 。 測定環境は、 実際の燃料タ ンク内の腐食環境に近い蟻酸を含有す る環境が好ま し く 、 この環境で従来のアルミ めつ き鋼板は 0. 4 V程 度の電位差を有していたが、 この場合には前記したように、 合金層 一めつ き原板間で腐食が進行しやすい。 電位差は小さいとめつ き層 、 合金層にク ラ ッ クがあっても腐食の進行は軽微となる。 電位差が この範囲内であれば、 合金層と原板のどちらが貴であっても構わな いが、 実際的には合金層の方が卑になるこ とはあま りないと思われ る。
次にアルミ めつ き層への添加元素の限定理由を説明する。 めっ き は A l— S i系と し、 これに Sn, Zn, Sb, B iを合計で 0. 5〜 5 %添加す るこ とができる。 これらの元素はいずれも合金層へ混入してこの層 の電位を低下させる元素で、 合計 0.5%以上添加するこ とでその効 果が現れる。 また添加しすぎるとめつ き層の耐食性を阻害するこ と から上限を 5 %とする。
鋼板の製造法と しては通常の方法による ものとする。 鋼成分は例 えば転炉一真空脱ガス処理により調節されて溶製され、 鋼片は連続 铸造法等で製造され、 熱間圧延される。 熱間圧延、 またそれに続く 冷間圧延の条件は鋼板の深絞り性に影響を与える。 特に優れた深絞 り性を付与するには、 熱延時の加熱温度を 1150°C程度と低めに、 ま た熱延の仕上げ温度は 800°C程度と低めに、 巻き取り温度は 600°C 以上と高めに、 冷延の圧下率は 80%程度と高めにする と良い。 実施例
次に実施例により本発明をさ らに詳細に説明する。
(実施例 1 )
表 1 に示す鋼を通常の転炉一真空脱ガス処理により溶製し、 鋼片 と した後、 加熱温度 1130〜1170°C、 仕上げ温度 870〜 920°C、 捲取 温度 600〜 630°Cで熱延を、 冷延率約 80%で冷延を行い、 板厚 0.8 mmの冷延鋼帯を得た。 一部の材料は熱延条件をよ り伸びの出ないよ う調整した。 これらを材料と して、 溶融アルミ めつ きを行った。 溶 融アルミ めつ きは無酸化炉ー還元炉タイプのライ ンを使用 し、 焼鈍 でもこの溶融めつ きライ ン内で行った。 焼鈍温度は 800〜 850°Cと した。 めっ き後ガスワイ ビング法でめっ き厚みを両面約 60 g / m 2 に調節した。 この際のめっ き温度は 660°Cと し、 めっ き浴組成と し ては A1に Siを添加した。 この浴中には、 不純物と して Feが浴中のめ つ き機器ゃス ト リ ップから混入するこ とがある。 こ う して製造した アルミ めつ き鋼板の燃料タ ンク と しての性能を評価した。 このとき の評価方法は下に示した方法によ り、 めっ き条件と性能評価結果を 表 2 に示す。
表 1 鋼成分 ( x 10 3wt% ) 備
No
c S i n P S Ti Al Nb N 考
A 0.5 12 130 5 7 33 30 1.6
Β 0.8 19 170 7 9 45 33 2.2 本 f
し 1.3 21 220 7 8 56 38 2.6 発
JJ 1.8 22 200 9 10 61 40 2.3 明
O n
L L. I Zb 「 n
10 12 58 38 1 2. 1 例
Γ 1.3 12 150 9 8 75 33 2.3
G 0.5 13 170 8 12 3 18 2.2
H 3.4 19 220 12 10 60 35 1 3.5
I 1.8 35 210 15 12 61 40 2.5
J 1.6 22 330 11 10 36 33 2.9
K 2.2 23 240 23 10 40 30 2.5
L 2.4 18 290 13 12 30 31 1 6.5
M 2.2 17 250 12 13 125 44 3.0
表 2
Figure imgf000015_0001
※総合評価 ◎ : 非常に優れる 〇 : 優れる
Δ : やや劣るが使用可 X : 使用不可 1 ) 外観評価
めっ き後の外観を目視判定した。
[評価基準]
〇 : 異常なし Δ : 微少な点状不めつき有り
X : 不めっ き有り
( 2 ) めつ き後の材質
JIS Z2241 に従い、 JIS 5号試験片にて引張試験を行い、 全伸び を測定した。
( 3 ) プレス成型性評価
油圧成形試験機により、 直径 50 の円筒ポンチを用いて、 絞り比 2.4 で成形試験を行った。 このときのシヮ抑え圧は 500kgで行い、 成形性の評価は次の指標によつた。
[評価基準]
◎ : 成形可能で、 めっ き層の欠陥無し
△ : 成形可能で、 めっ き層にひび割れ有り
: 成形可能で、 めっ き層剝離有り
一 : 成形不可能 (原板に割れが発生)
( 4 ) 成型後耐食性評価
引張試験機に油圧式のビー ド付き金型を取り付け、 板を油圧で押 さえてビー ド引き抜きを行った。 ビー ドは径 4 nm、 半円形で、 加圧 力は 600kgfである。 こ う してビ一 ド引き抜きを行つた試料をガラス 性の容器に燃料とと もに封入して耐食性を評価した。 試験液はガソ リ ン +蒸留水 10% +蟻酸 200ρρπι、 期間は 3 ヶ月、 温度は室温である 。 試験後の腐食状況を目視観察した。
[評価基準]
〇 : 赤鲭発生 0.1%未満
△ : 赤銷発生 0.1〜 5 %または白銷発生有り
X : 赤銪発生 5 %超または白銪顕著
一 : 成型性不可のため評価せず
表 2 に示すように、 鋼中の Cや Nが高かったり (比較例 10, 14) 、 P , Mnが高く 延性が不足したりするとき (比較例 12, 13 ) には、 プレス加工性に劣り、 燃料タ ンクのような深絞り加工は困難である 。 また鋼中の S i等の溶融アルミ めつ きを阻害する元素が高いときに は (比較例 1 1 ) 、 不めっ きが多く 、 不めっ き部より腐食が進行する ため当然耐食性も劣化する。 また鋼中の T iが高すぎるとき (比較例 15) や、 アルミ めつ き中の S i量が少ないと き (比較例 16 ) には、 合 金層が厚く 発達し、 プレスの際にめつ きが剝離しゃすく なり、 やは り耐食性が劣化する。 一方めつき中の S iが多すぎても (比較例 17) 、 耐食性が劣化する。 鋼成分が適正であっても、 熱延条件のため伸 びが低いと (比較例 18) やはり厳しい成型に耐えられない。 鋼成分 、 めっ きの組成が適正であると、 プレス成型性、 外観、 成型後耐食 性の全てに優れた溶融アルミ めつ き鋼板が得られる。
(実施例 2 )
実施例 1 の表 1 に示す成分の冷延鋼帯を原板と して、 溶融アルミ めっ きを行った。 溶融アルミ めつきの条件も実施例 1 と同一である 。 但しめつ きの成分は A l— 9. 4 % S iで、 めっ き付着量は両面均一で 、 両面で 50〜 120 g / m 2 に変化させた。 製造したアルミ めつ き鋼 板の一部にク ロム酸—シ リ カゾルー リ ン酸一有機樹脂系のク ロメ 一 ト処理を行い、 更にその一部にはエポキシ系の樹脂皮膜で被覆した 。 これらの材料の燃料タ ンク と しての性能を、 実施例 1 と同様の方 法に加え、 溶接性を評価した。 皮膜構成と性能評価結果を表 3 に示 す。 表 3 において、 付着量は両面の値、 Cr付着量、 膜厚は片面当た りの値である。
( 1 ) 溶接性評価方法
下記に示す溶接条件でスポッ ト溶接を行い、 ナゲッ ト系が 4 ^ t
( t : 板厚) を切った時点までの連続打点数を評価した。 片面塗装 の際には重ね合わせたときに樹脂面が内側と外側となるよう に して 評価した。
[溶接条件]
溶接電流 : 10KA、 加圧力 : 200kg、 溶接時間 : 12サイ クル、 電極 : 系 6 mm径
し評価基準]
〇中
〇 : 連続打点 1200点超
△ : 連続打点 400〜1200点
: 連続打点 400点未満
表 3 に示すように、 アルミ めつ きの付着量が両面で 120g /m L' である ときや (本発明例 9 ) 、 ク ロメ ー トの付着量が少ないと きに は (本発明例 10) 、 やや溶接性が低下するため、 これらの条件を避 けた方が、 生産性に優れた材料を得る ことができる。 またク ロメ 一 トゃ樹脂によ り、 成型後耐食性や溶接性は安定する。
表 3
Figure imgf000018_0001
※総合評価 優れる Δ : やや劣るが使用可 X 使用不可
* 12は樹脂 ク ロメ ト添加 (実施例 3 )
第 4 表に示す鋼を通常の転炉一真空脱ガス処理によ り溶製し、 鋼 片と した後、 通常の条件で熱間圧延、 冷延工程を行い、 冷延鋼板 ( 板厚 0. 8 mm)を得た。 これを材料と して、 溶融アル ミ めつ きを行った 。 溶融アルミ めつ きは無酸化炉ー還元炉タイプのライ ンを使用 し、 焼鈍もこの溶融めつ きラ イ ン内で行った。 焼鈍温度は 800〜 850°C と した。 めつ き後ガスワイ ビング法でめつ き厚みを両面約 60 g / m に調節した。 この際のめっき温度は 660°Cと し、 めっ き浴組成と しては基本的に A 1 — 2 % Feと して、 これに S iを添加した。 この浴中 の Feは浴中のめっ き機器ゃス ト リ ップから供給されるものである。 こ う して製造したアルミ めつ き鋼板の燃料タ ンク と しての性能を評 価した。 このときの評価方法は下に示した方法により、 めっ き条件 と性能評価結果を第 5表に示す。
第 4 表 鋼 成 分 原子当量
No (X10 2wt%) (Xl0 3 t%) ( tppm) Ti+Nb
C Si n P S Ti Al Nb B N C + N
A 0.07 1.9 24 8 9 25 38 1 22 2.4
B 0.08 2.0 22 11 10 48 33 3 24 4.2
C 0.08 2.0 19 5 10 55 40 4 25 4.7 本 D 0.09 1.9 23 7 10 50 33 5 22 4.5
E 0.08 1.9 24 9 10 55 38 10 22 5.1 発 F 0.21 2.1 23 12 11 91 41 3 28 3.8
G 0.09 2.2 25 14 10 47 39 4 30 3.4 明 H 0.25 4.0 32 13 19 92 62 ― 5 28 4.7
I 0.50 15.3 44 21 12 180 83 19 55 4.6
鋼 J 0.08 2.6 26 35 12 55 28 3 22 5.1
K 0.14 2.5 31 12 11 45 34 4 23 1.3
L 0.20 4.8 33 9 15 61 74 4 21 2.5
M 0.80 3.7 44 22 23 32 33 45 4 33 1.3 比 N 1.2 3.9 32 13 18 35 29 4 25 0.6
0 0.25 25.0 30 15 16 61 119 4 25 3.3 較 P 0.45 3.2 63 51 13 36 33 4 29 1.3
Q 0.25 2.3 31 16 13 40 30 4 125 0.8 鋼 R 0.15 1.8 29 13 12 60 31 29 3.8
S 0.42 3.9 40 8 13 228 44 4 30 8.4 ( 1 ) 外観評価
めつ き後の外観を目視判定した
[評価基準]
〇 異常なし
Δ 微少な点状不め き有り
X 不めつ き有り
( 2 ) プレス加工性評価
油圧成形試験機により 直径 50mmの円筒ポンチを用いて、 絞り比 2.3 で成形試験を行つた このときのシヮ抑え圧は 500kgで行い、 成形性の評価は次の指標によ た
[評価基準]
◎ : 成形可能で、 めっき層の欠陥無し
〇 : 成形可能で、 めっ き層にひび割れ有り
△ : 成形可能で、 めっ き層剥離有り
X : 成形不可能 (原板に割れが発生)
( 3 ) 溶接部気密性評価
クラ ンクプレス試験機にて、 フラ ンジ幅 30mm、 深さ 25mm、 70x 70 mmの平底角筒成型を行い、 フラ ンジ部を下に示した溶接条件でシ一 ム溶接を行った。 次にこの一部に穴をあけ、 この穴より水中でエア により内圧 0.5気圧、 1 気圧、 1.5気圧を掛け、 シ一ム溶接部から のエアの漏れを判定した。
[溶接条件]
溶接電流 : 10ΚΛ 加圧力 : 200kg 溶接速度 : 2.5mZ s [評価基準]
◎ 溶接部からの漏れ発生無し
〇 1 気圧まで漏れ発生無し
Δ 0.5気圧まで漏れ発生無し x : 0. 5気圧でも漏れ発生
( 4 ) 耐食性評価
ガソ リ ンに対する耐食性を評価した。 方法は油圧成型試験機によ り、 フ ラ ンジ幅 20miii、 直径 50誦、 深さ 25隱の平底円筒絞り加工した 試料に、 試験液を入れて、 シ リ コ ンゴム製リ ングを介してガラ スで 蓋を した。 これを室温で 3 ヶ月放置した後の腐食状況を目視観察し た。
試験液 : ガソ リ ン +蒸留水 10 % +蟻酸 200ppm
[評価基準]
- : 成型不可能のため評価不可能
〇 : 赤锖発生 0. 1 %未満
△ : 赤銪発生 0. 1〜 5 %または白銪発生有り
X : 赤锖発生 5 %超または白锖顕著
第 5 表に示すように、 鋼中の Cや Nが高く て、 (T i + Nb) / ( C + N ) の原子当量が 1 未満になったり (比較例 16, 19) 、 P , Mnが 高く 延性が不足するとき (比較例 18) には、 プレス加工性に劣り、 燃料タ ンクのような深絞り加工は困難である。 また鋼中の S i, Λ 1等 の溶融アルミ めつ きを阻害する元素が高いときには (比較例 17) 、 不めっ きが多く 、 不めっ き部より腐食が進行するため当然耐食性も 劣化する。 また鋼中の T iが高すぎるとき (比較例 21 ) や、 アルミ め つ き中の S i量が少ないとき (比較例 22) には、 合金層が厚く 発達し 、 プ レスの際にめつきが剥離しやすく なつてやはり耐食性が劣化す る。 一方めつ き中の S iが多すぎても (比較例 23) 、 耐食性が劣化す る。 また鋼中に Bが添加されないと (比較例 20 ) 、 他の性能は優れ ているが溶接部の気密性に劣る。 鋼成分、 めっ きの組成が適正であ ると、 プレス加工性、 溶接部の気密性、 外観、 耐食性全てに優れた 溶融アルミ めつ き鋼板が得られる。 但し、 鋼中の B量がやや不足す るときや P量が高いとき (本発明例 1 . 9, 10, 13) には、 溶接部 の気密性にやや劣る傾向があり、 Pが 0.01%を越えても (本発明例 2, 6, 7 , 8 , 11) 、 P量がそれ以下のものと比べるとやや気密 性に劣る。 一方鋼中の C, Si, Μπ等の元素量が多いと (本発明例 9 , 13) やや加工性に劣る傾向がある。 従ってこれらの元素を適正に すると、 より高い特性を有する溶融アルミ めつ き鋼板が得られる。
表 5
Figure imgf000024_0001
総合評価
◎ 極めて優れる 〇 優れる
Δ やや劣るが使用可 χ 使用不可 (実施例 4 )
表 6 に示す鋼 ( P : 0.008%, S : 0.010%) を通常の転炉一真 空脱ガス処理により溶製し、 鋼片と した後、 加熱温度 1140〜1180°C 、 仕上げ温度 800〜 900°C、 捲取温度 620〜 670°Cで熱延を、 冷延 率約 80%で冷延を行い、 板厚 0.8匪の冷延鋼帯を得た。 これらを材 料と して、 溶融アルミ めつきを行った。 溶融アルミ めつ きは無酸化 炉ー還元炉タイプのライ ンを使用 し、 焼鈍もこの溶融めつきライ ン 内で行った。 焼鈍温度は 800〜 850°Cと した。 めっ き後ガスワイ ピ ング法でめっ き厚みを両面約 60mg;ノ m 2 に調節した。 この際のめつ き温度は 660°Cと し、 めっき浴組成と しては Al— 9.4%Siと した。 浴中の Feは浴中のめっ き機器ゃス ト リ ップから不純物と して供給さ れるものである。 こ う して製造したアルミ めつ き鋼板の一部にク 口 ム酸ー シ リ カゾル— リ ン酸一有機樹脂 (ァク リ ル) 系の下地処理を 行い、 更にその一部は樹脂皮膜で被覆した。 同時にク ロメ ー ト処理 の樹脂分を増減させた鋼板も製造した。 このような材料の燃料タ ン ク と しての性能を評価した。 このときの評価方法は下に示した方法 により、 めっ き条件と性能評価結果を表 7 および表 8 に示す。 なお 、 めっ き層組成の分析は、 アルミ めつ き層のみを 3 %NaOH+ 1 %A1 CI - 6 H20 中で電解剥離した溶液を採取し、 酸で処理後誘導結合プ ラズマ原子分光分析法 ( InducU vely Coupled Plasma-atomi c Emi ss ion Spectroscopy) で定量分析し、 めっ き層中の Si組成を求めた。
表 6 鋼成分 (xio 3wt%) Ti+Nb 備
No (C + N) c Si Mn Ti Al N Cr 他の元素 考
A 0.8 13 140 33 30 1.6 710 一 3.8
B 2.1 19 180 45 31 2.2 1150 2.8
C 3.3 26 220 56 38 6.6 2090 1.6 本
D 2.8 23 200 61 71 2.5 4110 3.1 発
E 2.7 46 260 78 38 2.1 6050 4.3 明
F 1.5 12 680 65 43 2.3 1250 Cu90 NilOO 4.7 鋼
G 1.9 63 170 88 28 2.2 1520 Ni70 Mol30 5.8
H 2.2 25 200 70 38 3.0 1400 Cu60 B 0.4 3.7
I 2.3 21 210 64 41 2.8 1820 Nb25 B 1.3 4.1
J 14 43 320 62 35 3.5 20 0.9
K 1.8 125 240 61 40 2.5 10 3.9 本
L 2.5 22 1230 37 35 2.9 10 1.9 発
M 2.2 23 240 134 30 2.5 10 Nb83 10.2 明
N 2.4 18 290 40 125 7.5 10 0.9 外
0 2.1 17 220 45 44 2.2 10 2.8
P 2.3 20 290 45 33 2.8 260 Cu660 2.4
表 7
Figure imgf000027_0001
※(!"付着量、 膜厚は片面当りの表示
表 8
Figure imgf000028_0001
※総合評価 ◎ 非常に優れる 〇:優れる
Δ やや劣るが使用可 X :使用不可 ( 1 ) 外観評価
めっ き後の外観を目視判定した。
[評価基準]
〇 : 異常な し △ : 微少な点状不めっ き有り
X : 不めっき有り
( 2 ) 合金層、 地鉄の電位差
アルミ めつ き層を 3 %NaOH+ 1 %AlCl a · 6 H 20 中で電解剝離す るこ とで合金眉電位測定試料を、 また、 20%NaOH中に浸漬してアル ミ めっ き層、 合金層を剝離するこ とで地鉄電位測定試料を得た。 こ れらを蟻酸 lOOppmを含有する 20°Cの溶液中で浸漬電位を測定して電 位差を測定した。 なお、 参照電極は飽和カロメ ル電極を使用 し、 合 金層が高い電位を示すときを +で表示した。
( 3 ) プレス成型性評価
油圧成形試験機により、 直径 50mmの円筒ポンチを用いて、 無塗油 で絞り比 2.2 の成形試験を行った。 このときのシヮ抑え圧は 500kg で、 成形性の評価は次の指標によった。
[評価基準]
◎ : 成形可能で、 めっ き層の大きな欠陥無し
△ : 成形可能で、 めっ き層に目視可能なひび割れ有り
: 成形可能で、 めっ き層剝離有り
一 : 成形不可能 (原板に割れが発生)
( 4 ) 成型後耐食性評価
引張試験機に油圧式のビ一 ド付き金型を取り付け、 板を油圧で押 さえてビ一 ド引き抜きを行った。 ビ一 ドは径 4 ππη、 半円形で、 加圧 力は 600kgfである。 こ う してビー ド引き抜きを行った試料をガラス 性の容器に燃料とともに封入して耐食性を評価した。 試験液はガソ リ ン +蒸留水 10% +蟻酸 100ppm、 期間は 3 ヶ月、 温度は室温 (20°C ) である。 試験後の腐食状況を試験液への Fe溶出量という形で評価 した。
[評価基準]
〇 : Fe溶出 2 g Z m 2 未満
△ : Fe溶出 2〜 5 g / m 2
x : Fe溶出 5 g / m 2
- : 成型性不可のため評価せず
表 7 に示すように、 鋼中の Crが低く 、 鋼板 -合金層の電位差が大 きいとき (比較例 23, 24 ) には、 絞り性に優れてもめっ き層の微細 なクラ ッ クを起点と して鋼板の腐食が進行する。 鋼中の Cや Nが高 く 、 T i Z ( C + N ) の原子当量が 1 未満になったり (比較例 18, 22 ) 、 Mnが高く 延性が不足したりするとき (比較例 20) には、 プレス 加工性に劣り、 燃料タ ンクのような深絞り加工は困難である。 また 、 鋼中の S i等の溶融アルミ めつ きを阻害する元素が高いときには ( 比較例 19) 、 不めっきが多く 、 不めっ き部より腐食が進行するため 当然耐食性も劣化する。
また、 鋼中の T iが高すぎるとき (比較例 21 ) や、 アルミ めつ き中 の S i量が少ないとき (比較例 25) には、 合金層が厚く 発達し、 プレ スの際にめつ きが剥離しやすく なり、 やはり耐食性が劣化する。 一 方、 めっ き中の S iが多すぎても (比較例 26) 、 耐食性が劣化する。 最表層に樹脂塗膜が無い (比較例 27) と、 絞り性に劣り、 また、 こ こでは評価していないが、 抵抗溶接性にも劣る。 鋼成分、 めっ きの 組成が適正であると、 外観、 プレス成型性、 外観、 成型後耐食性お よび溶接気密性の全てに優れた溶融アルミ めっ き鋼板が得られる。
(実施例 5 )
実施例 4 の表 6 に示す成分の冷延鋼帯を原板と して、 溶融アルミ めっ きを行った。 溶融アルミ めつ きの条件は原則的に A 1— 9 % S iと し、 これに S n, Z n等の元素を添加した。 なお、 めっ き浴 (めっ き層 ) 中に不純物と しての F eが 2 %程度混入するこ とがある。 また、 ― 部の材料はアルミ めつ き前に N i系のプレめつ きを行った。 プレめつ きのめつ き条件はヮ ッ 卜浴、 電流密度 30 A / dni 2 である。 アルミ め つ き後は実施例 4 の表 2⑥の後処理を施した。 これらの材料の燃料 タ ンク と しての性能を、 実施例 4 の評価方法で評価した。 外観、 プ レス成型性および溶接部気密性はいずれの試料も良好であつた。 表 9 に示すように、 N iプレめっき、 あるいは浴中添加元素により 鋼一合金層電位差を制御した場合にも同様の効果が得られ、 成型後 の耐食性は安定する。
表 9
Figure imgf000031_0001
※総合評価 〇:優れている △ :やや劣るが使用可 X :使用不可 産業上の利用可能性
本発明は、 自動車燃料タ ンク材料と して必要な耐食性、 プレス加 ェ性を兼備し、 かっこれまでの課題であった溶接部気密性も獲得し た溶融アルミ めつ き鋼板を提供するもので、 今後 Pb系材料が環境問 題で使用が困難となったときの新しい燃料タ ンク材と して非常に有 望であり、 産業上の寄与も大きい。

Claims

請 求 の 範 囲
1 . 重量%で、 C : 0.01%以下、 Si : 0.2%以下、 ^111 : 0.6%未 満、 P : 0.04%以下、 酸可溶 A1 : 0.1%以下、 N : 0.01%以下、 Ti , Nbの 1 種または 2種以上を合計で ( C + N) の原子当量以上 0.2 %以下、 B : 0.0001〜0.0030%を含有し、 残部が Fe及び不可避的不 純物からなる鋼板の表面に、 重量%で、 Si : 2 〜13%を含有し、 残 部が A1及び不可避的不純物からなる被覆層を有するこ とを特徴とす る溶接気密性と成型後の耐食性に優れた燃料タ ンク用防錡鋼板。
2. 重量%で、 C : 0.01%以下、 Si : 0.2%以下、 Μπ : 0.6%未 満、 Ρ : 0.04%以下、 酸可溶 A1 : 0.1%以下、 Ν : 0.01%以下、 Ti , Nbの 1 種または 2種以上を合計で ( C + N) の原子当量以上 0.2 %以下、 B : 0.0003〜0.0030%を含有し、 残部が Fe及び不可避的不 純物からなる鋼板の表面に、 重量%で、 Si : 2〜13%を含有し、 残 部が M及び不可避的不純物からなる被覆層を有するこ とを特徴とす る溶接気密性と成型後の耐食性に優れた燃料タ ンク用防銪鋼板。
3. 重量%で、 C : 0.003%以下、 Si : 0.1%以下、 Mn : 0.4% 以下、 P : 0.02%以下、 酸可溶 A1 : 0.1%以下、 N : 0.01%以下、 Ti, Nbの 1 種または 2種以上を合計で ( C + N) の原子当量以上 0 .2%以下、 B : 0.0003〜0.0030%を含有し、 残部が Fe及び不可避的 不純物からなる鋼板の表面に、 重虽%で、 Si : 2 〜13%を含有し、 残部が A1及び不可避的不純物からなる被覆層を有するこ とを特徴と する溶接気密性と成型後の耐食性に優れた燃料タ ンク用防銪鋼板。
4 . 重量%で、 C : 0.003%以下、 Si : 0.03%以下、 Mn: 0.3% 以下、 P : 0.02%以下、 N : 0.006%以下、 Ti : 0.1%以下を含有 し、 残部が Fe及び不可避的不純物からなる鋼板の表面に、 重量%で 、 Si : 2 〜13%を含有し、 残部が A1及び不可避的不純物からなる被 覆層を有し、 めっ き後の全伸びが 45%以上であるこ とを特徴とする 溶接気密性と成型後の耐食性に優れた燃料タ ンク用防銪鋼板。
5. Cr: 0.5〜 7 %, Cu: 0.05-0.5 %, Ni : 0.05-0.5 %, o : 0.05〜0.5 %の少な く と も 1 種または 2種以上を含有するこ とを 特徴とする ( 1 ) 〜 ( 4 ) のいずれかに記載の溶接気密性と成型後 耐食性に優れた燃料タ ンク用防锖鋼板。
6. アルミ系被覆層の付着量が片面当たり 50g Zm 2 以下である こ とを特徴とする ( 1 ) 〜 ( 5 ) のいずれかに記載の溶接気密性と 成型後耐食性に優れた燃料タ ンク用防銪鋼板。
7. めっ き原板の表面に、 Al_Fe— Si系金属間化合物層を有し、 その表面に A1及び不可避的不純物からなるめつ き層を有し、 かつ蟻 酸 lOOppmを含有し、 残部が水及び不可避的不純物からなる溶液に浸 漬した場合の前記めつき原板と前記金属間化合物層との浸漬電位の 差が 0.35 V以下であるこ とを特徴とする溶接気密性と成型後耐食性 に優れた燃料タ ン ク用防銪鋼板。
8. A1— Si系めつ き層の組成が、 重量%で、 Si : 2〜13%、 Sn, In, Sb, Biの 1 種または 2種以上を合計で 0.5〜 5 %含有し、 残部 が A1及び不可避的不純物からなることを特徴とする ( 7 ) に記載の 溶接気密性と成型後耐食性に優れた燃料タ ン ク用防銪鋼板。
9. 少な く と も片方のアルミ系被覆層の表面に、 Cr換算で片面当 たり 5〜100 mg/m 2 のク ロメ一ト処理層を有するこ とを特徴とす る ( 1 ) 〜 ( 8 ) のいずれかに記載の溶接気密性と成型後耐食性に 優れた燃料タ ンク用防銪鋼板。
10. 少な く と も片方の最表面に有機樹脂被覆層を有するこ とを特 徴とする ( 1 ) 〜 ( 9 ) のいずれかに記載の溶接気密性と成型後耐 食性に優れた燃料タ ンク用防銪鋼板。
PCT/JP1997/002275 1996-07-01 1997-07-01 Tole d'acier au carbone antirouille pour reservoir a carburant presentant une bonne etancheite aux gaz lors du soudage et de bonnes proprietes anticorrosion apres formage WO1998000573A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP97928533A EP0870847B1 (en) 1996-07-01 1997-07-01 Rust preventive carbon steel sheet for fuel tank having good welding gastightness and anticorrosion after forming
CA002230706A CA2230706C (en) 1996-07-01 1997-07-01 Rust-preventive steel sheet for fuel tanks exellent in air-tightness after welding and corrosion resistance subsequent to forming
US09/029,558 US6673472B2 (en) 1996-07-01 1997-07-01 Rust preventive carbon steel sheet for fuel tank having good welding gastightness and anticorrosion after forming
DE69738417T DE69738417T2 (de) 1996-07-01 1997-07-01 Rostgeschütztes stahlblech für einen kraftstofftank mit ausgezeichneter gasdichtigkeit nach schweissen und korrosionsbeständigkeit nach formen
AU32772/97A AU694077B2 (en) 1996-07-01 1997-07-01 Rust preventive carbon steel sheet for fuel tank having good welding gastightness and anticorrosion after forming

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8/170795 1996-07-01
JP17079596 1996-07-01
JP33067296A JP2938402B2 (ja) 1996-12-11 1996-12-11 プレス成型性と成型後の耐食性に優れた燃料タンク用防錆鋼板
JP8/330672 1996-12-11
JP8/338422 1996-12-18
JP33842296A JP4036347B2 (ja) 1996-12-18 1996-12-18 成型後耐食性に優れた燃料タンク用防錆鋼板

Publications (1)

Publication Number Publication Date
WO1998000573A1 true WO1998000573A1 (fr) 1998-01-08

Family

ID=27323384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002275 WO1998000573A1 (fr) 1996-07-01 1997-07-01 Tole d'acier au carbone antirouille pour reservoir a carburant presentant une bonne etancheite aux gaz lors du soudage et de bonnes proprietes anticorrosion apres formage

Country Status (7)

Country Link
US (1) US6673472B2 (ja)
EP (1) EP0870847B1 (ja)
KR (1) KR100260017B1 (ja)
AU (1) AU694077B2 (ja)
CA (1) CA2230706C (ja)
DE (1) DE69738417T2 (ja)
WO (1) WO1998000573A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0916746A1 (en) * 1996-07-31 1999-05-19 Nippon Steel Corporation Preservative steel plate having high resistance weldability, corrosion resistance and press formability for automobile fuel tanks
JP3800928B2 (ja) * 2000-03-30 2006-07-26 Jfeスチール株式会社 高耐食性燃料タンク用鋼板
WO2002099154A1 (fr) * 2001-06-01 2002-12-12 Nippon Steel Corporation Reservoir de carburant ou tuyau d'alimentation en essence presentant une excellente resistance a la corrosion et procede de fabrication afferent
US7475478B2 (en) * 2001-06-29 2009-01-13 Kva, Inc. Method for manufacturing automotive structural members
US7926180B2 (en) * 2001-06-29 2011-04-19 Mccrink Edward J Method for manufacturing gas and liquid storage tanks
US7540402B2 (en) * 2001-06-29 2009-06-02 Kva, Inc. Method for controlling weld metal microstructure using localized controlled cooling of seam-welded joints
US20070012748A1 (en) * 2001-06-29 2007-01-18 Mccrink Edward J Method for manufacturing multi-component structural members
US7618503B2 (en) * 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
DE10163171A1 (de) * 2001-12-21 2003-07-03 Solvay Fluor & Derivate Neue Verwendung für Legierungen
RU2202649C1 (ru) * 2001-12-26 2003-04-20 Закрытое акционерное общество "Межотраслевое юридическое агентство "Юрпромконсалтинг" Способ нанесения алюминиевых покрытий на изделия из чугуна и стали
KR100757322B1 (ko) * 2003-09-29 2007-09-11 닛신 세이코 가부시키가이샤 강/알루미늄의 접합구조체
US7473864B2 (en) * 2004-05-19 2009-01-06 Kobe Steel, Ltd. Weldment of different materials and resistance spot welding method
WO2007118939A1 (fr) * 2006-04-19 2007-10-25 Arcelor France Procede de fabrication d'une piece soudee a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue
KR100872569B1 (ko) * 2008-06-05 2008-12-08 현대하이스코 주식회사 고내식 초고강도 강철성형체 제조방법
DE102008037602A1 (de) * 2008-11-27 2010-06-10 Hydro Aluminium Deutschland Gmbh Kraftstofftank aus Metall und Verfahren zu dessen Herstellung
CN102971444B (zh) * 2010-06-21 2014-08-27 新日铁住金株式会社 耐加热黑变性优异的热浸镀Al钢板及其制造方法
KR101253893B1 (ko) * 2010-12-27 2013-04-16 포스코강판 주식회사 내산화성 및 내열성이 우수한 알루미늄 도금강판
RU2563421C2 (ru) * 2011-04-01 2015-09-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячештампованная высокопрочная деталь, имеющая превосходное антикоррозийное свойство после окрашивания, и способ ее изготовления
CN104334349B (zh) 2012-05-25 2016-06-08 夏伊洛工业公司 具有焊接凹口的金属板材件及其形成方法
EP2866966A4 (en) 2012-06-29 2016-07-13 Shiloh Ind Inc WELDED ROHLING AND METHOD
MX2015006795A (es) 2012-11-30 2015-08-14 Shiloh Ind Inc Metodo para formar una muesca de soldadura en una pieza de metal en hoja.
CN105050760B (zh) 2013-03-14 2018-12-11 夏伊洛工业公司 焊接板组件及其制造方法
PL3070187T3 (pl) 2013-12-25 2020-03-31 Nippon Steel Corporation Element pojazdu o dużej wytrzymałości i sposób wytwarzania elementu pojazdu o dużej wytrzymałości
EP3461670A4 (en) * 2016-06-24 2019-07-31 Unipres Corporation STRUCTURE FOR INSTALLING A TUBULAR ELEMENT FOR CONNECTION TO A FUEL TANK ON A VEHICLE, AND PIPING STRUCTURE
CN106334875A (zh) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制焊接部件及其制造方法
KR102330812B1 (ko) * 2020-06-30 2021-11-24 현대제철 주식회사 열간 프레스용 강판 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813029A (ja) * 1994-06-27 1996-01-16 Nippon Steel Corp 疲労特性に優れたプレス成形用冷延鋼板の製造方法
JPH0941044A (ja) * 1995-07-31 1997-02-10 Nippon Steel Corp 成形性に優れた熱延鋼板の製造方法
JPH0953166A (ja) * 1995-06-05 1997-02-25 Nippon Steel Corp プレス加工性、耐食性に優れた燃料タンク用防錆鋼板の製造法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4456663A (en) * 1981-12-02 1984-06-26 United States Steel Corporation Hot-dip aluminum-zinc coating method and product
GB2122650B (en) * 1982-06-28 1986-02-05 Nisshin Steel Co Ltd Aluminum coated sheet and process for producing the same
US4546051A (en) * 1982-07-08 1985-10-08 Nisshin Steel Co., Ltd. Aluminum coated steel sheet and process for producing the same
JPS60103167A (ja) * 1983-11-11 1985-06-07 Nippon Steel Corp 熱耐久性と高温酸化性にすぐれたアルミニウムメツキ鋼板とその製造方法
JPS60165366A (ja) * 1984-02-08 1985-08-28 Nippon Steel Corp 耐熱性高強度アルミメツキ鋼板
JPS62185865A (ja) * 1986-02-13 1987-08-14 Nippon Steel Corp 耐食性にすぐれた溶融アルミメツキ鋼板の製造法
JPS62230987A (ja) * 1986-03-31 1987-10-09 Nisshin Steel Co Ltd 燃料タンク用防錆鋼板
JPS62230988A (ja) * 1986-03-31 1987-10-09 Nisshin Steel Co Ltd 燃料タンク用防錆鋼板
DE69130555T3 (de) * 1990-08-17 2004-06-03 Jfe Steel Corp. Hochfestes Stahleinblech zur Umformung durch Pressen und Verfahren zur Herstellung dieser Bleche
JP2788131B2 (ja) * 1991-01-29 1998-08-20 日本パーカライジング株式会社 アルミニウムまたはアルミニウム合金表面への複合皮膜形成方法
JP2777571B2 (ja) * 1991-11-29 1998-07-16 大同鋼板株式会社 アルミニウム−亜鉛−シリコン合金めっき被覆物及びその製造方法
JPH06158221A (ja) 1992-11-17 1994-06-07 Nippon Steel Corp 溶接性、深絞り性、疲労特性および耐食性に優れた自動車燃料タンク用複層冷延鋼板
JPH06306637A (ja) 1993-04-20 1994-11-01 Nippon Steel Corp 高耐食性燃料タンク用防錆鋼板
JP2852718B2 (ja) * 1993-12-28 1999-02-03 新日本製鐵株式会社 耐食性に優れた溶融アルミニウムめっき鋼板
TW374096B (en) * 1995-01-10 1999-11-11 Nihon Parkerizing Process for hot dip-coating a steel material with a molten aluminum alloy according to an one-stage metal alloy coating method using a flux
JP3485411B2 (ja) * 1995-02-08 2004-01-13 新日本製鐵株式会社 耐食性、耐熱性に優れた溶融アルミニウムめっき鋼板及びその製造法
EP0760399B1 (en) * 1995-02-24 2003-05-14 Nisshin Steel Co., Ltd. Hot-dip aluminized sheet, process for producing the sheet, and alloy layer control device
DE69603782T2 (de) * 1995-05-18 2000-03-23 Nippon Steel Corp., Tokio/Tokyo Aluminiumbeschichtetes Stahlband mit sehr guter Korrosions- und Wärmebeständigkeit und zugehöriges Herstellungsverfahren

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813029A (ja) * 1994-06-27 1996-01-16 Nippon Steel Corp 疲労特性に優れたプレス成形用冷延鋼板の製造方法
JPH0953166A (ja) * 1995-06-05 1997-02-25 Nippon Steel Corp プレス加工性、耐食性に優れた燃料タンク用防錆鋼板の製造法
JPH0941044A (ja) * 1995-07-31 1997-02-10 Nippon Steel Corp 成形性に優れた熱延鋼板の製造方法

Also Published As

Publication number Publication date
KR100260017B1 (ko) 2000-06-15
DE69738417D1 (de) 2008-02-07
AU694077B2 (en) 1998-07-09
KR19990044334A (ko) 1999-06-25
US20010016268A1 (en) 2001-08-23
EP0870847A4 (en) 2003-10-15
CA2230706A1 (en) 1998-01-08
AU3277297A (en) 1998-01-21
US6673472B2 (en) 2004-01-06
EP0870847B1 (en) 2007-12-26
EP0870847A1 (en) 1998-10-14
DE69738417T2 (de) 2008-12-04
CA2230706C (en) 2002-12-31

Similar Documents

Publication Publication Date Title
WO1998000573A1 (fr) Tole d'acier au carbone antirouille pour reservoir a carburant presentant une bonne etancheite aux gaz lors du soudage et de bonnes proprietes anticorrosion apres formage
JP3497413B2 (ja) 耐食性、加工性および溶接性に優れた燃料容器用表面処理鋼板
JP4036347B2 (ja) 成型後耐食性に優れた燃料タンク用防錆鋼板
JP3399729B2 (ja) プレス加工性、耐食性に優れた燃料タンク用防錆鋼板の製造法
JP3485457B2 (ja) 耐食性、溶接性に優れた燃料タンク用防錆鋼板
JP2938402B2 (ja) プレス成型性と成型後の耐食性に優れた燃料タンク用防錆鋼板
JP4510320B2 (ja) 加工後の耐食性に優れた溶融アルミめっき鋼板とその製造方法
JP4344074B2 (ja) 2次加工性とプレス加工性に優れた燃料タンク用防錆鋼板とその製造方法
JP3103026B2 (ja) プレス加工性、耐食性に優れた燃料タンク用防錆鋼板およびその製造法
JP4469030B2 (ja) 耐食性に優れた自動車燃料タンク用アルミめっき鋼板
JP2002241916A (ja) 耐食性、加工性および溶接性に優れためっき鋼板とその製造方法
JP2938406B2 (ja) 溶接気密性、プレス加工性に優れた自動車燃料タンク用防錆鋼板
JP2642283B2 (ja) 高強度高延性溶融Znめっき鋼板
JP2002038250A (ja) 耐食性に優れた溶融Sn−Zn系めっき鋼板
JP3254160B2 (ja) 接着性に優れた合金化溶融亜鉛めっき鋼板
CN115244208B (zh) 热冲压用镀覆钢板
JP3129628B2 (ja) 燃料タンク用防錆鋼板
JP7243949B1 (ja) 熱間プレス部材
WO2024219122A1 (ja) 溶融めっき鋼材
JP3002445B1 (ja) 接合特性に優れた自動車燃料タンク用溶融Sn系めっき鋼板
JPH10183368A (ja) 溶接性及び耐食性に優れた燃料タンク用防錆鋼板
JP3135844B2 (ja) 溶接性、耐食性に優れた自動車燃料タンク用防錆鋼板
JPH10265967A (ja) プレス成形性及び耐食性に優れた燃料タンク用防錆鋼板
JPH10168581A (ja) アルミ系めっき鋼板または燃料タンク用アルミ系めっき鋼板
JPH0241594B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2230706

Country of ref document: CA

Ref country code: CA

Ref document number: 2230706

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09029558

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997928533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980701574

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997928533

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980701574

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980701574

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997928533

Country of ref document: EP