WO1998051771A1 - Detergent compositions - Google Patents
Detergent compositions Download PDFInfo
- Publication number
- WO1998051771A1 WO1998051771A1 PCT/US1997/013726 US9713726W WO9851771A1 WO 1998051771 A1 WO1998051771 A1 WO 1998051771A1 US 9713726 W US9713726 W US 9713726W WO 9851771 A1 WO9851771 A1 WO 9851771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bis
- aqa
- compositions
- surfactant
- preferred
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/65—Mixtures of anionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3746—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3757—(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
Definitions
- the present invention relates to a detergent composition
- a detergent composition comprising a soil dispersant polymer, a non-AQA surfactant and a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant.
- laundry detergents and other cleaning compositions presents a considerable challenge, since modern compositions are required to remove a variety of soils and stains from diverse substrates.
- laundry detergents, hard surface cleaners, shampoos and other personal cleansing compositions, hand dishwashing detergents and detergent compositions suitable for use in automatic dishwashers all require the proper selection and combination of ingredients in order to function effectively.
- such detergent compositions will contain one or more types of surfactants which are designed to loosen and remove different types of soils and stains.
- soils and stains such as body soils, greasy/oily soils and certain food stains
- soils comprise a mixture of hydrophobic triglycerides, lipids, complex polysaccharides, inorganic salts and proteinaceous matter and are thus notoriously difficult to remove.
- An additional problem is encountered in the form of lime-soap deposits; the insoluble hardness ion salt (e.g. Ca2 + /Mg 2+ ) of fatty acids derived from the degradation of triglyceride soils.
- Low levels of hydrophobic soils, residual stains and lime-soap deposits often remain on the surface of the fabric after washing.
- bis-alkoxylated quaternary ammonium (bis-AQA) compounds can be used in various detergent compositions to boost detergency performance on a variety of soil and stain types, particularly hydrophobic soils and lime-soap deposits, commonly encountered.
- the bis-AQA surfactants of the present invention provide substantial benefits to the formulator, over cationic surfactants previously known in the art.
- the bis-AQA surfactants used herein provide marked improvement in cleaning of "everyday” greasy/oily hydrophobic soils regularly encountered.
- the bis-AQA surfactants are compatible with anionic surfactants commonly used in detergent compositions such as alkyl sulfate and alkyl benzene sulfonate; incompatibility with anionic components of the detergent composition has commonly been the limiting factor in the use of cationic surfactants to date.
- Low levels (as low as 3 ppm in the laundering liquor) of bis-AQA surfactants gives rise to the benefits described herein.
- Bis-AQA surfactants can be formulated over a broad pH range from 5 to 12.
- the bis-AQA surfactants can be prepared as 30% (wt.) solutions which are pumpable, and therefore easy to handle in a manufacturing plant.
- Bis- AQA surfactants with degrees of ethoxylation above 5 are sometimes present in a liquid form and can therefore be provided as 100% neat materials.
- the availability of bis-AQA surfactants as highly concentrated solutions provides a substantial economic advantage in transportation costs.
- compositions containing a soil dispersant polymer and a bis-AQA surfactant can deliver additional superior cleaning and whiteness performance versus products containing either technology alone. Particularly, there is a boost in detergency performance on clay/mud soils as well as soils found on socks.
- Polymeric dispersants enhance overall detergency by crystal growth inhibition, particulate soil release peptization, anti-redeposition and soil solubilization.
- benefits of the bis-AQA/soil dispersant polymer system are the result of: (1) AQA action on the stain surface to minimise lime-soap formation and to lift off any calcium soaps present, thereby facilitating improved polymer deposition; (2) AQA providing solubilization deep into the soil, while the polymer acts as a "grease removal shuttle", stripping out the AQA-solubilized stain components and dispersing them into the wash liquor.
- the present invention provides a composition
- a composition comprising or prepared by combining a soil dispersant polymer, a non-AQA surfactant and an effective amount of a bis-alkoxylated quaternary ammonium (bis-AQA) cationic surfactant of the formula:
- R 1 is a linear, branched or substituted Cg-C-is alkyl, alkenyl, aryl, alkanyl, ether or gluycityl ether moiety
- R 2 is a C1-C3 alkyl moiety
- R 3 and R 4 can vary independently and are selected from hydrogen, methyl and ethyl
- X is an anion
- a and A' can vary independently and are each C1-C4 alkoxy
- p and q can vary independantly and are integers of from 1 to 30, and wherein the weight ratio of the bis-AQA to the soil dispersant polymer is in the range of from about 1 :11 to about 1 :14.
- a wash cycle of 10 to 14 minutes and a wash water temperature of 10°C to 50°C it is preferred to include from 2 ppm to 50 ppm, preferably from 5 ppm to 25 ppm, of the bis-AQA surfactant in the wash liquor.
- this translates into an in-product concentration (wt.) of the bis-AQA surfactant of from 0.1% to 3.2%, preferably 0.3% to 1.5%, for a heavy- duty liquid laundry detergent.
- R 1 is Cs-C-is hydrocarbyl and mixtures thereof, preferably Cs, C10. C12- C14 alkyl and mixtures thereof.
- X is any convenient anion to provide charge balance, preferably chloride.
- bis-AQA surfactants useful herein include compounds of the formula:
- Non-AQA surfactants may include essentially any anionic, nonionic or additional cationic surfactant.
- Anionic Surfactant Nonlimiting examples of anionic surfactants useful herein typically at levels from 1% to 55%, by weight, include the conventional C11-C18 alkyl benzene sulfonates ("LAS") and primary (“AS"), branched-chain and random c 10 _c 20 alk y' sulfates, the C ⁇ ⁇ o-C ⁇
- HLB HLB
- AE nonionic surfactants 8-11 and most preferred from 8-10.
- Condensates with propylene oxide and butylene oxides may also be used.
- Another class of preferred nonionic surfactants for use herein are the polyhydroxy fatty acid amide surfactants of the formula.
- a polyglycoside, hydrophilic group containing from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7 saccharide units.
- Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties (optionally the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside).
- the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6- positions on the preceding saccharide units.
- the preferred alkylpolyglycosides have the formula:
- R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18, preferably from 12 to 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to 10, preferably 0; and x is from 1.3 to 10, preferably from 1.3 to 3, most preferably from 1.3 to 2.7.
- the glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1 -position). The additional glycosyl units can then be attached between their 1 -position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
- the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are also suitable for use as the additional nonionic surfactant in the present invention.
- the hydrophobic portion of these compounds will preferably have a molecular weight of from 1500 to 1800 and will exhibit water insolubility.
- the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is 50% of the total weight of the condensation product, which corresponds to condensation with up to 40 moles of ethylene oxide.
- Examples of compounds of this type include certain of the commercially-available Pluronic T M surfactants, marketed by BASF.
- nonionic surfactant of the nonionic surfactant system of the present invention are the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine.
- the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from 2500 to 3000. This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from 40% to 80% by weight of polyoxyethylene and has a molecular weight of from 5,000 to 11,000.
- this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF. Additional Cationic surfactants
- Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono Cg-C-
- Other suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239660 and 4260529.
- Optional Detergent Ingredients include the quaternary ammonium surfactants selected from mono Cg-C-
- Other suitable cationic ester surfactants including choline ester surfactants, have for example been disclosed in US Patents No.s 4228042, 4239
- Detergent builders can optionally but preferably be included in the compositions herein, for example to assist in controlling mineral, especially Ca and/or Mg, hardness in wash water or to assist in the removal of particulate soils from surfaces.
- Builders can operate via a variety of mechanisms including forming soluble or insoluble complexes with hardness ions, by ion exchange, and by offering a surface more favorable to the precipitation of hardness ions than are the surfaces of articles to be cleaned.
- Builder level can vary widely depending upon end use and physical form of the composition.
- Built detergents typically comprise at least 1% builder.
- Liquid formulations typically comprise 5% to 50%, more typically 5% to 35% of builder.
- Granular formulations typically comprise from 10% to 80%, more typically 15% to 50% builder by weight of the detergent composition.
- Suitable builders herein can be selected from the group consisting of phosphates and polyphosphates, especially the sodium salts; silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-structured- liquid types; carbonates, bicarbonates, sesquicarbonates and carbonate minerals other than sodium carbonate or sesquicarbonate; aluminosilicates; organic mono-, di-, tri-, and tetracarboxylates especially water-soluble nonsurfactant carboxylates in acid, sodium, potassium or alkanoiammonium salt form, as well as oligomeric or water-soluble low molecular weight polymer carboxylates including aliphatic and aromatic types; and phytic acid.
- phosphates and polyphosphates especially the sodium salts
- silicates including water-soluble and hydrous solid types and including those having chain-, layer-, or three-dimensional- structure as well as amorphous-solid or non-
- borates e.g., for pH-buffering purposes
- sulfates especially sodium sulfate and any other fillers or carriers which may be important to the engineering of stable surfactant and/or builder-containing detergent compositions.
- Builder mixtures sometimes termed “builder systems” can be used and typically comprise two or more conventional builders, optionally complemented by chelants, pH-buffers or fillers, though these latter materials are generally accounted for separately when describing quantities of materials herein.
- preferred builder systems are typically formulated at a weight ratio of surfactant to builder of from 60:1 to 1 :80.
- Certain preferred laundry detergents have said ratio in the range 0.90:1.0 to 4.0:1.0, more preferably from 0.95:1.0 to 3.0:1.0.
- P-containing detergent builders often preferred where permitted by legislation include, but are not limited to, the alkali metal, ammonium and alkanoiammonium salts of polyphosphates exemplified by the tripolyphosphates, pyrophosphates, glassy polymeric meta-phosphates; and phosphonates.
- Suitable silicate builders include alkali metal silicates, particularly those liquids and solids having a Si ⁇ 2:Na2 ⁇ ratio in the range 1.6:1 to 3.2:1 , including, particularly for automatic dishwashing purposes, solid hydrous 2-ratio silicates marketed by PQ Corp. under the tradename BRITESIL®, e.g., BRITESIL H20; and layered silicates, e.g., those described in U.S. 4,664,839, May 12, 1987, H. P. Rieck.
- NaSKS-6 is a crystalline layered aluminium-free ⁇ -Na2SiOs morphology silicate marketed by Hoechst and is preferred especially in granular laundry compositions. See preparative methods in German DE-A-3,417,649 and DE-A-3,742,043.
- Other layered silicates such as those having the general formula NaMSi x ⁇ 2 ⁇ + ⁇ yH2 ⁇ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0, can also or alternately be used herein.
- Layered silicates from Hoechst also include NaSKS-5, NaSKS-7 and NaSKS-11 , as the ⁇ , ⁇ and ⁇ layer-silicate forms.
- Other silicates may also be useful, such as magnesium silicate, which can serve as a crispening agent in granules, as a stabilising agent for bleaches, and as a component of suds control systems.
- Suitable carbonate builders include alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973, although sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, and other carbonate minerals such as trona or any convenient multiple salts of sodium carbonate and calcium carbonate such as those having the composition 2Na2C ⁇ 3.CaC ⁇ 3 when anhydrous, and even calcium carbonates including calcite, aragonite and vaterite, especially forms having high surface areas relative to compact calcite may be useful, for example as seeds or for use in synthetic detergent bars.
- Aluminosilicate builders are especially useful in granular detergents, but can also be incorporated in liquids, pastes or gels. Suitable for the present purposes are those having empirical formula: [M z (Al ⁇ 2)z(Si ⁇ 2) v ] xH2 ⁇ wherein z and v are integers of at least 6, the molar ratio of z to v is in the range from 1.0 to 0.5, and x is an integer from 15 to 264.
- Aluminosilicates can be crystalline or amorphous, naturally-occurring or synthetically derived. An aluminosilicate production method is in U.S. 3,985,669, Krummel, et al, October 12, 1976.
- Preferred synthetic crystalline aluminosilicate ion exchange materials are available as Zeolite A, Zeolite P (B), Zeolite X and, to whatever extent this differs from Zeolite P, the so-called Zeolite MAP. Natural types, including clinoptilolite, may be used. Zeolite A has the formula: Na-
- 2.(Al ⁇ 2)i2(Si ⁇ 2)i2-' ⁇ H2 ⁇ wherein x is from 20 to 30, especially 27. Dehydrated zeolites (x 0 - 10) may also be used.
- the aluminosilicate has a particle size of 0.1-10 microns in diameter.
- Suitable organic detergent builders include polycarboxylate compounds, including water-soluble nonsurfactant dicarboxylates and tricarboxylates. More typically builder polycarboxylates have a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Carboxylate builders can be formulated in acid, partially neutral, neutral or overbased form. When in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanoiammonium salts are preferred.
- Polycarboxylate builders include the ether polycarboxylates, such as oxydisuccinate, see Berg, U.S. 3,128,287, April 7, 1964, and Lamberti et al, U.S.
- Citrates e.g., citric acid and soluble salts thereof are important carboxylate builders e.g., for heavy duty liquid detergents, due to availability from renewable resources and biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicates. Oxydisuccinates, hydroxyiminodisuccinate, and methyl glycine diaccetate are also especially useful in such compositions and combinations.
- alkali metal phosphates such as sodium tripolyphosphates, sodium pyrophosphate and sodium orthophosphate can be used.
- Phosphonate builders such as ethane-1-hydroxy-1 ,1-diphosphonate and other known phosphonates, e.g., those of U.S. 3,159,581 ; 3,213,030; 3,422,021 ; 3,400,148 and 3,422,137 can also be used and may have desirable antiscaling properties.
- detersive surfactants or their short-chain homologs also have a builder action. For unambiguous formula accounting purposes, when they have surfactant capability, these materials are summed up as detersive surfactants.
- Preferred types for builder functionality are illustrated by: 3,3-dicarboxy-4-oxa- 1 ,6-hexanedioates and the related compounds disclosed in U.S. 4,566,984, Bush, January 28, 1986.
- Succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof.
- Succinate builders also include: Iaurylsuccinate; myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate.
- Lauryl-succinates are described in European Patent Application 86200690.5/0,200,263, published November 5, 1986.
- Fatty acids e.g., C-
- Other suitable polycarboxylates are disclosed in U.S.
- Mineral Builders Waters of hydration or anions other than carbonate may be added provided that the overall charge is balanced or neutral. The charge or valence effects of such anions should be added to the right side of the above equation.
- a water-soluble cation selected from the group consisting of hydrogen, water-soluble metals, hydrogen, boron, ammonium, silicon, and mixtures thereof, more preferably, sodium, potassium, hydrogen, lithium, ammonium and mixtures thereof, sodium and potassium being highly preferred.
- Nonlimiting examples of noncarbonate anions include those selected from the group consisting of chloride, sulfate, fluoride, oxygen, hydroxide, silicon dioxide, chromate, nitrate, borate and mixtures thereof.
- Preferred builders of this type in their simplest forms are selected from the group consisting of Na2Ca(C ⁇ 3)2, K2Ca(C03)2, Na 2 Ca 2 (C03)3, NaKCa(C0 3 ) 2 , NaKCa 2 (C0 3 ) 3 , K 2 Ca 2 (C03)3, and combinations thereof.
- An especially preferred material for the builder described herein is Na2Ca(C ⁇ 3)2 in any of its crystalline modifications.
- Suitable builders of the above-defined type are further illustrated by, and include, the natural or synthetic forms of any one or combinations of the following minerals:sammlungite, Andersonite, AshcroftineY, Beyerite, Borcarite, Burbankite, Butschliite, Cancrinite, Carbocernaite, Carletonite, Davyne, DonnayiteY, Fairchildite, Ferrisurite, Franzinite, Gaudefroyite, Gaylussite, Girvasite, Gregoryite, Jouravskite, KamphaugiteY, Kettnerite, Khanneshite, LepersonniteGd, Liottite, MckelveyiteY, Microsommite, Mroseite, Natrofairchildite, Nyerereite, RemonditeCe, Sacrofanite, Schrockingerite, Shortite, Surite, Tunisite, Tuscanite, Tyrolite, Vishnevite, and Zemkorite.
- Preferred mineral forms include Nyererite
- compositions described herein may contain a bleach.
- bleaching agents When present, such bleaching agents will typically be at levels of from 1% to 30%, more typically from 5% to 20%, of the detergent composition, especially for fabric laundering.
- the bleaching system contains a hydrogen peroxide source and a bleach catalyst.
- the production of the organic peroxyacid occurs by an in situ reaction of the bleach activator with a source of hydrogen peroxide.
- Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
- a preformed peracid is incorporated directly into the composition.
- Compositions containing mixtures of a hydrogen peroxide source and bleach activator in combination with a preformed peracid are also envisaged.
- Preferred peroxygen bleaches are perhydrate bleaches. Although the perhydrate bleach itself has some bleaching capability, a superior bleach exists in the peracid formed as a product of the reaction between the hydrogen peroxide released by the perhydrate and a bleach activator. Preformed peracids are also envisaged as a preferred peroxygen bleaching species.
- suitable perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persiiicate salts.
- the preferred perhydrate salts are normally the alkali metal salts.
- the perhydrate salt may be included as the crystalline solid without additional protection.
- the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
- Sodium perborate can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2-3H2 ⁇ .
- Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates for inclusion in compositions in accordance with the invention.
- Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C ⁇ 3.3H2 ⁇ 2, and is available commercially as a crystalline solid.
- Sodium percarbonate, being a hydrogen peroxide addition compound tends on dissolution to release the hydrogen peroxide quite rapidly which can increase the tendency for localised high bleach concentrations to arise.
- a preferred percarbonate bleach comprises dry particles having an average particle size in the range from 500 micrometers to 1 ,000 micrometers, not more than 10% by weight of said particles being smaller than 200 micrometers and not more than 10% by weight of said particles being larger than 1 ,250 micrometers.
- the percarbonate is most preferably incorporated into such compositions in a coated form which provides in-product stability.
- a suitable coating material providing in product stability comprises mixed salt of a water soluble alkali metal sulphate and carbonate.
- Such coatings together with coating processes have previously been described in GB-1 ,466,799, granted to Interox on 9th March 1977.
- the weight ratio of the mixed salt coating material to percarbonate lies in the range from 1:200 to 1:4, more preferably from 1:99 to 1:9, and most preferably from 1 :49 to 1 :19.
- the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na2S ⁇ 4.n.Na2C ⁇ 3 wherein n is from 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
- a bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4- oxoperoxybutyric acid and diperoxydodecanedioic acid.
- Such bleaching agents are disclosed in U.S. Patent 4,483,781 , Hartman, issued November 20, 1984, U.S.
- Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Patent 4,634,551 , issued January 6, 1987 to Burns et al.
- bleaching agents include photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from 0.025% to 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.
- Potassium peroxymonopersulfate is another inorganic perhydrate salt of utility in the compositions herein.
- Bleach Activator
- Bleach activators are preferred components where the compositions of the present invention additionally comprises a peroxygen bleaching agent.
- Bleach activators when present are typically at levels of from 0.1% to 60%, more typically from 0.5% to 40% of the bleaching composition comprising the bleaching agent-plus-bleach activator.
- Peroxygen bleaching agents, the perborates, etc. are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid or peracid corresponding to the bleach activator.
- bleach activators Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934.
- NOBS nonanoyloxybenzene sulfonate
- TAED tetraacetyl ethylene diamine
- R1 is an alkyl group containing from 6 to 12 carbon atoms
- R 2 is an alkylene containing from 1 to 6 carbon atoms
- R ⁇ is H or alkyl, aryl, or alkaryl containing from 1 to 10 carbon atoms
- L is any suitable leaving group.
- a leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydrolysis anion.
- a preferred leaving group is phenyl sulfonate.
- bleach activators of the above formulae include (6- octanamido-caproyl)oxybenzenesulfonate, ( ⁇ -nonanamidocaproyl)oxybenzene- sulfonate, (6-decanamido-caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551 , incorporated herein by reference.
- Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incorporated herein by reference.
- a highly preferred activator of the benzoxazin-type is:
- the automatic dishwashing compositions and cleaning processes herein can be adjusted to provide on the order of at least one part per hundred million of the active bleach catalyst species in the aqueous washing medium, and will preferably provide from 0.01 ppm to 25 ppm, more preferably from 0.05 ppm to 10 ppm, and most preferably from 0.1 ppm to 5 ppm, of the bleach catalyst species in the wash liquor.
- typical automatic dishwashing compositions herein will comprise from 0.0005% to 0.2%, more preferably from 0.004% to 0.08%, of bleach catalyst, especially manganese or cobalt catalysts, by weight of the cleaning compositions.
- Enzymes can be included in the present detergent compositions for a variety of purposes, including removal of protein-based, carbohydrate-based, or triglyceride-based stains from substrates, for the prevention of refugee dye transfer in fabric laundering, and for fabric restoration.
- Suitable enzymes include proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. Preferred selections are influenced by factors such as pH-activity and/or stability optima, thermostability, and stability to active detergents, builders.
- bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
- Detersive enzyme means any enzyme having a cleaning, stain removing or otherwise beneficial effect in a laundry, hard surface cleaning or personal care detergent composition.
- Preferred detersive enzymes are hydrolases such as proteases, amylases and lipases.
- Preferred enzymes for laundry purposes include, but are not limited to, proteases, cellulases, lipases and peroxidases. Highly preferred for automatic dishwashing are amylases and/or proteases. Enzymes are normally incorporated into detergent or detergent additive compositions at levels sufficient to provide a "cleaning-effective amount".
- cleaning effective amount refers to any amount capable of producing a cleaning, stain removal, soil removal, whitening, deodorizing, or freshness improving effect on substrates such as fabrics, dishware.
- typical amounts are up to 5 mg by weight, more typically 0.01 mg to 3 mg, of active enzyme per gram of the detergent composition.
- the compositions herein will typically comprise from 0.001% to 5%, preferably 0.01 %-1% by weight of a commercial enzyme preparation.
- Protease enzymes are usually present in such commercial preparations at levels sufficient to provide from 0.005 to 0.1 Anson units (AU) of activity per gram of composition.
- detergents such as in automatic dishwashing
- Higher active levels may also be desirable in highly concentrated detergent formulations.
- proteases are the subtilisins which are obtained from particular strains of B. s ⁇ btilis and B. licheniformis.
- One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE® by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1 ,243,784 to Novo.
- proteases include ALCALASE® and SAVINASE® from Novo and MAXATASE® from International Bio-Synthetics, Inc., The Netherlands; as well as Protease A as disclosed in EP 130,756 A, January 9, 1985 and Protease B as disclosed in EP 303,761 A, April 28, 1987 and EP 130,756 A, January 9, 1985. See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO 9318140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 9203529 A to Novo.
- proteases include those of WO 9510591 A to Procter & Gamble .
- a protease having decreased adsorption and increased hydrolysis is available as described in WO 9507791 to Procter & Gamble.
- a recombinant trypsin-like protease for detergents suitable herein is described in WO 9425583 to Novo.
- an especially preferred protease referred to as "Protease
- D" is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101 , +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in the patent applications of A.
- Amylases suitable herein, especially for, but not limited to automatic dishwashing purposes include, for example, ⁇ -amylases described in GB 1 ,296,839 to Novo; RAPIDASE®, International Bio-Synthetics, Inc. and TERMAMYL®, Novo. FUNGAMYL® from Novo is especially useful.
- Engineering of enzymes for improved stability, e.g., oxidative stability, is known. See, for example J. Biological Chem., Vol. 260, No. 11 , June 1985, pp. 6518- 6521.
- Certain preferred embodiments of the present compositions can make use of amylases having improved stability in detergents such as automatic dishwashing types, especially improved oxidative stability as measured against a reference-point of TERMAMYL® in commercial use in 1993.
- These preferred amylases herein share the characteristic of being "stability-enhanced" amylases, characterized, at a minimum, by a measurable improvement in one or more of: oxidative stability, e.g., to hydrogen peroxide/tetraacetylethylenediamine in buffered solution at pH 9-10; thermal stability, e.g., at common wash temperatures such as 60°C; or alkaline stability, e.g., at a pH from 8 to 11 , measured versus the above-identified reference-point amylase.
- oxidative stability e.g., to hydrogen peroxide/tetraacetylethylenediamine in buffered solution at pH 9-10
- thermal stability e.g., at common wash
- Stability-enhanced amylases can be obtained from Novo or from Genencor International.
- One class of highly preferred amylases herein have the commonality of being derived using site- directed mutagenesis from one or more of the Bacillus amylases, especially the Bacillus ⁇ -amylases, regardless of whether one, two or multiple amylase strains are the immediate precursors.
- Oxidative stability-enhanced amylases vs. the above-identified reference amylase are preferred for use, especially in bleaching, more preferably oxygen bleaching, as distinct from chlorine bleaching, detergent compositions herein.
- Met was substituted, one at a time, in positions 8, 15, 197, 256, 304, 366 and 438 leading to specific mutants, particularly important being M197L and M197T with the M197T variant being the most stable expressed variant. Stability was measured in CASCADE® and SUNLIGHT®; (c) particularly preferred amylases herein include amylase variants having additional modification in the immediate parent as described in WO 9510603 A and are available from the assignee, Novo, as DURAMYL®. Other particularly preferred oxidative stability enhanced amylase include those described in WO 9418314 to Genencor International and WO 9402597 to Novo.
- Cellulases usable herein include both bacterial and fungal types, preferably having a pH optimum between 5 and 9.5.
- U.S. 4,435,307, Barbesgoard et al, March 6, 1984 discloses suitable fungal cellulases from Humicola insolens or Humicola strain DSM1800 or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusk, Dolabella Auricula Solander.
- Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS- 2.247.832.
- CAREZYME® and CELLUZYME® are especially useful. See also WO 9117243 to Novo.
- Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in GB 1 ,372,034. See also lipases in Japanese Patent Application 53,20487, laid open Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade name Lipase P "Amano," or "Amano-P.” Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var.
- lipolyticum NRRLB 3673 from Toyo Jozo Co., Tagata, Japan; Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli.
- D96L lipase variant
- the present invention provides the benefit of improved whiteness maintenance on fabrics using low levels of D96L variant in detergent compositions containing the bis-AQA surfactants in the manner disclosed herein, especially when the D96L is used at levels in the range of 50 LU to 8500 LU per liter of wash solution.
- Cutinase enzymes suitable for use herein are described in WO 8809367 A to Genencor.
- Peroxidase enzymes may be used in combination with oxygen sources, e.g., percarbonate, perborate, hydrogen peroxide, etc., for "solution bleaching" or prevention of transfer of dyes or pigments removed from substrates during the wash to other substrates present in the wash solution.
- oxygen sources e.g., percarbonate, perborate, hydrogen peroxide, etc.
- Known peroxidases include horseradish peroxidase, ligninase, and haloperoxidases such as chloro- or bromo-peroxidase.
- Peroxidase-containing detergent compositions are disclosed in WO 89099813 A, October 19, 1989 to Novo and WO 8909813 A to Novo.
- Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971 , Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo. Enzyme Stabilizing System
- the enzyme-containing compositions herein may optionally also comprise from 0.001% to 10%, preferably from 0.005% to 8%, most preferably from 0.01% to 6%, by weight of an enzyme stabilizing system.
- the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme. Such a system may be inherently provided by other formulation actives, or be added separately, e.g., by the formulator or by a manufacturer of detergent-ready enzymes.
- Such stabilizing systems can, for example, comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acids, boronic acids, and mixtures thereof, and are designed to address different stabilization problems depending on the type and physical form of the detergent composition.
- One stabilizing approach is the use of water-soluble sources of calcium and/or magnesium ions in the finished compositions which provide such ions to the enzymes.
- Calcium ions are generally more effective than magnesium ions and are preferred herein if only one type of cation is being used.
- Typical detergent compositions, especially liquids will comprise from about 1 to about 30, preferably from about 2 to about 20, more preferably from about 8 to about 12 millimoles of calcium ion per liter of finished detergent composition, though variation is possible depending on factors including the multiplicity, type and levels of enzymes incorporated.
- Suitable chlorine scavenger anions are widely known and readily available, and, if used, can be salts containing ammonium cations with sulfite, bisulfite, thiosulfite, thiosulfate, iodide, etc.
- Antioxidants such as carbamate, ascorbate, etc., organic amines such as ethylenediaminetetracetic acid (EDTA) or alkali metal salt thereof, monoethanolamine (MEA), and mixtures thereof can likewise be used.
- EDTA ethylenediaminetetracetic acid
- MEA monoethanolamine
- special enzyme inhibition systems can be incorporated such that different enzymes have maximum compatibility.
- scavengers such as bisulfate, nitrate, chloride, sources of hydrogen peroxide such as sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate, as well as phosphate, condensed phosphate, acetate, benzoate, citrate, formate, lactate, malate, tartrate, salicylate, etc., and mixtures thereof can be used if desired.
- the chlorine scavenger function can be performed by ingredients separately listed under better recognized functions, (e.g., hydrogen peroxide sources), there is no absolute requirement to add a separate chlorine scavenger unless a compound performing that function to the desired extent is absent from an enzyme-containing embodiment of the invention; even then, the scavenger is added only for optimum results.
- the formulator will exercise a chemist's normal skill in avoiding the use of any enzyme scavenger or stabilizer which is majorly incompatible, as formulated, with other reactive ingredients.
- ammonium salts such salts can be simply admixed with the detergent composition but are prone to adsorb water and/or liberate ammonia during storage. Accordingly, such materials ' , if present, are desirably protected in a particle such as that described in US 4,652,392, Baginski et al. Polymeric Soil Release Agent
- SRA polymeric soil release agents
- SRA's can optionally be employed in the present detergent compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1% to 5%, preferably from 0.2% to 3.0% by weight, of the composition.
- Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with SRA to be more easily cleaned in later washing procedures.
- SRA's can include a variety of charged, e.g., anionic or even cationic (see U.S. 4,956,447), as well as noncharged monomer units and structures may be linear, branched or even star-shaped. They may include capping moieties which are especially effective in controlling molecular weight or altering the physical or surface-active properties. Structures and charge distributions may be tailored for application to different fiber or textile types and for varied detergent or detergent additive products.
- Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterif ⁇ cation/oligomerization, often with a metal catalyst such as a titanium(IV) aikoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without of course forming a densely crosslinked overall structure.
- Suitable SRA's include: a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated terminal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451 , November 6, 1990 to J.J. Scheibel and E.P.
- ester oligomers can be prepared by (a) ethoxylating allyl alcohol, (b) reacting the product of (a) with dimethyl terephthalate (“DMT”) and 1 ,2-propylene glycol (“PG”) in a two-stage transesterification/ oligomerization procedure and (c) reacting the product of (b) with sodium metabisulfite in water; the nonionic end- capped 1 ,2-propylene/polyoxyethylene terephthalate polyesters of U.S.
- DMT dimethyl terephthalate
- PG ,2-propylene glycol
- Gosselink et al for example those produced by transesterification/oligomerization of poly(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"); the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721 ,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8- hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S.
- Gosselink for example produced from DMT, Me-capped PEG and EG and/or PG, or a combination of DMT, EG and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S.
- SRA's also include simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such as the hydroxyether cellulosic polymers available as METHOCEL from Dow; and the C1-C4 alkylcelluloses and C4 hydroxyalkyl celluloses; see U.S. 4,000,093, December 28, 1976 to Nicol, et al.
- Suitable SRA's characterised by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C-j-C ⁇ vinyl esters, preferably poly(vinyl acetate), grafted onto polyalkylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al. Commercially available examples include SOKALAN SRA's such as SOKALAN HP-22, available from BASF, Germany. Other SRA's are polyesters with repeat units containing 10-15% by weight of ethylene terephthalate together with 90- 80% by weight of polyoxyethylene terephthalate, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Commercial examples include ZELCON 5126 from Dupont and MILEASE T from ICI.
- Another preferred SRA is an oligomer having empirical formula (CAP)2(EG/PG)5(T)5(SIP) ⁇ which comprises terephthaloyl (T), sulfoisophthaloyl (SIP), oxyethyleneoxy and oxy-1 ,2-propylene (EG/PG) units and which is preferably terminated with end-caps (CAP), preferably modified isethionates, as in an oligomer comprising one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1 ,2-propyleneoxy units in a defined ratio, preferably about 0.5:1 to about 10:1 , and two end-cap units derived from sodium 2-(2- hydroxyethoxy)-ethanesulfonate.
- CAP empirical formula
- Said SRA preferably further comprises from 0.5% to 20%, by weight of the oligomer, of a crystallinity-reducing stabiliser, for example an anionic surfactant such as linear sodium dodecylbenzenesulfonate or a member selected from xylene-, cumene-, and toluene- sulfonates or mixtures thereof, these stabilizers or modifiers being introduced into the synthesis pot, all as taught in U.S. 5,415,807, Gosselink, Pan, Kellett and Hall, issued May 16, 1995.
- Suitable monomers for the above SRA include Na 2-(2- hydroxyethoxy)-ethanesulfonate, DMT, Na- dimethyl 5-sulfoisophthalate, EG and PG.
- oligomeric esters comprising: (1) a backbone comprising (a) at least one unit selected from the group consisting of dihydroxysulfonates, polyhydroxy sulfonates, a unit which is at least trifunctional whereby ester linkages are formed resulting in a branched oligomer backbone, and combinations thereof; (b) at least one unit which is a terephthaloyl moiety; and (c) at least one unsulfonated unit which is a 1,2- oxyalkyleneoxy moiety; and (2) one or more capping units selected from nonionic capping units, anionic capping units such as alkoxylated, preferably ethoxylated, isethionates, alkoxylated propanesulfonates, alkoxylated propanedisulfonates, alkoxylated phenolsulfonates, sulfoaroyl derivatives and mixtures thereof.
- Preferred of such esters are those of empirical formula:
- the PVPVI copolymers typically have a molar ratio of N- vinylimidazole to N-vinylpyrrolidone from 1 :1 to 0.2:1 , more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched.
- R-j is anilino
- R2 is N-2-hydroxyethyl-N-2- methylamino
- M is a cation such as sodium
- the brightener is 4,4'-bis[(4- anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'- stilbenedisulfonic acid disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
- R-j is anilino
- R2 is morphilino
- M is a cation such as sodium
- the brightener is 4,4'-bis[(4-anilino-6-morphilino-s- triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal AMS- GX by Ciba Geigy Corporation.
- the specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described.
- the combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA-GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics.
- the extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient".
- the exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor.
- Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.
- other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.
- Amino carboxylates useful as optional chelating agents include ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraamine- hexacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.
- Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than 6 carbon atoms.
- Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21 , 1974, to Connor et al.
- Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1 ,2-dihydroxy-3,5-disulfobenzene.
- compositions herein may also contain water-soluble methyl glycine diacetic acid (MGDA) salts (or acid form) as a chelant or co-builder useful with, for example, insoluble builders such as zeolites, layered silicates.
- MGDA water-soluble methyl glycine diacetic acid
- these chelating agents will generally comprise from 0.1% to 15% by weight of the detergent compositions herein. More preferably, if utilized, the chelating agents will comprise from 0.1% to 3.0% by weight of such compositions. Suds Suppressors
- the detergent compositions herein may also contain non-surfactant suds suppressors.
- non-surfactant suds suppressors include, for example: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18- 40 ketones (e.g., stearone), etc.
- Patent 3,933,672 Bartolotta et al, and in U.S. Patent 4,652,392, Baginski et al, issued March 24, 1987.
- siloxane resin composed of (CH3)3SiO ⁇ /2 units of Si ⁇ 2 units in a ratio of from (CH3)3 SiO ⁇
- typical liquid laundry detergent compositions with controlled suds will optionally comprise from about 0.001 to about 1 , preferably from about 0.01 to about 0.7, most preferably from about 0.05 to about 0.5, weight % of said silicone suds suppressor, which comprises (1) a nonaqueous emulsion of a primary antifoam agent which is a mixture of (a) a polyorganosiloxane, (b) a resinous siloxane or a silicone resin-producing silicone compound, (c) a finely divided filler material, and (d) a catalyst to promote the reaction of mixture components (a), (b) and (c), to form silanolates; (2) at least one nonionic silicone surfactant; and (3) polyethylene glycol or a copolymer of polyethylene-polypropylene glycol having a solubility in water at room temperature of more than about 2 weight %; and without polypropylene glycol.
- a primary antifoam agent which is a mixture of (a) a polyorgano
- the preferred silicone suds suppressors used herein do not contain polypropylene glycol, particularly of 4,000 molecular weight. They also preferably do not contain block copolymers of ethylene oxide and propylene oxide, like PLURONIC L101.
- suds suppressors useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. 4,798,679, 4,075,118 and EP 150,872.
- the secondary alcohols include the CQ-C ⁇ ⁇ Q alkyl alcohols having a C-
- a preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12.
- Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem.
- Mixed suds suppressors typically comprise mixtures of alcohol + silicone at a weight ratio of 1 :5 to 5:1.
- suds should not form to the extent that they either overflow the washing machine or negatively affect the washing mechanism of the dishwasher.
- Suds suppressors when utilized, are preferably present in a "suds suppressing amount.
- Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry or dishwashing detergents for use in automatic laundry or dishwashing machines.
- Perfumes and perfumery ingredients useful in the present compositions and processes comprise a wide variety of natural and synthetic chemical ingredients, including, but not limited to, aldehydes, ketones, esters. Also included are various natural extracts and essences which can comprise complex mixtures of ingredients, such as orange oil, lemon oil, rose extract, lavender, musk, patchouli, balsamic essence, sandalwood oil, pine oil, cedar. Finished perfumes can comprise extremely complex mixtures of such ingredients. Finished perfumes typically comprise from 0.01% to 2%, by weight, of the detergent compositions herein, and individual perfumery ingredients can comprise from 0.0001% to 90% of a finished perfume composition.
- Non-limiting examples of perfume ingredients useful herein include: 7- acetyl-1 ,2,3,4,5,6,7,8-octahydro-1 ,1 ,6,7-tetramethyl naphthalene; ionone methyl; ionone gamma methyl; methyl cedrylone; methyl dihydrojasmonate; methyl 1 ,6,10-trimethyl-2,5,9-cyclododecatrien-1-yl ketone; 7-acetyl-1 ,1 ,3,4,4,6- hexamethyl tetralin; 4-acetyl-6-tert-butyl-1 ,1 -dimethyl indane; para-hydroxy- phenyl-butanone; benzophenone; methyl beta-naphthyl ketone; 6-acetyl- 1 ,1 ,2,3,3,5-hexamethyl indane; 5-acetyl-3-isopropyl-1 ,1 ,2,6
- perfume materials include essential oils, resinoids, and resins from a variety of sources including, but not limited to: Peru balsam, Olibanum resinoid, styrax, labdanum resin, nutmeg, cassia oil, benzoin resin, coriander and lavandin.
- Still other perfume chemicals include phenyl ethyl alcohol, terpineol, linalool, linalyl acetate, geraniol, nerol, 2-(1 ,1-dimethylethyl)-cyclohexanol acetate, benzyl acetate, and eugenol.
- Carriers such as diethylphthalate can be used in the finished perfume compositions.
- compositions herein A wide variety of other ingredients useful in detergent compositions can be included in the compositions herein, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, solvents for liquid formulations, solid fillers for bar compositions, etc.
- suds boosters such as the Cirj-C-jg alkanolamides can be incorporated into the compositions, typically at 1%-10% levels.
- the C10-C14 monoethanol and diethanol amides illustrate a typical class of such suds boosters.
- Use of such suds boosters with high sudsing optional surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous.
- water- soluble magnesium and/or calcium salts such as MgCl2, MgS04, CaCl2 CaS ⁇ 4, can be added at levels of, typically, 0.1 %-2%, to provide additional suds and to enhance grease removal performance.
- Various detersive ingredients employed in the present compositions optionally can be further stabilized by absorbing said ingredients onto a porous hydrophobic substrate, then coating said substrate with a hydrophobic coating.
- the detersive ingredient is admixed with a surfactant before being absorbed into the porous substrate.
- the detersive ingredient is released from the substrate into the aqueous washing liquor, where it performs its intended detersive function.
- a porous hydrophobic silica (trademark SIPERNAT D10, DeGussa) is admixed with a proteolytic enzyme solution containing 3%-5% of C-
- the enzyme/surfactant solution is 2.5 X the weight of silica.
- the resulting powder is dispersed with stirring in silicone oil (various silicone oil viscosities in the range of 500-12,500 can be used).
- silicone oil various silicone oil viscosities in the range of 500-12,500 can be used.
- the resulting silicone oil dispersion is emulsified or otherwise added to the final detergent matrix.
- ingredients such as the aforementioned enzymes, bleaches, bleach activators, bleach catalysts, photoactivators, dyes, fluorescers, fabric conditioners and hydrolyzable surfactants can be "protected” for use in detergents, including liquid laundry detergent compositions.
- Liquid detergent compositions can contain water and other solvents as carriers.
- Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
- Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to 6 carbon atoms and from 2 to 6 hydroxy groups (e.g., 1 ,3-propanediol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used.
- the compositions may contain from 5% to 90%, typically 10% to 50% of such carriers.
- the detergent compositions herein will preferably be formulated such that, during use in aqueous cleaning operations, the wash water will have a pH of between 6.5 and 11 , preferably between 7.5 and 10.5.
- Liquid dishwashing product formulations preferably have a pH between 6.8 and 9.0.
- Laundry products are typically at pH 9-11. Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
- Granules Manufacture Adding the bis-alkoxylated cationics of this invention into a crutcher mix, followed by conventional spray drying, helps remove any residual, potentially malodorous, short-chain amine contaminants.
- the formulator wishes to prepare an admixable particle containing the alkoxylated cationics for use in, for example, a high density granular detergent, it is preferred that the particle composition not be highly alkaline.
- Processes for preparing high density (above 650 g/l) granules are described in U.S. Patent 5,366,652.
- Such particles may be formulated to have an effective pH in-use of 9, or below, to avoid the odor of impurity amines. This can be achieved by adding a small amount of acidity source such as boric acid, citric acid, or the like, or an appropriate pH buffer, to the particle.
- acidity source such as boric acid, citric acid, or the like, or an appropriate pH buffer
- PB1 Anhydrous sodium perborate bleach of nominal formula NaB ⁇ 2-H2 ⁇ 2 NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002289777A CA2289777A1 (en) | 1997-05-16 | 1997-08-05 | Detergent compositions |
JP10523620A JPH11512146A (en) | 1997-05-16 | 1997-08-05 | Detergent composition |
AU38272/97A AU3827297A (en) | 1997-05-16 | 1997-08-05 | Detergent compositions |
BR9714770-2A BR9714770A (en) | 1997-05-16 | 1997-08-05 | Detergent compositions |
EP97935302A EP0996700A1 (en) | 1997-05-16 | 1997-08-05 | Detergent compositions |
ARP980102274A AR013920A1 (en) | 1997-05-16 | 1998-05-15 | DETERGENT COMPOSITIONS THAT INCLUDE DIRTY DISPERSANT POLYMER, SURFACTANT WITHOUT ALCOXYLATED AMBONIUM AND CATIONIC BON-ALCOXYLED AMMONIUMCUATERIAL SURFACTANT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
USPCT/US97/08316 | 1997-05-16 | ||
PCT/US1997/008316 WO1997044418A1 (en) | 1996-05-17 | 1997-05-16 | Detergent composition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998051771A1 true WO1998051771A1 (en) | 1998-11-19 |
Family
ID=22260912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1997/013726 WO1998051771A1 (en) | 1997-05-16 | 1997-08-05 | Detergent compositions |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP0996700A1 (en) |
JP (1) | JPH11512146A (en) |
CN (1) | CN1259993A (en) |
AR (1) | AR013920A1 (en) |
AU (1) | AU3827297A (en) |
BR (1) | BR9714770A (en) |
CA (1) | CA2289777A1 (en) |
WO (1) | WO1998051771A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077137A1 (en) * | 1999-06-14 | 2000-12-21 | Colgate-Palmolive Company | Liquid laundry detergent composition containing ethoxylated quaternary surfactant |
WO2011066067A1 (en) * | 2009-11-30 | 2011-06-03 | The Procter & Gamble Company | Method for coating a hard surface with an anti-filming composition |
US8685911B2 (en) | 2009-11-30 | 2014-04-01 | The Procter & Gamble Company | Rinse aid compositions |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0087914A1 (en) * | 1982-03-01 | 1983-09-07 | The Procter & Gamble Company | Detergent composition |
US4661289A (en) * | 1984-08-29 | 1987-04-28 | Lever Brothers Company | Detergent compositions |
EP0294894A2 (en) * | 1987-06-10 | 1988-12-14 | The Procter & Gamble Company | Conditioning agents and compositions containing same |
EP0294893A2 (en) * | 1987-06-10 | 1988-12-14 | The Procter & Gamble Company | Conditioning agents and compositions containing same |
EP0495554A1 (en) * | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and quaternary ammonium compounds |
-
1997
- 1997-08-05 CN CN 97182294 patent/CN1259993A/en active Pending
- 1997-08-05 JP JP10523620A patent/JPH11512146A/en active Pending
- 1997-08-05 CA CA002289777A patent/CA2289777A1/en not_active Abandoned
- 1997-08-05 WO PCT/US1997/013726 patent/WO1998051771A1/en not_active Application Discontinuation
- 1997-08-05 BR BR9714770-2A patent/BR9714770A/en unknown
- 1997-08-05 AU AU38272/97A patent/AU3827297A/en not_active Abandoned
- 1997-08-05 EP EP97935302A patent/EP0996700A1/en not_active Withdrawn
-
1998
- 1998-05-15 AR ARP980102274A patent/AR013920A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0087914A1 (en) * | 1982-03-01 | 1983-09-07 | The Procter & Gamble Company | Detergent composition |
US4661289A (en) * | 1984-08-29 | 1987-04-28 | Lever Brothers Company | Detergent compositions |
EP0294894A2 (en) * | 1987-06-10 | 1988-12-14 | The Procter & Gamble Company | Conditioning agents and compositions containing same |
EP0294893A2 (en) * | 1987-06-10 | 1988-12-14 | The Procter & Gamble Company | Conditioning agents and compositions containing same |
EP0495554A1 (en) * | 1991-01-16 | 1992-07-22 | The Procter & Gamble Company | Detergent compositions with high activity cellulase and quaternary ammonium compounds |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000077137A1 (en) * | 1999-06-14 | 2000-12-21 | Colgate-Palmolive Company | Liquid laundry detergent composition containing ethoxylated quaternary surfactant |
WO2011066067A1 (en) * | 2009-11-30 | 2011-06-03 | The Procter & Gamble Company | Method for coating a hard surface with an anti-filming composition |
US8685911B2 (en) | 2009-11-30 | 2014-04-01 | The Procter & Gamble Company | Rinse aid compositions |
Also Published As
Publication number | Publication date |
---|---|
CA2289777A1 (en) | 1998-11-19 |
CN1259993A (en) | 2000-07-12 |
BR9714770A (en) | 2001-12-11 |
JPH11512146A (en) | 1999-10-19 |
AR013920A1 (en) | 2001-01-31 |
MX9910560A (en) | 2000-04-01 |
EP0996700A1 (en) | 2000-05-03 |
AU3827297A (en) | 1998-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6136769A (en) | Alkoxylated cationic detergency ingredients | |
US5958858A (en) | Low anionic surfactant detergent compositions | |
WO1997044418A1 (en) | Detergent composition | |
WO1998005749A1 (en) | Detergent compositions containing dianionic esters | |
AU3068397A (en) | Detergent composition | |
EP0996700A1 (en) | Detergent compositions | |
GB2314339A (en) | Cleaning compositions containing amido surfactants derived from amido furandiones | |
WO1998000503A1 (en) | Bleaching detergent compositions containing selected dianionic or alkoxylated dianionic surfactants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 97182294.8 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 1998 523620 Country of ref document: JP Kind code of ref document: A |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2289777 Country of ref document: CA Ref document number: 2289777 Country of ref document: CA Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/1999/010560 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1997935302 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1997935302 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1997935302 Country of ref document: EP |