[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998049450A1 - Drive system for hydraulic motors - Google Patents

Drive system for hydraulic motors Download PDF

Info

Publication number
WO1998049450A1
WO1998049450A1 PCT/JP1998/001921 JP9801921W WO9849450A1 WO 1998049450 A1 WO1998049450 A1 WO 1998049450A1 JP 9801921 W JP9801921 W JP 9801921W WO 9849450 A1 WO9849450 A1 WO 9849450A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
hydraulic
port
hydraulic pump
Prior art date
Application number
PCT/JP1998/001921
Other languages
French (fr)
Japanese (ja)
Inventor
Sadao Nunotani
Naoki Ishizaki
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Publication of WO1998049450A1 publication Critical patent/WO1998049450A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/10Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
    • E02F9/12Slewing or traversing gears
    • E02F9/121Turntables, i.e. structure rotatable about 360°
    • E02F9/123Drives or control devices specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/021Valves for interconnecting the fluid chambers of an actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • F15B2011/0243Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits the regenerative circuit being activated or deactivated automatically

Definitions

  • the present invention relates to a hydraulic motor drive system such as a hydraulic motor for a winch that rotationally drives a winch of a hydraulic crane and a hydraulic motor for traveling that rotationally drives a crawler belt of a hydraulic excavator. is there.
  • a hydraulic motor drive system such as a hydraulic motor for a winch that rotationally drives a winch of a hydraulic crane and a hydraulic motor for traveling that rotationally drives a crawler belt of a hydraulic excavator.
  • a drive system shown in Fig. 1 is known as a system for driving a traveling hydraulic motor that rotationally drives a crawler belt of a hydraulic shovel.
  • This drive system basically includes a hydraulic pump 1, an operation valve 2, and a counterbalance valve 3. Then, by switching the operation valve 2 from the neutral position a to the first position b, pressure oil is supplied to one port 5 of the hydraulic motor 4, and the discharge pressure of the hydraulic pump 1 exceeds a predetermined pressure. Then, the counterbalance valve 3 moves from the neutral position c to the first position d, and the return pressure oil of the other port 6 of the hydraulic motor 4 is moved to the first position d of the counterbalance valve 3.
  • the hydraulic fluid flows into the tank 7 through the first position b of the operation valve 2, and the hydraulic motor 4 is driven to rotate in the negative direction.
  • the hydraulic motor 4 is rotated by an external force to perform a pumping operation. Pressure drops.
  • the counterbalance valve 3 moves toward the neutral position c, and the other side of the hydraulic motor 4 The flow of the pressure oil discharged from the port 6 is stopped or throttled, thereby restricting the flow of the return pressure oil from the hydraulic motor 4 and braking the hydraulic motor 4.
  • the counterbalance valve 3 When the operation valve 2 is in the second position e, the counterbalance valve 3 is switched to the second position f, and operates as described above.
  • the drive system of the hydraulic motor for the winch that rotationally drives the winch of the hydraulic crank has the same configuration and operation as the drive system shown in FIG. 1 described above.
  • the hydraulic motor drive system for the hydraulic excavator traveling and the hydraulic motor for the winch of the hydraulic crane are mounted between the operation valve 2 and the hydraulic motor 4.
  • a brake valve 3 is provided, and when the hydraulic motor 4 is rotated by an external force, the counterbalance valve 3 is moved toward the neutral position c so that a braking force is applied to the hydraulic motor 4. Configuration.
  • the drive system with the regenerative function described above is hydraulically operated. It can be applied to hydraulic motors for running vehicles and winches for hydraulic crane.
  • a throttle 9a is provided in the drain circuit 7a, and the upstream side of the throttle 9a is connected to the pump discharge path 1a via the check valve 9b, and the return oil is It is conceivable that pressure is generated to regenerate into the pump discharge path 1a.
  • the pressure of the return oil must be higher than the pump discharge pressure.
  • the valve 3 When the valve 3 is in the neutral position c or the opposite position, the oil returns to the drain circuit 7a and the oil stops flowing.
  • the operating valve 2 is set to the first position b to supply pressure oil to one port 5 of the hydraulic motor 4, and the counterbalance valve 3 is set to the first position d by the pressure of the first pressure receiving portion 3a.
  • the counterbalance valve 3 is Since the pressure of the second pressure receiving portion 3b of FIG. 3 becomes higher than the pressure of the first pressure receiving portion 3a, the counter balance valve 3 becomes the neutral position c or the second position f. Return to a and oil stops flowing.
  • an object of the present invention is to provide a hydraulic motor drive system that can solve the above-described problem. Disclosure of the invention
  • a first aspect of the hydraulic motor drive system according to the present invention for achieving the above object is as follows.
  • a neutral position provided between the hydraulic motor and the operation valve, wherein a return pressure oil from the hydraulic motor does not flow through the operation valve, and a flow position through which the return pressure oil flows through the operation valve;
  • the hydraulic pump is switched to a circulation position when the discharge pressure of the hydraulic pump exceeds a predetermined pressure, and is switched to a neutral position when the discharge pressure oil of the hydraulic pump is equal to or lower than a predetermined pressure.
  • a counter balance valve that is prohibited from switching to the neutral position by return pressure oil when the circulation position is reached by the discharge pressure
  • a hydraulic motor drive system wherein the regenerative circuit is connected to a discharge path of the hydraulic pump via a check valve.
  • the operating valve is switched to supply the discharge pressure oil of the hydraulic pump to one port of the hydraulic motor, and when the discharge pressure becomes high, the counterbalance valve is placed in the circulation position and the hydraulic motor is turned off. Return pressure oil flows to the tank via the counterbalance valve, operating valve, and regenerative circuit. At the same time, the counterbalance valve does not operate to the neutral position due to the pressure of the return pressure oil.
  • the return pressure oil from the hydraulic motor can be regenerated and reused in the discharge path of the hydraulic pump.
  • the regenerative circuit be provided with a back pressure valve which is brought into the throttle communication position by a spring force and becomes the communication position when the discharge pressure of the hydraulic pump is higher than a set pressure.
  • the back pressure valve When the discharge pressure of the hydraulic pump is higher than the set pressure by rotating the hydraulic motor with the discharge pressure oil of the hydraulic pump, the back pressure valve is in the communicating position. When the hydraulic motor is rotated by external force and the discharge pressure of the hydraulic pump is lower than the set pressure, the back pressure valve is in the throttle communication position.
  • the hydraulic motor when the hydraulic motor is rotating with the hydraulic oil discharged from the hydraulic pump, the return hydraulic oil from the hydraulic motor flows smoothly to the tank and the pressure does not increase.
  • the hydraulic motor can be rotated with a driving torque corresponding to the pressure of the discharge pressure oil of the hydraulic pump. Also, when the hydraulic motor is rotated by an external force, the pressure of the return pressure oil flowing in the regenerative circuit increases, and the return pressure oil flows into the discharge path of the hydraulic pump.
  • the counterbalance valve is held at a neutral position by a spring force, and when the discharge pressure of a hydraulic pump supplied to one of the pressure receiving parts exceeds a predetermined pressure, the counterbalance valve becomes one of the circulation positions and the other becomes the circulation position. If the discharge pressure of the hydraulic pump supplied to the pressure receiving section exceeds a predetermined pressure, it will be the other circulation position,
  • a second aspect of the present invention provides The discharge pressure oil of the hydraulic pump is supplied and controlled to the left and right hydraulic motors via the left and right pressure compensation valves and the left and right operation valves, respectively.
  • the hydraulic pump is switched to the circulation position when the discharge pressure of the hydraulic pump exceeds a predetermined pressure, and is switched to the neutral position when the discharge pressure oil of the hydraulic pump is equal to or lower than a predetermined pressure.
  • Left and right counterbalance valves are provided, which are prevented from switching to the neutral position by return pressure oil by being returned to the circulation position by the discharge pressure of the hydraulic pump,
  • the return pressure oil from the left and right hydraulic motors respectively communicates with the left and right regenerative circuits flowing out of the left and right operation valves by the pressure of the first pressure receiving portion and the throttle communication position by the pressure of the second pressure receiving portion.
  • Left and right back pressure valves are respectively communicates with the left and right regenerative circuits flowing out of the left and right operation valves by the pressure of the first pressure receiving portion and the throttle communication position by the pressure of the second pressure receiving portion.
  • the first pressure receiving portions of the left and right back pressure valves are respectively connected to the output sides of the left and right pressure compensating valves,
  • the left and right pressure compensating valves are respectively formed with a first port and a second port which are shut off when the opening area is small and communicate with each other when the opening area is large,
  • the first ports of the left and right pressure compensating valves communicate with the second ports of the left and right back pressure valves, respectively, and the first ports of the left and right pressure compensating valves communicate with each other,
  • This is a hydraulic motor drive system in which second ports of the left and right pressure compensating valves are respectively connected to left and right load pressure introduction paths.
  • the return oil of the driven hydraulic motor is regenerated during left-right turning, and excess hydraulic oil can be supplied to the driven hydraulic motor by that amount, so that a decrease in vehicle speed can be reduced.
  • each pressure compensating valve when descending, the opening area of each pressure compensating valve is small and the load pressure does not act on the second pressure receiving part of the back pressure valve, so that the back pressure valve is in the communicating position, and the return pressure oil of the left and right hydraulic motors is Not regenerated.
  • FIG. 1 is a circuit diagram of a conventional hydraulic motor drive system.
  • FIG. 2 is a circuit diagram of a hydraulic motor drive system according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a specific structure of the operation valve, the back pressure valve, the check valve, and the pressure compensating valve according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing a specific structure of the counterbalance valve according to the first embodiment.
  • FIG. 5 is a traveling hydraulic circuit diagram showing the second embodiment of the present invention.
  • FIG. 6 shows the operation valve, the back pressure valve, the check valve, and the pressure of the second embodiment. It is sectional drawing which shows the specific structure of a force compensating valve.
  • FIG. 7 is a traveling hydraulic circuit diagram showing the third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a specific structure of the operation valve, the back pressure valve, the check valve, and the pressure compensating valve according to the third embodiment.
  • the discharge path 11 of the hydraulic pump 10 is connected to the pump port 14 of the operation valve 13 via the pressure compensating valve 12.
  • the first actuator port 15 of the operation valve 13 is connected to one port 18 of the hydraulic motor 17 via the first main circuit 16.
  • the second port 19 of the operation valve 13 is connected to the other port 21 of the hydraulic motor 17 via the second main circuit 20.
  • the regenerative port 22 of the operation valve 13 communicates with the tank 24 in the regenerative circuit 23.
  • the regenerative circuit 23 is provided with a back pressure valve 25.
  • the upstream side of the back pressure valve 25 in the regenerative circuit 23 is connected to the output side of the pressure compensating valve 12 in the discharge path 11 of the hydraulic pump 10 by a check valve 26.
  • the tank port 27 of the operation valve 13 is connected to the tank 24.
  • a counterbalance valve 30 provided between the first main circuit 16 and the second main circuit 20 is held at a neutral position A by a spring 31 and a first valve acting on the first pressure receiving portion 32 is actuated.
  • the pressure of the main circuit 16 acts on the second pressure receiving section 3 3
  • the switching to the first position B is performed, and the pressure of the second main circuit 20 acting on the second pressure receiving part 33 is changed to the first pressure receiving part.
  • switching to the second position C is performed.
  • the first pressure receiving portion 32 of the counterbalance valve 30 is connected to the operation valve 13 closer to the operation valve 13 than the check valve 35 in the first main circuit 16 in the first circuit 34.
  • the first circuit 34 has an aperture 36. An intermediate portion between the throttle 36 and the first pressure receiving portion 32 of the first circuit 34 is communicated with and blocked from the tank by the first switching valve 37.
  • the first switching valve 37 is pushed toward a shut-off position by a spring 38 and pushed toward a communication position by a counterbalance valve 30.
  • the power center balance valve 30 is in the neutral position A or the first position B, the first switching valve 37 is in the shut-off position.
  • the counterbalance valve 30 is at the second position C, the first switching valve 37 is at the communication position.
  • the second pressure receiving portion 33 of the counterbalance valve 30 is connected to the operation valve 13 closer to the operation valve 13 than the check valve 35 in the second main circuit 20 in the second circuit 39.
  • the second circuit 39 has an aperture 40. An intermediate portion between the throttle 40 and the second pressure receiving portion 33 of the second circuit 39 is communicated with the tank by the second switching valve 41 and is shut off.
  • the second switching valve 41 is pushed toward the shut-off position by the spring 42 and pushed toward the communication position by the counterbalance valve 30.
  • the second switching valve 41 is in the shut-off position.
  • the second switching valve 41 is in the communicating position.
  • the back pressure valve 25 is pushed to the throttle communication position by a spring 43, It is pushed to the communicating position by the discharge pressure of the hydraulic pump 10 acting on 4 4.
  • the discharge pressure of the hydraulic pump 10 causes the pressure to rise due to the passing pressure loss of the operation valve 13 and switches the counter balance valve 30 to the first position B or the second position C.
  • the communication position is established when the value becomes equal to or greater than the sum of the switching pressure.
  • the pressure compensating valve 12 is a conventionally known pressure compensating valve composed of a load tick valve 45 and a pressure reducing valve 46.
  • the higher pressure of the first main circuit 16 and the second main circuit 20 is detected by the shuttle valve 47.
  • the pressure detected by the shuttle valve 47 acts on the pressure compensating valve 12 (reducing valve 46) as its own load pressure.
  • the output side of the pressure reducing valve 46 of all the pressure compensating valves 12 is connected to the load pressure detecting circuit 48 so that the highest load pressure is detected. is there.
  • the hydraulic pump 10 is of a variable displacement type, and its displacement is controlled by a displacement control valve 49 and a displacement control cylinder 50, as conventionally known, between the load pressure of the load pressure detection circuit 48 and the pump discharge pressure.
  • the differential pressure is controlled to be constant.
  • the pressure compensating valve 12 functions when a plurality of actuators are simultaneously operated, the operation thereof is omitted.
  • the tank pressure in the first and second main circuits 16 and 20 becomes the tank pressure, so that the counter balance valve 30 is in the neutral position A. Since the opening area of the operation valve 13 is zero, the capacity of the hydraulic pump 10 becomes the minimum and the discharge pressure thereof becomes the lowest. As a result, the back pressure valve 25 is at the throttle communication position.
  • the hydraulic motor 17 is driven to rotate in one direction by the discharge pressure oil of the hydraulic pump 10 supplied to one port 18.
  • the hydraulic motor 17 performs a pumping action, so that the pressure of one port 18 decreases and the other port 2 1 discharges pressure oil.
  • the discharge pressure of the hydraulic pump 10 decreases, and the back pressure valve 25 is throttled to the communication position.
  • the return pressure oil from the hydraulic motor 17 is throttled by the back pressure valve 25 and flows out to the tank 24, so that the back pressure of the regenerative circuit 23 becomes higher than the pump discharge pressure.
  • the pressure oil in the regenerative circuit 23 flows from the check valve 26 to the discharge path 11.
  • the counterbalance valve 30 since the second pressure receiving portion 33 of the counterbalance valve 30 communicates with the tank by the second switching valve 41, the counterbalance valve 30 is in the neutral position by the pressure of the regenerative circuit 23. It cannot be A or the second position C.
  • the spool port 61 of the main body 60 is provided with a pump port 62 (14), first and second ports 63, 64, and first and second actuators.
  • One port 65, 66 (15, 19), 1st. 2nd regenerative port 67, 68 (22), 1st. 2nd tank port 69, 70 ( 2 7) is formed. Insert the spool 7 1 into the spool hole 6 1 It is inserted to make operation valve 13.
  • the pump port 62 is shut off from the first and second ports 63, 64.
  • the first actuator port 65, the first regenerating port 67, and the first tank port 69 communicate with each other.
  • the second actuator port 66, the second regenerating port 68, and the second tank port 70 communicate with each other.
  • the first port 63 and the second port 64 communicate with each other through a communication path 72 indicated by a dotted line.
  • the return pressure oil flowing into 66 flows into the second regenerating port 68.
  • the first actuating port 65 and the first regenerating port 67 continue to communicate, and the first regenerating port 67 and the first tank port 69 are cut off.
  • the return pressure oil that has flowed into the cut-out port 65 flows into the first regeneration port 67.
  • the first and second regeneration ports 67 and 68 communicate with the first and second regeneration ports 73 and 74, respectively, so that the first regeneration port 73 and the second regeneration port 73 are connected to each other.
  • G 74 communicates with a communication hole 75 shown by a dotted line.
  • the first regeneration port 73 communicates with the pump port 62 via a check valve 76.
  • the second regenerating port 74 communicates with the tank port 78 through a notch 77a of the back pressure valve spool 77 fitted in a spool hole 60a of the valve body 60. .
  • the back pressure valve spool 77 is held at a position shown in the drawing by a spring 79 and cuts off the second regenerating port 74 to communicate with a tank port 78 by a 77a. That is, it is the same as when the back pressure valve 25 in FIG. 2 is in the throttle communication position.
  • the back pressure valve spool 77 When the pressure of the pump port 62 becomes equal to or higher than the set pressure, the back pressure valve spool 77 is pressed by the pressure to move the second regenerating port 74 and the tank port 78 to the small diameter portion. It is the position where communication is performed at 7 7 b. In other words, this is the same as when the back pressure valve 25 in FIG. 2 is in the communicating position.
  • the set pressure has a value not less than (switching pressure of the counterbalance valve 30 + pressure loss of the operation valve 13).
  • the check valve 76 is formed by inserting a port 81 into a sleeve 80 screwed into a hole 60b coaxial with the spool hole 60a, and The port 81 is pressed in the shut-off direction by the pressure of the spring 82 and the pump port 62, and communicates with the pressure of the first regeneration port 73 acting on the step 81a of the port 81. It is configured to be pushed in the direction. Thus, when the pressure of the second regeneration port 73 is higher than the pressure of the pump port 62, the second regeneration port 73 is communicated with the pump port 62.
  • a spool 92 is inserted and inserted into a spool hole 60 c of the valve body 60 to communicate and shut off an inlet port 90 and an outlet port 91, thereby constituting a one-way valve 45. are doing .
  • the pressure reducing valve 46 is formed by a screw 93 that is fitted in a hole 60 d coaxial with the spool hole 60 c and pushes the spool 92 in the communicating direction.
  • the discharge pressure oil of the hydraulic pump 10 is supplied to the inlet port 90, and the outlet port 91 communicates with the pump port 62.
  • the piston 93 moves in a direction away from the spool 92 by the pressure of the first pressure receiving chamber 94, and moves in a direction to push the spool 92 by the pressure of the second pressure receiving chamber 95. Further, the first pressure receiving chamber 94 communicates with the second port 63, and the piston 93 receives its own load pressure.
  • the return pressure oil flowing into the second actuator port 66 is supplied from the second regeneration port 68 to the first and second regeneration ports. It flows into ports 73 and 74.
  • the back pressure valve spool 77 stakes in the spring 79 and moves to the left, and the return pressure oil of the second regeneration port 74 is applied to the tank port. Flow to 7-8. As a result, the back pressure of the first and second regeneration ports 73 and 74 is low.
  • the first * second main ports 102, 103 and the first and second return ports 100, 104 are provided in the spool holes 101 of the valve body 100, respectively.
  • Form 105 The spool 106 is inserted into the spool hole 101, and the spool 106 is set to the neutral position by the left and right springs 107.
  • first pressure receiving part 32 When pressure oil flows into one pressure chamber 108 (first pressure receiving part 32), the spool 106 moves to the left and the second main port 103 and the second return port 1 0 5 communicates.
  • the pressure oil flows into the other pressure chamber 109 (second pressure receiving part 33)
  • the spool 106 moves to the right and the first main port 102 and the first return port 110 4 communicates.
  • the first pressure chamber 108 communicates with the first main port 102 via a first oil hole 110 (34) and a fine hole 111 (36) drilled in the spool 106. ing.
  • the second pressure chamber 109 communicates with the second main port 103 via a second oil hole 112 (39) and a hole 113 (40) drilled in the spool 106. I have.
  • Sleeves 114 are attached to both left and right sides of the valve body 100, respectively.
  • a tank port 115 is formed around the outer periphery of the sleeve 114, and the tank port 115 is formed by a hole 114 through the sleeve 114. It communicates with port 1 17 on the inner circumference of.
  • a piston 119 is fitted in the sleeve 114, and the piston 119 is pushed by the spring 120 toward the spool 106. Between the first pressure chamber 108 and port 117 or between the second pressure chamber 109 and port The connection between the two is blocked.
  • the piston 119 provided on the left side is pushed by the spool 106 to move the second pressure chamber 109. It communicates with tank port 1 15 at port 1 17 and hole 1 16. As a result, the second pressure chamber 109 communicates with the dunk from the tank port 115.
  • the second switching valve 41 in FIG. 2 is constituted by the piston 119 and the like provided on the left side.
  • the piston 110 provided on the right side is pushed by the spool 106 to cause the first pressure chamber 108 to move. It communicates with tank port 1 15 at port 1 17 and hole 1 16. As a result, the first pressure chamber 108 communicates with the tank from the tank port 115.
  • the first switching valve 37 in FIG. 2 is constituted by the pistons 119 and the like provided on the right side.
  • the hydraulic motor drive system shown in Fig. 2 is applied to a drive system that drives the left and right traveling hydraulic motors of a hydraulic shovel with a single hydraulic pump, as in the second embodiment shown in Fig. 5. By doing so, it is possible to prevent the traveling speed from decreasing when turning left and right.
  • the left and right control valves 13 are set to the first position E, the left control valve 13 has a large metering opening area, and the right control valve 13 has a small mating opening area.
  • the left hydraulic motor 17 is the driving side and the right hydraulic motor 17 is the driven side and turns in the direction of arrow a
  • the right hydraulic motor 17 is in the braking state and is driven.
  • Pressure PL 2 is counterbalun
  • the driving pressure PL 1 of the left hydraulic motor 17 becomes high corresponding to the running resistance and the turning resistance. Therefore, the inlet pressure P 1 of the left operating valve 13 Is higher than the inlet pressure P 2 of the right control valve 13. That is, the load pressure of the left hydraulic motor 17 becomes higher than the load pressure of the right hydraulic motor 17.
  • the pressure reducing valve 46 of the pressure compensating valve 12 on the driving side (left side) is pushed rightward by the load pressure PL 1, and the opening degree of the opening check valve 45 increases, and the driven The pressure compensating valve 12 on the right side (right side) is depressed to the left by the load pressure PL 1 on the driving side (right side) to push the check valve 45 to the closing side, and the load check is performed.
  • the opening of the valve 45 becomes small.
  • the discharge pressure of the variable displacement hydraulic pump 10 increases, the constant horsepower control works, the displacement decreases, and the flow rate flowing into the hydraulic motor 17 on the drive side decreases. It decreases and the vehicle speed decreases.
  • the return oil of the right hydraulic motor 17 is boosted by the back pressure valve 25 and is regenerated to the discharge path 11. For this reason, only the flow rate regenerated in the discharge passage 11 is supplied to the left hydraulic motor 17, so that the decrease in vehicle speed is reduced.
  • the operation valve 13 is the same as that of the first embodiment, and the first 'second regenerative ports 67, 68 are connected to one regenerative port through an oil passage 130. Connect to port 1 3 1.
  • the regenerating port 13 1 communicates with and is shut off from the tank port 78 by the back pressure valve spool 77, and communicates with the tank port 78 via the notch 77 a.
  • Port on the shaft hole 13 of the back pressure valve spool 77 of the back pressure valve 25 13 3 is inserted, and this port 13 3 is pushed by the spring 13 4 to close the regeneration side port 13 5 and the pump side port 13 36.
  • the port 133 is pushed in the closing direction by the pump pressure acting on the proximal end surface 133a on the spring chamber 133 side, and is communicated with the return pressure oil acting on the distal end surface 133b. Pushed in the direction. This constitutes the check valve 26.
  • check valve 26 The operations of the check valve 26 and the back pressure valve 25 are the same as those in the first embodiment.
  • the valve body 60 is provided with a suction valve 140 for communicating the first port 63 and the first tank port 69.
  • the suction valve 140 pushes the valve 141 to the shut-off position with the port pressure (return oil) acting on the spring 144 and the spring chamber 144, and the port pressure becomes the tank pressure.
  • the valve 14 1 stakes in the spring 14 2 and moves in the opening direction.
  • the back pressure valve 25 is pushed toward the communicating position by the spring 43 and the pressure of the first pressure receiving portion 150, and is moved to the throttle communication position by the pressure of the second pressure receiving portion 151. It is pushed toward.
  • the first pressure receiving section 150 is connected to the output side of the pressure compensating valve 12 so that the output pressure of the pressure compensating valve 12 acts.
  • the second pressure receiving section 15 1 is connected to a first port 15 2 formed on a pressure reducing valve 46 of the pressure compensating valve 12.
  • the second port 15 3 formed in the pressure reducing valve 46 is a load pressure introduction path. Connected to 1 5 4.
  • This load pressure introduction path 154 is connected to the load pressure port 155 of the operation valve 13.
  • the first port 152 formed in the pressure reducing valve 46 of the left and right pressure compensating valves 12 is in communication with the circuit 1556.
  • the left and right control valves 13 are in the first position E, the left control valve 13 has a large METAINE opening area, and the right control valve 13 has a small METAN opening area.
  • the driving pressure PL 2 is the set pressure of the counterbalance valve 30, and the driving pressure PL 1 of the left hydraulic motor 17 is a high pressure corresponding to the running resistance and the turning resistance.
  • the inlet pressure P 1 of the control valve 13 is higher than the inlet pressure P 2 of the right control valve 13. That is, the load pressure of the left hydraulic motor 17 becomes higher than the load pressure of the right hydraulic motor 17.
  • the pressure reducing valve 46 of the pressure compensating valve 12 on the driving side (left side) is pushed rightward by the load pressure PL i, so that the opening of the check valve 45 becomes large, and the driven side ( The pressure compensating valve 12 of the right side) and the pressure reducing valve 4 6 of the second side are pushed to the left by the load pressure PL 1 on the driving side (the right side), and the mouth check valve 45 is pushed to the closing side.
  • the opening of 5 becomes smaller.
  • the opening area of the load check valve 45 of the left pressure compensating valve 12 is large. Therefore, the first port 152 and the second port 153 of the pressure reducing valve 46 communicate with each other, and a high load pressure flows through the first port 152.
  • the opening area of the load check valve 45 of the pressure compensating valve 12 on the right is small and the connection between the first port 152 and the second port 153 is shut off. ing.
  • the left load pressure acts on the second pressure receiving portion 15 1 of the right back pressure valve 25, and the pressure is higher than the output pressure of the right pressure compensating valve 12 acting on the first pressure receiving portion 150. High, so the back pressure valve 24 is in the throttle communication position>
  • the return oil of the right hydraulic motor 17 is boosted by the back pressure valve 25 and is regenerated to the output side of the right pressure compensating valve 12.
  • the flow supplied from the right pressure compensating valve 12 to the right hydraulic motor 17 for the hydraulic oil discharged from the hydraulic pump 10 is reduced by the regenerated flow, so that the left Is supplied to the hydraulic motor 17, and as a result, the decrease in vehicle speed is reduced.
  • the load pressure of the left and right hydraulic motors 17 becomes high.
  • the opening area of the load check valves 45 of the left and right pressure compensating valves 12 becomes large, and the first ports 15 2 formed on the pressure reducing valves 46 of the left and right pressure compensating valves 12 become larger.
  • the second ports 15 3 communicate with each other. Therefore, the vehicle travels straight with the load pressure of the left and right hydraulic motors 17 being the same.
  • the load pressure does not act on the second pressure receiving portions 15 1 of the left and right back pressure valves 25, so that the respective back pressure valves 25 are connected to each other by the springs 43.
  • the return oil of the left and right hydraulic motors 17 flows out to the tank without being regenerated, and only the discharge pressure oil of the hydraulic pump 10 is supplied to the left and right hydraulic motors 17, so that the heat balance is maintained. Is improved.
  • the back pressure valve spool 77 is set to the communication position by the spring 79, and the regenerative port 13 1 is connected to the tank port 78.
  • the back pressure valve spool 77 has an oil hole 160 communicating the pump port 62 with the spring chamber 79a (first pressure receiving portion 150).
  • a pressure chamber 16 1 (second pressure receiving section 15 1) is formed between the pressure chamber 16 and the valve body 60.
  • the back pressure valve spool 77 is pushed rightward by the pressure of the spring 79 and the spring chamber 79a to the communication position shown in the figure, and is moved leftward by the pressure of the pressure receiving chamber 161.
  • the back pressure valve 25 is the same as the back pressure valve 25 shown in FIG.
  • An auxiliary port 162 is formed in the pressure reducing valve 46, and a slit 163 that connects the first pressure receiving chamber 94 and the auxiliary port 162 is formed in the piston 93.
  • the auxiliary port 16 2 communicates with the pressure receiving chamber 16 1 to become the first port 15 2 shown in FIG. 7, and the first pressure receiving chamber 94 becomes the second port 15 shown in FIG. It becomes 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

A drive system for hydraulic motors is provided with an operating valve (13) for supplying pressure oil discharged by a hydraulic pump (10) to a hydraulic motor (17) and for passing the pressure oil returning from the hydraulic motor to a regenerating circuit (23), and with a counterbalancing valve (30), provided between the hydraulic motor and the operating valve and having a neutral position which prevents the pressure oil returning from the hydraulic motor from flowing to the operating valve and a flow position to pass the returning pressure oil to the operating valve, so designed as to be switched to the flow position when the discharge pressure of the hydraulic pump surpasses a prescribed level and switched to the neutral position when the discharge pressure of the hydraulic pump is at or below the prescribed level, and prohibited, when switched to the flow position by the discharge pressure of the hydraulic pump, from being switched to the neutral position by the returning hydraulic oil, wherein said regenerating circuit is connected to a discharge path (11) of the hydraulic pump via a check valve (26). This enables the returning pressure oil from the hydraulic motor to be regenerated and reused.

Description

明細書 油圧モータの駆動システム 技術分野  Description Hydraulic motor drive system Technical field
本発明は、 油圧式ク レー ンのウイ ンチを回転駆動するウイ ンチ 用の油圧モータや、 油圧式シ ョ ベルの履帯を回転駆動する走行用 の油圧モータ等の油圧モータの駆動システムに関するものである。 背景技術  The present invention relates to a hydraulic motor drive system such as a hydraulic motor for a winch that rotationally drives a winch of a hydraulic crane and a hydraulic motor for traveling that rotationally drives a crawler belt of a hydraulic excavator. is there. Background art
油圧式シ ョ ベルの履帯を回転駆動する走行用の油圧モータを駆 動するシステムと しては、 図 1 に示す駆動システムが知られてい る。 この駆動システムは、 油圧ポンプ 1 と操作弁 2 とカウ ンタバ ラ ンス弁 3 を基本的に備えている。 そ して、 操作弁 2 を中立位置 aから第 1位置 bに切換える こ とで油圧モータ 4 の一方のポ一 ト 5 に圧油が供給され、 油圧ポンプ 1 の吐出圧が所定の圧力を越え る とカウ ンタバラ ンス弁 3が中立位置 c から第 1 の位置 d に向け て移動し、 油圧モータ 4 の他方のポ一 ト 6 の戻り圧油がカウ ンタ バラ ンス弁 3 の第 1 の位置 d及び操作弁 2 の第 1 位置 bを経てタ ンク 7に流出するので油圧モータ 4がー方向に回転駆動される。 また、 前述のよう に操作弁 2 が第 1 位置 b の状態で油圧式シ ョ ベルが坂道を下り走行する と油圧モータ 4 が外力で回転されてポ ンプ作用をするので、 一方のポー ト 5 の圧力が低下する。 そ して 油圧ポンプ 1 の吐出圧が所定の圧力以下となる と、 カウ ンタバラ ンス弁 3 が中立位置 c に向けて移動 し、 油圧モータ 4 の他方の ポー ト 6 が吐出 した圧油の流れが止め られ又は絞 られ、 これによ り油圧モータ 4 からの戻り圧油の流れを制限 して油圧モータ 4 を 制動する。 A drive system shown in Fig. 1 is known as a system for driving a traveling hydraulic motor that rotationally drives a crawler belt of a hydraulic shovel. This drive system basically includes a hydraulic pump 1, an operation valve 2, and a counterbalance valve 3. Then, by switching the operation valve 2 from the neutral position a to the first position b, pressure oil is supplied to one port 5 of the hydraulic motor 4, and the discharge pressure of the hydraulic pump 1 exceeds a predetermined pressure. Then, the counterbalance valve 3 moves from the neutral position c to the first position d, and the return pressure oil of the other port 6 of the hydraulic motor 4 is moved to the first position d of the counterbalance valve 3. Then, the hydraulic fluid flows into the tank 7 through the first position b of the operation valve 2, and the hydraulic motor 4 is driven to rotate in the negative direction. Also, as described above, when the hydraulic shovel travels down a hill with the operating valve 2 in the first position b, the hydraulic motor 4 is rotated by an external force to perform a pumping operation. Pressure drops. When the discharge pressure of the hydraulic pump 1 falls below a predetermined pressure, the counterbalance valve 3 moves toward the neutral position c, and the other side of the hydraulic motor 4 The flow of the pressure oil discharged from the port 6 is stopped or throttled, thereby restricting the flow of the return pressure oil from the hydraulic motor 4 and braking the hydraulic motor 4.
なお、 操作弁 2 を第 2 位置 e と した時にはカ ウ ンタバラ ンス弁 3 が第 2 の位置 f に切換り、 前述同様に作動する。  When the operation valve 2 is in the second position e, the counterbalance valve 3 is switched to the second position f, and operates as described above.
また、 油圧式ク レー ンのウィ ンチを回転駆動する ウィ ンチ用の 油圧モータの駆動システム も、 前述 した図 1 に示す駆動システム と同様な構成作用を有する。  The drive system of the hydraulic motor for the winch that rotationally drives the winch of the hydraulic crank has the same configuration and operation as the drive system shown in FIG. 1 described above.
このよ う に、 油圧式シ ョ ベルの走行用の油圧モ一夕、 油圧式ク レー ンのウィ ンチ用の油圧モータの駆動システムは、 操作弁 2 と 油圧モータ 4 と の間に カ ウ ン タバラ ンス弁 3 を備え、 こ の油圧 モータ 4 が外力で回転される時にカ ウ ンタバラ ンス弁 3 を中立位 置 c に向けて移動させる よ う に して、 油圧モータ 4 に制動力が作 用する構成と してある。  In this way, the hydraulic motor drive system for the hydraulic excavator traveling and the hydraulic motor for the winch of the hydraulic crane are mounted between the operation valve 2 and the hydraulic motor 4. A brake valve 3 is provided, and when the hydraulic motor 4 is rotated by an external force, the counterbalance valve 3 is moved toward the neutral position c so that a braking force is applied to the hydraulic motor 4. Configuration.
これによ つて、 油圧式シ ョ ベルが坂道を下 り走行する時にォー バラ ン しないよ う にでき る し、 油圧式ク レー ンで吊 り荷を下降す る時に急激に吊 り荷が落下しないよう にできる。  This prevents the hydraulic shovel from rolling over when traveling downhill and the load suddenly drops when the load is lowered by the hydraulic crane. You can prevent it from falling.
と こ ろが、 前述の駆動システムは油圧モータ 4 か らの戻り 圧油 をタ ンク 7 に流出 しているので、 その戻り圧油が無駄となる。 一方、 油圧式シ ョ ベルのブーム シ リ ンダを伸縮する駆動システ ム と して、 ブー厶 シ リ ンダの縮み室か らの戻り圧油が油圧ポ ンプ の吐出圧よ り も高い時に、 その戻り圧油を油圧ポ ンプの吐出側に 流入させ、 その戻り圧油をブーム シ リ ンダの伸び室に供給する 回 生機能を有する駆動システムが知られている。  However, since the above-described drive system flows the return pressure oil from the hydraulic motor 4 to the tank 7, the return pressure oil is wasted. On the other hand, as a drive system that expands and contracts the boom cylinder of the hydraulic shovel, when the return pressure oil from the compression chamber of the boom cylinder is higher than the discharge pressure of the hydraulic pump, There is known a drive system having a regenerative function in which return pressure oil flows into a discharge side of a hydraulic pump and supplies the return pressure oil to an extension chamber of a boom cylinder.
そ こで、 前述の回生機能を有する駆動システムを油圧式シ ョ べ ルの走行用の油圧モー タ、 油圧式ク レー ンの ウ イ ンチ用の油圧 モータに応用することが考えられる。 Therefore, the drive system with the regenerative function described above is hydraulically operated. It can be applied to hydraulic motors for running vehicles and winches for hydraulic crane.
例えば、 図 1 に示すよう に ドレー ン回路 7 a に絞り 9 aを設け、 この絞り 9 a よ り も上流側を逆止弁 9 bを経てポンプ吐出路 1 a に接続し、 戻り油に背圧を生じさせてポンプ吐出路 1 a に回生す ることが考えられる。  For example, as shown in Fig. 1, a throttle 9a is provided in the drain circuit 7a, and the upstream side of the throttle 9a is connected to the pump discharge path 1a via the check valve 9b, and the return oil is It is conceivable that pressure is generated to regenerate into the pump discharge path 1a.
前述のよう に、 戻り油に背圧を生じさせてポンプ吐出路 1 a に 回生するには、 戻り油の圧力がポンプ吐出圧よ り も高いこ とが必 要であるが、 そうすると、 カウ ンタバラ ンス弁 3 が中立位置 c又 は反対側の位置となって ドレ一 ン回路 7 a に戻り油が流れな く な る。  As described above, in order to generate back pressure in the return oil and regenerate it to the pump discharge path 1a, the pressure of the return oil must be higher than the pump discharge pressure. When the valve 3 is in the neutral position c or the opposite position, the oil returns to the drain circuit 7a and the oil stops flowing.
例えば、 操作弁 2 を第 1 位置 b と して油圧モータ 4 の一方の ポー ト 5 に圧油を供給し、 第 1 受圧部 3 a の圧力でカウ ンタバラ ンス弁 3を第 1 の位置 d と して油圧モータ 4 の他方のポ一 ト 6 の 圧油をタ ンク 7 に流出している状態で、 戻り油の圧力がポンプ吐 出圧よ り も高圧となる と、 カ ウ ン タバラ ンス弁 3 の第 2 受圧部 3 b の圧力が第 1受圧部 3 a の圧力よ り も高く なり、 カ ウ ンタバ ラ ンス弁 3が中立位置 c又は第 2 の位置 f となるので、 ドレー ン 回路 7 aに戻り油が流れなく なる。  For example, the operating valve 2 is set to the first position b to supply pressure oil to one port 5 of the hydraulic motor 4, and the counterbalance valve 3 is set to the first position d by the pressure of the first pressure receiving portion 3a. When the return oil pressure is higher than the pump discharge pressure while the hydraulic oil at the other port 6 of the hydraulic motor 4 is flowing to the tank 7 and the counterbalance valve is Since the pressure of the second pressure receiving portion 3b of FIG. 3 becomes higher than the pressure of the first pressure receiving portion 3a, the counter balance valve 3 becomes the neutral position c or the second position f. Return to a and oil stops flowing.
そこで、 本発明は前述の問題を解決できるよう に した油圧モー 夕の駆動システムを提供することを目的とする。 発明の開示  Therefore, an object of the present invention is to provide a hydraulic motor drive system that can solve the above-described problem. Disclosure of the invention
上記目的を達成するための本発明による油圧モータの駆動シス テムの第 1 の態様は、 油圧ポンプの吐出圧油を油圧モータに供給する と共に、 油圧 モータからの戻り圧油を回生回路に流出する操作弁と、 A first aspect of the hydraulic motor drive system according to the present invention for achieving the above object is as follows. An operation valve for supplying hydraulic pressure discharged from the hydraulic pump to the hydraulic motor, and for returning hydraulic oil from the hydraulic motor to the regenerative circuit;
前記油圧モータと前記操作弁との間に設けられ、 前記油圧モー 夕からの戻り圧油が前記操作弁に流通しない中立位置とその戻り 圧油が前記操作弁に流通する流通位置を有し、 前記油圧ポンプの 吐出圧が所定の圧を越えた時に流通位置に切換わり、 前記油圧ポ ンプの吐出圧油が所定の圧以下の時に中立位置に切換わるよう に なっていて、 前記油圧ポンプの吐出圧で流通位置となる こ とで戻 り圧油によって中立位置に切換わるこ とが禁止されるカウ ンタバ ラ ンス弁とを備え、  A neutral position provided between the hydraulic motor and the operation valve, wherein a return pressure oil from the hydraulic motor does not flow through the operation valve, and a flow position through which the return pressure oil flows through the operation valve; The hydraulic pump is switched to a circulation position when the discharge pressure of the hydraulic pump exceeds a predetermined pressure, and is switched to a neutral position when the discharge pressure oil of the hydraulic pump is equal to or lower than a predetermined pressure. A counter balance valve that is prohibited from switching to the neutral position by return pressure oil when the circulation position is reached by the discharge pressure,
前記回生回路を逆止弁を経て前記油圧ポンプの吐出路に接続し た、 油圧モータの駆動システムである。  A hydraulic motor drive system, wherein the regenerative circuit is connected to a discharge path of the hydraulic pump via a check valve.
この構成によれば、 操作弁を切換えて油圧モータの一方のポー トに油圧ポンプの吐出圧油を供給し、 その吐出圧が高圧となる と カウ ンタバラ ンス弁が流通位置となって油圧モータからの戻り圧 油がカウ ンタバラ ンス弁、 操作弁、 回生回路を経てタ ン ク に流れ る。 これと同時に、 カウ ンタバラ ンス弁は戻り圧油の圧力で中立 位置に作動しなく なる。  According to this configuration, the operating valve is switched to supply the discharge pressure oil of the hydraulic pump to one port of the hydraulic motor, and when the discharge pressure becomes high, the counterbalance valve is placed in the circulation position and the hydraulic motor is turned off. Return pressure oil flows to the tank via the counterbalance valve, operating valve, and regenerative circuit. At the same time, the counterbalance valve does not operate to the neutral position due to the pressure of the return pressure oil.
前述の状態で油圧モータが外力で回転される と、 油圧ポンプの 吐出圧が低下する。 この油圧ポンプの吐出圧が油圧モータからの 戻り圧油の圧力よ り も低圧となる と、 逆止弁から油圧ポンプ 1 0 の吐出路に流入する。  When the hydraulic motor is rotated by an external force in the state described above, the discharge pressure of the hydraulic pump decreases. When the discharge pressure of the hydraulic pump becomes lower than the pressure of the return pressure oil from the hydraulic motor, it flows into the discharge path of the hydraulic pump 10 from the check valve.
したがって、 油圧モータからの戻り圧油を油圧ポンプの吐出路 に回生して再利用できる。  Therefore, the return pressure oil from the hydraulic motor can be regenerated and reused in the discharge path of the hydraulic pump.
上記第 1 の態様において、 前記回生回路に、 ばね力で絞 り連通位置とな り 、 前記油圧ボ ン プの吐出圧が設定圧力以上の時には連通位置となる背圧弁を設け るのが好ま しい。 In the first embodiment, It is preferable that the regenerative circuit be provided with a back pressure valve which is brought into the throttle communication position by a spring force and becomes the communication position when the discharge pressure of the hydraulic pump is higher than a set pressure.
この構成によれば、  According to this configuration,
油圧ポ ンプの吐出圧油で油圧モータを回転 して油圧ポ ンプの吐 出圧が設定圧力以上の時には、 背圧弁は連通位置 とな る。 油圧 モータが外力で回転されて油圧ポ ンプの吐出圧が設定圧力以下の 時には、 背圧弁は絞り連通位置となる。  When the discharge pressure of the hydraulic pump is higher than the set pressure by rotating the hydraulic motor with the discharge pressure oil of the hydraulic pump, the back pressure valve is in the communicating position. When the hydraulic motor is rotated by external force and the discharge pressure of the hydraulic pump is lower than the set pressure, the back pressure valve is in the throttle communication position.
このよ う であるから、 油圧ポ ンプの吐出圧油で油圧モータを回 転 している時には油圧モータか らの戻り圧油はスムー ズにタ ンク に流れて圧力が高 く な らないか ら、 油圧モータを油圧ポ ンプの吐 出圧圧油の圧力に見合う 駆動 ト ルク で回転さ せる こ と ができ る 。 ま た、 油圧モータが外力で回転された時には回生回路に流れる戻 り圧油の圧力が上昇 して戻 り圧油が油圧ポ ンプの吐出路に流入す る  Because of this, when the hydraulic motor is rotating with the hydraulic oil discharged from the hydraulic pump, the return hydraulic oil from the hydraulic motor flows smoothly to the tank and the pressure does not increase. In addition, the hydraulic motor can be rotated with a driving torque corresponding to the pressure of the discharge pressure oil of the hydraulic pump. Also, when the hydraulic motor is rotated by an external force, the pressure of the return pressure oil flowing in the regenerative circuit increases, and the return pressure oil flows into the discharge path of the hydraulic pump.
上記構成において、  In the above configuration,
前記カウ ンタバラ ンス弁が、 ばね力で中立位置に保持され、 一 方の受圧部に供給される油圧ポ ンプの吐出圧が所定の圧を越える こ とで一方の流通位置とな り 、 他方の受圧部に供給される油圧ポ ンプの吐出圧が所定の圧を越える こ とで他方の流通位置となる も のと し、  The counterbalance valve is held at a neutral position by a spring force, and when the discharge pressure of a hydraulic pump supplied to one of the pressure receiving parts exceeds a predetermined pressure, the counterbalance valve becomes one of the circulation positions and the other becomes the circulation position. If the discharge pressure of the hydraulic pump supplied to the pressure receiving section exceeds a predetermined pressure, it will be the other circulation position,
前記カ ウ ンタバラ ンス弁に連動 していて、 前記一方又は他方の 流通位置となる こ とで前記他方又は一方の受圧部をタ ンク に連通 する一対の切換弁を設けるのが好ま しい。  It is preferable to provide a pair of switching valves that are interlocked with the counterbalance valve and communicate the other or one pressure receiving portion to the tank by being at one or the other flow position.
本発明の第 2 の態様は、 油圧ポンプの吐出圧油を左右の圧力補償弁及び左右の操作弁を 経て左右の油圧モータにそれぞれ供給制御するようにし、 A second aspect of the present invention provides The discharge pressure oil of the hydraulic pump is supplied and controlled to the left and right hydraulic motors via the left and right pressure compensation valves and the left and right operation valves, respectively.
前記左右の操作弁と前記左右の油圧モータ とのそれぞれの間に、 前記油圧モー夕からの戻り圧油が前記操作弁に流通しない中立位 置とその戻り圧油が前記操作弁に流通する流通位置を有し、 前記 油圧ポンプの吐出圧が所定の圧を越えた時に流通位置に切換わり、 前記油圧ポンプの吐出圧油が所定の圧以下の時に中立位置に切換 わるようになっていて、 前記油圧ポンプの吐出圧で流通位置とな るこ とで戻り圧油によって中立位置に切換わる こ とが禁止される 左右のカウ ンタバラ ンス弁を設け、  A neutral position between the left and right operation valves and the left and right hydraulic motors, where the return pressure oil from the hydraulic motor does not flow to the operation valves, and a flow in which the return pressure oil flows to the operation valves. The hydraulic pump is switched to the circulation position when the discharge pressure of the hydraulic pump exceeds a predetermined pressure, and is switched to the neutral position when the discharge pressure oil of the hydraulic pump is equal to or lower than a predetermined pressure. Left and right counterbalance valves are provided, which are prevented from switching to the neutral position by return pressure oil by being returned to the circulation position by the discharge pressure of the hydraulic pump,
前記左右の油圧モータからの戻り圧油が前記左右の操作弁から それぞれ流出する左右の回生回路に、 その第 1受圧部の圧力で連 通位置となり且つその第 2受圧部の圧力で絞り連通位置となる左 右の背圧弁をそれぞれ設け、  The return pressure oil from the left and right hydraulic motors respectively communicates with the left and right regenerative circuits flowing out of the left and right operation valves by the pressure of the first pressure receiving portion and the throttle communication position by the pressure of the second pressure receiving portion. Left and right back pressure valves
前記左右の背圧弁の第 1 受圧部を左右の圧力補償弁の出力側に それぞれ接続し、  The first pressure receiving portions of the left and right back pressure valves are respectively connected to the output sides of the left and right pressure compensating valves,
前記左右の圧力補償弁に、 開口面積が小さい時には遮断され、 開口面積が大きい時に連通する第 1 のポー ト と第 2 のポー トをそ れぞれ形成し、  The left and right pressure compensating valves are respectively formed with a first port and a second port which are shut off when the opening area is small and communicate with each other when the opening area is large,
前記左右の圧力補償弁の第 1 のポー トを前記左右の背圧弁の第 2 のポー 卜にそれぞれ連通する と共に、 前記左右の圧力補償弁の 第 1 ポー ト相互を連通し、  The first ports of the left and right pressure compensating valves communicate with the second ports of the left and right back pressure valves, respectively, and the first ports of the left and right pressure compensating valves communicate with each other,
前記左右の圧力補償弁の第 2 ポー トを左右の負荷圧導入路にそ れぞれ連通した、 油圧モータの駆動システムである。  This is a hydraulic motor drive system in which second ports of the left and right pressure compensating valves are respectively connected to left and right load pressure introduction paths.
この構成にによれば、 左右旋回走行時に被駆動側の油圧モータの戻り油を回生し、 そ の分だけ駆動側の油圧モータに圧油を余分に供給できるから、 車 速低下を少なくできる。 According to this configuration, The return oil of the driven hydraulic motor is regenerated during left-right turning, and excess hydraulic oil can be supplied to the driven hydraulic motor by that amount, so that a decrease in vehicle speed can be reduced.
また、 降坂時には各圧力補償弁の開口面積が小さ く なつて背圧 弁の第 2受圧部に負荷圧が作用 しないので、 背圧弁は連通位置と なり、 左右の油圧モータの戻り圧油が回生されない。  Also, when descending, the opening area of each pressure compensating valve is small and the load pressure does not act on the second pressure receiving part of the back pressure valve, so that the back pressure valve is in the communicating position, and the return pressure oil of the left and right hydraulic motors is Not regenerated.
これによつて、 降坂時に左右の油圧モータに油圧ポンプの吐出 圧油が供給されるから、 ヒー トバランスが向上する。 図面の簡単な説明  As a result, the hydraulic pressure discharged from the hydraulic pump is supplied to the left and right hydraulic motors when descending a slope, so that the heat balance is improved. BRIEF DESCRIPTION OF THE FIGURES
本発明は、 以下の詳細な説明及び本発明の実施例を示す添付図 面によ り、 よ り良く理解される ものとなろう。 なお、 添付図面に 示す実施例は、 発明を特定する こ とを意図する ものではな く 、 単 に説明及び理解を容易とするものである。  The invention will be better understood from the following detailed description and the accompanying drawings illustrating an embodiment of the invention. The embodiments shown in the accompanying drawings are not intended to specify the invention, but merely to facilitate explanation and understanding.
図中、  In the figure,
図 1 は、 従来の油圧モータの駆動システムの回路図である。 図 2 は、 本発明の第 1 の実施の形態を示す油圧モータの駆動シ ステムの回路図である。  Fig. 1 is a circuit diagram of a conventional hydraulic motor drive system. FIG. 2 is a circuit diagram of a hydraulic motor drive system according to the first embodiment of the present invention.
図 3 は、 上記第 1 の実施の形態の操作弁、 背圧弁、 逆止弁、 圧 力補償弁の具体構造を示す断面図である。  FIG. 3 is a cross-sectional view showing a specific structure of the operation valve, the back pressure valve, the check valve, and the pressure compensating valve according to the first embodiment.
図 4 は、 上記第 1 の実施の形態のカウ ンタバラ ンス弁の具体構 造を示す断面図である。  FIG. 4 is a cross-sectional view showing a specific structure of the counterbalance valve according to the first embodiment.
図 5 は、 本発明の第 2 の実施の形態を示す走行用の油圧回路図 である。  FIG. 5 is a traveling hydraulic circuit diagram showing the second embodiment of the present invention.
図 6 は、 上記第 2の実施の形態の操作弁、 背圧弁、 逆止弁、 圧 力補償弁の具体構造を示す断面図である。 FIG. 6 shows the operation valve, the back pressure valve, the check valve, and the pressure of the second embodiment. It is sectional drawing which shows the specific structure of a force compensating valve.
図 7は、 本発明の第 3 の実施の形態を示す走行用の油圧回路図 である。  FIG. 7 is a traveling hydraulic circuit diagram showing the third embodiment of the present invention.
図 8は、 上記第 3の実施の形態の操作弁、 背圧弁、 逆止弁、 圧 力補償弁の具体構造を示す断面図である。 発明を実施するための好適な態様  FIG. 8 is a cross-sectional view showing a specific structure of the operation valve, the back pressure valve, the check valve, and the pressure compensating valve according to the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の好適実施の形態による油圧モータの駆動シス テムを添付図面を参照しながら説明する。  Hereinafter, a drive system of a hydraulic motor according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
まず、 第 1 の実施の形態について説明する。  First, a first embodiment will be described.
図 2 に示すように、 油圧ポンプ 1 0 の吐出路 1 1 は、 圧力補償 弁 1 2を経て操作弁 1 3 のポンプポ一 ト 1 4 に接続している。 操 作弁 1 3 の第 1 ァクチユエ一夕ポー ト 1 5 は、 第 1 主回路 1 6 を 経て油圧モータ 1 7の一方のポ一 ト 1 8 に接続している。 操作弁 1 3の第 2 ァクチユエ一夕ポー ト 1 9 は、 第 2主回路 2 0 を経て 油圧モータ 1 7の他方のポー ト 2 1 に接続している。  As shown in FIG. 2, the discharge path 11 of the hydraulic pump 10 is connected to the pump port 14 of the operation valve 13 via the pressure compensating valve 12. The first actuator port 15 of the operation valve 13 is connected to one port 18 of the hydraulic motor 17 via the first main circuit 16. The second port 19 of the operation valve 13 is connected to the other port 21 of the hydraulic motor 17 via the second main circuit 20.
操作弁 1 3 の回生ポー ト 2 2 は、 回生回路 2 3 でタ ンク 2 4 に 連通している。 この回生回路 2 3 には、 背圧弁 2 5 が設けてある。 前記回生回路 2 3 における背圧弁 2 5 よ り も上流側が、 逆止弁 2 6で油圧ポンプ 1 0 の吐出路 1 1 における圧力補償弁 1 2 の出 力側に接続している。 操作弁 1 3 のタ ンクポー ト 2 7 は、 タ ンク 2 4 に接続している。  The regenerative port 22 of the operation valve 13 communicates with the tank 24 in the regenerative circuit 23. The regenerative circuit 23 is provided with a back pressure valve 25. The upstream side of the back pressure valve 25 in the regenerative circuit 23 is connected to the output side of the pressure compensating valve 12 in the discharge path 11 of the hydraulic pump 10 by a check valve 26. The tank port 27 of the operation valve 13 is connected to the tank 24.
第 1主回路 1 6 と第 2主回路 2 0 の間に設けられたカウ ンタバ ラ ンス弁 3 0 は、 ばね 3 1 で中立位置 Aに保持され、 第 1 受圧部 3 2 に作用する第 1主回路 1 6 の圧力が第 2受圧部 3 3 に作用す る第 2回路 2 0 の圧力よ り も切換圧以上高く なる と第 1 の位置 B に切換え作動し、 第 2受圧部 3 3 に作用する第 2主回路 2 0 の圧 力が第 1受圧部 3 2 に作用する第 1主回路 1 6 の圧力よ り も切換 圧以上高く なると第 2 の位置 Cに切換え作動する。 A counterbalance valve 30 provided between the first main circuit 16 and the second main circuit 20 is held at a neutral position A by a spring 31 and a first valve acting on the first pressure receiving portion 32 is actuated. The pressure of the main circuit 16 acts on the second pressure receiving section 3 3 When the pressure becomes higher than the switching pressure of the second circuit 20 by more than the switching pressure, the switching to the first position B is performed, and the pressure of the second main circuit 20 acting on the second pressure receiving part 33 is changed to the first pressure receiving part. When the pressure becomes higher than the switching pressure of the first main circuit 16 acting on 32 by more than the switching pressure, switching to the second position C is performed.
前記カウ ンタバラ ンス弁 3 0 の第 1 受圧部 3 2 は、 第 1 回路 3 4で第 1主回路 1 6 における逆止弁 3 5 よ り も操作弁 1 3寄り に接続している。 こ の第 1 回路 3 4 には絞り 3 6 が設けてある。 前記第 1 回路 3 4 の絞り 3 6 と第 1 受圧部 3 2 との中間部は、 第 1切換弁 3 7でタンクに連通 · 遮断される。  The first pressure receiving portion 32 of the counterbalance valve 30 is connected to the operation valve 13 closer to the operation valve 13 than the check valve 35 in the first main circuit 16 in the first circuit 34. The first circuit 34 has an aperture 36. An intermediate portion between the throttle 36 and the first pressure receiving portion 32 of the first circuit 34 is communicated with and blocked from the tank by the first switching valve 37.
前記第 1切換弁 3 7 は、 スプリ ング 3 8で遮断位置に向けて押 され、 カウンタバラ ンス弁 3 0 で連通位置に向けて押される。 力 ゥ ンタバラ ンス弁 3 0が中立位置 Aまたは第 1 の位置 Bの時には、 第 1切換弁 3 7 は遮断位置となる。 カ ウ ンタバラ ンス弁 3 0 が第 2の位置 Cの時には、 第 1切換弁 3 7は連通位置となる。  The first switching valve 37 is pushed toward a shut-off position by a spring 38 and pushed toward a communication position by a counterbalance valve 30. When the power center balance valve 30 is in the neutral position A or the first position B, the first switching valve 37 is in the shut-off position. When the counterbalance valve 30 is at the second position C, the first switching valve 37 is at the communication position.
前記カ ウ ンタバラ ンス弁 3 0 の第 2 受圧部 3 3 は、 第 2 回路 3 9で第 2主回路 2 0 における逆止弁 3 5 よ り も操作弁 1 3寄り に接続している。 この第 2 回路 3 9 には絞り 4 0 が設けてある。 前記第 2回路 3 9の絞り 4 0 と第 2受圧部 3 3 との中間部は、 第 2切換弁 4 1 でタ ンクに連通 ' 遮断される。  The second pressure receiving portion 33 of the counterbalance valve 30 is connected to the operation valve 13 closer to the operation valve 13 than the check valve 35 in the second main circuit 20 in the second circuit 39. The second circuit 39 has an aperture 40. An intermediate portion between the throttle 40 and the second pressure receiving portion 33 of the second circuit 39 is communicated with the tank by the second switching valve 41 and is shut off.
前記第 2切換弁 4 1 は、 スプリ ング 4 2 で遮断位置に向けて押 され、 カウ ンタバラ ンス弁 3 0 で連通位置に向けて押される。 力 ゥンタバラ ンス弁 3 0が中立位置 Aまたは第 2 の位置 Cの時には、 第 2切換弁 4 1 は遮断位置である。 カウ ンタバラ ンス弁 3 0 が第 1 の位置 Bの時には、 第 2切換弁 4 1 は連通位置となる。  The second switching valve 41 is pushed toward the shut-off position by the spring 42 and pushed toward the communication position by the counterbalance valve 30. When the power counterbalance valve 30 is in the neutral position A or the second position C, the second switching valve 41 is in the shut-off position. When the counterbalance valve 30 is in the first position B, the second switching valve 41 is in the communicating position.
前記背圧弁 2 5 は、 ばね 4 3 で絞り連通位置に押され、 受圧部 4 4 に作用する油圧ポンプ 1 0 の吐出圧で連通位置に押される。 前記背圧弁 2 5 は、 油圧ポンプ 1 0 の吐出圧が、 操作弁 1 3 の通 過圧力損失による圧力上昇とカウ ンタバラ ンス弁 3 0 を第 1 の位 置 B又は第 2の位置 Cに切換える切換圧との和以上に設定された 値になった時に連通位置となる。 The back pressure valve 25 is pushed to the throttle communication position by a spring 43, It is pushed to the communicating position by the discharge pressure of the hydraulic pump 10 acting on 4 4. In the back pressure valve 25, the discharge pressure of the hydraulic pump 10 causes the pressure to rise due to the passing pressure loss of the operation valve 13 and switches the counter balance valve 30 to the first position B or the second position C. The communication position is established when the value becomes equal to or greater than the sum of the switching pressure.
前記圧力補償弁 1 2 は、 ロー ドチ ッ ク弁 4 5 と減圧弁 4 6 で 構成された従来公知のものである。 前記第 1 主回路 1 6 と第 2主 回路 2 0 の高い方の圧力がシ ャ トル弁 4 7 で検出される。 この シ ャ トル弁 4 7で検出された圧力は、 自己の負荷圧と して圧力補 償弁 1 2 (減圧弁 4 6 ) に作用する。 複数のァクチユエ一タを駆 動する場合には、 全圧力補償弁 1 2 の減圧弁 4 6 の出力側を負荷 圧検出回路 4 8で連通して最も高い負荷圧が検出されるよう に し てある。  The pressure compensating valve 12 is a conventionally known pressure compensating valve composed of a load tick valve 45 and a pressure reducing valve 46. The higher pressure of the first main circuit 16 and the second main circuit 20 is detected by the shuttle valve 47. The pressure detected by the shuttle valve 47 acts on the pressure compensating valve 12 (reducing valve 46) as its own load pressure. When driving a plurality of actuators, the output side of the pressure reducing valve 46 of all the pressure compensating valves 12 is connected to the load pressure detecting circuit 48 so that the highest load pressure is detected. is there.
前記油圧ポンプ 1 0 は可変容量型であって、 その容量は従来公 知のように容量制御弁 4 9 と容量制御シ リ ンダ 5 0 によって負荷 圧検出回路 4 8の負荷圧とポンプ吐出圧の差圧が一定となるよう に制御される。 これによつて、 操作弁 1 3 が中立位置 Dの時にそ の開口面積がゼロであるから油圧ポンプ 1 0 の容量が最小とな り、 操作弁 1 3を第 1位置 Eまたは第 2位置 F と した時にはその開口 面積に応じて油圧ポンプ 1 0の容量が増加する。  The hydraulic pump 10 is of a variable displacement type, and its displacement is controlled by a displacement control valve 49 and a displacement control cylinder 50, as conventionally known, between the load pressure of the load pressure detection circuit 48 and the pump discharge pressure. The differential pressure is controlled to be constant. As a result, when the operation valve 13 is in the neutral position D, its opening area is zero, so that the capacity of the hydraulic pump 10 is minimized, and the operation valve 13 is moved to the first position E or the second position F. Then, the capacity of the hydraulic pump 10 increases according to the opening area.
次に、 上記第 1 の実施の形態の作動を説明する。 なお、 圧力補 償弁 1 2 は複数のァクチユエ一タを同時作動させる時に機能する ものであるから、 その作動を省略する。  Next, the operation of the first embodiment will be described. Since the pressure compensating valve 12 functions when a plurality of actuators are simultaneously operated, the operation thereof is omitted.
操作弁 1 3が中立位置 Dの時には、 ポンプポ一 ト 1 4 は遮断さ れ、 第 1 . 第 2 ァクチユエ一夕ポー ト 1 5 , 1 9 と回生ポー ト 2 2 はタ ンクポー ト 2 7 を介してタ ンク 2 4 に連通する。 When the operation valve 13 is in the neutral position D, the pump port 14 is shut off, and the first and second operation ports 15 and 19 and the regenerative port are turned off. 22 communicates with tank 24 via tank port 27.
これによ つて、 第 1 . · 第 2 主回路 1 6 , 2 0 がタ ンク圧となる ので、 カウ ンタバラ ンス弁 3 0 は中立位置 A となる。 操作弁 1 3 の開口面積はゼロであるから、 油圧ポ ンプ 1 0 の容量は最小とな り、 その吐出圧は最も低圧となる。 これによ つ て、 背圧弁 2 5 は 絞り連通位置となっている。  As a result, the tank pressure in the first and second main circuits 16 and 20 becomes the tank pressure, so that the counter balance valve 30 is in the neutral position A. Since the opening area of the operation valve 13 is zero, the capacity of the hydraulic pump 10 becomes the minimum and the discharge pressure thereof becomes the lowest. As a result, the back pressure valve 25 is at the throttle communication position.
操作弁 1 3 を第 1 位置 E とする と、 ポ ンプポー ト 1 4 と第 1 ァ ク チ ユエ一タ ポー ト 1 5 が連通 し、 第 2 ァ ク チ ユエ一 タ ポー ト 1 9 は回生ポー ト 2 2 に連通する。 こ れによ つ て、 油圧ポ ンプ 1 0 の吐出圧油は第 1 主回路 1 6 か ら油圧モー タ 1 7 の一方の ポー ト 1 8 に流入し、 第 2 主回路 2 0 の圧油は操作弁 1 3 , 背圧 弁 2 5 を経てタ ンク 2 4 に流出する。  When the operating valve 13 is in the first position E, the pump port 14 and the first actuator port 15 communicate with each other, and the second actuator port 19 is connected to the regenerative port 19. To 22. As a result, the discharge pressure oil of the hydraulic pump 10 flows from the first main circuit 16 to one port 18 of the hydraulic motor 17, and the pressure oil of the second main circuit 20. Flows out to the tank 24 via the operation valve 13 and the back pressure valve 25.
油圧ポ ンプ 1 0 の吐出圧が、 (カ ウ ンタバラ ンス弁 3 0 の切換 圧 +操作弁 1 3 の通過圧力損失の圧力) 以上に設定された値とな る と、 背圧弁 2 5 が連通位置となる と共に、 カ ウ ンタバラ ンス弁 When the discharge pressure of the hydraulic pump 10 becomes equal to or higher than (switching pressure of the counterbalance valve 30 + pressure of the passing pressure loss of the operation valve 13), the back pressure valve 25 communicates. As well as the counterbalance valve
3 0 は第 1 の位置 B とな り 、 第 2 切換弁 4 1 が連通位置 と な る 。 これによ り 、 油圧モータ 1 7 の他方のポー ト 2 1 の圧油が第 1 の 位置 B である カ ウ ン タバラ ンス弁 3 0 , 第 1 位置であ る操作弁 1 3 , 連通位置である背圧弁 2 5 を通っ てタ ンク 2 4 にスムーズ に流出する。 30 is the first position B, and the second switching valve 41 is the communicating position. As a result, the hydraulic oil at the other port 21 of the hydraulic motor 17 is supplied with the counterbalance valve 30 at the first position B, the operation valve 13 at the first position, and the communication valve at the communication position. Flows smoothly through a certain back pressure valve 25 to tank 24.
これによ つて、 油圧モータ 1 7 は、 一方のポー ト 1 8 に供給さ れる油圧ポンプ 1 0 の吐出圧油で一方向に回転駆動される。  Thus, the hydraulic motor 17 is driven to rotate in one direction by the discharge pressure oil of the hydraulic pump 10 supplied to one port 18.
と こ ろで、 前述の状態で油圧モータ 1 7 が外力で回転される と 油圧モータ 1 7 はポ ンプ作用をするので、 一方のポー ト 1 8 の圧 力が低下し、 他方のポー ト 2 1 が圧油を吐出する。 この時、 油圧ポ ンプ 1 0 の吐出圧が低下 して背圧弁 2 5が絞 り 連通位置となる。 油圧モータ 1 7か らの戻り 圧油は背圧弁 2 5 で 絞られてタ ンク 2 4 に流出するか ら、 回生回路 2 3 の背圧がボ ン プ吐出圧よ り も高 く な り 、 回生回路 2 3 の圧油が逆止弁 2 6から 吐出路 1 1 に流入する。 At this point, if the hydraulic motor 17 is rotated by an external force in the above-described state, the hydraulic motor 17 performs a pumping action, so that the pressure of one port 18 decreases and the other port 2 1 discharges pressure oil. At this time, the discharge pressure of the hydraulic pump 10 decreases, and the back pressure valve 25 is throttled to the communication position. The return pressure oil from the hydraulic motor 17 is throttled by the back pressure valve 25 and flows out to the tank 24, so that the back pressure of the regenerative circuit 23 becomes higher than the pump discharge pressure. The pressure oil in the regenerative circuit 23 flows from the check valve 26 to the discharge path 11.
このよ う に、 油圧モータ 1 7か らの戻り圧油が油圧ポ ンプ 1 0 の吐出路 1 1 に流入する こ とで、 その流入 した流量分だけの圧油 を再利用できる。  In this way, the return pressure oil from the hydraulic motor 17 flows into the discharge path 11 of the hydraulic pump 10 so that the pressure oil corresponding to the flow rate can be reused.
この時カウ ンタバラ ンス弁 3 0 の第 2受圧部 3 3 は第 2切換弁 4 1 でタ ンク に連通しているので、 回生回路 2 3 の圧力でカ ウ ン タバラ ンス弁 3 0が中立位置 A又は第 2 の位置 C となる こ とがな い。  At this time, since the second pressure receiving portion 33 of the counterbalance valve 30 communicates with the tank by the second switching valve 41, the counterbalance valve 30 is in the neutral position by the pressure of the regenerative circuit 23. It cannot be A or the second position C.
操作弁 1 3 を第 2 位置 F と した時には、 カ ウ ン タバラ ンス弁 3 0が第 2 の位置 C とな り 、 第 1 切換弁 3 7 が連通位置となるか ら、 前述と同様に して油圧モータ 1 7か らの戻 り圧油が油圧ボ ン プ 1 0の吐出路 1 1 に流入して再利用できる。  When the operation valve 13 is at the second position F, the counterbalance valve 30 is at the second position C, and the first switching valve 37 is at the communication position. Thus, the return pressure oil from the hydraulic motor 17 flows into the discharge path 11 of the hydraulic pump 10 and can be reused.
次に、 上記第 1 の実施の形態の具体構造を説明する。 こ の具体 構造では前述した負荷圧をチ ェ ッ ク弁で検出するのではな く 、 操 作弁に検出用のポー トを設けた場合について説明する。 なお、 図 2 に示す部分と同一部分は ( ) 内に図 2 に示 した符号を入れる。 図 3 に示すよ う に、 本体 6 0 のスプール孔 6 1 にはポ ンプポー 卜 6 2 ( 1 4 ) 、 第 1 , 第 2 ポー ト 6 3 , 6 4 、 第 1 · 第 2 ァ ク チ ユエ一タ ポー ト 6 5 , 6 6 ( 1 5 , 1 9 ) 、 第 1 . 第 2 回生 ポー ト 6 7 , 6 8 ( 2 2 ) 、 第 1 . 第 2 タ ンク ポー ト 6 9 , 7 0 ( 2 7 ) が形成してある。 前記スプール孔 6 1 にスプール 7 1 を 挿入して操作弁 1 3 と してある。 Next, a specific structure of the first embodiment will be described. In this specific structure, a description will be given of a case where a port for detection is provided in the operation valve, instead of detecting the load pressure by the check valve as described above. Note that the same parts as those shown in Fig. 2 are indicated by the reference numerals shown in Fig. 2 in parentheses. As shown in FIG. 3, the spool port 61 of the main body 60 is provided with a pump port 62 (14), first and second ports 63, 64, and first and second actuators. One port 65, 66 (15, 19), 1st. 2nd regenerative port 67, 68 (22), 1st. 2nd tank port 69, 70 ( 2 7) is formed. Insert the spool 7 1 into the spool hole 6 1 It is inserted to make operation valve 13.
スプール 7 1 が図示.の中立位置である と、 ポ ンプポ一 ト 6 2 と 第 1 · 第 2 ポー ト 6 3 , 6 4 との間は遮断される。 第 1 ァ ク チュ エータポー ト 6 5 と第 1 回生ポー ト 6 7 と第 1 タ ン ク ポー ト 6 9 は連通する。 第 2 ァ ク チ ユ エ一 夕 ポー ト 6 6 と第 2 回生ポー ト 6 8 と第 2 タ ンク ポー ト 7 0 は連通する。 なお、 第 1 ポー ト 6 3 と第 2ポー ト 6 4 は点線で示す連通路 7 2で連通している。  When the spool 71 is in the neutral position shown in the figure, the pump port 62 is shut off from the first and second ports 63, 64. The first actuator port 65, the first regenerating port 67, and the first tank port 69 communicate with each other. The second actuator port 66, the second regenerating port 68, and the second tank port 70 communicate with each other. The first port 63 and the second port 64 communicate with each other through a communication path 72 indicated by a dotted line.
スプール 7 1 を左方に摺動 して第 1 位置とする と、 ポ ンプポー ト 6 2 と第 2 ポー ト 6 4 が連通 し、 第 1 ポー ト 6 3 が第 1 ァ ク チユエ一タポー ト 6 5 に連通するので、 ポ ンプポー ト 6 2 に流入 した圧油は第 1 ァ ク チ ユ エ一 夕 ポー ト 6 5 に流れる。 第 1 ァ ク チユエ一タポー ト 6 5 と第 1 回生ポー ト 6 7 と第 1 タ ンク ポー ト 6 9 との間は遮断される。 第 2 ァク チユエ一タ ポ一 ト 6 6 と第 2 回生ポー ト 6 8は連通し続け、 第 2 回生ポー ト 6 8 と第 2 タ ンク ポー ト 7 0 との間は遮断されるので、 第 2 ァク チユエ一タ ポー ト When the spool 71 is slid to the left to the first position, the pump port 62 and the second port 64 communicate with each other, and the first port 63 is connected to the first actuator port 6. Since it communicates with 5, the pressurized oil that has flowed into the pump port 62 flows to the first actuator overnight port 65. The connection between the first work port 65, the first regenerating port 67 and the first tank port 69 is cut off. The second actuating port 66 and the second regenerating port 68 continue to communicate, and the connection between the second regenerating port 68 and the second tank port 70 is cut off. 2nd Actuator Port
6 6 に流入した戻り圧油は第 2回生ポー ト 6 8に流入する。 The return pressure oil flowing into 66 flows into the second regenerating port 68.
スプール 7 1 を右方に摺動 して第 2位置とする と、 ポ ンプポー ト 6 2 と第 1 ポー ト 6 3 が連通 し、 第 2 ポー ト 6 4 が第 2 ァ ク チユエ一夕ポー ト 6 6 に連通するので、 ポ ンプポー ト 6 2 に流入 した圧油は第 2 ァ ク チ ユ エ一 夕 ポー ト 6 6 に流れる 。 第 2 ァ ク チユエ一タポー ト 6 6 と第 2 回生ポー 卜 6 8 と第 2 タ ンク ポー 卜 When the spool 71 is slid rightward to the second position, the pump port 62 and the first port 63 communicate with each other, and the second port 64 is connected to the second actuator port. Since it communicates with 66, the pressure oil that has flowed into the pump port 62 flows into the second actuating port 66. Second work port 66, second regenerated port 68, and second tank port
7 0 との間は遮断される。 第 1 ァク チ ユエ一タポ一 ト 6 5 と第 1 回生ポー ト 6 7 は連通し続け、 第 1 回生ポー ト 6 7 と第 1 タ ン ク ポー ト 6 9 は遮断するので、 第 1 ァク チユエ一タ ポー ト 6 5 に流 入した戻り圧油は第 1 回生ポー ト 6 7 に流入する。 前記第 1 · 第 2 回生ポー ト 6 7 , 6 8 は第 1 · 第 2 回生用ポー ト 7 3 , 7 4 にそれぞれ連通 し、 第 1 回生用ポー ト 7 3 と第 2 回 生用ポ一 ト 7 4 は点線で示す連通孔 7 5 で連通 している。 前記第 1 回生用ポー ト 7 3 は逆止弁 7 6 で前記ポ ンプポー ト 6 2 に連通 している。 前記第 2 回生用ポー ト 7 4 は、 弁本体 6 0 のスプール 孔 6 0 a に嵌挿された背圧弁スプール 7 7 の切 り 欠き 7 7 a でタ ンク ポー ト 7 8 に連通している。 It is shut off between 70. The first actuating port 65 and the first regenerating port 67 continue to communicate, and the first regenerating port 67 and the first tank port 69 are cut off. The return pressure oil that has flowed into the cut-out port 65 flows into the first regeneration port 67. The first and second regeneration ports 67 and 68 communicate with the first and second regeneration ports 73 and 74, respectively, so that the first regeneration port 73 and the second regeneration port 73 are connected to each other. G 74 communicates with a communication hole 75 shown by a dotted line. The first regeneration port 73 communicates with the pump port 62 via a check valve 76. The second regenerating port 74 communicates with the tank port 78 through a notch 77a of the back pressure valve spool 77 fitted in a spool hole 60a of the valve body 60. .
前記背圧弁スプール 7 7 は、 スプリ ング 7 9 で図示の位置に保 持されて第 2 回生ポー ト 7 4 を切 り 欠き 7 7 a でタ ン ク ポー ト 7 8 に連通している。 つま り 、 図 2 の背圧弁 2 5 が絞 り連通位置 の時と同様である。  The back pressure valve spool 77 is held at a position shown in the drawing by a spring 79 and cuts off the second regenerating port 74 to communicate with a tank port 78 by a 77a. That is, it is the same as when the back pressure valve 25 in FIG. 2 is in the throttle communication position.
前記背圧弁スプール 7 7 は、 ポ ンプポ一 ト 6 2 の圧力がセ ッ ト 圧以上となる と、 その圧力で押されて第 2 回生ポー ト 7 4 と タ ン ク ポー ト 7 8 を小径部 7 7 b で連通する位置となる。 つま り 、 図 2 の背圧弁 2 5 が連通位置の時 と 同様にな る 。 前記セ ッ ト圧は (カウ ンタバラ ンス弁 3 0 の切換圧 +操作弁 1 3 の圧力損失) 以 上の値となっている。  When the pressure of the pump port 62 becomes equal to or higher than the set pressure, the back pressure valve spool 77 is pressed by the pressure to move the second regenerating port 74 and the tank port 78 to the small diameter portion. It is the position where communication is performed at 7 7 b. In other words, this is the same as when the back pressure valve 25 in FIG. 2 is in the communicating position. The set pressure has a value not less than (switching pressure of the counterbalance valve 30 + pressure loss of the operation valve 13).
前記逆止弁 7 6 は、 スプール孔 6 0 a と 同軸の孔 6 0 b 内に螺 着されたス リ ーブ 8 0 内にポぺッ ト 8 1 を嵌挿 し、 こ のポぺ ッ ト 8 1 をスプリ ング 8 2 とポ ンプポー ト 6 2 の圧力で遮断方向に押 し、 ポぺッ ト 8 1 の段部 8 1 a に作用する第 1 回生用ポー ト 7 3 の圧力で連通方向に押される よ う に構成されている。 こ のよ う で あるから、 ポ ンプポー ト 6 2 の圧力よ り も第 2 回生用ポー ト 7 3 の圧力が高圧の時に第 2 回生用ポー ト 7 3 をポ ンプポー 卜 6 2 に 連通する。 前記弁本体 6 0 のスプール孔 6 0 c には入口ポ一 ト 9 0 と 出口 ポー ト 9 1 を連通 · 遮断する スプール 9 2 が嵌挿さ れて 口 一 ド チ ヱ ッ ク弁 4 5 を構成 している 。 スプール孔 6 0 c と 同軸の孔 6 0 d に嵌挿されていて、 スプール 9 2 を連通方向に押す ビス ト ン 9 3 で減圧弁 4 6 を構成 している。 そ して、 前記入口 ポー ト 9 0 に油圧ポ ンプ 1 0 の吐出圧油が供給され、 出 口ポー ト 9 1 が 前記ポンプポー ト 6 2 に連通している。 The check valve 76 is formed by inserting a port 81 into a sleeve 80 screwed into a hole 60b coaxial with the spool hole 60a, and The port 81 is pressed in the shut-off direction by the pressure of the spring 82 and the pump port 62, and communicates with the pressure of the first regeneration port 73 acting on the step 81a of the port 81. It is configured to be pushed in the direction. Thus, when the pressure of the second regeneration port 73 is higher than the pressure of the pump port 62, the second regeneration port 73 is communicated with the pump port 62. A spool 92 is inserted and inserted into a spool hole 60 c of the valve body 60 to communicate and shut off an inlet port 90 and an outlet port 91, thereby constituting a one-way valve 45. are doing . The pressure reducing valve 46 is formed by a screw 93 that is fitted in a hole 60 d coaxial with the spool hole 60 c and pushes the spool 92 in the communicating direction. The discharge pressure oil of the hydraulic pump 10 is supplied to the inlet port 90, and the outlet port 91 communicates with the pump port 62.
前記ビス ト ン 9 3 は、 第 1 受圧室 9 4 の圧力でスプール 9 2 と 離れる方向に移動 し、 第 2 受圧室 9 5 の圧力でスプール 9 2 を押 す方向に移動する。 さ らに、 前記第 1 受圧室 9 4 が前記第 2 ポー ト 6 3 に連通していて、 ピス ト ン 9 3 には 自 己の負荷圧が作用す る。  The piston 93 moves in a direction away from the spool 92 by the pressure of the first pressure receiving chamber 94, and moves in a direction to push the spool 92 by the pressure of the second pressure receiving chamber 95. Further, the first pressure receiving chamber 94 communicates with the second port 63, and the piston 93 receives its own load pressure.
このよ う に前記スプール 9 2 、 ビス ト ン 9 3 で構成 した圧力補 償弁は従来公知であるから、 その詳細な説明を省略する。  Since the pressure compensating valve composed of the spool 92 and the piston 93 is conventionally known, a detailed description thereof will be omitted.
このよ う であるから、 スプール 7 1 を第 1 位置とする と、 第 2 ァク チユエ一タポー ト 6 6 に流入 した戻り圧油が第 2 回生ポー ト 6 8 から第 1 · 第 2 回生用ポー ト 7 3 , 7 4 に流入する。 油圧ポ ンプ 1 0 の吐出圧が高い時には、 背圧弁スプール 7 7 がスプリ ン グ 7 9 に杭して左方に移動 して第 2 回生用ポー ト 7 4 の戻 り 圧油 はタ ンク ポー ト 7 8 に流れる。 これによ つ て、 第 1 · 第 2 回生用 ポー ト 7 3 , 7 4の背圧が低い。  Therefore, when the spool 71 is set to the first position, the return pressure oil flowing into the second actuator port 66 is supplied from the second regeneration port 68 to the first and second regeneration ports. It flows into ports 73 and 74. When the discharge pressure of the hydraulic pump 10 is high, the back pressure valve spool 77 stakes in the spring 79 and moves to the left, and the return pressure oil of the second regeneration port 74 is applied to the tank port. Flow to 7-8. As a result, the back pressure of the first and second regeneration ports 73 and 74 is low.
油圧モータ 1 7 が外力で回転 して油圧ポ ンプ 1 0 の吐出圧が低 下する と、 背圧弁スプール 7 7 がスプ リ ング 7 9 で図示の位置と なる。 第 2 回生用ポー ト 7 4 の戻り圧油は切 り 欠き 7 7 a でタ ン ク ポー ト 7 8 に流れるか ら、 背圧が高 く なる。 第 1 回生用ポー ト 7 3 の戻り圧油がポ ンプ吐出圧よ り も高 く な つ て、 戻り圧油が逆 止弁 7 6からポンプポー ト 6 2に流入する。 When the hydraulic motor 17 is rotated by an external force and the discharge pressure of the hydraulic pump 10 is reduced, the back pressure valve spool 77 is brought to the position shown by the spring 79. The return pressure oil at the second regeneration port 74 flows to the tank port 78 at the notch 77a, so the back pressure increases. 1st grade port When the return pressure oil at 73 becomes higher than the pump discharge pressure, the return pressure oil flows into the pump port 62 from the check valve 76.
スプール 7 1 を第 2位置と した場合も同様である。  The same applies to the case where the spool 71 is at the second position.
次に、 カウ ンタバラ ンス弁 3 0の具体構造を説明する。  Next, the specific structure of the counterbalance valve 30 will be described.
図 4 に示すよ う に、 弁本体 1 0 0 のスプール孔 1 0 1 に第 1 * 第 2 主ポー ト 1 0 2 , 1 0 3 と第 1 · 第 2 戻 り ポ ー ト 1 0 4 , 1 0 5を形成する。 このスプール孔 1 0 1 にスプール 1 0 6 を嵌 挿し、 そのスプール 1 0 6 を左右のスプリ ング 1 0 7で中立位置 とする。 一方の圧力室 1 0 8 (第 1受圧部 3 2 ) に圧油が流入す る と、 スプール 1 0 6が左方に移動 して第 2主ポー ト 1 0 3 と第 2戻り ポー ト 1 0 5が連通する。 他方の圧力室 1 0 9 (第 2受圧 部 3 3 ) に圧油が流入する と、 スプール 1 0 6 が右方に移動 して 第 1主ポー ト 1 0 2 と第 1戻り ポー ト 1 0 4が連通する。  As shown in FIG. 4, the first * second main ports 102, 103 and the first and second return ports 100, 104 are provided in the spool holes 101 of the valve body 100, respectively. Form 105. The spool 106 is inserted into the spool hole 101, and the spool 106 is set to the neutral position by the left and right springs 107. When pressure oil flows into one pressure chamber 108 (first pressure receiving part 32), the spool 106 moves to the left and the second main port 103 and the second return port 1 0 5 communicates. When the pressure oil flows into the other pressure chamber 109 (second pressure receiving part 33), the spool 106 moves to the right and the first main port 102 and the first return port 110 4 communicates.
前記第 1 圧力室 1 0 8 はス プール 1 0 6 に穿孔 した第 1 油孔 1 1 0 ( 3 4 ) 、 細孔 1 1 1 ( 3 6 ) で第 1 主ポー ト 1 0 2 に連 通している。 第 2圧力室 1 0 9 はスプール 1 0 6 に穿孔 した第 2 油孔 1 1 2 ( 3 9 ) 、 細孔 1 1 3 ( 4 0 ) で第 2主ポ一 卜 1 0 3 に連通している。  The first pressure chamber 108 communicates with the first main port 102 via a first oil hole 110 (34) and a fine hole 111 (36) drilled in the spool 106. ing. The second pressure chamber 109 communicates with the second main port 103 via a second oil hole 112 (39) and a hole 113 (40) drilled in the spool 106. I have.
前記弁本体 1 0 0の左右両側部にはス リ ーブ 1 1 4 がそれぞれ 取付 けて あ る 。 こ の ス リ ー ブ 1 1 4 の外周 に は タ ン ク ポ ー ト 1 1 5が形成してあ り 、 そのタ ンク ポー ト 1 1 5 は孔 1 1 6 でス リ ーブ 1 1 4 の内周のポー ト 1 1 7 に連通 している。 前記ス リ 一 ブ 1 1 4 内には ピス ト ン 1 1 9 が嵌挿 してあ り 、 こ の ピス ト ン 1 1 9はスプ リ ング 1 2 0 でスプール 1 0 6側に押されて第 1圧 力室 1 0 8 とポー ト 1 1 7 との間または第 2圧力室 1 0 9 とポ一 ト 1 1 7 との間を遮断している。 Sleeves 114 are attached to both left and right sides of the valve body 100, respectively. A tank port 115 is formed around the outer periphery of the sleeve 114, and the tank port 115 is formed by a hole 114 through the sleeve 114. It communicates with port 1 17 on the inner circumference of. A piston 119 is fitted in the sleeve 114, and the piston 119 is pushed by the spring 120 toward the spool 106. Between the first pressure chamber 108 and port 117 or between the second pressure chamber 109 and port The connection between the two is blocked.
前記スプール 1 0 6が第 1 圧力室 1 0 8 内の圧力で左方に移動 すると、 左側に設けたピス ト ン 1 1 9がスプール 1 0 6 で押され て第 2圧力室 1 0 9をポー ト 1 1 7及び孔 1 1 6 でタ ンクポー ト 1 1 5 に連通する。 これによ つて、 第 2圧力室 1 0 9 がタ ンク ポー ト 1 1 5からダンクに連通する。 このよう に して、 左側に設 けたピス ト ン 1 1 9等によ っ て前記図 2 の第 2切換弁 4 1 を構成 する。  When the spool 106 moves to the left due to the pressure in the first pressure chamber 108, the piston 119 provided on the left side is pushed by the spool 106 to move the second pressure chamber 109. It communicates with tank port 1 15 at port 1 17 and hole 1 16. As a result, the second pressure chamber 109 communicates with the dunk from the tank port 115. In this way, the second switching valve 41 in FIG. 2 is constituted by the piston 119 and the like provided on the left side.
前記スプール 1 0 6が第 2圧力室 1 0 9 内の圧力で右方に移動 すると、 右側に設けたピス ト ン 1 1 9がスプール 1 0 6で押され て第 1圧力室 1 0 8をポー ト 1 1 7及び孔 1 1 6 でタ ンクポー ト 1 1 5 に連通する。 これによ つて、 第 1 圧力室 1 0 8 がタ ンク ポー ト 1 1 5からタ ンクに連通する。 こ のよ う に して、 右側に設 けたピス ト ン 1 1 9等によって前記図 2 の第 1 切換弁 3 7を構成 する。  When the spool 106 moves to the right due to the pressure in the second pressure chamber 109, the piston 110 provided on the right side is pushed by the spool 106 to cause the first pressure chamber 108 to move. It communicates with tank port 1 15 at port 1 17 and hole 1 16. As a result, the first pressure chamber 108 communicates with the tank from the tank port 115. In this way, the first switching valve 37 in FIG. 2 is constituted by the pistons 119 and the like provided on the right side.
図 2 に示す油圧モータの駆動システムを、 図 5 に示す第 2 の実 施の形態のように、 油圧式シ ョ ベルの左右の走行用油圧モータを 1 つの油圧ポンプで駆動する駆動システムに適用するこ とで、 左 右旋回走行する際に走行速度が低下することを防止できる。  The hydraulic motor drive system shown in Fig. 2 is applied to a drive system that drives the left and right traveling hydraulic motors of a hydraulic shovel with a single hydraulic pump, as in the second embodiment shown in Fig. 5. By doing so, it is possible to prevent the traveling speed from decreasing when turning left and right.
以下、 その詳細を説明する。  The details are described below.
左右の操作弁 1 3 を第 1 位置 E と し、 左の操作弁 1 3 のメ ータ イ ン開口面積を大と し且つ右の操作弁 1 3 のメ ータイ ン開口面積 を小と して、 左の油圧モータ 1 7 を駆動側と し且つ右の油圧モー タ 1 7を被駆動側と して矢印 a方向に旋回走行する場合に、 右の 油圧モータ 1 7 は制動状態とな り駆動圧 P L 2 はカウ ンタバラ ン ス弁 3 0 のセ ッ ト圧となる し、 左の油圧モータ 1 7 の駆動圧 P L 1 は走行抵抗と旋回抵抗に対応する高圧となるから、 左の操 作弁 1 3 の入口圧 P 1 は右の操作弁 1 3 の入口圧 P 2 よ り も高く なる。 つま り、 左の油圧モータ 1 7 の負荷圧が右の油圧モータ 1 7の負荷圧より も高く なる。 The left and right control valves 13 are set to the first position E, the left control valve 13 has a large metering opening area, and the right control valve 13 has a small mating opening area. When the left hydraulic motor 17 is the driving side and the right hydraulic motor 17 is the driven side and turns in the direction of arrow a, the right hydraulic motor 17 is in the braking state and is driven. Pressure PL 2 is counterbalun And the driving pressure PL 1 of the left hydraulic motor 17 becomes high corresponding to the running resistance and the turning resistance. Therefore, the inlet pressure P 1 of the left operating valve 13 Is higher than the inlet pressure P 2 of the right control valve 13. That is, the load pressure of the left hydraulic motor 17 becomes higher than the load pressure of the right hydraulic motor 17.
これによ り、 駆動側 (左側) の圧力補償弁 1 2 の減圧弁 4 6 は 負荷圧 P L 1 で右方に押されて口一 ドチヱ ッ ク弁 4 5 の開度が大 となり、 被駆動側 (右側) の圧力補償弁 1 2 の減圧弁 4 6 は駆動 側 (右側) の負荷圧 P L 1 で左に押されて口一 ドチェ ッ ク弁 4 5 を閉じ側に押し、 ロー ドチヱ ッ ク弁 4 5の開度は小さ く なる。 一般に、 履帯式車両の旋回抵抗は大きいので可変容量型の油圧 ポンプ 1 0 の吐出圧が大き く なって馬力一定制御が働いて容量が 減少し、 駆動側の油圧モータ 1 7 に流入する流量が減少して車速 が低下する。  As a result, the pressure reducing valve 46 of the pressure compensating valve 12 on the driving side (left side) is pushed rightward by the load pressure PL 1, and the opening degree of the opening check valve 45 increases, and the driven The pressure compensating valve 12 on the right side (right side) is depressed to the left by the load pressure PL 1 on the driving side (right side) to push the check valve 45 to the closing side, and the load check is performed. The opening of the valve 45 becomes small. In general, since the turning resistance of a crawler type vehicle is large, the discharge pressure of the variable displacement hydraulic pump 10 increases, the constant horsepower control works, the displacement decreases, and the flow rate flowing into the hydraulic motor 17 on the drive side decreases. It decreases and the vehicle speed decreases.
これに対して、 本発明では、 右の油圧モータ 1 7 の戻り油を背 圧弁 2 5で昇圧して吐出路 1 1 に回生する。 このために、 吐出路 1 1 に回生した流量分だけが左の油圧モータ 1 7 に供給されるか ら、 車速低下が少なく なる。  On the other hand, in the present invention, the return oil of the right hydraulic motor 17 is boosted by the back pressure valve 25 and is regenerated to the discharge path 11. For this reason, only the flow rate regenerated in the discharge passage 11 is supplied to the left hydraulic motor 17, so that the decrease in vehicle speed is reduced.
次に、 第 2の実施の形態の具体構造を説明する。  Next, a specific structure of the second embodiment will be described.
図 6 に示すよう に、 操作弁 1 3 は第 1 の実施の形態と同様であ り、 その第 1 ' 第 2回生ポー ト 6 7 , 6 8を油路 1 3 0 で 1 つの 回生用のポー ト 1 3 1 に連通する。 この回生用のポー ト 1 3 1 は 背圧弁スプール 7 7でタ ンクポー ト 7 8 に連通 · 遮断される と共 に、 切り欠き 7 7 aでタ ンクポ一 ト 7 8に連通している。  As shown in FIG. 6, the operation valve 13 is the same as that of the first embodiment, and the first 'second regenerative ports 67, 68 are connected to one regenerative port through an oil passage 130. Connect to port 1 3 1. The regenerating port 13 1 communicates with and is shut off from the tank port 78 by the back pressure valve spool 77, and communicates with the tank port 78 via the notch 77 a.
背圧弁 2 5 の前記背圧弁スプール 7 7 の軸孔 1 3 2 にポぺッ ト 1 3 3が嵌挿され、 このポぺッ ト 1 3 3 はスプリ ング 1 3 4 で押 されて回生側ポー ト 1 3 5 とポンプ側ポ一 ト 1 3 6 を閉じている。 前記ポぺッ ト 1 3 3 はスプリ ング室 1 3 7側の基端面 1 3 3 a に 作用するポンプ圧で閉じ方向に押され、 先端面 1 3 3 b に作用す る戻り圧油で連通方向に押される。 これによつて、 逆止弁 2 6 を 構成している。 Port on the shaft hole 13 of the back pressure valve spool 77 of the back pressure valve 25 13 3 is inserted, and this port 13 3 is pushed by the spring 13 4 to close the regeneration side port 13 5 and the pump side port 13 36. The port 133 is pushed in the closing direction by the pump pressure acting on the proximal end surface 133a on the spring chamber 133 side, and is communicated with the return pressure oil acting on the distal end surface 133b. Pushed in the direction. This constitutes the check valve 26.
前記逆止弁 2 6及び背圧弁 2 5 の動作は、 前述の第 1 の実施の 形態と同様である。  The operations of the check valve 26 and the back pressure valve 25 are the same as those in the first embodiment.
弁本体 6 0 には第 1 ポー ト 6 3 と第 1 タ ンクポー ト 6 9を連通 する 吸込弁 1 4 0 が設けてある。 こ の吸込弁 1 4 0 はバルブ 1 4 1 をスプリ ング 1 4 2 と、 スプリ ング室 1 4 3 に作用する ポー ト圧 (戻り油) で遮断位置に押し、 そのポー ト圧がタ ンク圧 よ り も低圧となった時にバルブ 1 4 1 がスプリ ング 1 4 2 に杭し て開方向に移動する。  The valve body 60 is provided with a suction valve 140 for communicating the first port 63 and the first tank port 69. The suction valve 140 pushes the valve 141 to the shut-off position with the port pressure (return oil) acting on the spring 144 and the spring chamber 144, and the port pressure becomes the tank pressure. When the pressure becomes lower, the valve 14 1 stakes in the spring 14 2 and moves in the opening direction.
これによ り、 油圧モータ 1 7 のポー トが負圧となった時に吸込 弁 1 4 0で油を吸い込むので、 キヤ ビテーシヨ ンを防止できる。 次に、 第 3 の実施の形態と して走行用油圧システムの他の例を 説明する。  Thus, when the pressure of the port of the hydraulic motor 17 becomes negative, oil is sucked by the suction valve 140, so that the cavitation can be prevented. Next, another example of the traveling hydraulic system will be described as a third embodiment.
図 7 に示すように、 背圧弁 2 5 はスプリ ング 4 3 と第 1 受圧部 1 5 0の圧力で連通位置に向けて押され、 第 2受圧部 1 5 1 の圧 力で絞り連通位置に向けて押される。  As shown in FIG. 7, the back pressure valve 25 is pushed toward the communicating position by the spring 43 and the pressure of the first pressure receiving portion 150, and is moved to the throttle communication position by the pressure of the second pressure receiving portion 151. It is pushed toward.
前記第 1受圧部 1 5 0 は圧力補償弁 1 2 の出力側に接続して圧 力補償弁 1 2 の出力圧が作用する。 第 2受圧部 1 5 1 は圧力補償 弁 1 2 の減圧弁 4 6 に形成した第 1 のポ一 ト 1 5 2 に接続してい る。 減圧弁 4 6 に形成した第 2 のポー ト 1 5 3 は負荷圧導入路 1 5 4 に接続している。 この負荷圧導入路 1 5 4 は操作弁 1 3 の 負荷圧ポー ト 1 5 5 に接続している。 左右の圧力補償弁 1 2 の減 圧弁 4 6 に形成した第 1 のポ一 ト 1 5 2 は回路 1 5 6 で連通して いる。 The first pressure receiving section 150 is connected to the output side of the pressure compensating valve 12 so that the output pressure of the pressure compensating valve 12 acts. The second pressure receiving section 15 1 is connected to a first port 15 2 formed on a pressure reducing valve 46 of the pressure compensating valve 12. The second port 15 3 formed in the pressure reducing valve 46 is a load pressure introduction path. Connected to 1 5 4. This load pressure introduction path 154 is connected to the load pressure port 155 of the operation valve 13. The first port 152 formed in the pressure reducing valve 46 of the left and right pressure compensating valves 12 is in communication with the circuit 1556.
前記第 1 のポー ト 1 5 2 と第 2 のポー ト 1 5 3 の間は、 ロー ド チェ ッ ク弁 4 5の開口面積が小さい時 (負荷圧が低圧の時) は遮 断され、 口一 ドチ X ッ ク弁 4 5 の開口面積が大きい時 (負荷圧が 高圧の時) には連通する。  Between the first port 152 and the second port 153, when the opening area of the load check valve 45 is small (when the load pressure is low), the port is shut off. When the opening area of one click X-valve 45 is large (when the load pressure is high), it communicates.
次に、 この実施の形態の作動を説明する。  Next, the operation of this embodiment will be described.
左右の操作弁 1 3を第 1 位置 E と し、 左の操作弁 1 3 のメ ータ イ ン開口面積を大と し且つ右の操作弁 1 3 のメ 一タイ ン開口面積 を小と して、 左の油圧モータ 1 7を駆動側と し且つ右の油圧モ一 タ 1 7を被駆動側と して矢印 a方向に旋回走行する場合に、 右の 油圧モータ 1 7 は制動状態とな り駆動圧 P L 2 はカウ ンタバラ ン ス弁 3 0 のセ ッ ト圧とな る し、 左の油圧モータ 1 7 の駆動圧 P L 1 は走行抵抗と旋回抵抗に対応する高圧となるから、 左の操 作弁 1 3の入口圧 P 1 は右の操作弁 1 3 の入口圧 P 2 よ り も高く なる。 つま り、 左の油圧モータ 1 7 の負荷圧が右の油圧モータ 1 7 の負荷圧より も高く なる。  The left and right control valves 13 are in the first position E, the left control valve 13 has a large METAINE opening area, and the right control valve 13 has a small METAN opening area. When the left hydraulic motor 17 is driven and the right hydraulic motor 17 is driven, and the vehicle turns in the direction of arrow a, the right hydraulic motor 17 is in a braking state. The driving pressure PL 2 is the set pressure of the counterbalance valve 30, and the driving pressure PL 1 of the left hydraulic motor 17 is a high pressure corresponding to the running resistance and the turning resistance. The inlet pressure P 1 of the control valve 13 is higher than the inlet pressure P 2 of the right control valve 13. That is, the load pressure of the left hydraulic motor 17 becomes higher than the load pressure of the right hydraulic motor 17.
これにより、 駆動側 (左側) の圧力補償弁 1 2 の減圧弁 4 6 は 負荷圧 P L i で右方に押されて口 一 ドチェ ッ ク弁 4 5 の開度が大 となり、 被駆動側 (右側) の圧力補償弁 1 2 の減圧弁 4 6 は駆動 側 (右側) の負荷圧 P L 1 で左に押されて口一 ドチェ ッ ク弁 4 5 を閉じ側に押し、 ロー ドチェ ッ ク弁 4 5の開度は小さ く なる。 左の圧力補償弁 1 2 のロー ドチェ ッ ク弁 4 5 の開口面積が大と な る か ら、 減圧弁 4 6 の第 1 のポー ト 1 5 2 と第 2 のポー ト 1 5 3が連通し、 第 1 のポ一 ト 1 5 2に高圧の負荷圧が流れる。 これによ り、 左の背圧弁 2 5 の第 2 の受圧部 1 5 1 に高圧の負 荷圧が作用するが、 この背圧弁 2 5 の第 1 の受圧部 1 5 0 には圧 力補償弁 1 2 の出力圧が作用 しているから、 背圧弁 2 5 は連通位 置となる。 As a result, the pressure reducing valve 46 of the pressure compensating valve 12 on the driving side (left side) is pushed rightward by the load pressure PL i, so that the opening of the check valve 45 becomes large, and the driven side ( The pressure compensating valve 12 of the right side) and the pressure reducing valve 4 6 of the second side are pushed to the left by the load pressure PL 1 on the driving side (the right side), and the mouth check valve 45 is pushed to the closing side. The opening of 5 becomes smaller. The opening area of the load check valve 45 of the left pressure compensating valve 12 is large. Therefore, the first port 152 and the second port 153 of the pressure reducing valve 46 communicate with each other, and a high load pressure flows through the first port 152. As a result, a high load pressure acts on the second pressure receiving portion 15 1 of the left back pressure valve 25, but pressure compensation is applied to the first pressure receiving portion 150 of the back pressure valve 25. Since the output pressure of the valve 12 is acting, the back pressure valve 25 is in the communicating position.
この時、 右の圧力補償弁 1 2 のロー ドチェ ッ ク弁 4 5 の開口面 積が小で第 1 のポ一 ト 1 5 2 と第 2 のポ一 ト 1 5 3 との間が遮断 されている。 右の背圧弁 2 5 の第 2受圧部 1 5 1 には左の負荷圧 が作用 し、 その圧力は第 1受圧部 1 5 0 に作用する右の圧力補償 弁 1 2 の出力圧よ り も高いので、 背圧弁 2 4 は絞り連通位置とな >  At this time, the opening area of the load check valve 45 of the pressure compensating valve 12 on the right is small and the connection between the first port 152 and the second port 153 is shut off. ing. The left load pressure acts on the second pressure receiving portion 15 1 of the right back pressure valve 25, and the pressure is higher than the output pressure of the right pressure compensating valve 12 acting on the first pressure receiving portion 150. High, so the back pressure valve 24 is in the throttle communication position>
したがって、 図 5 に示す走行用油圧システムと同様に、 右の油 圧モータ 1 7 の戻り油を背圧弁 2 5 で昇圧し、 右の圧力補償弁 1 2 の出力側に回生する。 これによつて、 油圧ポンプ 1 0 の吐出 圧油について、 右の圧力補償弁 1 2から右の油圧モータ 1 7 に供 給される流量が、 回生した流量分だけ減少する ので、 その分だけ 左の油圧モータ 1 7 に供給される こ とになり、 その結果車速低下 が少なく なる。  Therefore, similarly to the traveling hydraulic system shown in FIG. 5, the return oil of the right hydraulic motor 17 is boosted by the back pressure valve 25 and is regenerated to the output side of the right pressure compensating valve 12. As a result, the flow supplied from the right pressure compensating valve 12 to the right hydraulic motor 17 for the hydraulic oil discharged from the hydraulic pump 10 is reduced by the regenerated flow, so that the left Is supplied to the hydraulic motor 17, and as a result, the decrease in vehicle speed is reduced.
左右の操作弁 1 3を第 1 位置 E と し、 左右の操作弁 1 3 のメ ー タイ ン開口面積を同一と して直進走行する時には、 左右の油圧 モータ 1 7 の負荷圧が高圧となって左右の圧力補償弁 1 2 のロー ドチ ッ ク弁 4 5の開口面積が大とな り、 左右の圧力補償弁 1 2 の減圧弁 4 6 に形成 した第 1 のポ一 ト 1 5 2 と第 2 のポー ト 1 5 3 はそれぞれ連通する。 したがって、 左右の油圧モータ 1 7の負荷圧が同一となって直 進走行する。 When the left and right control valves 13 are in the first position E and the vehicle is traveling straight with the left and right control valves 13 having the same mating opening area, the load pressure of the left and right hydraulic motors 17 becomes high. The opening area of the load check valves 45 of the left and right pressure compensating valves 12 becomes large, and the first ports 15 2 formed on the pressure reducing valves 46 of the left and right pressure compensating valves 12 become larger. The second ports 15 3 communicate with each other. Therefore, the vehicle travels straight with the load pressure of the left and right hydraulic motors 17 being the same.
また、 前述の直進状態で降坂する時には左右の油圧モータ 1 7 の負荷圧がそれぞれ低圧となり、 左右の圧力補償弁 1 2 のロー ド チェ ッ ク弁 4 5 の開口面積が小で、 減圧弁 4 6 の第 1 のポー ト 1 5 2 と第 2のポー ト 1 5 3 との間は遮断する。  In addition, when the vehicle descends on a straight road as described above, the load pressure of the left and right hydraulic motors 17 becomes low, and the opening area of the load check valves 45 of the left and right pressure compensating valves 12 is small. The connection between the first port 15 2 of 46 and the second port 15 3 is shut off.
これにより、 左右の背圧弁 2 5 の第 2受圧部 1 5 1 に負荷圧が 作用 しないので、 各背圧弁 2 5 はスプリ ング 4 3で連通位置とな る。  As a result, the load pressure does not act on the second pressure receiving portions 15 1 of the left and right back pressure valves 25, so that the respective back pressure valves 25 are connected to each other by the springs 43.
したがって、 左右の油圧モータ 1 7の戻り油は回生されずにタ ンク にそれぞれ流出 し、 左右の油圧モータ 1 7 には油圧ポ ンプ 1 0の吐出圧油のみが供給されるので、 ヒー トバラ ンスが向上す る。  Therefore, the return oil of the left and right hydraulic motors 17 flows out to the tank without being regenerated, and only the discharge pressure oil of the hydraulic pump 10 is supplied to the left and right hydraulic motors 17, so that the heat balance is maintained. Is improved.
つま り、 油圧モータ 1 7 の戻り油は高温であるから、 直進状態 で降坂する時に油圧モータ 1 7 の戻り 油が回生される と、 油圧 モータ 1 7 に高温の圧油が供給されて更に戻り 油が高温とな り 、 このこ とを繰り返すために油圧モータ 1 7 に高温の圧油が供給さ れるからヒー トバラ ンスが悪く なるが、 本実施の形態にはそれが ない。  In other words, since the return oil of the hydraulic motor 17 is high in temperature, if the return oil of the hydraulic motor 17 is regenerated when going down a hill in a straight traveling state, high-pressure oil is supplied to the hydraulic motor 17 and furthermore. The return oil has a high temperature, and since high-temperature pressurized oil is supplied to the hydraulic motor 17 to repeat this, the heat balance is deteriorated, but this embodiment does not have this.
前述の操作弁 1 3、 圧力補償弁 1 2、 背圧弁 2 5 、 逆止弁 2 6 の具体構造を図 8に基づいて説明する。  The specific structure of the aforementioned operating valve 13, pressure compensating valve 12, back pressure valve 25, and check valve 26 will be described with reference to FIG.
背圧弁スプール 7 7をスプリ ング 7 9で連通位置と し、 回生用 のポー ト 1 3 1 をタ ンク ポ一 ト 7 8 に連通する。 この背圧弁ス プール 7 7 にポンプポー ト 6 2 をスプリ ング室 7 9 a (第 1 受圧 部 1 5 0 ) に連通する油孔 1 6 0 を形成し、 背圧弁スプール 7 7 の弁本体 6 0 との間に圧力室 1 6 1 (第 2受圧部 1 5 1 ) を形成 する。 The back pressure valve spool 77 is set to the communication position by the spring 79, and the regenerative port 13 1 is connected to the tank port 78. The back pressure valve spool 77 has an oil hole 160 communicating the pump port 62 with the spring chamber 79a (first pressure receiving portion 150). A pressure chamber 16 1 (second pressure receiving section 15 1) is formed between the pressure chamber 16 and the valve body 60.
これによつて、 背圧弁スプール 7 7 はスプリ ング 7 9 とスプリ ング室 7 9 aの圧力で右方に押されて図示の連通位置とな り、 受 圧室 1 6 1 の圧力で左方に押されて回生用のポー ト 1 3 1 を閉 じ、 その回生用のポー ト 1 3 1 を切り欠き 7 7 aで連通する絞り連通 位置となる。 したがって、 背圧弁 2 5 は図 7 に示す背圧弁 2 5 と 同一となる。  As a result, the back pressure valve spool 77 is pushed rightward by the pressure of the spring 79 and the spring chamber 79a to the communication position shown in the figure, and is moved leftward by the pressure of the pressure receiving chamber 161. To close the regenerative port 131, and cut off the regenerative port 131 to set the throttle communication position to communicate with 77a. Therefore, the back pressure valve 25 is the same as the back pressure valve 25 shown in FIG.
減圧弁 4 6 には補助ポー ト 1 6 2 を形成し、 ピス ト ン 9 3 には 第 1受圧室 9 4 と補助ポー ト 1 6 2 を連通する ス リ ツ ト 1 6 3 を 形成する。 補助ポー ト 1 6 2が受圧室 1 6 1 に連通して図 7 に示 す第 1 のポー ト 1 5 2 となり、 前記第 1 受圧室 9 4 が図 7 に示す 第 2のポー ト 1 5 3 となる。  An auxiliary port 162 is formed in the pressure reducing valve 46, and a slit 163 that connects the first pressure receiving chamber 94 and the auxiliary port 162 is formed in the piston 93. The auxiliary port 16 2 communicates with the pressure receiving chamber 16 1 to become the first port 15 2 shown in FIG. 7, and the first pressure receiving chamber 94 becomes the second port 15 shown in FIG. It becomes 3.
口一 ドチェ ッ ク弁 4 5 の開口面積が小さい時にはビス ト ン 9 3 が図示の位置で第 1受圧部 9 4 と補助ポー ト 1 6 2 の間が遮断さ れているから、 図 7 において第 1 のポー ト 1 5 2 と第 2 のポー ト 1 5 3が遮断している状態と同一となる。  When the opening area of the one-way check valve 45 is small, the screw 93 is shut off between the first pressure receiving portion 94 and the auxiliary port 162 at the position shown in FIG. This is the same as the state where the first port 152 and the second port 153 are shut off.
ロー ドチヱ ッ ク弁 4 5 の開口面積が大きい時にはビス ト ン 9 3 が右方に移動して第 1受圧部 9 4 と補助ポー ト 1 6 2 がス リ ツ ト 1 6 3 で連通して、 図 7 において第 1 のポー ト 1 5 2 と第 2 の ポー ト 1 5 3が連通している状態となる。  When the opening area of the load check valve 45 is large, the screw 93 moves to the right, and the first pressure receiving portion 94 and the auxiliary port 16 2 communicate with each other through the slit 16 3. In FIG. 7, the first port 152 and the second port 1553 are in communication.
なお、 本発明は例示的な実施の形態について説明 したか、 開示 した実施例に関して、 本発明の要旨及び範囲を逸脱する こ とな く 、 種々の変更、 省略、 追加が可能である こ とは、 当業者において自 明である。 従って、 本発明は、 上記の実施の形態に限定される も のではなく 、 請求の範囲に記載された要素によって規定される範 囲及びその均等範囲を包含する ものと して理解されなければなら ない。 The present invention has been described with reference to exemplary embodiments, or various changes, omissions, and additions may be made without departing from the spirit and scope of the present invention in connection with the disclosed embodiments. It is obvious to those skilled in the art. Therefore, the present invention is limited to the above embodiment. Rather, it is to be understood as covering the scope defined by the elements recited in the claims and their equivalents.

Claims

請求の範囲 The scope of the claims
1 . 油圧ポ ンプの吐出圧油を油圧モータ に供給する と共に、 油圧 モー夕からの戻り圧油を回生回路に流出する操作弁と、  1. An operating valve that supplies the hydraulic oil discharged from the hydraulic pump to the hydraulic motor, and also allows the return hydraulic oil from the hydraulic motor to flow out to the regenerative circuit.
前記油圧モータ と前記操作弁との間に設け られ、 前記油圧モー 夕からの戻り圧油が前記操作弁に流通 しない中立位置とその戻り 圧油が前記操作弁に流通する流通位置を有 し、 前記油圧ポ ンプの 吐出圧が所定の圧を越えた時に流通位置に切換わ り 、 前記油圧ポ ンプの吐出圧油が所定の圧以下の時に中立位置に切換わる よ う に な っていて、 前記油圧ポ ンプの吐出圧で流通位置となる こ とで戻 り圧油によ っ て中立位置に切換わる こ とが禁止さ れる カ ウ ンタバ ラ ンス弁とを備え、  A neutral position that is provided between the hydraulic motor and the operating valve and has a neutral position in which return pressure oil from the hydraulic motor does not flow through the operation valve and a flow position in which the return pressure oil flows through the operation valve; When the discharge pressure of the hydraulic pump exceeds a predetermined pressure, the hydraulic pump is switched to the circulation position, and when the discharge pressure oil of the hydraulic pump is lower than the predetermined pressure, the switch is switched to the neutral position. A counterbalance valve that is prevented from switching to a neutral position by return pressure oil by being returned to the circulation position by the discharge pressure of the hydraulic pump,
前記回生回路を逆止弁を経て前記油圧ポ ンプの吐出路に接続 し た、 油圧モータの駆動システム。  A drive system for a hydraulic motor, wherein the regenerative circuit is connected to a discharge path of the hydraulic pump via a check valve.
2 . 前記回生回路に、 ばね力で絞 り連通位置とな り 、 前記油圧ポ ンプの吐出圧が設定圧力以上の時には連通位置とな る背圧弁を設 けた、 請求項 1 に記載の油圧モータの駆動システム。 2. The hydraulic motor according to claim 1, wherein the regenerative circuit is provided with a back pressure valve that is brought into a throttle communication position by a spring force and becomes a communication position when the discharge pressure of the hydraulic pump is equal to or higher than a set pressure. Drive system.
3 . 前記カ ウ ンタバラ ンス弁が、 ばね力で中立位置に保持さ れ、 一方の受圧部に供給される油圧ポ ンプの吐出圧が所定の圧を越え る こ とで一方の流通位置とな り 、 他方の受圧部に供給される油圧 ポ ンプの吐出圧が所定の圧を越える こ とで他方の流通位置となる ものと し、 3. The counterbalance valve is held at the neutral position by a spring force, and when the discharge pressure of the hydraulic pump supplied to one of the pressure receiving portions exceeds a predetermined pressure, the counterbalance valve becomes one of the circulation positions. When the discharge pressure of the hydraulic pump supplied to the other pressure receiving section exceeds a predetermined pressure, the hydraulic pump is moved to the other flow position,
前記カウ ンタバラ ンス弁に連動 していて、 前記一方又は他方の 流通位置となる こ とで前記他方又は一方の受圧部をタ ンク に連通 する一対の切換弁を設けた、 請求項 1 又は 2 に記載の油圧モータ の駆動システム。 In conjunction with the counterbalance valve, the other or one pressure receiving portion communicates with the tank by being in the one or the other circulation position. The drive system for a hydraulic motor according to claim 1, further comprising a pair of switching valves that perform the switching.
4 . 油圧ポンプの吐出圧油を左右の圧力補償弁及び左右の操作弁 を経て左右の油圧モータにそれぞれ供給制御するようにし、 4. Supply and control the discharge pressure oil of the hydraulic pump to the left and right hydraulic motors via the left and right pressure compensating valves and the left and right operating valves, respectively.
前記左右の操作弁と前記左右の油圧モータ とのそれぞれの間に、 前記油圧モータからの戻り圧油が前記操作弁に流通しない中立位 置とその戻り圧油が前記操作弁に流通する流通位置を有し、 前記 油圧ポンプの吐出圧が所定の圧を越えた時に流通位置に切換わり、 前記油圧ポンプの吐出圧油が所定の圧以下の時に中立位置に切換 わるよう になっていて、 前記油圧ポンプの吐出圧で流通位置とな る こ とで戻り圧油によって中立位置に切換わるこ とが禁止される 左右のカウンタバラ ンス弁を設け、  A neutral position between the left and right operation valves and the left and right hydraulic motors, in which return pressure oil from the hydraulic motor does not flow through the operation valves, and a distribution position in which the return pressure oil flows through the operation valves. The hydraulic pump is switched to a circulation position when the discharge pressure of the hydraulic pump exceeds a predetermined pressure, and is switched to a neutral position when the discharge pressure oil of the hydraulic pump is equal to or lower than a predetermined pressure. The return pressure oil is prohibited from switching to the neutral position by returning to the circulation position by the discharge pressure of the hydraulic pump.
前記左右の油圧モータからの戻り圧油が前記左右の操作弁から それぞれ流出する左右の回生回路に、 第 1 受圧部の圧力で連通位 置となり且つ第 2受圧部の圧力で絞り連通位置となる左右の背圧 弁をそれぞれ設け、  The left and right regenerative circuits from the left and right hydraulic motors flow out of the left and right operation valves, respectively, into the left and right regenerative circuits. Provide left and right back pressure valves respectively,
前記左右の背圧弁の第 1 受圧部を左右の圧力補償弁の出力側に それぞれ接続し、  The first pressure receiving portions of the left and right back pressure valves are respectively connected to the output sides of the left and right pressure compensating valves,
前記左右の圧力補償弁に、 開口面積が小さい時には遮断され、 開口面積が大きい時に連通する第 1 のポ一 卜 と第 2 のポ一 トをそ れぞれ形成し、  The left and right pressure compensating valves are respectively formed with a first port and a second port that are shut off when the opening area is small and communicate with each other when the opening area is large,
前記左右の圧力補償弁の第 1 のポー トを前記左右の背圧弁の第 2 のポー トにそれぞれ連通する と共に、 前記左右の圧力補償弁の 第 1 ポー ト相互を連通し、 前記左右の圧力補償弁の第 2 ポー トを左右の負荷圧導入路にそ れぞれ連通した、 油圧モータの駆動システム。 The first ports of the left and right pressure compensating valves communicate with the second ports of the left and right back pressure valves, respectively, and the first ports of the left and right pressure compensating valves communicate with each other, A drive system for a hydraulic motor, wherein second ports of the left and right pressure compensating valves are respectively connected to left and right load pressure introduction paths.
PCT/JP1998/001921 1997-04-25 1998-04-24 Drive system for hydraulic motors WO1998049450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/108703 1997-04-25
JP10870397A JP3736657B2 (en) 1997-04-25 1997-04-25 Hydraulic motor drive system

Publications (1)

Publication Number Publication Date
WO1998049450A1 true WO1998049450A1 (en) 1998-11-05

Family

ID=14491488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001921 WO1998049450A1 (en) 1997-04-25 1998-04-24 Drive system for hydraulic motors

Country Status (2)

Country Link
JP (1) JP3736657B2 (en)
WO (1) WO1998049450A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4693952B2 (en) * 2000-02-10 2011-06-01 株式会社小松製作所 Hydraulic drive device using hydraulic motor and hydraulic motor
JP2004011168A (en) * 2002-06-04 2004-01-15 Komatsu Ltd Construction machinery
CN105927601B (en) * 2016-05-19 2018-01-26 武汉船用机械有限责任公司 One kind lifting hydraulic system
CN107975509A (en) * 2017-12-27 2018-05-01 徐工集团工程机械有限公司 Running motor integrates valve deck and running motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158403U (en) * 1978-04-27 1979-11-05
JPS6113004U (en) * 1984-06-28 1986-01-25 新キャタピラ−三菱株式会社 hydraulic regeneration circuit
JPS62147703U (en) * 1986-03-12 1987-09-18
JPH0687466U (en) * 1993-05-27 1994-12-22 株式会社小松製作所 Hydraulic circuit for traveling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158403U (en) * 1978-04-27 1979-11-05
JPS6113004U (en) * 1984-06-28 1986-01-25 新キャタピラ−三菱株式会社 hydraulic regeneration circuit
JPS62147703U (en) * 1986-03-12 1987-09-18
JPH0687466U (en) * 1993-05-27 1994-12-22 株式会社小松製作所 Hydraulic circuit for traveling

Also Published As

Publication number Publication date
JP3736657B2 (en) 2006-01-18
JPH10299706A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
JP5389461B2 (en) Hydraulic motor
JP3679300B2 (en) Volume control valve for variable displacement hydraulic rotating machine
RU2324091C2 (en) Regulation system of hydrostatic transmission
WO1991008395A1 (en) Hydraulic motor driving circuit device
KR100475517B1 (en) Hydraulic drive device of working machine
KR0158533B1 (en) Fluid brake device
JP4678096B2 (en) Hydraulic circuit for construction machinery
WO1995005544A1 (en) Capacity control device for variable capacity hydraulic pump
WO1998049450A1 (en) Drive system for hydraulic motors
JPH0841933A (en) Hydraulic controller for excavator
CN109210025B (en) Anti-cavitation hydraulic circuit
JP4325851B2 (en) HST travel drive device
JP3802989B2 (en) Hydraulic circuit of work vehicle
JP3006777B2 (en) Load sensing hydraulic circuit
JP3978292B2 (en) Travel drive device
JP3603007B2 (en) Variable displacement hydraulic motor displacement control device
JP4553680B2 (en) Travel drive fluid circuit
JP3155243B2 (en) Hydraulic control device with regeneration function
JPS60129402A (en) Hydraulic circuit of construction machine
JP6534946B2 (en) Hydraulic drive of hydraulic motor
JP3864595B2 (en) Relief pressure control device for relief valve
JPH03229003A (en) Hydraulic motor driving circuit
JP4215849B2 (en) Hydrostatic drive system
JP3431793B2 (en) Brake valve
JP2929451B2 (en) Hydraulic drive

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase