[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1998042797A1 - Process for producing aluminate phosphor - Google Patents

Process for producing aluminate phosphor Download PDF

Info

Publication number
WO1998042797A1
WO1998042797A1 PCT/JP1998/001324 JP9801324W WO9842797A1 WO 1998042797 A1 WO1998042797 A1 WO 1998042797A1 JP 9801324 W JP9801324 W JP 9801324W WO 9842797 A1 WO9842797 A1 WO 9842797A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminate
phosphor
based phosphor
alumina
particle size
Prior art date
Application number
PCT/JP1998/001324
Other languages
French (fr)
Japanese (ja)
Inventor
Hirofumi Moriyama
Tomofumi Moriyama
Yukie Kobayashi
Original Assignee
Kabushiki Kaisha Tokyo Kagaku Kenkyusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP08997797A external-priority patent/JP3268431B2/en
Priority claimed from JP09138897A external-priority patent/JP3366987B2/en
Application filed by Kabushiki Kaisha Tokyo Kagaku Kenkyusho filed Critical Kabushiki Kaisha Tokyo Kagaku Kenkyusho
Publication of WO1998042797A1 publication Critical patent/WO1998042797A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0838Aluminates; Silicates

Definitions

  • the present invention relates to, for example, an aluminate-based phosphor used for a three-wavelength fluorescent lamp that emits blue, blue-green, or green light when excited by ultraviolet light, or a long-time excited by ultraviolet light or visible light.
  • the present invention relates to a method for producing an aluminate-based phosphor, which has an afterglow characteristic used as a phosphorescent material having an afterglow property.
  • fluorescent lamps Since the production of fluorescent lamps in 1938, characteristics such as luminous brightness, luminous efficiency, color rendering, and life have been improved. In recent years, fluorescent lamps that are close to natural light with improved color rendering properties, so-called “three-wavelength fluorescent lamps,” have been developed by concentrating fluorescence strongly around the wavelengths of 450 nm (blue), 540 nm (green), and 610 nm (red). Widely used.
  • a blue phosphor is a barium-magnesium aluminate phosphor
  • a green phosphor is a cerium-magnesium-aluminate phosphor
  • a red phosphor is an oxidized phosphor. It has been used in situ phosphors.
  • magnesium (Mg), barium (Ba), and strontium (Sr) constituting an aluminate are added to an alumina powder.
  • Calcium (Ca), zinc (Zn) or cerium (Ce) compound powder, and a small amount of europium (Eu), manganese as an activator for producing luminescence.
  • a raw material to which at least one (Mn) or terbium (Tb) is added and mixed is used. These mixed raw materials are fired at a high temperature exceeding 1,000 ° C and then pulverized, and then subjected to classification, washing, and other treatments, and used as a phosphor for lamps.
  • phosphors with a primary particle diameter of 4 to 10 ⁇ m are generally used as phosphors for three-wavelength fluorescent lamps.
  • phosphorescent phosphors are usually used! Phosphors with a primary particle size of ⁇ 50 / m are used.
  • emission characteristics of phosphors are greatly affected by trace impurities.
  • high-purity alumina powder such as high-purity high-purity ⁇ -alumina or high-purity ⁇ -alumina
  • aluminate phosphor is used as the main raw material for the aluminate serving as the base material of the aluminate phosphor.
  • These high-purity alumina powders have a fine primary particle diameter, usually less than 1 / xm, and have strong agglomeration. Therefore, the phosphor after firing forms hard aggregated particles.
  • phosphors synthesized using these high-purity alumina powders are powders having a wide particle size distribution from submicron to about 100 / xm.
  • the aluminate-based phosphor uses a fine high-purity alumina raw material having a primary particle diameter of less than 1 / zm as the raw material alumina, and grows from a submicron to about 200 m by high-temperature firing. Therefore, the phosphor particles after firing have a wide particle size distribution and are strongly agglomerated and need to be pulverized. In addition, it is essential to remove fine particles and coarse particles by classification. As a result, there have been major problems such as degradation of light emission characteristics due to destruction of primary particles due to pulverization and unevenness of crystallinity, and a low yield as phosphor particles.
  • the present inventors have conducted intensive studies and found that as a blue phosphor, a blue-green phosphor, or a green phosphor, an aluminate phosphor and a phosphorescent material suitable for a three-wavelength fluorescent lamp and the like. To find a method for producing aluminate phosphor suitable for Has come to fruition.
  • the present invention provides an aluminate phosphor which is excellent in light emission characteristics due to easy pulverization and small number of fine particles, has high product yield, and obtains an aluminate-based phosphor while maintaining the particle diameter of ⁇ -alumina powder. It is an object of the present invention to obtain a method for producing a phosphor. That is, in the method for producing an aluminate-based phosphor according to the present invention, in the synthesis of the aluminate-based phosphor, a substantially fractured surface having a primary particle diameter of 0.3 / in or more and 30 / m or less is used as a raw material alumina. ⁇ -alumina powder which does not have is used, and when the raw materials are mixed and then fired, the raw ⁇ -alumina powder is fired without melting with a flux.
  • the aluminate-based phosphor has a general formula
  • M is at least one metal element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca);
  • an aluminate-based phosphor has a general formula
  • M 2 is at least one metal element selected from magnesium (Mg) and zinc (Zn),
  • d is 0.9 to 1.1
  • e is 0.9 to 1.1
  • f is 5.5.
  • an aluminate-based phosphor is represented by the following general formula:
  • the aluminate-based phosphor is represented by the general formula
  • the aluminate-based phosphor is represented by a general formula:
  • the aluminate-based phosphor is represented by a general formula:
  • alumina as the raw material alumina, as an ⁇ -alumina powder having a primary particle diameter of not less than 0.3 / xm and not having a substantially crushed surface of not more than 30 ⁇ m, an alumina having a purity of 99.9% by weight or more is used. Is the way.
  • the present invention relates to a method for producing an aluminate-based phosphor which is easy to pulverize and has a small amount of fine particles, has excellent light-emitting characteristics, and has a good product yield.
  • This ⁇ -alumina powder includes, for example, ⁇ -alumina sold under the trade name of Devanst alumina can be used (JP-A-6-191833, JP-A-6-191835, JP-A-6-191836).
  • the ⁇ -alumina particles are composed of magnesium, which constitutes the aluminate. (Mg), Norium (Ba), Strontium (Sr), Calcium (Ca), Zinc (Zn), Reacted with compounds such as lead (Pb), bismuth (Bi), or cerium (Ce) to find aluminate-based phosphor particles with less fine particles and less aggregation.
  • Mg magnesium, which constitutes the aluminate.
  • Sr Strontium
  • Ca Calcium
  • Zinc (Zn) Zinc
  • Reacted with compounds such as lead (Pb), bismuth (Bi), or cerium (Ce) to find aluminate-based phosphor particles with less fine particles and less aggregation.
  • this ⁇ -alumina powder has little dispersibility because it has almost no aggregated particles and no fine particles.
  • Magnesium (Mg), barium (Ba), strontium (Sr), calcium (Ca), zinc (Zn), lead (Pb), bismuth (Bi), or cerium (Ce) are homogeneously mixed with a compound powder, so it is thought that the phosphor will be less likely to generate fine particles. .
  • the adjacent ⁇ -alumina powder is partially melted by being fired without being melted by the flux, the entire ⁇ -alumina powder is fired without being melted. .
  • aluminate-based phosphors used in three-wavelength fluorescent lamps and the like that maintain the particle diameter of the size derived from the raw material ⁇ -alumina powder while maintaining the particle diameter of the alumina powder almost unchanged, An aluminate-based phosphor having light properties can be obtained.
  • the measured value of the average particle diameter based on the laser-scattering method is the average particle diameter of the raw material ⁇ -alumina powder. About 5 times to about 1.2 times the value of This is due to the adhesion between the obtained phosphors. This phenomenon was particularly large as the average particle diameter of the raw material a-alumina powder was smaller.
  • the aluminate-based phosphor obtained by firing without using a flux (flux) such as aluminum fluoride or boric acid has a phosphor with almost no change in the particle diameter of the raw material ⁇ -alumina powder. It is fired in a state where the phosphors are adhered to each other with a weak force. For this reason, the crushing or pulverization is easily separated by a force enough to loosen the adhesion between the particle diameters, and the crushing or crushing is easy and the number of fine particles is small. For this reason, an aluminate-based phosphor excellent in light emission characteristics and high in product yield can be easily obtained.
  • a flux such as aluminum fluoride or boric acid
  • aluminate-based phosphor having afterglow when a general ⁇ -alumina powder having a substantially crushed surface is used and fired without adding a flux during firing, All of the raw material ⁇ -alumina powder does not melt, but some of the corners of the fracture surface are melted, and the fired crystal becomes a so-called “rounded corner” state.
  • the phosphor is fired while maintaining almost the same.
  • the primary particle diameter of the raw material mono-alumina powder is smaller, adjacent particles of the ⁇ -alumina powder are fused with each other to form droplet-shaped particles having a primary particle diameter of about several / im. It is fired in a state where particles of about several meters are adhered with weak force.
  • the obtained aluminate-based phosphor having afterglow characteristics is fired in a state in which the fused bodies are bonded to each other with a weak force, so that it is easily applied with a force enough to loosen the bonding between the fused bodies. It comes apart. Therefore, an aluminate-based phosphor having excellent afterglow characteristics and a high product yield and having a long afterglow characteristic can be easily obtained because of easy release and few fine particles.
  • aluminate-based phosphor is fired as a phosphor having almost no difference in particle diameter from the raw material ⁇ -alumina powder, and is fired in a state where the phosphors are adhered with a small force. For this reason, the crushing or pulverization is easily separated with a force enough to loosen the adhesion between the particle diameters, so that the crushing or pulverization is easy and the fine particles are reduced. Few.
  • an aluminate-based phosphor excellent in light emission characteristics and high in product yield can be easily obtained.
  • magnesium (Mg), barium (Ba), strontium (Sr), calcium (Ca), zinc (Zn), lead (Pb), bismuth Reaction with compound powder such as (Bi) or cerium (Ce) becomes difficult.
  • the alumina purity of ⁇ -alumina is 99.9% by weight or more.
  • oxides, hydroxides, carbonates, nitrates, halides, and the like that can be decomposed at high temperatures to form oxides can be used.
  • Aluminate-based phosphor has the general formula aM! O ⁇ bMgO ⁇ c A 1 2 ⁇ 3 europium double engagement oxide substrate represented by (E u) alone or europium (E u) and manganese (M n)
  • E u europium
  • M n manganese
  • aluminate-based phosphor is formula a (B a, S r) 0 - bMgO - cA l 2 europium (E u) to the composite oxide substrate represented by Rei_3 alone or europium (E u)
  • a is in the range of 0.9 to 1.7
  • b is in the range of 1.5 to 2.1
  • c is in the range of 8.
  • aluminate-based phosphor is formula a (B a, C a) 0 'c A l 2 0 europium (E u) to the composite oxide substrate represented by 3 alone, or a europium (E u)
  • a is preferably in the range of 1.0 to 1.5
  • c is preferably in the range of 6.
  • a 3.9 To 4.1 and c are preferably in the range of 7.
  • d is in the range of 0.9 to 1.1
  • e is in the range of 0.9 to 1.1
  • f is in the range of 5.5 Is preferred.
  • Raw materials such as europium (Eu), manganese (Mn), and terbium (Tb) that act as activators for emitting light include oxides, hydroxides, carbonates, nitrates, and halides at high temperatures. Those which can be decomposed into oxides can be used. ..
  • aluminate-based phosphor is formula a (B a, S r) 0 ⁇ bMgO ⁇ c A 1 ⁇ 3 europium complex oxide substrate represented by (E u) alone or
  • the amount of europium (Eu) added is 0.01a to 0.15a
  • the amount of manganese (Mn) added is It is preferably in the range of 0.15 b or less.
  • aluminate-based phosphor is formula a (B a, C a) ⁇ ⁇ c A 1 ⁇ 3 europium complex oxide substrate represented by (E u) alone or with manganese europium (Eu) (
  • Eu europium
  • Mn manganese
  • aluminate-based phosphor of the general formula a S r O ⁇ c A 1 2 0 europium (E u) to the composite oxide substrate represented by 3 is added, aluminate-based phosphor as an activator
  • the amount of europium (Eu) be in the range of 0.02 a to 0.06 a.
  • aluminate-based phosphor is formula dC eOu ⁇ eM 2 0 - activator consisting of terbium (Tb) and / or manganese (Mn) in the composite oxide substrate to be shown at f A l 2 ⁇ 3
  • Tb terbium
  • Mn manganese
  • the addition amount of terbium (Tb) is in the range of 0.3d to 0.5d and the addition amount of manganese (Mn) is in the range of 0.15e or less.
  • the product obtained by the above method is pulverized using a ball mill, a jet mill, or the like, and then washed, but classified if necessary.
  • aluminate-based phosphor of the present invention obtained by using a powder as a raw material is extremely useful as a three-wavelength fluorescent lamp because it is easy to pulverize, has few fine particles, has excellent emission characteristics, and has a high product yield.
  • any phosphor containing an aluminate in a mother crystal may be used.
  • aluminate-based phosphors having afterglow characteristics of several ten minutes to several hours described in Japanese Patent No. 254 3825 and Japanese Patent Application No. 7-112574 are exemplified.
  • Aluminate-based phosphor having afterglow characteristics the formula hM 3 ⁇ ⁇ A 1 2 ⁇ 3 [M 3 is selected from the group consisting of strontium (S r), calcium (C a), barium (B a) Compound consisting of at least one or more metal elements, h is from 0.5 to 1.1] on a composite oxide substrate represented by: europium (Eu) as an activator, lanthanum (La), cerium (Ce) , Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb) ), Lutetium (Lu), Manganese (Mn), Tin (Sn), Bismuth (Bi), Scandium (Sc) at least one element was added as a co-activator for compounds, added pressure amount
  • europium complex oxide substrate phosphorescent aluminate phosphor represented by the general formula h S r O ⁇ A 1 2 ⁇ (Eu) is as an activator, was further added as dysprosium co activator
  • h is preferably in the range of 0.9 to 1.1.
  • an aluminate-based phosphor having afterglow characteristics is a composite oxide represented by the general formula hC a ⁇ ⁇ A 1 2 3
  • h is preferably in the range of 0.9 to 1.1.
  • a composite oxide substrate to europium (E u) is an activator of luminous aluminate-based phosphor is shown by the formula h S r O ⁇ A 1 2 ⁇ , with further Jisupuroshiu arm co
  • europium (Eu) may be added in the range of 0.01 h to 0.1 lh and dysprosium in the range of 0.02 h to 0.2 h. preferable.
  • an activator europium (E u) is a composite oxide substrate represented phosphorescent aluminate phosphor is by the formula h C aO ⁇ A 1 2 ⁇ 3, further added as activator co neodymium
  • the addition amount of europium (Eu) is in the range of 0.01 h to 0.1 h
  • the addition amount of neodymium is in the range of 0.02 h to 0.2 h. Addition of an activator in a smaller amount or a larger amount than these preferable ranges is not preferable because it lowers the luminance. ...
  • the aluminate-based phosphor for a phosphorescent material according to the present invention obtained by using an ⁇ -alumina powder having a primary particle diameter of 0.3 im or more and 30 m or less and having substantially no crushed surface as a raw material is easily crushed. It has excellent afterglow properties due to its small number of fine particles and is highly useful as a phosphorescent material because of its high product yield.
  • FIGS. 1a and 1b are drawings showing the particle shape of the raw material ⁇ -alumina ( ⁇ ⁇ ⁇ ⁇ -07) in a scanning electron micrograph.
  • FIG. 2a and 2b are drawings showing the particle shape of raw material alumina (AA-2) in a scanning electron micrograph, and FIG. Has an enlargement factor of 500.000.
  • Figures 3a and 3b are scanning electron micrographs of the raw material ⁇ -alumina ( ⁇ -3).
  • 3A is a drawing showing the particle shape
  • FIG. 3A is a drawing having a magnification of 2000 times
  • FIG. 3B is a drawing having a magnification of 500 times.
  • FIGS. 4a and 4b are drawings showing the particle shape of raw material alumina (AA-5) in a scanning electron micrograph.
  • FIG. 4a shows the particle shape at a magnification of 2000 times.
  • b has an enlargement factor of 500.000.
  • FIGS. 5a and 5b are drawings showing the particle shape of the raw material ⁇ -alumina ( ⁇ -8) in a scanning electron micrograph, and FIG. b has an enlargement factor of 500.000.
  • FIGS. 6a and 6b are drawings showing the particle shape of the raw material ⁇ -alumina ( ⁇ -10) in a scanning electron micrograph, and FIG. 6b has a magnification of 500.000.
  • FIGS. 7a and 7b are drawings showing the particle shape of the raw material ⁇ -alumina ( ⁇ 18) in a scanning electron micrograph. 7b has a magnification of 500.000.
  • FIG. 8a and 8b are drawings showing the particle shape of the raw material ⁇ -alumina (RA-40) in a scanning electron micrograph, and FIG. 8a shows the particle shape at a magnification of 2000 times. b has an enlargement factor of 500.000.
  • Fig. 9a and Fig. 9b show the particle shape of BAT-1 phosphor (using AA-2) by scanning electron microscopy.
  • Fig. 9a shows the one with a magnification of 2000 times. In FIG. 9B, the magnification is 500 ⁇ .
  • FIGS. 10a and 10b are drawings showing the particle shape of the BAT-2 phosphor (using AA-3) in a scanning electron micrograph, and FIG. In FIG. 10b, the magnification is 5,000 times.
  • Fig. 11a and Fig. 11b are drawings showing the particle shape of a BAT-3 phosphor (using AA-5) in a scanning electron micrograph.
  • Fig. 11a shows a magnification of 2000.
  • the magnification is 50,000 times.
  • Fig. 12a and Fig. 12b show the particle shape of the BAT-4 phosphor (using AA-8) in a scanning electron micrograph.
  • Fig. 12a shows the particle size of 20000.
  • the magnification is 500 times.
  • Figures 13a and 13b are drawings showing the particle shape of a BAT-5 phosphor (using AA-10) in a scanning electron micrograph, and Figure 13a shows a magnification of 20%.
  • the magnification is 5,000 times.
  • Figs. 14a and 14b are drawings showing the particle shape of a BAT-6 phosphor (using AA-18) in a scanning electron micrograph, and Fig. 14a shows a magnification of 20%.
  • the magnification is 0000 times, and the magnification is 50,000 times.
  • Fig. 15a and Fig. 15b are drawings showing the particle shape of the BAT-REF phosphor (using RA-40) of the comparative example in a scanning electron micrograph, and Fig. 15a shows the magnification.
  • FIG. 15b shows a magnification of 2000 times
  • FIG. 15b shows a magnification of 5000 times.
  • Fig. 16a and Fig. 16b are diagrams showing the particle shape of the aluminate-based phosphor (AA07-127R) by a scanning electron microscope.
  • the magnification is 0000 times, and the magnification is 500 times.
  • Fig. 17a and Fig. 17b are drawings showing the particle shape of the aluminate-based phosphor (AA30-129R) with a scanning electron microscope.
  • Fig. 17a shows a magnification of 20%.
  • the magnification is 500 times, and the magnification is 500 times.
  • FIGS. 18a and 18b are drawings showing the particle shape of the aluminate-based phosphor (AA50-130R) by scanning electron microscopy, and FIG. In FIG. 18b, the magnification is 0000 times, and the magnification is 5,000 times.
  • Fig. 19a and Fig. 19b are drawings showing the particle shape of the aluminate-based phosphor (RA-124R) by scanning electron microscopy, and Fig. 19a shows a magnification of 200 In FIG. 19b, the magnification is 500 times.
  • FIGS. 20a and 20b show the particle shapes of the comparative phosphor CP-056C30 before crushing with a scanning electron microscope, and FIG. 20a shows a magnification of 2000 times. Fig. 20b shows the case where the magnification is 500 times.
  • FIGS. 21 a and 21 b are drawings showing the particle shape of a comparative phosphor, CP-05 6C30SS, with a scanning electron microscope, and FIG. 21 a is the one with a magnification of 2000 times. 2 lb is a magnification of 500,000.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. Various measurements in the present invention were performed as follows.
  • the primary particle size of the ⁇ -alumina powder is 80 to 10.0 particles from the SEM (scanning electron microscope, manufactured by JEOL Ltd .: 300-1) photograph of the ⁇ -alumina powder. The children were selected and image analysis was performed, and the average value of the circle equivalent diameter was obtained.
  • the equivalent circle diameter is a value converted into the diameter of a perfect circle having the same area.
  • the average particle size (D50) and particle size distribution (D90ZD10) of the aluminate-based phosphor were measured using the SK Laser Micron Sizer-1 (manufactured by Seishin Enterprise), which uses the laser scattering method as the measurement principle. It measured using.
  • the Hi-Alumina powder having a primary particle diameter of 0.3 m or more and 30 rn or less and having substantially no crushed surface used in this example is sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Aluminum. A lot of alumina powder having the characteristics shown in the following Tables 1 and 2 was used. In addition, RA-40 was used as a comparative example.
  • FIGS. 1 to 7 show the particle shape of the raw material ⁇ -alumina used in this example in a scanning electron micrograph.
  • FIG. FIG. 8 is a drawing showing the particle shape of a raw material ⁇ -alumina used for comparison in a scanning electron micrograph.
  • the a-alumina powder includes AA-2 (average particle size 1.8 ⁇ m, particle size distribution 2.1) and AA-3 (average particle size) sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Alumina. Particle size 2.7 m, particle size distribution 2.1), AA-5 (average particle size 4.7 urn, particle size distribution 2.0), AA-8 (average particle size 7.0 ⁇ m, particle size distribution 1. 8), AA-10 (average particle size 9.2 um, particle size distribution 6), AA-18 (average particle size 15 / m, particle size distribution 6), and RA-40 (average particle size) A diameter of 2.7 urn and a particle size distribution of 7.0) were used.
  • the above-mentioned raw materials were sufficiently mixed by a pole mill, and calcined in a reducing atmosphere at 1500 ° C. for 3 hours without flux to obtain a phosphor (burn-up). Further, the obtained phosphor was crushed by a bead mill for 30 minutes to obtain a phosphor (after crushing).
  • aluminum fluoride was added as a flux (substituting 3% mol of aluminum atoms in mono-alumina) and calcined at 1300 ° C for 3 hours in a reducing atmosphere. The phosphor was obtained (baked). Further, the obtained oxide was pulverized with a bead mill for 60 minutes to obtain a phosphor.
  • Table 3 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking and crushing.
  • 9 to 14 show the particle shapes of the obtained phosphors in scanning electron micrographs.
  • FIG. 15 is a drawing showing the particle shape of the phosphor of the comparative example in a scanning electron micrograph.
  • the raw material a—Alumina powder was calcined so as not to be melted by the flux, and the primary particle diameter was 0.3 im or more and 30 / m or less and had substantially no crushed surface.
  • -A phosphor with different particle diameters derived from alumina powder was obtained.
  • the particle size of the raw material ⁇ -alumina powder was It can be seen that the aluminate-based phosphor having a size derived from the particle diameter of the raw material mono-alumina was obtained without being substantially melted.
  • the measured value of the average particle diameter was about 1.4 to about 13 times the value of the particle diameter of the raw material ⁇ -alumina powder. This is due to the adhesion between the obtained phosphors. That is, BAT— :! of the present embodiment.
  • the BAT-5 phosphor is fired as a phosphor having almost no change in the particle diameter of the raw material alumina powder, and is fired in a state where the phosphors are adhered with a small force. For this reason, the crushing is easily separated by a force enough to loosen the adhesion between the particle diameters, and the crushing is easy and the number of fine particles is small. As a result, an aluminate-based phosphor having excellent afterglow characteristics and a high product yield can be easily obtained.
  • Example 2 manufactured of BAL phosphor, no flux added
  • Hi-Alumina powder includes AA-3 (average particle size 2.7 urn, particle size distribution 2.1) and AA-5 (average particle size) sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Alumina. Particle size 4.7 urn, particle size distribution 2.0) and AA-8 (average particle size 7.0 urn, particle size distribution 2.1) were used, and RA-40 (average particle size 2.7 urn, The particle size distribution 7.0) was used.
  • the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 150 ° C. for 3 hours without flux to obtain a phosphor (burn-up).
  • aluminum fluoride was added as a flux (substituting 3% mol of aluminum atom of a-alumina), and the mixture was heated at 1300 ° C for 3 hours in a reducing atmosphere. Fired. After the obtained oxide was pulverized, this powder was further fired again at 130 ° C. for 3 hours in a reducing atmosphere to obtain a phosphor (burn-up).
  • Table 4 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking.
  • the raw material a—alumina powder was calcined so as not to be melted by the flux, and the primary particle diameter was 0.3 m or more and 30 urn or less and had substantially no crushed surface. Phosphors having different particle diameters derived from alumina powder were obtained.
  • Example 3 (Production of SAE phosphor, no flux added)
  • SAE phosphor represented by (4 (S r 0. 96, E Uo.. 4) O. 7 A 1 2 0 3).
  • ⁇ -alumina powder is available under the trade name of Advanced Alumina from Sumitomo Chemical Co., Ltd.
  • ⁇ -3 average particle size 2.7 xm, particle size distribution 2.1
  • AA-5 average particle size Diameter 4.7 fim, particle size distribution 2.0
  • AA-8 average particle size 7.0 zm, particle size distribution 2.1
  • RA-40 average particle size 2.7 urn, particle size
  • the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 150 ° C. for 3 hours without flux to obtain a phosphor (burn-up).
  • aluminum fluoride was added as a flux (substituting 3% mole of aluminum atom of ⁇ -alumina), and 0.20 mole of boric acid was added. It was calcined at 1300 ° C. for 3 hours in a neutral atmosphere. After the obtained oxide was pulverized, it was further fired at 130 ° C. for 3 hours in a reducing atmosphere to obtain a phosphor (burn-up).
  • Table 5 shows the results of comparison of the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking.
  • Table 5 shows the results of comparison of the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking.
  • Table 5 shows the results of comparison of the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking.
  • Table 5 shows the results of comparison of the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking.
  • Table 5 shows the results of comparison of the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking.
  • a-alumina powder includes AA-07 (average particle size 0.66 xm, particle size distribution 2.5) and AA-2 (average particle size) sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Alumina. Diameter 1.8; m, particle size distribution 2.1), AA-3 (average particle size 2.7 urn, particle size distribution 2.1), AA-5 (average particle size 4.7 urn, particle size distribution 2) 0), AA-8 (average particle size 7.0 urn, particle size distribution 2.1), AA-10
  • Table 6 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking and crushing. As shown in Table 6, by firing the raw material ⁇ -alumina powder so as not to be melted by the flux, the raw material alumina powder having a primary particle diameter of 0.3 to 30 and having substantially no crushed surface was obtained. Phosphors having different particle diameters derived from the powder were obtained.
  • Example 5 (Production of CM Z phosphor, no flux added)
  • Cerium oxide (Ce0 2)
  • the a-alumina powder includes AA-3 (average particle size 2.7 n, particle size distribution 2.1) and AA-5 (average particle size) sold under the trade name of Advanced Alumina by Sumitomo Chemical Co., Ltd. Diameter 4.7 um, particle size distribution 2.0) AA-8 (average particle diameter /
  • the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 1500 ° C. for 3 hours without flux to obtain a phosphor (baked). Further, the obtained phosphor was unframed in a bead mill for 30 minutes to obtain a phosphor (after crushing).
  • aluminum fluoride was added as a flux (substituting 3% mol of aluminum atoms of monoalumina), and firing was performed at 1300 ° C for 3 hours in a reducing atmosphere. After the obtained oxide was pulverized, it was further baked at 130 ° C. for 3 hours in a reducing atmosphere to obtain a phosphor (burn-up). Further, the obtained phosphor was powder-framed with a beam mill for 60 minutes to obtain a phosphor.
  • Table 7 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking and crushing. As shown in Table 7, by firing the raw material alumina powder so as not to be melted by the flux, the raw material powder having a primary particle diameter of 0.3 m or more and 30 m or less and having substantially no crushed surface is obtained. Phosphors having different particle diameters derived from alumina powder were obtained.
  • Example 6 (Production of high afterglow acid salt-based phosphor without using flux)
  • Dysprosium oxide (Dy 2 0 3),
  • Facial - alumina powder (a- A l 2 0 3) ,
  • ⁇ -alumina powder Hi-Alumina powder A-07, AA-3, AA-5 (trade name “Advanced Alumina”, manufactured by Sumitomo Chemical Co., Ltd.) and RA-40 (Commercially available, manufactured by Iwatani Chemical Industry Co., Ltd.).
  • the average particle size of the raw material ⁇ -alumina powder used and the particle size characteristics of the particle size distribution are as shown in Table 8 below.
  • the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 1300 ° C. for 3 hours, and the obtained oxide was ground in an automatic mortar for 20 minutes to obtain each phosphor. .
  • a commercially available aluminate-based phosphor CP-056C30 having afterglow properties (commercially available product, trade name “Pikarico” manufactured by Chemitech Co., Ltd.) was ground in an automatic mortar for 120 minutes.
  • CP-05 6C30SS was used.
  • Table 9 shows the properties of the obtained phosphor, such as the afterglow intensity
  • Table 10 shows the average particle diameter and the particle diameter characteristics of the particle size distribution.
  • the afterglow intensity was as follows: CP-056C30 (commercial product, product name “Pikarico”, manufactured by Chemitech Co., Ltd.) was crushed in an automatic mortar for 120 minutes (CP-056C30 SS) as 100%. It is a calculated value.
  • the obtained aluminum having afterglow characteristics The particle shapes of the phosphate-based phosphor with a scanning electron microscope are shown in the substitute photographs in Figs. 16 to 19, respectively. Fig.
  • FIG. 21 is a drawing showing the particle shape of the aluminate-based phosphor CP-056C30 having afterglow characteristics as compared to Fig. 20.
  • Fig. 21 shows the particle shape of the phosphor of Fig. 20.
  • a drawing showing the particle shape of the product (CP-05 6C30SS) with a scanning electron microscope is shown.
  • the measured value of the average particle diameter of the obtained aluminate-based phosphor having the afterglow characteristic based on the laser-scattering method is substantially crushed.
  • the average particle diameter of ⁇ -alumina powder raw material before firing is 0.66 xm ⁇
  • the average particle diameter of the obtained aluminate phosphor having afterglow characteristics after firing is 6.4 m to 1 / xm. 0.9; about 13 times to about 2.3 times the average particle diameter of m and the raw material alumina powder.
  • the 50% average particle size (D50) must be reduced to the same particle size as AA-07, AA-3, and AA-5. Must be sufficiently crushed, and the labor involved in this crushing is enormous.
  • the afterglow intensity is equal to or less than that of the particles having the same particle diameter, and the particle diameter is not uniform and classification is required.
  • the afterglow intensity was lower than that of a commercially available aluminate-based phosphor having afterglow characteristics. This is because the primary particle diameter of raw material a-alumina is 0.46 m, which is much smaller than other particle diameters, and the average particle diameter of the obtained phosphor is also much smaller, 6.4 zm.
  • Commercially available aluminate with afterglow properties It is important to compare salt phosphors with an average particle diameter of about RA-40. However, milling of aluminate phosphors with afterglow properties that are commercially available to about 6.4 m is virtually impossible. Impossible.
  • the aluminate-based phosphor having the afterglow characteristic according to the present invention exhibits a high afterglow intensity despite the small average particle diameter, and the aluminate-based phosphor having extremely excellent afterglow characteristics A phosphor can be obtained. .
  • (S r, Euo .. 10 , Dy 0 .. 02) has shown an example of O ⁇ A 1 2 0 3 phosphor, the general formula; aMO 'A l 2 0 3 ( where , M is a compound consisting of at least one metal element selected from the group consisting of strontium (Sr), calcium (Ca), and barium (Ba), and a is 0.5 to 1.1) Europium (Eu) was added as an activator to the composite oxide substrate represented by the above in an amount of 0.002% or more and 20% or less in terms of mol% based on the metal element represented by M.
  • Cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), At least one element in the group consisting of ytterbium (Yb), lutetium (Lu), and scandium (Sc) is represented by M Aluminate-based phosphor having afterglow properties added in an amount of 0.002% or more and 20% or less in terms of mol% based on a metal element, and a general formula; (Sr, Eu, Pb, Dy) O A 1, B i) 2 ⁇ 3 (0.83 ⁇ y ⁇ l.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

A process for producing a three-band or photostimulable aluminate phosphor, which comprises mixing feedstocks including an α-alumina powder having a primary-particle diameter of 0.3 to 30 νm and being substantially from fractures and then baking the mixture without fluxing the feedstock α-alumina particles. The phosphor thus obtained can be easily powdered, has excellent luminescent properties because of a small content of fine particles, attains a high product yield, and retains the particle diameter of the α-alumina powder.

Description

明 細 書  Specification
アルミン酸塩系蛍光体の製造方法  Method for producing aluminate phosphor
技術分野  Technical field
本発明は、 例えば、 紫外線で励起されて青色、 青緑色或いは緑色発光を示す 3 波長形蛍光ランプ等に使用されるアルミン酸塩系蛍光体、 又は、 紫外線、 可視光 で励起されて長時間の残光性を示す蓄光材等に使用される残光特性を有する.アル ミン酸塩系蛍光体の製造方法に関する。  The present invention relates to, for example, an aluminate-based phosphor used for a three-wavelength fluorescent lamp that emits blue, blue-green, or green light when excited by ultraviolet light, or a long-time excited by ultraviolet light or visible light. The present invention relates to a method for producing an aluminate-based phosphor, which has an afterglow characteristic used as a phosphorescent material having an afterglow property.
背景技術  Background art
蛍光ランプは 1 938年に製造開始されて以来、発光輝度、発光効率、演色性、寿命な どの特性向上がはかられてきた。 近年、 450nm (青)、 540nm (緑)、 610nm (赤)の各々 の波長付近に強く蛍光を集中させることにより、 演色性を改良した自然光に近い 蛍光ランプ、 所謂 「3波長形蛍光ランプ」 が広く使用されている。  Since the production of fluorescent lamps in 1938, characteristics such as luminous brightness, luminous efficiency, color rendering, and life have been improved. In recent years, fluorescent lamps that are close to natural light with improved color rendering properties, so-called “three-wavelength fluorescent lamps,” have been developed by concentrating fluorescence strongly around the wavelengths of 450 nm (blue), 540 nm (green), and 610 nm (red). Widely used.
この 3波長形蛍光ランプには、 例えば、 青色蛍光体としてはバリウム—マグネ シゥムーアルミネィ 卜蛍光体が、 緑色蛍光体としてはセリウム—マグネシウム一 アルミネィ卜蛍光体が、 また赤色蛍光体としては酸化ィットリゥム蛍光体が使用 されてきた。  In this three-wavelength fluorescent lamp, for example, a blue phosphor is a barium-magnesium aluminate phosphor, a green phosphor is a cerium-magnesium-aluminate phosphor, and a red phosphor is an oxidized phosphor. It has been used in situ phosphors.
例えば、 青色蛍光体又は緑色蛍光体のアルミン酸塩系蛍光体の製造には、 アル ミナ粉末に、 アルミン酸塩を構成するマグネシウム(M g )、 バリウム(B a )、 ス トロンチウム(S r )、 カルシウム(C a )、 亜鉛(Z n )或いはセリウム(C e )の化 合物粉末を混合し、 更に、 発光を生じさせるための付活剤として少量のユーロピ ゥム( E u )、 マンガン(M n )やテルビウム(T b )が 1種以上添加混合された原料 が用いられる。 これら混合原料は、 1,000°Cを越える高温にて焼成された後粉砕さ れ、 更に分級、 洗浄等の処理が行われ、 ランプ用蛍光体として用いられる。  For example, for the production of aluminate phosphors of blue or green phosphors, magnesium (Mg), barium (Ba), and strontium (Sr) constituting an aluminate are added to an alumina powder. , Calcium (Ca), zinc (Zn) or cerium (Ce) compound powder, and a small amount of europium (Eu), manganese as an activator for producing luminescence. A raw material to which at least one (Mn) or terbium (Tb) is added and mixed is used. These mixed raw materials are fired at a high temperature exceeding 1,000 ° C and then pulverized, and then subjected to classification, washing, and other treatments, and used as a phosphor for lamps.
一方、 夜間表示や夜光時計用として、 放射性物質を蛍光体に添加した自発光性 夜光塗料が利用されてきた。 最近に至っては放射性物質を用いない長時間の残光 性を有する蓄光性蛍光体の応用が広く検討されている。 蓄光性蛍光体としては、 例えばユーロピウム付活ストロンチウムアルミネィ卜が主として検討されている (特許第 2 5 4 3 8 2 5号公報)。 発明の開示 On the other hand, self-luminous luminous paints, in which a radioactive substance is added to a phosphor, have been used for nighttime display and luminous clocks. Recently, the application of phosphorescent phosphors having long-term persistence without using radioactive substances has been widely studied. As a phosphorescent phosphor, for example, europium-activated strontium alumina has been mainly studied (Japanese Patent No. 2543838). Disclosure of the invention
蛍光体の特性は、 蛍光体粒子の一次粒子径に影響を受け、 発光効率は蛍光体粒 子が大きいほうが高いことはよく知られているが、 一方、 実用蛍光体は発光特性 に加え塗布性にも優れていることが必要であり、 その点から 3波長形蛍光ランプ 用蛍光体では、 通常 4〜10 ^ mの一次粒子径の蛍光体が使用されている。 また、 蓄 光性蛍光体では、 通常 !〜 50 / mの一次粒子径の蛍光体が使用されている。 更に、 蛍光体の発光特性は微量不純物に大きく影響を受けることはよく知られ ている。 そのため、 アルミン酸塩系蛍光体の基体となるアルミネイトには、 高純 度に精製した高純度 α—アルミナ或いは高純度ァーアルミナ等の高純度アルミナ 粉末が主原料として用いられる。 これら高純度アルミナ粉末は、 一次粒子径が微 細で通常 1 /x m未満であり凝集が強いため、 焼成後の蛍光体は堅い凝集粒子を形成 する。  It is well known that the characteristics of phosphors are affected by the primary particle diameter of the phosphor particles, and that the luminous efficiency is higher when the phosphor particles are larger. Therefore, phosphors with a primary particle diameter of 4 to 10 ^ m are generally used as phosphors for three-wavelength fluorescent lamps. In addition, phosphorescent phosphors are usually used! Phosphors with a primary particle size of ~ 50 / m are used. Further, it is well known that the emission characteristics of phosphors are greatly affected by trace impurities. Therefore, high-purity alumina powder, such as high-purity high-purity α-alumina or high-purity α-alumina, is used as the main raw material for the aluminate serving as the base material of the aluminate phosphor. These high-purity alumina powders have a fine primary particle diameter, usually less than 1 / xm, and have strong agglomeration. Therefore, the phosphor after firing forms hard aggregated particles.
一方、 これらの堅い凝集粒子を粉砕することにより低減することも出来るが、 凝集粒子の残留や粉枠に伴う微粒子の生成により粉砕後の粒度分布は広いものと なる。 そのためこれらの高純度アルミナ粉末を用いて合成された蛍光体は、 サブ ミクロンから約 1 00 /x mの広い粒度分布からなる粉末となる。  On the other hand, the reduction can be achieved by pulverizing these hard aggregated particles, but the particle size distribution after the pulverization becomes wider due to the residual aggregated particles and the generation of fine particles accompanying the powder frame. Therefore, phosphors synthesized using these high-purity alumina powders are powders having a wide particle size distribution from submicron to about 100 / xm.
即ち、 アルミン酸塩系蛍光体は、 原料アルミナとして一次粒子径が 1 /z m未満の 微細な高純度アルミナ原料を用い、 高温焼成によりサブミクロンから約 200 mの 蛍光体粒子に成長する。 そのため、 焼成後の蛍光体粒子は粒度分布が広く且つ強 く凝集しており粉砕する必要がある。 加えて分級により微粒子及び粗大粒子を除 去することが必須である。 その結果、 粉碎による一次粒子の破壊や結晶性の不均 一化を原因とする発光特性の低下、 更には蛍光体粒子としての歩留りが低い等大 きな問題があった。  In other words, the aluminate-based phosphor uses a fine high-purity alumina raw material having a primary particle diameter of less than 1 / zm as the raw material alumina, and grows from a submicron to about 200 m by high-temperature firing. Therefore, the phosphor particles after firing have a wide particle size distribution and are strongly agglomerated and need to be pulverized. In addition, it is essential to remove fine particles and coarse particles by classification. As a result, there have been major problems such as degradation of light emission characteristics due to destruction of primary particles due to pulverization and unevenness of crystallinity, and a low yield as phosphor particles.
従って、 これまで粉砕が容易で且つ微粒子が少なく発光特性に優れ、 製品歩留 りが高いァルミン酸塩系蛍光体は 3波長形蛍光ランプ用蛍光体及び蓄光性蛍光体 では共に未だ得られていない。  Therefore, to date, no phosphorates for tri-wavelength fluorescent lamps and phosphorescent phosphors have been obtained, which are easy to grind, have few fine particles, have excellent emission characteristics, and have a high product yield. .
かかる事情のもとで、 本発明らは鋭意検討を重ねた結果、 青色蛍光体、 青緑蛍 光体或いは緑色蛍光体として、 3波長形蛍光ランプ等に適するアルミン酸塩蛍光 体及び蓄光材等に適するアルミン酸塩蛍光体の製造方法を見い出し、 本発明を完 成するに至った。 Under these circumstances, the present inventors have conducted intensive studies and found that as a blue phosphor, a blue-green phosphor, or a green phosphor, an aluminate phosphor and a phosphorescent material suitable for a three-wavelength fluorescent lamp and the like. To find a method for producing aluminate phosphor suitable for Has come to fruition.
本発明は、 粉砕が容易で且つ微粒子が少ないため発光特性に優れ、 製品歩留り が高く、 α—アルミナ粉末の粒子径を維持したままアルミン酸塩系蛍光体を得る ことを特徴とするアルミン酸塩系蛍光体の製造方法を得ることを目的とする。 即ち、 本発明に係るアルミン酸塩系蛍光体の製造方法では、 アルミン酸塩系蛍 光体の合成にあたり、 原料アルミナとして一次粒子径が 0.3 /in以上で 30/ m以下の 実質的に破碎面を有しない α—アルミナ粉末を用い、 各原料を混合した後の焼成 の際に、 原料 α—アルミナ粉末をフラックスによる溶融を行わせずに焼成するも のである。  The present invention provides an aluminate phosphor which is excellent in light emission characteristics due to easy pulverization and small number of fine particles, has high product yield, and obtains an aluminate-based phosphor while maintaining the particle diameter of α-alumina powder. It is an object of the present invention to obtain a method for producing a phosphor. That is, in the method for producing an aluminate-based phosphor according to the present invention, in the synthesis of the aluminate-based phosphor, a substantially fractured surface having a primary particle diameter of 0.3 / in or more and 30 / m or less is used as a raw material alumina. Α-alumina powder which does not have is used, and when the raw materials are mixed and then fired, the raw α-alumina powder is fired without melting with a flux.
本発明の 1つの態様によれば、 アルミン酸塩系蛍光体が、 一般式  According to one embodiment of the present invention, the aluminate-based phosphor has a general formula
aM.O - bMgO - cA l a03 aM.O-bMgO-cA l a 0 3
で示される複合酸化物基体にユーロピウム(Eu)単独、 又はユーロピウム(Eu) とマンガン(M n )からなる付活剤が添加された化合物であり、 Is a compound in which europium (Eu) alone or an activator composed of europium (Eu) and manganese (Mn) is added to a composite oxide substrate represented by
M,がバリゥム(B a)、 ストロンチウム(S r)及びカルシウム(C a)からなる群 から選ばれる少なくとも 1種の金属元素であり、  M, is at least one metal element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca);
aが 0.5から 4.5、 bが 0から 4、 cが 0.5から 20の範囲にあるものである。 また、 本発明の別の態様によれば、 アルミン酸塩系蛍光体が一般式 a is in the range of 0.5 to 4.5, b is in the range of 0 to 4, and c is in the range of 0.5 to 20. Further, according to another aspect of the present invention, an aluminate-based phosphor has a general formula
Figure imgf000005_0001
Figure imgf000005_0001
で示される複合酸化物基体にテルビウム(Tb)及び 又はマンガン(Mn)からな る付活剤が添加された化合物であり、 A compound in which an activator made of terbium (Tb) and / or manganese (Mn) is added to the composite oxide substrate represented by
M2がマグネシウム(Mg)、 亜鉛(Z n)から選ばれる少なくとも 1種の金属元素 であり、 M 2 is at least one metal element selected from magnesium (Mg) and zinc (Zn),
dが 0.9から 1.1、 eが 0.9から 1.1、 fが 5.5であるものである。  d is 0.9 to 1.1, e is 0.9 to 1.1, and f is 5.5.
更に、 本発明の別の態様によれば、 アルミン酸塩系蛍光体が、 一般式  Further, according to another aspect of the present invention, an aluminate-based phosphor is represented by the following general formula:
hMsO · A 1  hMsOA 1
(M3はストロンチウム(S r)、 カルシウム(C a;)、 ノ リウム(B a)からなる群か ら選ばれる少なくとも 1つ以上の金属元素からなる化合物、 hは 0.5から 1.1) で示される複合酸化物基体に、 付活剤としてのユーロピウム(Eu)が M3で表す金 属元素に対するモル%で 0.002%以上 20%以下添加され、 更に、 共付活剤として、 \ (M 3 strontium (S r), calcium (C a;), a compound consisting of at least one metal element selected the group or al consisting Bruno potassium (B a), h is from 0.5 1.1) represented by a composite oxide substrate, europium as an activator (Eu) has been added up to 20% 0.002% or more in terms of mol% relative to metallic elements expressed by M 3, further as a co-activator, \
ランタン(L a)、 セリウム(C e;)、 プラセオジム(P r)、 ネオジム(Nd)、 サマ リウム(Sm)、 ガドリニウム(Gd)、 テルビウム(Tb)、 ジスプロシウム(Dy) 、 ホルミウム(Ho)、 エルビウム(E r)、 ツリウム(Tm)、 イッテルビウム(Yb )、 ルテチウム(Lu)、 マンガン(Mn)、 スズ(S n)、 ビスマス(B i)、 スカンジ ゥム(S c)からなる群の少なくとも 1つ以上の元素が M3で表す金属元素に対する モル%で 0.002%以上 20%以下添加された残光特性を有するアルミン酸塩系蛍光体 である。 Lanthanum (La), cerium (Ce;), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), At least one of the group consisting of erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), manganese (Mn), tin (Sn), bismuth (Bi), and scandium (Sc) one or more elements are aluminate phosphor having afterglow characteristics, which are added 0.002% or more and 20% or less in terms of mol% relative to the metal element expressed by M 3.
また、 より具体的には、 アルミン酸塩系蛍光体が、 一般式 More specifically, the aluminate-based phosphor is represented by the general formula
Figure imgf000006_0001
Figure imgf000006_0001
(M3はストロンチウム(S r)、 カルシウム(C a)、 ノ リウム(B a)からなる群か ら選ばれる少なくとも 1つ以上の金属元素からなる化合物、 hは 0.5から 1.1) で示される複合酸化物基体に、 更に鉛(Pb)、 亜鉛(Z n)及びビスマス(B i )か ら選ばれる少なくとも 1種の金属元素が添加された残光特性を有するアルミン酸 塩蛍光体である。 (M 3 strontium (S r), calcium (C a), Bruno helium (B a) group or al compounds comprising at least one or more metal element selected consisting of, h is from 0.5 1.1) complex represented by This is an aluminate phosphor having afterglow characteristics in which at least one metal element selected from lead (Pb), zinc (Zn) and bismuth (Bi) is added to an oxide substrate.
更に、 別の態様の具体例としては、 アルミン酸塩系蛍光体が、 一般式;  Further, as another specific example of another embodiment, the aluminate-based phosphor is represented by a general formula:
(S r , E u, Pb, Dy) O - y (A 1 , B i ) 2 03 (S r, Eu, Pb, Dy) O-y (A 1, B i) 2 0 3
(但し、 0. 83≤y≤ l. 67)  (However, 0.83≤y≤ l. 67)
で示される Eu2+付活ストロンチウム ·アルミネィト系蛍光体を母体とする残光 特性を有するアルミン酸塩系蛍光体である。 This is an aluminate-based phosphor having the afterglow characteristic based on the Eu 2 + -activated strontium-aluminate-based phosphor represented by the following formula.
更に、 別の態様の具体例としては、 アルミン酸塩系蛍光体が、 一般式; Further, as another specific example of another embodiment, the aluminate-based phosphor is represented by a general formula:
Figure imgf000006_0002
Figure imgf000006_0002
で示された残光特性を有するアルミン酸塩系蛍光体である。 This is an aluminate-based phosphor having the afterglow characteristic shown by.
また、 例えば、 原料アルミナとして一次粒子径が 0,3/xm以上で 30^m以下の実質 的に破砕面を有しない α—アルミナ粉末としては、 アルミナ純度が 99.9重量%以 上のものを用いる方法である。  For example, as the raw material alumina, as an α-alumina powder having a primary particle diameter of not less than 0.3 / xm and not having a substantially crushed surface of not more than 30 ^ m, an alumina having a purity of 99.9% by weight or more is used. Is the way.
本発明は粉砕が容易で且つ微粒子が少ないため発光特性に優れ、 製品歩留りが よいアルミン酸塩系蛍光体の製造方法に関するもので、 原料の α—アルミナには 一次粒子径が 0.3 a m以上で 30 a m以下の実質的に破砕面を有しない α—アルミナ粉 末を用いる。 この α—アルミナ粉末には、 例えば、 住友化学工業株式会社からァ ドバンストアルミナの商品名で販売されている α—アルミナを用いることが出来 る(特開平 6— 1 9 1 833号、 特開平 6— 19 1835号、 特開平 6— 1 9 18 36号) 。 The present invention relates to a method for producing an aluminate-based phosphor which is easy to pulverize and has a small amount of fine particles, has excellent light-emitting characteristics, and has a good product yield. Use α-alumina powder having substantially no crushed surface of am or less. This α-alumina powder includes, for example, Α-alumina sold under the trade name of Devanst alumina can be used (JP-A-6-191833, JP-A-6-191835, JP-A-6-191836).
これら一次粒子径が 0.3 /im以上で 302m以下の実質的に破砕面を有しないひーァ ルミナ粉末は凝集粒子がほとんど無く、 粒度分布がシャープである。 驚くことに この α—アルミナ粒子は、 これと共にアルミン酸塩を構成するマグネ ウム. (Mg )、 ノ リウム(B a)、 ストロンチウム(S r)、 カルシウム(C a)、 亜鉛(Z n)、 鉛 (Pb)、 ビスマス(B i)、 或いはセリウム(C e)等の化合物と反応して、 微粒子 が少なく、 且つ凝集が少ないアルミン酸塩系蛍光体粒子になることを見い出した この理由は明確ではないが、 この α—アルミナ粉末は凝集粒子がほとんど無く 微粒子を有しないため分散性に優れ、 アルミン酸塩を構成するマグネシウム(M g )、 バリウム(B a)、 ストロンチウム(S r)、 カルシウム(C a)、 亜鉛(Z n)、 鉛 (Pb)、 ビスマス(B i)、 或いはセリウム(C e)等の化合物粉末と均質に混合さ れるため微粒子の生成が少ない蛍光体になると考えられる。  These primary powders having a primary particle diameter of not less than 0.3 / im and not more than 302 m and having substantially no crushed surface have almost no agglomerated particles and a sharp particle size distribution. Surprisingly, the α-alumina particles are composed of magnesium, which constitutes the aluminate. (Mg), Norium (Ba), Strontium (Sr), Calcium (Ca), Zinc (Zn), Reacted with compounds such as lead (Pb), bismuth (Bi), or cerium (Ce) to find aluminate-based phosphor particles with less fine particles and less aggregation. However, this α-alumina powder has little dispersibility because it has almost no aggregated particles and no fine particles. Magnesium (Mg), barium (Ba), strontium (Sr), calcium (Ca), zinc (Zn), lead (Pb), bismuth (Bi), or cerium (Ce) are homogeneously mixed with a compound powder, so it is thought that the phosphor will be less likely to generate fine particles. .
更に、 本発明においては、 フラックスによる溶融を行わせずに焼成することに より、 隣接する α—アルミナ粉末の部分的な溶融はあるが、 α—アルミナ粉末全 体は溶融せずに焼成される。 このため、 ひ一アルミナ粉末の粒子径をほぼ維持し たまま原料 α—アルミナ粉末に由来する大きさの粒子径を維持する 3波長形蛍光 ランプ等に使用されるアルミン酸塩系蛍光体及び残光性を有するアルミン酸塩系 蛍光体を得ることができる。  Further, in the present invention, although the adjacent α-alumina powder is partially melted by being fired without being melted by the flux, the entire α-alumina powder is fired without being melted. . For this reason, aluminate-based phosphors used in three-wavelength fluorescent lamps and the like that maintain the particle diameter of the size derived from the raw material α-alumina powder while maintaining the particle diameter of the alumina powder almost unchanged, An aluminate-based phosphor having light properties can be obtained.
即ち、 電子顕微鏡による観察では、 フラックスを用いずに焼成することにより 、 隣接する α—アルミナ粉末の部分的な溶融はあるが、 ひ一アルミナ粉末の粒子 が殆ど溶融せずに焼成され、 原料 α—アルミナの粒子径に由来した大きさのアル ミン酸塩系蛍光体が得られた。  That is, according to the observation by an electron microscope, although the adjacent α-alumina powder is partially melted by firing without using the flux, the particles of the alumina powder are fired almost without being melted, and the raw material α — An aluminate phosphor with a size derived from the particle size of alumina was obtained.
しかしながら、 3波長形蛍光ランプ等に使用されるアルミン酸塩系蛍光体と残 光性を有するアルミン酸塩系蛍光体では若干の相違が見られた。  However, a slight difference was observed between the aluminate-based phosphor used in three-wavelength fluorescent lamps and the like and the aluminate-based phosphor having persistence.
3波長形蛍光ランプ等に使用されるアルミン酸塩系蛍光体では、 レーザ一散乱 法を測定原理とする平均粒子径の測定値は、 原料 α—アルミナ粉末の平均粒子径 の値の約 5倍〜約 1 . 2倍の値を示した。 これは、 得られた蛍光体同士の接着に よるためである。 この現象は、 特に原料 a—アルミナ粉末の平均粒子径が小さい ものほど大きいものであった。 For the aluminate-based phosphor used in three-wavelength fluorescent lamps, etc., the measured value of the average particle diameter based on the laser-scattering method is the average particle diameter of the raw material α-alumina powder. About 5 times to about 1.2 times the value of This is due to the adhesion between the obtained phosphors. This phenomenon was particularly large as the average particle diameter of the raw material a-alumina powder was smaller.
即ち、 フッ化アルミニウムやホウ酸等のフラックス (融剤) を用いずに焼成し て得られたアルミン酸塩系蛍光体は、 原料の α—アルミナ粉末の粒子径には殆ど 変化がない蛍光体として焼成され、 尚且、 この蛍光体同士が弱い力で接着し.てい る状態で焼成される。 このため、 解砕又は粉砕はこの粒子径同士の接着をほぐす 程度の力で容易にばらばらになり、 解砕又は粉砕が容易でかつ微粒子が少ない。 このため発光特性に優れ、 製品歩留まりが高いアルミン酸塩系蛍光体が容易に得 られる。  In other words, the aluminate-based phosphor obtained by firing without using a flux (flux) such as aluminum fluoride or boric acid has a phosphor with almost no change in the particle diameter of the raw material α-alumina powder. It is fired in a state where the phosphors are adhered to each other with a weak force. For this reason, the crushing or pulverization is easily separated by a force enough to loosen the adhesion between the particle diameters, and the crushing or crushing is easy and the number of fine particles is small. For this reason, an aluminate-based phosphor excellent in light emission characteristics and high in product yield can be easily obtained.
一方、 残光性を有するアルミン酸塩系蛍光体では、 実質的に破碎面を有する一 般の α—アルミナ粉末を用いて、 焼成の際にフラックスを添加せずに焼成した場 合には、 原料 α—アルミナ粉末の全ては溶融しないが、 破碎面を構成する部分の 角が一部溶融して、 焼成された結晶は所謂 「角が丸くなつた」 状態となり、 原料 α—アルミナ粉末の外観を殆ど維持したままの蛍光体が焼成される。 特に、 原料 一アルミナ粉末の一次粒子径がより小さければ、 α—アルミナ粉末の隣接する 粒子同士が互いに融合して一次粒子径が数 /i m程度の液滴状の粒子となり、 更に 、 この融合した数 m 程度の粒子が弱い力で接着している状態で焼成される。 この得られた残光特性を有するアルミン酸塩系蛍光体は、 この融合体同士が弱 い力で接着している状態で焼成されるため、 融合体同士の接着をほぐす程度の力 で容易にばらばらになる。 従って、 解枠が容易でかつ微粒子が少ないため残光特 性に優れ、 製品歩留まりが高い残光特性を有するアルミン酸塩系蛍光体が容易に 得られる。  On the other hand, in the case of an aluminate-based phosphor having afterglow, when a general α-alumina powder having a substantially crushed surface is used and fired without adding a flux during firing, All of the raw material α-alumina powder does not melt, but some of the corners of the fracture surface are melted, and the fired crystal becomes a so-called “rounded corner” state. The phosphor is fired while maintaining almost the same. In particular, if the primary particle diameter of the raw material mono-alumina powder is smaller, adjacent particles of the α-alumina powder are fused with each other to form droplet-shaped particles having a primary particle diameter of about several / im. It is fired in a state where particles of about several meters are adhered with weak force. The obtained aluminate-based phosphor having afterglow characteristics is fired in a state in which the fused bodies are bonded to each other with a weak force, so that it is easily applied with a force enough to loosen the bonding between the fused bodies. It comes apart. Therefore, an aluminate-based phosphor having excellent afterglow characteristics and a high product yield and having a long afterglow characteristic can be easily obtained because of easy release and few fine particles.
以上のように、 原料アルミナとして所望の平均粒子径と粒度分布とを有するも のを選ぶことにより、 フッ化アルミニウムやホウ酸等のフラックス (融剤) を用 いずに焼成して得られたアルミン酸塩系蛍光体は、 原料の α—アルミナ粉末の粒 子径と殆ど差がない蛍光体として焼成され、 尚且、 この蛍光体同士が弱い力で接 着している状態で焼成される。 このため、 解砕又は粉砕はこの粒子径同士の接着 をほぐす程度の力で容易にばらばらになり、 解砕又は粉砕が容易でかつ微粒子が 少ない。 このため発光特性に優れ、 製品歩留まりが高いアルミン酸塩系蛍光体が 容易に得られる。 また、 粉碎による一次粒子の破壊や結晶性の不均一化を原因と する残光特性の低下、 さらには蛍光体粒子としての歩留まりが低い等の問題のな い残光特性を有するアルミン酸塩系蛍光体が得られる。 As described above, by selecting a material having the desired average particle size and particle size distribution as the raw material alumina, it was obtained by firing without using a flux (flux) such as aluminum fluoride or boric acid. The aluminate-based phosphor is fired as a phosphor having almost no difference in particle diameter from the raw material α-alumina powder, and is fired in a state where the phosphors are adhered with a small force. For this reason, the crushing or pulverization is easily separated with a force enough to loosen the adhesion between the particle diameters, so that the crushing or pulverization is easy and the fine particles are reduced. Few. As a result, an aluminate-based phosphor excellent in light emission characteristics and high in product yield can be easily obtained. In addition, aluminate-based materials that have no afterglow characteristics, such as a decrease in afterglow characteristics due to destruction of primary particles due to pulverization and non-uniform crystallinity, and a low yield as phosphor particles. A phosphor is obtained.
ところで、 30 ΠΙを越える場合はアルミン酸塩を構成するマグネシウム(Mg)、 バリウム(B a)、 ストロンチウム(S r)、 カルシウム(C a)、 亜鉛(Z n)、 鉛ズ P b)、 ビスマス(B i)、 或いはセリウム(C e)等の化合物粉末との反応が困難とな る。 更に、 輝度等の発光性を高めるためには α—アルミナのアルミナ純度が 99.9 重量%以上であることが好ましい。  By the way, if it exceeds 30 mm, magnesium (Mg), barium (Ba), strontium (Sr), calcium (Ca), zinc (Zn), lead (Pb), bismuth Reaction with compound powder such as (Bi) or cerium (Ce) becomes difficult. Further, in order to enhance the light emission such as luminance, it is preferable that the alumina purity of α-alumina is 99.9% by weight or more.
アルミン酸塩を構成するマグネシウム(Mg)、 バリウム(B a)、 ストロンチウ ム(S r)、 カルシウム(C a)、 亜鉛(Z n)、 鉛(P b)、 ビスマス(B i )、 或いは セリウム(C e)の化合物粉末としては酸化物、 或いは水酸化物、 炭酸塩、 硝酸塩 、 ハロゲン化物など高温で分解して酸化物になりうるものが使用出来る。  Magnesium (Mg), barium (Ba), strontium (Sr), calcium (Ca), zinc (Zn), lead (Pb), bismuth (Bi), or cerium that constitutes the aluminate As the compound powder of (Ce), oxides, hydroxides, carbonates, nitrates, halides, and the like that can be decomposed at high temperatures to form oxides can be used.
アルミン酸塩系蛍光体が、 一般式 aM!O · bMgO · c A 123で示される複 合酸化物基体にユーロピウム(E u)単独、 又はユーロピウム(E u)とマンガン(M n)からなる付活剤が添加された化合物の場合、 aが 0.5から 4.5、 bが 0から 4、 cが 0.5から 20の範囲になるように混合される。 Aluminate-based phosphor has the general formula aM! O · bMgO · c A 1 2 〇 3 europium double engagement oxide substrate represented by (E u) alone or europium (E u) and manganese (M n) In the case of a compound to which an activator consisting of is added, the components are mixed so that a is in the range of 0.5 to 4.5, b is in the range of 0 to 4, and c is in the range of 0.5 to 20.
例えば、 アルミン酸塩系蛍光体が一般式 a (B a, S r)0 - bMgO - cA l 2〇3で示される複合酸化物基体にユーロピウム(E u)単独、 又はユーロピウム(E u )とマンガン(M n )からなる付活剤が添加された化合物の場合、 aが 0.9から 1 · 7、 bが 1.5から 2.1、 cが 8の範囲にあることが好ましい。 For example, aluminate-based phosphor is formula a (B a, S r) 0 - bMgO - cA l 2 europium (E u) to the composite oxide substrate represented by Rei_3 alone or europium (E u) In the case of a compound to which an activator made of manganese (Mn) is added, it is preferable that a is in the range of 0.9 to 1.7, b is in the range of 1.5 to 2.1, and c is in the range of 8.
また例えば、 アルミン酸塩系蛍光体が一般式 a (B a, C a)0 ' c A l 203で 示される複合酸化物基体にユーロピウム(E u)単独、 又はユーロピウム(E u)と マンガン(Mn)からなる付活剤が添加された化合物の場合、 aが 1.0から 1.5、 c が 6の範囲にあることが好ましい。 Further, for example, aluminate-based phosphor is formula a (B a, C a) 0 'c A l 2 0 europium (E u) to the composite oxide substrate represented by 3 alone, or a europium (E u) In the case of a compound to which an activator made of manganese (Mn) is added, a is preferably in the range of 1.0 to 1.5, and c is preferably in the range of 6.
更に例えば、 アルミン酸塩系蛍光体が一般式 a S r O · cA l 23で示される 複合酸化物基体にユーロピウム(E u)が付活剤として添加された化合物の場合、 aが 3.9から 4.1、 cが 7の範囲にあることが好ましい。 Further, for example, the case of the compounds of europium in the compound oxide substrate aluminate phosphor represented by the general formula a S r O · cA l 23 (E u) is added as an activator, a 3.9 To 4.1 and c are preferably in the range of 7.
一方、 アルミン酸塩系蛍光体が一般式で d C e OLS · eM2〇 · f A l 23で示 g On the other hand, shows aluminate phosphor at d C e OLS · eM 2 〇 · f A l 23 by formula g
される複合酸化物基体にテルビウム(Tb)及び 又はマンガン(Mn)からなる付 活剤が添加された化合物の場合、 dが 0.9から 1.1、 eが 0.9から 1.1、 f が 5.5の範 囲にあることが好ましい。 In the case of a compound in which an activator made of terbium (Tb) and / or manganese (Mn) is added to the composite oxide substrate to be used, d is in the range of 0.9 to 1.1, e is in the range of 0.9 to 1.1, and f is in the range of 5.5 Is preferred.
発光を生じさせるための付活剤となるユーロピウム(E u)、 マンガン(Mn)、 テルビウム(Tb)等の原料としては、 酸化物、 或いは水酸化物、 炭酸塩、 硝酸塩 、 ハロゲン化物など高温で分解し酸化物になりうるものが使用出来る。 . . 添加量としては、 例えば、 アルミン酸塩系蛍光体が一般式 a (B a, S r)0 · bMgO · c A 1 〇3で示される複合酸化物基体にユーロピウム(E u)単独又は ユーロピウム(Eu)とマンガン(Mn)からなる付活剤が添加されたアルミン酸塩 系蛍光体の場合、 ユーロピウム(Eu)の添加量が 0.01 aから 0.15a、 マンガン(M n)の添加量が 0.15 b以下の範囲にあることが好ましい。 Raw materials such as europium (Eu), manganese (Mn), and terbium (Tb) that act as activators for emitting light include oxides, hydroxides, carbonates, nitrates, and halides at high temperatures. Those which can be decomposed into oxides can be used. .. The amount, for example, aluminate-based phosphor is formula a (B a, S r) 0 · bMgO · c A 1 〇 3 europium complex oxide substrate represented by (E u) alone or In the case of an aluminate-based phosphor to which an activator consisting of europium (Eu) and manganese (Mn) is added, the amount of europium (Eu) added is 0.01a to 0.15a, and the amount of manganese (Mn) added is It is preferably in the range of 0.15 b or less.
例えば、 アルミン酸塩系蛍光体が一般式 a (B a, C a)〇 · c A 1 〇3で示さ れる複合酸化物基体にユーロピウム(E u)単独、 又はユーロピウム(Eu)とマン ガン(M n )からなる付活剤が添加されたアルミン酸塩系蛍光体の場合、 ユーロピ ゥム(E u)の添加量が 0.01 aから 0.15a, マンガン(M n )の添加量が 0.20 a以下 の範囲にあることが好ましい。 For example, aluminate-based phosphor is formula a (B a, C a) 〇 · c A 1 〇 3 europium complex oxide substrate represented by (E u) alone or with manganese europium (Eu) ( In the case of an aluminate-based phosphor to which an activator consisting of Mn) is added, the amount of europium (Eu) added is 0.01a to 0.15a, and the amount of manganese (Mn) added is 0.20a or less. Is preferably within the range.
例えば、 アルミン酸塩系蛍光体が一般式 a S r O · c A 1203で示される複合 酸化物基体にユーロピウム(E u)が付活剤として添加されたアルミン酸塩系蛍光 体の場合、 ユーロピウム(E u )の添加量が 0.02 aから 0.06 aの範囲にあることが 好ましい。 For example, aluminate-based phosphor of the general formula a S r O · c A 1 2 0 europium (E u) to the composite oxide substrate represented by 3 is added, aluminate-based phosphor as an activator In this case, it is preferable that the amount of europium (Eu) be in the range of 0.02 a to 0.06 a.
例えば、 アルミン酸塩系蛍光体が一般式 dC eOu · eM20 - f A l 23で示 される複合酸化物基体にテルビウム(Tb)及び/又はマンガン(Mn)からなる付 活剤が添加されたアルミン酸塩系蛍光体の場合、 テルビウム(Tb)の添加量が 0. 3dから 0.5d、 マンガン(Mn)の添加量が 0.15 e以下の範囲にあることが好まし い。 For example, aluminate-based phosphor is formula dC eOu · eM 2 0 - activator consisting of terbium (Tb) and / or manganese (Mn) in the composite oxide substrate to be shown at f A l 23 In the case of the added aluminate-based phosphor, it is preferable that the addition amount of terbium (Tb) is in the range of 0.3d to 0.5d and the addition amount of manganese (Mn) is in the range of 0.15e or less.
これら原料をボールミル、 V型混合機等を用い混合した後、 1, 100から 1,800°C にて数時間焼成する。 更に前記方法にて得られた生成物をボールミル、 ジェット ミル等を用い解碎した後、 洗浄するが、 必要に応じて分級する。  After mixing these materials using a ball mill, V-type mixer, etc., they are fired at 1,100 to 1,800 ° C for several hours. Further, the product obtained by the above method is pulverized using a ball mill, a jet mill, or the like, and then washed, but classified if necessary.
一次粒子径が 0.3/xm以上で 30 im以下の実質的に破碎面を有しない α—アルミナ 粉末を原料に用いて得られた本発明によるアルミン酸塩系蛍光体は、 粉砕が容易 で且つ微粒子が少ないため発光特性に優れ、 製品歩留りが高いため 3波長形蛍光 ランプとして極めて有用である。 Α-alumina with a primary particle size of 0.3 / xm or more and substantially no crushed surface of 30 im or less The aluminate-based phosphor of the present invention obtained by using a powder as a raw material is extremely useful as a three-wavelength fluorescent lamp because it is easy to pulverize, has few fine particles, has excellent emission characteristics, and has a high product yield.
また、 本発明で製造される具体的な残光特性を有するアルミン酸塩系蛍光体と しては、 アルミン酸塩を母結晶に含む蛍光体であればよい。 例えば特許第 254 3825号公報及び特顧平 7 _ 1 12574号公報に記載された数 1 0分〜数時 間の残光特性を有するアルミン酸塩系蛍光体が例示される。  Further, as the aluminate-based phosphor having specific afterglow characteristics produced in the present invention, any phosphor containing an aluminate in a mother crystal may be used. For example, aluminate-based phosphors having afterglow characteristics of several ten minutes to several hours described in Japanese Patent No. 254 3825 and Japanese Patent Application No. 7-112574 are exemplified.
残光特性を有するアルミン酸塩系蛍光体が、 一般式 hM3〇 · A 123 [M3は ストロンチウム(S r)、 カルシウム(C a)、 バリウム(B a)からなる群から選ば れる少なくとも 1つ以上の金属元素からなる化合物、 hは 0.5から 1.1] で示され る複合酸化物基体に、 ユーロピウム(Eu)が付活剤として、 更にランタン(L a) 、 セリウム(C e)、 プラセオジム(P r)、 ネオジム(Nd)、 サマリウム(Sm)、 ガドリニウム(Gd)テルビウム(Tb)、 ジスプロシウム(Dy)、 ホルミウム(Ho )、 エルビウム(E r)、 ツリウム(Tm)、 イッテルビウム(Yb)、 ルテチウム(L u)、 マンガン(Mn)、 スズ(S n)、 ビスマス(B i)、 スカンジウム(S c )からな る群の少なくとも 1つ以上の元素が共付活剤として添加された化合物の場合、 添 加量は M3で表す金属元素に対するモル%で 0.002%以上 20%以下であることが好 ましい。 Aluminate-based phosphor having afterglow characteristics, the formula hM 3 〇 · A 1 23 [M 3 is selected from the group consisting of strontium (S r), calcium (C a), barium (B a) Compound consisting of at least one or more metal elements, h is from 0.5 to 1.1] on a composite oxide substrate represented by: europium (Eu) as an activator, lanthanum (La), cerium (Ce) , Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Gadolinium (Gd), Terbium (Tb), Dysprosium (Dy), Holmium (Ho), Erbium (Er), Thulium (Tm), Ytterbium (Yb) ), Lutetium (Lu), Manganese (Mn), Tin (Sn), Bismuth (Bi), Scandium (Sc) at least one element was added as a co-activator for compounds, added pressure amount in terms of mol% relative to the metal element expressed by M 3 0 It is preferable that it is not less than .002% and not more than 20%.
例えば、 蓄光性アルミン酸塩系蛍光体が一般式 h S r O · A 12〇 で示される 複合酸化物基体にユーロピウム(Eu)が付活剤として、 更にジスプロシウム共付 活剤として添加された化合物の場合、 hが 0.9から 1.1の範囲にあることが好まし レ^ 更に、 残光特性を有するアルミン酸塩系蛍光体が一般式 h C a〇 · A 123 で示される複合酸化物基体にユーロピウム( E u )が付活剤として、 更にネオジム が共付活剤として添加された化合物の場合、 hが 0.9から 1.1の範囲にあることが 好ましい。 For example, europium complex oxide substrate phosphorescent aluminate phosphor represented by the general formula h S r O · A 1 2 〇 (Eu) is as an activator, was further added as dysprosium co activator In the case of a compound, h is preferably in the range of 0.9 to 1.1. Further, an aluminate-based phosphor having afterglow characteristics is a composite oxide represented by the general formula hC a〇 · A 1 2 3 In the case of a compound in which europium (Eu) is added as an activator and neodymium as a coactivator is added to the substrate, h is preferably in the range of 0.9 to 1.1.
更に、 例えば、 蓄光性アルミン酸塩系蛍光体が一般式 h S r O · A 12〇 で示 される複合酸化物基体にユーロピウム( E u )が付活剤として、 更にジスプロシゥ ムが共付活剤として添加された化合物の場合、 ユーロピウム(E u)の添加量が 0. 01 hから 0. lh、 ジスプロシウムの添加量が 0.02hから 0.2hの範囲にあることが 好ましい。 例えば、 蓄光性アルミン酸塩系蛍光体が一般式 h C aO · A 1 23で 示される複合酸化物基体にユーロピウム( E u )が付活剤として、 更にネオジムが 共付活剤として添加された化合物の場合、 ユーロピウム(E u)の添加量が 0.01 h から 0.1 h、 ネオジムの添加量が 0.02 hから 0.2 hの範囲にあることが好ましい。 これら好ましい範囲より少量或いは多量の付活剤添加は輝度を低下させるため好 ましくない。 .. . また、 共付活剤としてランタン(L a)、 セリウム(C e)、 プラセオジム(P r) 、 ネオジム(Nd)、 サマリウム(Sm)、 ガドリニウム(Gd)、 テルビウム(Tb) 、 ジスプロシウム(Dy)、 ホルミウム(Ho)、 エルビウム(E r)、 ツリウム(Tm )、 イッテルビウム(Yb)、 ルテチウム(L u)、 マンガン(Mn)、 スズ(S n)、 ビ スマス(B i )、 スカンジウム(S c)からなる群の少なくとも 1種の金属元素を一 般式 1ιΜ3〇 · Α 12 Ο,- で示される複合酸化物基体において 0.001 hから 0.1 h添 加することが出来る。 Furthermore, for example, a composite oxide substrate to europium (E u) is an activator of luminous aluminate-based phosphor is shown by the formula h S r O · A 1 2 〇, with further Jisupuroshiu arm co For compounds added as activators, europium (Eu) may be added in the range of 0.01 h to 0.1 lh and dysprosium in the range of 0.02 h to 0.2 h. preferable. For example, as an activator europium (E u) is a composite oxide substrate represented phosphorescent aluminate phosphor is by the formula h C aO · A 1 23, further added as activator co neodymium In the case of the compound thus prepared, it is preferable that the addition amount of europium (Eu) is in the range of 0.01 h to 0.1 h, and the addition amount of neodymium is in the range of 0.02 h to 0.2 h. Addition of an activator in a smaller amount or a larger amount than these preferable ranges is not preferable because it lowers the luminance. ... Also, lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium ( Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), manganese (Mn), tin (Sn), bismuth (Bi), scandium ( S one at least one metal element of the group consisting of c) general formula 1Iotamyu 3 〇 · Α 1 2 Ο, - a composite oxide substrate can be 0.1 h added pressure from 0.001 h in shown.
これら原料をボールミル、 V型混合機等を用い混合した後、 1, 100から 1,800°C にて数時間焼成する。 更に前記方法にて得られた生成物をボールミル、 ジェット ミル等を用い解砕した後、 洗浄するが、 必要に応じて分級する。  After mixing these materials using a ball mill, V-type mixer, etc., they are fired at 1,100 to 1,800 ° C for several hours. Further, the product obtained by the above method is crushed using a ball mill, a jet mill or the like, and then washed, but classified if necessary.
一次粒子径が 0.3 im以上で 30 m以下の実質的に破砕面を有しない α—アルミナ 粉末を原料に用いて得られた本発明による蓄光材用アルミン酸塩系蛍光体は、 粉 砕が容易で且つ微粒子が少ないため残光特性に優れ、 製品歩留りが高いため蓄光 材として極めて有用である。 図面の簡単な説明  The aluminate-based phosphor for a phosphorescent material according to the present invention obtained by using an α-alumina powder having a primary particle diameter of 0.3 im or more and 30 m or less and having substantially no crushed surface as a raw material is easily crushed. It has excellent afterglow properties due to its small number of fine particles and is highly useful as a phosphorescent material because of its high product yield. BRIEF DESCRIPTION OF THE FIGURES
図 1 a及び図 1 bは原料 α -アルミナ (ΑΑ— 0 7) の走査型電子顕微鏡写真 での粒子形状を示す図面であり、 図 1 aは拡大率が 2 00 0倍のもの、 図 l bは 拡大率が 5 0 0 0倍のものである。  FIGS. 1a and 1b are drawings showing the particle shape of the raw material α-alumina (ア ル ミ ナ -07) in a scanning electron micrograph. FIG. Is the one with a magnification of 500.000.
図 2 a及び図 2 bは原料ひ一アルミナ (AA— 2) の走査型電子顕微鏡写真で の粒子形状を示す図面であり、 図 2 aは拡大率が 2 0 00倍のもの、 図 2 bは拡 大率が 5 0 0 0倍のものである。  2a and 2b are drawings showing the particle shape of raw material alumina (AA-2) in a scanning electron micrograph, and FIG. Has an enlargement factor of 500.000.
図 3 a及び図 3 bは原料 α—アルミナ (ΑΑ— 3) の走査型電子顕微鏡写真で II の粒子形状を示す図面であり、 図 3 aは拡大率が 2 0 0 0倍のもの、 図 3 bは拡 大率が 5 0 0 0倍のものである。 Figures 3a and 3b are scanning electron micrographs of the raw material α-alumina (原料 -3). 3A is a drawing showing the particle shape, and FIG. 3A is a drawing having a magnification of 2000 times, and FIG. 3B is a drawing having a magnification of 500 times.
図 4 a及び図 4 bは原料ひ一アルミナ (AA— 5) の走査型電子顕微鏡写真で の粒子形状を示す図面であり、 図 4 aは拡大率が 2 0 0 0倍のもの、 図 4 bは拡 大率が 5 0 0 0倍のものである。  FIGS. 4a and 4b are drawings showing the particle shape of raw material alumina (AA-5) in a scanning electron micrograph. FIG. 4a shows the particle shape at a magnification of 2000 times. b has an enlargement factor of 500.000.
図 5 a及び図 5 bは原料 α—アルミナ (ΑΑ— 8) の走査型電子顕微鏡写真で の粒子形状を示す図面であり、 図 5 aは拡大率が 2 0 0 0倍のもの、 図 5 bは拡 大率が 5 0 0 0倍のものである。  FIGS. 5a and 5b are drawings showing the particle shape of the raw material α-alumina (ΑΑ-8) in a scanning electron micrograph, and FIG. b has an enlargement factor of 500.000.
図 6 a及び図 6 bは原料 α—アルミナ (ΑΑ— 1 0) の走査型電子顕微鏡写真 での粒子形状を示す図面であり、 図 6 aは拡大率が 2 0 0 0倍のもの、 図 6 bは 拡大率が 5 0 0 0倍のものである。  FIGS. 6a and 6b are drawings showing the particle shape of the raw material α-alumina (ΑΑ-10) in a scanning electron micrograph, and FIG. 6b has a magnification of 500.000.
図 7 a及び図 7 bは原料 α—アルミナ (ΑΑ— 1 8) の走査型電子顕微鏡写真 での粒子形状を示す図面であり、 図 7 aは拡大率が 2 0 0 0倍のもの、 図 7 bは 拡大率が 5 0 0 0倍のものである。  FIGS. 7a and 7b are drawings showing the particle shape of the raw material α-alumina (ΑΑ−18) in a scanning electron micrograph. 7b has a magnification of 500.000.
図 8 a及び図 8 bは原料 α—アルミナ (RA— 40) の走査型電子顕微鏡写真 での粒子形状を示す図面であり、 図 8 aは拡大率が 2 0 0 0倍のもの、 図 8 bは 拡大率が 5 0 0 0倍のものである。  8a and 8b are drawings showing the particle shape of the raw material α-alumina (RA-40) in a scanning electron micrograph, and FIG. 8a shows the particle shape at a magnification of 2000 times. b has an enlargement factor of 500.000.
図 9 a及び図 9 bは BAT— 1蛍光体 (A A— 2使用) の走査型電子顕微鏡写 真での粒子形状を示す図面であり、 図 9 aは拡大率が 2 0 0 0倍のもの、 図 9 b は拡大率が 5 0 0 0倍のものである。  Fig. 9a and Fig. 9b show the particle shape of BAT-1 phosphor (using AA-2) by scanning electron microscopy. Fig. 9a shows the one with a magnification of 2000 times. In FIG. 9B, the magnification is 500 ×.
図 1 0 a及び図 1 0 bは BAT— 2蛍光体 (AA— 3使用) の走査型電子顕微 鏡写真での粒子形状を示す図面であり、 図 1 0 aは拡大率が 2 0 0 0倍のもの、 図 1 0 bは拡大率が 5 0 00倍のものである。  FIGS. 10a and 10b are drawings showing the particle shape of the BAT-2 phosphor (using AA-3) in a scanning electron micrograph, and FIG. In FIG. 10b, the magnification is 5,000 times.
図 1 1 a及び図 1 1 bは BAT— 3蛍光体 (AA— 5使用) の走査型電子顕微 鏡写真での粒子形状を示す図面であり、 図 1 1 aは拡大率が 2 0 0 0倍のもの、 図 1 1 bは拡大率が 5 0 0 0倍のものである。  Fig. 11a and Fig. 11b are drawings showing the particle shape of a BAT-3 phosphor (using AA-5) in a scanning electron micrograph. Fig. 11a shows a magnification of 2000. In FIG. 11b, the magnification is 50,000 times.
図 1 2 a及び図 1 2 bは BAT— 4蛍光体 (AA - 8使用) の走査型電子顕微 鏡写真での粒子形状を示す図面であり、 図 1 2 aは拡大率が 2 0 0 0倍のもの、 図 1 2 bは拡大率が 5 0 0 0倍のものである。 図 1 3 a及び図 1 3 bは B A T— 5蛍光体 (AA— 1 0使用) の走査型電子顕 微鏡写真での粒子形状を示す図面であり、 図 1 3 aは拡大率が 2 0 0 0倍のもの 、 図 1 3 bは拡大率が 5 0 0 0倍のものである。 Fig. 12a and Fig. 12b show the particle shape of the BAT-4 phosphor (using AA-8) in a scanning electron micrograph. Fig. 12a shows the particle size of 20000. In FIG. 12b, the magnification is 500 times. Figures 13a and 13b are drawings showing the particle shape of a BAT-5 phosphor (using AA-10) in a scanning electron micrograph, and Figure 13a shows a magnification of 20%. In FIG. 13B, the magnification is 5,000 times.
図 1 4 a及び図 1 4 bは B A T— 6蛍光体 (AA— 1 8使用) の走査型電子顕 微鏡写真での粒子形状を示す図面であり、 図 1 4 aは拡大率が 2 0 0 0倍のもの 、 図 1 4 bは拡大率が 5 0 0 0倍のものである。 · 図 1 5 a及び図 1 5 bは比較例の B A T— R E F蛍光体 (R A—4 0使用) の 走査型電子顕微鏡写真での粒子形状を示す図面であり、 図 1 5 aは拡大率が 2 0 0 0倍のもの、 図 1 5 bは拡大率が 5 0 0 0倍のものである。  Figs. 14a and 14b are drawings showing the particle shape of a BAT-6 phosphor (using AA-18) in a scanning electron micrograph, and Fig. 14a shows a magnification of 20%. In FIG. 14B, the magnification is 0000 times, and the magnification is 50,000 times. · Fig. 15a and Fig. 15b are drawings showing the particle shape of the BAT-REF phosphor (using RA-40) of the comparative example in a scanning electron micrograph, and Fig. 15a shows the magnification. FIG. 15b shows a magnification of 2000 times, and FIG. 15b shows a magnification of 5000 times.
図 1 6 a及び図 1 6 bはアルミン酸塩系蛍光体 (A A 0 7 - 1 2 7 R) の走査 電子顕微鏡での粒子形状を示す図面であり、 図 1 6 aは拡大率が 2 0 0 0倍のも の、 図 1 6 bは拡大率が 5 0 0 0倍のものである。  Fig. 16a and Fig. 16b are diagrams showing the particle shape of the aluminate-based phosphor (AA07-127R) by a scanning electron microscope. In FIG. 16b, the magnification is 0000 times, and the magnification is 500 times.
図 1 7 a及び図 1 7 bはアルミン酸塩系蛍光体 (A A 3 0 - 1 2 9 R) の走査 電子顕微鏡での粒子形状を示す図面であり、 図 1 7 aは拡大率が 2 0 0 0倍のも の、 図 1 7 bは拡大率が 5 0 0 0倍のものである。  Fig. 17a and Fig. 17b are drawings showing the particle shape of the aluminate-based phosphor (AA30-129R) with a scanning electron microscope. Fig. 17a shows a magnification of 20%. In FIG. 17b, the magnification is 500 times, and the magnification is 500 times.
図 1 8 a及び図 1 8 bはアルミン酸塩系蛍光体 (A A 5 0 - 1 3 0 R) の走查 電子顕微鏡での粒子形状を示す図面であり、 図 1 8 aは拡大率が 2 0 0 0倍のも の、 図 1 8 bは拡大率が 5 0 0 0倍のものである。  FIGS. 18a and 18b are drawings showing the particle shape of the aluminate-based phosphor (AA50-130R) by scanning electron microscopy, and FIG. In FIG. 18b, the magnification is 0000 times, and the magnification is 5,000 times.
図 1 9 a及び図 1 9 bはアルミン酸塩系蛍光体 (R A— 1 2 4 R) の走查電子 顕微鏡での粒子形状を示す図面であり、 図 1 9 aは拡大率が 2 0 0 0倍のもの、 図 1 9 bは拡大率が 5 0 0 0倍のものである。  Fig. 19a and Fig. 19b are drawings showing the particle shape of the aluminate-based phosphor (RA-124R) by scanning electron microscopy, and Fig. 19a shows a magnification of 200 In FIG. 19b, the magnification is 500 times.
図 2 0 a及び図 2 O bは比較とした蛍光体 CP-05 6C30の破砕前の走査電子顕微 鏡での粒子形状を示す図面であり、 図 2 0 aは拡大率が 2 0 0 0倍のもの、 図 2 0 bは拡大率が 5 0 0 0倍のものである。  FIGS. 20a and 20b show the particle shapes of the comparative phosphor CP-056C30 before crushing with a scanning electron microscope, and FIG. 20a shows a magnification of 2000 times. Fig. 20b shows the case where the magnification is 500 times.
図 2 1 a及び図 2 1 bは比較とした蛍光体 CP-05 6C30SSの走査電子顕微鏡での 粒子形状を示す図面であり、 図 2 1 aは拡大率が 2 0 0 0倍のもの、 図 2 l bは 拡大率が 5 0 0 0倍のものである。 発明を実施するための最良の形態 次に実施例により本発明をさらに詳しく説明するが、 本発明はこれらの実施例 に限定されるものではない。 なお、 本発明における各種の測定は次のようにして 行った。 FIGS. 21 a and 21 b are drawings showing the particle shape of a comparative phosphor, CP-05 6C30SS, with a scanning electron microscope, and FIG. 21 a is the one with a magnification of 2000 times. 2 lb is a magnification of 500,000. BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. Various measurements in the present invention were performed as follows.
1. α—アルミナ粉末の特性評価  1. Characterization of α-alumina powder
( 1) α—アルミナ粉末の一次粒子径は、 α—アルミナ粉末の S EM (走查型電 子顕微鏡、 日本電子株式会社製: Τ一 3 0 0) 写真から 8 0ないし 1 0.0個の粒 子を選び出して画像解析を行い、 円相当径の平均値を求めた。 円相当径とは、 面 積が等しい真円の直径に換算した値である。  (1) The primary particle size of the α-alumina powder is 80 to 10.0 particles from the SEM (scanning electron microscope, manufactured by JEOL Ltd .: 300-1) photograph of the α-alumina powder. The children were selected and image analysis was performed, and the average value of the circle equivalent diameter was obtained. The equivalent circle diameter is a value converted into the diameter of a perfect circle having the same area.
(2) α—アルミナ粉末の平均粒子径 (D 5 0) 及び粒度分布 (D 9 0/D 1 0 ) は、 レーザー散乱法を測定原理とするマスタ一サイザ一 (マルバーン社製) を 用いて測定した。  (2) The average particle size (D50) and particle size distribution (D90 / D10) of the α-alumina powder were measured using a master sizer (Malvern) based on the laser scattering method. It was measured.
(3) a—アルミナ粉末の比表面積は B E T法を測定原理とした。  (3) The specific surface area of the a-alumina powder was measured by the BET method.
(4) α—アルミナ粉末の純度分析は発光分析装置 (島津製作所製 CQM— 7 5) を用いて行った。  (4) The purity analysis of α-alumina powder was performed using an emission spectrometer (CQM-75 manufactured by Shimadzu Corporation).
(5) α—アルミナ粉末の粒子形状は走査型電子顕微鏡 (日本電子株式会社製: Τ- 2 2 0 Α) を用いて撮影した。  (5) The particle shape of the α-alumina powder was photographed using a scanning electron microscope (manufactured by JEOL Ltd .: 2-220Α).
2. アルミン酸塩系蛍光体の特性評価  2. Characterization of aluminate phosphor
( 1) アルミン酸塩系蛍光体の平均粒子径 (D 5 0) 及び粒度分布 (D 9 0ZD 1 0) は、 レーザー散乱法を測定原理とする SKレーザーミクロンサイザ一 (セ イシン企業製) を用いて測定した。  (1) The average particle size (D50) and particle size distribution (D90ZD10) of the aluminate-based phosphor were measured using the SK Laser Micron Sizer-1 (manufactured by Seishin Enterprise), which uses the laser scattering method as the measurement principle. It measured using.
(2) アルミン酸塩系蛍光体の粒子形状は走査型電子顕微鏡 (日本電子株式会社 製: Τ一 2 2 OA) を用いて撮影した。  (2) The particle shape of the aluminate-based phosphor was photographed by using a scanning electron microscope (manufactured by JEOL Ltd .: 122-OA).
(3) アルミン酸塩系蛍光体の発光強度は蛍光分光光度計 (ォプトリサーチ社製 ) を用いて測定した。  (3) The emission intensity of the aluminate-based phosphor was measured using a fluorescence spectrophotometer (made by Opto Research).
本実施例で用いた一次粒子径が 0. 3 m 以上で 3 0 rn 以下の実質的に破砕 面を有しないひ一アルミナ粉末には、 住友化学工業株式会社からアドバンストァ ルミナの商品名で販売されている次の表 1及び表 2に示す特性を持ったロッ卜の アルミナ粉末を用いた。 尚、 比較例としては、 RA— 40を用いた。 尚、 図 1〜 図 7に本実施例で用いた原料 α—アルミナの走査型電子顕微鏡写真での粒子形状 を示す図面を示す。 また、 図 8に比較として用いた原料 α—アルミナの走査型電 子顕微鏡写真での粒子形状を示す図面を示す。 The Hi-Alumina powder having a primary particle diameter of 0.3 m or more and 30 rn or less and having substantially no crushed surface used in this example is sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Aluminum. A lot of alumina powder having the characteristics shown in the following Tables 1 and 2 was used. In addition, RA-40 was used as a comparative example. FIGS. 1 to 7 show the particle shape of the raw material α-alumina used in this example in a scanning electron micrograph. FIG. FIG. 8 is a drawing showing the particle shape of a raw material α-alumina used for comparison in a scanning electron micrograph.
表 1 一次粒子径 平均粒子径 粒度分布 α—アルミナ名 D 5 0 Table 1 Primary particle size Average particle size Particle size distribution α-Alumina name D 50
(^m) (βΐη) D 9 0/D 1 0  (^ m) (βΐη) D 9 0 / D 1 0
ΑΑ- 0 7 0. 6 4 0. 6 6 2. 5 ΑΑ- 0 7 0.6 4 0.6.6 2.5
ΑΑ- 2 1. 7 1. 8 2. 1  ΑΑ- 2 1. 7 1. 8 2. 1
ΑΑ- 3 2. 8 2. 7 2. 1  ΑΑ- 3 2.8 2. 7 2. 1
ΑΑ- 5 4. 9 4. 7 2. 0  ΑΑ- 5 4. 9 4. 7 2.0
ΑΑ- 8 7. 5 7. 0 1. 8  ΑΑ- 8 7.5 7.0 0 1.8
ΑΑ— 1 0 9. 8 9. 2 1. 6  ΑΑ— 1 0 9. 8 9. 2 1. 6
ΑΑ- 1 8 1 6 1 5 1. 6  ΑΑ- 1 8 1 6 1 5 1. 6
RA- 4 0 0. 4 6 2. 7 7. 0 表 2 α—アルミナ名 B ET (m2/g) 純度 (重 ί 備考 RA-40.0.4 6 2.7 7.0 Table 2 α-Alumina name B ET (m 2 / g) Purity (remarks)
ΑΑ- 0 7 2. 4 > 9 9. 9 9 図 1 ΑΑ- 0 7 2.4> 9 9.9 9 9 Fig. 1
ΑΑ- 2 1. 0 > 9 9. 9 9 図 2  ΑΑ-21.0> 9 9.9 9 9 Fig. 2
ΑΑ- 3 0. 7 > 9 9. 9 9 図 3  ΑΑ- 3 0.7> 9 9. 9 9 Fig. 3
ΑΑ- 5 0. 4 > 9 9. 9 9 図 4  ΑΑ- 5 0.4> 9 9. 9 9 Fig. 4
ΑΑ- 8 0. 4 > 9 9. 9 9 図 5  ΑΑ- 8 0.4> 9 9.9 9 9 Fig. 5
ΑΑ- 1 0 0. 4 >9 9. 9 図 6  ΑΑ- 1 0 0.4> 9 9.9 Figure 6
ΑΑ- 1 8 0. 4 >9 9. 9 図 7  ΑΑ- 1 8 0.4> 9 9.9 Figure 7
RA- 4 0 3. 6 >9 9. 9 9 図 8 RA-4 0 3.6> 9 9.99 9 Figure 8
実施例 1 (BAT蛍光体の製造、 フラックス無添加) Example 1 (Production of BAT phosphor, no flux added)
次の原料を用いて、 化学式 (B a。. 9 , E uo. ! ) O · MgO · 5 A O: で示される BAT蛍光体を製造した。 Using the following raw materials, a BAT phosphor represented by the chemical formula (Ba 9 .Euo.!) O.MgO.5 AO: was produced.
炭酸バリゥム (B a C〇3 ) /5" Carbonated Barium (B a C〇 3 ) /Five"
酸化ユーロピウム (Eu23 ) Europium oxide (Eu 23 )
塩基性炭酸マグネシウム三水和物 (3MgC〇3'Mg (OH) 2· 3 H2 O) α—アルミナ (a— A 12 03 ) Basic magnesium carbonate trihydrate (3MgC_〇 3 'Mg (OH) 2 · 3 H 2 O) α- alumina (a- A 1 2 0 3)
尚、 a—アルミナ粉末には、 住友化学工業株式会社からアドバンストアルミナ の商品名で販売されている AA— 2 (平均粒子径 1. 8 ^m, 粒度分布 2. 1) 、 AA - 3 (平均粒子径 2. 7 m, 粒度分布 2. 1) 、 AA— 5 (平均粒子径 4. 7 urn, 粒度分布 2. 0) 、 AA- 8 (平均粒子径 7. 0 ^m, 粒度分布 1 . 8) 、 AA— 1 0 (平均粒子径 9. 2 um, 粒度分布 6) 、 AA— 1 8 ( 平均粒子径 1 5 /m, 粒度分布 6) を用い、 比較としては R A— 40 (平均 粒子径 2. 7 urn, 粒度分布 7. 0) を用いた。  The a-alumina powder includes AA-2 (average particle size 1.8 ^ m, particle size distribution 2.1) and AA-3 (average particle size) sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Alumina. Particle size 2.7 m, particle size distribution 2.1), AA-5 (average particle size 4.7 urn, particle size distribution 2.0), AA-8 (average particle size 7.0 ^ m, particle size distribution 1. 8), AA-10 (average particle size 9.2 um, particle size distribution 6), AA-18 (average particle size 15 / m, particle size distribution 6), and RA-40 (average particle size) A diameter of 2.7 urn and a particle size distribution of 7.0) were used.
製造は前記原料をポールミルにて十分に混合し、 還元性雰囲気中 1 500°Cで フラックス無しの状態で 3時間焼成して蛍光体を得た (焼き上り) 。 更に、 得ら れた蛍光体をビーズミルにて 30分間解砕して蛍光体を得た (破砕後) 。 尚、 比 較例 (RA— 40使用) では、 フラックスとしてフッ化アルミニウムを添加 (ひ 一アルミナのアルミニウム原子の 3 %モルを置換) して、 還元性雰囲気中 130 0°Cで 3時間焼成し蛍光体を得た (焼き上がり) 。 更に、 得られた酸化物をビー ズミルにて 60分間粉砕して蛍光体を得た。  In the production, the above-mentioned raw materials were sufficiently mixed by a pole mill, and calcined in a reducing atmosphere at 1500 ° C. for 3 hours without flux to obtain a phosphor (burn-up). Further, the obtained phosphor was crushed by a bead mill for 30 minutes to obtain a phosphor (after crushing). In the comparative example (using RA-40), aluminum fluoride was added as a flux (substituting 3% mol of aluminum atoms in mono-alumina) and calcined at 1300 ° C for 3 hours in a reducing atmosphere. The phosphor was obtained (baked). Further, the obtained oxide was pulverized with a bead mill for 60 minutes to obtain a phosphor.
得られた各々の蛍光体における焼き上り及び解砕後の平均粒子径、 発光ピーク 及びピーク強度を比較した結果を表 3に示す。 また、 得られた各々の蛍光体の走 査型電子顕微鏡写真での粒子形状を示す図面を図 9〜図 14に示す。 また、 図 1 5に比較例の蛍光体の走査型電子顕微鏡写真での粒子形状を示す図面を示す。 表 3に示す通り、 原料 a—アルミナ粉末をフラックスで溶融させないように焼 成することにより、 一次粒子径が 0. 3 im 以上で 30 / m 以下の実質的に破砕 面を有しない原料の a—アルミナ粉末に由来した粒子径の相違する蛍光体が得ら れた。 lb Table 3 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking and crushing. 9 to 14 show the particle shapes of the obtained phosphors in scanning electron micrographs. FIG. 15 is a drawing showing the particle shape of the phosphor of the comparative example in a scanning electron micrograph. As shown in Table 3, the raw material a—Alumina powder was calcined so as not to be melted by the flux, and the primary particle diameter was 0.3 im or more and 30 / m or less and had substantially no crushed surface. -A phosphor with different particle diameters derived from alumina powder was obtained. lb
表 3 Table 3
Figure imgf000018_0001
Figure imgf000018_0001
個々の蛍光体に付いて検証すると、 図 2〜図 7に示した原料 α—アルミナと図 9〜図 14に示した蛍光体との粒子形状を比較すると原料 α—アルミナ粉末の粒 子径が殆ど溶融せずに焼成され、 原料ひ一アルミナの粒子径に由来した大きさの アルミン酸塩系蛍光体が得られたことが判る。  When examining the individual phosphors, comparing the particle shapes of the raw material α-alumina shown in Figs. 2 to 7 and the phosphors shown in Figs. 9 to 14, the particle size of the raw material α-alumina powder was It can be seen that the aluminate-based phosphor having a size derived from the particle diameter of the raw material mono-alumina was obtained without being substantially melted.
しかしながら、 平均粒子径の測定値は、 原料 α—アルミナ粉末の粒子径の値の 約 1. 4倍〜約 1 3倍の値を示した。 これは、 得られた蛍光体同士の接着による ためである。 即ち、 本実施例の BAT— :!〜 BAT— 5蛍光体は、 原料の —ァ ルミナ粉末の粒子径には殆ど変化がない蛍光体として焼成され、 尚且、 この蛍光 体同士が弱い力で接着している状態で焼成されている。 このため、 解砕はこの粒 子径同士の接着をほぐす程度の力で容易にばらばらになり、 解碎が容易でかつ微 粒子が少ない。 このため残光特性に優れ、 製品歩留まりが高いアルミン酸塩系蛍 光体が容易に得られる。 実施例 2 (B A L蛍光体の製造、 フラックス無添加)  However, the measured value of the average particle diameter was about 1.4 to about 13 times the value of the particle diameter of the raw material α-alumina powder. This is due to the adhesion between the obtained phosphors. That is, BAT— :! of the present embodiment. The BAT-5 phosphor is fired as a phosphor having almost no change in the particle diameter of the raw material alumina powder, and is fired in a state where the phosphors are adhered with a small force. For this reason, the crushing is easily separated by a force enough to loosen the adhesion between the particle diameters, and the crushing is easy and the number of fine particles is small. As a result, an aluminate-based phosphor having excellent afterglow characteristics and a high product yield can be easily obtained. Example 2 (manufacture of BAL phosphor, no flux added)
次の原料を用いて、 化学式 (1.29 (B ao. a , C a o. , E u o. i ) O · 5.5 Using the following raw materials, the chemical formula (1.29 (B ao. A, C ao., E u o. I) O · 5.5
A 12 03 ) で示される BAL蛍光体を製造した。 Was prepared BAL phosphor represented by A 1 2 0 3).
炭酸バリゥム (B a C03 ) f7 Carbonate Bariumu (B a C0 3) f7
炭酸カルシウム (C a CO, )  Calcium carbonate (C a CO,)
酸化ユーロピウム (Eu 2 03 ) Europium oxide (Eu 2 0 3)
α—アルミナ (a— A 1 2 03 ) α- alumina (a- A 1 2 0 3)
尚、 ひ一アルミナ粉末には、 住友化学工業株式会社からアドバンス卜アルミナ の商品名で販売されている AA— 3 (平均粒子径 2. 7 urn, 粒度分布 2. 1) 、 AA— 5 (平均粒子径 4. 7 urn, 粒度分布 2. 0) 、 A A— 8 (平均粒子径 7. 0 urn, 粒度分布 2. 1) を用い、 比較としては R A— 40 (平均粒子径 2 . 7 urn, 粒度分布 7. 0) を用いた。  Note that Hi-Alumina powder includes AA-3 (average particle size 2.7 urn, particle size distribution 2.1) and AA-5 (average particle size) sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Alumina. Particle size 4.7 urn, particle size distribution 2.0) and AA-8 (average particle size 7.0 urn, particle size distribution 2.1) were used, and RA-40 (average particle size 2.7 urn, The particle size distribution 7.0) was used.
製造は前記原料をボールミルにて十分に混合し、 還元性雰囲気中 1 5 0 0°Cで フラックス無しの状態で 3時間焼成して蛍光体を得た (焼き上り) 。 尚、 比較例 (RA— 4 0使用) では、 フラックスとしてフッ化アルミニウムを添加 (a—ァ ルミナのアルミニウム原子の 3 %モルを置換) し、 還元性雰囲気中 1 3 0 0°Cで 3時間焼成した。 得られた酸化物を粉砕した後、 さらにこの粉末を再度、 還元性 雰囲気中 1 3 0 0°Cで 3時間焼成し蛍光体を得た (焼き上り) 。  In the production, the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 150 ° C. for 3 hours without flux to obtain a phosphor (burn-up). In the comparative example (using RA-40), aluminum fluoride was added as a flux (substituting 3% mol of aluminum atom of a-alumina), and the mixture was heated at 1300 ° C for 3 hours in a reducing atmosphere. Fired. After the obtained oxide was pulverized, this powder was further fired again at 130 ° C. for 3 hours in a reducing atmosphere to obtain a phosphor (burn-up).
表 4 Table 4
Figure imgf000019_0001
Figure imgf000019_0001
得られた各々の蛍光体における焼き上り後の平均粒子径、 発光ピーク及びピ一 ク強度を比較した結果を表 4に示す。 表 4に示す通り、 原料 a—アルミナ粉末を フラックスで溶融させないように焼成することにより、 一次粒子径が 0. 3 m 以上で 3 0 urn以下の実質的に破碎面を有しない原料の a—アルミナ粉末に由来 した粒子径の相違する蛍光体が得られた。 実施例 3 (SAE蛍光体の製造、 フラックス無添加) Table 4 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking. As shown in Table 4, the raw material a—alumina powder was calcined so as not to be melted by the flux, and the primary particle diameter was 0.3 m or more and 30 urn or less and had substantially no crushed surface. Phosphors having different particle diameters derived from alumina powder were obtained. Example 3 (Production of SAE phosphor, no flux added)
次の原料を用いて、 化学式 (4 (S r 0. 96, E Uo. 。4) O . 7 A 1 2 03 ) で 示される SAE蛍光体を製造した。 Using the following raw materials, chemical formula was prepared SAE phosphor represented by (4 (S r 0. 96, E Uo.. 4) O. 7 A 1 2 0 3).
炭酸ストロンチウム (S r C03 ) Strontium carbonate (S r C0 3)
酸化ユーロピウム (E u23 ) .. Europium oxide (E u 23) ..
α—アルミナ (α— A 12 O 3 ) α-Alumina (α- A 1 2 O 3)
尚、 α—アルミナ粉末には、 住友化学工業株式会社からアドバンストアルミナ の商品名で販売されている ΑΑ— 3 (平均粒子径 2. 7 xm, 粒度分布 2. 1) 、 A A - 5 (平均粒子径 4. 7 fim, 粒度分布 2. 0) 、 AA- 8 (平均粒子径 7. 0 zm, 粒度分布 2. 1) を用い、 比較としては R A— 40 (平均粒子径 2 . 7 urn, 粒度分布 7. 0) を用いた。  In addition, α-alumina powder is available under the trade name of Advanced Alumina from Sumitomo Chemical Co., Ltd. ΑΑ-3 (average particle size 2.7 xm, particle size distribution 2.1), AA-5 (average particle size Diameter 4.7 fim, particle size distribution 2.0), AA-8 (average particle size 7.0 zm, particle size distribution 2.1) were used, and RA-40 (average particle size 2.7 urn, particle size) The distribution 7.0) was used.
製造は前記原料をボールミルにて十分に混合し、 還元性雰囲気中 1 5 0 0°Cで フラックス無しの状態で 3時間焼成して蛍光体を得た (焼き上り) 。 尚、 比較例 (RA— 40使用) では、 フラックスとしてフッ化アルミニウムを添加 (α—ァ ルミナのアルミニウム原子の 3 %モルを置換) し、 加えてホウ酸を 0. 2 0モル 添加し、 還元性雰囲気中 1 3 0 0°Cで 3時間焼成した。 得られた酸化物を粉碎し た後、 さらに還元性雰囲気中 1 3 0 0°Cで 3時間焼成し蛍光体を得た (焼き上り In the production, the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 150 ° C. for 3 hours without flux to obtain a phosphor (burn-up). In the comparative example (using RA-40), aluminum fluoride was added as a flux (substituting 3% mole of aluminum atom of α-alumina), and 0.20 mole of boric acid was added. It was calcined at 1300 ° C. for 3 hours in a neutral atmosphere. After the obtained oxide was pulverized, it was further fired at 130 ° C. for 3 hours in a reducing atmosphere to obtain a phosphor (burn-up).
) o ) o
表 5 焼き上り Table 5 Baked
α-アルミナ  α-alumina
平均粒子 発光ピ ピーク  Average particle Emission peak
サンフル名 原料 径 D50 —ク 強度  Sanfur name Raw material diameter D50
[/xm] [nm] [¾]  [/ xm] [nm] [¾]
SAE-REF RA-40 13.0 491 101.2 SAE-REF RA-40 13.0 491 101.2
SAE-1 ΑΑ-3 10.6 491 100.5  SAE-1 ΑΑ-3 10.6 491 100.5
SAE-2 ΑΑ-5 13.4 492 98.2  SAE-2 ΑΑ-5 13.4 492 98.2
SAE-3 ΑΑ-8 17.7 492 101.8 I SAE-3 ΑΑ-8 17.7 492 101.8 I
得られた各々の蛍光体における焼き上り後の平均粒子径、 発光ピーク及びピー ク強度を比較した結果を表 5に示す。 表 5に示す通り、 原料ひ一アルミナ粉末を フラックスで溶融させないように焼成することにより、 一次粒子径が 0. 3 m 以上で 30 im 以下の実質的に破砕面を有しない原料の α—アルミナ粉末の粒子 径に由来した粒子径の蛍光体が得られた。 実施例 4 (CAT蛍光体の製造、 フラックス無添加)  Table 5 shows the results of comparison of the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking. As shown in Table 5, by firing the raw material alumina powder so as not to be melted by the flux, the raw material α-alumina having a primary particle size of 0.3 m or more and 30 im or less and having substantially no crushed surface was obtained. A phosphor having a particle diameter derived from the particle diameter of the powder was obtained. Example 4 (manufacture of CAT phosphor, no flux added)
次の原料を用いて、 化学式 ( (C e。.65, Tb«.35) OL 5 · MgO · 5. 5 A 12 O 3 ) で示される CAT蛍光体を製造した。 Using the following raw materials were prepared for CAT phosphor represented by the formula ((C e .. 65, Tb «. 35) OL 5 · MgO · 5. 5 A 1 2 O 3).
酸化セリゥム (C e 02 ) Oxidation Seriumu (C e 0 2)
酸化テルビウム (Tb47 ) Terbium oxide (Tb 47 )
塩基性炭酸マグネシウム三水和物 (3MgC〇3'Mg (OH) 2· 3Η2 Ο) α—アルミナ (ο;— A 12 03 ) Basic magnesium carbonate trihydrate (3MgC_〇 3 'Mg (OH) 2 · 3Η 2 Ο) α- alumina (ο; - A 1 2 0 3)
尚、 a—アルミナ粉末には、 住友化学工業株式会社からアドバンストアルミナ の商品名で販売されている AA— 07 (平均粒子径 0. 66 xm、 粒度分布 2. 5) 、 AA— 2 (平均粒子径 1. 8 ; m, 粒度分布 2. 1) 、 AA— 3 (平均粒 子径 2. 7 urn, 粒度分布 2. 1) 、 AA- 5 (平均粒子径 4. 7 urn, 粒度分 布 2. 0) 、 AA- 8 (平均粒子径 7. 0 urn, 粒度分布 2. 1) 、 AA— 1 0 In addition, a-alumina powder includes AA-07 (average particle size 0.66 xm, particle size distribution 2.5) and AA-2 (average particle size) sold by Sumitomo Chemical Co., Ltd. under the trade name of Advanced Alumina. Diameter 1.8; m, particle size distribution 2.1), AA-3 (average particle size 2.7 urn, particle size distribution 2.1), AA-5 (average particle size 4.7 urn, particle size distribution 2) 0), AA-8 (average particle size 7.0 urn, particle size distribution 2.1), AA-10
(平均粒子径 9. 2 ΐ , 粒度分布 1. 6) 、 A Α - 18 (平均粒子径 1 5 /xm , 粒度分布 2. 1) を用い、 比較としては RA— 40 (平均粒子径 2. 7 m, 粒度分布 7. 0) を用いた。 (Average particle size 9.2ΐ, particle size distribution 1.6) and AΑ-18 (average particle size 15 / xm, particle size distribution 2.1), and RA-40 (average particle size 2. 7 m, particle size distribution 7.0) was used.
製造は前記原料をボールミルにて十分に混合し、 還元性雰囲気中 1 500°Cで フラックス無しの状態で 3時間焼成して蛍光体を得た (焼き上り) 。 更に、 得ら れた蛍光体をビーズミル 30分間解砕して蛍光体を得た (破碎後) 。 尚、 比較例 In the production, the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 1500 ° C. for 3 hours without flux to obtain a phosphor (baked). Further, the obtained phosphor was crushed by a bead mill for 30 minutes to obtain a phosphor (after crushing). In addition, comparative example
(RA— 40使用) では、 フラックスとしてフッ化アルミニウムを添加 (a—ァ ルミナのアルミニウム原子の 3 %モルを置換) し、 加えてホウ酸を 0. 08モル 添加し、 還元性雰囲気中 1 300°Cで 3時間焼成した。 得られた酸化物を粉枠し た後、 さらに還元性雰囲気中 1 300°Cで 3時間焼成し蛍光体を得た (焼き上り ) 。 更に、 得られた蛍光体をビーズミルにて 30分間粉砕して蛍光体を得た。 表 6 (Using RA-40), aluminum fluoride was added as flux (substituting 3% mol of aluminum atom of a-alumina), and 0.08 mol of boric acid was added. Firing was performed at ° C for 3 hours. After the obtained oxide was powder-framed, it was further baked at 1300 ° C. for 3 hours in a reducing atmosphere to obtain a phosphor (burn-up). Further, the obtained phosphor was ground by a bead mill for 30 minutes to obtain a phosphor. Table 6
Figure imgf000022_0001
Figure imgf000022_0001
得られた各々の蛍光体における焼き上り及び解砕後の平均粒子径、 発光ピーク 及びピーク強度を比較した結果を表 6に示す。 表 6に示す通り、 原料 α—アルミ ナ粉末をフラックスで溶融させないように焼成することにより、 一次粒子径が 0 . 3 以上で 30 以下の実質的に破砕面を有しない原料のひ一アルミナ粉 末に由来した粒子径の相違する蛍光体が得られた。 実施例 5 (CM Z蛍光体の製造、 フラックス無添加)  Table 6 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking and crushing. As shown in Table 6, by firing the raw material α-alumina powder so as not to be melted by the flux, the raw material alumina powder having a primary particle diameter of 0.3 to 30 and having substantially no crushed surface was obtained. Phosphors having different particle diameters derived from the powder were obtained. Example 5 (Production of CM Z phosphor, no flux added)
次の原料を用いて化学式 (C eOu · (Mgo. Z n。.4。, Mn。.26) 〇 • 5. 5 A 12 03 で示される CMZ蛍光体を製造した。 Formula using the following ingredients (C eOu · (Mgo. Z n .. 4., Mn .. 26) 〇 • 5. 5 was prepared CMZ phosphor represented by A 1 2 0 3.
酸化セリウム (Ce02 ) Cerium oxide (Ce0 2)
塩基性炭酸マグネシウム三水和物 (3MgC〇3'Mg (OH) 3 H2 〇) 炭酸亜鉛 ( Z n C O Basic magnesium carbonate trihydrate (3MgC_〇 3 'Mg (OH) 3 H 2 〇) zinc carbonate (Z n CO
炭酸マンガン (MnC03 ) Manganese carbonate (MnC0 3)
α—アルミナ (a— A 12 Os ) α-alumina (a- A 1 2 Os)
尚、 a—アルミナ粉末には、 住友化学工業株式会社からアドバンストアルミナ の商品名で販売されている AA— 3 (平均粒子径 2. 7 n , 粒度分布 2. 1) , AA- 5 (平均粒子径 4. 7 um, 粒度分布 2. 0) A A— 8 (平均粒子径 / The a-alumina powder includes AA-3 (average particle size 2.7 n, particle size distribution 2.1) and AA-5 (average particle size) sold under the trade name of Advanced Alumina by Sumitomo Chemical Co., Ltd. Diameter 4.7 um, particle size distribution 2.0) AA-8 (average particle diameter /
7. 0 rn, 粒度分布 2. 1) を用い、 比較としては R A— 40 (平均粒子径 2 . 7 um, 粒度分布 7. 0) を用いた。  7.0 rn, particle size distribution 2.1) were used, and RA-40 (average particle size 2.7 um, particle size distribution 7.0) was used for comparison.
製造は前記原料をボールミルにて十分に混合し、 還元性雰囲気中 1 500°Cで フラックス無しの状態で 3時間焼成して蛍光体を得た (焼き上り) 。 更に、 得ら れた蛍光体をビーズミルにて 30分間解枠して蛍光体を得た (破砕後) 。 尚、 比 較例 (RA— 40使用) では、 フラックスとしてフッ化アルミニウムを添加 ( 一アルミナのアルミニウム原子の 3 %モルを置換) し、 還元性雰囲気中 1 300 °Cで 3時間焼成した。 得られた酸化物を粉砕した後、 さらに還元性雰囲気中 1 3 00°Cで 3時間焼成し蛍光体を得た (焼き上り) 。 更に、 得られた蛍光体をビ一 ズミルにて 60分間粉枠して蛍光体を得た。  In the production, the above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 1500 ° C. for 3 hours without flux to obtain a phosphor (baked). Further, the obtained phosphor was unframed in a bead mill for 30 minutes to obtain a phosphor (after crushing). In the comparative example (using RA-40), aluminum fluoride was added as a flux (substituting 3% mol of aluminum atoms of monoalumina), and firing was performed at 1300 ° C for 3 hours in a reducing atmosphere. After the obtained oxide was pulverized, it was further baked at 130 ° C. for 3 hours in a reducing atmosphere to obtain a phosphor (burn-up). Further, the obtained phosphor was powder-framed with a beam mill for 60 minutes to obtain a phosphor.
表 7 Table 7
Figure imgf000023_0001
Figure imgf000023_0001
得られた各々の蛍光体における焼き上り及び解砕後の平均粒子径、 発光ピーク 及びピーク強度を比較した結果を表 7に示す。 表 7に示す通り、 原料ひ一アルミ ナ粉末をフラックスで溶融させないように焼成することにより、 一次粒子径が 0 . 3 m 以上で 30 m 以下の実質的に破砕面を有しない原料のひ—アルミナ粉 末に由来した粒子径の相違する蛍光体が得られた。 実施例 6 (フラックスを用いない高残光性酸塩系蛍光体の製造)  Table 7 shows the results of comparing the average particle diameter, emission peak, and peak intensity of each of the obtained phosphors after baking and crushing. As shown in Table 7, by firing the raw material alumina powder so as not to be melted by the flux, the raw material powder having a primary particle diameter of 0.3 m or more and 30 m or less and having substantially no crushed surface is obtained. Phosphors having different particle diameters derived from alumina powder were obtained. Example 6 (Production of high afterglow acid salt-based phosphor without using flux)
(S r , Eu。. 。!。 , Dy。.。。2 ) O · A 123 で示される残光特性を 有するアルミン酸塩系蛍光体をフラックスを添加せずに焼成した。 用いた原料は 2 (S r, Eu ...! ., Dy .... 2) firing the O · A 1 23 aluminate phosphor having afterglow characteristics shown without the addition of flux. The raw materials used Two
次の通りである。 It is as follows.
炭酸ストロンチウム (S r C03 ) 、 Strontium carbonate (S r C0 3),
酸化ユーロピウム (Eu23 ) 、 Europium oxide (Eu 23 ),
酸化ジスプロシウム (Dy 2 03 ) 、 Dysprosium oxide (Dy 2 0 3),
ひ —アルミナ粉末 (a— A l 2 03 ) 、 Facial - alumina powder (a- A l 2 0 3) ,
α—アルミナ粉末として、 実質的に破碎面を有しないひ一アルミナ粉末 A Α— 0 7 , AA— 3, AA- 5 (商品名 「アドバンストアルミナ」 、 住友化学株式会 社製) 及び RA— 40を (市販品、 岩谷化学工業株式会社製) 用いた。 用いた原 料 α -アルミナ粉末の平均粒子径, 粒度分布の粒子径特性は次の表 8に示す通り である。  As α-alumina powder, Hi-Alumina powder A-07, AA-3, AA-5 (trade name “Advanced Alumina”, manufactured by Sumitomo Chemical Co., Ltd.) and RA-40 (Commercially available, manufactured by Iwatani Chemical Industry Co., Ltd.). The average particle size of the raw material α-alumina powder used and the particle size characteristics of the particle size distribution are as shown in Table 8 below.
表 8 Table 8
Figure imgf000024_0001
Figure imgf000024_0001
上記原料をボールミルにて十分に混合し、 還元性雰囲気中 1 3 0 0°Cで 3時間 焼成した後、 得られた酸化物を自動乳鉢にて 2 0分間粉砕して各蛍光体を得た。 尚、 比較例として、 市販の残光特性を有するアルミン酸塩系蛍光体 CP- 05 6C30 ( 市販品、 商品名 「ピカリコ」 、 ケミテック株式会社製) を自動乳鉢にて 1 2 0分 間粉砕した CP - 05 6C30SSを用いた。  The above-mentioned raw materials were sufficiently mixed in a ball mill, and calcined in a reducing atmosphere at 1300 ° C. for 3 hours, and the obtained oxide was ground in an automatic mortar for 20 minutes to obtain each phosphor. . As a comparative example, a commercially available aluminate-based phosphor CP-056C30 having afterglow properties (commercially available product, trade name “Pikarico” manufactured by Chemitech Co., Ltd.) was ground in an automatic mortar for 120 minutes. CP-05 6C30SS was used.
得られた蛍光体の残光強度等の特性を表 9に、 平均粒子径, 粒度分布の粒子径 特性を表 1 0に示す。 尚、 残光強度は CP- 05 6C30 (市販品、 商品名 「ピカリコ」 、 ケミテック株式会社製) を自動乳鉢にて 1 2 0分間粉砕したもの (CP- 05 6C30 SS) を 1 0 0 %として計算した値である。 尚、 得られた残光特性を有するアルミ ェ 3 ン酸塩系蛍光体の走査型電子顕微鏡での粒子形状を各々図 1 6〜図 1 9の図面代 用写真に示す。 また、 図 2 0に比較とした残光特性を有するアルミン酸塩系蛍光 体 CP-05 6C30の走査型電子顕微鏡での粒子形状を示す図面を、 図 2 1に図 2 0の 蛍光体の破碎物 (CP-05 6C30SS) の走査型電子顕微鏡での粒子形状を示す図面を 示す。 Table 9 shows the properties of the obtained phosphor, such as the afterglow intensity, and Table 10 shows the average particle diameter and the particle diameter characteristics of the particle size distribution. The afterglow intensity was as follows: CP-056C30 (commercial product, product name “Pikarico”, manufactured by Chemitech Co., Ltd.) was crushed in an automatic mortar for 120 minutes (CP-056C30 SS) as 100%. It is a calculated value. The obtained aluminum having afterglow characteristics The particle shapes of the phosphate-based phosphor with a scanning electron microscope are shown in the substitute photographs in Figs. 16 to 19, respectively. Fig. 21 is a drawing showing the particle shape of the aluminate-based phosphor CP-056C30 having afterglow characteristics as compared to Fig. 20. Fig. 21 shows the particle shape of the phosphor of Fig. 20. A drawing showing the particle shape of the product (CP-05 6C30SS) with a scanning electron microscope is shown.
表 9 . . Table 9.
Figure imgf000025_0001
Figure imgf000025_0001
表 1 0 Table 10
Figure imgf000025_0002
Figure imgf000025_0002
図 1, 図 3, 図 4, 及び図 1 5の原料と、 図 1 6〜図 1 9までの焼成物とを比 較して判るように、 電子顕微鏡による観察では、 焼成の際にフラックスを添加せ ずに焼成することにより、 α—アルミナが溶融せずに焼成され、 原料の α—アル ミナ粉末が溶融せずにそのままの粒子径を維持しつつ、 残光特性を有するアルミ ン酸塩系蛍光体が得られる。 As can be seen by comparing the raw materials shown in Figs. 1, 3, 4, and 15 with the fired products shown in Figs. Add Α-alumina is fired without melting, and the raw material α-alumina powder is not melted, maintains the particle size as it is, and has an afterglow aluminate-based fluorescent light. The body is obtained.
しかしながら、 表 8及び表 1 0を比較すると、 レーザ一散乱法を測定原理とす る得られた残光特性を有するアルミン酸塩系蛍光体の平均粒子径の測定値は、 実 質的に破碎面を有しない ΑΑ— 07, ΑΑ— 3, A Α— 5及び破碎面を.有する R A— 40を用いたものでは、 焼成する前の α—アルミナ粉末原料の平均粒子径が 0. 66 xm〜4. 7 /xmと広い範囲の平均粒子径のものを用いているが、 得ら れた焼成後の残光特性を有するアルミン酸塩系蛍光体の平均粒子径は、 6. 4 m〜 1 0. 9; mと原料ひ一アルミナ粉末の平均粒子径の値の約 13倍〜約 2. 3倍の値を示す。  However, comparing Tables 8 and 10, the measured value of the average particle diameter of the obtained aluminate-based phosphor having the afterglow characteristic based on the laser-scattering method is substantially crushed. In the case of using 07-07, ΑΑ-3, A 5-5 without surface and RA-40 with crushed surface, the average particle diameter of α-alumina powder raw material before firing is 0.66 xm ~ The average particle diameter of the obtained aluminate phosphor having afterglow characteristics after firing is 6.4 m to 1 / xm. 0.9; about 13 times to about 2.3 times the average particle diameter of m and the raw material alumina powder.
これは、 図 1, 図 3, 図 4, 及び図 1 5の原料と、 図 1 6〜図 1 9までの焼成 物とを比較して判るように、 原料 a—アルミナ粉末の一次粒子径が小さければ、 a—アルミナ粉末の隣接する粒子同士が互いに融合して一次粒子径が数 m程度 の液滴状の粒子となり、 更に、 この融合した数; m程度の粒子同士が弱い力で接 着している状態で焼成される。 また、 原料 a—アルミナ粉末の粒子径が大きけれ ば、 原料の a—アルミナ粉末の粒子が溶融せずにそのままの粒子径を維持するが 、 互いに隣接する粒子が、 弱い力で接着している状態で焼成される。 よって、 2 0分程度の自動乳鉢による解砕で、 粗大な粒子と微粉がほとんどない、 平均粒子 径が 1 0 xm前後の小さい粒子が得られる。  This can be seen from the comparison of the raw materials shown in Figs. 1, 3, 4, and 15 with the calcined products shown in Figs. If the particle size is small, adjacent particles of a-alumina powder will fuse with each other to form droplet-shaped particles with a primary particle diameter of about several meters, and particles of this fused number; It is fired in the state where it is. In addition, if the particle diameter of the raw material a-alumina powder is large, the particles of the raw material a-alumina powder are maintained without being melted, but the particles adjacent to each other are bonded with a weak force. Fired. Therefore, by crushing with an automatic mortar for about 20 minutes, it is possible to obtain small particles having an average particle diameter of about 10 xm with almost no coarse particles and fine powder.
これに対して、 市販の残光特性を有するアルミン酸塩系蛍光体では、 50%平 均粒子径 (D50) を AA— 07, AA— 3, AA— 5と同等の粒子径にするため には、 破碎を充分に行う必要があり、 この破碎に伴う労力は膨大なものがある。 しかも、 同等の粒子径にしたものでは、 残光強度は同等以下であり、 粒子径が不 揃で分級を必要とすることは明白である。  In contrast, with commercially available aluminate-based phosphors having afterglow characteristics, the 50% average particle size (D50) must be reduced to the same particle size as AA-07, AA-3, and AA-5. Must be sufficiently crushed, and the labor involved in this crushing is enormous. In addition, it is clear that the afterglow intensity is equal to or less than that of the particles having the same particle diameter, and the particle diameter is not uniform and classification is required.
尚、 RA— 40では、 残光強度が市販の残光特性を有するアルミン酸塩系蛍光 体よりも低い値となった。 これは原料 a—アルミナの一次粒子径が 0. 46 m と他の粒子径と比較すると遥かに小さく、 得られた蛍光体の平均粒子径も 6. 4 zmとはるかに小さいためであり、 比較する市販の残光特性を有するアルミン酸 塩系蛍光体を RA— 40程度の平均粒子径にして比較すべきことであるが、 巿販 の残光特性を有するアルミン酸塩系蛍光体の 6. 4 m程度までの粉砕は実質的 に不可能である。 In the case of RA-40, the afterglow intensity was lower than that of a commercially available aluminate-based phosphor having afterglow characteristics. This is because the primary particle diameter of raw material a-alumina is 0.46 m, which is much smaller than other particle diameters, and the average particle diameter of the obtained phosphor is also much smaller, 6.4 zm. Commercially available aluminate with afterglow properties It is important to compare salt phosphors with an average particle diameter of about RA-40. However, milling of aluminate phosphors with afterglow properties that are commercially available to about 6.4 m is virtually impossible. Impossible.
上記結果の通り、 本発明による残光特性を有するアルミン酸塩系蛍光体は、 平 均粒子径が小さいにもかかわらず高い残光強度を示し、 極めて優れた残光特性を 有するアルミン酸塩系蛍光体を得ることができる。 .  As described above, the aluminate-based phosphor having the afterglow characteristic according to the present invention exhibits a high afterglow intensity despite the small average particle diameter, and the aluminate-based phosphor having extremely excellent afterglow characteristics A phosphor can be obtained. .
尚、 本実施例では、 (S r , Euo.。10 , Dy0.。02 ) O · A 12 03 蛍光体の例を示したが、 一般式; aMO ' A l 2 03 (但し、 Mはストロンチウ ム (S r) 、 カルシウム (C a) 、 バリウム (B a) からなる群から選ばれる少 なくとも 1つ以上の金属元素からなる化合物、 aは 0. 5から 1. 1) で示され る複合酸化物基体に、 付活剤として、 ユーロピウム (Eu) を、 Mで表わす金属 元素に対するモル%で 0. 002 %以上 20 %以下添加され、 更に、 共付活剤と して、 セリウム (C e) 、 プラセオジム (P r) 、 ネオジム (Nd) 、 サマリゥ ム (Sm) 、 テルビウム (Tb) 、 ジスプロシウム (Dy) 、 ホルミウム (Ho ) 、 エルビウム (E r) 、 ツリウム (Tm) 、 イッテルビウム (Yb) 、 ルテチ ゥム (Lu) 、 スカンジウム (S c) からなる群の少なくとも 1つ以上の元素を Mで表わす金属元素に対するモル%で 0. 002 %以上 20 %以下添加された残 光特性を有するアルミン酸塩系蛍光体、 及び、 一般式; (S r, Eu, P b, D y) O · y (A 1 , B i ) 23 (但し、 0. 83≤y≤ l. 67) で示される Eu2+付活ストロンチウム ·アルミネィト系蛍光体を母体とする残光特性を有す るアルミン酸塩系蛍光体においても、 フラックスを用いることなく焼成すること により、 原料アルミナ粉末に由来する微細な残光特性を有するアルミン酸塩系蛍 光体を得ることがでる。 In the present embodiment, (S r, Euo .. 10 , Dy 0 .. 02) has shown an example of O · A 1 2 0 3 phosphor, the general formula; aMO 'A l 2 0 3 ( where , M is a compound consisting of at least one metal element selected from the group consisting of strontium (Sr), calcium (Ca), and barium (Ba), and a is 0.5 to 1.1) Europium (Eu) was added as an activator to the composite oxide substrate represented by the above in an amount of 0.002% or more and 20% or less in terms of mol% based on the metal element represented by M. Further, as a coactivator, , Cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), At least one element in the group consisting of ytterbium (Yb), lutetium (Lu), and scandium (Sc) is represented by M Aluminate-based phosphor having afterglow properties added in an amount of 0.002% or more and 20% or less in terms of mol% based on a metal element, and a general formula; (Sr, Eu, Pb, Dy) O A 1, B i) 23 (0.83≤y≤ l. 67) Eulan + -activated strontium-aluminate-based phosphorescent aluminate By firing without using a flux, an aluminate-based phosphor having fine afterglow characteristics derived from the raw material alumina powder can also be obtained.

Claims

請求の範囲 The scope of the claims
1. アルミン酸塩系蛍光体の合成にあたり、 1. In the synthesis of aluminate-based phosphor,
原料アルミナとして一次粒子径が 0.3 以上で 30 m以下の実質的に破砕面を有 しない α—アルミナ粉末を用い、  As the raw material alumina, α-alumina powder having a primary particle diameter of 0.3 or more and 30 m or less and having substantially no crushed surface was used
各原料を混合した後の焼成の際に、 原料ひ一アルミナ粉末をフラック.スによる 溶融を行わせずに焼成することを特徴とするアルミン酸塩系蛍光体の製造方法。  A method for producing an aluminate-based phosphor, characterized in that when firing after mixing each raw material, the raw material alumina powder is fired without being melted by flux.
2. アルミン酸塩系蛍光体が、 一般式2. The aluminate-based phosphor has the general formula
Figure imgf000028_0001
Figure imgf000028_0001
で示される複合酸化物基体にユーロピウム(E u)単独、 又はユーロピウム(E u) とマンガン(M n )とからなる付活剤が添加された化合物であり、 Is a compound in which europium (Eu) alone or an activator composed of europium (Eu) and manganese (Mn) is added to a composite oxide substrate represented by
Miがバリゥム(B a)、 ストロンチウム(S r)及びカルシウム(C a)からなる群 から選ばれる少なくとも 1種の金属元素であり、  Mi is at least one metal element selected from the group consisting of barium (Ba), strontium (Sr) and calcium (Ca);
aが 0.5から 4.5、 bが 0から 4、 cが 0.5から 20の範囲にあることを特徴とする 請求項 1記載のアルミン酸塩系蛍光体の製造方法。  The method for producing an aluminate-based phosphor according to claim 1, wherein a is in the range of 0.5 to 4.5, b is in the range of 0 to 4, and c is in the range of 0.5 to 20.
3. アルミン酸塩系蛍光体が一般式3. Aluminate phosphor is a general formula
Figure imgf000028_0002
Figure imgf000028_0002
で示される複合酸化物基体にテルビウム(Tb)及びノ又はマンガン(Mn)からな る付活剤が添加された化合物であり、 Is a compound in which an activator composed of terbium (Tb) and phosphorus or manganese (Mn) is added to the composite oxide substrate represented by
M2がマグネシウム(Mg)、 亜鉛(Z n)から選ばれる少なくとも 1種の金属元素 であり、 M 2 is at least one metal element selected from magnesium (Mg) and zinc (Zn),
dが 0.9から 1.1、 eが 0.9から 1.1、 fが 5.5であることを特徴とする請求項 1記 載のアルミン酸塩系蛍光体の製造方法。  2. The method for producing an aluminate-based phosphor according to claim 1, wherein d is 0.9 to 1.1, e is 0.9 to 1.1, and f is 5.5.
4. アルミン酸塩系蛍光体が、 一般式 4. The aluminate-based phosphor has the general formula
hM3〇 · A 12 O 3 hM 3 〇A 12 O 3
(M3はストロンチウム(S r)、 カルシウム(C a;)、 バリウム(B a)からなる群か 7 (M 3 strontium (S r), calcium (C a;), or the group consisting of barium (B a) 7
ら選ばれる少なくとも 1つ以上の金属元素からなる化合物、 hは 0.5から 1.1) で示される複合酸化物基体に、 付活剤としてのユーロピウム( E u )が M 3で表す金 属元素に対するモル%で 0.002%以上 20%以下添加され、 更に、 共付活剤として、 ランタン(L a)、 セリウム(Ce)、 プラセオジム(P r)、 ネオジム(Nd)、 サマ リウム(Sm)、 ガドリニウム(Gd)、 テルビウム(Tb)、 ジスプロシウム(Dy) 、 ホルミウム(Ho)、 エルビウム(E r;)、 ツリウム(Tm)、 イッテルビウム. (Yb )、 ルテチウム(Lu)、 マンガン(Mn)、 スズ(Sn)、 ビスマス(B i)、 スカンジ ゥム(S c)からなる群の少なくとも 1つ以上の元素が M3で表す金属元素に対する モル%で 0.002%以上 20%以下添加された残光特性を有するアルミン酸塩系蛍光体 であることを特徴とする請求項 1記載のアルミン酸塩系蛍光体の製造方法。 Et compounds comprising at least one or more metal element selected, h is the composite oxide substrate represented by 0.5 1.1) mol% of europium as the activator (E u) is for metallic elements represented by M 3 0.002% or more and 20% or less, and lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), gadolinium (Gd) , Terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er;), thulium (Tm), ytterbium. (Yb), lutetium (Lu), manganese (Mn), tin (Sn), bismuth (B i), aluminates having a scandium © beam (S c) at least one or more elements afterglow characteristic which are added 0.002% or more and 20% or less in terms of mol% relative to the metal element expressed by M 3 in the group consisting of The phosphor according to claim 1, wherein Method for producing Rumin based phosphor.
5. アルミン酸塩系蛍光体が、 一般式 5. The aluminate phosphor has the general formula
hMaO · A 1203 hMaOA 1 2 0 3
で示される複合酸化物基体に、 更に鉛(Pb)、 亜鉛(Z n)及びビスマス(B i )か ら選ばれる少なくとも 1種の金属元素を添加した Further, at least one metal element selected from lead (Pb), zinc (Zn), and bismuth (Bi) was added to the composite oxide substrate represented by
ことを特徴とする請求項 4記載のアルミン酸塩系蛍光体の製造方法。 5. The method for producing an aluminate-based phosphor according to claim 4, wherein:
6. アルミン酸塩系蛍光体が、 一般式; 6. The aluminate-based phosphor has a general formula;
(S r, E u, Pb, Dy) O ' y (A 1 , B i ) 2 O 3  (Sr, Eu, Pb, Dy) O'y (A1, Bi) 2O3
(但し、 0. 83≤y≤ 1. 67)  (However, 0.83≤y≤1.67)
で示される Eu2+付活ストロンチウム ·アルミネィト系蛍光体を母体とする残光 特性を有するアルミン酸塩系蛍光体であることを特徴とする請求項 1に記載され た残光特性を有するアルミン酸塩系蛍光体の製造方法。 2. An aluminate phosphor having an afterglow characteristic according to claim 1, wherein the aluminate phosphor has an afterglow characteristic based on a Eu2 + -activated strontium-aluminate phosphor represented by the formula: A method for producing a salt phosphor.
7. アルミン酸塩系蛍光体が、 一般式; 7. The aluminate-based phosphor has a general formula;
(S r, Eu, Dy) 0 ' A l 23 (S r, Eu, Dy) 0 'A l 23
で示された残光特性を有するアルミン酸塩系蛍光体であることを特徴とする残光 特性を有するアルミン酸塩系蛍光体の製造方法。 2 A method for producing an aluminate-based phosphor having an afterglow characteristic, characterized in that the aluminate-based phosphor has an afterglow characteristic shown in (1). Two
8. 一次粒子径が 0.3/zm以上で 30 /zm以下の実質的に破砕面を有しない α—アル ミナ粉末として、 アルミナ純度が 9 9. 9重量%以上のものを用いることを特徴と する請求項 1記載のアルミン酸塩系蛍光体の製造方法。  8. The α-alumina powder having a primary particle size of 0.3 / zm or more and 30 / zm or less and having substantially no crushed surface, characterized by using alumina having a purity of 99.9% by weight or more. A method for producing an aluminate-based phosphor according to claim 1.
PCT/JP1998/001324 1997-03-26 1998-03-25 Process for producing aluminate phosphor WO1998042797A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP08997797A JP3268431B2 (en) 1997-03-26 1997-03-26 Method for producing aluminate-based phosphor having afterglow characteristics
JP9/89977 1997-03-26
JP9/91388 1997-03-27
JP09138897A JP3366987B2 (en) 1997-03-27 1997-03-27 Method for producing aluminate phosphor

Publications (1)

Publication Number Publication Date
WO1998042797A1 true WO1998042797A1 (en) 1998-10-01

Family

ID=26431358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001324 WO1998042797A1 (en) 1997-03-26 1998-03-25 Process for producing aluminate phosphor

Country Status (1)

Country Link
WO (1) WO1998042797A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167489A3 (en) * 2000-06-27 2003-09-17 Sumitomo Chemical Company, Limited Method for producing aluminate fluorescent substance, a fluorescent and a device containing a fluorescent substance
CN116157734A (en) * 2020-07-16 2023-05-23 住友化学株式会社 Fluorescent material
CN116194835A (en) * 2020-07-16 2023-05-30 住友化学株式会社 Fluorescent material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191835A (en) * 1992-06-02 1994-07-12 Sumitomo Chem Co Ltd Production of alpha-alumina
JPH06248264A (en) * 1993-02-24 1994-09-06 Tokyo Kagaku Kenkyusho:Kk Aluminate-based fluorescent substance
JPH0711250A (en) * 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk Light-storing fluorescent material
JPH0873845A (en) * 1994-06-29 1996-03-19 Nichia Chem Ind Ltd Afterglow type fluorescent material
WO1996032457A1 (en) * 1995-04-14 1996-10-17 Kabushiki Kaisha Tokyo Kagaku Kenkyusho Phosphor with afterglow characteristic
JPH09151372A (en) * 1995-09-29 1997-06-10 Matsushita Electric Ind Co Ltd Production of aluminate salt fluorescent substance
JPH1053762A (en) * 1996-08-08 1998-02-24 Tokyo Kagaku Kenkyusho:Kk Production of aluminate phosphor for photostimulable material
JPH10110165A (en) * 1996-10-04 1998-04-28 Matsushita Electric Ind Co Ltd Production of fluorescent aluminate salt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191835A (en) * 1992-06-02 1994-07-12 Sumitomo Chem Co Ltd Production of alpha-alumina
JPH06248264A (en) * 1993-02-24 1994-09-06 Tokyo Kagaku Kenkyusho:Kk Aluminate-based fluorescent substance
JPH0711250A (en) * 1993-04-28 1995-01-13 Nemoto Tokushu Kagaku Kk Light-storing fluorescent material
JPH0873845A (en) * 1994-06-29 1996-03-19 Nichia Chem Ind Ltd Afterglow type fluorescent material
WO1996032457A1 (en) * 1995-04-14 1996-10-17 Kabushiki Kaisha Tokyo Kagaku Kenkyusho Phosphor with afterglow characteristic
JPH09151372A (en) * 1995-09-29 1997-06-10 Matsushita Electric Ind Co Ltd Production of aluminate salt fluorescent substance
JPH1053762A (en) * 1996-08-08 1998-02-24 Tokyo Kagaku Kenkyusho:Kk Production of aluminate phosphor for photostimulable material
JPH10110165A (en) * 1996-10-04 1998-04-28 Matsushita Electric Ind Co Ltd Production of fluorescent aluminate salt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167489A3 (en) * 2000-06-27 2003-09-17 Sumitomo Chemical Company, Limited Method for producing aluminate fluorescent substance, a fluorescent and a device containing a fluorescent substance
CN116157734A (en) * 2020-07-16 2023-05-23 住友化学株式会社 Fluorescent material
CN116194835A (en) * 2020-07-16 2023-05-30 住友化学株式会社 Fluorescent material

Similar Documents

Publication Publication Date Title
EP1090975B1 (en) A process for producing aluminate-based phosphor
EP2395065B1 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
CN100567447C (en) The method for making of aluminate fluorescent substance, fluorescent substance and contain the device of fluorescent substance
US8470200B2 (en) Production process of long-lasting phosphor
JP5932934B2 (en) Method for producing aluminate phosphor, BAM, YAG, and CAT by alum method
KR20090034914A (en) Luminophore and core-shell luminophore precursors
JP5300968B2 (en) Long afterglow phosphor ceramics and manufacturing method thereof
JP3366987B2 (en) Method for producing aluminate phosphor
EP1403329A1 (en) Method for coating particles
CN103173219A (en) Yttrium-cerium-aluminum garnet phosphor and light-emitting device
WO1998053023A1 (en) Photostimulable fluorescent pigment and process for producing the same
JP3600048B2 (en) Method for producing aluminate-based phosphor
WO1998006793A1 (en) Process for the preparaiton of aluminate-base phosphor
WO1998042797A1 (en) Process for producing aluminate phosphor
JPH09143464A (en) High-luminance long-afterglow phosphorescent material and its production
JP2002194346A (en) Method for producing aluminate fluorescent substance
JP3599914B2 (en) Method for producing aluminate-based phosphor
JP3599913B2 (en) Method for producing aluminate phosphor for phosphorescent material
JP3268431B2 (en) Method for producing aluminate-based phosphor having afterglow characteristics
JP2001152145A (en) Preparation process of aluminate fluorescent body for luminous material
JP7369409B1 (en) Phosphors, light emitting devices, lighting devices, image display devices, and vehicle indicator lights
JP2000297280A (en) Trivalent rare earth ion-containing aluminate fluorescent substance, its production and emission device using the fluorescent substance
JP2004224842A (en) Production method for high-luminance illuminator, and high-luminance illuminator
KR20130095573A (en) Green emitting phosphor by vacuum uv excitation, and the preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase