[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1997012408A1 - Electrode de stockage d'hydrogene, electrode au nickel et batterie alcaline de stockage - Google Patents

Electrode de stockage d'hydrogene, electrode au nickel et batterie alcaline de stockage Download PDF

Info

Publication number
WO1997012408A1
WO1997012408A1 PCT/JP1996/002761 JP9602761W WO9712408A1 WO 1997012408 A1 WO1997012408 A1 WO 1997012408A1 JP 9602761 W JP9602761 W JP 9602761W WO 9712408 A1 WO9712408 A1 WO 9712408A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
nickel
rare earth
battery
earth element
Prior art date
Application number
PCT/JP1996/002761
Other languages
English (en)
French (fr)
Inventor
Kengo Furukawa
Toshiki Tanaka
Hiroe Nakagawa
Yuichi Matsumura
Minoru Kuzuhara
Masuhiro Ohnishi
Noboru Miyake
Masaharu Watada
Masahiko Oshitani
Original Assignee
Yuasa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP25098695A external-priority patent/JP3632866B2/ja
Priority claimed from JP34262795A external-priority patent/JP3788484B2/ja
Priority claimed from JP00888296A external-priority patent/JP3788485B2/ja
Priority claimed from JP8023752A external-priority patent/JPH09219214A/ja
Priority claimed from JP07551996A external-priority patent/JP3314611B2/ja
Priority claimed from JP19931696A external-priority patent/JP3287386B2/ja
Application filed by Yuasa Corporation filed Critical Yuasa Corporation
Priority to US08/849,103 priority Critical patent/US6136473A/en
Priority to EP96931980A priority patent/EP0794584A4/en
Publication of WO1997012408A1 publication Critical patent/WO1997012408A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Definitions

  • the present invention relates to a hydrogen storage electrode and a nickel electrode used in an alkaline storage battery, and further to an alkaline storage battery.
  • Nickel hydride storage batteries have attracted attention in recent years because they have higher energy density and lower pollution than conventional nickel-powered dome storage batteries, and have been actively researched and developed as power sources for portable equipment and electric vehicles. Is being done.
  • Nickel hydride batteries use a hydrogen storage electrode that uses a hydrogen storage alloy that can reversibly store and release hydrogen as the negative electrode, and a nickel electrode that uses nickel hydroxide as the active material as the positive electrode. ing.
  • This nickel hydride storage battery is used as a sealed storage battery, in which case the negative electrode capacity is designed to be larger than the positive electrode capacity, so that oxygen gas generated from the positive electrode during overcharge is consumed by the negative electrode. Thus, sealing is achieved.
  • the surface of the hydrogen storage electrode deteriorated by oxidation or the like is covered with a large amount of acicular products, and the acicular products are hydroxides of rare earth elements.
  • This needle-like product is produced by the elution and precipitation of the rare earth element, which is the main constituent element of the hydrogen storage alloy, and increases with the number of charge / discharge cycles, lowering the conductivity, Negative electrode capacity Decrease usage rate.
  • alkaline storage batteries such as nickel hydride storage batteries, nickel zinc storage batteries, and nickel-dominium storage batteries, are particularly installed in equipment, so they are easily used at high temperatures. Therefore, it is necessary to improve the utilization rate of active materials at high temperatures.
  • the temperature becomes high the charging efficiency of the nickel electrode is reduced, and therefore, the utilization rate of the active material is also reduced, and the electrolytic solution dies due to gas generation, and the battery life is shortened.
  • a method of changing the electrolytic solution composition for example, a method of adding an aqueous solution of lithium hydroxide to an aqueous solution of potassium hydroxide, and a method of (2) nickel hydroxide A method of increasing the amount of C0 present in a solid solution state in the crystal of the crystal.
  • the method (1) there are problems such as a decrease in the utilization rate of the active material at a low temperature and a decrease in the high-rate discharge performance.
  • the method (2) if the amount of C 0 is extremely increased, there arises a problem that the discharge voltage is lowered and the cost is high.
  • a first object of the present application is to provide a hydrogen storage electrode capable of suppressing an increase in battery internal pressure and obtaining excellent charge / discharge cycle characteristics.
  • a second object of the present invention is to provide a Nigel electrode having a high utilization factor in a wide temperature range, particularly a high temperature range, and having a stable capacitance characteristic.
  • the third object of the present application is to have stable capacity characteristics and excellent cycle characteristics. The purpose of this is to provide a rechargeable battery.
  • the first invention of the present application relates to a hydrogen storage electrode. That is, in a hydrogen storage electrode using a hydrogen storage alloy capable of storing and releasing hydrogen, a simple substance or a compound of a rare earth element which is less basic than lanthanum is mixed with the hydrogen storage alloy.
  • the mixed rare earth element is weaker in basicity than La
  • a passivation protective film that is more stable in the alkaline electrolyte than in La is formed on the surface of the hydrogen storage alloy. Therefore, the rare earth element is prevented from being eluted from the inside of the hydrogen storage alloy, and the charge / discharge cycle is increased.
  • a protective film is formed as needed on the new alloy surface that appears when the hydrogen storage alloy cracks during the charge / discharge cycle. .
  • the corrosion resistance of the electrode can be improved without changing the constituent elements of the hydrogen storage alloy, which is advantageous in terms of alloy capacity and cost as compared with the case where the constituent elements are changed.
  • the rare earth element is at least one of cerium, erbium, gadolinium, and yttrium.
  • Er and Yb are particularly excellent in corrosion resistance.
  • Ce is a trivalent or tetravalent metal, and is different from other rare earth elements in that its form is easily changed. Therefore, when Ce is used, electrode characteristics such as charge / discharge efficiency and gas absorption performance by catalytic action are improved.
  • the compound of the rare earth element is an oxide, a hydroxide, or a halide. According to this configuration, stability in alkaline and catalytic properties are improved, and the cost is also advantageous.
  • the second invention of the present application also relates to a hydrogen storage electrode. That is, of hydrogen
  • a hydrogen storage electrode using a hydrogen storage alloy capable of storing and releasing hydrogen is characterized in that a rare earth element, which is less basic than lanthanum, is contained as a composition element in the hydrogen storage alloy.
  • the passivation protective film is formed on the surface of the hydrogen storage alloy by the contained rare earth element, and the charge-discharge cycle characteristics are improved.
  • the rare earth element is at least one of samarium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, and ytterbium.
  • the elements Gd, Tb, Dy, Ho, Er, Tm, Tb, and Sm, particularly Er and Yb, are effective, and excellent corrosion resistance can be obtained with a small amount of addition. .
  • the hydrogen storage alloy has been previously immersed in an alkaline aqueous solution or a weakly acidic aqueous solution.
  • the third invention of the present application relates to a nickel electrode. That is, a nickel electrode using nickel hydroxide as an active material is characterized in that a simple substance or a compound of a rare earth element is mixed with the active material.
  • Yb or a Yb compound is precipitated as a hydroxide stable in a strong alkali.
  • This hydroxide raises the oxygen generation overvoltage As a result, the effect of preventing the decomposition of the electrolytic solution is exhibited, so that the charging efficiency of the nickel electrode at high temperatures is improved.
  • the hydroxide forms a passivation protective film on the surface of the hydrogen storage alloy with respect to the hydrogen storage electrode, so that the elution of rare earth elements from the inside of the hydrogen storage alloy is suppressed. Corrosion of the hydrogen storage alloy is prevented, and the life of the hydrogen storage electrode, which is the negative electrode, is extended.
  • the rare earth element is ytterbium.
  • the compound of the rare earth element is an oxide, a hydroxide, or a halide. According to this configuration, stability in alkaline and catalytic properties are improved, and the cost is also advantageous.
  • Nickel hydroxide contains at least one of cobalt, zinc, cadmium, and magnesium in a solid solution state
  • the rare earth element is at least 1S among yttrium, holmium, erbium, thulium, ytterbium, .Eu pium, and lutetium.
  • the solid solution Cd, Zn, or Mg can prolong the battery life
  • the solid solution Co can improve the charging efficiency
  • the mixed rare earth element can further increase the temperature.
  • the charging efficiency is improved. That is, when Cd, Zn, or Mg is added in a solid solution state to nickel hydroxide, electrode swelling is suppressed. Therefore, the phenomenon that the electrolyte in the separator is depleted due to compression of the separator due to electrode swelling is suppressed, and the life of the battery is prolonged.
  • the potential difference between the oxidation potential and the oxygen evolution potential of the nickel hydroxide (7? Value) is correlative with a charging efficiency,? Values and increases the C 0 to c nickel hydroxide in the charging efficiency becomes higher tendency
  • the oxidation potential of nickel hydroxide shifts to a low value, increasing the 7-value and improving the charging efficiency at high temperatures.
  • Y, Ho, Er, Tm, Yb, Lu and the like exhibit the effect of increasing the oxygen generation potential. Therefore, when these rare earth elements are added, the charging efficiency is further improved. This effect is due to the synergy between Co and the rare earth elements. Compared with La, Ce, etc., the above-mentioned rare earth elements have the effect of remarkably increasing the charging efficiency at high temperatures, and in particular, Yb oxides, Er oxides, and mixed rare earth oxides containing Yb The effect is great. Even if the solid solution is Cd. Zn or Mg, the above-mentioned effect of improving the charging efficiency by the rare earth element is exhibited.
  • the internal pore volume of nickel hydroxide is preferably 0.1 m 1 / g or less.
  • the fourth invention of the present application also relates to a nickel electrode. That is, a Niggel electrode using nickel hydroxide as an active material is characterized in that nickel hydroxide contains a rare earth element in a solid solution state.
  • the oxygen overvoltage is appropriately increased, a decrease in the charging efficiency at a high temperature is suppressed without lowering the discharge potential.
  • Nickel hydroxide contained at least one of cobalt and zinc in a solid solution state.
  • the rare earth element and C 0 are contained in a solid solution state, in addition to the above-mentioned effects of the rare earth element, the charge reaction potential at high temperatures becomes low in a range where the discharge potential of the nickel electrode does not become low.
  • the conductivity in the Nigel hydroxide particles is improved, and the utilization rate of the active material is improved.
  • the rare earth element is at least one of ytterbium, europium pium, yttrium, holmium, lutetium, thulium, and erbium.
  • the fifth invention of the present application also relates to a nickel electrode. That is, in a nickel electrode using nickel hydroxide as an active material, the active material includes at least one kind of a simple substance or a compound of a rare earth element group consisting of yttrium, holmium, erbium, thulium, ytterbium, and lutetium. And a cobalt compound.
  • the oxygen generation potential at the time of charging is remarkably shifted.
  • the tenth is nickel when an equimolar amount of rare earth oxide powder is added.
  • 7 value at 2 CTC of the metal electrode is shown. The value means the potential difference between the oxidation potential and the oxygen generation potential.
  • nickel hydroxide is charged at a high temperature of 40 ° C or higher, the value of 7 decreases and the charging efficiency decreases, but ⁇ , Ho, Er, Tm, Yb, Lu, etc. are added. Then, the ⁇ ? Value is effectively increased, competing reactions are less likely to occur, and charging efficiency is improved.
  • the added cobalt compound forms a conductive network mainly composed of oxycobalt hydroxide on the surface of the nickel hydroxide particles, the inside of the pores, and the surface of the electrode substrate, so that the active material utilization rate is improved.
  • oxycobalt hydroxide is obtained by oxidizing cobalt monoxide, cobalt hydroxide, ⁇ cobalt hydroxide, metallic cobalt, and the like in an alkaline solution.
  • At least ytterbium and lutetium were selected from the group of rare earth elements.
  • Yb and Lu are particularly effective when the above effect is large.
  • Two or more selected from the group of rare earth elements were used in a mixed state or as a compound.
  • composite compounds for example, composite compounds containing Yb and Lu as main components are inexpensive because they are obtained as eutectoids when rare earth elements are separated and produced from ores.
  • the content of ytterbium and lutetium is 35% by weight or more in terms of oxide amount, and the ratio of the content of ytterbium to the content of ytterbium and lutetium Is 0.75 or more in terms of oxide amount.
  • cobalt compound is cobalt oxyhydroxide, cobalt monoxide, ⁇ water At least one of cobalt oxide, 9 cobalt hydroxide, and metallic cobalt.
  • the proportion of metallic cobalt is 3% by weight or less.
  • the amount of metallic cobalt is preferably 3% by weight or less based on the total amount of the cobalt compound in order to suppress a decrease in the amount of charge reserve and an increase in cost in the sealed battery.
  • the sixth invention of the present application relates to an alkaline storage battery. That is, in an alkaline storage battery including a nickel electrode using nickel hydroxide as an active material, a negative electrode, a separator, and an alkaline electrolyte, a simple element or compound of a rare earth element is formed on the surface of the nickel electrode. It is characterized by being applied.
  • a simple substance or a compound of Yb precipitates as a stable hydroxide in an alkaline aqueous solution. Since this hydroxide has an effect of increasing the oxygen overvoltage at high temperatures, the generation of oxygen from the positive electrode side at the end of charging is suppressed, and the utilization at high temperatures is improved. Further, the rare earth element is slightly eluted into the electrolytic solution and precipitates as a stable hydroxide on the surface of the hydrogen storage alloy to form a protective film. Therefore, the dissolution of the rare earth element inside the hydrogen storage alloy is suppressed, that is, the corrosion of the alloy is prevented, and the battery life is extended.
  • the seventh invention of the present application also relates to an alkaline storage battery. That is, in an alkaline storage battery provided with a nickel electrode using nickel hydroxide as an active material, a negative electrode, a separator, and an alkaline electrolyte, a rare earth element element or a rare earth element is formed on the surface of the separator. It is characterized by being coated with a compound.
  • the utilization factor at a high temperature is improved, corrosion of the hydrogen storage alloy is prevented, and a conductive network is reliably formed.
  • the battery capacity that is, the energy density does not decrease.
  • the rare earth element is applied on at least the positive electrode side surface of the separator.
  • the oxygen overvoltage of nickel hydroxide is reliably increased, and the utilization at high temperatures is reliably improved.
  • the coating amount is preferably 0.1% by weight to 10% by weight based on the amount of the positive electrode active material. If it is less than 0.1% by weight, the effect of increasing oxygen overvoltage cannot be obtained, and if it is more than 10% by weight, the effect of suppressing dissolution becomes too large, resulting in poor formation of a conductive network and a negative electrode hydrogen storage alloy. There are adverse effects such as delay in activation of
  • the eighth invention of the present application also relates to an alkaline storage battery.
  • an alkaline storage battery including a nickel electrode using nickel hydroxide as an active material, a negative electrode, a separator, and an alkaline electrolyte
  • an alkaline element or a compound of a rare earth element is alkaline electrolytically. It is characterized by being dissolved in a liquid.
  • the utilization at high temperatures is improved, Corrosion of the hydrogen storage alloy is prevented, and a conductive network is reliably formed.
  • the alkaline electrolyte contains sodium hydroxide or lithium hydroxide as well as potassium hydroxide as a main component. According to this, high-temperature characteristics are improved.
  • sodium hydroxide when sodium hydroxide is contained, there is a problem that the content is limited in order to prevent the electrolyte from becoming viscous, and lithium hydroxide is contained. In such a case, there is a problem that the lithium ion concentration in the electrolytic solution decreases with the cycle.
  • the rare earth element is dissolved in the electrolytic solution, such a problem is solved.
  • the rare earth element is ytterbium.
  • the compound of the rare earth element is an oxide, a hydroxide, or a halide.
  • FIG. 1 is a graph showing the 7-value of the nickel electrode in the case where an equimolar amount of an oxide powder of a rare earth element is added according to the fifth invention of the present application.
  • FIG. 2 is a diagram showing the relationship between the discharge capacity of the battery of Example 1, the battery internal pressure, and the cycle.
  • FIG. 3 is a diagram showing the charge / discharge cycle characteristics of the battery of Example 2.
  • FIG. 4 is a diagram showing the relationship between the discharge capacity of the battery of Example 3, the internal pressure of the battery, and the cycle.
  • FIG. 5 is a diagram showing the relationship between the number of cycles of the electrode and the discharge capacity in Example 4.
  • FIG. 6 is a diagram showing the relationship between the discharge capacity of the battery of Example 4, the internal pressure of the battery, and the cycle.
  • FIG. 1 is a graph showing the 7-value of the nickel electrode in the case where an equimolar amount of an oxide powder of a rare earth element is added according to the fifth invention of the present application.
  • FIG. 2 is
  • FIG. 7 is a diagram showing the relationship between the number of cycles and the discharge utilization rate of the battery of Example 5.
  • 8 to 10 are diagrams showing the results of X-ray diffraction measurement of the hydrogen storage alloy of the negative electrode of Example 5.
  • FIG. 11 is a diagram showing the relationship between Yb 2 0 3 amount and the discharge utilization in example 6.
  • FIG. 12 is a diagram showing the relationship between the temperature change of the electrode and the positive electrode capacity utilization rate in Example 7.
  • FIG. 13 is a diagram showing the relationship between the temperature change and the battery capacity of the battery of Example 8.
  • FIG. 14 is a diagram showing the relationship between the temperature change of the electrode and the positive electrode capacity utilization rate in Example 9.
  • FIG. 15 is a diagram showing the relationship between the high-temperature charging efficiency of the battery of Example 11 and the Yb content.
  • FIG. 16 is a graph showing the relationship between the high-temperature charging efficiency and the C0 content of the battery of Example 11.
  • FIG. 17 is a view showing the relationship between the high-temperature charging efficiency of the battery of Example 11 and the Zn content.
  • FIG. 18 is a diagram showing the relationship between the number of cycles and the utilization of the electrode of Example 13.
  • FIG. 19 is a diagram showing charging curves of the electrode of Example 13 at 20 ° C. and 50 ° C.
  • FIG. 20 is a diagram showing a charge curve of a first cycle of the electrode of Example 13.
  • FIG. 21 is a diagram showing high-rate discharge characteristics of the electrode of Example 13.
  • FIG. 22 is a view showing a result of a temperature characteristic test of the battery of Example 14.
  • FIG. 23 to 28 are diagrams each showing an X-ray diffraction pattern of the active material of the nickel electrode in Example 14.
  • 29 to 33 are diagrams each showing an X-ray diffraction pattern of the active material of the hydrogen storage electrode of Example 14.
  • FIG. 34 is a diagram showing the relationship between the temperature of the battery of Example 15 and the utilization factor.
  • FIG. 35 is a diagram showing charge curves of the battery of Example 15 at 20 ° C. and 40 ° C.
  • the present embodiment relates to a hydrogen storage electrode.
  • An alloy having a composition of 2 was prepared. This is designated as alloy X.
  • Example electrode 1A a hydrogen storage electrode
  • Example electrode 1 A How, in place of the C e 0 2, with G d 2 0 3, Er 2 0 3, Yb 2 ⁇ 3 respectively, the other in the same manner as in Example electrode 1 A, Example electrode 1 B, 1C and 1D were prepared.
  • Example electrode 1 A without mixing a rare earth element such as CeO 2, i.e. using only alloy X, others in the same manner as in Example electrode 1 A, was prepared in Comparative Example electrode 1 a.
  • Example batteries 1A, 1B, 1C, ID and Comparative example battery 1a corresponding to Example electrodes 1A, IB, 1C, ID and Comparative example electrode 1a.
  • the battery was subjected to a charge / discharge cycle test. Charging was performed at 0.5 CmA for 3 hours, discharging was performed at 0.5 CmA to 1.0 V, and the pause between charging and discharging was 1 hour.
  • FIG. 2 is a diagram showing the relationship between discharge capacity, battery internal pressure, and cycle.
  • the batteries of Examples 1A, IB, 1C, and 1D have superior charge-discharge cycle characteristics as compared with the battery la of Comparative Example, and the internal pressure of the battery is significantly higher. Has been improved.
  • the battery of Example 1 C, ID is excellent. Had been.
  • the battery 1A of the example was particularly excellent in battery internal pressure characteristics and battery voltage characteristics.
  • the battery was disassembled, the hydrogen storage alloy was taken out of the electrode after the charge / discharge cycle, and its X-ray diffraction was measured.
  • the electrodes of Example 1A, IB, 1C, and ID produced less amount of the alloy than the electrode 1a of Comparative Example, and suppressed alloy corrosion. It turned out that it was. As a result, there is no decrease in charge reserve due to alloy corrosion, and the increase in battery internal pressure due to hydrogen generation is suppressed.
  • a rare earth element such as Ce is used as an oxide, but this may be used as a hydroxide or a halide, and a similar effect can be obtained.
  • the rare earth element may be present on the grain boundaries of the hydrogen storage alloy particles or on the surfaces of the alloy particles.
  • the present embodiment relates to a hydrogen storage electrode.
  • Example electrode 2A MmN i 3.6A 1 o. 3 C 0 o. 75 M ⁇ 0-35 3 ⁇ 4 ⁇ water-absorbing alloy is ground with a knoller to obtain a powder with an average particle diameter of 50 m. r 0.5% by weight of the oxide is sufficiently mixed, and a 0.5% by weight aqueous solution of methylcellulose is added as a thickener, and the viscosity is adjusted to prepare a paste-like liquid. After filling in a porous substrate and drying, it was pressed to a predetermined thickness to produce a hydrogen storage electrode. This is designated as Example electrode 2A.
  • Example electrode 2B was prepared in the same manner as in the case of A.
  • a comparative example electrode 2b was prepared in the same manner as in Example electrode 2A, except that the oxide of the rare earth element was not mixed.
  • a nickel hydride storage battery with a limited negative electrode capacity was prepared using a negative electrode as the above-mentioned electrode, a nickel electrode having a larger capacity as the positive electrode, and a separator made of a polypropylene nonwoven fabric and an aqueous solution of alkaline metal.
  • the obtained batteries are referred to as Example batteries 2A, 2B and Comparative example battery 2a, corresponding to Example electrodes 2A and 2B and ratio ** — 5 Comparative electrode 2a.
  • the charge / discharge cycle characteristics of the above battery were examined. For this characteristic, after charging for 5 hours at 0.3 C, the operation of discharging to 1.0 V at a current equivalent to 1 C was repeated, and the transition of the negative electrode capacity was examined.
  • FIG. 3 is a diagram showing the capacity transition in each cycle, where the capacity in the first cycle is 100. As is evident from FIG. 3, the charging / discharging cycle of the batteries of Examples 2A and 2B is significantly extended.
  • a rare earth element such as Er is used as an oxide, but it may be used as a hydroxide or a halide, and a similar effect can be obtained.
  • the present embodiment relates to a hydrogen storage electrode.
  • alloy 3A was prepared in the same manner as for alloy X.
  • N i the ratio of A 1, C o, and Mn also c was made to be the same as the alloy X, using a G d instead of Sm, others as in the case of alloy 3 A, Alloy 3B was prepared.
  • an alloy 3C was produced in the same manner as in the case of the alloy 3A except that Er was used instead of Sm.
  • an alloy 3D was produced in the same manner as in the case of the alloy 3A, except that Yb was used instead of Sm.
  • Example electrodes 3A, 3B, 3C, 3D and Comparative Example electrode 3a corresponding to Alloys 3A, 3B, 3C3D and Alloy X.
  • Example batteries 3A, 3B, 3C, 3D and Comparative example battery 3a corresponding to the example electrodes 3A, 3B, 3C, 3D and the comparative example electrode 3a.
  • FIG. 4 is a diagram showing the relationship between discharge capacity, battery internal pressure, and cycle.
  • the batteries of Examples 3A, 3B, 3C, and 3D have better charge / discharge cycle characteristics than the battery of Comparative Example 3a, and also have a lower internal pressure of the battery. It has been greatly improved.
  • the battery was disassembled, the hydrogen storage alloy was taken out of the electrode after the charge / discharge cycle, and its X-ray diffraction was measured.
  • the electrodes of Example 3A, 3B, 3C, and 3D have a smaller amount of generation than the electrode 3a of Comparative Example, and the alloy has corrosion.
  • the alloy has corrosion.
  • the present embodiment relates to a hydrogen storage electrode.
  • Example electrode 4A The alloy 3D produced in Example 3 was mechanically pulverized to obtain an alloy powder, and this alloy powder was immersed in a high-temperature aqueous solution of a mixture of KOH and LiOH and stirred, followed by stirring. Washed and dried. The alkaline aqueous solution is the same as that used as the electrolytic solution. Next, the dried alloy powder was made into a paste by adding a thickener, filled in a nickel fiber substrate, and pressed after drying to produce a hydrogen absorbing electrode. This is designated as Example electrode 4A.
  • a comparative example electrode 4a was produced in the same manner as in the case of the example electrode 4A, except that the immersion treatment was not performed.
  • Example batteries 4A and 4B and Comparative example battery 4a corresponding to the Example electrodes 4A and 4B and the Comparative example electrode 4a.
  • Figure 6 as is apparent from c Figure 6 is a diagram showing the relationship between discharge capacity and battery internal pressure and cycle, Example battery 4 A, 4 B is different from the Comparative Example battery 4 a, The discharge capacity in the charge / discharge cycle and the characteristics of the battery internal pressure are excellent.
  • the discharge capacity is plotted on the upper side, and the internal pressure of the battery is plotted on the lower side.
  • the hydrogen storage electrode of the present embodiment it is possible to suppress a rise in the internal pressure of the battery, obtain excellent charge / discharge cycle characteristics, and obtain an excellent capacity from the beginning. .
  • the present embodiment relates to a nickel electrode.
  • Example electrode 5A Powder of commercially available nickel hydroxide containing no force Domiumu, as a conductive agent metal C 0 powder 6% by weight and C 0 0 powder 4% by weight was added, further added Y b 2 0 3 powder 2.5 wt% , Mix well. To this, water and a thickener were added to form a paste, filled in a nickel fiber substrate, dried, and pressed to produce a nickel electrode. This is designated as Example electrode 5A.
  • Example electrode 5 A the C a (OH) 2 was added in place of Y b 2 0 3, others in the same manner as in Example electrode 5 A, to prepare a comparative example electrode 5 a.
  • a nickel hydride storage battery was fabricated using the above electrode as a positive electrode, a normal hydrogen storage electrode as a negative electrode, and an alkaline electrolyte.
  • the obtained batteries are referred to as Example battery 5A and Comparative example batteries 5a and 5b, corresponding to Example electrode 5A and Comparative example electrodes 5a and 5b.
  • the discharge utilization rate in Fig. 7 is obtained by dividing the actual discharge capacity when the theoretical capacity of Ni (OH) 2 in the positive electrode mixture is 29 OmAh per gram by the theoretical capacity. , 100 times.
  • the battery 5A of the embodiment maintains a sufficient capacity even at a high temperature.
  • the 7-value of the battery of Example 5A is higher than those of the batteries of Comparative Examples 5a and 5b, whereby the decomposition of the electrolytic solution is suppressed, and Is prevented from decreasing.
  • the utilization rate of the nickel electrode at a high temperature can be increased, and when the nickel electrode is used for a nickel hydride storage battery, the life of the hydrogen storage electrode can be extended. .
  • the present embodiment relates to a nickel electrode.
  • the amount of Y b 2 0 3 set variously, others in the same manner as in Example 5, to prepare a battery.
  • the present embodiment relates to a nickel electrode.
  • mixed powder X1 A high-density spherical nickel hydroxide powder containing 5% by weight of Zn in a solid solution state and 10% by weight of C ⁇ powder were mixed. This is designated as mixed powder X1.
  • Example electrode 7A A viscous agent was added to the mixed powder XI to form a paste, which was then filled in a nickel porous substrate to produce a nickel electrode. This is designated as Comparative Example Electrode 7a.
  • 2.5% by weight of holmium oxide powder was sufficiently mixed with the mixed powder XI, and a viscous agent was added to form a paste, which was then filled in a nickel porous substrate to produce a nickel electrode. This is designated as Example electrode 7A.
  • erbium oxide powder and ytterbium oxide powder were added instead of the holmium oxide powder, respectively, and the other example electrodes 7B and 7C were manufactured in the same manner as the example electrode 7A.
  • a lanthanum oxide powder instead of the holmium oxide powder, a lanthanum oxide powder, a cerium oxide powder, and a gadolinium oxide powder were added, respectively.
  • a lanthanum oxide powder instead of the holmium oxide powder, a lanthanum oxide powder, a cerium oxide powder, and a gadolinium oxide powder were added, respectively.
  • a gadolinium oxide powder instead of the holmium oxide powder, a lanthanum oxide powder, a cerium oxide powder, and a gadolinium oxide powder were added, respectively. was prepared.
  • the above electrode was wrapped in a nylon separator, and a nickel hydride storage battery was manufactured using a normal hydrogen storage electrode as a negative electrode.
  • the obtained batteries were used in correspondence with the electrodes 7A, 7B, 7C of the example and the electrodes 7a, 7b, 7c, 7d of the comparative example, and the batteries of the examples 7A, 7B, 7C and the comparative example. 7a, 7b, 7c, 7d.
  • a charge / discharge cycle test was performed in an aqueous potassium hydroxide solution having a specific gravity of 1.28, with the positive electrode capacity smaller than the negative electrode capacity.
  • the charging condition was 3 OmA (corresponding to 0.1 C) for 15 hours, and the discharging condition was 60 mA and the operation was terminated at 0 V with respect to the HgZHgO reference electrode.
  • Figure 12 shows the relationship between the temperature change and the utilization rate of the positive electrode capacity (ratio to the theoretical capacity of the positive electrode).
  • the utilization rate of the comparative electrodes 7a, 7b, 7c, and 7d decreases extremely, but the electrodes of the comparative examples 7A, 7B, and 7C.
  • the degree of decrease is small.
  • the degree of the decrease is small, and a stable capacity is maintained even at a low temperature.
  • the nickel electrode of the present embodiment As described above, according to the nickel electrode of the present embodiment, a wide range from low temperature to high temperature is obtained. The increase / decrease in capacity in a low temperature range can be reduced, and stability can be improved.
  • the present embodiment relates to a nickel electrode.
  • mixed powder X2 A high-density spherical nickel hydroxide powder containing 3% by weight of Zn in a solid solution state and 10% by weight of a CoO powder were mixed. This is designated as mixed powder X2.
  • a viscous agent was added to the mixed powder X2 to form a paste, and the mixture was filled in a nickel porous substrate to prepare a nickel electrode. This is designated as Comparative Example Electrode 8a.
  • Example electrode 8A 2.5% by weight of ytterbium oxide powder was sufficiently mixed with the mixed powder X2, and a viscous agent was added to form a paste, which was filled in a nickel porous substrate to prepare a nickel electrode. This is designated as Example electrode 8A.
  • Example electrode 8B a high-density spherical nickel hydroxide powder containing both 3% by weight of Zn and 3% by weight of Co in a solid solution state and 0% by weight of C0O1 were mixed.
  • ytterbium oxide powder was sufficiently mixed, and a viscous agent was added to form a paste, which was then filled in a nickel porous substrate to produce a nickel electrode. This is designated as Example electrode 8B.
  • Example electrode 8C a high-density spherical nickel hydroxide powder containing both 3% by weight of Zn and 5% by weight of C0 in a solid solution state and 0% by weight of C0O1 were mixed.
  • ytterbium oxide powder was sufficiently mixed, and a viscous agent was added to form a paste, which was then filled in a nickel porous substrate to produce a nickel electrode. This is designated as Example electrode 8C.
  • a nickel hydride storage battery of AA size having a capacity of 110 mAh was produced by a known method.
  • the obtained batteries were set to correspond to the example electrodes 8A, 8B, 8C and the comparative example electrode 8a, and the example batteries 8A, 8B, 8C And Comparative Example Battery 8a.
  • a charge / discharge cycle test was performed.
  • the charging condition was 100 mA for 15 hours, and the discharging condition was 200 mA at 1.0 V.
  • FIG. 13 shows the relationship between temperature change and battery capacity.
  • the batteries 8A, 8B, and 8C of the example have a smaller capacity decrease due to the temperature change than the battery 8a of the comparative example.
  • the capacity of the comparative example battery 8a is 50% or less at a high temperature of 40 ° C or higher as compared with the case of 20 ° C, but particularly, the capacity of the example battery 8C is 60 ° C. Even at a high temperature of C, it has 70% of that at 20 ° C.
  • the difference in capacity between Example Battery 8A and Example Battery 8B indicates that the charging efficiency was higher due to the synergistic effect of C0 and the rare earth element in the solid solution state in Example Battery 8B. .
  • the nickel electrode of the present embodiment it is possible to reduce the increase and decrease of the capacity in a wide temperature range from a low temperature to a high temperature and improve the stability.
  • the present embodiment relates to a nickel electrode.
  • a high-density spherical nickel hydroxide powder containing 5% by weight of Zn in a solid solution state and 10% by weight of a CoO powder were mixed. This is designated as Mixed Powder XI.
  • a thickener was added to the mixed powder XI to form a paste, and the mixture was filled in a nickel porous substrate to prepare a nickel electrode. This is designated as Comparative Example Electrode 9a.
  • Example electrode 9A 2.5% by weight of ytterbium oxide powder was sufficiently mixed with the mixed powder XI, a thickener was added to form a paste, and the paste was filled in a nickel porous substrate to prepare Example electrode 9A.
  • a commercially available ytterbium nitrate solution is neutralized with an alkali to form a hydroxide. Then, 2.5% by weight of this hydroxide powder was sufficiently mixed with the mixed powder XI, and an electrode 9B of an example was produced in the same manner as in the electrode 9A of the example. Further, 2.5% by weight of a commercially available ytterbium fluoride powder was sufficiently mixed with the mixed powder XI, and an electrode 9C was prepared in the same manner as in the case of the electrode 9A.
  • Example batteries 9A, 9B, 9C and Comparative Example battery 9a corresponding to Example electrodes 9A, 9B, 9C and Comparative example electrode 9a.
  • Fig. 14 shows the relationship between the temperature change and the utilization rate of the positive electrode capacity (ratio to the theoretical capacity of the positive electrode). As is evident from FIG. 14, as the temperature rises, the utilization rate of the comparative example electrode 9a decreases extremely, but the high capacity of the comparative example electrodes 9A, 9B and 9C also increases at 50. Have been obtained.
  • the nickel electrode of the present embodiment it is possible to reduce the increase and decrease of the capacity in a wide temperature range from a low temperature to a high temperature and improve the stability.
  • the present embodiment relates to a nickel electrode.
  • a high-density spherical nickel hydroxide powder containing 5% by weight of Zn in a solid solution and having an internal pore volume of 0.03 m 1 / g, and 10% by weight of ⁇ 0 ⁇ powder are mixed. Then, 2.5% by weight of ytterbium oxide powder was sufficiently mixed, and a viscous agent was added to form a paste, which was filled in a nickel porous substrate to produce a nickel electrode. This is designated as Example electrode 1 OA.
  • a nickel hydroxide powder produced by a conventional neutralization method, containing 5% by weight of Zn in a solid solution state and having an internal pore volume of 0.14 m 1 / g, 2. 5% by weight of ytterbium oxide powder was sufficiently mixed, and a viscous agent was added to form a paste, which was filled in a nickel porous substrate to produce a nickel electrode. This is designated as Comparative Example Electrode 10a.
  • Example 7 Using the above electrodes, a nickel hydride storage battery was produced in the same manner as in Example 7. The obtained batteries are referred to as an example battery 10A and a comparative example battery 10a, corresponding to the example electrode 10OA and the comparative example electrode 10a.
  • the utilization rate of the positive electrode capacity was 100% for the electrode 10A of the example, and 96% for the electrode 10a of the comparative example.
  • the utilization rate of the comparative electrode 10a was extremely reduced, but a high capacity was obtained with the experimental electrode 1OA.
  • the nickel electrode of the present embodiment it is possible to reduce the increase and decrease of the capacity in a wide temperature range from a low temperature to a high temperature and improve the stability.
  • high rate discharge characteristics can be improved, and high temperature stability and high capacity can be achieved.
  • the addition amount of the ytterbium oxide powder is set to 2.5% by weight. However, even if the addition amount is smaller than this, a sufficient utilization rate can be obtained at high temperatures. If the addition amount is more than 2.5% by weight, the utilization at high temperatures is further reduced, but from the viewpoint of cost, it is preferably up to 20% by weight.
  • Example 11 The present embodiment relates to a nickel electrode.
  • a Nigel electrode having the composition shown in Table 2 was prepared as follows.
  • An aqueous sodium hydroxide solution is added dropwise to an aqueous solution obtained by adding a predetermined amount of ytterbium nitrate to nickel nitrate, and the mixture is stirred and maintained at a pH of 11 to 14, to precipitate nickel hydroxide particles, washed with water and dried.
  • a nickel hydroxide powder containing Yb in a solid solution state was obtained.
  • This nickel hydroxide powder is mixed with a C00 powder as a conductive aid, and an aqueous solution in which a viscous agent is dissolved is added to form a paste.
  • the paste is filled into a nickel male substrate, dried and pressed to a predetermined thickness.
  • a nickel electrode was produced.
  • Example electrodes 11A and 11B were obtained. Further, a nickel hydroxide powder containing Yb and C 0 in a solid solution state was obtained in the same manner as in the case of the electrode 11A, except that cobalt nitrate was added together with ytterbium nitrate. Electrode 11C was produced. In addition, zinc nitrate was added together with ytterbium nitrate, and in the same manner as in Example electrode 11A, a nickel hydroxide powder containing Yb and Zn in a solid solution state was obtained. 11D was made.
  • Example electrode 11A zinc nitrate and cobalt nitrate were added together with ytterbium nitrate, and otherwise, in the same manner as in Example electrode 11A, a nickel hydroxide powder containing Yb, Zn, and Co in a solid solution state was obtained. Similarly, an example electrode 11E was produced.
  • comparative electrodes 11a, 11b, and 11c were produced in the same manner as in Example electrodes 11A and 1111D, respectively, without adding ytterbium nitrate.
  • the above electrode was used as a positive electrode, and a known hydrogen storage electrode was used as a negative electrode, thereby forming an electrode group with positive electrode capacity regulation.
  • an excessive amount of a hydroxide aqueous solution of specific gravity of 1.28 was poured as an electrolytic solution, and allowed to stand for 24 hours. Then, charging and discharging were repeated five cycles to sufficiently activate the electrolyte. In one cycle, the battery was charged with a current equivalent to 0.1 C of the theoretical capacity of the nickel electrode for 15 hours, and then discharged with a current equivalent to 0.2 C until the potential between both electrodes reached 1 V. This produced a nickel hydride storage battery.
  • the obtained batteries were adapted to the electrodes 11A, 11B, 11C, 11D, and 11E of the examples and the electrodes 11a, lib, and 11c of the comparative examples, respectively. , 1 ID. 11E and Comparative Example Battery 11a, lib, 11c.
  • FIG. 15 shows the result.
  • the test conditions were as follows: at a temperature of 45 ° C, the battery was charged for 15 hours with a current equivalent to the theoretical capacity of a nickel electrode of 0.1C, and then the potential between both electrodes reached IV at a current equivalent to 0.2C. Until the discharge.
  • the charging efficiency at 45 ° C is expressed as a percentage with the charging efficiency at 20 ° C as 100.
  • the charging efficiency increases as the Yb content increases. This is because the oxygen overvoltage of nickel hydroxide increases when Yb is contained in a solid solution state, and the oxygen overvoltage increases as the Yb content increases, increasing the potential difference between the charging reaction and the oxygen generating reaction. This is because charging efficiency can be improved.
  • Example batteries 11A and 11C containing Yb had better high-temperature charging efficiency than Comparative Example battery 11.
  • the example battery 11C containing # 0 and # 13 has better high-temperature charging efficiency than the example battery 11A containing only Yb. This is considered to be because Co has the effect of making the charge reaction potential at high temperatures lower, and the synergistic effect with Yb can increase the potential difference between the charge reaction at high temperatures and the oxygen generation reaction. .
  • Example battery 11D containing Zn and Yb and Example battery 11E containing Zn, Co. and Yb have improved high-temperature charging efficiency.
  • the comparative example battery 11c containing Zn but not containing Yb has a rather low high-temperature charging efficiency.
  • Example Battery 11D containing Zn and Yb has better high-temperature charging efficiency than Example Battery 11A containing only Yb.
  • Zn has the effect of making the oxygen generation potential noble, so that the potential difference between the charging reaction of nickel hydroxide and the oxygen generation reaction can be increased. Furthermore, since Zn has a different ionic radius from that of Ni, distortion can be generated inside the crystal of nickel hydroxide, which not only improves the utilization rate of the active material, but also generates NiOOH. It can also be expected to suppress electrode swelling due to swelling. Such an effect of Zn is impaired in terms of high-temperature charging efficiency when only Zn is added as compared with the case where only Yb is added, but when Zn is added together with Yb or with Yb and C 0. However, it is possible to obtain a good synergistic effect with Yb and C0.
  • the charging / discharging efficiency over a wide range of temperatures can be improved, and the stability of the capacity characteristics can be improved.
  • the present embodiment relates to a nickel electrode.
  • mixed powder X1 A high-density spherical nickel hydroxide powder containing 5% by weight of Zn in a solid solution state and 10% by weight of Co ⁇ powder were mixed. This is designated as mixed powder X1.
  • Yb 2 0 3 powder and: combined mixed and Lu 2 0 3 powder at a predetermined ratio (wt% contrast) were mixed sufficiently in a mortar the mixed powder 2.5 wt% to the mixed powder XI, (4) A paste was formed by adding a viscous agent, and the mixture was filled in a nickel porous substrate to prepare a nickel electrode.
  • Yb 2 0 3 powder and Lu 2 ⁇ 3 ratio of the powder it respectively 90: 10, 75: a case 25, Example electrode 12D, shall be the 12E.
  • Example electrode 12F was produced in the same manner as in Example electrode 12 #, except that a composite oxide of 5:15 was formed.
  • Example electrodes 12G, 12H, and 121 were produced as follows. That is, the Co ⁇ powder and the metal Co powder were mixed at a predetermined ratio (by weight%). However, the ratio was set so that the total amount of cobalt was the same. 10% by weight (converted amount as Co ⁇ ) of this cobalt mixed powder was mixed with a high-density spherical Nigel hydroxide powder containing 115% by weight in a solid solution state. Then, 2.5% by weight of a rare earth element composite oxide was mixed with the nickel mixed powder, and a viscous agent was added to form a paste, which was filled in a nickel porous substrate to prepare a nickel electrode.
  • composite oxide ⁇ 13 2 0 3 and then 11 2 ⁇ 3 and 85: 1 It was contained at a ratio of 5 (relative to the weight%).
  • a positive electrode regulated cell was prepared using the electrode, the separator, and the hydrogen storage electrode, and a Nigel hydride storage battery was prepared using a 6.8 N aqueous potassium hydroxide solution as an electrolyte.
  • the obtained battery was used in correspondence with Example electrodes 12A, 12B, 12C, 12D, 12E, 12F, 12G, 12H, 121 and Comparative electrode 12a.
  • the battery was subjected to a charge / discharge cycle test under sufficient conditions for the electrolyte. Charging was performed at 0.1 CmA for 15 hours, and discharging was performed at 0.2 CmA until the positive electrode potential became 0 V with respect to the HgZHgO reference electrode.
  • Table 3 shows the active material utilization at the 5th cycle at 20 ° C, the active material utilization at the 5th cycle at 50 ° C, and the 77 values at 20 ° C and 40 ° C (oxidation potential and oxygen generation. (Difference from potential).
  • Example 12a 100.2 30.4 56.7.2.2
  • the batteries of Example 12 A to l2F had 77 values at high temperature compared to the batteries of Comparative Example 12a. Large, high active material utilization. It was confirmed that the oxygen generation potential of the electrode 12A-12F of the example was shifted more noblely than the electrode 12a of the comparative example.
  • Table 4 shows the active material utilization rates at 0.2 C discharge and 5 C discharge at 20 ° C.
  • Example 12G, 12H, and 12I have a higher active material utilization rate at 5 C discharge than the battery of Comparative Example 12a.
  • an oxide of a rare earth element is mixed or an oxide is used as a composite compound.
  • the same effect can be obtained by using a hydroxide or a fluoride instead of the oxide.
  • the amount of metal C 0 is preferably set to 3% by weight or less.
  • the present embodiment relates to an alkaline storage battery.
  • Example electrode 13A was produced on the surface of the nickel electrode.
  • a nickel hydride storage battery was fabricated using the above electrode as a positive electrode, a hydrogen storage electrode as a negative electrode, and an aqueous solution of lithium hydroxide having a specific gravity of 1.28 as an electrolyte.
  • the obtained battery was used as an example electrode 13A and a comparative example electrode 13a, 1 Example battery 13A and comparative example batteries 13a and 13b correspond to 3b.
  • the battery was subjected to a charge / discharge cycle test under excess electrolyte. Charging was performed at 0.1 C and discharging was performed at 0.2 C.
  • FIG. 18 shows the results of charging and discharging.
  • Example electrode 13A is different from the comparative example electrode 13 a that is not coated with Yb 2 ⁇ 3, high utilization rate, in high temperature, especially 40 ° C and 5 0 ° C the difference is remarkable.
  • Yb 2 ⁇ 3 Comparative Example electrode 13 b that contain showed comparable utilization and Example electrode 13 A.
  • FIG. 19 shows the charging curves at 20 ° C. and 50 ° C. of the electrode 13 A of the example and the electrode 13 a of the comparative example.
  • the oxygen overvoltages of both electrodes 13 A and 13 a are almost the same.
  • the comparative example electrode 13a at 50 ° C the oxygen overvoltage did not rise even at the end of charging, indicating that the charge acceptance was reduced.
  • the example electrode 13A a rise in oxygen overvoltage was observed at the end of charging, and it can be seen that the charge acceptance did not decrease even at 50 ° C.
  • the comparative example electrode 13b Similar to the electrode 13A of the example, the comparative example electrode 13b also maintained the high-temperature utilization rate. This is due to the oxygen overvoltage rise effect by Yb 2 0 3 which are coated or mixed.
  • FIG. 20 shows charging curves of the electrode 13A of the example and the electrodes 13a and 13b of the comparative example in the first cycle. Charging was performed at 1Z30 C for 7 hours. The portion of the equilibrium potential observed at 50 to 10 OmV indicates a conductive network formation reaction represented by the following equation.
  • Example electrode 13b since the portion of the equilibrium potential is short, it is expected that the reaction represented by the above equation is short and the formation of the conductive network is insufficient. It is. This mixed Y b 2 0 3 is due to suppressing the dissolution of C 0 0.
  • Example electrode 1 3 A since Y b 2 0 3 is coated cloth to the surface of the electrode, C o 0 is smoothly dissolved in the internal electrode, thus, the conductive network is sufficiently It is formed.
  • the extent of formation of the conductive network in Embodiment electrode 1 3 A was approximately equal to Y b 2 ⁇ 3 not containing Comparative Example electrode 1 3 a.
  • FIG. 21 shows the high-rate discharge characteristics of the electrode 13A of the embodiment and the electrodes 13a and 13b of the comparative example.
  • the comparative example electrode 13b has a large decrease in the high-rate discharge characteristics as compared with the example electrode 13A and the comparative example electrode 13a. This is considered to be because the formation of the conductive network was insufficient in the comparative example electrode 13b as described above.
  • the electrode 13A of the example since the formation of the conductive network was sufficient, no significant reduction in the high-rate discharge characteristics was observed.
  • the alkaline storage battery of the present embodiment it is possible to increase the utilization rate of the nickel electrode over a wide range of temperatures and suppress the decrease in the utilization rate at high temperatures.
  • a conductive network can be sufficiently formed in the first charge, high-rate discharge characteristics can be improved. Therefore, stable capacity characteristics and excellent cycle characteristics can be obtained.
  • the present embodiment relates to an alkaline storage battery.
  • Y b 2 0 3 to a powder and ⁇ agent by mixing the aqueous solution of pace Bok shape, which was uniformly coated on the both surfaces of commercially available polyolefin-based nonwoven fabric to prepare a separator and dried.
  • 10% by weight of Co 0 powder as a conductive additive is sufficiently mixed with high-density nickel hydroxide powder containing Zn and Co in a solid solution state, and a viscous agent is added to form a paste. , Filling the nickel porous substrate, After drying, it was pressed to a predetermined thickness to produce a nickel electrode.
  • the separator, the nickel electrode, and the hydrogen storage electrode constitute an electrode group for regulating the positive electrode capacity, and a sealed nickel-hydrogen battery using an aqueous solution of potassium hydroxide having a specific gravity of 1.28 as an electrolyte. Was prepared. This is designated as Example Battery 14A.
  • Example Battery 14B was produced. However, the coating surface of Separation should be placed so as to be in contact with the nickel electrode:
  • Example battery 1 4 B placing the coated surface of the separator evening so as to be in contact with the hydrogen storage electrode, the other in the same manner as in Example battery 1 4 B, and c were prepared in Comparative Example battery 1 4 a, nothing separator A comparative battery 14b was produced in the same manner as in the battery 14A of the example except that the coating was not performed.
  • these batteries were sufficiently activated by injecting the electrolyte, leaving them at room temperature for 48 hours, and repeating charging and discharging for 5 cycles. In one cycle, the battery was charged with a current equivalent to the theoretical capacity of 0.1 C of the nickel electrode for 15 hours, and then discharged with a current equivalent to 0.2 C until the potential between both electrodes reached 1 V. .
  • the battery was subjected to a charge / discharge cycle test to examine its temperature characteristics.
  • the test conditions were as follows: at various temperatures, charge at a current equivalent to the theoretical capacity of the nickel electrode at 0.1 C for 15 hours, and then discharge at a current equivalent to 0.2 C until the potential between both electrodes reached 1 V To do.
  • FIG. 22 shows the results.
  • Example Battery 14 A As is evident from FIG. 22, the batteries of Examples 14A and 14B and the battery of Comparative Example 14a retained sufficient capacity even during high-temperature charging and discharging, and were returned to room temperature. Time capacity recovery is also good. This effect is particularly noticeable in Example Battery 14 A, It is remarkable in 14 B. This is because the this coated with Y b 2 ⁇ 3 to separator evening, oxygen overvoltage of the nickel hydroxide is increased, it can be increased potential difference between the charge reaction and the oxygen generation reaction, since it is possible to improve the charging efficiency I can do it.
  • the battery was disassembled, the active material at the end of discharge was taken out from the nickel electrode and the hydrogen storage electrode, washed with water and dried, and the active material was analyzed by X-ray diffraction.
  • FIG. 23 to FIG. 28 show X-ray diffraction patterns of the active material of the nickel electrode.
  • FIG. 23 is an overall view of the X-ray diffraction pattern in the case of the battery 14 A of the example, and FIGS. 24, 25, 26, and 27 show the respective examples.
  • FIG. 9 is a partially enlarged view of an X-ray diffraction pattern for batteries 14A and 14B and comparative batteries 14a and 14b. The enlarged range corresponds to the portion X in FIG. 23.
  • FIG. 28 shows an X-ray diffraction pattern of the active material of the nickel electrode before activation and charge / discharge.
  • FIGS. 29 to 33 show X-ray diffraction patterns of the active material of the hydrogen storage electrode.
  • Fig. 32 shows the X-ray diffraction patterns of the batteries 14A and 14B of the example and the batteries 14a and 14b of the comparative example. It is a partially enlarged view of a pattern.
  • FIG. 33 is a partially enlarged view of the X-ray diffraction pattern of the active material of the hydrogen storage electrode before activation and charge / discharge.
  • a decrease in the charging efficiency at high temperatures can be suppressed without reducing the discharge potential, electrode capacity, energy density, and the like of the nickel electrode.
  • the charge and discharge efficiency can be improved in the following.
  • alloy corrosion of the hydrogen storage electrode can be suppressed, so that the cycle life can be improved.
  • the present embodiment relates to an alkaline storage battery.
  • FIG. 34 shows the utilization at each temperature.
  • the utilization rate is based on the theoretical capacity.
  • the batteries of Examples 15A and 15B had higher utilization rates than the batteries of Comparative Example 15a, and the difference was remarkable at high temperatures of 40 ° C and 50 ° C.
  • the battery of Example 14B showed a significantly higher utilization factor than the battery 14b of Comparative Example.
  • FIG. 35 shows charging curves of the battery of Example 15A and the battery of Comparative Example 15a at 20 ° C. and 40 ° C.
  • the amount of charge shown on the horizontal axis is based on the theoretical capacity. 2 (In TC, the oxygen overvoltage of both batteries 15A and 15a is about the same. However, in the comparative battery 15a at 40 ° C, the oxygen overvoltage did not rise even at the end of charging, and charging was accepted. On the other hand, in the battery 15A of the example, the oxygen overvoltage rises at the end of charging, and the utilization rate is high even at 40 ° C. As for the battery b, the utilization rate at high temperature was maintained as in the case of the battery 15 A in Example 2. This was due to oxygen generation by Yb ions in the electrolyte. This is due to the effect of increasing the overvoltage.
  • the utilization rate of the nickel electrode can be increased, and a decrease in the utilization rate at high temperatures can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

明 細 書
水素吸蔵電極、 ニッケル電極、 及びアルカリ蓄電池 技術分野
本発明は、 アル力リ蓄電池に用いられる水素吸蔵電極及びニッケル電極、 更にアル力リ蓄電池に関するものである。
背景技術
ニッケル水素化物蓄電池は、 従来のニッケル力ドミゥム蓄電池に比して、 高いエネルギー密度を有し、 低公害であるため、 近年、 注目されており、 ポータブル機器や電気自動車の電源として研究開発が盛んに行われている。 ニッケル水素化物蓄電池では、 負極として、 水素の吸蔵放出を可逆的に行 うことができる水素吸蔵合金を用いた水素吸蔵電極を用い、 正極として、 水酸化ニッケルを活物質として用いたニッケル電極を用いている。
このニッケル水素化物蓄電池は、 密閉形蓄電池として使用されており、 その場合においては、 負極容量が正極容量よりも大きく設計されており、 そのために過充電時に正極から発生する酸素ガスは負極で消費され、 これ によって、 密閉化が成立している。
しかし、 充放電サイクルを繰り返すと、 水素吸蔵合金の酸化などに起因 して、 負極でのガス吸収性能や充電効率が低下する。 このため、 電池内部 圧力が上昇し、 電解液の損失によって内部抵抗が上昇し、 電池性能が低下 する、 という問題があった。
ところで、 酸化などにより劣化した水素吸蔵電極の表面は、 多量の針状 生成物で覆われており、 その針状生成物は希土類元素の水酸化物などであ ることが判明している。 この針状生成物は、 水素吸蔵合金の主構成元素で ある希土類元素が溶出し析出することによって、 生成するものであり、 充 放電サイクル数に伴って増加していき、 導電性を低下させ、 負極容量の利 用率を低下させる。
このような現象を解決する手段として、 水素吸蔵合金中の L aの量を減 少させることにより、 耐食性を向上させることが行われている。 これは、 水素吸蔵合金の構成元素である希土類元素の中では L aが最も塩基性が強 いからである。 し力、し、 この方法では、 耐食性向上の効果は小さく、 しか も放電容量を減少させるという問題があつた。
一方、 ニッケル水素化物蓄電池、 ニッケル亜鉛蓄電池、 ニッケル力ドミ ゥ厶蓄電池などのアルカリ蓄電池は、 特に機器内に設置されるため、 高温 下での使用になりやすい。 そのため、 高温での活物質利用率の向上が要求 される。 しかし、 高温になると、 ニッケル電極の充電効率が低下し、 その ため、 活物質利用率も低下し、 ガス発生により電解液が枯渴し、 電池寿命 が短くなる。
ところで、 一般に、 高温での活物質利用率を向上させるためには、 ①電 解液組成を変化させる方法、 例えば、 水酸化カリウム水溶液に水酸化リチ ゥム水溶液を添加する方法、 ②水酸化ニッケルの結晶中に固溶状態で存在 する C 0の量を增加させる方法、 などが採用されている。 し力、し、 ①の方 法では、 低温での活物質利用率の低下、 高率放電性能の低下、 という問題 が生じる。 また、 ②の方法では、 C 0量の増加が極端であると、 放電電圧 の低下、 高コスト、 という問題が生じる。
発明の開示
本願の第 1の目的は、 電池内部圧力の上昇を抑制でき、 優れた充放電ザ ィクル特性を得ることができる水素吸蔵電極を提供することである。 本願の第 2の目的は、 広範囲の温度域、 特に高温域における利用率が高 く、 安定した容量特性を有するニッゲル電極を提供することである。 本願の第 3の目的は、 安定した容量特性及び優れたサイクル特性を有す るアル力リ蓄電池を提供することである。
本願の第 1の発明は、 水素吸蔵電極に関するものである。 即ち、 水素の 吸蔵放出が可能である水素吸蔵合金を用いた水素吸蔵電極において、 ラン 夕ンより塩基性の弱い希土類元素の単体又は化合物を、 水素吸蔵合金に、 混合したことを特徴としている。
本発明においては、 混合した希土類元素が L aより塩基性が弱いので、 水素吸蔵合金の表面に、 L aよりもアル力リ電解液中で安定な不動態の保 護膜が形成される。 このため、 水素吸蔵合金の内部からの希土類元素の溶 出が抑制され、 充放電サイクルが増加する。 しかも、 希土類元素を混合し ているので、 充放電サイクルに伴う水素吸蔵合金の亀裂に際して現れる新 しい合金表面にも、 随時、 保護膜が形成されることとなり、 上記効果は良 好に発揮される。 本発明によれば、 水素吸蔵合金の構成元素を変更するこ となく、 電極の耐食性を向上できるので、 構成元素を変更する場合に比し て合金容量やコスト面で有利である。
本発明においては、 次の構成を採用するのが好ましい。
( 1 ) 希土類元素が、 セリウム, エルビウム, ガドリニウム、 及びイツテ ルビゥムの内の、 少なくとも 1種である。
この構成において、 E r及び Y bは耐食性が特に優れている。 また、 C eは、 3価又は 4価の金属であり、 その形態が変化しやすいという点で、 他の希土類元素とは性質が異なっている。 そのため、 C eを用いた場合は、 充放電効率や触媒作用によるガス吸収性能などの電極特性が向上する。
( 2 ) 希土類元素の化合物が酸化物、 水酸化物、 又はハロゲン化物である。 この構成によれば、 アルカリ中での安定性や触媒性が向上し、 また、 コ ス卜面でも有利となる。
本願の第 2の発明も、 水素吸蔵電極に関するものである。 即ち、 水素の 吸蔵放出が可能である水素吸蔵合金を用いた水素吸蔵電極において、 ラン タンより塩基性の弱い希土類元素を、 水素吸蔵合金に、 組成元素として含 有させたことを特徴としている。
本発明においても、 上記第 1の発明と同様、 含有させた希土類元素によ り、 水素吸蔵合金の表面に不動態の保護膜が形成され、 充放電サイクル特 性が向上する。
本発明においては、 次の構成を採用するのが好ましい。
(1)希土類元素が、 サマリウム, ガドリニウム, テルビウム, ジスプロ シゥム, ホルミウム, エルビウム, ツリウム, 及びイッテルビウムの内の、 少なくとも 1種である。
この構成においては、 Gd, Tb, Dy, Ho, E r, Tm, Tb, 及 び Smの各元素、 特に Er及び Ybが、 効果的であり、 少量の添加で優れ た耐食性を引き出すことができる。
(2)水素吸蔵合金が、 予め、 アルカリ性水溶液又は弱酸性水溶液により 浸漬処理されている。
この構成においては、 水素吸蔵合金の表面の希土類元素が予め除去され ているので、 初期活性時の充放電の際の、 希土類元素の溶出及び析出が防 止され、 活性化後の充放電においても希土類元素の溶出が防止され、 従つ て、 充放電サイクル特性が向上する。 特に、 弱酸性溶液又はその緩衝溶液 により浸清処理すると、 初期から優れた容量が得られる。
本願の第 3の発明は、 ニッケル電極に関するものである。 即ち、 水酸化 ニッケルを活物質として用いたニッケル電極において、 活物質に希土類元 素の単体又は化合物を混合したことを特徴としている。
本発明においては、 例えば Yb又は Yb化合物は、 強アルカリ中で安定 な水酸化物として析出する。 この水酸化物は、 酸素発生過電圧を引き上げ て、 電解液の分解を防止する効果を発揮するので、 ニッケル電極の高温で の充電効率が向上する。 また、 水素吸蔵電極に対しても、 この水酸化物は、 水素吸蔵合金の表面に不動態の保護膜を形成するので、 水素吸蔵合金の内 部からの希土類元素の溶出が抑制され、 従って、 水素吸蔵合金の腐食が防 止され、 負極である水素吸蔵電極の寿命が長くなる。
本発明においては、 次の構成を採用するのが好ましい。
(1)希土類元素がイッテルビウムである。
(2)希土類元素の単体又は化合物が活物質と遊離状態で存在している。 この構成によれば、 希土類元素の特性が持続し、 製造上の簡便性も向上 する。
(3)希土類元素の化合物が酸化物、 水酸化物、 又はハロゲン化物である。 この構成によれば、 アルカリ中での安定性や触媒性が向上し、 また、 コ スト面でも有利となる。
(4)水酸化ニッケルに、 コバルト、 亜鉛、 カ ドミウム、 及びマグネシゥ ムの内の、 少なくとも 1種を、 固溶状態で含有させており、
希土類元素が、 イッ トリウム、 ホルミウム、 エルビウム、 ツリウム、 ィ ッテルビウム、 .ユウ口ピウム、 及びルテチウムの内の、 少なくとも 1Sで ある。
この構成においては、 固溶させた C d, Zn, 又は Mgにより電池の長 寿命化が図られ、 また、 固溶させた Coにより充電効率の向上が図られ、 混合した希土類元素により更に特に高温での充電効率の向上が図られる。 即ち、 水酸化ニッケル中に C d, Zn, 又は Mgを固溶状態で添加すると、 電極膨潤が抑制される。 従って、 電極膨潤によりセパレー夕が圧迫される ことによってセパレータ内の電解液が枯渴するという現象が、 抑制され、 電池の長寿命化が図られる。 水酸化ニッケルの酸化電位と酸素発生電位との電位差 (7?値) は、 充電 効率と相関性があり、 ?値が大きくなると充電効率は高くなる傾向にある c 水酸化ニッケル中に C 0を固溶状態で添加すると、 水酸化ニッケルの酸化 電位が卑にシフ トするので、 7?値が大きくなり、 高温での充電効率が向上 する。
一方、 Y, Ho, E r, Tm, Yb, L uなどは、 酸素発生電位を高め る効果を発揮する。 従って、 これらの希土類元素を添加すると、 充電効率 が更に向上する。 この効果は、 Coと希土類元素との相乗作用によるもの である。 La, Ceなどに比して、 上記希土類元素は、 高温での充電効率 を顕著に高める効果を有しており、 特に Yb酸化物, E r酸化物、 及び Y bを含有する混合希土類酸化物などは、 その効果が大きい。 固溶している のが Cd. Zn, 又は Mgであっても、 上記希土類元素による充電効率向 上の効果は発揮される。
上記 (4) の発明においては、 水酸化ニッケルの内部細孔容積が 0. 1 m 1 /g以下であるのが好ましい。 このような高密度水酸化ニッケルを用 いることにより、 高率放電特性が向上し、 高温において安定且つ高容量な ニッゲル電極が得られる。
本願の第 4の発明も、 ニッケル電極に関するものである。 即ち、 水酸化 ニッケルを活物質として用いたニッゲル電極において、 水酸化ニッケルに 希土類元素を固溶状態で含有させたことを特徴としている。
本発明によれば、 酸素過電圧が適切に高くなるので、 放電電位を低下さ せることなく、 高温での充電効率の低下が抑制される。
本発明においては、 次の構成を採用するのが好ましい。
(1)水酸化ニッケルにコバルト及び亜鉛の少なくとも一方も固溶状態で 含有させた。 この構成においては、 希土類元素及び C 0を固溶状態で含有させると、 希土類元素による上記効果に加え、 ニッケル電極の放電電位が卑にならな い範囲で高温での充電反応電位が卑になり、 水酸化ニッゲル粒子内の導電 性が向上し、 活物質利用率が向上する。
希土類元素及び Z nを固溶状態で含有させると、 希土類元素による上記 効果に加え、 水酸化ニッケルの結晶内部に歪みが生じ、 活物質利用率が向 上し、 更に、 7— N i OOHの生成による電極膨潤も抑制される。
希土類元素及び Co, Znを固溶状態で含有させると、 上記効果が複合 して得られる。
(2)希土類元素が、 イッテルビウム、 ユウ口ピウム、 イツ トリウム、 ホ ルミゥム、 ルテチウム、 ツリウム、 及びエルビウムの内の、 少なくとも 1 種である。
(3)活物質が、 次式で示す組成 (但し、式において、 Xはイツテルビゥ ム、 ユウ口ピウム、 ルテチウム、 及びエルビウムの内の、 少なくとも 1種 であり、 a = b+c + d、 0. 02≤ a≤0. 20、 0≤ c < 0. 20、 0≤d< 0. 20である) を有している。
Figure imgf000009_0001
本願の第 5の発明も、 ニッケル電極に関するものである。 即ち、 水酸化 ニッケルを活物質として用いたニッケル電極において、 活物質に、 イッ ト リウム、 ホルミウム、 エルビウム、 ツリウム、 イッテルビウム、 及びルテ チウムからなる希土類元素群の内の、 少なくとも 1種の単体又は化合物と、 コバルト化合物とを、 混合したこと特徴としている。
本発明において、 水酸化ニッケルに、 Y, Ho, E r, Tm, Yb, L uなどを添加すると、 充電時の酸素発生電位が著しく貴にシフ 卜する。 第 10は、 希土類元素の酸化物粉末を等モル量添加した場合におけるニッケ ル電極の 2 CTCにおける 7?値を示す。 なお、 値は、 酸化電位と酸素発生 電位との電位差を意味する。 例えば、 4 0 °C以上の高温において水酸化二 ッケルを充電すると、 7?値は小さくなり、 充電効率は低下するが、 Υ, H o, E r, Tm, Y b . L uなどを添加すると、 効果的に τ?値は大きくな り、 競合反応は起こりにく くなり、 充電効率が向上する。
—方、 添加したコバルト化合物により、 水酸化ニッケル粒子の表面や細 孔内部、 電極基板の表面などに、 主としてォキシ水酸化コバルトからなる 導電性ネッ トワークが形成されるので、 活物質利用率が向上する。 なお、 ォキシ水酸化コバルトは、一酸化コバルト、 水酸化コバルト、 ^水酸化 コバルト、 金属コバルトなどを、 アルカリ溶液中で酸化することにより、 得られる。
本発明においては、 次の構成を採用するのが好ましい。
( 1 ) 希土類元素群の内から、 少なくともイッテルビウム及びルテチウム を選択した。
Y b及び L uは特に上記効果が大き t、。
( 2 ) 希土類元素群の内から 2種以上を選択し、 混合状態で又は複合化合 物として用いた。
混合状態で用いることにより、 最適な効果が得られる。 また、 ある種の 複合化合物、 例えば Y b及び L uを主成分とする複合化合物は、 鉱石から 希土類元素を分離生成する際に共析物として得られるので、 安価である。
( 3 ) 選択した 2種以上の希土類元素において、 イッテルビウム及びルテ チウムの含有量が酸化物量に換算して 3 5重量%以上であり、 且つィッテ ルビゥム及びルテチウムの含有量に対するィッテルビウムの含有量の割合 が酸化物量に換算して 0. 7 5以上である。
( 4 ) コバルト化合物が、 ォキシ水酸化コバルト、 一酸化コバルト、 α水 酸化コバルト、 ;9水酸化コバルト、 及び金属コバルトの内の、 少なくとも 1種である。
( 5 ) 選択したコバルト化合物において、 金属コバルトの割合が 3重量% 以下である。
金属コバルトを添加すると、 ォキシ水酸化コバルトからなる導電層の厚 みが電気化学的に増加し、 しかも、 未反応の金属コバルトの導電性が加味 される。 このため、 高率放電特性が更に向上する。 但し、 密閉形電池内の 充電リザーブ量の減少及びコストの増加を抑えるため、 金属コバルトの量 は全コバルト化合物量に対して 3重量%以下であることが好ましい。
本願の第 6の発明は、 アルカリ蓄電池に関するものである。 即ち、 水酸 化ニッケルを活物質として用いたニッケル電極と、 負極と、 セパレータと、 アル力リ電解液とを備えたアル力リ蓄電池において、 ニッケル電極の表面 に、 希土類元素の単体又は化合物を塗布したことを特徵としている。
本発明においては、 例えば Y bの単体又は化合物は、 アルカリ水溶液中 で安定な水酸化物として析出する。 この水酸化物は、 高温時の酸素過電圧 を高める効果を有するので、 充電末期における正極側からの酸素の発生が 抑制され、 高温での利用率が向上する。 また、 希土類元素は、 電解液中に 僅かに溶出し、 水素吸蔵合金の表面に安定な水酸化物として析出して保護 膜を形成する。 このため、 水素吸蔵合金内部の希土類元素の溶解が抑制さ れ、 即ち、 合金の腐食が防止され、 電池寿命が伸びる。
ところで、 Y bなどの希土類元素による溶解抑制効果はコバル卜化合物 にも及ぶため、 コバルト化合物の溶解による H C 0 02—イオンの生成が抑 制されることとなる。 その場合は、 1サイクル目の充電により形成される C o O O Hによる活物質間の導電性ネッ トワークの形成が不十分となり、 利用率や高率放電性能の低下が起こる。 しかし、 本発明では、 ニッケル電 極の表面に希土類元素を塗布しているので、 希土類元素とコバルト化合物 との距離が離れており、 このため、 電極内部のコバルト化合物の溶解が抑 制されることはなく、 導電性ネッ トワークは確実に形成される。
本願の第 7の発明も、 アルカリ蓄電池に関するものである。 即ち、 水酸 化ニッケルを活物質として用いたニッケル電極と、 負極と、 セパレー夕と、 アル力リ電解液とを備えたアル力リ蓄電池において、 セパレ一夕の表面に、 希土類元素の単体又は化合物を塗布したことを特徴としている。
本発明においても、 上記第 6の発明と同様に、 高温での利用率が向上し、 水素吸蔵合金の腐食が防止され、 更に、 導電性ネッ 卜ワークが確実に形成 される。 し力、も、 本発明においては、 ニッケル電極中の水酸化ニッケルの 正味の充填量の減少はないので、 電池容量、 即ち、 エネルギー密度が低下 することもない。
本発明では、 希土類元素を、 少なくともセパレータの正極側の面に塗布 する。 これにより、 水酸化ニッケルの酸素過電圧が確実に高くなり、 高温 での利用率が確実に向上する。 上記第 6及び第 7の発明では、 塗布量が正極活物質の量に対して 0. 1 重量%〜1 0重量%であるのが、 好ましい。 0. 1重量%より小さいと、 酸素過電圧を高める効果が得られず、 1 0重量%より大きいと、 溶解抑制 効果が大きくなりすぎて、 導電性ネッ トワークの形成不良や、 負極の水素 吸蔵合金の活性化の遅延などの、 弊害が生じる。
本願の第 8の発明も、 アルカリ蓄電池に関するものである。 即ち、 水酸 化ニッケルを活物質として用いたニッケル電極と、 負極と、 セパレー夕と、 アル力リ電解液とを備えたアル力リ蓄電池において、 希土類元素の単体又 は化合物をアル力リ電解液に溶解させたことを特徴としている。
本発明においても、 上記第 6の発明と同様に、 高温での利用率が向上し、 水素吸蔵合金の腐食が防止され、 更に、 導電性ネッ トワークが確実に形成 される。
本発明では、 アルカリ電解液が、 水酸化カリウムを主成分とするととも に、 水酸化ナトリウム又は水酸化リチウムを含有しているのが、 好ましい。 これによれば、 高温特性が改善される。 一方、 従来において、 水酸化ナト リウムを含有している場合には、 電解液が粘調になるのを防止するために、 含有量が制限されという問題があり、 水酸化リチウムを含有している場合 には、 サイクルに伴って電解液中のリチウムイオン濃度が低下するという 問題があった。 しかし、 本発明においては、 希土類元素を電解液に溶解さ せているので、 そのような問題は解消される。
上記第 6 , 第 7, 及び第 8の発明では、 次の構成を採用するのが好まし い。
( 1 ) 希土類元素がイッテルビウムである。
( 2 ) 希土類元素の化合物が酸化物、 水酸化物、 又はハロゲン化物である。 図面の簡単な説明
第 1図は本願の第 5の発明に関して希土類元素の酸化物粉末を等モル量 添加した場合におけるニッケル電極の 2 0てにおける 7?値を示す図である。 第 2図は実施例 1の電池の放電容量及び電池内部圧力とサイクルとの関係 を示す図である。 第 3図は実施例 2の電池の充放電サイクル特性を示す図 である。 第 4図は実施例 3の電池の放電容量及び電池内部圧力とサイクル との関係を示す図である。 第 5図は実施例 4の電極のサイクル数と放電容 量との関係を示す図である。 第 6図は実施例 4の電池の放電容量及び電池 内部圧力とサイクルとの関係を示す図である。 第 7図は実施例 5の電池の サイクル数と放電利用率との関係を示す図である。 第 8図ないし第 1 0図 は実施例 5の負極の水素吸蔵合金の X線回折測定の結果を示す図である。 第 11図は実施例 6における Yb 203添加量と放電利用率との関係を示す 図である。 第 12図は実施例 7の電極の温度変化と正極容量利用率との関 係を示す図である。 第 13図は実施例 8の電池の温度変化と電池容量との 関係を示す図である。 第 14図は実施例 9の電極の温度変化と正極容量利 用率との関係を示す図である。 第 15図は実施例 11の電池の高温充電効 率と Yb含有量との関係を示す図である。 第 16図は実施例 11の電池の 高温充電効率と C 0含有量との関係を示す図である。 第 17図は実施例 1 1の電池の高温充電効率と Zn含有量との関係を示す図である。 第 18図 は実施例 13の電極のサイクル数と利用率との関係を示す図である。 第 1 9図は実施例 13の電極の 20°C及び 50°Cの充電曲線を示す図である。 第 20図は実施例 13の電極の 1サイクル目の充電曲線を示す図である。 第 21図は実施例 13の電極の高率放電特性を示す図である。 第 22図は 実施例 14の電池の温度特性試験の結果を示す図である。 第 23図ないし 第 28図は実施例 14のニッケル電極の活物質の X線回折パターンを示す 図である。 第 29図ないし第 33図は実施例 14の水素吸蔵電極の活物質 の X線回折パターンを示す図である。 第 34図は実施例 15の電池の温度 と利用率との関係を示す図である。 第 35図は実施例 15の電池の 20°C 及び 40°Cの充電曲線を示す図である。
発明を実施するための最良の形態
(実施例 1 )
本実施例は、 水素吸蔵電極に関するものである。
[電極の作製]
La, Ce, P r, N dなどの希土類元素の複合体である市販の Mm (; ッシュメタル) と、 N iと、 A 1と、 C 0と、 Mnとを所定量秤量し、 不 活性雰囲気下、 高周波溶解炉を用いて、 MmN i 3.8A 10.3C o0.7 n0 . 2の組成の合金を作製した。 これを合金 Xとする。
次に、 合金 Xを機械粉砕し、 この粉末に、 Ce02粉末 0. 5重量%を 乳鉢を用いて十分に混合し、 增粘剤を加えてペースト状とし、 ニッケル繊 維基板に充填し、 乾燥後プレスして水素吸蔵電極を作製した。 これを実施 例電極 1 Aとする。
—方、 C e 02に代えて、それぞれ G d 203, Er 203, Yb23を用い、 その他は実施例電極 1 Aの場合と同様にして、 実施例電極 1 B, 1 C, 1 Dを作製した。
また、 Ce02などの希土類元素を混合せず、 即ち合金 Xのみを用いて、 その他は実施例電極 1 Aの場合と同様にして、 比較例電極 1 aを作製した。
[電池の作製]
上記電極を負極とし、 高密度水酸化二ッゲル粉末を活物質として用いた ペースト式ニッケル電極を正極とし、 比重 1. 28の水酸化カリウム水溶 液を電解液として用いて、 公称容量 110 OmAhの AAサイズの密閉形 のニッケル水素化物蓄電池を作製した。 得られた電池を、 実施例電極 1A, IB, 1 C, ID及び比較例電極 1 aに対応させて、 実施例電池 1 A, 1 B, 1 C, ID及び比較例電池 1 aとする。
[試験]
上記電池について、 充放電サイクル試験を行った。 充電は 0. 5CmA で 3時間行い、 放電は 0. 5CmAで 1. 0 Vまで行い、 充電と放電との 間の休止時間は 1時間とした。
第 2図は放電容量及び電池内部圧力とサイクルとの関係を示す図である。 第 2図から明らかなように、 実施例電池 1 A, IB, 1 C, 1Dは、 比較 例電池 l aに比して、 充放電サイクル特性が優れており、 また、 電池内部 圧力に関しても大幅に改善されている。 特に、 実施例電池 1 C, IDが優 れていた。 また、 実施例電池 1 Aは、 電池内部圧力特性及び電池電圧特性 が特に優れていた。
上記電池を解体し、 充放電サイクル後の電極から水素吸蔵合金を取り出 して、 その X線回折を測定した。 測定結果において、 希土類水酸化物のピ ークを比較すると、 実施例電極 1 A, I B , 1 C , I Dは、 比較例電極 1 aに比して、 その生成量が少なく、 合金腐食が抑制されていることがわか つた。 その結果、 合金腐食に伴う充電リザーブ量の減少がなく、 水素発生 による電池内圧の上昇が抑制される。
以上のように、 本実施例の水素吸蔵電極によれば、 電池内部圧力の上昇 を抑制でき、 優れた充放電サイクル特性を得ることができる。
なお、 上記実施例では、 C eなどの希土類元素を、 酸化物として用いて いるが、 これは水酸化物やハロゲン化物として用いてもよく、 同様の効果 が得られる。
また、 希土類元素は、 水素吸蔵合金粒子の粒界や合金粒子の表面に存在 させてもよい。
(実施例 2 )
本実施例は、 水素吸蔵電極に関するものである。
[電極の作製]
MmN i 3 · 6 A 1 o . 3 C 0 o . 7 5 M Π 0 - 35の¾^ の水 吸 合金を 、ーノレ ルにて粉砕して平均粒子径 5 0 mの粉末とし、 これに E r酸化物 0. 5 重量%を十分に混合し、 増粘剤としてメチルセルロース 0. 5重量%水溶 液を加え、 粘度調整してペースト状の液を作製し、 この粘調液を繊維状の ニッケル多孔質基板に充填し、 乾燥した後、 所定の厚みにプレスして水素 吸蔵電極を作製した。 これを実施例電極 2 Aとする。
また、 E r酸化物の代わりに Y b酸化物を用い、 その他は実施例電極 2 Aの場合と同様にして、 実施例電極 2 Bを作製した。
—方、 希土類元素の酸化物を混合することなく、 その他は実施例電極 2 Aの場合と同様にして、 比較例電極 2 bを作製した。
[電池の作製]
上記電極を負極とし、 それより容量の大きなニッケル電極を正極とし、 ポリプロピレン不織布からなるセパレ一タ及びアル力リ水溶液を用いて、 負極容量が制限されたニッケル水素化物蓄電池を作製した。 得られた電池 を、 実施例電極 2 A, 2 B及び比 * *— 5較例電極 2 aに対応させて、 実施例電池 2 A, 2 B及び比較例電池 2 aとする。
[試験]
上記電池について、 充放電サイクル特性を調べた。 この特性は、 0 . 3 Cで 5時間充電した後、 1 C相当電流で 1 . 0 Vまで放電する操作を繰り 返し、 負極容量の推移を調べた。
第 3図は、 1サイクル目の容量を 1 0 0とし、 サイクル毎の容量推移を 示す図である。 第 3図から明らかなように、 実施例電池 2 A, 2 Bでは、 著しく充放電サイクルが伸びている。
以上のように、 本実施例の水素吸蔵電極によれば、 電池内部圧力の上昇 を抑制でき、 優れた充放電サイクル特性を得ることができる。
なお、 上記実施例では、 E rなどの希土類元素を、 酸化物として用いて いるが、 これは水酸化物やハロゲン化物として用いてもよく、 同様の効果 が得られる。
(実施例 3 )
本実施例は、 水素吸蔵電極に関するものである。
[電極の作製]
実施例 1と同様にして、 MmN i 3 . 8 A 1。 . 3 C o。 .7M n。 . 2の組成の合 金 Xを作製した。
—方、 合金 Xの組成に、 Mmと Smとの重量比が 95 : 5となるように Smを加え、 その他は合金 Xの場合と同様にして、 合金 3Aを作製した。 なお、 N i、 A 1、 C o、 及び Mnの比は合金 Xと同じとなるようにした c 同じく、 Smの代わりに G dを用い、 その他は合金 3 Aの場合と同様に して、 合金 3 Bを作製した。
同じく、 Smの代わりに E rを用い、 その他は合金 3 Aの場合と同様に して、 合金 3 Cを作製した。
同じく、 Smの代わりに Ybを用い、 その他は合金 3 Aの場合と同様に して、 合金 3Dを作製した。
上記合金を機械粉砕し、 得られた合金粉末に增粘剤を加えてペース卜状 とし、 これをニッケル繊維基板に充填し、 乾燥後プレスして、 水素吸蔵電 極を作製した。 得られた電極を、 合金 3 A, 3B, 3 C 3D及び合金 X に対応させて、 実施例電極 3 A, 3 B, 3 C, 3D及び比較例電極 3 aと する。
[電池の作製]
上記電極を用い、 実施例 1と同様にして、 電池を作製した。 得られた電 池を、 実施例電極 3A, 3B, 3 C, 3D及び比較例電極 3 aに対応させ て、 実施例電池 3 A, 3B. 3C, 3D及び比較例電池 3 aとする。
[試験]
実施例 1と同様の試験を行った。
第 4図は放電容量及び電池内部圧力とサイクルとの関係を示す図である。 第 4図から明らかなように、 実施例電池 3 A, 3 B, 3 C, 3Dは、 比較 例電池 3 aに比して、 充放電サイクル特性が優れており、 また、 電池内部 圧力に関しても大幅に改善されている。 上記電池を解体し、 充放電サイクル後の電極から水素吸蔵合金を取り出 して、 その X線回折を測定した。 測定結果において、 希土類水酸化物のピ ークを比較すると、 実施例電極 3 A, 3 B , 3 C, 3 Dは、 比較例電極 3 aに比して、 その生成量が少なく、 合金腐食が抑制されていることがわか つた
以上のように、 本実施例の水素吸蔵電極によれば、 電池内部圧力の上昇 を抑制でき、 優れた充放電サイクル特性を得ることができる。
(実施例 4 )
本実施例は、 水素吸蔵電極に関するものである。
[電極の作製]
実施例 3で作製した合金 3 Dを機械粉砕して合金粉末を得、 この合金粉 末を、 K O Hと L i O Hとを混合した高温アル力リ水溶液中に浸漬して撹 拌し、 その後、 水洗、 乾燥した。 なお、 このアルカリ水溶液は、 電解液と して用いるものと同じである。 次に、 乾燥後の合金粉末を、 増粘剤を加え てペースト状とし、 ニッケル繊維基板に充填し、 乾燥後プレスして水素吸 葳電極を作製した。 これを実施例電極 4 Aとする。
また、 高温アルカリ水溶液の代わりに、 p Hを 3. 6に調整した酢酸一 詐酸ナトリウム緩衝溶液を用い、 その他は実施例電極 4 Aの場合と同様に して、 実施例電極 4 Bを作製した。
また、 浸漬処理などを行わず、 その他は実施例電極 4 Aの場合と同様に して、 比較例電極 4 aを作製した。
[電極の試験]
上記電極を用い、 通常のニッケル電極を相手極として充放電を行った。 第 5図はその結果を示す。 第 5図から明らかなように、 実施例電極 4 A, 4 Bは初期活性が早く、 特に実施例電極 4 Bは活性化が早く、 高容量であ つ Γこ o
[電池の作製]
上記電極を用い、 実施例 1と同様にして、 電池を作製した。 得られた電 池を、 実施例電極 4 A, 4 B及び比較例電極 4 aに対応させて、 実施例電 池 4 A, 4 B及び比較例電池 4 aとする。
[試験]
実施例 1と同様の試験を行った。
第 6図は放電容量及び電池内部圧力とサイクルとの関係を示す図である c 第 6図から明らかなように、 実施例電池 4 A, 4 Bは、 比較例電池 4 aに 比して、 充放電サイクルの放電容量及び電池内部圧力の特性が優れている。 なお、 第 6図において、 放電容量は上側にプロッ 卜し、 電池内部圧力は下 側にプロッ トしている。
以上のように、 本実施例の水素吸蔵電極によれば、 電池内部圧力の上昇 を抑制でき、 優れた充放電サイクル特性を得ることができ、 更に、 初期か ら優れた容量を得ることができる。
(実施例 5 )
本実施例は、 ニッケル電極に関するものである。
[電極の作製]
力 ドミゥムを含んでいない市販の水酸化ニッケルの粉末に、 導電剤とし て金属 C 0粉末 6重量%及び C 0 0粉末 4重量%加え、 更に Y b 203粉末 2. 5重量%加えて、 十分に混合した。 これに、 水及び増粘剤を加えてぺ 一スト状とし、 ニッケル繊維基板に充填し、 乾燥後プレスしてニッケル電 極を作製した。 これを実施例電極 5 Aとする。
また、 Y b 203の代わりに C a ( O H) 2を加え、 その他は実施例電極 5 Aの場合と同様にして、 比較例電極 5 aを作製した。 また、 Y b 203の代わりに何も加えず、 その他は実施例電極 5 Aの場合 と同様にして、 比較例電極 5 bを作製した。
[電池の作製]
上記電極を正極とし、 通常の水素吸蔵電極を負極とし、 アルカリ電解液 を用いて、 ニッケル水素化物蓄電池を作製した。 得られた電池を、 実施例 電極 5 A及び比較例電極 5 a . 5 bに対応させて、 実施例電池 5 A及び比 較例電池 5 a , 5 bとする。
[試験]
上記電池について、 充放電サイクル試験を行った。 第 7図はその結果を 示す。 また、 表 1は電池の酸素発生電位と酸化電位との電位差 (7?値) を 示す。
1 ]
Figure imgf000021_0001
第 7図の放電利用率は、 正極合剤中の N i (O H) 2の理論容量を 1グ ラム当たり 2 9 O mA hとした時の実際の放電容量を、 理論容量で割った ものに、 1 0 0を掛けたものである。 第 7図から明らかなように、 実施例 電池 5 Aは、 高温においても十分な容量を維持している。 また、 表 1から 明らかなように、 実施例電池 5 Aの 7?値は、 比較例電池 5 a , 5 bに比し て高くなつており、 これにより、 電解液の分解が抑制され、 電池の容量低 下が防止されている。
更に、 充放電サイクル試験後の電池を解体し、 負極から水素吸蔵合金を 取り出して、 その X線回折を測定した。 その結果を第 8図ないし第 1 0図 に示す。 これらの図から明らかなように、 実施例電池 5 Aでは、 2 Θ = 2 7度〜 2 9度付近の希土類水酸化物のピークが小さく、 合金腐食が抑制さ れている。
以上のように、 本実施例のニッケル電極によれば、 ニッケル電極の高温 における利用率を高めることができ、 また、 ニッケル水素化物蓄電池に用 いた場合には水素吸蔵電極の寿命を延ばすことができる。
(実施例 6 )
本実施例は、 ニッケル電極に関するものである。
[電極及び電池の作製]
Y b 203の添加量を種々設定し、 その他は実施例 5と同様にして、 電池 を作製した。 Y b 203の添加量 (重量%) は、 0, 0. 1, 0. 5, 1 . 0, 2. 5, 5 . 0 , 1 0. 0とした。
[試験]
上記電池について、 各種の温度における放電利用率を測定した。 第 1 1 図はその結果を示す。 第 1 1図から明らかなように、 Y b 203を添加する ことにより、 高温性能が改善されている。 但し、 添加量が 5重量%より大 きいと常温での利用率が悪く、 0. 5重量%より小さいと高温での利用率 が悪いため、 添加量は 0. 5 ~ 5. 0重量%が好ましい。
(実施例 7 )
本実施例は、 ニッケル電極に関するものである。
[電極の作製]
Z n 5重量%を固溶状態で含有した高密度球状水酸化ニッケル粉末と、 C ο θ粉末 1 0重量%とを混合した。 これを混合粉末 X 1とする。
混合粉末 X Iに增粘剤を加えてペースト状とし、 ニッケル多孔体基板に 充填してニッケル電極を作製した。 これを比較例電極 7 aとする。 —方、 混合粉末 XIに、 2. 5重量%の酸化ホルミウム粉末を十分に混 合し、 增粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填して二 ッケル電極を作製した。 これを実施例電極 7 Aとする。
また、 酸化ホルミウム粉末の代わりに、 それぞれ酸化エルビウム粉末, 酸化ィッテルビウム粉末を加え、 その他は実施例電極 7 Aの場合と同様に して、 実施例電極 7B, 7Cを作製した。
また、 酸化ホルミウム粉末の代わりに、 それぞれ酸化ランタン粉末, 酸 化セリウム粉末, 酸化ガドリニウム粉末を加え、 その他は実施例電極 7 A の場合と同様にして、 比較例電極 7 b, 7 c, 7 dを作製した。
[電池の作製]
上記電極をナイロンセパレータで包み、 通常の水素吸蔵電極を負極とし て、 ニッケル水素化物蓄電池を作製した。 得られた電池を、 実施例電極 7 A, 7 B, 7 C及び比較例電極 7 a, 7 b, 7 c, 7 dに対応させて、 実 施例電池 7A, 7B, 7C及び比較例電池 7 a, 7 b, 7 c, 7dとする。
[試験]
比重 1. 28の水酸化カリウム水溶液内で、 負極容量よりも正極容量を 小さく して、 充放電サイクル試験を行った。 充電条件は 3 OmA (0. 1 Cに相当) で 15時間とし、 放電条件は 60mAで HgZHgO参照極に 対して 0 Vで終了することとした。
第 12図は温度変化と正極容量の利用率 (正極の理論容量に対する比率) との関係を示す。 第 12図から明らかなように、 温度上昇に伴って、 比較 例電極 7 a, 7 b, 7 c, 7 dでは利用率が極端に低下するが、 実施例電 極 7A, 7 B, 7 Cでは低下の度合いが小さい。 特に、 実施例電極 7 Cで は、 低下の度合いが小さく、 低温でも安定な容量を維持している。
以上のように、 本実施例のニッケル電極によれば、 低温から高温の幅広 い温度域における容量増減を小さくでき、 安定性を向上できる。
(実施例 8 )
本実施例は、 ニッケル電極に関するものである。
[電極の作製]
Z n 3重量%を固溶状態で含有した高密度球状水酸化ニッケル粉末と、 C o O粉末 1 0重量%とを混合した。 これを混合粉末 X 2とする。
混合粉末 X 2に、 增粘剤を加えてペースト状とし、 ニッケル多孔体基板 に充填してニッケル電極を作製した。 これを比較例電極 8 aとする。
—方、 混合粉末 X 2に、 2. 5重量%の酸化イッテルビウム粉末を十分 に混合し、 增粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填し てニッケル電極を作製した。 これを実施例電極 8 Aとする。
また、 Z n 3重量%及び C o 3重量%を共に固溶状態で含有した高密度 球状水酸化ニッケル粉末と、 C o O l 0重量%とを混合し、 この混合粉末 に、 2. 5重量%の酸化イッテルビウム粉末を十分に混合し、 增粘剤を加 えてペースト状とし、 ニッケル多孔体基板に充填してニッケル電極を作製 した。 これを実施例電極 8 Bとする。
また、 Z n 3重量%及び C 0 5重量%を共に固溶状態で含有した高密度 球状水酸化ニッケル粉末と、 C o O l 0重量%とを混合し、 この混合粉末 に、 2 . 5重量%の酸化イッテルビウム粉末を十分に混合し、 增粘剤を加 えてペースト状とし、 ニッケル多孔体基板に充填してニッケル電極を作製 した。 これを実施例電極 8 Cとする。
[電池の作製]
上記電極を用いて、 公知の方法で容量 1 1 0 0 mA hの A Aサイズの二 ッケル水素化物蓄電池を作製した。 得られた電池を、 実施例電極 8 A, 8 B , 8 C及び比較例電極 8 aに対応させて、 実施例電池 8 A, 8 B , 8 C 及び比較例電池 8 aとする。
[試験]
充放電サイクル試験を行った。 充電条件は 100mAで 15時間とし、 放電条件は 200 mAで 1. 0Vで終了することとした。
第 13図は温度変化と電池容量との関係を示す。 第 13図から明らかな ように、 実施例電池 8A, 8B, 8 Cでは、 比較例電池 8 aに比して、 温 度変化による容量低下が小さい。 比較例電池 8 aの容量は、 40°C以上の 高温の場合には 20°Cの場合に比して 50%以下となっているが、 特に実 施例電池 8 Cの容量は、 60°Cの高温の場合でも 20°Cの場合に比して 7 0%を有している。 実施例電池 8Aと実施例電池 8Bとの容量の差は、 実 施例電池 8 Bにおいて固溶状態にある C 0と希土類元素とによる相乗効果 によって充電効率がより高くなつたことを示している。
以上のように、 本実施例のニッケル電極によれば、 低温から高温の幅広 い温度域における容量増減を小さくでき、 安定性を向上できる。
(実施例 9 )
本実施例は、 ニッケル電極に関するものである。
[電極の作製]
Zn 5重量%を固溶状態で含有した高密度球状水酸化ニッケル粉末と、 CoO粉末 10重量%とを混合した。 これを混合粉末 XIとする。
混合粉末 XIに増粘剤を加えてペース卜状とし、 ニッケル多孔体基板に 充填してニッケル電極を作製した。 これを比較例電極 9 aとする。
一方、 混合粉末 XIに、 2. 5重量%の酸化イッテルビウム粉末を十分 に混合し、 増粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填し て、 実施例電極 9 Aを作製した。
また、 市販の硝酸ィッテルビウム溶液をアルカリで中和して水酸化物を 得、 この水酸化物粉末 2. 5重量%を混合粉末 X Iに十分に混合し、 その 他は実施例電極 9 Aの場合と同様にして、 実施例電極 9 Bを作製した。 また、 混合粉末 X Iに、 市販のフッ化イッテルビウム粉末 2. 5重量% を十分に混合し、 その他は実施例電極 9 Aの場合と同様にして、 実施例電 極 9 Cを作製した。
[電池の作製]
上記電極を用い、 実施例 7と同様にして、 ニッケル水素化物蓄電池を作 製した。 得られた電池を、 実施例電極 9 A, 9 B, 9 C及び比較例電極 9 aに対応させて、 実施例電池 9 A, 9 B , 9 C及び比較例電池 9 aとする。
[試験]
実施例 7と同様の充放電サイクル試験を行った。
第 1 4図は温度変化と正極容量の利用率 (正極の理論容量に対する比率) との関係を示す。 第 1 4図から明らかなように、 温度上昇に伴って、 比較 例電極 9 aでは利用率が極端に低下するが、 実施例電極 9 A, 9 B , 9 C では 5 0 においても高容量が得られている。
以上のように、 本実施例のニッケル電極によれば、 低温から高温の幅広 い温度域における容量増減を小さくでき、 安定性を向上できる。
(実施例 1 0 )
本実施例は、 ニッケル電極に関するものである。
[電極の作製]
Z n 5重量%を固溶状態で含有し且つ内部細孔容積が 0. 0 3 m 1 / g の高密度球状水酸化ニッケル粉末と、 〇 0〇粉末1 0重量%とを混合し、 これに 2 . 5重量%の酸化イッテルビウム粉末を十分に混合し、 增粘剤を 加えてペースト状とし、 ニッケル多孔体基板に充填してニッケル電極を作 製した。 これを実施例電極 1 O Aとする。 —方、 従来の中和法により生成した水酸化ニッケル粉末であって Z n 5 重量%を固溶状態で含有し且つ内部細孔容積が 0. 1 4 m 1 / gであるも のに、 2. 5重量%の酸化イッテルビウム粉末を十分に混合し、 增粘剤を 加えてペースト状とし、 ニッケル多孔体基板に充填してニッケル電極を作 製した。 これを比較例電極 1 0 aとする。
[電池の作製]
上記電極を用い、 実施例 7と同様にして、 ニッケル水素化物蓄電池を作 製した。 得られた電池を、 実施例電極 1 O A及び比較例電極 1 0 aに対応 させて、 実施例電池 1 0 A及び比較例電池 1 0 aとする。
[試験]
実施例 7と同様の充放電サイクル試験を行った。
2 0 °Cで充放電を行ったところ、 正極容量の利用率は、 実施例電極 1 0 Aでは 1 0 0 %であったが、 比較例電極 1 0 aでは 9 6 %であった。 5 0 °Cで充放電を行ったところ、 実施例電極 1 O Aでは 7 2 %であったが、 比 較例電極 1 0 aでは 6 1 %であった。 また、 1 8 0 0 mAの放電 (3 C相 当) を行ったところ、 比較例電極 1 0 aの利用率は極端に低下したが、 実 施例電極 1 O Aでは高容量が得られた。
以上のように、 本実施例のニッケル電極によれば、 低温から高温の幅広 い温度域における容量増減を小さくでき、 安定性を向上できる。 しかも、 高率放電特性を向上でき、 高温における安定性及び高容量を達成できる。 なお、 上記では、 酸化ィッテルビウム粉末の添加量を 2. 5重量%とし ているが、 これより少ない添加量でも高温時において十分な利用率が得ら れる。 また、 添加量が 2. 5重量%より多いと、 高温時の利用率は更に增 犬するが、 コスト面を考慮すると、 2 0重量%までが好ましい。
(実施例 1 1 ) 本実施例は、 ニッケル電極に関するものである。
[水酸化二ッゲル粉末及び電極の作製]
次のようにして、 表 2の組成のニッゲル電極を作製した。
硝酸ニッケルに所定量の硝酸ィッテルビウムを加えた水溶液に、 水酸化 ナ卜リウム水溶液を滴下しながら撹拌し且つ pHを 11〜14の範囲に保 ち、 水酸化ニッケル粒子を析出させ、 水洗、 乾燥して、 Ybを固溶状態で 含有した水酸化ニッケル粉末を得た。 この水酸化ニッケル粉末に、 導電補 助剤として C 00粉末を混合し、 增粘剤を溶解した水溶液を加えてペース ト状とし、 ニッケル雄維基板に充填し、 乾燥後所定の厚みにプレスして二 ッケル電極を作製した。 これにより、 実施例電極 11A, 11 Bを得た。 また、 硝酸イッテルビウムと共に硝酸コバルトを加え、 その他は実施例 電極 11 Aの場合と同様にして、 Yb及び C 0を固溶状態で含有した水酸 化ニッケル粉末を得、 更に同様にして、 実施例電極 11 Cを作製した。 また、 硝酸イッテルビウムと共に硝酸亜鉛を加え、 その他は実施例電極 11 Aの場合と同様にして、 Yb及び Znを固溶状態で含有した水酸化二 ッケル粉末を得、 更に同様にして、 実施例電極 11Dを作製した。
また、 硝酸イッテルビウムと共に硝酸亜鉛及び硝酸コバルトを加え、 そ の他は実施例電極 11 Aの場合と同様にして、 Yb、 Zn、 及び Coを固 溶状態で含有した水酸化ニッケル粉末を得、 更に同様にして、 実施例電極 11 Eを作製した。
更に、 硝酸イッテルビウムを加えないで、 その他はそれぞれ実施例電極 11 A, 11 11 Dと同様にして、 比較例電極 11 a, l i b, 11 cを作製した。
2]
電 極 Ni(0H)2 wt¾ Yb(0H)2 wt% Co(0H)2 wt% Zn(0H)2 wt¾ 11 A 97 3 一 ―
11 B 94 5 一 ―
11C 92 3 3 ―
1 ID 94 3 一 5
11 E 89 3 3 5
11 a 100
11 b 95 3
11 c 97 5
[電池の作製]
上記電極を正極とし、 公知の水素吸蔵電極を負極に用い、 正極容量規制 の電極群を構成した。 次いで、 電解液として比重 1. 28の水酸化力リウ ム水溶液を過剰に注液し、 24時間放置した後、 充放電を 5サイクル繰り 返して十分に活性化を行った。 なお、 1サイクルは、 ニッケル電極の理論 容量の 0. 1 C相当の電流で 15時間充電した後、 0. 2 C相当の電流で 両電極間電位が 1 Vに至るまで放電することとした。 これにより、 ニッケ ル水素化物蓄電池を作製した。 得られた電池を、 実施例電極 11 A, 11 B, 11 C, 11D, 11 E及び比較例電極 11 a, l ib, 11 cに対 応させて、 実施例電池 11 A, 11B, 11 C, 1 ID. 11 E及び比較 例電池 11 a, l i b, 11 cとする。
[試験]
上記電池について、 各種充放電試験を行った。
(1)実施例電池 11 A, 11B及び比較例電池 11 aについて、 高温充 電効率と Yb含有量との関係を調べた。 第 15図はその結果を示す。 試験 条件は、 45 °Cの温度下で、 ニッケル電極の理論容量の 0. 1C相当の電 流で 15時間充電した後、 0. 2 C相当の電流で両電極間電位が IVに至 るまで放電することとした。 また、 45°Cの充電効率は、 20°Cの充電効 率を 100とした百分率で表した。
第 15図から明らかなように、 充電効率は Yb含有量が多いほど増大す る。 これは、 Ybを固溶状態で含有させると水酸化ニッケルの酸素過電圧 が高くなるからであり、 Y b含有量が多いほど酸素過電圧がより高くなり、 充電反応と酸素発生反応との電位差を大きくでき、 充電効率を向上させる ことができるからである。
(2) 実施例電池 11 A, 11 C及び比較例電池 11 bについて、 高温充 電効率と Co含有量との関係を調べた。 第 16図はその結果を示す。 試験 条件は、 上記 (1) と同じとした。
第 16図から次のことがわかる。 比較例電池 11 bのように、 Coを含 有していれば Y bを含有していなくても、 高温充電効率は比較的良好であ る。 しかし、 Ybを含有している実施例電池 11A, 11 Cは、 比較例電 池 11 よりも、 高温充電効率は良好である。 更に、 〇 0及び丫13を含有 している実施例電池 11 Cは、 Ybのみを含有している実施例電池 11 A よりも、 高温充電効率は良好である。 これは、 Coが、 高温下の充電反応 電位をより卑にする効果を有するので、 Ybとの相乗効果によって高温下 の充電反応と酸素発生反応との電位差を大きくできるからであると考えら れる。 更に、 Coが、 高次酸化物の形態を取ることによって、 水酸化ニッ ゲル粒子内の導電性を向上させ、 活物質の利用率を向上させることも、 期 待できる。 但し、 C 0の多量添加は放電反応電位も卑にするので、 Co添 加量は適切な範囲に制限する必要がある。
(3) 実施例電池 11 A, 11 D, 11 E及び比較例電池 11 cについて、 高温充電効率と Zn含有量との関係を調べた。 第 17図はその結果を示す。 試験条件は、 上記 (1) と同じとした。 第 17図から次のことがわかる。 Zn及び Ybを含有している実施例電 池 11D及び Zn, Co. 及び Ybを含有している実施例電池 11 Eは、 高温充電効率が向上している。 しかし、 Znを含有していても Ybを含有 していない比較例電池 11 cは、 むしろ高温充電効率が低下している。 更 に、 Z n及び Ybを含有している実施例電池 11 Dは、 Ybのみを含有し ている実施例電池 11 Aよりも、 高温充電効率は良好である。 これは、 Z nが、 酸素発生電位を貴にする効果を有するので、 水酸化ニッケルの充電 反応と酸素発生反応との電位差を大きくできるからであると考えられる。 更に、 Znが、 N iとイオン半径が異なるために水酸化ニッケルの結晶内 部に歪みを生じさせることができるので、 活物質の利用率を向上させるだ けでなく ァー N i OOHの生成による電極膨潤を抑制することも、 期待で きる。 このような Znの効果は、 Z nのみを添加した場合には、 Ybのみ を添加した場合に比して、 高温充電効率の点で損なわれるが、 Ybと共に 又は Yb及び C 0と共に添加した場合には、 損なわれることはなく、 むし ろ Yb, C 0との相乗効果を良好に得ることができる。
以上のように、 本実施例のニッケル電極によれば、 広範囲の温度下にお ける充放電効率を向上でき、 容量特性の安定性を向上できる。
なお、 本実施例においては、 Ybの代わりに、 Eu, Erなどの他の希 土類元素を用いても、 同様の効果が得られる。
(実施例 12 )
本実施例は、 ニッケル電極に関するものである。
[電極の作製]
Zn 5重量%を固溶状態で含有した高密度球状水酸化ニッケル粉末と、 Co〇粉末 10重量%とを混合した。 これを混合粉末 X 1とする。
混合粉末 XIに增粘剤を加えてペースト状とし、 ニッケル多孔体基板に 充填してニッケル電極を作製した。 これを、 比較例電極 12 aとする。 一方、 丫 203と 1_1203との含有割合 (重量%対比) が所定値に設定 された複合酸化物を形成し、 この複合酸化物 2. 5重量%を混合粉末 XI に乳鉢内で十分に混合し、 增粘剤を加えてペース ト状とし、 ニッケル多孔 体基板に充填してニッケル電極を作製した。 ここで、 Yb 203と Lu203 との含有割合がそれぞれ 100 : 0, 85 : 15, 75 : 25である場合 を、 実施例電極 12 A, 12 B, 12Cとする。
また、 Yb 203粉末と: Lu 203粉末とを所定の割合 (重量%対比) で混 合し、 この混合粉末 2. 5重量%を混合粉末 XIに乳鉢内で十分に混合し、 增粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填してニッケル 電極を作製した。 ここで、 Yb 203粉末と Lu23粉末との割合がそれぞ れ 90 : 10, 75 : 25である場合を、 実施例電極 12D, 12Eとす る。
また、 Ho203と E r 203と Tm203と Yb23と Lu203と Y203と の含有割合 (重量%対比) が 15 : 25 : 10 : 30 : 5 : 15である複 合酸化物を形成し、 その他は実施例電極 12 Αの場合と同様にして、 実施 例電極 12 Fを作製した。
更に、 次のようにして、 実施例電極 12 G, 12H, 121を作製した。 即ち、 C οθ粉末と金属 Co粉末とを所定の割合 (重量%対比) で混合し た。 但し、 その割合は、 総コバルト量が同量となるように設定した。 この コバルト混合粉末 10重量% (C οθとしての換算量) を、 ∑115重量% を固溶状態で含有した高密度球状水酸化二ッゲル粉末に混合した。 そして、 このニッケル混合粉末に、 希土類元素の複合酸化物 2. 5重量%を混合し、 增粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填してニッケル 電極を作製した。 なお、 複合酸化物は、 丫13203とし 11 23とを85 : 1 5の割合 (重量%対比) で含有したものである。 ここで、 C oO粉末と金 属 C 0粉末との混合割合がそれぞれ 9 : 0. 78, 8 : 1. 57. 7 : 2. 36である場合を、 実施例電極 12 G, 12H, 12 I とする。
[電池の作製]
上記電極と、 セパレータと、 水素吸蔵電極とを用いて正極規制のセルを 作製し、 電解液として 6. 8規定の水酸化カリウム水溶液を用いて、 ニッ ゲル水素化物蓄電池を作製した。 得られた電池を、 実施例電極 12 A, 1 2 B, 12 C, 12D, 12 E, 12 F, 12 G, 12H, 12 1及び比 較例電極 12 aに対応させて、 実施例電池 12 A, 12 B, 12 C, 12 D, 12 E, 12F, 12G, 12H, 12 I及び比較例電池 12 aとす る。
[試験]
上記電池について、 電解液十分な条件下で充放電サイクル試験を行った。 充電は 0. 1 CmAで 15時間行い、 放電は 0. 2 CmAで HgZHgO 参照極に対して正極電位が 0 Vとなるまで行った。
表 3に、 20°Cにおける 5サイクル目の活物質利用率と、 50°Cにおけ る 5サイクル目の活物質利用率と、 20°C及び 40°Cにおける 77値 (酸化 電位と酸素発生電位との差) を示す。
ほ 3]
電 池 20。C、 50。C、 20。C、 40。C、
利用率 (%) 利用率(%) V (mV) V (mV)
12 A 100. 3 64. 2 65. 0 24. 8
12 B 100. 3 64. 3 66. 3 25. 2
12 C 100. 4 65. 1 67. 2 26. 5
12D 100. 1 50. 2 59. 5 1 1. 6 12E 100. 6 64. 4 66. 0 24. 9
12 F 100. 2 65. 5 67. 4 25. 8
12 a 100. 2 30. 4 56. 7 2. 2 表 3から明らかなように、 実施例電池 12 A〜l 2 Fは、 比較例電池 1 2 aに比して、 高温時の 77値が大きく、 活物質利用率が高い。 実施例電極 12 A-12 Fの酸素発生電位は、 比較例電極 12 aに比して、 貴にシフ トしていることが確認された。
表 4に、 20°Cでの 0. 2 C放電及び 5 C放電における活物質利用率を 示す。
4]
Figure imgf000034_0001
実施例電池 12 G, 12H, 12 Iは、 比較例電池 12 aに比して、 5 C放電における活物質利用率が高い。
また、 実施例電極 12 A, 12B, 12 C, 12D, 12E, 12F, 12G, 12H, 12 Iを密閉型電池に用いた場合でも、 高温充電時の酸 素発生反応が抑制されるため、 電池内部圧力の上昇が小さくなり、 電池寿 命が著しく向上する。
以上のように、 本実施例のニッケル電極によれば、 高温性能を向上でき、 高エネルギー密度を達成できる。 なお、 上記実施例では、 希土類元素の酸化物を混合したり、 複合化合物 として酸化物を用いているが、 酸化物の代わりに、 水酸化物、 フッ化物を 用いても、 同様の効果が得られる。
また、 C o Oや金属 C oの代わりに、 ォキシ水酸化コバルト、 水酸化 コバノレト、 yS水酸化コバルトなどを用いても、 同様の効果が得られる。 但 し、 放電リザーブ量の増加を抑えるため、 金属 C 0量は 3重量%以下とす るのが好ましい。
(実施例 1 3 )
本実施例は、 アルカリ蓄電池に関するものである。
[ニッケル電極の作製]
Z n及び C 0を固溶状態で含有した高密度水酸化ニッケル粉末に、 導電 補助剤として C o O粉末 1 0重量%を十分に混合し、 增粘剤を加えてベー スト状とし、 ニッケル多孔体基板に充填し、 乾燥後所定の厚さにプレスし てニッケル電極を作製した。 これを比較例電極 1 3 aとする。
上記ニッケル電極の表面に、 Y b 203粉末と增粘剤とを混合してなるぺ 一ストを、 水酸化ニッケルの量に対して 2. 5重量%となる量だけ塗布し、 再度乾燥させて、 実施例電極 1 3 Aを作製した。
また、 Z n及び C 0を固溶状態で含有した高密度水酸化ニッケル粉末に、 C o O粉末 1 0重量%及び Y b 203粉末 2. 5重量%を十分に混合し、 增 粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填し、 乾燥後所定 の厚さにブレスして比較例電極 1 3 bを作製した。
[電池の作製]
上記電極を正極とし、 水素吸蔵電極を負極として用い、 比重 1 . 2 8の 水酸化力リウム水溶液を電解液として用いて、 ニッケル水素化物蓄電池を 作製した。 得られた電池を、 実施例電極 1 3 A及び比較例電極 1 3 a , 1 3 bに対応させて、 実施例電池 13 A及び比較例電池 13 a, 13 bとす る。
[試験]
上記電池について、 電解液過剰下にて充放電サイクル試験を行った。 充 電は 0. 1 C、 放電は 0. 2Cで行った。
第 18図は充放電の結果を示す。 実施例電極 13Aは、 Yb23を塗布 していない比較例電極 13 aに比して、 利用率が高く、 特に 40 °C及び 5 0°Cの高温においてはその差が顕著である。 なお、 Yb23を含有してい る比較例電極 13 bは、 実施例電極 13 Aと同等の利用率を示した。
第 19図は実施例電極 13 Aと比較例電極 13 aの、 20°C及び 50°C の充電曲線を示す。 20°Cにおいては、 両電極 13 A, 13 aの酸素過電 圧は同程度である。 しかし、 50°Cにおける比較例電極 13 aにおいては、 充電末期においても酸素過電圧の立ち上がりはなく、 充電受け入れが低下 していることがわかる。 これに対して、 実施例電極 13 Aにおいては、 充 電末期において酸素過電圧の立ち上がりが見られ、 50°Cにおいても充電 受け入れが低下していないことがわかる。 比較例電極 13bも、 実施例電 極 13 Aと同様に、 高温時の利用率が維持された。 これは、 塗布又は混合 された Yb203による酸素過電圧上昇効果によるものである。
第 20図は実施例電極 13 A及び比較例電極 13 a, 13bの、 1サイ クル目の充電曲線を示す。 なお、 充電は、 1Z30 Cで 7時間行った。 5 0〜10 OmVに見られる平衡電位の部分は、 次式によって表される導電 性ネッ トワーク形成反応を示している。
H C 002" → CoO〇H+ e一
比較例電極 13 bでは、 平衡電位の部分が短いことから、 上記式で表さ れる反応が短く、 導電性ネッ トワークの形成が不十分であることが予想さ れる。 これは、 混合された Y b 203が C 0 0の溶解を抑制することによる ものである。 しかし、 実施例電極 1 3 Aでは、 Y b 203が電極の表面に塗 布されているので、 電極内部における C o 0は円滑に溶解し、 それ故、 導 電性ネッ トワークは十分に形成される。 実施例電極 1 3 Aにおける導電性 ネッ トワークの形成の程度は、 Y b 23を含有しない比較例電極 1 3 aと ほぼ同等であった。
第 2 1図は実施例電極 1 3 A及び比較例電極 1 3 a , 1 3 bの高率放電 特性を示す。 比較例電極 1 3 bは、 実施例電極 1 3 A及び比較例電極 1 3 aに比して、 高率放電特性の低下が大きい。 これは、 比較例電極 1 3 bで は、 上述したように、 導電性ネッ トワークの形成が不十分であるためと考 えられる。 実施例電極 1 3 Aでは、 導電性ネッ トワークの形成が十分であ るので、 高率放電特性の大きな低下は見られない。
以上のように、 本実施例のアルカリ蓄電池によれば、 広範囲の温度下に おけるニッケル電極の利用率を高め、 高温下での利用率の低下を抑制でき る。 また、 初充電における導電性ネッ トワークを十分に形成できるので高 率放電特性を向上できる。 従って、 安定した容量特性及び優れたサイクル 特性を得ることができる。
(実施例 1 4 )
本実施例は、 アルカリ蓄電池に関するものである。
[電池の作製]
Y b 203粉末と增粘剤を溶解した水溶液とを混合してペース卜状とし、 これを、 市販のポリオレフイン系不織布の両面に均一に塗布し、 乾燥させ てセパレータを作製した。 —方、 Z n及び C oを固溶状態で含有した高密 度水酸化ニッケル粉末に、 導電補助剤として C o 0粉末 1 0重量%を十分 に混合し、 增粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填し、 乾燥後所定の厚さにプレスしてニッケル電極を作製した。 上記セパレ一タ と、 ニッケル電極と、 水素吸蔵電極とで、 正極容量規制の電極群を構成し, 比重 1 . 2 8の水酸化カリウム水溶液を電解液として用いて、 密閉形の二 ッケル水素電池を作製した。 これを、 実施例電池 1 4 Aとする。
また、 Y b 203粉末と增粘剤を溶解した水溶液とを混合してペースト状 とし、 これを、 市販のポリオレフィン系不織布の片面のみに均一に塗布し、 その他は実施例電池 1 4 Aの場合と同様にして、 実施例電池 1 4 Bを作製 した。 但し、 セパレ一夕の塗布面を、 ニッケル電極に接するように配置し す:。
また、 セパレー夕の塗布面を水素吸蔵電極に接するように配置し、 その 他は実施例電池 1 4 Bの場合と同様にして、 比較例電池 1 4 aを作製した c 更に、 セパレータに何も塗布せず、 その他は実施例電池 1 4 Aの場合と 同様にして、 比較例電池 1 4 bを作製した。
なお、 これらの電池は、 電解液注液後、 常温で 4 8時間放置した後、 充 放電を 5サイクル繰り返して十分に活性化を行った。 なお、 1サイクルは、 ニッケル電極の理論容量の 0 . 1 C相当の電流で 1 5時間充電した後、 0. 2 C相当の電流で両電極間電位が 1 Vに至るまで放電することとした。
[試験]
上記電池について、 充放電サイクル試験を行い、 温度特性を調べた。 試 験条件は、 各種温度下で、 ニッケル電極の理論容量の 0. 1 C相当の電流 で 1 5時間充電した後、 0. 2 C相当の電流で両電極間電位が 1 Vに至る まで放電するものとした。 第 2 2図はその結果を示す。
第 2 2図から明らかなように、 実施例電池 1 4 A, 1 4 B及び比較例電 池 1 4 aでは、 高温充放電時でも十分な容量を保持しており、 また、 常温 に戻した時の容量回復も良好である。 この効果は、 特に実施例電池 1 4 A, 1 4 Bにおいて顕著である。 これは、 Y b 23をセパレー夕に塗布したこ とにより、 水酸化ニッケルの酸素過電圧が高くなり、 充電反応と酸素発生 反応との電位差を大きくでき、 充電効率を向上させることができるからで める。
また、 上記電池を充放電試験終了後に解体し、 ニッケル電極及び水素吸 蔵電極から放電末の活物質をそれぞれ取り出し、 水洗、 乾燥した後、 活物 質を X線回折により分析した。
第 2 3図ないし第 2 8図はニッケル電極の活物質の X線回折パターンを 示す。 なお、 第 2 3図は実施例電池 1 4 Aの場合の X線回折パターンの全 体図であり、 第 2 4図, 第 2 5図, 第 2 6図, 第 2 7図はそれぞれ実施例 電池 1 4 A , 1 4 B及び比較例電池 1 4 a , 1 4 bの場合の X線回折バタ ーンの一部拡大図である。 なお、 拡大した範囲は、 第 2 3図の X部分に相 当する範囲である。 また、 第 2 8図は活性化及び充放電を行う前のニッケ ル電極の活物質の X線回折パターンを示す。
これらの図から明らかなように、 いずれの電池においても、 /3— N i (〇 H) 2のピークが主であり、 C 0〇のピークは殆ど見られない。 これは、 実施例電池 1 4 A, 1 4 B及び比較例電池 1 4 aのいずれにおいても、 C 0 0の溶解析出が Y b 203の溶解抑制効果によって殆ど妨害されず、 導電 性ネッ トワークの形成が十分に行われていることを示す。
第 2 9図ないし第 3 3図は水素吸蔵電極の活物質の X線回折パターンを 示す。 なお、 第 2 9図, 第 3 0図, 第 3 1図. 第 3 2図はそれぞれ実施例 電池 1 4 A, 1 4 B及び比較例電池 1 4 a, 1 4 bの場合の X線回折バタ ーンの一部拡大図である。 また、 第 3 3図は活性化及び充放電を行う前の 水素吸蔵電極の活物質の X線回折パターンの一部拡大図である。
これらの図から明らかなように、 比較例電池 1 4 bでは、 2 = 2 7度 〜2 9度付近に、 合金の腐食による希土類水酸化物のピークが現れている が、 実施例電池 1 4 A, 1 4 B及び比較例電池 1 4 aでは、 いずれにおい ても、 当該ピークは小さく、 合金の腐食が抑制されている。
以上のように、 本実施例のアルカリ蓄電池によれば、 ニッケル電極の放 電電位、 電極容量、 エネルギー密度などを低下させることなく、 高温下で の充電効率の低下を抑制できるので、 広範囲の温度下における充放電効率 を向上できる。 しかも、 水素吸蔵電極の合金腐食を抑制できるので、 サイ クル寿命を向上できる。
なお、 Y bの代わりに E rなどの他の希土類元素を用いてもよく、 更に は、 Y b 203のような酸化物に限らず、 Y b ( O H) 3のような水酸化物 ゃフッ化物として用いてもよい。
また、 ニッケル水素化物蓄電池に限らず、 ニッケル力 ドミゥム蓄電池、 ニッケル亜鉛蓄電池などの、 水酸化ニッケルを主成分とするペースト式ニ ッケル電極を正極として用いるアル力リ蓄電池の場合でも、 同様の効果が 得られる。
(実施例 1 5 )
本実施例は、 アルカリ蓄電池に関するものである。
[電池の作製]
高密度水酸化ニッケル粉末に、 じ 0 0粉末1 0重量%を十分に混合し、 增粘剤を加えてペースト状とし、 ニッケル多孔体基板に充填し、 乾燥後所 定の厚さにプレスしてニッケル電極を作製した。 このニッケル電極と、 公 知の水素吸蔵電極と、 耐アルカリ性を有するセパレータとで、 正極容量規 制の電極群を構成し、 これに、 表 5に示す各種組成の電解液を注液して、 ニッケル水素化物蓄電池を作製した。 表 5に示すように、 Y bを含んでい る電解液を用いた電池を実施例電池 1 5 A , 1 5 Bとし、 Y bを含んでい ない電解液を用いた電池を比較例電池 15 a, 5 bとする (
ほ 5]
Figure imgf000041_0001
[試験]
上記電池について、酸化水銀電極を参照極として用い、 開放及び液過剰 の条件で、 充放電サイクル試験を行った。
第 34図は各温度における利用率を示す。 なお、 利用率は理論容量に対 するものである。 実施例電池 15 A, 15Bは、 比較例電池 15 aに比し て、 利用率が高く、 その差は、 40°C及び 50°Cの高温において顕著であ つた。 また、 実施例電池 14 Bは、 比較例電池 14 bに比して、 顕著に高 い利用率を示した。
第 35図は実施例電池 15 A及び比較例電池 15 aの、 20°C及び 40 °Cにおける充電曲線を示す。 なお、 横軸に示す充電量は理論容量に対する ものである。 2 (TCにおいては、 両電池 15 A, 15 aの酸素発生過電圧 は同程度である。 しかし、 40°Cにおける比較例電池 15 aにおいては、 充電末期においても酸素過電圧の立ち上がりはなく、 充電受け入れが低下 していることがわかる。 これに対して、 実施例電池 15 Aにおいては、 充 電末期において酸素過電圧の立ち上がりが見られ、 40°Cにおいても高い 利用率を示した。 比較例電池 15 bも、 実施例電池 15 Aと同様に、 高温 時の利用率が維持された。 これは、 電解液中の Ybイオンによる酸素発生 過電圧上昇効果によるものである。
以上のように、 本実施例のアルカリ蓄電池によれば、 ニッケル電極の利 用率を高めることができ、 高温下での利用率の低下を抑制できる。

Claims

請 求 の 範 囲
1. 水素の吸蔵放出が可能である水素吸蔵合金を用いた水素吸蔵電極に おいて、
ランタンより塩基性の弱い希土類元素の単体又は化合物を、 水素吸蔵合 金に、 混合したことを特徴とする水素吸蔵電極。
2. 希土類元素が、 セリウム, エルビウム, ガドリニウム、 及びイツテ ルビゥムの内の、 少なくとも 1種である請求項 1記載の水素吸蔵電極。
3. 希土類元素の化合物が酸化物、 水酸化物、 又はハロゲン化物である 請求項 1記載の水素吸蔵電極。
4. 水素の吸蔵放出が可能である水素吸蔵合金を用いた水素吸蔵電極に おいて、
ランタンより塩基性の弱い希土類元素を、 水素吸蔵合金に、 組成元素と して含有させたことを特徴とする水素吸蔵電極。
5. 希土類元素が、 サマリウム, ガドリニウム, テルビウム, ジスプロ シゥム, ホルミウム, エルビウム, ツリウム, 及びイッテルビウムの内の、 少なくとも 1種である請求項 4記載の水素吸蔵電極。
6. 水素吸蔵合金が、 予め、 アルカリ性水溶液又は弱酸性水溶液により 浸漬処理されている請求項 4記載の水素吸蔵電極。
7. 水酸化ニッケルを活物質として用いたニッケル電極において、 活物質に希土類元素の単体又は化合物を混合したことを特徴とするニッ ゲル電極。
8. 希土類元素がィッテルビウムである請求項 7記載のニッケル電極。
9. 希土類元素の単体又は化合物が活物質と遊離状態で存在している請 求項 7記載のニッケル電極。
1 0. 希土類元素の化合物が酸化物、 水酸化物、 又はハロゲン化物であ る請求項 Ί記載の二ッゲル電極。
11. 水酸化ニッケルに、 コバルト、 亜鉛、 力 ドミゥム、 及びマグネシ ゥムの内の、 少なくとも 1種を、 固溶状態で含有させており、
希土類元素が、 イツ ト リウム、 ホルミウム、 エルビウム、 ツリウム、 ィ ッテルビウム、 ユウ口ピウム、 及びルテチウムの内の、 少なくとも 1種で ある請求項 7記載の二ッゲル電極。
12. 水酸化ニッケルの内部細孔容積が 0. lm l Zg以下である請求 項 11記載のニッケル電極。
13. 水酸化ニッケルを活物質として用いたニッケル電極において、 水酸化二ッゲルに希土類元素を固溶状態で含有させたことを特徴とする 二ッケル電極。
14. 水酸化ニッケルにコバルト及び亜鉛の少なくとも一方も固溶状態 で含有させた請求項 13記載のニッケル電極。
15. 希土類元素が、 イッテルビウム、 ユウ口ピウム、 イッ トリウム、 ホルミウム、 ルテチウム、 ツリウム、 及びエルビウムの内の、 少なくとも 1種である請求項 13記載の二ッゲル電極。
16. 活物質が、 次式で示す組成 (但し、式において、 Xはイツテルビ ゥム、 ユウ口ピウム、 ルテチウム、 及びエルビウムの内の、 少なくとも 1 種であり、 a = b+ c + d、 0. 02≤a≤0. 20、 0≤ c < 0. 20、 0≤d< 0. 20である) を有している請求項 13記載のニッケル電極。
Figure imgf000044_0001
17. 水酸化ニッケルを活物質として用いたニッケル電極において、 活物質に、 イッ トリウム、 ホルミゥム、 エルビウム、 ッリウム、 イツテ ルビゥム、 及びルテチウムからなる希土類元素群の内の、 少なくとも 1種 の単体又は化合物と、 コバルト化合物とを、 混合したこと特徴とするニッ ゲル電極。
1 8 . 希土類元素群の内から、 少なくともイッテルビウム及びルテチウ ムを選択した請求項 1 7記載のニッケル電極。
1 9 . 希土類元素群の内から 2種以上を選択し、 混合状態で又は複合化 合物として用いた請求項 1 7記載の二ッゲル電極。
2 0 . 選択した 2種以上の希土類元素において、 イッテルビウム及びル テチウムの含有量が酸化物量に換算して 3 5重量%以上であり、 且つィッ テルビウム及びルテチウムの含有量に対するイツテルビゥムの含有量の割 合が酸化物量に換算して 0 . Ί 5以上である請求項 1 7記載のニッケル電 極。
2 1 . コバルト化合物が、 ォキシ水酸化コバルト、 一酸化コバルト、 ひ 水酸化コバルト、 水酸化コバルト、 及び金属コバルトの内の、 少なくと も 1種である請求項 1 7記載のニッケル電極。
2 2 . 選択したコバルト化合物において、 金属コバルトの割合が 3重量 %以下である請求項 1 7記載のニッケル電極。
2 3 . 水酸化ニッケルを活物質として用いたニッケル電極と、 負極と、 セパレー夕と、 アル力リ電解液とを備えたアル力リ蓄電池において、 ニッケル電極の表面に、 希土類元素の単体又は化合物を塗布したことを 特徵とするアルカリ蓄電池。
2 4. 水酸化ニッケルを活物質として用いたニッケル電極と、 負極と、 セパレ一夕と、 アル力リ電解液とを備えたアル力リ蓄電池において、 セパレー夕の表面に、 希土類元素の単体又は化合物を塗布したことを特 徴とするアル力リ蓄電池。
2 5. 少なくともセパレー夕の正極側の面に塗布した請求項 2 4記載の アル力リ蓄電池。
2 6. 塗布量が正極活物質の量に対して 0. 1重量%~ 1 0重量%であ る請求項 2 3又は 2 4に記載のアル力リ蓄電池。
2 7. 水酸化ニッケルを活物質として用いたニッケル電極と、 負極と、 セパレー夕と、 アル力リ電解液とを備えたアル力リ蓄電池において、 希土類元素の単体又は化合物をァルカリ電解液に溶解させたことを特徴 とするアル力リ蓄電池。
2 8. アルカリ電解液が、 水酸化カリウムを主成分とするとともに、 水 酸化ナトリウム又は水酸化リチウムを含有している請求項 2 7記載のアル 力リ蓄電池。
2 9 . 希土類元素がイッテルビウムである請求項 2 3, 2 4, 又は 2 7 のいずれかに記載のアル力リ蓄電池。
3 0. 希土類元素の化合物が酸化物、 水酸化物、 又はハロゲン化物であ る請求項 2 3, 2 4 , 又は 2 7のいずれかに記載のアルカリ蓄電池。
PCT/JP1996/002761 1995-09-28 1996-09-25 Electrode de stockage d'hydrogene, electrode au nickel et batterie alcaline de stockage WO1997012408A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/849,103 US6136473A (en) 1995-09-28 1996-09-25 Hydrogen absorbing electrode, nickel electrode and alkaline storage battery
EP96931980A EP0794584A4 (en) 1995-09-28 1996-09-25 HYDROGEN STORAGE ELECTRODE, NICKEL ELECTRODE AND ALKALIS MEMORY BATTERY

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP25098695A JP3632866B2 (ja) 1995-09-28 1995-09-28 ニッケル水素化物蓄電池
JP7/250986 1995-09-28
JP7/342627 1995-12-28
JP34262795A JP3788484B2 (ja) 1995-12-28 1995-12-28 アルカリ蓄電池用ニッケル電極
JP00888296A JP3788485B2 (ja) 1996-01-23 1996-01-23 アルカリ蓄電池
JP8/8882 1996-01-23
JP8023752A JPH09219214A (ja) 1996-02-09 1996-02-09 アルカリ蓄電池
JP8/23752 1996-02-09
JP8/75519 1996-03-29
JP07551996A JP3314611B2 (ja) 1996-03-29 1996-03-29 アルカリ蓄電池用ニッケル電極
JP8/199316 1996-07-29
JP19931696A JP3287386B2 (ja) 1996-07-29 1996-07-29 アルカリ蓄電池用ニッケル電極

Publications (1)

Publication Number Publication Date
WO1997012408A1 true WO1997012408A1 (fr) 1997-04-03

Family

ID=27548161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002761 WO1997012408A1 (fr) 1995-09-28 1996-09-25 Electrode de stockage d'hydrogene, electrode au nickel et batterie alcaline de stockage

Country Status (5)

Country Link
US (1) US6136473A (ja)
EP (1) EP0794584A4 (ja)
KR (1) KR100416428B1 (ja)
CN (4) CN1205679C (ja)
WO (1) WO1997012408A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331367B1 (en) * 1998-09-11 2001-12-18 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery hydrogen-absorbing alloy electrode and method for producing the same
US8883349B2 (en) 2010-08-05 2014-11-11 Gs Yuasa International Ltd. Alkaline secondary battery and method for manufacturing positive electrode material for alkaline secondary battery

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980033322A (ko) * 1996-10-31 1998-07-25 가나가와지히로 수소흡장 합금 함유 조성물 및 그를 사용한 전극
US6287726B1 (en) * 1997-01-10 2001-09-11 Matsushita Electric Industrial Co., L.T.D. Method for producing nickel positive electrode for alkaline storage batteries
JP3923157B2 (ja) 1997-12-11 2007-05-30 松下電器産業株式会社 アルカリ蓄電池
JP2962326B1 (ja) * 1997-12-26 1999-10-12 松下電器産業株式会社 バックアップ電源用ニッケル−水素蓄電池
CA2321293C (en) * 1998-02-20 2005-02-01 Sanyo Electric Co., Ltd. Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
JPH11269501A (ja) * 1998-03-20 1999-10-05 Shin Etsu Chem Co Ltd 水素吸蔵合金粉末の製造方法及び水素吸蔵合金電極
WO1999065095A1 (fr) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Pile secondaire au nickel-hydrogene
US6416903B1 (en) * 1998-08-17 2002-07-09 Ovonic Battery Company, Inc. Nickel hydroxide electrode material and method for making the same
CN1085419C (zh) * 1998-12-15 2002-05-22 冶金工业部钢铁研究总院 碱性二次镍氢电池及其制造方法
JP3931518B2 (ja) * 1999-07-08 2007-06-20 松下電器産業株式会社 ニッケル−水素二次電池
JP2001143745A (ja) * 1999-11-12 2001-05-25 Matsushita Electric Ind Co Ltd ニッケル水素蓄電池
US20010026891A1 (en) * 2000-03-28 2001-10-04 Yoshitaka Dansui Nickel positive electrode active material and nickel metal hydride storage battery
DE60229345D1 (de) * 2001-11-12 2008-11-27 Toyota Motor Co Ltd Alkalische Speicherbatterie
JP4678130B2 (ja) * 2003-01-20 2011-04-27 株式会社Gsユアサ 密閉型ニッケル水素蓄電池とその製造法
CN100359722C (zh) * 2003-01-20 2008-01-02 株式会社汤浅开发 密闭型镍氢蓄电池及其制造方法
DE10339198B4 (de) * 2003-08-22 2009-04-23 Gkss-Forschungszentrum Geesthacht Gmbh Metallhaltiger, wasserstoffspeichernder Werkstoff und Verfahren zu seiner Herstellung
JP5171114B2 (ja) * 2007-05-30 2013-03-27 三洋電機株式会社 アルカリ蓄電池用水素吸蔵合金およびその製造方法ならびにアルカリ蓄電池
JP5747457B2 (ja) * 2010-01-06 2015-07-15 三洋電機株式会社 リチウム二次電池
JP5744635B2 (ja) * 2011-06-10 2015-07-08 プライムアースEvエナジー株式会社 アルカリ蓄電池及びアルカリ蓄電池の製造方法
JP6422111B2 (ja) * 2014-06-27 2018-11-14 Fdk株式会社 ニッケル水素二次電池
US9381915B1 (en) * 2015-01-20 2016-07-05 Ford Global Technologies, Llc Vehicle side impact control
CN106410123B (zh) * 2015-07-28 2019-07-19 深圳市量能科技有限公司 一种用于镍氢电池的负极片、制作方法及镍氢电池
CN111118345B (zh) * 2019-11-28 2021-09-17 包头稀土研究院 多元钐镍储氢材料、负极、电池及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848931A (ja) * 1971-10-21 1973-07-11
JPH06163040A (ja) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd 水素吸蔵合金電極

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696873A (en) * 1985-06-21 1987-09-29 Kabushiki Kaisha Toshiba Rechargeable electrochemical cell with a negative electrode comprising a hydrogen absorbing alloy including rare earth component
JP3118716B2 (ja) * 1991-06-11 2000-12-18 日本電池株式会社 密閉形ニッケル・亜鉛電池
EP0789409B1 (en) * 1992-09-14 2003-07-09 Kabushiki Kaisha Toshiba Hydrogen-absorbing alloy for battery, method of manufacturing the same, and secondary nickel-metal hydride battery
US5348822A (en) * 1992-11-12 1994-09-20 Ovonic Battery Company, Inc. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells
US5344728A (en) * 1992-11-12 1994-09-06 Ovonic Battery Company, Inc. Compositionally and structurally disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells
US5523182A (en) * 1992-11-12 1996-06-04 Ovonic Battery Company, Inc. Enhanced nickel hydroxide positive electrode materials for alkaline rechargeable electrochemical cells
US5451475A (en) * 1993-04-28 1995-09-19 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery using nickel positive electrode
JP3130204B2 (ja) * 1993-06-30 2001-01-31 東芝電池株式会社 アルカリ二次電池
JPH0745281A (ja) * 1993-07-29 1995-02-14 Yuasa Corp アルカリ蓄電池用ニッケル電極とこれを用いたアルカリ蓄電池
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
US5525435A (en) * 1994-07-11 1996-06-11 Eveready Battery Company, Inc. Hydrogen storage materials
JP3653710B2 (ja) * 1995-05-26 2005-06-02 株式会社ユアサコーポレーション 水素吸蔵電極
JP3560187B2 (ja) * 1995-06-21 2004-09-02 株式会社ユアサコーポレーション 水素吸蔵電極の製造方法
JPH097590A (ja) * 1995-06-23 1997-01-10 Shin Etsu Chem Co Ltd 電極用水素吸蔵合金粉末の製造方法
JP3527594B2 (ja) * 1995-11-16 2004-05-17 松下電器産業株式会社 アルカリ蓄電池およびその製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4848931A (ja) * 1971-10-21 1973-07-11
JPH06163040A (ja) * 1992-11-19 1994-06-10 Sanyo Electric Co Ltd 水素吸蔵合金電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0794584A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331367B1 (en) * 1998-09-11 2001-12-18 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery hydrogen-absorbing alloy electrode and method for producing the same
US6699617B2 (en) 1998-09-11 2004-03-02 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery, hydrogen-absorbing alloy electrode and method for producing the same
US8883349B2 (en) 2010-08-05 2014-11-11 Gs Yuasa International Ltd. Alkaline secondary battery and method for manufacturing positive electrode material for alkaline secondary battery

Also Published As

Publication number Publication date
KR980700698A (ko) 1998-03-30
CN1205679C (zh) 2005-06-08
CN1536691A (zh) 2004-10-13
US6136473A (en) 2000-10-24
CN1253954C (zh) 2006-04-26
EP0794584A1 (en) 1997-09-10
EP0794584A4 (en) 2007-01-31
CN1536690A (zh) 2004-10-13
CN1168196A (zh) 1997-12-17
CN1536692A (zh) 2004-10-13
CN1244964C (zh) 2006-03-08
KR100416428B1 (ko) 2004-05-27

Similar Documents

Publication Publication Date Title
WO1997012408A1 (fr) Electrode de stockage d&#39;hydrogene, electrode au nickel et batterie alcaline de stockage
JP3351261B2 (ja) ニッケル正極とそれを用いたニッケル・水素蓄電池
JP2008071759A (ja) アルカリ電解液電池の負極の組成及び組成からなるアノード、このアノードからなるアルカリ電解液電池
EP2234189A1 (en) Alkaline storage battery system with partial charge-discharge
JP2004071304A (ja) アルカリ蓄電池用正極活物質ならびにそれを用いた正極およびアルカリ蓄電池
JP3931518B2 (ja) ニッケル−水素二次電池
JPH11167933A (ja) 密閉型アルカリ亜鉛蓄電池
JP3482606B2 (ja) 密閉形アルカリ蓄電池
CN1176508C (zh) 碱性蓄电池以及用于碱性蓄电池的正极
JPH10261412A (ja) アルカリ蓄電池用ニッケル正極及びその製造方法
JP4017302B2 (ja) アルカリ蓄電池およびその製造方法
JP3653710B2 (ja) 水素吸蔵電極
WO1999017388A1 (fr) Accumulateur au nickel-hydrogene
JP3788484B2 (ja) アルカリ蓄電池用ニッケル電極
JP2005142146A (ja) ニッケル・水素蓄電池
JP3788485B2 (ja) アルカリ蓄電池
JPH0950805A (ja) アルカリ蓄電池用ニッケル電極及びニッケル電極用活物質並びにその製造方法、アルカリ蓄電池
US6608465B2 (en) Positive electrode for alkaline storage battery and alkaline storage battery using the same
JPH117949A (ja) アルカリ蓄電池用非焼結式ニッケル極
US6924062B2 (en) Nickel-metal hydride storage battery
JP2003017046A (ja) アルカリ蓄電池用ニッケル電極活物質、アルカリ蓄電池用ニッケル電極およびアルカリ蓄電池
JP3482478B2 (ja) ニッケル−金属水素化物蓄電池
JP2796674B2 (ja) カドミウム負極板およびその負極板を用いたアルカリ二次電池
JPH11238507A (ja) アルカリ蓄電池
JP2600825B2 (ja) カドミウム負極板およびその負極板を用いたアルカリ二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96191504.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996931980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08849103

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970703538

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996931980

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970703538

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970703538

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996931980

Country of ref document: EP