WO1997007065A1 - Dewatering of sludges - Google Patents
Dewatering of sludges Download PDFInfo
- Publication number
- WO1997007065A1 WO1997007065A1 PCT/AU1996/000509 AU9600509W WO9707065A1 WO 1997007065 A1 WO1997007065 A1 WO 1997007065A1 AU 9600509 W AU9600509 W AU 9600509W WO 9707065 A1 WO9707065 A1 WO 9707065A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sludge
- filter
- fibrous material
- mixture
- mixing
- Prior art date
Links
- 239000010802 sludge Substances 0.000 claims abstract description 30
- 239000002657 fibrous material Substances 0.000 claims abstract description 16
- 230000005684 electric field Effects 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 10
- 239000010801 sewage sludge Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 36
- 239000000654 additive Substances 0.000 claims description 18
- 239000007787 solid Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 7
- 239000007791 liquid phase Substances 0.000 claims description 7
- 239000011707 mineral Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 241000609240 Ambelania acida Species 0.000 claims description 3
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 3
- 244000060011 Cocos nucifera Species 0.000 claims description 3
- 239000010905 bagasse Substances 0.000 claims description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 2
- 235000015097 nutrients Nutrition 0.000 claims description 2
- 239000011368 organic material Substances 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 7
- 230000000996 additive effect Effects 0.000 description 7
- 239000003245 coal Substances 0.000 description 7
- 239000012065 filter cake Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- ZHSKUOZOLHMKEA-UHFFFAOYSA-N 4-[5-[bis(2-chloroethyl)amino]-1-methylbenzimidazol-2-yl]butanoic acid;hydron;chloride Chemical compound Cl.ClCCN(CCCl)C1=CC=C2N(C)C(CCCC(O)=O)=NC2=C1 ZHSKUOZOLHMKEA-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005370 electroosmosis Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/06—Filters making use of electricity or magnetism
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D57/00—Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
- B01D57/02—Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/56—Electro-osmotic dewatering
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/121—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
- C02F11/122—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/15—Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves
Definitions
- the present invention relates to removal of liquid phase from aqueous sludges (i.e. liquid-solid phase mixtures) and is particularly applicable to sewage sludge or other sludges having similar physical characteristics.
- aqueous sludges i.e. liquid-solid phase mixtures
- the invention extends to the removal of any aqueous liquid phase from a sludge.
- the aqueous phase could be a solution.
- sludges resulting from the treatment of drinking water can usefully be treated in embodiments of the invention as well as mineral sludges such as coal tailings, other fine mineral tailings typically having particle diameters less than 0.1 mm and, in addition, sludges from the food and chemical industries.
- mineral sludges such as coal tailings, other fine mineral tailings typically having particle diameters less than 0.1 mm and, in addition, sludges from the food and chemical industries.
- a particularly significant area of application of the invention is to sludges which contain inorganic matter and comprise material which will sustain and pass an electric current.
- EDW electrodewatering
- EDW electrokinetic phenomena
- electrophoresis which involves the migration of charged particles in suspension to oppositely charged electrodes
- electro- osmosis which involves the migration of charged ions, which compensate the charges in the particles, to oppositely charged electrodes
- Lockhart discusses broadly electrodewatering and discusses experimental results from work with tailings from various mineral processing plants (coal washing, sand washing, mineral processing, fine coal products, brown coals etc) and also work on model clay suspensions. Lockhart discusses the fundamentals of electrodewatering and discusses some aspects including the significance of electrolysis in the mechanism, but concluding that it is obscure how electrolysis is involved and electrolysis considerations alone do not provide explanation for the volume of water transported per ion.
- Kondoh and Hiraoka discuss the need to decrease the water content in biological activated sludge arising from sewage treatment plants, but recognise that studies using an electro-osmotic process have demonstrated problems which have prevented any successful commercialisation.
- the authors discuss the costs of chemical treatment procedures contrasted to the cost of electrical power for aiding water removal with an electro-osmosis technique. Results in enhancing dewatering speed with the addition of an electrolyte in combination with a suitable polymer in a pressurised electro-osmotic dehydrated system are reported.
- the present invention consists in a method of reducing the liquid phase in an aqueous sludge comprising mixing fibrous material into the sludge and applying simultaneously (a) pressure or vacuum in a filtration method having a filter and (b) an electric field to the sludge supported on the filter, whereby the liquid phase is drawn through the filter.
- the invention is especially applicable to a method of processing a sludge which comprises, at least as a major component, organic material and wherein finely divided fibrous material is mixed into the sludge in an amount in the range of about 5-15% by wt (as dried solids) .
- a sludge which comprises, at least as a major component, organic material and wherein finely divided fibrous material is mixed into the sludge in an amount in the range of about 5-15% by wt (as dried solids) .
- a wider range of amount of fibrous material could be used especially where the aqueous sludge is derived from a sewage treatment plant.
- the invention is implemented in a method in which, during the filtration stage, separated liquid is pumped out and, if the process is operated as a batch process, then periodically dewatered solid material is removed.
- Methods according to the invention can use a variety of fibrous materials such as kaowool, shredded paper or other cellulosic fibres such as coconut fibre and bagasse (which is the fibrous material discharged from sugar cane crushing operations) .
- the method can include in addition some non-fibrous additives to enhance dewatering. For example, beneficial results may be achievable by the addition of salts such as calcium chloride.
- Embodiments of the invention are believed to operate on a wide range of fibrous materials and fibre sizes. It is accepted that it is very difficult to characterise fibre sizes, but as a general indication in the case of shredded paper and sewage sludge, very finely shredded news print has been used and this may be conveniently classified as having fibre sizes of length of around 0.05 to 0.5 mm.
- Figure 1 schematically illustrates known principles of assisted filtration techniques
- Figure 2 illustrates a generally accepted explanation of the mechanistic steps in filtration/dewatering of fine suspensions as discussed by Bendit et al;
- Figure 3 illustrates the results of using an embodiment of the invention with shredded newsprint as an additive
- FIG 4 illustrates the power consumption of the embodiment reported in Figure 3
- Figure 5 illustrates comparative data for embodiments using a range of fibrous additives
- Figure 6 shows contrasting data of simply using non- fibrous additives as opposed to fibrous additives
- Figure 7 is another comparative graph showing electrodewatering results using pressure in an electric field, but without any additives.
- Figure 8 is a diagram of a laboratory scale filter used to derive the results of Figures 3-7.
- Figure IA illustrates the principles of filtering using only an electric field, but without pressure and it will be seen that the particulate matter migrates preferentially under the electric field to the upper anode.
- Figure IB illustrates known pressure filtering without electric field in which the solid particles migrate to the filter F shown here at the bottom of the cell.
- Figure IC illustrates the mechanism for electrically assisted pressure techniques in which a combination of features occur and it is believed that the better separation characteristics are obtained because, in crude terms, there is a reduction in the rate of compaction of a filter cake due to some solids moving towards the upper anode.
- FIG 2A is a view on a greatly enlarged scale of a fragment of the structure showing schematically a filter 10 having filter material 11 and pores 12 supporting initially an aqueous mass of solid particles 14 and liquid 15.
- Figure 2B illustrates the initial suspension and as liquid phase is removed and pumped from the cell the volume of retained material progressively decreases and Figures IC to ID respectively show initial bridging across the filter pores, cake build up, full cake formation and completion of the filtration stage followed, in Figure IE, with cake compaction with water expression, at which point desaturation of the compacted cake can be caused by forced air or steam penetration. Finally in Figure 2F there is illustrated air breakthrough due to cake cracking.
- an initial mixture was formed of 10% by weight of finely shredded newsprint along with a sewage sludge and 0.8 kg/tonne of flocculent (Zetag 92) which was subjected to pressure of 10 bar and simultaneously an electric field of 100 amps/sq.m.
- the apparatus used is illustrated in Figure 8 in which the filter apparatus comprises a cylindrical body 20 having a cylindrical main bore 21 and a conical counter-bore 22 leading to an axial drain tube 23.
- a vacuum is applied to the drain tube 23 to draw off water from a sludge, which is placed in central zone 24 of the apparatus.
- a cylindrical plunger 25 is installed in the bore 21 and is adapted to be pressed downwardly by an applied pressure P.
- a disc-shaped centred metal cathode 26 is mounted at the bottom of the bore 21 and this cathode is perforated and supports a filter cloth 27A.
- the cathode 26 is connected by conductor 28 to a negative DC potential.
- a sintered metal perforated anode 29 is mounted in a disc-shaped cavity in the end of the plunger 25 and also is covered by a filter cloth 27B, a disc-shaped fluid extraction cavity 30 being located above and behind the anode 29 and connected to a discharge duct 31 which leads to a pipe 32 connected to a vacuum and adapted to draw up water which is removed from the sludge through the filter cloth 27B and anode 29.
- the volume of liquid expelled as a function of time was monitored and filtration was performed for 30 minutes.
- FIGS. 3 and 4 show progress of dewatering net of the effect of the added solids.
- an additive such as fibrous newsprint in contrast to a corresponding set of data where there is no additive.
- a range of fibrous additives have been tested as shown in the data of Figure 5. In these examples 25%-30% by weight additive of fibrous material was incorporated in the sludge before commencement of the treatment process. Bagasse and coconut fibre proved faster.
- the contrasting data of Figure 6 relates to powder additives with the same sludge feedstock and the same effective dose as the data reported and shown in Figure 5. Thus the fibrous additives had a marked beneficial effect compared with powder additives.
- Figure 7 shows the results of an experiment performed under similar conditions, but in the absence of any additive. As before pressure was applied by vacuum at 10 bar with an electric field of 100 amps/sq.m was applied. It should be noted that in Figures 5 and 6 the total solids in the filter cake are referred to and therefore the final value of sludge solids in filter cake must be reduced in value by 10% weight. Thus on average in the sludges referred to, the final sludge solids should be reduced from about 40% weight to 30% weight (due to the inclusion in the initial material of 25%-30% by weight of the additive) .
- the inventor suggests that the inclusion of solids of a relatively coarse size compared to the size of sludge particles does increase the permeability of the filter cake.
- a fibrous additive the inventor suggests that it is possible the fibres form a continuous network throughout the filter cake and can thus provide an extra pathway (either outside or inside the fibre, if the fibre is porous) along which water can travel. It is thought the increase in permeability achieved and the extra pathway are major factors in improving dewatering.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Electrochemistry (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Treatment Of Sludge (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU66512/96A AU697707B2 (en) | 1995-08-16 | 1996-08-14 | Dewatering of sludges |
EP96926270A EP0854845A4 (en) | 1995-08-16 | 1996-08-14 | Dewatering of sludges |
JP9508749A JPH11511068A (en) | 1995-08-16 | 1996-08-14 | Sludge dewatering |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPN4834 | 1995-08-16 | ||
AUPN4834A AUPN483495A0 (en) | 1995-08-16 | 1995-08-16 | Dewatering of sludges |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997007065A1 true WO1997007065A1 (en) | 1997-02-27 |
Family
ID=3789165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU1996/000509 WO1997007065A1 (en) | 1995-08-16 | 1996-08-14 | Dewatering of sludges |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0854845A4 (en) |
JP (1) | JPH11511068A (en) |
AU (1) | AUPN483495A0 (en) |
CA (1) | CA2229642A1 (en) |
WO (1) | WO1997007065A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100815845B1 (en) * | 2001-12-22 | 2008-03-21 | 주식회사 포스코 | Electro-dewatering device for sludge using metal filter |
ITMO20100186A1 (en) * | 2010-06-22 | 2011-12-23 | Aristide Stradi | EQUIPMENT AND METHOD FOR THE DEHYDRATION OF SLUDGE DEHYDRATION TREATMENT. |
GB2463628B (en) * | 2007-07-03 | 2013-04-24 | Hydropress Holdings Inc | An improved waste treatment system |
US8668827B2 (en) | 2012-07-12 | 2014-03-11 | Heliae Development, Llc | Rectangular channel electro-acoustic aggregation device |
US8673154B2 (en) | 2012-07-12 | 2014-03-18 | Heliae Development, Llc | Tunable electrical field for aggregating microorganisms |
US8702991B2 (en) | 2012-07-12 | 2014-04-22 | Heliae Development, Llc | Electrical microorganism aggregation methods |
US8709258B2 (en) | 2012-07-12 | 2014-04-29 | Heliae Development, Llc | Patterned electrical pulse microorganism aggregation |
US8709250B2 (en) | 2012-07-12 | 2014-04-29 | Heliae Development, Llc | Tubular electro-acoustic aggregation device |
CN106771070A (en) * | 2016-12-26 | 2017-05-31 | 湖北水总水利水电建设股份有限公司 | The apparatus and method of silt/sludge dehydration speed under the conditions of a kind of test multiple physical field |
CN108101341A (en) * | 2018-01-12 | 2018-06-01 | 武汉大学 | High speed dewatering of slurries device |
CN116119953A (en) * | 2023-03-21 | 2023-05-16 | 浙江红狮环保股份有限公司 | Method for cooperatively disposing printing and dyeing sludge by cement kiln |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003068691A1 (en) | 2002-02-12 | 2003-08-21 | Les Technologies Elcotech Inc. | Method for the treatment of slurries by the combined action of pressure and electro-osmosis |
CA2437245A1 (en) | 2003-08-11 | 2005-02-11 | Les Technologies Elcotech Inc. | Apparatus for treating high dryness sludge |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1009707A (en) * | 1961-11-30 | 1965-11-10 | Leje & Thurne Ab | A method of treating raw sludge in sewage systems |
GB1041286A (en) * | 1964-07-27 | 1966-09-01 | Rose Downs & Thompson Ltd | Treatment of sludge |
US3549010A (en) * | 1968-07-01 | 1970-12-22 | Black Clawson Co | Methods and apparatus for disposing of waste materials |
DE3922298A1 (en) * | 1989-07-07 | 1991-01-17 | Roehm Gmbh | Dewatering municipal or industrial sewage sludge - with addn. of sludge from cellulose or paper mfr. and synthetic organic flocculant |
US5279718A (en) * | 1991-06-26 | 1994-01-18 | Shinko Pantec Co., Ltd. | Method of electroosmotically dehydrating sludge |
US5401375A (en) * | 1991-05-09 | 1995-03-28 | Fuji Electric Co., Ltd. | Electro-endosmosis type dehydrator |
-
1995
- 1995-08-16 AU AUPN4834A patent/AUPN483495A0/en not_active Abandoned
-
1996
- 1996-08-14 JP JP9508749A patent/JPH11511068A/en active Pending
- 1996-08-14 EP EP96926270A patent/EP0854845A4/en not_active Withdrawn
- 1996-08-14 WO PCT/AU1996/000509 patent/WO1997007065A1/en not_active Application Discontinuation
- 1996-08-14 CA CA002229642A patent/CA2229642A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1009707A (en) * | 1961-11-30 | 1965-11-10 | Leje & Thurne Ab | A method of treating raw sludge in sewage systems |
GB1041286A (en) * | 1964-07-27 | 1966-09-01 | Rose Downs & Thompson Ltd | Treatment of sludge |
US3549010A (en) * | 1968-07-01 | 1970-12-22 | Black Clawson Co | Methods and apparatus for disposing of waste materials |
DE3922298A1 (en) * | 1989-07-07 | 1991-01-17 | Roehm Gmbh | Dewatering municipal or industrial sewage sludge - with addn. of sludge from cellulose or paper mfr. and synthetic organic flocculant |
US5401375A (en) * | 1991-05-09 | 1995-03-28 | Fuji Electric Co., Ltd. | Electro-endosmosis type dehydrator |
US5279718A (en) * | 1991-06-26 | 1994-01-18 | Shinko Pantec Co., Ltd. | Method of electroosmotically dehydrating sludge |
Non-Patent Citations (2)
Title |
---|
DERWENT ABSTRACT, Accession No. 83-749488/35, Class D15; & JP,A,58 122 085 (MITSUBISHI HEAVY IND KK) 20 July 1983. * |
See also references of EP0854845A4 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100815845B1 (en) * | 2001-12-22 | 2008-03-21 | 주식회사 포스코 | Electro-dewatering device for sludge using metal filter |
GB2463628B (en) * | 2007-07-03 | 2013-04-24 | Hydropress Holdings Inc | An improved waste treatment system |
ITMO20100186A1 (en) * | 2010-06-22 | 2011-12-23 | Aristide Stradi | EQUIPMENT AND METHOD FOR THE DEHYDRATION OF SLUDGE DEHYDRATION TREATMENT. |
WO2011161568A1 (en) * | 2010-06-22 | 2011-12-29 | Aristide Stradi | An apparatus and a method for the dehydratation treatment of waste sludge |
US9963370B2 (en) | 2010-06-22 | 2018-05-08 | Ferbur Limited | Apparatus and a method for the dehydratation treatment of waste sludge |
US8702991B2 (en) | 2012-07-12 | 2014-04-22 | Heliae Development, Llc | Electrical microorganism aggregation methods |
US8673154B2 (en) | 2012-07-12 | 2014-03-18 | Heliae Development, Llc | Tunable electrical field for aggregating microorganisms |
US8709258B2 (en) | 2012-07-12 | 2014-04-29 | Heliae Development, Llc | Patterned electrical pulse microorganism aggregation |
US8709250B2 (en) | 2012-07-12 | 2014-04-29 | Heliae Development, Llc | Tubular electro-acoustic aggregation device |
US8668827B2 (en) | 2012-07-12 | 2014-03-11 | Heliae Development, Llc | Rectangular channel electro-acoustic aggregation device |
CN106771070A (en) * | 2016-12-26 | 2017-05-31 | 湖北水总水利水电建设股份有限公司 | The apparatus and method of silt/sludge dehydration speed under the conditions of a kind of test multiple physical field |
CN108101341A (en) * | 2018-01-12 | 2018-06-01 | 武汉大学 | High speed dewatering of slurries device |
CN116119953A (en) * | 2023-03-21 | 2023-05-16 | 浙江红狮环保股份有限公司 | Method for cooperatively disposing printing and dyeing sludge by cement kiln |
CN116119953B (en) * | 2023-03-21 | 2024-10-22 | 浙江红狮环保股份有限公司 | Method for cooperatively disposing printing and dyeing sludge by cement kiln |
Also Published As
Publication number | Publication date |
---|---|
JPH11511068A (en) | 1999-09-28 |
EP0854845A1 (en) | 1998-07-29 |
CA2229642A1 (en) | 1997-02-27 |
AUPN483495A0 (en) | 1995-09-07 |
EP0854845A4 (en) | 1998-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1997007065A1 (en) | Dewatering of sludges | |
US4244804A (en) | Slime and sludge dewatering | |
US4941962A (en) | Electrostatic adsorptive fluid filtering apparatus | |
US4367132A (en) | Method for removing liquid from chemically-precipitated sludge | |
Ho et al. | The application of lead dioxide-coated titanium anode in the electroflotation of palm oil mill effluent | |
US4376022A (en) | Method and apparatus for concentrating an aqueous sludge by electro-osmosis | |
EP0784501A2 (en) | Dewatering process | |
US3980547A (en) | Electrokinetic cell | |
US4437998A (en) | Method for treating oil sands extraction plant tailings | |
Lockhart | Electro-osmotic dewatering of fine tailings from mineral processing | |
Lockhart et al. | Dewatering coal washery tailings ponds by electroosmosis | |
AU697707B2 (en) | Dewatering of sludges | |
EP0046155A1 (en) | Process and apparatus for slime and sludge dewatering | |
Shin et al. | Performance evaluation of electrocoagulation and electrodewatering system for reduction of water content in sewage sludge | |
CA1171382A (en) | Electrophoretic process for separating aqueous mineral suspensions | |
US1229203A (en) | Method of purifying and separating finely-divided substances. | |
CA1123977A (en) | Dike building material comprising sand and treated sludge | |
DE3824289A1 (en) | METHOD AND DEVICE FOR CONDITIONING HEAVY DRAINAGE SLUDGE | |
RU2264993C1 (en) | Method of purification of oily waste waters | |
Gopalakrishnan et al. | Electrokinetically enhanced vacuum dewatering of mineral slurries | |
JPS6159164B2 (en) | ||
CN108218159A (en) | A kind of high-voltage pulse electrolysis device and the belt-type sludge press filter processing system for adding the device | |
JPS6097011A (en) | Dehydration treatment system of sludge | |
Roberts | Flocculation and dewatering of sludges | |
WO1997011767A1 (en) | Electro-osmotic dewatering of sludges |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 1997 508749 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2229642 Country of ref document: CA Kind code of ref document: A Ref document number: 2229642 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1996926270 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWP | Wipo information: published in national office |
Ref document number: 1996926270 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1996926270 Country of ref document: EP |