[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1997006641A1 - Image encoder, image decoder, image decoding method, and image transmitting system - Google Patents

Image encoder, image decoder, image decoding method, and image transmitting system Download PDF

Info

Publication number
WO1997006641A1
WO1997006641A1 PCT/JP1996/002175 JP9602175W WO9706641A1 WO 1997006641 A1 WO1997006641 A1 WO 1997006641A1 JP 9602175 W JP9602175 W JP 9602175W WO 9706641 A1 WO9706641 A1 WO 9706641A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
image
component
normalization coefficient
effective pixel
Prior art date
Application number
PCT/JP1996/002175
Other languages
English (en)
French (fr)
Inventor
Shinya Kadono
Kenjiro Tsuda
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU66301/96A priority Critical patent/AU6630196A/en
Priority to EP96925974A priority patent/EP0843481A4/en
Publication of WO1997006641A1 publication Critical patent/WO1997006641A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/649Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding the transform being applied to non rectangular image segments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/149Data rate or code amount at the encoder output by estimating the code amount by means of a model, e.g. mathematical model or statistical model
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/15Data rate or code amount at the encoder output by monitoring actual compressed data size at the memory before deciding storage at the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/20Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding

Definitions

  • the present invention relates to an image encoding device, an image decoding device and a method thereof, and an image transmission system.
  • the present invention aims to reduce the amount of data required for recording and the transmission rate required for transmission when recording or transmitting an image signal.
  • the present invention relates to a decoding device and an image decoding device for correctly decoding the decoding device. Background art
  • JPEG and MPEG are methods with high coding efficiency as image coding devices for natural images.
  • the input image signal is divided into rectangular blocks consisting of a plurality of pixels, orthogonal transform (discrete cosine transform) is performed in units of blocks by orthogonal transform means, and quantized by predetermined quantization steps by quantizing means.
  • the variable length coding means performs variable length coding to output a coded signal.
  • the image signal includes a synthesized image generated by artificially synthesizing a plurality of images, in addition to an image signal composed of a normal single screen.
  • the image decoding device arbitrarily selects the image before synthesis and the image after synthesis and decodes the image to obtain a reproduced image. And can be used for image databases and the like.
  • a signal called transmittance information (shape information) indicating the rate of image synthesis is required in addition to the color signal of luminance and color difference. If the transparency information is 100%, it means that the image signal is transparent, and there is no need to encode.
  • the method of image signal coding in Japanese Patent Application No. 6_2 715 54 is an easier method than shape-adaptive orthogonal transformation, and more efficient coding by inserting pixel values even for shapes other than rectangles.
  • the present invention has been made in view of such a conventional problem, and an image encoding apparatus that optimizes quantization means after orthogonally transforming blocks of different sizes from a bitrate viewpoint.
  • An object of the present invention is to provide an image decoding device, an image encoding method, and an image decoding method.
  • an input image signal and an effective pixel indication signal indicating a partial image to be encoded of the input image signal are input, and a digital image is
  • An image coding apparatus for coding a partial image of an image signal comprising: an orthogonal transform base generating means for generating an orthogonal transform base of the input image signal according to the effective pixel indication signal; and the orthogonal transform base generating means.
  • Orthogonal transform means for orthogonally transforming the input image signal on the basis of the orthogonal transform base generated in step (a), and a DC normalization coefficient for normalizing a DC component of a transform output signal of the orthogonal transform means from the effective pixel instruction signal.
  • DC normalization coefficient calculating means for deriving the following equation, and for the DC component of the orthogonal transform signal given from the orthogonal transform means, the quantization step is performed by the DC normalization obtained by the DC normalization coefficient calculating means.
  • a quantizing means for multiplying by a coefficient and quantizing the orthogonal transform signal by a standard quantization step for a non-DC component of the orthogonal transform signal provided from the orthogonal transform means. Characteristic It is assumed that.
  • a coded signal coded by an image coding apparatus that controls a quantization step of a DC component obtained by orthogonally transforming an input image signal by an effective pixel indication signal indicating a partial image to be coded.
  • An image decoding device that receives the valid pixel instruction signal as an input and decodes the encoded signal, comprising: decoding means for decoding the encoded signal and outputting a decoded signal; and DC normalization coefficient calculation means for deriving a DC normalization coefficient for normalizing a DC component among the decoded signals output from the decoding means, and DC among the decoded signals obtained by the decoding means.
  • the component is inversely quantized by multiplying the quantization step by the DC normalization coefficient obtained by the DC normalization coefficient calculation means, and the non-DC signal of the decoded signal obtained by the decoding means is obtained.
  • the standard quantization step Dequantizing means for dequantizing the decoded signal, an orthogonal transform basis generating means for generating an orthogonal transform basis of an output signal of the inverse quantizing means by the effective pixel instruction signal, and an orthogonal transform basis.
  • Orthogonal transform means for orthogonally transforming an output signal of the inverse quantization means and outputting an image decoded signal.
  • an input image signal, an effective pixel indication signal indicating a partial image to be encoded of the input image signal, and a DC component of a reference block are input, and a partial image of the digital image signal is encoded in units of blocks.
  • An image encoding apparatus for differentially encoding a DC component in units of blocks, an orthogonal transformation basis generating means for producing an orthogonal transformation basis of the input image signal based on the effective pixel indication signal, and the orthogonal transformation basis.
  • DC prediction encoding means for outputting a component
  • quantization means for quantizing a DC difference component of the output of the DC prediction encoding means and an AC component of an output signal of the orthogonal transformation means. Is what you do.
  • the image encoding apparatus is configured to correct a DC component of a block referred to by an orthogonally transformed DC component of an input image signal using an effective pixel indication signal indicating a partial image to be encoded.
  • An image decoding apparatus that receives an encoded signal, the effective pixel indication signal, and the DC component of the reference block as input, and decodes the encoded signal, wherein the image decoding device decodes the encoded signal to generate a decoded signal.
  • Decoding means for outputting, an inverse quantization means for inversely quantizing the decoded signal of the decoding means, and an orthogonal transform for generating an orthogonal transformation basis of the output signal of the inverse quantization means based on the effective pixel indication signal.
  • DC normalization coefficient calculating means for deriving a DC normalization coefficient for normalizing a DC component of a decoded signal output from the decoding means from the effective pixel indication signal;
  • a DC decoding means for the sum a DC component and computed multiplied by the DC normalization coefficient by adding to the inverse quantization means outputs the DC differential component, the DC decoding means by said orthogonal transform basis And orthogonal transform means for orthogonally transforming the DC component output from the DC and the AC component output from the inverse quantization means to output a decoded image signal.
  • the DC normalization coefficient calculation means in the first invention and the third invention is configured such that a square root of a ratio of the number of pixels of the partial image to be coded to the total number of pixels of the block is a DC normalization coefficient. It is characterized by the following.
  • the DC normalization coefficient calculation means in the second invention and the fourth invention is configured such that a square root of a ratio of the number of pixels of the partial image to be coded to the total number of pixels of the block is a DC normalization coefficient. It is characterized by the following.
  • a seventh invention is an image coding apparatus which receives an input image signal and an effective pixel indication signal indicating a partial image to be encoded of the input image signal, and encodes a partial image of the digital image signal in units of blocks.
  • An orthogonal transform basis generating means for generating an orthogonal transform basis of the input image signal based on the effective pixel indication signal; and an orthogonal transform basis generated by the orthogonal transform basis generating means.
  • Orthogonal transformation means for performing orthogonal transformation; AC normalization coefficient calculation means for deriving an AC normalization coefficient for normalizing an AC component of a conversion output signal of the orthogonal transformation means from the effective pixel instruction signal; And quantizing means for quantizing the output signal of the orthogonal transform means by multiplying the step by the AC normalization coefficient.
  • the AC normalization coefficient calculating means uses an inverse number of the number of pixels of the partial image to be encoded as an AC normalization coefficient.
  • a coded signal coded by an image coding apparatus that controls a quantization step of an AC component obtained by orthogonally transforming an input image signal by an effective pixel indication signal indicating a partial image to be coded.
  • the effective pixel indication signal An image decoding apparatus for decoding the coded signal as an input, the decoding means for decoding the coded signal and outputting a decoded signal, and the output of the decoding means from the effective pixel indication signal.
  • An AC normalization coefficient calculation unit for deriving an AC normalization coefficient for normalizing an AC component of the decoded signal to be decoded, and a quantization step of the AC component of the decoded signal obtained by the decoding unit.
  • An inverse quantization means for multiplying by the AC normalization coefficient derived by the AC normalization coefficient calculation means and inversely quantizing the decoded signal; and an output signal of the inverse quantization means based on the effective pixel instruction signal.
  • Orthogonal transform base generating means for generating an orthogonal transform basis, and orthogonal transform means for orthogonally transforming the output signal of the inverse quantization means with the orthogonal transform base and outputting an image decoded signal. It is characterized by the following.
  • the AC normalization coefficient calculating means uses an inverse number of the number of pixels of the partial image to be encoded as an AC normalization coefficient.
  • An eleventh aspect of the present invention is an image encoding apparatus which receives an input image signal and an effective pixel indication signal indicating a partial image to be encoded of the input image signal, and encodes a partial image of a digital image signal in units of blocks. And outputting a plurality of values obtained by substituting pixel values generated according to at least two kinds of predetermined rules into pixel values of a partial image for which encoding of the input image signal is unnecessary by the effective pixel instruction signal.
  • a quantizing means for quantizing an output signal of the selecting means.
  • a twelfth invention is characterized in that the selecting means selects an output signal having a smaller high frequency component after the orthogonal transformation.
  • the selecting means includes a sum of absolute values of components after orthogonal transformation. In this case, the output signal having the smaller number is selected.
  • a fourteenth aspect of the present invention is an image code for inputting an input image signal and a transparency signal indicating a synthesis ratio when the input image signal is synthesized with another image signal, and encoding the digital image signal in units of blocks.
  • An orthogonal transformation means for orthogonally transforming the input image signal; and a normalization coefficient calculation means for deriving a normalization coefficient for normalizing a transformed output signal of the orthogonal transformation means from the transmittance signal.
  • a quantizing means for multiplying a quantization step by the normalization coefficient to quantize an output signal of the orthogonal transform means.
  • the normalization coefficient calculating means increases the normalization coefficient for a block having a large transmittance and containing many pixels with a small ratio used when synthesizing the image ′. It is characterized by the following.
  • an encoded signal obtained by normalizing an orthogonally transformed output signal of an input image by a transparency signal indicating a combination ratio when the input image signal is combined with another image signal
  • An image decoding apparatus which receives a transparency signal and decodes the encoded signal, comprising: decoding means for decoding the encoded signal to output a decoded signal; and decoding the decoded signal from the transparency signal.
  • a normalization coefficient calculating means for deriving a normalization coefficient for normalizing each component of the decoded signal, and a quantization step of the decoded signal multiplied by the normalization coefficient derived by the normalization coefficient calculation means.
  • Inverse quantization means for inversely quantizing the decoded signal, and orthogonal transformation means for orthogonally transforming the output signal of the inverse quantization means and outputting a decoded image signal.
  • the normalization coefficient calculating means increases the normalization coefficient for a block having a large transmittance and including many pixels having a small ratio used when synthesizing an image. It is a feature.
  • the image encoding apparatus calculates a dynamic range of a DC component after orthogonal transform by DC normalization coefficient calculating means, This eliminates fluctuations in the DC component due to the orthogonal transformation basis.
  • the pixel values of k pixels are encoded in units of a block
  • the energy of the DC component of the area w and the DC component of the entire block Are different in size. That is, when orthogonal transformation is performed only on the pixels in the region w, the DC component becomes (N / k) 1/2 times as compared with the case where the whole block is subjected to orthogonal transformation.
  • the image coding apparatus can eliminate the fluctuation of the DC component between blocks by multiplying the quantization step by (NZ k) 1/2 . In this case, the coding efficiency of the variable length coding means is improved. Note that this variable length encoding means also includes differential encoding of DC components.
  • the image coding apparatus multiplies the DC component of the adjacent block by N 1/2 to eliminate the fluctuation of the DC component due to different orthogonal transform bases. In this case, the coding efficiency of the DC prediction coding means is increased.
  • the image decoding device according to the second invention and the image decoding device according to the fourth invention respectively include a signal encoded by the image encoding device according to the first invention and a signal encoded by the image encoding device according to the third invention. Then, a DC normalization coefficient is derived using the effective pixel indication signal, and the encoded signal is correctly decoded.
  • An image coding apparatus is to calculate a dynamic range of an AC component after orthogonal transformation by an AC normalization coefficient calculation unit, and eliminate fluctuation of the AC component due to different orthogonal transformation bases. Perform orthogonal transformation by inserting pixel values Is performed, since the inserted pixel value is correlated with other pixel values, the quantization error is also biased. Therefore, by removing the bias of the quantized pixels, it is possible to reduce the energy of the average quantization error as compared with other blocks.
  • An image decoding apparatus derives an AC normalization coefficient from a signal encoded by the image encoding apparatus according to the seventh aspect of the present invention using an effective pixel indication signal, and correctly decodes the encoded signal. I do.
  • the image coding apparatus uses a plurality of pixel values by utilizing the fact that the value of the input pixel value is independent of the decoding procedure of the image decoding apparatus by utilizing the effective pixel indication signal.
  • a generation unit generates an insertion pixel value. Then, after the orthogonal transform, the pixel value inserted by the pixel value generating means having the smaller number of encoded bits is selected, and the number of encoded bits can be reduced by performing variable-length encoding.
  • a pixel value generation means a method of inserting an average value of pixel values, and a method of generating a pixel value by LPF are possible.
  • An image decoding device is to derive a normalization coefficient from a signal encoded by the image encoding device of the fourteenth aspect of the present invention using a transparency signal, and to correctly decode the encoded signal. Become BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a block diagram illustrating a basic configuration of an image encoding device according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a basic configuration of an image decoding device according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing a basic configuration of an image encoding device according to a third embodiment of the present invention.
  • FIG. 4 is a block diagram showing a basic configuration of an image decoding device according to a fourth embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a basic configuration of an image encoding device according to a fifth embodiment of the present invention.
  • FIG. 6 is a block diagram showing a basic configuration of an image decoding device according to a sixth embodiment of the present invention.
  • FIG. 7 is a block diagram illustrating a basic configuration of an image encoding device according to a seventh embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a basic configuration of an image encoding device according to an eighth embodiment of the present invention.
  • FIG. 9 is a block diagram showing a basic configuration of an image decoding device according to the ninth embodiment of the present invention.
  • FIG. 1 is a process diagram showing a basic configuration of an image encoding apparatus according to a first embodiment.
  • an effective pixel instruction signal 1 and a blocked image signal 2 corresponding to a pixel signal are input to an image encoding device.
  • the effective pixel detection means 3 is a means for detecting an effective pixel to be encoded by an effective pixel indication signal 1.
  • the effective pixel information 4 output from the effective pixel detection means 3 is given to the orthogonal transformation basis generation means 6, and the pixel number signal 5 is given to the DC normalization coefficient calculation means 10 as a signal indicating the effective pixel number of the block.
  • the orthogonal transformation basis generating means 6 is a means for producing the orthogonal transformation basis 7 and providing the orthogonal transformation basis 7 to the two-dimensional orthogonal transformation means 8.
  • the two-dimensional orthogonal transformation means 8 is a means for orthogonally transforming the image signal 2 using an orthogonal transformation basis ⁇ and outputting an orthogonal transformation signal 9.
  • the DC normalization coefficient calculation means 10 is means for calculating the DC normalization coefficient 11 from the pixel number signal 5, and the coefficient is given to the weight calculation means 12.
  • the weight calculation means 12 is means for calculating and outputting the weighting coefficient 13 at the time of quantization, and the value is given to the quantization means 15 together with the quantization parameter 14.
  • the quantization means 15 is means for calculating a quantization step from the quantization parameters 14 and the weighting coefficient 13, quantizing the orthogonal transform signal 9, and outputting a quantization value 16.
  • the variable length coding means 17 is a circuit that performs variable length coding on the quantized value 16 and outputs a coded signal 18.
  • the effective pixel position to be encoded is indicated by the effective pixel indication signal 1.
  • the orthogonal transformation basis generation means 6 produces a predetermined orthogonal transformation basis 7 from the effective pixel position in the block.
  • the two-dimensional orthogonal transform means 8 orthogonally transforms the image signal 2 using an orthogonal transform base 7 and outputs an orthogonal transform signal 9.
  • the DC normalization coefficient calculation means 10 calculates the DC normalization coefficient 11 from the pixel number signal 5. For example, this DC normalization factor 1 1 It is a function of the number of pixels and the number of effective pixels.
  • the weight calculation means 12 calculates a DC component weight coefficient 13 corresponding to the value of the DC normalization coefficient 11.
  • the quantization means 15 calculates a quantization step from the weighting coefficient 13 and the quantization parameter 14 and quantizes the orthogonal transform signal 9 to output a quantization value 16 to the c quantization parameter.
  • Numeral 14 is a parameter used to change the compression ratio in MPEG, which changes the compression ratio in units of blocks. If the quantization parameter is large, the coding distortion increases, but the number of coding bits decreases.
  • the product of the quantization parameter 14 and the weighting coefficient 13 can be considered.
  • the quantized value 16 generated by the quantization means 15 is subjected to variable-length encoding by the variable-length encoding means 17 and output as an encoded signal 18.
  • the variable-length coding means 17 can not only perform coding in units of blocks but also perform differential coding with blocks input in the past by incorporating a delay buffer or the like.
  • the DC normalization coefficient calculation means 10 in FIG. 1 is provided to calculate the dynamic range of the DC component after the orthogonal transform and to eliminate the fluctuation of the DC component due to different orthogonal transform bases.
  • the effective pixel area inside the block B of k pixels is w
  • the DC component D Cw of the effective pixel area w is expressed by the following equation (1).
  • variable-length coding means 17 also includes differential coding of DC components.
  • an appropriate DC component is weighted from the effective pixel indication signal 1 to the block, and the quantization means 15 performs the optimal quantization, so that the encoding bit An efficient image encoding device with a small number and independent of the number of effective pixels can be realized.
  • FIG. 2 is a block diagram showing a basic configuration of an image decoding apparatus according to the second embodiment. Blocks having the same signals and the same functions as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted. I do.
  • the image decoding apparatus according to the present embodiment derives a DC normalization coefficient from the coded signal 18 coded by the image coding apparatus shown in FIG. Things.
  • an effective pixel indication signal 1 is a signal indicating an effective pixel corresponding to the pixel signal.
  • the encoded signal 18 is a signal encoded by the image encoding device.
  • the effective pixel detecting means 3 is a means for detecting an effective pixel which is a pixel to be encoded from the effective pixel indication signal 1, and outputs effective pixel information 4 and a pixel number signal 5 indicating the number of effective pixels of the block. Output.
  • the orthogonal transformation basis generating means 6 is a means for producing the orthogonal transformation basis 7.
  • the DC normalization coefficient calculation means 10 is means for calculating the DC normalization coefficient 11 from the pixel number signal 5 and providing the same to the weight calculation means 12.
  • the weight calculation means 12 is a means for calculating a weight coefficient 13 at the time of quantization.
  • the variable length decoding means 20 decodes the coded signal 18 to output a decoded signal 21. It is a means to empower.
  • the inverse quantization means 22 is means for calculating a quantization step from the quantization parameter 14 and the weighting coefficient 13 and outputting an inverse quantization value 23.
  • the two-dimensional orthogonal transform means 24 is means for orthogonally transforming the inverse quantized value 23 by the orthogonal transform base 7 and outputting a decoded image signal 25.
  • the operation of the thus configured image decoding device of the second embodiment will be described.
  • the coded signal 18 is subjected to decoding opposite to the coding of the variable length coding means 17 in FIG. 1 in the variable length decoding means 20, and is converted into a decoded signal 21.
  • the inverse quantization means 22 calculates a quantization step for the decoded signal 21 from the weighting coefficient 13 and the quantization parameter 14, and inversely quantizes the inversely quantized value 2 3 Is output. This quantization step is the same as the quantization step in the quantization means 15 of the first embodiment.
  • the two-dimensional orthogonal transform means 24 orthogonally transforms the inverse quantized value 23 into an image decoded signal 25.
  • the orthogonal transformation performed here is the inverse of the transformation performed by the two-dimensional orthogonal transformation means 8 of the first embodiment.
  • FIG. 3 is a block diagram showing a basic configuration of the image encoding device according to the third embodiment.
  • the image coding apparatus of the present embodiment multiplies the DC component of the adjacent block by the value shown in equation (5) to eliminate the fluctuation of the DC component due to different orthogonal transform bases.
  • the coding efficiency of the DC prediction coding means is improved.
  • the multiplication means 31 is means for multiplying the weighting coefficient 13 by the DC component 30 of the reference block and outputting a product signal 32.
  • the DC predictive coding means 33 is a means for inputting the product signal 32 and the orthogonal transform signal 9 output from the two-dimensional orthogonal transform means 8 and calculating and outputting a DC difference signal 34.
  • the combining means 35 is means for replacing the DC component of the orthogonal transform signal 9 with the DC difference signal 34 and outputting the orthogonal transform signal 36.
  • the multiplication means 31 multiplies the weighting coefficient 13 by the DC component 30 of the reference block. Since the weighting coefficient 13 represents a variation component caused by the number of effective pixels of the DC component of the block, the product signal 32 is a signal in which the variation component caused by the number of effective pixels is normalized. The prediction efficiency of the DC prediction encoding means 33 becomes higher regardless of the number of effective pixels.
  • the combining means 35 replaces only the DC component of the orthogonal transform signal 9 with the output of the predictive coding means 33 corresponding to the DC component normalized by the number of effective pixels.
  • the variable-length coding means 17 can improve the coding efficiency by performing general-purpose variable-length coding independent of the number of effective pixels.
  • the DC component 30 of the reference block is normalized by the weighting coefficient 13 by the multiplication means 31 to perform DC predictive encoding, thereby achieving the same as in the first embodiment.
  • An efficient image encoding device that does not depend on the number of effective pixels can be realized.
  • FIG. 4 is a block diagram showing a basic configuration of an image decoding apparatus according to the fourth embodiment. Blocks having the same signals and the same functions as in the third embodiment are denoted by the same reference numerals, and detailed description is omitted. I do.
  • the image decoding apparatus of the present embodiment decodes the coded signal 18 coded by the image coding apparatus of FIG. It is a device to make.
  • the DC predictive decoding means is a means for receiving the product signal 32 of the multiplying means 31, decoding the DC component of the inverse quantization value 23, and outputting the DC decoded signal 41.
  • the synthesizing means 42 is means for outputting a synthesized signal 43 obtained by synthesizing the DC component and the AC component.
  • the coded signal 18 is decoded by the variable-length decoding means 20 in the reverse order of the coding of the variable-length coding means 17 in FIG. 3, and a decoded signal 21 is output.
  • the inverse quantization means 22 calculates a quantization step for the decoded signal 21 using the quantization parameter 14 and inversely quantizes to output an inversely quantized value 23. Since the DC component of the inverse quantization value 23 is predictively encoded, the DC predictive decoding means 40 multiplies the DC component of the reference block by the product signal 32 to obtain the DC value of the inverse quantization value 23.
  • the DC decoded signal 41 is generated by adding to the component.
  • the combining means 42 replaces the DC component of the inverse quantization value 23 with the DC decoded signal 41 and outputs the result as a combined signal 43.
  • the two-dimensional orthogonal transform means 24 orthogonally transforms the composite signal 43 and outputs a decoded image signal 25.
  • the DC component 30 of the reference block is normalized by the weighting coefficient 13 by the multiplication means 31, and the coded signal 18 on which the DC prediction coding has been performed is correctly decoded. Can be.
  • FIG. 5 is a block diagram showing a basic configuration of the image coding apparatus according to the fifth embodiment.
  • the blocks 1 to 18 and the signals are the same as those of the first embodiment, their description is omitted.
  • the A C normalization coefficient calculation means 50 is means for calculating the A C normalization coefficient 51 from the pixel number signal 5 output from the effective pixel detection means 3.
  • the weight calculation means 52 is a means for calculating a weight coefficient 53 at the time of quantization.
  • the AC normalization coefficient calculation means 50 calculates the dynamic range of the AC component after the orthogonal transform, and eliminates the variation of the AC component due to different orthogonal transform bases.
  • the orthogonal transformation is performed by inserting a pixel value or the like, the quantization error is biased because the inserted pixel value is correlated with other pixel values. For this reason, if the bias of the quantized pixel is removed, it is possible to reduce the energy of the average quantization error as compared with other blocks.
  • the number of pixels to be encoded has only ⁇ ⁇ components, that is, when ⁇ — ⁇ pixel values are inserted.
  • the error per block is close to the value shown in Eq. (6), assuming that the quantization error is white Gaussian noise.
  • the quantization error per pixel is the value shown in equation (7).
  • the quantization step is the value shown by the following equation (8).
  • the value of equation (8) is a real number greater than or equal to 1, the number of coded bits is obtained by quantizing with the quantization step multiplied by the value of the AC normalization coefficient calculated by the AC normalization coefficient calculation means 50. Can be reduced.
  • the AC normalization coefficient calculating means 50 calculates the AC normalization coefficient 51 which is orthogonally transformed from the pixel number signal 5. Note that the following operation can be realized in the same manner even if the AC normalization coefficient 51 includes a DC component.
  • the AC normalization coefficient 51 may be the reciprocal of the number of effective pixels of the block.
  • the weight calculation means 52 calculates a weight coefficient 53 of each coefficient component corresponding to the value of the AC normalization coefficient 51.
  • the quantization means 15 calculates a quantization step from the weighting coefficient 53 and the quantization parameter 14 and outputs a quantization value 16. Since this quantization step has the effect of averaging the bias of the quantization error depending on the number of effective pixels, the coding efficiency can be improved by appropriately distributing the number of bits. As an example of the quantization step, the product of the quantization parameter 14 and the weighting coefficient 53 can be considered.
  • the appropriate AC component weighting is performed on the block from the effective pixel indication signal 1 and the optimal quantization is performed by the quantization unit 15, so that the number of encoded bits is reduced. It is possible to realize an efficient image encoding device which has few pixels and does not depend on the number of effective pixels.
  • FIG. 6 is a block diagram showing a basic configuration of an image decoding apparatus according to the sixth embodiment. Blocks having the same signals and the same functions as those in the second embodiment are denoted by the same reference numerals, and detailed description is omitted. I do.
  • the image decoding apparatus according to the present embodiment is an apparatus that decodes an encoded signal 18 encoded by the image encoding apparatus in FIG.
  • the inverse quantizer 22 receives the decoded signal 21, calculates a quantization step from the weighting coefficient 5 3 and the quantization parameter 14, inversely quantizes and outputs an inversely quantized value 23. .
  • the weighting coefficient 53 is the same as the weighting coefficient 53 of the fifth embodiment. Therefore, this quantization step is the same as the quantization step of the quantization means 15 of the fifth embodiment.
  • the image decoding apparatus according to the second embodiment weights the DC component, but differs in that the present embodiment weights all the encoded orthogonal transform components.
  • FIG. 7 is a block diagram illustrating a basic configuration of an image encoding device according to a seventh embodiment.
  • an effective pixel instruction signal 1 and a blocked image signal 2 corresponding to a pixel signal are input to an image encoding device.
  • the pixel value generation means 60 a and 60 b generate image signals 61 a and 61 b in which predetermined values are inserted into pixel values other than the valid pixels, based on the valid pixel instruction signal 1, and output them. It is a means to do.
  • the two-dimensional orthogonal transformation means 8a is means for orthogonally transforming the image signal 61a and outputting an orthogonal transformation signal 9a.
  • the two-dimensional orthogonal transform means 8b is means for orthogonally transforming the image signal 61b and outputting an orthogonal transform signal 9b.
  • the selecting means 62 is means for selecting one of the orthogonally transformed signals 9a and 9b and outputting the orthogonally transformed signal 63.
  • the quantization means 15 is means for calculating a quantization step using the quantization parameter 14 and outputting a quantization value 16.
  • the variable length coding means 17 is means for converting the quantization value 16 into a variable length coded signal 18.
  • An effective pixel indication signal 1 indicates an effective pixel position to be coded among the blocked pixel positions.
  • the pixel value generating means 60a and 60b convert pixel values other than the effective pixel in the block from the image signal 2 into a predetermined rule (for example, a pixel value such that a high-frequency component is reduced).
  • the pixel value is generated by the generation method and the average value in the block, and the image signals 61a and 61b are output.
  • Each of the image signals 61a and 61b is orthogonally transformed by the two-dimensional orthogonal transform means 8a and 8b to become orthogonal transformed signals 9a and 9b.
  • the selecting means 62 compares the orthogonal transform signals 9a and 9b, selects one by selecting a predetermined rule, for example, the smaller of the number of coding bits, and outputs the orthogonal transform signal 63. As a result, it is possible to appropriately select a block in which a pixel value other than the effective pixel position is inserted for each block, and to increase the coding efficiency.
  • the orthogonal transform signals 9a and 9b have the same value, and therefore, the calculation of one of the two-dimensional orthogonal transform means 8a and 8b may be omitted. Absent.
  • the quantization means 15 calculates a quantization step from the quantization parameter 14 and outputs a quantization value 16.
  • the quantized value 16 is variable-length coded by the variable-length coding means 17 and output as a coded signal 18.
  • a plurality of pixel value generation means 6 are used. 0a, 60b to generate an insertion pixel value, and after orthogonal transformation, select the pixel value inserted by the pixel value generation means with the smaller number of coding bits and perform variable-length coding to The number of objects can be reduced.
  • the pixel value generating means 60a, 60b for example, a method of inserting an average value of pixel values or a method of generating pixel values by LPF is possible.
  • FIG. 8 is a block diagram showing a basic configuration of an image encoding device according to an eighth embodiment.
  • a transmission signal 70 corresponding to a pixel signal and a blocked image signal 2 are input to an image encoding device.
  • the transmittance calculating means 71 is a means for calculating the transmittance 72 for each block.
  • the normalization coefficient calculation means 73 calculates the normalization coefficient 74 of the block from the transmittance 72.
  • the weight calculation means 75 is means for calculating a weight coefficient 76 at the time of quantization.
  • the two-dimensional orthogonal transform means 8 is means for orthogonally transforming the image signal 2 and outputting an orthogonal transform signal 9.
  • the quantization means 15 is means for calculating a quantization step from the quantization parameter 14 and the weighting coefficient 76 and outputting a quantization value 16.
  • the variable length coding means 17 is means for performing variable length coding on the quantized value 16 and outputting a coded signal 18.
  • the transmittance information of each pixel corresponding to the blocked image signal is indicated by a transmittance signal 70.
  • the two-dimensional orthogonal transform means 8 orthogonally transforms the image signal 2 into an orthogonal transform signal 9.
  • the transmittance calculation means 71 calculates the transmittance of the block (for example, the average transmittance or the minimum transmittance of the block) from the transmittance signal 70 and outputs the calculated value as the transmittance 72.
  • the normalization coefficient calculation means 73 outputs a normalization coefficient 74 whose quantization step becomes coarse.
  • the quantization means 15 calculates a quantization step from the weighting coefficient 76 and the quantization parameter 14 and outputs a quantization value 16. Since this quantization step has an effect of removing a visual effect depending on the transmittance, it is possible to increase the coding efficiency while preventing large image quality deterioration.
  • the quantized value 16 is variable-length coded by the variable-length coding means 17 and the Output as No. 18
  • the variable-length encoding means 17 not only encodes in units of blocks, but also incorporates a delay buffer or the like, and can perform differential encoding with blocks input in the past.
  • the appropriate orthogonal transform coefficient is weighted for the block from the transparency signal 70, and the optimal quantization is performed by the quantization unit 15, so that the coding bit is obtained. It is possible to realize an efficient image encoding device with a small number, which depends on the transmittance, and which has no deterioration in image quality.
  • FIG. 9 is a block diagram showing a basic configuration of an image decoding apparatus according to the ninth embodiment, which decodes an encoded signal 18 encoded by the image encoding apparatus shown in FIG.
  • the variable length decoding means 20 is means for decoding the coded signal 18 and outputting the decoded signal 21.
  • the inverse quantization means 22 is means for calculating a quantization step from the quantization parameter 14 and the weighting coefficient 76 and outputting an inverse quantization value 23.
  • the two-dimensional orthogonal transformation means 24 is means for orthogonally transforming the inverse quantization value 23 and outputting an image decoding signal 25.
  • the image decoding apparatus configured as described above will be described.
  • the operation of the blocks denoted by reference numerals 70 to 76 and the meaning of each signal are the same as those of the eighth embodiment, and the description of the operation is omitted.
  • the coded signal 18 is subjected to decoding reverse to the coding of the variable length coding means 17 of the eighth embodiment, and is converted into a decoded signal 21. .
  • the inverse quantization means 22 calculates the quantization step using the weighting coefficient 76 and the quantization parameter 14 for the decoded signal 21, and inversely quantizes and outputs an inverse quantization value 23. I do.
  • This quantization step is the same as the quantization step in the quantization means 15 of the eighth embodiment.
  • the inverse quantization value 2 3 is quadratic
  • the orthogonal transform is performed by the original orthogonal transform means 24 to obtain a decoded image signal 25.
  • the orthogonal transformation performed by the two-dimensional orthogonal transformation means 24 is the same as the inverse transformation of the orthogonal transformation means 8 of the first embodiment.
  • the orthogonal transform coefficients of the block are appropriately weighted from the transparency signal 70, and the inverse quantization means 22 performs the inverse quantization at the same quantization step as that of the image encoding device. Will be performed.
  • the encoded signal 18 of the eighth embodiment can be correctly decoded.
  • the components since the components are almost the same, they may be used in combination.
  • the transmittance signal has a transmittance other than 100%, it indicates an effective pixel. Therefore, an effective pixel instruction signal may be generated from the transmittance signal.
  • the present invention can be configured as a system in which the image encoding device and the image decoding device according to the present invention are connected by wireless or wired communication means.
  • the configuration may be such that the data of the coded signal coded by the image coding device is temporarily stored in a server and sent to the image decoding device when necessary.
  • an image encoding device and an image decoding device optimized from the viewpoint of bit rate can be realized.
  • the present invention employs an efficient method of inserting pixel values, and can provide an image encoding device and an image decoding device with higher encoding efficiency. Further, according to the present invention, the quantization means is optimized using the transparency information, and a more efficient image encoding device and image decoding device can be realized.
  • the energy distribution of the DC coefficient and the AC coefficient of the inserted image and the inserted image becomes uniform, and the encoding efficiency after quantization is reduced. improves. Further, by configuring a system in which the image encoding device and the image decoding device according to the present invention are connected by communication means, a system with high transmission efficiency can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Television Signal Processing For Recording (AREA)

Description

明 細 書
発明の名称
画像符号化装置、画像復号化装置及びその方法ならびに画像伝送シス テム 技術分野
本発明は、画像信号を記録または伝送する際に、記録に必要な容量や 伝送に必要な伝送レー 卜を削減することを目的として、画像信号のデー タ量を削減して符号化する画像符号化装置と、それを正しく復号化する 画像復号化装置に関する。 背景技術
自然画像に対する画像符号化装置としては、 J P E Gや M P E Gが符 号化効率が高い手法であることはよく知られている。いずれの手法も入 力画像信号を複数の画素からなる矩形形状のプロックに分割し、直交変 換手段でプロック単位の直交変換 (離散コサイン変換) を行い、 量子化 手段で所定の量子化ステツプにより量子化した後、可変長符号化手段で 可変長符号化を行って、 符号化信号を出力するようにしている。
一方、画像信号には、通常の 1枚の画面で構成される画像信号以外に、 人工的に複数の画像を合成して生成された合成画像がある。このような 合成画像では、画像符号化装置で合成前の各画面を符号化すれば、画像 復号化装置で合成前の画像と合成後の画像を任意に選択して復号化し、 再生画像を得ることができ、画像データベース等に利用できる。合成画 像では輝度'色差のカラー信号以外に画像の合成の割合を表す透過度情 報(形状情報)と呼ばれる信号が必要である。この透過度情報が 1 0 0 % の場合はその画像信号は透明であることを意味し、符号化する必要がな い。 そこで、 この透過度情報が 1 0 0 %でない不透明の画素のみ画素値 を符号化すれば、効率の良い符号化を行うことができる。 この不透明な 画素の集合は一般に矩形形状ではないので、 J P E Gや M P E Gで使用 されている離散コサイン変換をそのまま使用することが不可能である。 そこで、矩形以外の形状でも効率よく符号化できる形状適応的な直交変 換の実現手法について、 "Coding of Arbitrarily Shaped Image Segments Based on a generalized Orthogonal Transform", Gilge et.al, Signal Processing: Image Communication vol. 1 1989等で検时結果力、' 報告されている。
また、 特願平 6 _ 2 7 1 5 4 2号の 「画像信号符号化の方法」 では、 形状適応的な直交変換より も容易な手法で、矩形以外の形状でも画素値 挿入により効率よく符号化できる手法を提案している。
しかしながら前述した画像符号化装置では、同じサイズの矩形プロッ ク単位以外の直交変換後の量子化手段等の最適化については検討され ておらず、 符号化効率向上の観点からまだ改善の余地があつた。
また、 Gilge らの手法は直交変換の基底関数の導出に複雑な計算が必 要であり、実現が困難であった。 しかし計算が簡単な画素値挿入による 符号化手法で、挿入方法を改善することにより更に画質向上が実現でき る余地がある。 発明の開示
本発明は、 このような従来の問題点に鑑みてなされたものであって、 異なるサイズのプロックを直交変換した後の量子化手段を、ビッ トレー 卜の観点から最適化した画像符号化装置及び画像復号化装置、また画像 符号化方法及び画像復号化方法を提供することを目的とする。
上記目的を達成するために、
第 1の発明は、入力画像信号と前記入力画像信号の符号化すべき部分 画像を示す有効画素指示信号とが入力され、プロック単位でデジタル画 像信号の部分画像を符号化する画像符号化装置であって、前記有効画素 指示信号によつて前記入力画像信号の直交変換基底を生成する直交変 換基底生成手段と、前記直交変換基底生成手段で生成された直交変換基 底で前記入力画像信号を直交変換する直交変換手段と、前記有効画素指 示信号から前記直交変換手段の変換出力信号の D C成分を正規化する ための D C正規化係数を導出する D C正規化係数計算手段と、前記直交 変換手段から与えられた直交変換信号のうち D C成分に対しては、その 量子化ステツプを前記 D C正規化係数計算手段で得られた D C正規化 係数で乗算し、前記直交変換手段から与えられた直交変換信号のうち非 D C成分に対しては、標準の量子化ステツプで前記直交変換信号を量子 化する量子化手段と、 を具備することを特徴とするものである。
第 2の発明は、符号化すべき部分画像を示す有効画素指示信号によつ て入力画像信号の直交変換した D C成分の量子化ステツプを制御する 画像符号化装置で符号化された符号化信号と前記有効画素指示信号を 入力とし、前記符号化信号を復号化する画像復号化装置であって、前記 符号化信号を復号化して復号化信号を出力する復号化手段と、前記有効 画素指示信号から前記復号化手段の出力する復号化信号のうち D C成 分を正規化するための D C正規化係数を導出する D C正規化係数計算 手段と、前記復号化手段で得られた復号化信号のうち D C成分に対して は、その量子化ステップを前記 D C正規化係数計算手段で得られた D C 正規化係数で乗算して逆量子化し、前記復号化手段で得られた復号化信 号のうち非 D C成分に対しては、標準量子化ステツプで前記復号化信号 を逆量子化する逆量子化手段と、前記有効画素指示信号によって前記逆 量子化手段の出力信号の直交変換基底を生成する直交変換基底生成手 段と、前記直交変換基底で前記逆量子化手段の出力信号を直交変換して 画像復号化信号を出力する直交変換手段と、を具備することを特徴とす るものである。 第 3の発明は、入力画像信号と前記入力画像信号の符号化すべき部分 画像を示す有効画素指示信号と参照プロックの D C成分とが入力され、 プロック単位でデジタル画像信号の部分画像を符号化し、且つ D C成分 をプロック単位で差分符号化する画像符号化装置であって、前記有効画 素指示信号によつて前記入力画像信号の直交変換基底を生成する直交 変換基底生成手段と、前記直交変換基底で前記入力画像信号を直交変換 する直交変換手段と、前記有効画素指示信号から前記直交変換手段の変 換出力信号の D C成分を正規化するための D C正規化係数を導出する D C正規化係数計算手段と、前記参照プロックの D C成分に前記 D C正 規化係数計算手段で計算された D C正規化係数を乗算し、得られた D C 成分と前記参照プロックの D C成分の差である D C差分成分を出力す る D C予測符号化手段と、前記 D C予測符号化手段出力の D C差分成分 と前記直交変換手段の出力信号の A C成分を量子化する量子化手段と、 を具備することを特徴とするものである。
第 4の発明は、符号化すべき部分画像を示す有効画素指示信号によつ て入力画像信号の直交変換した D C成分が参照するプロックの D C成 分を補正する画像符号化装置で符号化された符号化信号と前記有効画 素指示信号と前記参照プロックの D C成分を入力とし、前記符号化信号 を復号化する画像復号化装置であって、前記符号化信号を復号化して復 号化信号を出力する復号化手段と、前記復号化手段の復号化信号を逆量 子化する逆量子化手段と、前記有効画素指示信号によって前記逆量子化 手段の出力信号の直交変換基底を生成する直交変換基底生成手段と、前 記有効画素指示信号から前記復号化手段の出力する復号化信号のう ち D C成分を正規化するための D C正規化係数を導出する D C正規化係 数計算手段と、前記参照プロックの D C成分に前記 D C正規化係数を乗 算して前記逆量子化手段出力の D C差分成分と加算してその和を D C 成分とする D C復号化手段と、前記直交変換基底で前記 D C復号化手段 から出力される D C成分と前記逆量子化手段から出力される A C成分 とを直交変換して画像復号化信号を出力する直交変換手段と、を具備す ることを特徴とするものである。
第 5の発明では、第 1の発明および第 3の発明における前記 D C正規 化係数計算手段は、プロックの全画素数に対する符号化すべき部分画像 の画素数の割合の平方根を D C正規化係数とすることを特徴とするも のである。
第 6の発明では、第 2の発明および第 4の発明における前記 D C正規 化係数計算手段は、プロックの全画素数に対する符号化すべき部分画像 の画素数の割合の平方根を D C正規化係数とすることを特徴とするも のである。
第 7の発明は、入力画像信号と前記入力画像信号の符号化すべき部分 画像を示す有効画素指示信号とが入力され、プロック単位でデジタル画 像信号の部分画像を符号化する画像符号化装置であって、前記有効画素 指示信号によつて前記入力画像信号の直交変換基底を生成する直交変 換基底生成手段と、前記直交変換基底生成手段で生成された直交変換基 底で前記入力画像信号を直交変換する直交変換手段と、前記有効画素指 示信号から前記直交変換手段の変換出力信号の A C成分を正規化する ための A C正規化係数を導出する A C正規化係数計算手段と、量子化ス テツプを前記 A C正規化係数倍して前記直交変換手段の出力信号を量 子化する量子化手段と、 を具備することを特徴とするものである。 第 8の発明では、前記 A C正規化係数計算手段は、符号化すべき部分 画像の画素数の逆数を A C正規化係数とすることを特徴とするもので ある。
第 9の発明は、符号化すべき部分画像を示す有効画素指示信号によつ て入力画像信号の直交変換した A C成分の量子化ステツプを制御する 画像符号化装置で符号化された符号化信号と前記有効画素指示信号を 入力とし、前記符号化信号を復号化する画像復号化装置であって、前記 符号化信号を復号化して復号化信号を出力する復号化手段と、前記有効 画素指示信号から前記復号化手段の出力する復号化信号のうち A C成 分を正規化するための A C正規化係数を導出する A C正規化係数計算 手段と、前記復号化手段で得られた復号化信号のうち A C成分の量子化 ステップを A C正規化係数計算手段で導出された A C正規化係数で乗 算して前記復号化信号を逆量子化する逆量子化手段と、前記有効画素指 示信号によって前記逆量子化手段の出力信号の直交変換基底を生成す る直交変換基底生成手段と、前記直交変換基底で前記逆量子化手段の出 力信号を直交変換して画像復号化信号を出力する直交変換手段と、を具 備することを特徴とするものである。
第 1 0の発明では、前記 A C正規化係数計算手段は、符号化すべき部 分画像の画素数の逆数を A C正規化係数とすることを特徴とするもの である。
第 1 1の発明は、入力画像信号と前記入力画像信号の符号化すべき部 分画像を示す有効画素指示信号とが入力され、プロック単位でデジタル 画像信号の部分画像を符号化する画像符号化装置であって、前記有効画 素指示信号によって前記入力画像信号の符号化が不要な部分画像の画 素値に少なく とも 2通りの所定の規則で生成した画素値を代入したも のを出力する複数の画素値生成手段と、前記画素値生成手段の各出力信 号を直交変換する複数の直交変換手段と、前記直交変換手段の各出力を 比較して符号量の少ない方を選択する選択手段と、前記選択手段の出力 信号を量子化する量子化手段と、を具備することを特徴とするものであ る。
第 1 2の発明では、前記選択手段は、直交変換後の高周波数成分が少 ない方の出力信号を選択することを特徴とするものである。
第 1 3の発明では、前記選択手段は、直交変換後の成分の絶対値の和 が少ない方の出力信号を選択することを特徴とするものである。
第 1 4の発明は、入力画像信号と前記入力画像信号を他の画像信号と 合成する際の合成比を表す透過度信号とが入力され、プロック単位でデ ジタル画像信号を符号化する画像符号化装置であって、前記入力画像信 号を直交変換する直交変換手段と、前記透過度信号から前記直交変換手 段の変換出力信号を正規化する正規化係数を導出する正規化係数計算 手段と、量子化ステツプを前記正規化係数で乗算して前記直交変換手段 の出力信号を量子化する量子化手段と、を具備することを特徴とするも のである。
第 1 5の発明では、 前記正規化係数計算手段は、 透過度が大きく、 画 像 'を合成する際に使用される比率の小さい画素を多く含むブロックに 対して、 正規化係数を大きくすることを特徴とするものである。
第 1 6の発明は、入力画像信号を他の画像信号と合成する際の合成比 を表す透過度信号によつて入力画像の直交変換出力信号を正規化して 符号化された符号化信号と前記透過度信号を入力とし、前記符号化信号 を復号化する画像復号化装置であって、前記符号化信号を復号化して復 号化信号を出力する復号化手段と、前記透過度信号から前記復号化信号 の各成分を正規化する正規化係数を導出する正規化係数計算手段と、前 記復号化信号の量子化ステツプを前記正規化係数計算手段で導出され た正規化係数で乗算して前記復号化信号を逆量子化する逆量子化手段 と、前記逆量子化手段の出力信号を直交変換して画像復号化信号を出力 する直交変換手段と、 を具備することを特徴とするものである。
第 1 7の発明では、 前記正規化係数計算手段は、 透過度が大きく、画 像を合成する際に使用される比率の小さい画素を多く含むプロックに 対して、 正規化係数を大きくすることを特徴とするものである。
第 1の発明および第 3の発明の画像符号化装置は、 D C正規化係数計 算手段で直交変換後の D C成分のダイナミ ックレンジを計算して、異な る直交変換基底による D C成分の変動をなくすものである。 k画素の画 素値をプロック単位で符号化することを考えるとき、 k画素のプロック の内部の有効画素領域 wの N画素を直交変換すると、領域 wの D C成分 とブロック全体の D C成分のエネルギーの大きさが異なる。即ち領域 w の画素のみを直交変換すると、ブロック全体を直交変換する場合と比較 して D C成分が (N / k ) 1 /2倍になる。
一般に画像信号を直交変換して符号化する際には、 D C成分は隣接す るブロックの D C成分との差分を符号化する手法が使用される。画像信 号において、 隣接するブロックの D C成分は相関が強いので、その差分 が 0 となることを利用し、 圧縮効率の向上を図る。 しかしながら、 プロ ック毎に符号化される画素数が異なる手法を使用すると、 D C成分が変 動するので、 このままでは D C差分値が 0近傍に集中しない。
そこで、画像符号化装置は直交変換する画素数が Nの場合には、量子 化ステップを (N Z k ) 1/2倍することにより、 ブロック間の D C成分 の変動をなくすことができる。 この場合、可変長符号化手段の符号化効 率が向上する。なおこの可変長符号化手段では D C成分の差分符号化も 含むものとする。
また、第 3の発明の画像符号化装置は隣接プロックの D C成分を N 1 /2 倍し、異なる直交変換基底による D C成分の変動をなくす。 こうすると D C予測符号化手段の符号化効率が高くなる。
第 2の発明の画像復号化装置と第 4の発明の画像復号化装置は、それ ぞれ第 1の発明の画像符号化装置と第 3の発明の画像符号化装置で符 号化された信号を、有効画素指示信号を利用して D C正規化係数を導出 し、 符号化信号を正しく復号化する。
第 7の発明の画像符号化装置は、 A C正規化係数計算手段で直交変換 後の A C成分のダイナミ ックレンジを計算し、異なる直交変換基底によ る A C成分の変動をなくすものである。画素値挿入等を行って直交変換 を行った場合には、挿入した画素値が他の画素値と相関があるため、量 子化誤差にも偏りが生じる。このためその量子化画素の偏りを除去すれ ば、他のプロックよりも平均量子化誤差のエネルギーを低減させること が可能である。 画素値挿入を伴わないプロック (画素数 N ) の平均量子 化誤差を 5とすると、符号化すべき画素数が N個の成分しかない(M— N個の画素値挿入を行う)場合のプロック単位の誤差は、量子化誤差を 白色ガウス雑音と仮定すると、 (N 2Z M ) · (5に近い値になる。
従って、 画素当たりの量子化誤差は (N 2Z M 2) · 5であるから、 量 子化ステツプを M Z N倍にすることにより、他のブロックと同じ量子化 誤差となる。 M Z Nは 1以上の実数であるから、画像符号化装置では A C正規化係数計算手段で計算した A C正規化係数で乗算し量子化ステ ップで量子化することにより、符号化ビッ ト数を削減することができる。 第 9の発明の画像復号化装置は第 7の発明の画像符号化装置で符号 化された信号を、有効画素指示信号を利用して A C正規化係数を導出し、 符号化信号を正しく復号化する。
第 1 1の発明の画像符号化装置は、 有効画素指示信号の利用により、 揷入した画素値の値が画像復号化装置の復号化の手順と無関係である ことを利用し、複数の画素値生成手段で挿入画素値を生成する。 そして 直交変換後に符号化ビッ 卜数が少ない方の画素値生成手段で挿入した 画素値を選択し、可変長符号化することによって符号化ビッ ト数を削減 することができる。画素値生成手段としては、画素値の平均値を挿入す る手法や、 L P Fで画素値を生成する手法が可能である。
第 1 4の発明の画像符号化装置は、透過度が大きく画像合成される際 に影響が少ない画素を含むプロックに対しては、量子化ステツプを粗く しても視覚的に劣化が目立たないことを利用するものである。透過度が 大きいプロックは正規化係数を大きく し、 その結果、適応的に量子化ス テツプを粗くすることによって符号化ビッ ト数を削減できる。 第 1 6の発明の画像復号化装置は、第 1 4の発明の画像符号化装置で 符号化された信号を、透過度信号を利用して正規化係数を導出し、符号 化信号を正しく復号化する。 図面の簡単な説明
図 1 は本発明の第 1実施例における画像符号化装置の基本構成を示 すブロック図である。
図 2は本発明の第 2実施例における画像復号化装置の基本構成を示 すブロック図である。
図 3は本発明の第 3実施例における画像符号化装置の基本構成を示 すブロック図である。
図 4は本発明の第 4実施例における画像復号化装置の基本構成を示 すブロック図である。
図 5は本発明の第 5実施例における画像符号化装置の基本構成を示 すブロック図である。
図 6は本発明の第 6実施例における画像復号化装置の基本構成を示 すブロック図である。
図 7は本発明の第 7実施例における画像符号化装置の基本構成を示 すブロック図である。
図 8は本発明の第 8実施例における画像符号化装置の基本構成を示 すブロック図である。
図 9は本発明の第 9実施例における画像復号化装置の基本構成を示 すプロック図である。 発明を実施するための最良の形態
本発明の第 1実施例の画像符号化装置について図面を参照しつつ説 明する。図 1は第 1実施例である画像符号化装置の基本構成を示すプロ ック図である。 同図において、画像符号化装置に画素信号に対応する有 効画素指示信号 1及びプロック化された画像信号 2が入力される。有効 画素検出手段 3は符号化すべき画素である有効画素を有効画素指示信 号 1 により検出する手段である。有効画素検出手段 3の出力する有効画 素情報 4は直交変換基底生成手段 6に与えられ、画素数信号 5は当該ブ ロックの有効画素数を示す信号として D C正規化係数計算手段 1 0に 与えられる。
直交変換基底生成手段 6は直交変換基底 7を生成して 2次元直交変 換手段 8に与える手段である。 2次元直交変換手段 8は画像信号 2を直 交変換基底 Ίで直交変換して直交変換信号 9を出力する手段である。 D C正規化係数計算手段 1 0は画素数信号 5から D C正規化係数 1 1 を 計算する手段であり、 その係数は重みづけ計算手段 1 2に与えられる。 重みづけ計算手段 1 2は量子化の際の重みづけ係数 1 3を計算して出 力する手段であり、その値は量子化パラメータ 1 4 と共に量子化手段 1 5に与えられる。
量子化手段 1 5は量子化パラメ一夕 1 4 と重みづけ係数 1 3から量 子化ステツプを計算し、直交変換信号 9を量子化して量子化値 1 6を出 力する手段である。可変長符号化手段 1 7は量子化値 1 6を可変長符号 化をし、 符号化信号 1 8を出力する回路である。
以上のように構成された第 1実施例の画像符号化装置の動作を説明 する。 プロック化された画像信号の中で、符号化すべき有効画素位置が 有効画素指示信号 1で示される。直交変換基底生成手段 6は、 当該プロ ック内の有効画素位置から所定の直交変換基底 7を生成する。 2次元直 交変換手段 8は画像信号 2を直交変換基底 7を用いて直交変換し、直交 変換信号 9を出力する。
一方、 D C正規化係数計算手段 1 0は画素数信号 5から D C正規化係 数 1 1を計算する。例えばこの D C正規化係数 1 1は、ブロックの有効 画素数や有効画素数の関数である。重みづけ計算手段 1 2は D C正規化 係数 1 1の値に対応して D C成分の重みづけ係数 1 3を計算する。量子 化手段 1 5は重みづけ係数 1 3 と量子化パラメ一夕 1 4から量子化ス テップを計算し、直交変換信号 9を量子化して量子化値 1 6を出力する c 量子化パラメ一タ 1 4は M P E Gで圧縮率を変えるために用いられる プロック単位で圧縮率を変えるパラメ一夕で、量子化パラメータが大き いと符号化歪みが大きくなるが符号化ビッ ト数は小さくなる。
量子化ステツプの例としては、量子化パラメータ 1 4 と重みづけ係数 1 3の積が考えられる。量子化手段 1 5で生成された量子化値 1 6は可 変長符号化手段 1 7で可変長符号化され、符号化信号 1 8 として出力さ れる。 なお、 可変長符号化手段 1 7では、 プロック単位で符号化するの みでなく、遅延バッファ等を内蔵して過去に入力されたプロックとの差 分符号化をすることも可能である。
以上の信号処理について数式を用いて説明する。図 1の D C正規化係 数計算手段 1 0は、直交変換後の D C成分のダイナミ ックレンジを計算 して、異なる直交変換基底による D C成分の変動をなくすために設けた ものである。 あるブロック Bの画素数を k画素とする。そして各画素値 { X i ; i = 1 , 2 · · · k } をブロック単位で符号化することを考え る。 k画素のプロック Bの内部の有効画素領域を wとすると、有効画素 領域 wに存在する N画素を直交変換すると、有効画素領域 wの D C成分 D C wは ( 1 ) 式のようになる。
D C w = - ∑ X i ( 1 )
N w またブロック B全体で直交変換すると、 その D C成分 D C BL0CKは ( 2 ) 式のようになる。 3
D C BLOCK = ∑ X i ( 2 )
Figure imgf000015_0001
BLOCK ここで、 画素値 x iの平均値を x AVとすると、 各 D C成分は ( 3 ) 式 のようになる。
AV
Figure imgf000015_0002
1 ^ 1
D C BLOCK = , Σ i ― ■ ム AV =-\/ k X AV
k BLOCK BLOCK
( 3 ) 従って、有効画素領域 wの画素のみを直交変換すると、 ブロック B全 体を直交変換する場合と比較して、 D C成分が ( 4 ) 式で示す値で与え られる割合だけ増加する。
Figure imgf000015_0003
一般に画像信号を直交変換して符号化する際には、 D C成分は隣接す るブロックの D C成分との差分を符号化する手法が使用される。画像信 号において、 隣接するプロックの D C成分は相関が強いので、 その差分 が 0 となることを利用し、圧縮効率の向上を図る。 しかしながら以上の ように、 プロック毎に符号化される画素数が異なる手法を使用すると、 D C成分の D C差分値が 0にならない。
そこで、第 1実施例の画像符号化装置では、直交変換する画素数が N の場合には量子化ステツプを次に示す( 5 )式で示す値だけ増加(乗算) させることにより、 ブロック間の D C成分の変動をなくす訳である。
Figure imgf000016_0001
こうすると可変長符号化手段 1 7での符号化効率が向上する。 なお、 この可変長符号化手段 1 7では D C成分の差分符号化も含むものとす る o
以上の様に本実施例によれば、有効画素指示信号 1から当該プロック に適切な D C成分の重み付けが行われ、量子化手段 1 5で最適な量子化 が行われることにより、符号化ビッ ト数が少なく、有効画素数に依存し ない効率的な画像符号化装置が実現できる。
次に本発明の第 2実施例である画像復号化装置について図 2を用い て説明する。図 2は第 2実施例における画像復号化装置の基本構成を示 すブロック図であり、第 1実施例と同一信号及び同一の機能を有するブ ロックは同一の符号を付け、詳細な説明は省略する。本実施例の画像復 号化装置は、 図 1の画像符号化装置で符号化された符号化信号 1 8を、 有効画素指示信号を利用して D C正規化係数を導出し、正しく復号化す るものである。
図 2において、有効画素指示信号 1は画素信号に対応する有効画素を 指示する信号である。符号化信号 1 8は画像符号化装置で符号化された 信号である。有効画素検出手段 3は有効画素指示信号 1から符号化すベ き画素である有効画素を検出する手段であり、有効画素情報 4 と当該ブ 口ックの有効画素数を示す画素数信号 5 とを出力する。直交変換基底生 成手段 6は直交変換基底 7を生成する手段である。
D C正規化係数計算手段 1 0は画素数信号 5から D C正規化係数 1 1を計算して重みづけ計算手段 1 2に与える手段である。重みづけ計算 手段 1 2は量子化の際の重みづけ係数 1 3を計算する手段である。可変 長復号化手段 2 0は符号化信号 1 8を復号化して復号化信号 2 1を出 力する手段である。逆量子化手段 2 2は量子化パラメ一夕 1 4 と重みづ け係数 1 3 とから量子化ステツプを計算して逆量子化値 2 3を出力す る手段である。 2次元直交変換手段 2 4は逆量子化値 2 3を直交変換基 底 7で直交変換して画像復号化信号 2 5を出力する手段である。
このように構成された第 2実施例の画像復号化装置について、その動 作を説明する。 なお、 図 2の 1 〜 7で示すプロックと信号、 及び 1 0〜 1 4で示すプロックの動作と各信号の意味は第 1実施例の場合と同一 であるので説明を省略する。さて符号化信号 1 8は可変長復号化手段 2 0において、図 1の可変長符号化手段 1 7の符号化と逆の復号化が行わ れ、復号化信号 2 1に変換される。逆量子化手段 2 2は復号化信号 2 1 に対して、重みづけ係数 1 3 と量子化パラメ一夕 1 4 とから量子化ステ ップを計算し、 逆量子化して逆量子化値 2 3を出力する。 なお、 この量 子化ステップは第 1実施例の量子化手段 1 5での量子化ステップと同 じである。
2次元直交変換手段 2 4は逆量子化値 2 3を直交変換して画像復号 化信号 2 5にする。ここで行われる直交変換は第 1実施例の 2次元直交 変換手段 8での変換と逆変換である。
このように本実施例によれば、有効画素指示信号 1から当該プロック に適切な D C成分の重み付けが行われ、逆量子化手段 2 2で画像符号化 装置と同じ量子化ステツプで逆量子化が行われる。 このため、第 1実施 例で生成された符号化信号 1 8を正しく復号化できる。
次に本発明の第 3実施例の画像符号化装置について図面を参照しつ つ説明する。図 3は第 3実施例の画像符号化装置の基本構成を示すプロ ック図である。 同図において、 1 〜 1 8の各ブロックと各信号は第 1の 実施例のものと同じであるため、 それらの構成の説明は省略する。本実 施例の画像符号化装置は隣接プロックの D C成分を ( 5 )式で示す値だ け乗算して、異なる直交変換基底による D C成分の変動をなくすことに より、 D C予測符号化手段の符号化効率を高めるものである。
乗算手段 3 1は重みづけ係数 1 3 と参照プロックの D C成分 3 0 と を乗算し、積信号 3 2を出力する手段である。 D C予測符号化手段 3 3 は、積信号 3 2 と 2次元直交変換手段 8の出力する直交変換信号 9 とを 入力し、 D C差分信号 3 4を計算して出力する手段である。合成手段 3 5は直交変換信号 9の D C成分を D C差分信号 3 4で置換し、直交変換 信号 3 6を出力する手段である。
このように構成された第 3実施例である画像符号化装置の動作につ いて、第 1実施例の画像符号化装置と異なる部分のみを説明する。乗算 手段 3 1 は重みづけ係数 1 3に対して参照ブロックの D C成分 3 0を 乗算する。重みづけ係数 1 3は当該ブロックの D C成分の有効画素数に 起因する変動成分を表すものであるから、積信号 3 2は有効画素数に起 因する変動成分が正規化された信号であり、 D C予測符号化手段 3 3の 予測効率が有効画素数に関わらず高くなる。
合成手段 3 5は直交変換信号 9の D C成分のみを、有効画素数で正規 化された D C成分に相当する予測符号化手段 3 3の出力で置換する。そ して可変長符号化手段 1 7は有効画素数に依存しない汎用的な可変長 符号化をすることにより、 符号化効率を高くできる。
このように本実施例によれば、乗算手段 3 1で参照プロックの D C成 分 3 0を重みづけ係数 1 3で正規化して D C予測符号化を行うことに より、第 1実施例と同様に有効画素数に依存しない効率的な画像符号化 装置を実現することができる。
次に本発明の第 4実施例である画像復号化装置について図 4を用い て説明する。図 4は第 4実施例における画像復号化装置の基本構成を示 すプロック図であり、第 3実施例と同一信号及び同一の機能を有するブ ロックは同一の符号を付け、詳細な説明は省略する。本実施例の画像復 号化装置は図 3の画像符号化装置で符号化した符号化信号 1 8を復号 化する装置である。
図 4において、 1 〜 2 1で示すブロック及び信号名、 2 4〜 2 5のブ 口ック及び信号名は第 2実施例のものと同じである。 D C予測復号化手 段は乗算手段 3 1の積信号 3 2を入力し、逆量子化値 2 3の D C成分を 復号化して D C復号化信号 4 1を出力する手段である。合成手段 4 2は D C成分と A C成分を合成した合成信号 4 3を出力する手段である。 このように構成された第 4実施例の画像復号化装置の動作について 説明する。有効画素指示信号 1から積信号 3 2 と直交変換基底 7を出力 するまでの処理は、 第 2実施例の画像復号化装置の場合と同じである。 符号化信号 1 8は可変長復号化手段 2 0において図 3の可変長符号化 手段 1 7の符号化と逆の復号化を行い、 復号化信号 2 1を出力する。 逆量子化手段 2 2は復号化信号 2 1 に対して量子化パラメ一夕 1 4 を用いて量子化ステツプを計算し、逆量子化して逆量子化値 2 3を出力 する。逆量子化値 2 3の D C成分は予測符号化されているので、 D C予 測復号化手段 4 0は参照プロックの D C成分に積信号 3 2を乗算した ものを逆量子化値 2 3の D C成分に加算して D C復号化信号 4 1 を生 成する。
なお、参照プロックの D C成分は、動作説明を簡単にするため D C予 測復号化手段 4 0の内部に記憶されているものとし、当該ブロックの D C成分はまた後続プロックの D C成分復号化に使用されるものとする。 合成手段 4 2は逆量子化値 2 3の D C成分を D C復号化信号 4 1で置 換して合成信号 4 3 として出力する。 2次元直交変換手段 2 4は合成信 号 4 3を直交変換して画像復号化信号 2 5を出力する。
このように本実施例によれば、乗算手段 3 1で参照プロックの D C成 分 3 0を重みづけ係数 1 3で正規化し、 D C予測符号化を行った符号化 信号 1 8を正しく復号することができる。
次に本発明の第 5実施例の画像符号化装置について図面を参照しつ つ説明する。図 5は第 5実施例の画像符号化装置の基本構成を示すプロ ック図である。 同図において、 1 〜 1 8の各ブロックと各信号は第 1実 施例のものと同じであるため、 それらの説明は省略する。
A C正規化係数計算手段 5 0は有効画素検出手段 3の出力する画素 数信号 5から A C正規化係数 5 1を計算する手段である。重みづけ計算 手段 5 2は量子化の際の重みづけ係数 5 3を計算する手段である。 本実施例の画像符号化装置は、 A C正規化係数計算手段 5 0で、直交 変換後の A C成分のダイナミ ックレンジを計算し、異なる直交変換基底 による A C成分の変動をなくすものである。画素値の挿入等を行って直 交変換を行った場合には、挿入した画素値が他の画素値と相関があるた め、 量子化誤差にも偏りが生じる。 このため、 その量子化画素の偏りを 除去すれば、他のプロックよりも平均量子化誤差のエネルギーを低減さ せることが可能である。
画素値の挿入を伴わないプロック (画素数 N )の量子化誤差の偏差を δとすると、符号化すべき画素数が Ν個の成分しかない、即ち Μ— Ν個 の画素値挿入を行う場合のプロック単位の誤差は、量子化誤差を白色ガ ウス雑音と仮定すると ( 6 ) 式で示す値に近くなる。
δ ( 6 )
Μ 従って、 画素当たりの量子化誤差は ( 7 ) 式で示す値となる。
Ν 2
Μ 2 δ ( 7 ) 量子化ステップを次に示す ( 8 ) 式で示す値 Μ
T ( 8 ) だけ乗算することにより、 量子化誤差は他のプロックと同じになる。
( 8 )式の値は 1以上の実数であるから、 A C正規化係数計算手段 5 0 で計算した A C正規化係数の値だけ乗算した量子化ステツプで量子化 することにより、 符号化ビッ ト数を削減することができる。
このようにして A C正規化係数計算手段 5 0は画素数信号 5から直 交変換された A C正規化係数 5 1を計算する。 なお、 この A C正規化係 数 5 1 に D C成分を含んでいても以下の動作は同様に実現できる。例え ばこの A C正規化係数 5 1 はプロックの有効画素数の逆数が考えられ る。重みづけ計算手段 5 2は A C正規化係数 5 1の値に対応して各係数 成分の重みづけ係数 5 3を計算する。
量子化手段 1 5は重みづけ係数 5 3 と量子化パラメ一夕 1 4から量 子化ステップを計算し、量子化値 1 6を出力する。 この量子化ステップ は、有効画素数に依存する量子化誤差の偏りを平均化する効果があるの で、ビッ ト数を適切に分配することにより符号化効率を向上することが できる。量子化ステツプの例としては、量子化パラメ一夕 1 4 と重みづ け係数 5 3の積が考えられる。
このように本実施例によれば、有効画素指示信号 1から当該ブロック に適切な A C成分の重み付けが行われ、量子化手段 1 5で最適な量子化 が行われることにより、符号化ビッ ト数が少なく有効画素数に依存しな い効率的な画像符号化装置が実現できる。
次に本発明の第 6実施例である画像復号化装置について図 6を用い て説明する。図 6は第 6実施例における画像復号化装置の基本構成を示 すブロック図であり、第 2実施例と同一信号及び同一の機能を有するブ ロックは同一の符号を付け、詳細な説明は省略する。本実施例の画像復 号化装置は図 5の画像符号化装置で符号化した符号化信号 1 8を復号 化する装置である。
このよう に構成された第 6実施例の画像復号化装置の動作について、 第 2実施例の画像符号化装置と異なる部分のみについて説明する。逆量 子化手段 2 2は復号化信号 2 1を入力し、重みづけ係数 5 3 と量子化パ ラメータ 1 4から量子化ステップを計算し、逆量子化して逆量子化値 2 3を出力する。重みづけ係数 5 3は第 5の実施例の重みづけ係数 5 3 と 同じである。従ってこの量子化ステップは第 5実施例の量子化手段 1 5 の量子化ステップと同じである。第 2実施例の画像復号化装置は D C成 分に対して重みづけを行なつたが、本実施例では符号化された全ての直 交変換成分に重みづけを行う点が異なっている。
このように本実施例によれば、有効画素指示信号 1から当該ブロック に適切な A C成分の重み付けが行われ、逆量子化手段 2 2で画像符号化 装置と同じ量子化ステツプで逆量子化が行われることにより、第 5実施 例の符号化信号 1 8を正しく復号化できる。
次に本発明の第 7実施例の画像符号化装置について図面を参照しつ つ説明する。図 7は第 7実施例の画像符号化装置の基本構成を示すプロ ック図である。 同図において、画像符号化装置に画素信号に対応する有 効画素指示信号 1及びプロック化された画像信号 2が入力される。画素 値生成手段 6 0 a、 6 0 bは、 有効画素指示信号 1 により、 有効画素以 外の画素値に所定値を挿入した画像信号 6 1 a、 6 1 bを生成し、 それ らを出力する手段である。
2次元直交変換手段 8 aは画像信号 6 1 aを直交変換して直交変換 信号 9 aを出力する手段である。同様にして 2次元直交変換手段 8 bは 画像信号 6 1 bを直交変換して直交変換信号 9 bを出力する手段であ る。選択手段 6 2は直交変換信号 9 a、 9 bから一方を選択して直交変 換信号 6 3を出力する手段である。量子化手段 1 5は量子化パラメ一夕 1 4を用いて量子化ステップを計算し、量子化値 1 6を出力する手段で ある。可変長符号化手段 1 7は量子化値 1 6を可変長の符号化信号 1 8 に変換する手段である。 このように構成された第 7実施例の画像符号化装置の動作を説明す る。 プロック化された画素位置の中で、符号化すべき有効画素位置が有 効画素指示信号 1で示される。画素値生成手段 6 0 a、 6 0 bは当該ブ 口ック内の有効画素以外の画素値に、画像信号 2から各々所定規則(例 えば、高周波数成分が小さ くなるように画素値を生成する手法やプロッ ク内平均値等) で画素値を生成し、 画像信号 6 1 a , 6 1 bをそれぞれ 出力する。 各画像信号 6 1 a、 6 1 bは 2次元直交変換手段 8 a, 8 b で直交変換され、 直交変換信号 9 a、 9 b となる。
選択手段 6 2は直交変換信号 9 a , 9 bを比較し、 所定の規則、 例え ば符号化ビッ ト数の小さい方を選択することにより一方を選択し、直交 変換信号 6 3を出力する。 その結果、各ブロック毎に有効画素位置以外 の画素値が挿入されたプロックを適切に選択することができ、符号化効 率を高めることができる。
なお、 プロックの全ての画素が有効画素の場合には、直交変換信号 9 a , 9 bは同じ値であるから、 2次元直交変換手段 8 a , 8 bの一方の 計算を省略しても構わない。量子化手段 1 5は量子化パラメ一夕 1 4か ら量子化ステップを計算し、量子化値 1 6を出力する。量子化値 1 6は 可変長符号化手段 1 7で可変長符号化され、符号化信号 1 8 として出力 される。
このように本実施例によれば、有効画素指示信号の利用により、挿入 した画素値の値が画像復号化装置の復号化の手順と無関係であるこ と を利用し、複数の画素値生成手段 6 0 a、 6 0 bで挿入画素値を生成し、 直交変換後に符号化ビッ ト数が少ない方の画素値生成手段で挿入した 画素値を選択して可変長符号化することによって、符号化ビッ ト数を削 減することができる。 画素値生成手段 6 0 a、 6 0 b としては、 例えば 画素値の平均値を挿入する手法や、 L P Fで画素値を生成する手法が可 能である。 次に本発明の第 8実施例の画像符号化装置について図面を参照しつ つ説明する。図 8は第 8実施例の画像符号化装置の基本構成を示すプロ ック図である。 同図において、画像符号化装置に画素信号に対応する透 過度信号 7 0及びプロック化された画像信号 2が入力される。透過度計 算手段 7 1はプロック毎の透過度 7 2を計算する手段である。正規化係 数計算手段 7 3は透過度 7 2から当該ブロックの正規化係数 7 4を計 算する手段である。
重みづけ計算手段 7 5は量子化の際の重みづけ係数 7 6を計算する 手段である。 2次元直交変換手段 8は画像信号 2を直交変換して直交変 換信号 9を出力する手段である。量子化手段 1 5は量子化パラメータ 1 4 と重みづけ係数 7 6から量子化ステップを計算し、量子化値 1 6を出 力する手段である。可変長符号化手段 1 7は量子化値 1 6を可変長符号 化し、 符号化信号 1 8を出力する手段である。
このよう に構成された第 8実施例の画像符号化装置の動作を説明す る。プロック化された画像信号に対応する各画素の透過度情報が透過度 信号 7 0で示される。 2次元直交変換手段 8は画像信号 2を直交変換し て直交変換信号 9にする。一方、透過度計算手段 7 1は透過度信号 7 0 から当該プロックの透過度(例えば、 当該プロックの平均透過度や最小 透過度等) を計算し、 透過度 7 2 として出力する。
透過度 7 2の値が大きい場合は、当該画素が透明なために視覚的に影 響を与えにくいことを意味する。 この場合、正規化係数計算手段 7 3は 量子化ステツプが粗くなる正規化係数 7 4を出力する。量子化手段 1 5 は重みづけ係数 7 6 と量子化パラメ一夕 1 4から量子化ステツプを計 算し、量子化値 1 6を出力する。 この量子化ステップは透過度に依存す る視覚的影響を除去する効果があるので、大きな画質劣化を防ぎながら、 符号化効率を高めることができる。
量子化値 1 6は可変長符号化手段 1 7で可変長符号化され、符号化信 号 1 8 として出力される。 なお、可変長符号化手段 1 7はプロック単位 で符号化するのみでなく、遅延バッファ等を内蔵し、過去に入力された プロックとの差分符号化をすることも可能である。
このように本実施例によれば、透過度信号 7 0から当該ブロックに適 切な直交変換係数の重み付けが行われ、量子化手段 1 5で最適な量子化 が行われることにより、 符号化ビッ 卜数が少なく、 透過度に依存し、 画 質劣化をなく した効率的な画像符号化装置を実現できる。
次に本発明の第 9実施例の画像復号化装置について図 9を用いて説 明する。図 9は第 9実施例における画像復号化装置の基本構成を示すブ 口ック図であり、図 8の画像符号化装置で符号化した符号化信号 1 8を 復号化するものである。
図 9において、 7 0〜 7 6で示す各ブロック及び信号名は図 8の第 8 実施例のものと同じであり、 それらの説明は省略する。可変長復号化手 段 2 0は符号化信号 1 8を復号化して復号化信号 2 1 を出力する手段 である。逆量子化手段 2 2は量子化パラメータ 1 4 と重みづけ係数 7 6 から量子化ステップを計算し、 逆量子化値 2 3を出力する手段である。 2次元直交変換手段 2 4は逆量子化値 2 3を直交変換し、画像復号化信 号 2 5を出力する手段である。
このように構成された第 9実施例の画像復号化装置の動作を説明す る。 なお、 7 0〜 7 6で示すブロックの動作と各信号の意味は、 第 8実 施例のものと同じなので動作説明を省略する。可変長復号化手段 2 0に おいて、符号化信号 1 8は第 8実施例の可変長符号化手段 1 7の符号化 と逆の復号化が行なわれ、 復号化信号 2 1 に変換される。
逆量子化手段 2 2は復号化信号 2 1を重みづけ係数 7 6 と量子化パ ラメ一夕 1 4 とを用いて量子化ステップを計算し、逆量子化して逆量子 化値 2 3を出力する。 なお、 この量子化ステップは第 8実施例の量子化 手段 1 5における量子化ステツプと同じである。逆量子化値 2 3は 2次 元直交変換手段 2 4で直交変換され、画像復号化信号 2 5 となる。 この 2次元直交変換手段 2 4で行われる直交変換は、第 1実施例の直交変換 手段 8の逆変換と同じである。
このように本実施例によれば、透過度信号 7 0から当該ブロックの直 交変換係数に適切な重み付けが行われ、逆量子化手段 2 2で画像符号化 装置と同じ量子化ステツプで逆量子化が行われることになる。このため 第 8実施例の符号化信号 1 8を正しく復号化できる。
なお、以上の実施例においてその構成要素が殆ど同じであるから、組 み合わせて使用してもよい。 また透過度信号において透過度 100%以外 の場合は、有効画素を表すことになるので、透過度信号から有効画素指 示信号を生成してもよい。
また、本発明による画像符号化装置と画像復号化装置とを無線または 有線の通信手段で接続したシステムとして構成することもできる。その 際、画像符号化装置で符号化された符号化信号のデータを一時サーバに 蓄え、 必要な時に画像復号化装置に送る構成とすることもできる。 産業上の利用可能性
以上詳細に説明したように、本発明によれば異なるサイズのプロック を直交変換した後の量子化をする量子化手段において、ビッ トレー トの 観点から最適化した画像符号化装置と画像復号化装置が実現できる。
また本発明では画素値挿入の効率的な方法も採り入れ、より符号化効 率が高い画像符号化装置と画像復号化装置を提供することができる。 更に、本発明では透過度情報を用いて量子化手段を最適化し、 より効 率の良い画像符号化装置と画像復号化装置を実現できる。
いずれの発明によっても、 1 フレームのデジタル画像に半透明の部分 デジタル画像を挿入する際、被挿入画像と挿入画像の D C係数及び A C 係数のエネルギー分布が均一となり、量子化後の符号化効率が向上する。 また、本発明による画像符号化装置と画像復号化装置とを通信手段で 接続したシステムを構成することで、伝送効率の良いシステムが実現で きる。

Claims

請 求 の 範 囲 入力画像信号と前記入力画像信号の符号化すべき部分画像を示す有 効画素指示信号とが入力され、 プロック単位でデジタル画像信号の 部分画像を符号化する画像符号化装置であって、 前記有効画素指示信号によって前記入力画像信号の直交変換基底 を生成する直交変換基底生成手段と、 前記直交変換基底生成手段で生成された直交変換基底で前記入力 画像信号を直交変換する直交変換手段と、 前記有効画素指示信号から前記直交変換手段の変換出力信号の D C成分を正規化するための D C正規化係数を導出する D C正規化 係数計算手段と、 前記直交変換手段から与えられた直交変換信号のうち D C成分に 対しては、 その量子化ステップを前記 D C正規化係数計算手段で得 られた D C正規化係数で乗算し、 前記直交変換手段から与えられた 直交変換信号のうち非 D C成分に対しては、 標準の量子化ステップ で前記直交変換信号を量子化する量子化手段と、 を具備することを 特徴とする画像符号化装置。 符号化すべき部分画像を示す有効画素指示信号によって入力画像信 号の直交変換した D C成分の量子化ステツプを制御する画像符号 化装置で符号化された符号化信号と前記有効画素指示信号を入力 とし、 前記符号化信号を復号化する画像復号化装置であって、 前記符号化信号を復号化して復号化信号を出力する復号化手段と、 前記有効画素指示信号から前記復号化手段の出力する復号化信号 のうち D C成分を正規化するための D C正規化係数を導出する D C正規化係数計算手段と、 前記復号化手段で得られた復号化信号のうち D C成分に対しては、 その量子化ステツプを前記 D C正規化係数計算手段で得られた D C正規化係数で乗算して逆量子化し、 前記復号化手段で得られた復 号化信号のうち非 D C成分に対しては、 標準量子化ステップで前記 復号化信号を逆量子化する逆量子化手段と、 前記有効画素指示信号によつて前記逆量子化手段の出力信号の直 交変換基底を生成する直交変換基底生成手段と、 前記直交変換基底で前記逆量子化手段の出力信号を直交変換して 画像復号化信号を出力する直交変換手段と、 を具備することを特徴 とする画像復号化装置。 入力画像信号と前記入力画像信号の符号化すべき部分画像を示す有 効画素指示信号と参照ブロックの D C成分とが入力され、 ブロック 単位でデジタル画像信号の部分画像を符号化し、 且つ D C成分をブ 口ック単位で差分符号化する画像符号化装置であって、 前記有効画素指示信号によつて前記入力画像信号の直交変換基底 を生成する直交変換基底生成手段と、 前記直交変換基底で前記入力画像信号を直交変換する直交変換手 段と、 前記有効画素指示信号から前記直交変換手段の変換出力信号の D C成分を正規化するための D C正規化係数を導出する D C正規化 係数計算手段と、 前記参照プロックの D C成分に前記 D C正規化係数計算手段で計 算された D C正規化係数を乗算し、 得られた D C成分と前記参照ブ ロ ックの D C成分の差である D C差分成分を出力する D C予測符 号化手段と、 前記 D C予測符号化手段出力の D C差分成分と前記直交変換手段 の出力信号の A C成分を量子化する量子化手段と、 を具備すること を特徴とする画像符号化装置。 符号化すべき部分画像を示す有効画素指示信号によって入力画像信 号の直交変換した D C成分が参照するプロックの D C成分を補正 する画像符号化装置で符号化された符号化信号と前記有効画素指 示信号と前記参照プロックの D C成分を入力とし、 前記符号化信号 を復号化する画像復号化装置であって、 前記符号化信号を復号化して復号化信号を出力する復号化手段と、 前記復号化手段の復号化信号を逆量子化する逆量子化手段と、 前記有効画素指示信号によって前記逆量子化手段の出力信号の直 交変換基底を生成する直交変換基底生成手段と、 前記有効画素指示信号から前記復号化手段の出力する復号化信号 のうち D C成分を正規化するための D C正規化係数を導出する D C正規化係数計算手段と、 前記参照プロックの D C成分に前記 D C正規化係数を乗算して前 記逆量子化手段出力の D C差分成分と加算してその和を D C成分 とする D C予測復号化手段と、 前記直交変換基底で前記 D C復号化手段から出力される D C成分 と前記逆量子化手段から出力される A C成分とを直交変換して画 像復号化信号を出力する直交変換手段と、 を具備することを特徴と する画像復号化装置。 前記 D C正規化係数計算手段は、 プロックの全画素数に対する符号化すべき部分画像の画素数の割 合の平方根を D C正規化係数とするものであるこ とを特徴とする 請求項 1又は請求項 3記載の画像符号化装置。 前記 D C正規化係数計算手段は、 プロックの全画素数に対する符号化すべき部分画像の画素数の割 合の平方根を D C正規化係数とするものであるこ とを特徴とする 請求項 2又は請求項 4記載の画像復号化装置。 入力画像信号と前記入力画像信号の符号化すべき部分画像を示す有 効画素指示信号とが入力され、 プロック単位でデジタル画像信号の 部分画像を符号化する画像符号化装置であって、 前記有効画素指示信号によつて前記入力画像信号の直交変換基底 を生成する直交変換基底生成手段と、 前記直交変換基底生成手段で生成された直交変換基底で前記入力 画像信号を直交変換する直交変換手段と、 前記有効画素指示信号から前記直交変換手段の変換出力信号の A C成分を正規化するための A C正規化係数を導出する A C正規化 係数計算手段と、 量子化ステップを前記 A C正規化係数倍して前記直交変換手段の 出力信号を量子化する量子化手段と、 を具備することを特徴とする 画像符号化装置。 前記 A C正規化係数計算手段は、 符号化すべき部分画像の画素数の逆数を A C正規化係数とするも のであることを特徴とする請求項 7記載の画像符号化装置。 符号化すべき部分画像を示す有効画素指示信号によって入力画像信 号の直交変換した A C成分の量子化ステップを制御する画像符号 化装置で符号化された符号化信号と前記有効画素指示信号を入力 とし、 前記符号化信号を復号化する画像復号化装置であって、 前記符号化信号を復号化して復号化信号を出力する復号化手段と、 前記有効画素指示信号から前記復号化手段の出力する復号化信号 のう ち A C成分を正規化するための A C正規化係数を導出する AC正規化係数計算手段と、 前記復号化手段で得られた復号化信号のう ち A C成分の量子化ス テツプを A C正規化係数計算手段で導出された A C正規化係数で 乗算して前記復号化信号を逆量子化する逆量子化手段と、 前記有効画素指示信号によつて前記逆量子化手段の出力信号の直 交変換基底を生成する直交変換基底生成手段と、 前記直交変換基底で前記逆量子化手段の出力信号を直交変換して 画像復号化信号を出力する直交変換手段と、 を具備することを特徴 とする画像復号化装置。 1 0 . 前記 A C正規化係数計算手段は、 符号化すべき部分画像の画素数の逆数を A C正規化係数とするも のであることを特徴とする請求項 9記載の画像復号化装置。 1 1 .入力画像信号と前記入力画像信号の符号化すべき部分画像を示す 有効画素指示信号とが入力され、 プロック単位でデジタル画像信号 の部分画像を符号化する画像符号化装置であって、 前記有効画素指示信号によつて前記入力画像信号の符号化が不要 な部分画像の画素値に少なく とも 2通りの所定の規則で生成した 画素値を代入したものを出力する複数の画素値生成手段と、 前記画素値生成手段の各出力信号を直交変換する複数の直交変換 手段と、 前記直交変換手段の各出力を比較して符号量の少ない方を選択す る選択手段と、 前記選択手段の出力信号を量子化する量子化手段と、 を具備するこ とを特徴とする画像符号化装置。 1 2 . 前記選択手段は、 直交変換後の高周波数成分が少ない方の出力信号を選択するもの であることを特徴とする請求項 1 1記載の画像符号化装置。 1 3 . 前記選択手段は、 直交変換後の成分の絶対値の和が少ない方の出力信号を選択する ものであることを特徴とする請求項 1 1記載の画像符号化装置。1 4 .入力画像信号と前記入力画像信号を他の画像信号と合成する際の 合成比を表す透過度信号とが入力され、 プロック単位でデジタル画 像信号を符号化する画像符号化装置であって、 前記入力画像信号を直交変換する直交変換手段と、 前記透過度信号から前記直交変換手段の変換出力信号を正規化す る正規化係数を導出する正規化係数計算手段と、 量子化ステツプを前記正規化係数で乗算して前記直交変換手段の 出力信号を量子化する量子化手段と、 を具備することを特徴とする 画像符号化装置。 1 5 . 前記正規化係数計算手段は、 透過度が大きく、 画像を合成する際に使用される比率の小さい画素 を多く含むブロックに対して、 正規化係数を大きくするものである ことを特徴とする請求項 1 4記載の画像符号化装置。 1 6 .入力画像信号を他の画像信号と合成する際の合成比を表す透過度 信号によつて入力画像の直交変換出力信号を正規化して符号化さ れた符号化信号と前記透過度信号を入力とし、 前記符号化信号を復 号化する画像復号化装置であって、 前記符号化信号を復号化して復号化信号を出力する復号化手段と、 前記透過度信号から前記復号化信号の各成分を正規化する正規化 係数を導出する正規化係数計算手段と、 前記復号化信号の量子化ステツプを前記正規化係数計算手段で導 出された正規化係数で乗算して前記復号化信号を逆量子化する逆 量子化手段と、 前記逆量子化手段の出力信号を直交変換して画像復号化信号を出 力する直交変換手段と、 を具備することを特徴とする画像復号化装 置。 1 7 . 前記正規化係数計算手段は、 透過度が大きく、 画像を合成する際に使用される比率の小さい画素 を多く含むブロックに対して、 正規化係数を大きくするものである ことを特徴とする請求項 1 6記載の画像復号化装置。 1 8 .入力画像信号と前記入力画像信号の符号化すべき部分画像を示す 有効画素指示信号とが入力され、 プロック単位でデジタル画像信号 の部分画像を符号化する画像符号化方法であって、 前記有効画素指示信号によって前記入力画像信号の直交変換基底 を生成する工程と、 前記直交変換基底で前記入力画像信号を直交変換し直交変換信号 を出力する工程と、 前記有効画素指示信号から前記直交変換信号の D C成分を正規化 するための D C正規化係数を導出する工程と、 前記直交変換信号のうち D C成分に対しては、 その量子化ステップ を前記 D C正規化係数で乗算し、 前記直交変換信号のうち非 D C成 分に対しては、 標準の量子化ステツプで前記直交変換信号を量子化 する工程と、 を含むことを特徴とする画像符号化方法。 1 9 .符号化すべき部分画像を示す有効画素指示信号によって入力画像 信号の直交変換した D C成分の量子化ステップを制御する画像符 号化装置で符号化された符号化信号と前記有効画素指示信号を入 力とし、 前記符号化信号を復号化する画像復号化方法であって、 前記符号化信号を復号化して復号化信号を出力する工程と、 前記有効画素指示信号から前記復号化信号のうち D C成分を正規 化するための D C正規化係数を導出する工程と、 前記復号化信号のうち D C成分に対しては、 その量子化ステップを 前記 D C正規化係数で乗算して逆量子化し、 前記復号化信号のうち 非 D C成分に対しては、 標準量子化ステツプで前記復号化信号を逆 量子化し逆量子化値を出力する工程と、 前記有効画素指示信号によって前記逆量子化値の直交変換基底を 生成する工程と、 前記直交変換基底で前記逆量子化値を直交変換して画像復号化信 号を出力する工程と、 を含むことを特徴とする画像復号化方法。 0 .入力画像信号と前記入力画像信号の符号化すべき部分画像を示す 有効画素指示信号と参照プロックの D C成分とが入力され、 プロッ ク単位でデジタル画像信号の部分画像を符号化し、 且つ D C成分を プロック単位で差分符号化する画像符号化方法であって、 前記有効画素指示信号によつて前記入力画像信号の直交変換基底 を生成する工程と、 前記直交変換基底で前記入力画像信号を直交変換し直交変換信号 を出力する工程と、 前記有効画素指示信号から前記直交変換信号の D C成分を正規化 するための D C正規化係数を導出する工程と、 前記参照プロックの D C成分に前記 D C正規化係数を乗算し、 得ら れた D C成分と前記参照ブロックの D C成分の差である D C差分 成分を出力する工程と、 前記 D C差分成分と前記直交変換信号の A C成分を量子化するェ 程と、 を含むことを特徴とする画像符号化方法。
1 .符号化すべき部分画像を示す有効画素指示信号によって入力画像 信号の直交変換した D C成分が参照するプロ ックの D C成分を補 正する画像符号化装置で符号化された符号化信号と前記有効画素 指示信号と前記参照プロックの D C成分を入力とし、 前記符号化信 号を復号化する画像復号化方法であって、
前記符号化信号を復号化して復号化信号を出力する工程と、 前記復号化信号を逆量子化し D C差分成分と A C成分から成る逆 量子化値を出力する工程と、
前記有効画素指示信号によって前記逆量子化値の直交変換基底を 生成する工程と、 前記有効画素指示信号から前記復号化信号のうち D C成分を正規 化するための D C正規化係数を導出する工程と、
前記参照プロックの D C成分に前記 D C正規化係数を乗算して前 記 D C差分成分と加算してその和を D C成分とする工程と、 前記直交変換基底で前記 D C成分と前記 A C成分とを直交変換し て画像復号化信号を出力する工程と、 を含むことを特徴とする画像 復号化方法。
.入力画像信号と前記入力画像信号の符号化すべき部分画像を示す 有効画素指示信号とが入力され、 プロック単位でデジタル画像信号 の部分画像を符号化する画像符号化方法であって、
前記有効画素指示信号によって前記入力画像信号の直交変換基底 を生成する工程と、
前記直交変換基底で前記入力画像信号を直交変換し直交変換信号 を出力する工程と、
前記有効画素指示信号から前記直交変換信号の A C成分を正規化 するための A C正規化係数を導出する工程と、
量子化ステップを前記 A C正規化係数倍して前記直交変換信号を 量子化する工程と、 を含むことを特徴とする画像符号化方法。
.符号化すべき部分画像を示す有効画素指示信号によって入力画像 信号の直交変換した A C成分の量子化ステップを制御する画像符 号化装置で符号化された符号化信号と前記有効画素指示信号を入 力とし、 前記符号化信号を復号化する画像復号化方法であって、 前記符号化信号を復号化して復号化信号を出力する工程と、 前記有効画素指示信号から前記復号化信号のうち A C成分を正規 化するための A C正規化係数を導出する工程と、
前記復号化信号のうち A C成分の量子化ステツプを前記 A C正規 化係数で乗算して前記復号化信号を逆量子化し逆量子化値を出力 する工程と、
前記有効画素指示信号によって前記逆量子化値の直交変換基底を 生成する工程と、
前記直交変換基底で前記逆量子化値を直交変換して画像復号化信 号を出力する工程と、 を含むことを特徴とする画像復号化方法。 .入力画像信号と前記入力画像信号の符号化すべき部分画像を示す 有効画素指示信号とが入力され、 プロック単位でデジタル画像信号 の部分画像を符号化する画像符号化方法であって、
前記有効画素指示信号によつて前記入力画像信号の符号化が不要 な部分画像の画素値に少なく とも 2通りの所定の規則で生成した 画素値を代入したものを出力する複数の画素値生成工程と、 前記画素値生成工程の各出力信号を直交変換し直交変換信号を出 力する複数の工程と、
前記各直交変換信号を比較して符号量の少ない方を選択する選択 工程と、
前記選択工程で選択された直交変換信号を量子化する工程と、 を含 むことを特徴とする画像符号化方法。
.入力画像信号と前記入力画像信号を他の画像信号と合成する際の 合成比を表す透過度信号とが入力され、 プロック単位でデジタル画 像信号を符号化する画像符号化方法であって、
前記入力画像信号を直交変換し直交変換信号を出力する工程と、 前記透過度信号から前記直交変換信号を正規化する正規化係数を 導出する工程と、
量子化ステツプを前記正規化係数で乗算して前記直交変換信号を 量子化する工程と、 を含むことを特徴とする画像符号化方法。
.入力画像信号を他の画像信号と合成する際の合成比を表す透過度 信号によつて入力画像の直交変換出力信号を正規化して符号化さ れた符号化信号と前記透過度信号を入力とし、 前記符号化信号を復 号化する画像復号化方法であって、
前記符号化信号を復号化して復号化信号を出力する工程と、 前記透過度信号から前記復号化信号の各成分を正規化する正規化 係数を導出する工程と、
前記復号化信号の量子化ステツプを前記正規化係数で乗算して前 記復号化信号を逆量子化し逆量子化値を出力する工程と、
前記逆量子化値を直交変換して画像復号化信号を出力する工程と、 を含むことを特徴とする画像復号化方法。
2 7 . 入力画像信号を直交変換して得られた直交変換信号のうち、 D C 成分に対してはその量子化ステツプを符号化すべき部分画像を示 す有効画素指示信号から導出した D C正規化係数で乗算し、 非 D C 成分に対しては標準の量子化ステツプで量子化するように構成し た画像符号化装置と、
前記画像符号化装置で符号化された符号化信号と前記有効画素指 示信号を入力とし、 前記符号化信号を復号化する画像復号化装置と、 前記画像符号化装置と前記画像復号化装置を接続する無線または 有線の通信手段とからなる画像伝送システム。
2 8 .入力画像信号を直交変換して得られた直交変換信号の D C成分と 参照するブロックの D C成分に符号化すべき部分画像を示す有効 画素指示信号から導出した D C正規化係数を乗算して得られた D C成分との差である D C差分成分と、 前記直交変換信号の A C成分 を量子化するように構成した画像符号化装置と、
前記画像符号化装置で符号化された符号化信号と前記有効画素指 示信号と前記参照ブロックの D C成分を入力とし、 前記符号化信号 を復号化する画像復号化装置と、
前記画像符号化装置と前記画像復号化装置を接続する無線または 有線の通信手段とからなる画像伝送システム。
2 9 .入力画像信号を直交変換して得られた直交変換信号の A C成分に 対して、 その量子化ステツプを符号化すべき部分画像を示す有効画 素指示信号から導出した A C正規化係数で乗算して量子化するよ うに構成した画像符号化装置と、
前記画像符号化装置で符号化された符号化信号と前記有効画素指 示信号を入力とし、 前記符号化信号を復号化する画像復号化装置と、 前記画像符号化装置と前記画像復号化装置を接続する無線または 有線の通信手段とからなる画像伝送システム。
3 0 . 入力画像信号を直交変換して得られた直交変換信号に対して、そ の量子化ステツプを前記入力画像信号を他の画像信号と合成する 際の合成比を表す透過度信号から導出した正規化係数で乗算して 量子化するように構成した画像符号化装置と、
前記画像符号化装置で符号化された符号化信号と前記透過度信号 を入力とし、 前記符号化信号を復号化する画像復号化装置と、 前記画像符号化装置と前記画像復号化装置を接続する無線または 有線の通信手段とからなる画像伝送システム。
PCT/JP1996/002175 1995-08-03 1996-08-02 Image encoder, image decoder, image decoding method, and image transmitting system WO1997006641A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU66301/96A AU6630196A (en) 1995-08-03 1996-08-02 Image encoder, image decoder, image decoding method, and image transmitting system
EP96925974A EP0843481A4 (en) 1995-08-03 1996-08-02 IMAGE ENCODER, IMAGE DECODER, IMAGE DECODING METHOD, AND IMAGE TRANSMISSION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/219751 1995-08-03
JP7219751A JPH0951504A (ja) 1995-08-03 1995-08-03 画像符号化装置及び画像復号化装置

Publications (1)

Publication Number Publication Date
WO1997006641A1 true WO1997006641A1 (en) 1997-02-20

Family

ID=16740434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002175 WO1997006641A1 (en) 1995-08-03 1996-08-02 Image encoder, image decoder, image decoding method, and image transmitting system

Country Status (6)

Country Link
EP (1) EP0843481A4 (ja)
JP (1) JPH0951504A (ja)
KR (1) KR19990036088A (ja)
CN (1) CN1195449A (ja)
AU (1) AU6630196A (ja)
WO (1) WO1997006641A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3932244B2 (ja) * 2000-05-15 2007-06-20 株式会社ハドソン 画像符号/復号方法及びその装置並びにそのプログラムを記録した記録媒体
JP4617644B2 (ja) 2003-07-18 2011-01-26 ソニー株式会社 符号化装置及び方法
JP5166435B2 (ja) * 2006-12-11 2013-03-21 トムソン ライセンシング 画像符号化方法及び係る方法を実現する装置
JP5375938B2 (ja) * 2011-12-14 2013-12-25 ソニー株式会社 復号装置及び方法
JP5375937B2 (ja) * 2011-12-14 2013-12-25 ソニー株式会社 符号化装置及び方法
EP2670140A1 (en) * 2012-06-01 2013-12-04 Alcatel Lucent Method and apparatus for encoding a video stream
WO2014053514A1 (en) 2012-10-01 2014-04-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Scalable video coding using base-layer hints for enhancement layer motion parameters
JP6341598B2 (ja) * 2014-02-26 2018-06-13 日本放送協会 画像符号化装置、画像復号装置、画像符号化プログラム及び画像復号プログラム
JP6606660B2 (ja) * 2016-12-20 2019-11-20 株式会社アクセル 画像データ符号化装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110868A (ja) * 1991-10-15 1993-04-30 Oki Electric Ind Co Ltd 視覚特性の領域変換方式
JPH06113278A (ja) * 1991-10-09 1994-04-22 Oki Electric Ind Co Ltd 視覚特性のブロック直交変換領域への変換方式

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560873B2 (ja) * 1990-02-28 1996-12-04 日本ビクター株式会社 直交変換符号化復号化方法
DE69132268T2 (de) * 1990-09-29 2000-10-26 Victor Company Of Japan, Ltd. Bildsignalkodierer/Dekodierer mit adaptiver Quantisierung
US5227878A (en) * 1991-11-15 1993-07-13 At&T Bell Laboratories Adaptive coding and decoding of frames and fields of video

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113278A (ja) * 1991-10-09 1994-04-22 Oki Electric Ind Co Ltd 視覚特性のブロック直交変換領域への変換方式
JPH05110868A (ja) * 1991-10-15 1993-04-30 Oki Electric Ind Co Ltd 視覚特性の領域変換方式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0843481A4 *

Also Published As

Publication number Publication date
JPH0951504A (ja) 1997-02-18
KR19990036088A (ko) 1999-05-25
EP0843481A1 (en) 1998-05-20
AU6630196A (en) 1997-03-05
CN1195449A (zh) 1998-10-07
EP0843481A4 (en) 1999-08-11

Similar Documents

Publication Publication Date Title
US7336713B2 (en) Method and apparatus for encoding and decoding data
US7978101B2 (en) Encoder and decoder using arithmetic stage to compress code space that is not fully utilized
US6862371B2 (en) Method of compressing images of arbitrarily shaped objects
JP2004531995A (ja) Golomb−riceコーディングを使用するdct圧縮
JPH11317944A (ja) 画像符号化方法及び装置
US5719961A (en) Adaptive technique for encoder and decoder signal transformation
JP2001136526A (ja) 画像処理方法及びその装置及び記憶媒体
JP2000152240A (ja) S字型非線形性を用いる解像度階層における非線形量子化方法
Wei An introduction to image compression
US7609904B2 (en) Transform coding system and method
WO1997006641A1 (en) Image encoder, image decoder, image decoding method, and image transmitting system
JP3887043B2 (ja) 輪郭線符号化方法及び輪郭線符号化装置
US7778468B2 (en) Decoding apparatus, dequantizing method, and program thereof
JP4241517B2 (ja) 画像符号化装置及び画像復号装置
US20050265613A1 (en) Image coding apparatus and method, and image decoding apparatus and method
KR970073120A (ko) 블럭 단위의 벡터 양자화된 신호의 복호화 방법
US20040101205A1 (en) Position coding system and method
JP2002077920A (ja) 画像圧縮装置及び画像圧縮方法
JPH08275153A (ja) 画像圧縮装置および画像復元装置
JP4743884B2 (ja) 画像符号化装置及びその制御方法
US20030138046A1 (en) Method for coding and decoding video signals
JP3216741B2 (ja) 画像符号化方式
Torres et al. Improvements on stochastic vector quantization of images
JPH06338802A (ja) 再圧縮装置
JP3044514B2 (ja) 画像圧縮用量子化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96196765.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996925974

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980700754

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996925974

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019980700754

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1996925974

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980700754

Country of ref document: KR