WO1996003363A1 - Process for the hydroformylation of olefinically unsaturated compounds - Google Patents
Process for the hydroformylation of olefinically unsaturated compounds Download PDFInfo
- Publication number
- WO1996003363A1 WO1996003363A1 PCT/EP1995/002910 EP9502910W WO9603363A1 WO 1996003363 A1 WO1996003363 A1 WO 1996003363A1 EP 9502910 W EP9502910 W EP 9502910W WO 9603363 A1 WO9603363 A1 WO 9603363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rhodium
- diphosphines
- rhc
- hydroformylation
- angle
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B41/00—Formation or introduction of functional groups containing oxygen
- C07B41/06—Formation or introduction of functional groups containing oxygen of carbonyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B41/00—Formation or introduction of functional groups containing oxygen
- C07B41/02—Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C27/00—Processes involving the simultaneous production of more than one class of oxygen-containing compounds
- C07C27/20—Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxo-reaction
- C07C27/22—Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxo-reaction with the use of catalysts which are specific for this process
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/16—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxo-reaction combined with reduction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
Definitions
- the invention relates to a process for the hydroformylation of olefinically unsaturated compounds in the presence of rhodium complex compounds as catalysts which contain diphosphines as complex ligands.
- the rhodium catalyst is used in the form of modified hydridorhodium carbonyls which contain additional ligands, in particular tertiary, organic phosphines or phosphites.
- additional ligands in particular tertiary, organic phosphines or phosphites.
- the ligands are usually present in excess in relation to the metal atom, so that the catalyst system consists of complex compound and free ligand.
- the hydroformylation of olefinically unsaturated compounds under the catalytic action of rhodium-phosphine complex compounds is essentially realized in two variants.
- the catalyst is homogeneously dissolved in the reaction mixture, in the other it, when dissolved in water, forms its own phase.
- Both processes have been described many times in the literature, for example by B. Cornils in New Syntheses with Carbon Monoxide Berlin, Heidelberg, New York 1980, also in DE-C-26 27 354 and EP-B-01 03 810.
- the reaction has different characteristics among others Influence on the level of sales of raw materials and the formation of by-products. In general, the heterogeneous process achieves better conversions with higher selectivity compared to the homogeneous process.
- a particular advantage of the implementation in the system with a separate catalyst phase is the problem-free separation of the catalyst. It is done by simply separating the aqueous and organic phases, i.e. without distillation and thus without thermal process steps. In contrast, in homogeneously catalyzed processes, the reaction product has to be distilled off from the catalyst, a measure which is often associated with losses in yield due to the thermal sensitivity of the reaction products.
- phosphine ligands are triphenylphosphine in the homogeneously catalyzed process and trisodium tri (m-sulfophenyl) phosphine in the heterogeneous catalyst system. Further developments of both processes strive for technical and economic reasons, among others. an increase in the activity and life of the catalytic converter
- diphosphines As complex ligands by diphosphines, in particular by diphosphines, which react with the central atom of the complex compound to form chelates.
- diphosphines for catalysts which are used in the low-pressure hydroformylation of olefins and in the molecule modified 3 -> 01efins by heteroatom substitution.
- diphosphines which are derived from biphenyl, phenylnaphthalene and binaphthalene as the base body.
- the demands for high activity ie the amount of aldehyde, which is formed for each amount of catalyst and unit of time, and for long-term stability are of outstanding importance.
- the aim is to achieve the desired results with the lowest possible ligand / rhodium ratio.
- the object of the invention is to improve the hydroformylation process by selecting suitable diphosphine ligands as constituents of the catalyst.
- the invention consists in a process for the hydroformylation of olefinically unsaturated compounds at temperatures from 20 to 150 ° C. and pressures from 0.1 to 20 MPa in the presence of diphosphines in rhodium compounds containing complex bonds. It is characterized in that the diphosphines have a bite angle (according to Casey) of 100 to 160 ° and a cone angle (according to Tolman) from 120 to 240 ° and the isomer energy difference ⁇ E is at least 2.0 kcal / mol.
- the new process allows the selection of diphosphines as a catalyst component, among others. with the aim of controlling the catalytic activity and, when using terminal olefins, the ratio of n- and iso-aldehyde in the reaction product.
- a key feature of the new process is the use of diphosphines, whose natural bite angle is 100 is up to 160 °.
- the natural bite angle results from the graphical representation of the energy content of the chelate complex compared to the associated bite angle.
- the natural bite angle corresponds to the bite angle with the lowest energy content of the complex (minimum energy; see Casey et al., Isr.J.Chem., 30 (4), 299 ff (1990).
- cone angle “ ⁇ ” Another measure of the space requirement of phosphine ligands is the cone angle “ ⁇ ” according to Tolman (CA. Tolman, Chem. Rev. 1977, 77, 313 ff). It is defined as the opening angle of a cone, the tip of which is 2.28 8 from the phosphorus atom and whose surface lines are described by the tangents to the van der Waals radii of the substituents on the phosphorus atom. This definition can also be applied to diphosphines if they attack the metal like a chelate. In this case, the cone angle of the diphosphine is made up of the half-angle of neither of the two PM fragments and the PMP angle.
- the cone angle is 120 to 240 °, in particular 180 to 210 °. Diphosphines with a large cone angle lead to the preferred formation of unbranched products as catalyst components for steric reasons. Conversely, phosphines with a small space requirement increasingly result in iso compounds. Since the PMP angle is included in the calculation of the cone angle for diphosphines, the cone and bite angles have a direct influence on the space requirement of these ligands. Both angles are purely geometrical sizes and are therefore accessible for arithmetic treatment.
- Diphosphine is the energy difference ⁇ .
- E Ei.so - En of the two isomeric intermediates I and II, which are formed by the insertion reaction of the olefin into the catalytically active rhodium hydridocarbonyl complex. This is the first, product-determining step of hydroformylation (see e.g. Evans et al. J. Chem.Soc [AI 1968, 3133).
- the space requirement of the phosphine ligands is determined on the assumption that the metal atom is not connected to any other ligand.
- the calculation of the energy difference of the isomers according to formulas I and II also takes into account the influence of other ligands that are active metal complex compound are bound.
- the space requirement of the diphosphines can be determined much more precisely and the catalytic properties of the rhodium / diphosphine complex compounds can be adjusted much more precisely to the desired result.
- the computational simulation moves much closer to the real conditions during the catalytic cycle.
- the isomer energy difference is at least 2 kcal / mol, preferably at least 2.5 kcal / mol.
- the energy content is calculated as follows:
- Diphosphine built up as a ligand.
- the rhodium atom at the origin of the Cartesian coordinate system and the ligand atoms directly linked to the rhodium (both phosphorus atoms, carbonyl and alkyl carbon) are in the xy plane.
- Diphosphine ligands whose terminal bridging carbon atoms (these are the carbon atoms at the two ends of the carbon chain which are bonded to one of the phosphorus atoms of the diphosphine in each case) are at least 0.33 nm apart. This distance is characterized by bridges made of carbon atoms that are linked together by single bonds Entropy reasons not reached (no chelating coordination). In contrast, it is possible to set such distances with carbon atom bridges in which the mobility of the carbon atoms is restricted by multiple bonds between them. Examples of this are the 2,2'-dimethylbiaryl systems, which lead to a distance of the terminal bridging carbon atoms of more than 0.4 nm.
- the diphosphines used as catalyst components in the new process give the catalysts remarkably high flexibility and effectiveness.
- the formation of normal aldehydes can be increased further compared to known processes, but it is also possible to adapt the ratio of n- and iso-compound in the reaction product to the respective requirements.
- the discharge of noble metal and phosphine with the reaction product is further reduced compared to the prior art.
- these results are achieved with catalysts which have a significantly lower ligand / rhodium ratio than those previously used.
- the new process can be carried out with catalysts homogeneously dissolved in the reaction medium.
- complex compounds dissolved in water which form a separate catalyst phase, can be used with equally good success, a possibility which is surprising because by introducing hydrophilic residues such as the sulfonate - (- SO..H) or the carboxylate - (- COOH ) Group in the diphosphine molecule compared to the unsubstituted molecule, both the steric and the electronic conditions can be changed significantly.
- rhodium is used either as a metal or as a compound.
- metallic Form it is used in the form of finely divided particles or in a thin layer on a support such as activated carbon, calcium carbonate, aluminum silicate, alumina.
- the type of rhodium compound depends on whether the reactants are reacted in a homogeneous or heterogeneous liquid phase. Substances which are soluble from the start in the organic phase or in water or which become soluble under the reaction conditions are therefore suitable.
- rhodium oxides salts of inorganic hydro- or oxygen acids, and salts of aliphatic mono- or polycarboxylic acids are suitable.
- rhodium salts are rhodium nitrate, rhodium sulfate, rhodium acetate, rhodium 2-ethylhexanoate, rhodium malonate.
- Rhodium halogen compounds are less useful because of the corrosive behavior of the halide ions.
- Rhodium carbonyl compounds such as Rh 3 (CO), 2 or Rhg (CO) .g or complex salts of rhodium, for example cycloocadienylrhodium compounds, can also be used.
- Rhodium 2-ethylhexanoate Under the conditions of the hydroformylation reaction, lipophilic or hydrophilic rhodium complex compounds are formed which contain carbon monoxide and the diphosphine which is soluble in organic medium or in water as ligands.
- diphosphines it is not necessary to use the diphosphines as uniform compounds.
- Mixtures of different diphosphines or, in the case of water-soluble ligands, diphosphines of different sulfonation or carboxylation stages can be used.
- rhodium and diphosphine are not in a stoichiometric ratio, i.e. according to the to use chemical composition of the rhodium complex compound, which forms in the course of the hydroformylation reaction, but to use the diphosphine in excess.
- the ratio of rhodium and diphosphine can be varied within wide limits and about 1 to 130 mol of diphosphine can be used per mole of rhodium.
- a ratio of rhodium to diphosphine in the range from 1: 2 to 1:25 and in particular 1: 2 to 1:10 mol is preferred.
- the solution of the catalyst in the organic solvent or in water is prepared from the components either in the hydroformylation reactor or beforehand in a separate device and then fed to the hydroformylation reactor.
- the concentration of the rhodium in the reaction mixture or in the aqueous catalyst solution is 20 to 1000 ppm by weight (based on the solution), preferably 100 to 600 ppm by weight and in particular 200 to 400 ppm by weight.
- the reaction of the olefin with carbon monoxide and hydrogen takes place at pressures of approximately 0.1 to approximately 30 MPa, preferably 1 to 12 MPa and in particular 3 to 7 MPa.
- the composition of the synthesis gas i.e. the volume ratio of carbon monoxide and hydrogen can extend over wide ranges and e.g. can be varied between 1:10 and 10: 1. Generally you bet
- the reaction temperature is between about 20 to 150 ° C, preferably 80 to 140 C ⁇ us in particular 100 to 125 ° C.
- the reaction partners present in the liquid and gaseous phase are converted in conventional reactors.
- the course of the reaction in the liquid two-phase system is significantly influenced by the fact that the aqueous catalyst solution must be saturated with the liquid or gaseous, hydrophobic olefin and the synthesis gas. It is therefore necessary to create the largest possible contact area between the phases. It has proven useful to stir the liquid reactor contents - catalyst solution, optionally liquid olefin and reaction product - intensively and to feed the gaseous reactants - synthesis gas and optionally olefin - via distribution devices to the liquid phase. It has proven very useful to keep the proportion of the organic phase in the reaction mixture low.
- a volume ratio of aqueous to organic phase is accordingly set from 1: 1 to 100: 1, preferably 10: 1 to 100: 1.
- a corresponding part of the reaction mixture can be continuously removed from the reactor, aqueous and organic phases separated from one another and the aqueous phase returned to the reactor.
- the reaction can be carried out batchwise or, preferably, continuously.
- the process according to the invention is successfully applicable to the conversion of monoolefins, non-conjugated polyolefins, cyclic olefins and derivatives of these unsaturated compounds.
- the olefins used are not subject to any restrictions, the procedure has proven successful for compounds having 2 to 40 carbon atoms.
- the olefinically unsaturated compounds can be straight-chain or branched, the double bonds can be terminal or internal.
- olefins examples include ethylene, propylene, butene-1, butene-2, pentene-1, 2-methylbutene-1, hexene-1, hexene-2, heptene-1, octene-1 , Octen-3, 3-ethylhexene-1, decene-1, undecene-3, 4,4-dimethylnone-1, dicyclopentadiene, vinylcyclohexene, cyclooctadiene, styrene.
- Derivatives of the olefins mentioned which can be hydroformylated according to the claimed procedure are, for example, alcohols, aldehydes, carboxylic acids, esters, nitriles and halogen compounds, allyl alcohol, acrolein, methacrolein, crotonaldehyde, methyl acrylate, ethyl crotonate, diethyl fumarate , Diethyl maleate, acrylonitrile.
- the process for the hydroformylation of olefins and olefin derivatives having 2 to 20 and in particular 2 to 8 carbon atoms is used with particular success.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
Abstract
Olefines are hydroformylated in the presence of rhodium-diphosphine complex compounds as catalysts. The diphosphines have a (Casey) angle of nip of 100 to 160° and a (Tolman) approach angle of 120 to 240 °C and the isomer energy difference is at least 2 kcal/mol.
Description
Verfahren zur Hvdroformylierung olefinisch ungesättigter Process for Hvdroformylation of olefinically unsaturated
Verbindungenlinks
Die Erfindung betrifft ein Verfahren zur Hydroformylie- rung olefinisch ungesättigter Verbindungen in Gegenwart von Rhodiumkomplexverbindungen als Katalysatoren, die als Komplexliganden Diphosphine enthalten.The invention relates to a process for the hydroformylation of olefinically unsaturated compounds in the presence of rhodium complex compounds as catalysts which contain diphosphines as complex ligands.
Es ist bekannt, durch Umsetzung von Olefinen mit Kohlen- monoxid und Wasserstoff (Hydroformylierung) Aldehyde und Alkohole herzustellen, die ein Kohlenstoffatom mehr als das Ausgangsolefin enthalten. Die Reaktion wird durch Hydridometallcarbonyle, vorzugsweise solcher der Metalle der VIII. Gruppe des Periodensystems, katalysiert. Neben Kobalt, dem klassischen Katalysatormetall, werden in jüngster Zeit zunehmend Katalysatoren auf Basis von Rho¬ dium eingesetzt. Im Gegensatz zu Kobalt gestattet Rhodi¬ um, die Reaktion bei niedrigem Druck durchzuführen; darüber hinaus werden bei Einsatz endständiger Olefine bevorzugt geradkettige n-Aldehyde und nur in untergeord¬ netem Malte iso-Aldehyde gebildet. Schließlich ist auch die Hydrierung der olefinschen Verbindungen zu gesättig¬ ten Kohlenwasserstoffen in Gegenwart von Rhodium-Kataly- satoren deutlich geringer als bei Anwendung von Kobalt- Katalysatoren.It is known to produce aldehydes and alcohols containing one carbon atom more than the starting olefin by reacting olefins with carbon monoxide and hydrogen (hydroformylation). The reaction is catalyzed by hydridometal carbonyls, preferably those of the metals of group VIII of the periodic table. In addition to cobalt, the classic catalyst metal, catalysts based on rhodium have recently been increasingly used. In contrast to cobalt, rhodium allows the reaction to be carried out at low pressure; moreover, when terminal olefins are used, straight-chain n-aldehydes are preferably formed and iso-aldehydes are formed only in subordinate malts. Finally, the hydrogenation of the olefinic compounds to saturated hydrocarbons in the presence of rhodium catalysts is also significantly less than when using cobalt catalysts.
Bei den in der Technik eingeführten Verfahren wird der Rhodium-Katalysator in Form modifizierter Hydridorhodium- carbonyle eingesetzt, die zusätzliche Liganden, insbeson- dere tertiäre, organische Phosphine oder Phosphite ent¬ halten. Meist liegen die Liganden im Verhältnis zum Metallatom im Überschuß vor, so daß das Katalysatorsystem aus Komplexverbindung und freiem Ligand besteht. DerIn the processes introduced in industry, the rhodium catalyst is used in the form of modified hydridorhodium carbonyls which contain additional ligands, in particular tertiary, organic phosphines or phosphites. The ligands are usually present in excess in relation to the metal atom, so that the catalyst system consists of complex compound and free ligand. The
ERSATZBLÄTT REGEL26
Einsatz der beschriebenen Rhodium-Katalysatoren ermög¬ licht es, die Hydroformylierungsreaktion bei Drücken unter 30 MPa durchzuführen.SPARE BLADE RULE 26 Use of the rhodium catalysts described makes it possible to carry out the hydroformylation reaction at pressures below 30 MPa.
Industriell realisiert ist die Hydroformylierung olefi- nisch ungesättigter Verbindungen unter der katalytischen Wirkung von Rhodium-Phosphin-Komplexverbindungen im wesentlichen in zwei Varianten. In der einen Ausführungs¬ form liegt der Katalysator homogen gelöst im Reaktionsge¬ misch vor, in der anderen bildet er, in Wasser gelöst, eine eigene Phase. Beide Prozesse sind in der Literatur vielfach beschrieben, beispielsweise durch B. Cornils in New Syntheses with Carbon Monoxide Berlin, Heidelberg, New York 1980, ferner in DE-C-26 27 354 und EP-B-01 03 810. Die unterschiedliche Reaktionsführung hat u.a. Ein- fluß auf die Höhe des Umsatzes der Ausgangsstoffe und die Bildung von Nebenprodukten. Im allgemeinen erzielt man mit dem heterogenen Verfahren im Vergleich zum homogenen Prozeß bessere Umsätze bei höherer Selektivität. Ein besonderer Vorteil der Umsetzung im System mit gesonder- ter Katalysatorphase ist die problemlose Abtrennung des Katalysators. Sie erfolgt durch einfaches Scheiden von wäßriger und organischer Phase, d.h. ohne Destillation und damit ohne thermische Verfahrensschritte. In homogen katalysierten Verfahren muß dagegen das Reaktionsprodukt vom Katalysator abdestilliert werden, eine Maßnahme, die wegen der thermischen Empfindlichkeit der Reaktionspro¬ dukte häufig mit Ausbeuteverlusten verbunden ist.The hydroformylation of olefinically unsaturated compounds under the catalytic action of rhodium-phosphine complex compounds is essentially realized in two variants. In one embodiment, the catalyst is homogeneously dissolved in the reaction mixture, in the other it, when dissolved in water, forms its own phase. Both processes have been described many times in the literature, for example by B. Cornils in New Syntheses with Carbon Monoxide Berlin, Heidelberg, New York 1980, also in DE-C-26 27 354 and EP-B-01 03 810. The reaction has different characteristics among others Influence on the level of sales of raw materials and the formation of by-products. In general, the heterogeneous process achieves better conversions with higher selectivity compared to the homogeneous process. A particular advantage of the implementation in the system with a separate catalyst phase is the problem-free separation of the catalyst. It is done by simply separating the aqueous and organic phases, i.e. without distillation and thus without thermal process steps. In contrast, in homogeneously catalyzed processes, the reaction product has to be distilled off from the catalyst, a measure which is often associated with losses in yield due to the thermal sensitivity of the reaction products.
Die meist verwendeten Phosphinliganden sind im homogen katalysierten Verfahren Triphenylphosphin und im hetero- genen Katalysatorsystem Trinatrium-tri-(m-sulfophenyl)- phosphin. Weiterentwicklungen beider Prozesse streben aus technischen wie aus wirtschaftlichen Gründen u.a. eine Erhöhung der Aktivität und der Lebensdauer der Katalysa-The most commonly used phosphine ligands are triphenylphosphine in the homogeneously catalyzed process and trisodium tri (m-sulfophenyl) phosphine in the heterogeneous catalyst system. Further developments of both processes strive for technical and economic reasons, among others. an increase in the activity and life of the catalytic converter
ERSATZBLÄΪT(REGEL26)
toren sowie eine Verbesserung ihrer Selektivität hin¬ sichtlich der Bildung unverzweigter Aldehyde an. Wirt¬ schaftliche Überlegungen sind auch dafür maßgebend, auf eine deutliche Verminderung des Phosphin/Rhodium-Verhält- nisses hinzuarbeiten. Untersuchungen in dieser Richtung betreffen u.a. den Austausch der als Komplexliganden bekannten in Wasser nicht löslichen oder löslichen Phos- phine durch modifizierte oder neue Vertreter dieser Ver¬ bindungsklasse.SPARE BLADE (RULE 26) and an improvement in their selectivity with regard to the formation of unbranched aldehydes. Economic considerations are also decisive for working towards a significant reduction in the phosphine / rhodium ratio. Investigations in this direction concern, inter alia, the replacement of the water-insoluble or soluble phosphines known as complex ligands by modified or new representatives of this class of compounds.
ES besteht daher großes Interesse, den Hydroformylie- rungsprozeß wie vorstehend skizziert zu verbessern, d.h. durch gezielte Auswahl geeigneter Phosphinliganden Kata¬ lysatoren zu entwickeln, die bei möglichst niedrigem Ligand/Rhodium-Verhältnis Aktivität und Selektivität bekannter Katalysatoren übertreffen.It is therefore of great interest to improve the hydroformylation process as outlined above, i.e. through targeted selection of suitable phosphine ligands to develop catalysts which, with the lowest possible ligand / rhodium ratio, exceed the activity and selectivity of known catalysts.
Ein Schritt in diese Richtung ist der Ersatz von Mono- phosphinen als Komplexliganden durch Diphosphine, insbe¬ sondere durch Diphosphine, die mit dem Zentralatom der Komplexverbindung unter Chelatbildung reagieren. So wer- den z.B. in der EP 0 311 619 Bl Chelatliganden für Kata¬ lysatoren beschrieben, die bei der Niederdruckhydroformy- lierung von Olefinen und durch Heteroatomsubstitution im Molekül abgewandelte 3_>-01efine angewandt werden. Hier¬ bei handelt es sich um Diphosphine, die sich vom Bi- phenyl, Phenylnaphthalin und Binaphthalin als Grundkör¬ pern ableiten.One step in this direction is the replacement of monophosphines as complex ligands by diphosphines, in particular by diphosphines, which react with the central atom of the complex compound to form chelates. For example, described in EP 0 311 619 B1 chelate ligands for catalysts which are used in the low-pressure hydroformylation of olefins and in the molecule modified 3 -> 01efins by heteroatom substitution. These are diphosphines which are derived from biphenyl, phenylnaphthalene and binaphthalene as the base body.
Casey et al. berichten in J.Am.Chem.Soc. 1992, 114, 5535 ff über den Zusammenhang der Größe des natürlichen Bi߬ winkels (Natural Bite Angle) chelatbildender Diphosphine und ihrer Regioselektivität hinsichtlich der Bildung geradkettiger Aldehyde bei der Hydroformylierung von 1- Hexen in Gegenwart eines Rhodiumkatalysators.
Außer flexibler Anpassung an die gewünschte Selektivi¬ tät - auch die bevorzugte Bildung verzweigter Produkte kann in Sonderfällen das Ziel der Hydroformylierungsreak- tion sein - müssen industriell genutzte Katalysatoren noch weiteren Ansprüchen genügen. Unter ihnen sind die Forderungen nach hoher Aktivität, also der Stoffmenge Aldehyd, die je Stoffmenge Katalysator und Zeiteinheit gebildet wird und nach Langzeitstabilität von herausra¬ gender Bedeutung. Überdies wird angestrebt, die erwünsch- ten Ergebnisse bei möglichst niedrigem Ligand/Rhodium- Verhältnis zu erzielen.Casey et al. report in J.Am.Chem.Soc. 1992, 114, 5535 ff on the relationship between the size of the natural bite angle (natural bite angle) of chelating diphosphines and their regioselectivity with regard to the formation of straight-chain aldehydes in the hydroformylation of 1-hexene in the presence of a rhodium catalyst. In addition to flexible adaptation to the desired selectivity - the preferred formation of branched products can also be the goal of the hydroformylation reaction in special cases - industrially used catalysts must also meet further requirements. Among them, the demands for high activity, ie the amount of aldehyde, which is formed for each amount of catalyst and unit of time, and for long-term stability are of outstanding importance. In addition, the aim is to achieve the desired results with the lowest possible ligand / rhodium ratio.
Gegenstand der Erfindung ist es, den Hydroformylierungs- prozeß durch Auswahl geeigneter Diphosphinliganden als Bestandteile des Katalysators zu verbessern.The object of the invention is to improve the hydroformylation process by selecting suitable diphosphine ligands as constituents of the catalyst.
Die Erfindung besteht in einem Verfahren zur Hydroformy- lierung olefinisch ungesättigter Verbindungen bei Tempe¬ raturen von 20 bis 150°C und Drücken von 0,1 bis 20 MPa in Gegenwart von Diphosphine in komplexer Bindung ent¬ haltendenden Rhodiumverbindungen. Es ist dadurch gekenn- zeichnet, daß die Diphosphine einen Bißwinkel (nach Casey) von 100 bis 160° und einen Konuswinkel (nach Tolman) von 120 bis 240° aufweisen und die Isomeren- energiedifferenz Δ E mindestens 2,0 kcal/mol ist.The invention consists in a process for the hydroformylation of olefinically unsaturated compounds at temperatures from 20 to 150 ° C. and pressures from 0.1 to 20 MPa in the presence of diphosphines in rhodium compounds containing complex bonds. It is characterized in that the diphosphines have a bite angle (according to Casey) of 100 to 160 ° and a cone angle (according to Tolman) from 120 to 240 ° and the isomer energy difference Δ E is at least 2.0 kcal / mol.
Das neue Verfahren erlaubt die Auswahl von Diphosphinen als Katalysatorbestandteil u.a. mit dem Ziel, die Kataly¬ satoraktivität und bei Verwendung endständiger Olefine das Verhältnis von n- und iso-Aldehyd im Reaktionsprodukt zu steuern.The new process allows the selection of diphosphines as a catalyst component, among others. with the aim of controlling the catalytic activity and, when using terminal olefins, the ratio of n- and iso-aldehyde in the reaction product.
Ein wesentliches Merkmal des neuen Verfahrens ist es, Diphosphine einzusetzen, deren natürlicher Bißwinkel 100
bis 160° beträgt. Der natürliche Bißwinkel ist eine Rechengrδße, die den Raumbedarf des Liganden beschreibt. Casey et al. definieren ihn als den bevorzugten Chelati- sierungswinkel, d.h. den Phosphor-Metall-Phosphor-Winkel (P-M-P-Winkel mit M = Rhodium) der sich bei chelatisie- render Koordination des zweizähnigen Phosphins an ein Rhodiumatom, das mit keinen weiteren Liganden verbunden ist, einstellt. Der natürliche Bißwinkel ergibt sich aus der graphischen Darstellung der Energieinhalte des Chelatkomplexes gegenüber dem zugehörigen Bißwinkel. Der natürliche Bißwinkel entspricht dem Bißwinkel mit dem niedrigsten Energieinhalt des Komplexes (Energieminimum; vgl. Casey et al. , Isr.J.Chem., 30(4), 299 ff (1990). Je größer der Bißwinkel des Liganden ist, desto größer ist sein Raumbedarf und desto höher ist auch das n/iso-Ver- hältnis, das bei seiner Anwendung als Bestandteil von Hydroformylierungskatalysatoren erzielt werden kann. Bevorzugt sind Diphosphine mit einem Bißwinkel von 120 bis 150βC.A key feature of the new process is the use of diphosphines, whose natural bite angle is 100 is up to 160 °. The natural bite angle is a calculation that describes the space requirement of the ligand. Casey et al. define it as the preferred chelation angle, ie the phosphorus-metal-phosphorus angle (PMP angle with M = rhodium), which occurs when the bidentate phosphine is chelated in coordination with a rhodium atom that is not linked to any other ligand . The natural bite angle results from the graphical representation of the energy content of the chelate complex compared to the associated bite angle. The natural bite angle corresponds to the bite angle with the lowest energy content of the complex (minimum energy; see Casey et al., Isr.J.Chem., 30 (4), 299 ff (1990). The larger the bite angle of the ligand, the greater is its space requirement and the higher is the n / iso ratio which can be achieved when it is used as a component of hydroformylation catalysts, preferably diphosphines with a bite angle of 120 to 150 β C.
Ein weiteres Maß für den Raumbedarf von Phosphinliganden ist der Konuswinkel «θ» nach Tolman (CA. Tolman, Chem. Rev. 1977, 77, 313 ff). Er ist definiert als der Öff¬ nungswinkel eines Kegels, dessen Spitze 2.28 8 vom Phosphoratom entfernt ist und dessen Mantellinien durch die Tangenten an die van der Waals Radien der Substituen- ten am Phosphoratom beschrieben werden. Diese Definition läßt sich auch auf Diphosphine anwenden, wenn diese che- latartig am Metall angreifen. Der Konuswinkel des Diphos- phins setzt sich in diesem Fall zusammen aus den Halbwin- kein der beiden P-M-Fragmente und dem P-M-P-Winkel. Die Beschreibung des Bestimmungsverfahrens ist publiziert (Tolman et al., J.Am.Chem.Soc. 1974, 96, 53-60).
Erfindungsgemäß beträgt der Konuswinkel 120 bis 240°, insbesondere 180 bis 210°. Diphosphine mit großem Konus¬ winkel führen als Katalysatorkomponenten aus sterischen Gründen zur bevorzugten Bildung unverzweigter Produkte. Umgekehrt ergeben Phosphine mit geringem Raumbedarf ver¬ mehrt iso-Verbindungen. Da für Diphosphine der P-M-P- Winkel in die Berechnung des Konuswinkels miteinfließt, haben Konus- und Bißwinkel unmittelbaren Einfluß auf den Raumbedarf dieser Liganden. Bei beiden Winkeln handelt es es sich um rein geometrische Größen, die daher einer rechnerischen Behandlung zugänglich sind.Another measure of the space requirement of phosphine ligands is the cone angle “θ” according to Tolman (CA. Tolman, Chem. Rev. 1977, 77, 313 ff). It is defined as the opening angle of a cone, the tip of which is 2.28 8 from the phosphorus atom and whose surface lines are described by the tangents to the van der Waals radii of the substituents on the phosphorus atom. This definition can also be applied to diphosphines if they attack the metal like a chelate. In this case, the cone angle of the diphosphine is made up of the half-angle of neither of the two PM fragments and the PMP angle. The description of the determination method is published (Tolman et al., J.Am.Chem.Soc. 1974, 96, 53-60 ) . According to the invention, the cone angle is 120 to 240 °, in particular 180 to 210 °. Diphosphines with a large cone angle lead to the preferred formation of unbranched products as catalyst components for steric reasons. Conversely, phosphines with a small space requirement increasingly result in iso compounds. Since the PMP angle is included in the calculation of the cone angle for diphosphines, the cone and bite angles have a direct influence on the space requirement of these ligands. Both angles are purely geometrical sizes and are therefore accessible for arithmetic treatment.
Ein weiteres Kennzeichen der erfindungsgemäß eingesetztenAnother characteristic of those used according to the invention
Diphosphine ist die Energiedifferenz Δ. E = Ei.so - En der zwei isomeren Zwischenstufen I und II, die sich durch Einschiebungsreaktion des Olefins in den katalytisch wirksamen Rhodiumhydridocarbonylkomplex bilden. Hierbei handelt es sich um den ersten, produktbestimmenden Schritt der Hydroformylierung (vgl. z.B. Evans et al. J.Chem.Soc [AI 1968, 3133).Diphosphine is the energy difference Δ. E = Ei.so - En of the two isomeric intermediates I and II, which are formed by the insertion reaction of the olefin into the catalytically active rhodium hydridocarbonyl complex. This is the first, product-determining step of hydroformylation (see e.g. Evans et al. J. Chem.Soc [AI 1968, 3133).
IIII
Durch Bestimmung des Bißwinkels nach Casey wird der Raum¬ bedarf der Phosphinliganden unter der Annahme ermittelt, daß das Metallatom mit keinem weiteren Liganden verbunden ist. Die Berechnung der Energiedifferenz der Isomeren entsprechend den Formeln I und II berücksichtigt darüber hinaus den Einfluß weiterer Liganden, die an der kataly-
tisch wirksamen Metallkomplexverbindung gebunden sind. Dadurch können der Raumbedarf der Diphosphine wesentlich genauer bestimmt und die katalytischen Eigenschaften der Rhodium-/Diphosphin-Komplexverbindungen wesentlich präzi- ser auf das jeweils gewünschte Ergebnis eingestellt wer¬ den. Die rechnerische Simulation bewegt sich dadurch viel näher an den wirklichen Verhältnissen während des Kataly¬ sezyklus. Entsprechend der Erfindung beträgt die Isome- renenergiedifferenz mindestens 2 kcal/mol, vorzugsweise mindestens 2,5 kcal/mol.By determining the bite angle according to Casey, the space requirement of the phosphine ligands is determined on the assumption that the metal atom is not connected to any other ligand. The calculation of the energy difference of the isomers according to formulas I and II also takes into account the influence of other ligands that are active metal complex compound are bound. As a result, the space requirement of the diphosphines can be determined much more precisely and the catalytic properties of the rhodium / diphosphine complex compounds can be adjusted much more precisely to the desired result. As a result, the computational simulation moves much closer to the real conditions during the catalytic cycle. According to the invention, the isomer energy difference is at least 2 kcal / mol, preferably at least 2.5 kcal / mol.
Die Berechnung der Energiedifferenz der isomeren Zwi¬ schenstufen I (Ei.so) und II (En) erfolgt unter Verwendung des Programms Discover 2.8 (Biosy Technologies, San Diego 1992) durch vollständige Minimierung der durch das "cff91"-Kraftfeld berechneten Energie. Das im Programm integrierte Kraftfeld "cff91" wird dem Problem durch Einführung zusätzlicher Parameter angepaßt. Hierzu sind in die Parameterliste die folgenden Ergänzungen einzufü¬ gen:The energy difference between the isomeric intermediate stages I (Ei.so) and II (En) is calculated using the Discover 2.8 program (Biosy Technologies, San Diego 1992) by completely minimizing the energy calculated by the "cff91" force field. The force field "cff91" integrated in the program is adapted to the problem by introducing additional parameters. The following additions are to be added to the parameter list:
IBIOSYM forcefieldIBIOSYM forcefield
#version cff91-p.frc 2.1 09-Dez-93#version cff91-p.frc 2.1 09-Dec-93
.Version cff91-rh.frc 2.2 15-Jun-94.Version cff91-rh.frc 2.2 15-Jun-94
#version cff91-rh.frc 2. 3 16-Jun-94#version cff91-rh.frc 2. 3 16-Jun-94
#version cff91-rh.frc 2.4 17-Jun-94
#version cff91-rh.frc 2.4 17-Jun-94
#atom_types cff91#atom_types cff91
> Atom type definitions for any variant of cff91> Atom type definitions for any variant of cff91
> Masses from CRC 1973/74 pages B-250> Masses from CRC 1973/74 pages B-250
Ver Ref Type Mass Ele- Connect- Comment ment ionVer Ref Type Mass EleConnect Comment ment ion
2.2 6 RhC 1.0 Rh 4 Rhodiumcentrum 2.4 8 cCO 12.0 C 2 Kohlenstoff in Metallcarbonyl2.2 6 RhC 1.0 Rh 4 Rhodium center 2.4 8 cCO 12.0 C 2 carbon in metal carbonyl
2.4 oCO 15.99940 Sauerstoff in Metallcarbonyl2.4 oCO 15.99940 oxygen in metal carbonyl
.equivalence cff91.equivalence cff91
EquivalencesEquivalences
Ver Ref Type NonB Bond Angle Torsion OOPVer Ref Type NonB Bond Angle Torsion OOP
2.2 6 RhC RhC RhC RhC RhC RhC2.2 6 RhC RhC RhC RhC RhC RhC
2.4 8 cCO c' cCO cCO cCO2.4 8 cCO c 'cCO cCO cCO
2.4 8 oCO o' oCO oCO oCO2.4 8 oCO o 'oCO oCO oCO
#quartic_bond cff91#quartic_bond cff91
> E = K2 * (R - RO)*2 + K3 * (R-RO)"3 + K4 * (R-RO)*4> E = K2 * (R-RO) * 2 + K3 * (R-RO) "3 + K4 * (R-RO) * 4
Ver Ref I J RO K2 K3 K4Ver Ref I J RO K2 K3 K4
2.1 5 P c 1.8400 210.0000 0.0000 0.00002.1 5 P c 1.8400 210.0000 0.0000 0.0000
2.1 5 P cp 1.8200 210.0000 0.0000 0.00002.1 5 P cp 1.8200 210.0000 0.0000 0.0000
2.2 6 RhC P 2.3 1000.0 0.0000 0.00002.2 6 RhC P 2.3 1000.0 0.0000 0.0000
2.3 7 RhC c 2.1 1000.0 0.0 0.02.3 7 RhC c 2.1 1000.0 0.0 0.0
2.4 8 cCO oCO 1.18 820.7018 -1875.1000 2303.76002.4 8 cCO oCO 1.18 820.7018 -1875.1000 2303.7600
2.4 8 RhC cCO 1.9 1000.0 0.0 0.0
2.4 8 RhC cCO 1.9 1000.0 0.0 0.0
.torsion 3 cff91. torsion 3 cff91
> E = SUM(n=l,3) (V(n)*[l+cos(n*Phi-PhiO(n) ) ] }> E = SUM (n = l, 3) (V (n) * [l + cos (n * Phi-PhiO (n))]}
Ver Ref I J K L VI PhiO V2 PhiOVer Ref I J K L VI PhiO V2 PhiO
2.1 5 c P cp cp 0.0000 0.0 0.0000 0.02.1 5 c P cp cp 0.0000 0.0 0.0000 0.0
2.1 5 cp P cp cp 0.0000 0.0 0.0000 0.02.1 5 cp P cp cp 0.0000 0.0 0.0000 0.0
2.1 5 h c P c 0.0000 0.0 0.0000 0.02.1 5 h c P c 0.0000 0.0 0.0000 0.0
2.1 5 c P c c -0.0750 0.0 0.0000 0.02.1 5 c P c c -0.0750 0.0 0.0000 0.0
2.1 5 c P c cp -0.0750 0.0 0.0000 0.02.1 5 c P c cp -0.0750 0.0 0.0000 0.0
2.1 5 cp P c h 0.0250 0.0 0.0000 0.02.1 5 cp P c h 0.0250 0.0 0.0000 0.0
2.1 5 cp P c c -0.0250 0.0 0.0500 0.02.1 5 cp P c c -0.0250 0.0 0.0500 0.0
2.1 5 cp P c cp -0.0250 0.0 0.0500 0.02.1 5 cp P c cp -0.0250 0.0 0.0500 0.0
2.1 5 cp cp cp P 0.0000 0.0 4.4000 0.02.1 5 cp cp cp P 0.0000 0.0 4.4000 0.0
2.1 5 h cp cp P 0.0000 0.0 1.5600 0.02.1 5 h cp cp P 0.0000 0.0 1.5600 0.0
2.1 5 cp cp c P 0.1223 0.0 0.0514 0.02.1 5 cp cp c P 0.1223 0.0 0.0514 0.0
2.1 5 h c c P 0.0000 0.0 0.0316 0.02.1 5 h c c P 0.0000 0.0 0.0316 0.0
2.1 5 c c c P 0.1223 0.0 0.0514 0.02.1 5 c c c P 0.1223 0.0 0.0514 0.0
2.1 5 P c c P 0.1223 0.0 0.0514 0.02.1 5 P c c P 0.1223 0.0 0.0514 0.0
2.2 6 cp P RhC P 0.0000 0.0 0.0000 0.02.2 6 cp P RhC P 0.0000 0.0 0.0000 0.0
2.2 6 c P RhC P 0.0000 0.0 0.0000 0.02.2 6 c P RhC P 0.0000 0.0 0.0000 0.0
2.2 6 cp cp P RhC 0.0000 0.0 0.0000 0.02.2 6 cp cp P RhC 0.0000 0.0 0.0000 0.0
2.2 6 cp c P RhC 0.0000 0.0 0.0000 0.02.2 6 cp c P RhC 0.0000 0.0 0.0000 0.0
2.2 6 c c P RhC 0.0000 0.0 0.0000 0.02.2 6 c c P RhC 0.0000 0.0 0.0000 0.0
2.2 6 h c P RhC 0.0000 0.0 0.0000 0.02.2 6 h c P RhC 0.0000 0.0 0.0000 0.0
2.3 7 h c c RhC 0.0000 0.0 0.0000 0.02.3 7 h c c RhC 0.0000 0.0 0.0000 0.0
2.3 7 c c c RhC 0.0000 0.0 0.0000 0.02.3 7 c c c RhC 0.0000 0.0 0.0000 0.0
2.3 7 c c RhC P 0.0000 0.0 0.0000 0.02.3 7 c c RhC P 0.0000 0.0 0.0000 0.0
2.3 7 h c RhC P 0.0000 0.0 0.0000 0.02.3 7 h c RhC P 0.0000 0.0 0.0000 0.0
2.3 7 c P RhC c 0.0000 0.0 0.0000 0.02.3 7 c P RhC c 0.0000 0.0 0.0000 0.0
2.3 7 cp P RhC c 0.0000 0.0 0.0000 0.02.3 7 cp P RhC c 0.0000 0.0 0.0000 0.0
2.4 8 oCO cCO RhC c 0.0000 0.0 0.0000 0.02.4 8 oCO cCO RhC c 0.0000 0.0 0.0000 0.0
2.4 8 oCO cCO RhC P 0.0000 0.0 0.0000 0.02.4 8 oCO cCO RhC P 0.0000 0.0 0.0000 0.0
2.4 8 cCO RhC P c 0.0000 0.0 0.0000 0.02.4 8 cCO RhC P c 0.0000 0.0 0.0000 0.0
2.4 8 cCO RhC P cp 0.0000 0.0 0.0000 0.02.4 8 cCO RhC P cp 0.0000 0.0 0.0000 0.0
2.4 8 cCO RhC c c 0.0000 0.0 0.0000 0.02.4 8 cCO RhC c c 0.0000 0.0 0.0000 0.0
2.4 8 cCO RhC c h 0.0000 0.0 0.0000 0.02.4 8 cCO RhC c h 0.0000 0.0 0.0000 0.0
.Wilson out of plane cff91 > E = K*(Chi-Chiθr2.Wilson out of plane cff91> E = K * (Chi-Chiθr2
Ver Ref I J K L K ChiOVer Ref I J K L K ChiO
2.1 cp cp cp 8.0000 0.0
.nonbond (9-6) cff912.1 cp cp cp 8.0000 0.0 .nonbond (9-6) cff91
> E = eps(ij) [2(r(ij)*/r(ij) )**9-3(r(ij)*/r(ij))**61> E = eps ( ij ) [ 2 ( r ( ij ) * / r ( ij )) ** 9-3 ( r (ij) * / r (ij)) ** 61
> where r(ij) = I (r (i)**6+r(j)**6) )/21**(l/6) >> where r (ij ) = I (r (i ) ** 6 + r (j) ** 6)) / 21 ** (l / 6)>
> eps(ij) = 2 sqrt(eps(i)*eps(j) )*> eps (ij) = 2 sqrt (eps (i) * eps (j)) *
> r(i)Λ3*r(j)*3/Ir(i)Λ6+r(j)-6]> r ( i ) Λ 3 * r ( j ) * 3 / Ir (i ) Λ 6 + r (j) -6]
Ver Ref epsVer Ref eps
2.1 5 P 4.2000 0.15002.1 5 P 4.2000 0.1500
2.2 6 RhC 0.0 0.02.2 6 RhC 0.0 0.0
#reference 5 Parameter für Phosphane treference 6#reference 5 parameters for phosphane treference 6
Parameter für Rhodium (RhC)Rhodium (RhC) Parameters
.reference 7 Parameter für c an RhC .reference 8.reference 7 parameters for c at RhC .reference 8
Parameter für cCO und oCO (Carbonyl) an RhCParameters for cCO and oCO (carbonyl) on RhC
Zur Berechnung der Energieinhalte wird wie folgt vorge¬ gangen:The energy content is calculated as follows:
- Die Startstrukturen beider Moleküle werden entspre- chend den Formeln I und II mit dem zu untersuchenden- The starting structures of both molecules are in accordance with formulas I and II with the one to be investigated
Diphosphin als Liganden aufgebaut. Dabei befinden sich das Rhodiumatom im Ursprung des karthesischen Koordinatensystems und die direkt mit dem Rhodium verknüpften Ligandatome (beide Phosphoratome, Car- bonyl- und Alkylkohlenstoff) in der xy-Ebene.Diphosphine built up as a ligand. The rhodium atom at the origin of the Cartesian coordinate system and the ligand atoms directly linked to the rhodium (both phosphorus atoms, carbonyl and alkyl carbon) are in the xy plane.
- Genau 0,05 nm oberhalb und unterhalb des Rhodium¬ atoms werden zwei zusätzliche Atome als Pseudoligan- den auf der z-Achse eingebaut, die mit keinem ande¬ ren Atom verbunden sind (die karthesischen Koordina- ten in nm lauten 10/0/0,051 und I0/0/-0,05].
- Allen Atomen des Liganden werden die cff91-Atomtypen nach den Standardregeln des cff91-Kraftfeldes zuge¬ ordnet.- Exactly 0.05 nm above and below the rhodium atom, two additional atoms are built in as pseudoligands on the z-axis, which are not connected to any other atom (the Cartesian coordinates in nm are 10/0 / 0.051 and I0 / 0 / -0.05]. - The cff91 atom types are assigned to all atoms of the ligand according to the standard rules of the cff91 force field.
- Allen weiteren Atome der Moleküle werden Atoratypen entsprechend der folgenden Tabelle zugeordnet- All other atoms of the molecules are assigned atom types according to the following table
Beschreibung des Atoms AtomtypDescription of the atom atom type
Rhodiumatom RhCRhodium atom RhC
Phosphoratom im Phosphin pPhosphorus atom in the phosphine p
Kohlenstoff im Carbonyl cCO Sauerstoff im Carbonyl oCOCarbon in carbonyl cCO oxygen in carbonyl oCO
Kohlenstoff im Alkylliganden cCarbon in the alkyl ligand c
Wasserstoff im Alkylliganden hHydrogen in the alkyl ligand h
Pseudoliganden hPseudo ligands h
- Die beiden Pseudoliganden und das Rhodiumatom werden auf ihren Positionen fixiert.- The two pseudo ligands and the rhodium atom are fixed in their positions.
- Die Geometrie des Systems wird durch Standardalgo¬ rithmen bis zum Erreichen der minimalen Energie des Systems variiert. Hierbei sind auch alle möglichen Konformationen des Liganden zu berücksichtigen.- The geometry of the system is varied by standard algorithms until the minimum energy of the system is reached. All possible conformations of the ligand must also be taken into account.
Diese Energ3ie entsp cricht Ei.so bzw. En. Die Differenz dieser Werte ist die Isomerenenergiedifferenz.This energ 3 ie Unlock c directing Ei.so or En. The difference between these values is the Isomerenenergiedifferenz.
Besonders wirksam sind Diphosphinliganden, deren endstän¬ dige Brückenkohlenstoffatome (das sind die Kohlenstoff¬ atome an den beiden Enden der Kohlenstoffkette, die an jeweils eines der Phosphoratome des Diphosphins gebunden sind) einen Abstand von mindestens 0,33 nm haben. Diese Distanz wird durch Brücken aus Kohlenstoffatomen, die durch Einfachbindungen miteinander verknüpft sind, aus
Entropiegründen nicht erreicht (keine chelatisierende Koordination) . Dagegen gelingt es solche Abstände mit Kohlenstoffatombrücken einzustellen, in denen die Beweg¬ lichkeit der Kohlenstoffatome durch Mehrfachbindungen zwischen ihnen eingeschränkt ist. Beispiele hierfür sind die 2,2'-Dimethylbiarylsysteme, die zu einem Abstand der endständigen Brückenkohlenstoffatome von über 0,4 nm führen.Diphosphine ligands whose terminal bridging carbon atoms (these are the carbon atoms at the two ends of the carbon chain which are bonded to one of the phosphorus atoms of the diphosphine in each case) are at least 0.33 nm apart. This distance is characterized by bridges made of carbon atoms that are linked together by single bonds Entropy reasons not reached (no chelating coordination). In contrast, it is possible to set such distances with carbon atom bridges in which the mobility of the carbon atoms is restricted by multiple bonds between them. Examples of this are the 2,2'-dimethylbiaryl systems, which lead to a distance of the terminal bridging carbon atoms of more than 0.4 nm.
Die nach dem neuen Verfahren als Katalysatorbestandteile verwendeten Diphosphine verleihen den Katalysatoren be¬ merkenswert hohe Flexibilität und Wirksamkeit. Die Bil¬ dung normaler Aldehyde kann im Vergleich zu bekannten Verfahren weiter erhöht werden, jedoch ist es auch mög¬ lich, das Verhältnis von n- und iso-Verbindung im Reakti- onsprodukt den jeweiligen Anforderungen anzupassen. Der Austrag von Edelmetall und Phosphin mit dem Reaktions¬ produkt wird gegenüber dem Stand der Technik weiter ver¬ mindert. Überdies erzielt man diese Ergebnisse mit Kata¬ lysatoren, die ein deutlich geringeres Ligand/Rhodium- Verhältnis aufweisen, als die bisher eingesetzten.The diphosphines used as catalyst components in the new process give the catalysts remarkably high flexibility and effectiveness. The formation of normal aldehydes can be increased further compared to known processes, but it is also possible to adapt the ratio of n- and iso-compound in the reaction product to the respective requirements. The discharge of noble metal and phosphine with the reaction product is further reduced compared to the prior art. In addition, these results are achieved with catalysts which have a significantly lower ligand / rhodium ratio than those previously used.
Das neue Verfahren kann mit homogen im Reaktionsmedium gelösten Katalysatoren durchgeführt werden. Mit gleich gutem Erfolg lassen sich aber auch in Wasser gelöste Komplexverbindungen, die eine separate Katalysatorphase bilden, einsetzen, eine Möglichkeit die überrascht, weil durch Einführen hydrophiler Reste, wie der Sulfonat-(- SO..H) oder der Carboxylat-(-COOH)-Gruppe in das Diphos- phinmolekül gegenüber dem unsubstituierten Molekül sowohl die sterischen als auch die elektronischen Verhältnisse deutlich verändert werden.The new process can be carried out with catalysts homogeneously dissolved in the reaction medium. However, complex compounds dissolved in water, which form a separate catalyst phase, can be used with equally good success, a possibility which is surprising because by introducing hydrophilic residues such as the sulfonate - (- SO..H) or the carboxylate - (- COOH ) Group in the diphosphine molecule compared to the unsubstituted molecule, both the steric and the electronic conditions can be changed significantly.
Rhodium gelangt nach dem neuen Verfahren entweder als Metall oder als Verbindung zum Einsatz. In metallischer
Form verwendet man es in Form feinverteilter Partikel oder in dünner Schicht auf einem Träger wie Aktivkohle, Calciumcarbonat, Aluminiumsilikat, Tonerde, niederge¬ schlagen. Die Art der Rhodiumverbindung richtet sich danach, ob die Umsetzung der Reaktanten in homogener oder heterogener flüssiger Phase erfolgt. In Betracht kommen daher Substanzen, die von Anfang an in organischer Phase bzw. in Wasser löslich sind oder unter den Reaktionsbe¬ dingungen löslich werden.According to the new process, rhodium is used either as a metal or as a compound. In metallic Form it is used in the form of finely divided particles or in a thin layer on a support such as activated carbon, calcium carbonate, aluminum silicate, alumina. The type of rhodium compound depends on whether the reactants are reacted in a homogeneous or heterogeneous liquid phase. Substances which are soluble from the start in the organic phase or in water or which become soluble under the reaction conditions are therefore suitable.
Geeignet sind die verschiedenen Rhodiumoxide, Salze anor¬ ganischer Wasser- oder Sauerstoffsäuren, sowie Salze aliphatischer Mono- oder Polycarbonsäuren. Beispiele für Rhodiumsalze sind Rhodiumnitrat, Rhodiumsulfat, Rhodium- acetat, Rhodium-2-ethylhexanoat, Rhodiummalonat. Rhodium- halogenverbindungen sind wegen des korrosiven Verhaltens der Halogenidionen dagegen weniger brauchbar. Weiterhin können RhodiumcarbonylVerbindungen wie Rh3(CO),2 oder Rhg(CO).g oder Komplexsalze des Rhodiums, z.B. Cycloocta- dienylrhodiumverbindungen eingesetzt werden. Bevorzugt werden Rhodiumoxid und insbesondere Rhodiumacetat undThe various rhodium oxides, salts of inorganic hydro- or oxygen acids, and salts of aliphatic mono- or polycarboxylic acids are suitable. Examples of rhodium salts are rhodium nitrate, rhodium sulfate, rhodium acetate, rhodium 2-ethylhexanoate, rhodium malonate. Rhodium halogen compounds, on the other hand, are less useful because of the corrosive behavior of the halide ions. Rhodium carbonyl compounds such as Rh 3 (CO), 2 or Rhg (CO) .g or complex salts of rhodium, for example cycloocadienylrhodium compounds, can also be used. Rhodium oxide and in particular rhodium acetate and are preferred
Rhodium-2-ethylhexanoat. Unter den Bedingungen der Hydro- formylierungsreaktion bilden sich lipophile oder hydro¬ phile Rhodium-Komplexverbindungen, die Kohlenmonoxid und das in organischem Medium oder in Wasser lösliche Diphos- phin als Liganden enthalten.Rhodium 2-ethylhexanoate. Under the conditions of the hydroformylation reaction, lipophilic or hydrophilic rhodium complex compounds are formed which contain carbon monoxide and the diphosphine which is soluble in organic medium or in water as ligands.
Es ist nicht erforderlich, die Diphosphine als einheit¬ liche Verbindungen einzusetzen. So können z.B. Gemische verschiedener Diphosphine oder im Falle wasserlöslicher Liganden Diphosphine unterschiedlicher Sulfonierungs- oder Carboxylierungsstufen angewendet werden.It is not necessary to use the diphosphines as uniform compounds. For example, Mixtures of different diphosphines or, in the case of water-soluble ligands, diphosphines of different sulfonation or carboxylation stages can be used.
Es hat sich bewährt, Rhodium und Diphosphin nicht in stöchiometrischem Verhältnis, also entsprechend der
chemischen Zusammensetzung der Rhodium-Komplexverbindung zu verwenden, die sich im Verlauf der Hydroformylierungs- reaktion bildet, sondern das Diphosphin im Überschuß einzusetzen. Dabei kann man das Verhältnis von Rhodium und Diphosphin in weiten Grenzen variieren und je mol Rhodium etwa 1 bis 130 mol Diphosphin anwenden. Bevorzugt wird ein Verhältnis von Rhodium zu Diphosphin im Bereich von 1 : 2 bis 1 : 25 und insbesondere 1 : 2 bis 1 : 10 mol.It has been proven that rhodium and diphosphine are not in a stoichiometric ratio, i.e. according to the to use chemical composition of the rhodium complex compound, which forms in the course of the hydroformylation reaction, but to use the diphosphine in excess. The ratio of rhodium and diphosphine can be varied within wide limits and about 1 to 130 mol of diphosphine can be used per mole of rhodium. A ratio of rhodium to diphosphine in the range from 1: 2 to 1:25 and in particular 1: 2 to 1:10 mol is preferred.
Die Lösung des Katalysators im organischen Lösungsmittel oder in Wasser wird aus den Komponenten entweder im Hydroformylierungsreaktor oder vorab, in einer separaten Vorrichtung hergestellt und darauf dem Hydroformylie- rungsreaktor zugeleitet.The solution of the catalyst in the organic solvent or in water is prepared from the components either in the hydroformylation reactor or beforehand in a separate device and then fed to the hydroformylation reactor.
Die Konzentration des Rhodiums im Reaktionsgemisch oder in der wäßrigen Katalysatorlδsung beträgt 20 bis 1000 Gew.-ppm (bezogen auf die Lösung), vorzugsweise 100 bis 600 Gew.-ppm und insbesondere 200 bis 400 Gew.-ppm.The concentration of the rhodium in the reaction mixture or in the aqueous catalyst solution is 20 to 1000 ppm by weight (based on the solution), preferably 100 to 600 ppm by weight and in particular 200 to 400 ppm by weight.
Die Umsetzung des Olefins mit Kohlenmonoxid und Wasser- stoff erfolgt bei Drücken von etwa 0,1 bis etwa 30 MPa, vorzugsweise 1 bis 12 MPa und insbesondere 3 bis 7 MPa. Die Zusammensetzung des Synthesegases, d.h. das Volumen¬ verhältnis von Kohlenmonoxid und Wasserstoff kann sich über weite Bereiche erstrecken und z.B. zwischen 1 : 10 bis 10 : 1 variiert werden. Im allgemeinen setzt manThe reaction of the olefin with carbon monoxide and hydrogen takes place at pressures of approximately 0.1 to approximately 30 MPa, preferably 1 to 12 MPa and in particular 3 to 7 MPa. The composition of the synthesis gas, i.e. the volume ratio of carbon monoxide and hydrogen can extend over wide ranges and e.g. can be varied between 1:10 and 10: 1. Generally you bet
Gasgemische ein, in denen das Volumverhältnis von Kohlen¬ monoxid und Wasserstoff etwa 1 : 1 ist oder von diesem Wert in der einen oder in der anderen Richtung nur wenig abweicht.Gas mixtures in which the volume ratio of carbon monoxide and hydrogen is approximately 1: 1 or deviates only slightly from this value in one or the other direction.
Die Reaktionstemperatur liegt zwischen etwa 20 bis 150°C, bevorzugt werden 80 bis 140βC uns insbesondere 100 bis 125°C.The reaction temperature is between about 20 to 150 ° C, preferably 80 to 140 C β us in particular 100 to 125 ° C.
• • •
Die Umsetzung der in flüssiger und gasförmiger Phase vorliegenden Reaktionspartner erfolgt in konventionellen Reaktoren. Der Ablauf der Umsetzung im flüssigen Zweipha¬ sensystem wird maßgeblich dadurch beeinflußt, daß die wäßrige Katalysatorlδsung mit dem flüssigen oder gasför¬ migen, hydrophoben Olefin und dem Synthesegas gesättigt werden muß. Daher ist es erforderlich, eine möglichst große Berührungsfläche zwischen den Phasen zu erzeugen. Es hat sich bewährt, den flüssigen Reaktorinhalt - Kata¬ lysatorlδsung, gegebenenfalls flüssiges Olefin und Reak¬ tionsprodukt - intensiv zu rühren und die gasförmigen Reaktionspartner - Synthesegas und gegebenenfalls Ole¬ fin - über Verteilungsvorrichtungen der flüssigen Phase zuzuführen. Es hat sich sehr bewährt, den Anteil der organischen Phase im Reaktionsgemisch gering zu halten. Überraschenderweise trägt die organische Phase zur Lδs- lichkeit der Reaktanten in der wäßrigen Phase nicht bei und es wird vermieden, daß das Reaktionsprodukt uner¬ wünschte Nebenreaktionen eingeht, die bei zunehmender Verweilzeit des Produktes im Reaktor nicht auszuschließen sind. Dementsprechend stellt man ein Volumverhältnis von wäßriger zu organischer Phase von 1 : 1 bis 100 : 1, vorzugsweise 10 : 1 bis 100 : 1 ein. Zu diesem Zweck kann man kontinuierlich einen entsprechenden Teil des Reakti- onsgemisches aus dem Reaktor ausschleusen, wäßrige und organische Phase voneinander trennen und die wäßrige Phase in den Reaktor zurückführen. Die Umsetzung kann absatzweise oder, bevorzugt, kontinuierlich durchgeführt werden.• • • The reaction partners present in the liquid and gaseous phase are converted in conventional reactors. The course of the reaction in the liquid two-phase system is significantly influenced by the fact that the aqueous catalyst solution must be saturated with the liquid or gaseous, hydrophobic olefin and the synthesis gas. It is therefore necessary to create the largest possible contact area between the phases. It has proven useful to stir the liquid reactor contents - catalyst solution, optionally liquid olefin and reaction product - intensively and to feed the gaseous reactants - synthesis gas and optionally olefin - via distribution devices to the liquid phase. It has proven very useful to keep the proportion of the organic phase in the reaction mixture low. Surprisingly, the organic phase does not contribute to the solubility of the reactants in the aqueous phase and it is avoided that the reaction product undergoes undesired side reactions which cannot be ruled out with increasing product residence time in the reactor. A volume ratio of aqueous to organic phase is accordingly set from 1: 1 to 100: 1, preferably 10: 1 to 100: 1. For this purpose, a corresponding part of the reaction mixture can be continuously removed from the reactor, aqueous and organic phases separated from one another and the aqueous phase returned to the reactor. The reaction can be carried out batchwise or, preferably, continuously.
Das erfindungsgemäße Verfahren ist mit Erfolg auf die Umsetzung von Monoolefinen, nicht konjugierten Polyole- finen, cyclischen Olefinen und Derivaten dieser ungesät¬ tigten Verbindungen anwendbar. Hinsichtlich der Molekül-
große unterliegen die eingesetzten Olefine keiner Be¬ schränkung, die Arbeitsweise hat sich bei Verbindungen mit 2 bis 40 Kohlenstoffatomen bewährt. Die olefinisch ungesättigten Verbindungen können geradkettig oder ver- zweigt, die Doppelbindungen end- oder innenständig sein. Beispiele für Olefine, die in dem neuen Prozeß verwendet werden können sind Ethylen, Propylen, Buten-1, Buten-2, Penten-1, 2-Methylbuten-l, Hexen-1, Hexen-2, Hepten-1, Octen-1, Octen-3, 3-Ethylhexen-l, Decen-1, Undecen-3, 4,4-Dimethylnonen-l, Dicyclopentadien, Vinylcyclohexen, Cyclooctadien, Styrol. Derivate der genannten Olefinar- ten, die nach der beanspruchten Arbeitsweise hydroformy- liert werden können sind z.B. Alkohole, Aldehyde, Carbon¬ säuren, Ester, Nitrile und Halogenverbindungen, Allylal- kohol, Acrolein, Methacrolein, Crotonaldehyd, Methylacry- lat, Ethylcrotonat, Diethylfumarat, Diethylmaleinat, Acrylnitril. Mit besonderem Erfolg wird das Verfahren zur Hydroformylierung von Olefinen und Olefinderivaten mit 2 bis 20 und insbesondere 2 bis 8 Kohlenstoffatomen einge- setzt.
The process according to the invention is successfully applicable to the conversion of monoolefins, non-conjugated polyolefins, cyclic olefins and derivatives of these unsaturated compounds. Regarding the molecular large ones, the olefins used are not subject to any restrictions, the procedure has proven successful for compounds having 2 to 40 carbon atoms. The olefinically unsaturated compounds can be straight-chain or branched, the double bonds can be terminal or internal. Examples of olefins that can be used in the new process are ethylene, propylene, butene-1, butene-2, pentene-1, 2-methylbutene-1, hexene-1, hexene-2, heptene-1, octene-1 , Octen-3, 3-ethylhexene-1, decene-1, undecene-3, 4,4-dimethylnone-1, dicyclopentadiene, vinylcyclohexene, cyclooctadiene, styrene. Derivatives of the olefins mentioned which can be hydroformylated according to the claimed procedure are, for example, alcohols, aldehydes, carboxylic acids, esters, nitriles and halogen compounds, allyl alcohol, acrolein, methacrolein, crotonaldehyde, methyl acrylate, ethyl crotonate, diethyl fumarate , Diethyl maleate, acrylonitrile. The process for the hydroformylation of olefins and olefin derivatives having 2 to 20 and in particular 2 to 8 carbon atoms is used with particular success.
Claims
1.) Verfahren zur Hydroformylierung olefinisch ungesät¬ tigter Verbindungen bei Temperaturen von 20 bis 150°C und Drücken von 0,1 bis 20 MPa in Gegenwart von Diphos¬ phine in komplexer Bindung enthaltendenden Rhodiumver- bindungen, dadurch gekennzeichnet, daß die Diphosphine einen Bißwinkel (nach Casey) von 100 bis 160° und einen Konuswinkel (nach Tolman) von 120 bis 240° aufweisen und die Isomerenenergiedifferenz Λ E mindestens 2,0 kcal/mol ist.1.) Process for the hydroformylation of olefinically unsaturated compounds at temperatures from 20 to 150 ° C. and pressures from 0.1 to 20 MPa in the presence of diphosphines in rhodium compounds containing complex bonds, characterized in that the diphosphines have a bite angle (according to Casey) from 100 to 160 ° and a cone angle (according to Tolman) from 120 to 240 ° and the isomer energy difference Λ E is at least 2.0 kcal / mol.
2.) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Bißwinkel 120 bis 150° beträgt.2.) Method according to claim 1, characterized in that the bite angle is 120 to 150 °.
3.) Verfahren nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß der Konuswinkel 130 bis 210° beträgt.3.) Method according to claim 1 or 2, characterized gekenn¬ characterized in that the cone angle is 130 to 210 °.
4.) Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Isomerenenergie- differenz E mindestens 2,5 kcal/mol ist.4.) Method according to one or more of claims 1 to 3, characterized in that the isomer energy difference E is at least 2.5 kcal / mol.
5.) Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Abstand der end¬ ständigen Brückenkohlenstoffatome im Phosphin mindestens 0,33 nm beträgt.5.) Method according to one or more of claims 1 to 4, characterized in that the distance between the terminal bridging carbon atoms in the phosphine is at least 0.33 nm.
6.) Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Abstand der endständigen Brückenkohlenstoffatome im Phosphin mehr als 0,4 nm beträgt. 6.) Method according to claim 5, characterized in that the distance between the terminal bridging carbon atoms in the phosphine is more than 0.4 nm.
7.) Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Diphosphine in Wasser löslich sind.7.) Method according to one or more of claims 1 to 6, characterized in that the diphosphines are soluble in water.
8.) Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die wasserlöslichen Diphosphine Sulfonat-(-SO-H)- oder Carboxylat-(-COOH)-Gruppen enthalten. 8.) Process according to claim 7, characterized in that the water-soluble diphosphines contain sulfonate - (- SO-H) - or carboxylate - (- COOH) groups.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4426577.8 | 1994-07-27 | ||
DE4426577A DE4426577C2 (en) | 1994-07-27 | 1994-07-27 | Process for the hydroformylation of olefinically unsaturated compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996003363A1 true WO1996003363A1 (en) | 1996-02-08 |
Family
ID=6524255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1995/002910 WO1996003363A1 (en) | 1994-07-27 | 1995-07-22 | Process for the hydroformylation of olefinically unsaturated compounds |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE4426577C2 (en) |
WO (1) | WO1996003363A1 (en) |
ZA (1) | ZA956232B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1244608A1 (en) * | 2000-01-06 | 2002-10-02 | ARCO Chemical Technology, L.P. | Allyl alcohol hydroformylation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0311092D0 (en) * | 2003-05-14 | 2003-06-18 | Bp Chem Int Ltd | Process |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2385671A1 (en) * | 1977-03-31 | 1978-10-27 | Celanese Corp | HYDROFORMYLATION PROCESS USING A CATALYTIC COMPLEX BASED ON RHODIUM AND DIPHOSPHINO LIGANDS |
US4169861A (en) * | 1977-08-19 | 1979-10-02 | Celanese Corporation | Hydroformylation process |
-
1994
- 1994-07-27 DE DE4426577A patent/DE4426577C2/en not_active Expired - Lifetime
-
1995
- 1995-07-22 WO PCT/EP1995/002910 patent/WO1996003363A1/en active Application Filing
- 1995-07-26 ZA ZA956232A patent/ZA956232B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2385671A1 (en) * | 1977-03-31 | 1978-10-27 | Celanese Corp | HYDROFORMYLATION PROCESS USING A CATALYTIC COMPLEX BASED ON RHODIUM AND DIPHOSPHINO LIGANDS |
US4169861A (en) * | 1977-08-19 | 1979-10-02 | Celanese Corporation | Hydroformylation process |
Non-Patent Citations (1)
Title |
---|
C.P.CASEY ET AL.: "Diphosphines with Natural Bite Angles near 120 Increase Selectivity for n-Aldehyde Formation in Rhodium-Catalyzed Hydroformylation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 114, DC US, pages 5535 - 5543 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1244608A1 (en) * | 2000-01-06 | 2002-10-02 | ARCO Chemical Technology, L.P. | Allyl alcohol hydroformylation |
JP2003519203A (en) * | 2000-01-06 | 2003-06-17 | アルコ ケミカル テクノロジィ, エル.ピー. | Hydroformylation of allyl alcohol |
EP1244608A4 (en) * | 2000-01-06 | 2005-08-03 | Arco Chem Tech | Allyl alcohol hydroformylation |
JP4657555B2 (en) * | 2000-01-06 | 2011-03-23 | ライオンデル ケミカル テクノロジー、 エル.ピー. | Method for hydroformylating allyl alcohol |
Also Published As
Publication number | Publication date |
---|---|
DE4426577C2 (en) | 1998-01-22 |
DE4426577A1 (en) | 1996-02-01 |
ZA956232B (en) | 1996-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE1793069C3 (en) | ||
DE68905452T2 (en) | Hydroformylation of olefins under low pressure with a rhodium catalyst. | |
EP0571819B1 (en) | Sulfonated 2,2'-bis(diphenylphosphinomethyl)-1,1'-binaphthalenes, process for their preparation and their use in a process for the hydroformylation of olefinic unsaturated compounds | |
EP0575785B1 (en) | 3,4-dimethyl-2,5,6-tris/p-sulfonatophenyl)-1-phosphanorbornadiene, process for its preparation and process for hydroformulation of olefinic unsaturated compounds | |
DE60304449T2 (en) | STABILIZATION OF FLUOROPHOSPHIT-CONTAINING CATALYSTS | |
EP0435084A1 (en) | Process for the production of aldehydes | |
EP0158246B1 (en) | Process for the production of aldehydes | |
DE69915669T2 (en) | HYDROFORMYLING METHOD USING A CHLORPHOSPHITE METAL CATALYST SYSTEM | |
DE69419567T2 (en) | Hydroformylation process using a new phosphine-rhodium catalyst system | |
EP0491239B1 (en) | Process for the preparation of aldehydes | |
EP0924182A1 (en) | Process for the preparation of aldehydes | |
EP0906261B1 (en) | Hydroformylation process and catalysts suitable therefor containing phosphorus compounds as ligands | |
EP2318349B1 (en) | Method for obtaining aliphatic c3-to c10- aldehydes from high-boiling substances by thermal processing | |
WO1996003363A1 (en) | Process for the hydroformylation of olefinically unsaturated compounds | |
EP0424736B1 (en) | Process for the recuperation of rhodium from residues of the destillation of products from oxosynthesis | |
EP0475036A1 (en) | Process for recovering rhodium from residues of the destillation of products of the oxosynthesis | |
EP0186075A2 (en) | Process for the preparation of 8- and 9-formyl-tricyclo-(5,2,1,0, 2,6)-decene-3 | |
EP1178951B1 (en) | Eta 5-phospholyl complexes and their use in hydroformylation | |
EP3038751B1 (en) | Supported composition and the use thereof in methods for the hydroformylation of unsaturated compounds | |
DE19756946C2 (en) | Process for the preparation of aldehydes | |
EP1019354B1 (en) | Method for producing aldehydes | |
WO1997049490A1 (en) | Catalyst and a process for preparation of aldehydes in the presence of said catalyst | |
WO1999015488A1 (en) | Method for producing aldehydes by hydroformylation in the presence of crown ether | |
DE4217803A1 (en) | New sulphonated 2,2'-bis:di:phenyl-phosphino-methyl-1,1-di:naphthyl cpds. | |
WO2001014302A2 (en) | Method for producing aldehydes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA CN CZ JP KR MX PL RU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |