[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1996041359A1 - Improved method and apparatus for a surface-mounted fuse device - Google Patents

Improved method and apparatus for a surface-mounted fuse device Download PDF

Info

Publication number
WO1996041359A1
WO1996041359A1 PCT/US1996/009147 US9609147W WO9641359A1 WO 1996041359 A1 WO1996041359 A1 WO 1996041359A1 US 9609147 W US9609147 W US 9609147W WO 9641359 A1 WO9641359 A1 WO 9641359A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusible link
fuse
terminal pad
substrate
conductive
Prior art date
Application number
PCT/US1996/009147
Other languages
French (fr)
Other versions
WO1996041359B1 (en
Inventor
Vladimir Blecha
Katherine M. Mcguire
Andrew J. Neuhalfen
Daniel B. Onken
Original Assignee
Littelfuse, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/482,829 external-priority patent/US5943764A/en
Application filed by Littelfuse, Inc. filed Critical Littelfuse, Inc.
Priority to DK96919129T priority Critical patent/DK0830704T3/en
Priority to DE69600974T priority patent/DE69600974T2/en
Priority to JP9501537A priority patent/JPH10512094A/en
Priority to AU61547/96A priority patent/AU6154796A/en
Priority to EP96919129A priority patent/EP0830704B1/en
Publication of WO1996041359A1 publication Critical patent/WO1996041359A1/en
Publication of WO1996041359B1 publication Critical patent/WO1996041359B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H69/022Manufacture of fuses of printed circuit fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/0411Miniature fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices

Definitions

  • the invention relates generally to a surface-mountable fuse for placement into and protection of the electrical circuit of a printed circuit board.
  • PC Printed circuit
  • the passivation layer is either chemically vapor-deposited silica or a thick layer of printed glass. See '656 patent, column 3, lines 39-41.
  • the insulating cover may be a glass cover. See '656 patent, column
  • the fuse from the '656 patent has three layers protecting its fusible link. In addition, the fuse from the '656 patent has relatively thick glass covering. There are several other features in the '656 patent fuse
  • the present invention is designed to solve these and other problems.
  • the invention is a thin film, surface-mounted fuse which comprises two material subassemblies.
  • the first subassembly comprises a fusible link, its supporting substrate and terminal pads.
  • the second subassembly comprises a protective layer which overlies the fusible link so as to provide protection from impacts and oxidation.
  • the protective layer is preferably made of a polymeric material .
  • the most preferred polymeric material is a polyurethane gel or paste when the stencil printing step is used to apply the cover coat.
  • polycarbonates will also work well when an injection molding step is used to apply the cover coat.
  • the most preferred supporting substrate is an FR-4 epoxy or a polyimide.
  • a second aspect of the invention is a thin film, surface-mounted fuse.
  • This fuse comprises a fusible link made of a conductive metal.
  • the first conductive metal is preferably, but not exclusively, selected from the group including copper, silver, nickel, titanium, aluminum or alloys of these conductive metals.
  • a second conductive metal, different from the first conductive metal, is deposited on the surface of this fusible link.
  • One preferred metal for the surface-mounted fuse of this invention is copper.
  • One preferred second conductive metal is tin-lead. 5 Another preferred second conductive metal is tin.
  • the second conductive metal may be deposited onto the fusible link in the form of a rectangle, circle or in the form of any of
  • the second conductive metal is preferably deposited along the central portion of the fusible link.
  • PVD physical vapor deposition
  • the top of the substrate of the present fuse enables one to use laser processing methods as a high precision secondary operation, in that way trimming the final resistance value of the fuse element .
  • FIG. 1 is a perspective view of a copper-plated, FR-4 epoxy sheet used to make a subminiature surface-mounted fuse in accordance with the invention.
  • FIG. 2 is a view of a portion of the sheet of FIG. 1, and taken along lines 2-2 of FIG. 1.
  • FIG. 3 is a perspective view of the FR-4 epoxy sheet of FIG. 1, but stripped of
  • FIG. 4 is an enlarged, perspective view of a cut-away portion of the bored sheet of FIG. 3, but with a copper plating layer having been reapplied.
  • FIG. 5 is a cut-away perspective
  • FIG. 6 is a perspective view of the
  • FIG. 7 is a perspective view of the top-side of FIG. 6, rotated about one of the 5 fuse rows 27, and showing linear regions 40 defined by dotted lines.
  • FIG. 8 is a perspective view of a single fuse row 27 from the sheet, cut away from the other fuse rows, and cut away at one
  • FIG. 9 is a perspective view of the strip of FIG. 8, but prior to UV light curing, and showing a fuse-blowing portion 50 at the center of fusible link 42 that is masked with
  • FIG. 10 shows the strip of FIG. 9, but after immersion into a tin-lead plating bath to create another layer over the copper and nickel layers, and after deposition of a
  • FIG. 11 shows the strip of FIG. 10, but with an added polymeric gel or paste layer onto the top of the fuse row 27.
  • FIG. 12 shows the individual fuse in accordance with the invention as it is finally made, and after a so-called dicing operation in which a diamond saw is used to cut the strips along parallel and perpindicular planes to form these individual surface-mountable fuses .
  • the thin film, surface-mounted fuse is a subminiature fuse used in a surface mount configuration on a PC board or on a thick film hybrid circuit .
  • One of these fuses is typically known in the art as an "A" case fuse.
  • the "A" case fuse standard industry size for these fuses is 125 mils, long by 60 mils. wide.
  • the "A" case fuse is also designated as a 1206 f se.
  • the present invention includes even smaller sized fuses which are compatible with standard sized surface mountable devices.
  • the present invention can be used within all other standard sizes of such surface mountable device sizes, such as 1210, 0805, 0603 and 5 0402 fuses, as well as non-standard sizes.
  • the invention generally comprises two material subassemblies. As will be seen, the first subassembly includes the fuse element or fusible link 42, its supporting
  • the second subassembly is a protective layer 56 which overlies the fusible link 42 and a substantial portion of the top portion of the
  • the first subassembly contains and
  • the 20 supports two metal electrodes or pads 34, 36, and the fusible element or link 42, both of which are bonded to the substrate as a single continuous film, as shown in FIGs. 5 and 6.
  • the pads 34, 36 are located on the top, the 25 bottom, and a the sides of the substrate or core 13, while the fusible link 42 is located at the top of the substrate 13. More specifically, the pads 34, 36 extend into the two grooves 16 (each groove 16 is one half of
  • each bore 14 in each fuse created by the bores 14 and dicing operation during the process of manufacture, as will be further described below.
  • pads are made up of several 5 layers, including a base copper layer, a supplemental copper layer, a nickel layer and a tin-lead layer.
  • the base copper layer of the pads and the thin film fusible link are simultaneously deposited by (1)
  • This fuse may be made by the following process. Shown in FIGS. 1 and 2 is a solid sheet 10 of an FR-4 epoxy with copper plating 12. The copper plating 12 and the FR-
  • This copper-plated FR-4 epoxy sheet 10 is available from Allied Signal Laminate Systems, Hoosick Falls, New York, as Part No. 0200BED130C1/C1GFN0200 C1/C1A2C.
  • FR-4 epoxy is a preferred 5 material
  • other suitable materials include any material that is compatible with, i.e., of a chemically, physically and structurally similar nature to, the materials from which PC boards are made.
  • another suitable material include any material that is compatible with, i.e., of a chemically, physically and structurally similar nature to, the materials from which PC boards are made.
  • another suitable materials include any material that is compatible with, i.e., of a chemically, physically and structurally similar nature to, the materials from which PC boards are made.
  • another suitable materials include any material that is compatible with, i.e., of a chemically, physically and structurally similar nature to, the materials from which PC boards are made.
  • another suitable materials include any material that is compatible with, i.e., of
  • polyimide for this solid sheet 10 is polyimide.
  • FR-4 epoxy and polyimide are among the class of materials having physical properties that are nearly identical with the standard substrate material used in the PC board
  • the fuse of the invention and the PC board to which that fuse is secured have extremely well-matched thermal and mechanical properties.
  • the substrate of the fuse of the present invention also has very well-matched thermal and mechanical properties.
  • the copper plating 12 is etched away from the solid sheet 10 by a conventional etching process.
  • this conventional etching In this conventional etching
  • the copper is etched away from the substrate by a ferric chloride solution. 12
  • the FR-4 epoxy sheet 10 having this treated, copper-free surface is then drilled or punched to create holes or bores 14 along four quadrants 10a, 10b, 10c, lOd of the sheet
  • the length L between the center of the bores 14 is approximately 70 mils, and the width W between the center of the bores 14 is approximately 38 mils.
  • the length L between the center of the bores 14 is approximately 50 mils, and the width W between the center of the bores 14 is approximately 30 mils.
  • the diameter D (FIG. 4) for each bore 14 for the "603" sizing is approximately 18 mils.
  • This copper plating step results in the placement of a copper layer having a uniform thickness along each of the exposed 25 surfaces of the sheet 10.
  • the copper plating 18 resulting from this step covers both (1) the flat, upper surfaces 22 of the sheet 10; and (2) the vertical regions of the groves 16
  • the copper plating 18 has a thickness
  • the copper plating 18 has a thickness of approximately 75,000 Angstroms for a particular width of the fusable link.
  • Square panels are a part of, and are evenly spaced across, this clear mask according to the sizing of the fuse being 25 manufactured. These square panels are made of an UV light-opaque substance, and are generally shown as the rectangle 30 shown in FIG. 5. Essentially, by placing this mask having these panels onto the replated copper
  • these square panels will essentially define the shapes and sizes of the so-called fusible link 42 and the upper terminal areas 60 of the terminal pads 34, 36 on the upper portion 22 of the fuse.
  • the fusible link 42 is in electrical communication with the upper terminal areas 60. It will be appreciated that the width, length and shape of both the fusible link 42 and these upper terminal areas 60 may be altered by changing the size and shape of these UV light-opaque panels.
  • the backside of the sheet is covered with a photoresist material and an otherwise clear mask is placed over the replated copper sheet 20 after it has been covered with the photoresist.
  • a rectangular panel is a part of this clear mask.
  • the rectangular panels are made of a UV light- opaque substance, and are of a size corresponding to the size of the panel 28 shown in FIG. 6. Essentially, by placing this mask having these panels onto the replated copper sheet 20, several strips of the flat, downward-facing surfaces 28 of the replated copper sheet 20 are effectively shielded from the effects of the UV light.
  • the rectangular panels will essentially define the shapes and 16
  • the copper plating from a portion of 5 the underside of a sheet 20 is defined by a photoresist mask. Particularly, the copper plating from the lower, middle portions 28 of the underside of the sheet 20 is removed. The lower, middle portions 28 of the underside of
  • the sheet 20 is that part of the strip along a line immediately beneath the areas 30 of clear epoxy, and the fuse links 42.
  • a perspective view of this section of this replated sheet 20 is shown in FIG. 6.
  • the replated sheet 20 is subjected to the UV light for a time sufficient to ensure
  • the cured photoresist prevents the removal of copper beneath those areas of cured photoresist.
  • the regions formerly below the square panels have no cured 5 photoresist and no such protection.
  • the copper from those regions can be removed by etching. This etching is performed with a ferric chloride solution through well known etching concepts.
  • the replated sheet 20 is then placed in a chemical bath to remove all of the remaining cured photoresist from the previously cured areas of that sheet 20.
  • this sheet 20 will ultimately be cut into a plurality of pieces, and each of these pieces becomes a fuse in accordance with the 25 invention, as will be further described below.
  • this sheet 20 will ultimately be cut into a plurality of pieces, and each of these pieces becomes a fuse in accordance with the 25 invention, as will be further described below.
  • FIGS. 5 through 7 only a cut-away portion of the overall sheet including three rows 27 and four columns 29 is shown in FIGS. 5 through 7. As may also be
  • the bores 14 and grooves of the sheet 20 still include copper 18
  • FIG. 7 is a perspective view of the opposite side of the sheet 20 from FIG. 6. Directly opposite and coinciding with the lower, middle portions 28 of the sheet 20 are
  • FIG. 7 is to be referred to in connection with the next step in the
  • fusible links 42 are made of a conductive metal, here copper.
  • the photoresist polymer is then treated with UV
  • the middle portion 28 of the underside of the 5 sheet 20 will also not be subject to plating when the sheet 20 is dipped into the electrolytic plating bath. Copper metal previously covering this metal portion had been removed, revealing the bare epoxy that
  • the entire sheet 20 is dipped into an electrolytic copper plating bath and then
  • a tin-lead layer 52 (FIG. 10) is
  • a tin-lead spot 54 is also deposited onto the surface of the fusible link 42, i.e., essentially placed by an electrolytic plating process onto the central portion 50 of the
  • This electrolytic plating process is essentially a thin film deposition process. It will be understood, however, that this tin-lead may also be added to the surface of the fusible link 42 by a photolithographic
  • This spot 54 is comprised of a second conductive metal, i.e., tin-lead or 5 tin, that is dissimilar to the copper metal of the fusible link 42.
  • This second conductive metal in the form of the tin-lead spot 54 is deposited onto the fusible link 42 in the form of a rectangle.
  • the tin-lead spot 54 on the fusible link 42 provides that link 42 with certain advantages. First, the tin-lead spot 54 melts upon current overload conditions, creating a fusible link 42 that becomes a tin-lead-copper
  • This tin-lead-copper alloy results in a fusible link 42 having a lower melting temperature than the copper alone.
  • the lower melting temperature reduces the operating temperature of the fuse device of the
  • the tin-lead alloy or other metal deposited on the fusible link 42 need not be 22
  • the second conductive metal may be placed in a notched section of the link, or in 5 holes or voids in that link.
  • Parallel fuse links are also possible. As a result of this flexibility, specific electrical characteristics can be engineered into the fuse to meet varying needs of the ultimate
  • one of the possible fusible link configurations is a serpentine configuration.
  • the next step in the manufacture of the device of the invention is the placement, across a significant portion of the top of the sheet 20 between the terminal pads 34, 36, of
  • This protective layer 56 is the second subassembly of the present fuse, and forms a relatively tight seal over the portion of the top of the sheet where the fusible links 42 exist.
  • the protective layer 56 inhibits corrosion of the fusible links 42 during their 23
  • the protective layer 56 also provides protection from oxidation and impacts during attachment to the PC board. This protective layer also serves as a means of 5 providing for a surface for pick and place operations which use a vacuum pick-up tool. This protective layer 56 helps to control the melting, ionization and arcing which occur in the fusible link 42 during
  • the protective layer 56 or cover coat material provides desired arc-quenching characteristics, especially important upon interruption of the fusible link 42.
  • the protective layer 56 may be comprised of a polymer, preferably a polyurethane gel or paste when a stencil print operation is used to apply the cover coat .
  • a preferred polyurethane is made by Dymax
  • the protective layer 56 may also be comprised of plastics, conformal coatings and epoxies.
  • This protective layer 56 is applied to the strips 26 using a stencil printing process which includes the use of a common stencil printing machine.
  • a stencil printing process which includes the use of a common stencil printing machine.
  • the material is applied to the sheet 20 in strips simultaneously, instead of two strips at a time in the die mold/injection filling process.
  • the material is cured much faster than the injection fill process because in the stencil printing process, the cover coat material is completely exposed to the UV radiation from the lamps as opposed to the injection filling
  • the stencil printing machine comprises a slidable plate 70, a base 72. a 5 squeegee arm 74, a squeegee 76, and an overlay 78.
  • the overlay 78 is mounted on the base 72 and the squeegee 76 is movably mounted on the squeegee arm 74 above the base 72 and overlay 78.
  • the plate 70 is slidable underneath the
  • the overlay 78 has parallel openings 80 which correspond to the width of the cover coat 56.
  • the stencil printing process begins by attaching an adhesive tape under the fuse
  • the cover coat now covers the fuse link area 40 (FIGS. 8 & 9) .
  • the squeegee 76 is 26
  • the sheet 20 is unlodged from the overlay 78, and the sheet 20 is placed in a UV light chamber so that the material can solidify and form the protective layer 56 5 (FIGS. 11 & 12) .
  • the openings 80 in the overlay 78 are wide enough so that the protective layer partially overlaps the pads 34, 36, as shown in FIGS. 11 & 12.
  • the material used for the cover coat is used for the cover coat
  • cover coat 15 Although a colorless, clear cover coat is aesthetically pleasing, alternative types of cover coats may be used. For example, colored, clear materials may be used. These colored materials may be simply
  • this protective layer 56 has significant advantages over the prior art, including the prior art, so-called, "capping" method. Due to the placement of the 5 protective layer 56 over the entire top of a fuse body, the location of the protective layer relative to the location of the fusible link 42 is not critical.
  • the sheet 20 is then ready for a so-
  • dicing operation which separates the rows and columns 27, 29 from one another, and into individual fuses.
  • a diamond saw or the like is used to cut the sheet 20 along parallel planes 57
  • This cutting operation completes the 25 manufacture of the thin film surface-mounted fuse 58 (FIG. 12) of the present invention.
  • Fuses in accordance with this invention are rated at voltages and amperages greater than the ratings of prior art devices.
  • the fuse of the present invention exhibits improved control of fusing characteristics by regulating voltage drops

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Lock And Its Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A thin film surface-mount fuse (58) having two material subassemblies. The first subassembly includes a fusible link (42), its supporting substrate (13) and terminal pads (34, 36). The second subassembly includes a protective layer (56) which overlies the fusible link (42) so as to provide protection from impacts and oxidation. The protective layer (56) is preferably made of a polymeric material. The most preferred polymeric material is a polyurethane gel or paste. In addition, the most preferred supporting substrate is an FR-4 epoxy or a polyimide.

Description

IMPROVED METHOD AND APPARATUS FOR A SURFACE-MOUNTED FUSE DEVICE
DESCRIPTION
Technical Field
The invention relates generally to a surface-mountable fuse for placement into and protection of the electrical circuit of a printed circuit board.
Related Application
The present application is a continuation-in-part application of U.S. Serial No. 08/247,584, filed May 27, 1994.
Background Of The Invention
Printed circuit (PC) boards have found increasing application in electrical and electronic equipment of all kinds. The 5 electrical circuits formed on these PC boards, like larger scale, conventional electrical circuits, need protection against electrical overloads. This protection is typically provided by subminiature fuses that are
10 physically secured to the PC board.
One example of such a subminiature, surface-mounted fuse is disclosed in U.S. Patent No. 5,166,656 ('656 patent) . The fusible link of this surface-mounted fuse is
15 disclosed as being covered with a three layer composite which includes a passivation layer, an insulating cover, and an epoxy layer to bond the passivation layer to the insulating cover. See '656 patent, column 6, lines 4-7.
20 Typically, the passivation layer is either chemically vapor-deposited silica or a thick layer of printed glass. See '656 patent, column 3, lines 39-41. The insulating cover may be a glass cover. See '656 patent, column
25 4, lines 43-46. The fuse from the '656 patent has three layers protecting its fusible link. In addition, the fuse from the '656 patent has relatively thick glass covering. There are several other features in the '656 patent fuse
30 which are unnecessary in the present invention. Thus, the present invention is designed to solve these and other problems.
Summary Of The Invention The invention is a thin film, surface-mounted fuse which comprises two material subassemblies. The first subassembly comprises a fusible link, its supporting substrate and terminal pads. The second subassembly comprises a protective layer which overlies the fusible link so as to provide protection from impacts and oxidation.
The protective layer is preferably made of a polymeric material . The most preferred polymeric material is a polyurethane gel or paste when the stencil printing step is used to apply the cover coat. However, polycarbonates will also work well when an injection molding step is used to apply the cover coat. In addition, the most preferred supporting substrate is an FR-4 epoxy or a polyimide.
A second aspect of the invention is a thin film, surface-mounted fuse. This fuse comprises a fusible link made of a conductive metal. The first conductive metal is preferably, but not exclusively, selected from the group including copper, silver, nickel, titanium, aluminum or alloys of these conductive metals. A second conductive metal, different from the first conductive metal, is deposited on the surface of this fusible link. One preferred metal for the surface-mounted fuse of this invention is copper. One preferred second conductive metal is tin-lead. 5 Another preferred second conductive metal is tin.
The second conductive metal may be deposited onto the fusible link in the form of a rectangle, circle or in the form of any of
10 several other configurations, depending on the configuration of the fuse link. The second conductive metal is preferably deposited along the central portion of the fusible link.
Photolithographic, mechanical and
15 laser processing techniques may be employed to create very small, intricate and complex fusible link geometries. This capability, when combined with the extremely thin film coatings applied through electrochemical and
20 physical vapor deposition (PVD) techniques, enables these subminiature fuses to control the fusible area of the element and protect circuits passing microampere- and ampere-range currents. This is unique, in that prior fuses 25 providing protection at these high currents were made with filament wires. The manufacture of such filament wire fuses created certain difficulties in handling.
The location of the fusible link at
30 the top of the substrate of the present fuse enables one to use laser processing methods as a high precision secondary operation, in that way trimming the final resistance value of the fuse element .
5 Brief Description Of The Drawings
FIG. 1 is a perspective view of a copper-plated, FR-4 epoxy sheet used to make a subminiature surface-mounted fuse in accordance with the invention.
10 FIG. 2 is a view of a portion of the sheet of FIG. 1, and taken along lines 2-2 of FIG. 1.
FIG. 3 is a perspective view of the FR-4 epoxy sheet of FIG. 1, but stripped of
15 its copper plating, and with a plurality of bores (partially shown) , each having a diameter D, spaced apart by a length L and a width , and routed into separate quadrants of that sheet.
20 FIG. 4 is an enlarged, perspective view of a cut-away portion of the bored sheet of FIG. 3, but with a copper plating layer having been reapplied.
FIG. 5 is a cut-away perspective
25 view of the flat, upward-facing surfaces of the replated copper sheet, after the sheet was masked with a multi-squared panel of an ultraviolet (UV) light-opaque substance.
FIG. 6 is a perspective view of the
30 reverse side of FIG. 5, rotated about one of the fuse rows 27, but after the removal of a strip-like portion of copper plating from the replated sheet of FIG. 5.
FIG. 7 is a perspective view of the top-side of FIG. 6, rotated about one of the 5 fuse rows 27, and showing linear regions 40 defined by dotted lines.
FIG. 8 is a perspective view of a single fuse row 27 from the sheet, cut away from the other fuse rows, and cut away at one
10 edge of one of the fuses, after dipping the sheet into a copper plating bath and then a nickel plating bath, with the result that copper and nickel layers are deposited onto the base copper layer of the terminal pads,
15 including the grooves of the pads.
FIG. 9 is a perspective view of the strip of FIG. 8, but prior to UV light curing, and showing a fuse-blowing portion 50 at the center of fusible link 42 that is masked with
20 a UV light-opaque substance.
FIG. 10 shows the strip of FIG. 9, but after immersion into a tin-lead plating bath to create another layer over the copper and nickel layers, and after deposition of a
25 tin-lead alloy onto the central portion of the fusible link.
FIG. 11 shows the strip of FIG. 10, but with an added polymeric gel or paste layer onto the top of the fuse row 27.
30 FIG. 12 shows the individual fuse in accordance with the invention as it is finally made, and after a so-called dicing operation in which a diamond saw is used to cut the strips along parallel and perpindicular planes to form these individual surface-mountable fuses .
Detailed Description Of The Preferred Embodiment
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail a preferred embodiment of the invention. It is to be understood that the present disclosure is to be considered as an exemplification of the principles of the invention. This disclosure is not intended to limit the broad aspect of the invention to the illustrated embodiment or embodiments.
One preferred embodiment of the present invention is shown in FIG. 12. The thin film, surface-mounted fuse is a subminiature fuse used in a surface mount configuration on a PC board or on a thick film hybrid circuit . One of these fuses is typically known in the art as an "A" case fuse. The "A" case fuse standard industry size for these fuses is 125 mils, long by 60 mils. wide. The "A" case fuse is also designated as a 1206 f se. In addition, the present invention includes even smaller sized fuses which are compatible with standard sized surface mountable devices. In particular, the present invention can be used within all other standard sizes of such surface mountable device sizes, such as 1210, 0805, 0603 and 5 0402 fuses, as well as non-standard sizes. The invention generally comprises two material subassemblies. As will be seen, the first subassembly includes the fuse element or fusible link 42, its supporting
10 substrate or core 13, and terminal pads 34 and 36 for connecting the fuse 58 to the PC board. The second subassembly is a protective layer 56 which overlies the fusible link 42 and a substantial portion of the top portion of the
15 fuse so as to, at least, provide protection from impacts which may occur during automated assembly, and protection from oxidation during use.
The first subassembly contains and
20 supports two metal electrodes or pads 34, 36, and the fusible element or link 42, both of which are bonded to the substrate as a single continuous film, as shown in FIGs. 5 and 6. The pads 34, 36 are located on the top, the 25 bottom, and a the sides of the substrate or core 13, while the fusible link 42 is located at the top of the substrate 13. More specifically, the pads 34, 36 extend into the two grooves 16 (each groove 16 is one half of
30 each bore 14) in each fuse created by the bores 14 and dicing operation during the process of manufacture, as will be further described below.
As will be seen, in the preferred embodiment, pads are made up of several 5 layers, including a base copper layer, a supplemental copper layer, a nickel layer and a tin-lead layer. The base copper layer of the pads and the thin film fusible link are simultaneously deposited by (1)
10 electrochemical processes, such as the plating described in the preferred embodiment below; or (2) by PVD. Such simultaneous deposition ensures a good conductive path between the fusible link 42 and the terminal pads 34, 36.
15 This type of deposition also facilitates- manufacture, and permits very precise control of the thickness of the fusible link 42. After initial placement of the fusible link 42 and the base copper onto the
20 substrate 13, additional layers of a conductive metal are placed onto the terminal pads 34, 36. These additional layers could be defined and placed onto these pads by photolithography and deposition techniques,
25 respectively.
This fuse may be made by the following process. Shown in FIGS. 1 and 2 is a solid sheet 10 of an FR-4 epoxy with copper plating 12. The copper plating 12 and the FR-
30 4 epoxy core 13 of this solid sheet 10 may best be seen in FIG. 2. This copper-plated FR-4 epoxy sheet 10 is available from Allied Signal Laminate Systems, Hoosick Falls, New York, as Part No. 0200BED130C1/C1GFN0200 C1/C1A2C. Although FR-4 epoxy is a preferred 5 material, other suitable materials include any material that is compatible with, i.e., of a chemically, physically and structurally similar nature to, the materials from which PC boards are made. Thus, another suitable
10 material for this solid sheet 10 is polyimide. FR-4 epoxy and polyimide are among the class of materials having physical properties that are nearly identical with the standard substrate material used in the PC board
15 industry. As a result, the fuse of the invention and the PC board to which that fuse is secured have extremely well-matched thermal and mechanical properties. The substrate of the fuse of the present invention also
20 provides desired arc-tracking characteristics, and simultaneously exhibits sufficient mechanical flexibility to remain intact when exposed to the rapid release of energy associated with arcing.
25 In the next step of the process of manufacturing the fuses of the present invention, the copper plating 12 is etched away from the solid sheet 10 by a conventional etching process. In this conventional etching
30 process, the copper is etched away from the substrate by a ferric chloride solution. 12
Although it will be understood that after completion of this step, all of the copper layer 12 of FIG. 2 is etched away from FR-4 epoxy core 13 of this solid sheet 10, the 5 remaining epoxy core 13 of this FR-4 epoxy sheet 10 is different from a "clean" sheet of FR-4 epoxy that had not initially been treated with a copper layer. In particular, a chemically etched surface treatment remains on
10 the surface of the epoxy core 13 after the copper layer 12 has been removed by etching. This treated surface of the epoxy core 13 is more receptive to subsequent operations that are necessary in the manufacture of the
15 present surface-mounted subminiature fuse.
The FR-4 epoxy sheet 10 having this treated, copper-free surface is then drilled or punched to create holes or bores 14 along four quadrants 10a, 10b, 10c, lOd of the sheet
20 10, as may be seen in FIG. 3. Broken lines visually separate these four quadrants 10a, 10b, 10c, lOd in FIG. 3. It should be further noted that in FIG. 3, the bores 14 are lined up into rows 27 and columns 29. Although only
25 four rows 27 of bores 14 are shown in FIG. 3 in one quadrant 10a for convenience, the rows 27 of holes 14 are actually disposed over almost the entire sheet 10 in all four quadrants 10a, 10b, 10c, lOd, as is designated
30 by the three dots 11. For the "603" standard sizing of surface mounted devices mentioned 13
above, the length L between the center of the bores 14 is approximately 70 mils, and the width W between the center of the bores 14 is approximately 38 mils. For the "402" standard 5 sizing of surface mounted devices mentioned above, the length L between the center of the bores 14 is approximately 50 mils, and the width W between the center of the bores 14 is approximately 30 mils. Again, smaller and
10 larger standard and non-standard sizings are possible for the present invention. The diameter D (FIG. 4) for each bore 14 for the "603" sizing is approximately 18 mils.
When the drilling or punching of the
15 bores 14 has been completed, the etched and bored sheet 10 shown in FIG. 3 is again plated with copper. This reapplication of copper occurs through the immersion of the etched and bored sheet of FIG. 3 into an electroless
20 copper plating bath. This method of copper plating is well-known in the art.
This copper plating step results in the placement of a copper layer having a uniform thickness along each of the exposed 25 surfaces of the sheet 10. For example, as may be seen in FIG. 4, the copper plating 18 resulting from this step covers both (1) the flat, upper surfaces 22 of the sheet 10; and (2) the vertical regions of the groves 16
30 and/or the vertical regions of the bores 14.
These vertical portion of the grooves 16 14
and/or bores 14 must be copper-plated because they will ultimately form a portion of the terminal pads 34, 36 of the final fuse as will be further described below. 5 The uniform thickness of the copper plating will depend upon the ultimate needs of the user. Particularly, as may be seen in FIG. 4, for a fuse intended to open at 1/16 ampere, the copper plating 18 has a thickness
10 of 2,500 Angstroms. For a fuse intended to open at 5 amperes, the copper plating 18 has a thickness of approximately 75,000 Angstroms for a particular width of the fusable link.
After plating has been completed, to
15 arrive at the copper-plated structure of FIG. 4, the entire exposed surface of this structure is covered with a so-called photoresist polymer.
An otherwise clear mask is placed
20 over the replated copper sheet 20 from FIG. 4 after it has been covered with the photoresist. Square panels are a part of, and are evenly spaced across, this clear mask according to the sizing of the fuse being 25 manufactured. These square panels are made of an UV light-opaque substance, and are generally shown as the rectangle 30 shown in FIG. 5. Essentially, by placing this mask having these panels onto the replated copper
30 sheet 20, several portions of the flat, upward-facing surfaces 22 of the replated 15
copper sheet 20 from FIG 4. are effectively shielded from the effects of UV light.
It will be understood from the following discussion that these square panels will essentially define the shapes and sizes of the so-called fusible link 42 and the upper terminal areas 60 of the terminal pads 34, 36 on the upper portion 22 of the fuse. The fusible link 42 is in electrical communication with the upper terminal areas 60. It will be appreciated that the width, length and shape of both the fusible link 42 and these upper terminal areas 60 may be altered by changing the size and shape of these UV light-opaque panels.
Additionally, the backside of the sheet is covered with a photoresist material and an otherwise clear mask is placed over the replated copper sheet 20 after it has been covered with the photoresist. A rectangular panel is a part of this clear mask. The rectangular panels are made of a UV light- opaque substance, and are of a size corresponding to the size of the panel 28 shown in FIG. 6. Essentially, by placing this mask having these panels onto the replated copper sheet 20, several strips of the flat, downward-facing surfaces 28 of the replated copper sheet 20 are effectively shielded from the effects of the UV light. The rectangular panels will essentially define the shapes and 16
sizes of the lower terminal areas 62 of the terminal pads 34, 36, and the lower middle portions 28 of sheet 20, as shown in FIG. 6.
The copper plating from a portion of 5 the underside of a sheet 20 is defined by a photoresist mask. Particularly, the copper plating from the lower, middle portions 28 of the underside of the sheet 20 is removed. The lower, middle portions 28 of the underside of
10 the sheet 20 is that part of the strip along a line immediately beneath the areas 30 of clear epoxy, and the fuse links 42. A perspective view of this section of this replated sheet 20 is shown in FIG. 6.
15 The entire replated, photoresist- covered sheet 20, i.e., the top, bottom and sides of that sheet, is then subjected to UV light. The replated sheet 20 is subjected to the UV light for a time sufficient to ensure
20 curing of all of the photoresist that is not covered by the square panels and rectangular strips of the masks. Thereafter, the masks containing these square panels and rectangular strips are removed from the replated sheet 20. 25 The photoresist that was formerly below these square panels remains uncured. This uncured photoresist may be washed from the replated sheet 20 using a solvent.
The cured photoresist on the
30 remainder of the replated sheet 20 provides protection against the next step in the 17
process. Particularly, the cured photoresist prevents the removal of copper beneath those areas of cured photoresist. The regions formerly below the square panels have no cured 5 photoresist and no such protection. Thus, the copper from those regions can be removed by etching. This etching is performed with a ferric chloride solution through well known etching concepts.
10 After the copper has been removed, as may be seen in FIGS. 5 and 6, the regions formerly below the square panels and the rectangular strips of the mask are not covered at all. Rather, those regions now comprise
15 areas 28 and 30 of clear epoxy.
The replated sheet 20 is then placed in a chemical bath to remove all of the remaining cured photoresist from the previously cured areas of that sheet 20.
20 After completion of several of the operations described in this specification, this sheet 20 will ultimately be cut into a plurality of pieces, and each of these pieces becomes a fuse in accordance with the 25 invention, as will be further described below. However, for the purpose of brevity, only a cut-away portion of the overall sheet including three rows 27 and four columns 29 is shown in FIGS. 5 through 7. As may also be
30 seen from FIG. 5 through 7, the bores 14 and grooves of the sheet 20 still include copper 18
plating. These bores 14 and grooves 16 form portions of the pads 34, 36. These pads 34, 36 will ultimately serve as the means for securing the entire, finished fuse to the PC 5 board.
FIG. 7 is a perspective view of the opposite side of the sheet 20 from FIG. 6. Directly opposite and coinciding with the lower, middle portions 28 of the sheet 20 are
10 linear regions 40 on the top-side 38 of the sheet 20. These linear regions 40 are defined by the dotted lines of FIG. 7.
FIG. 7 is to be referred to in connection with the next step in the
15 manufacture of the invention. In this next step, a photoresist polymer is placed along each of the linear regions 40 of the top side 38 of the sheet 20. Through the covering of these linear regions 40, photoresist polymer
20 is also placed along the relatively thin portions which will comprise the fusible links 42. These fusible links 42 are made of a conductive metal, here copper. The photoresist polymer is then treated with UV
25 light, resulting in a curing of the polymer onto linear region 40 and its fusible links 42.
As a result of the curing of this photoresist onto the linear region 40 and its
30 fusible links 42, metal will not adhere to this linear region 40 when the sheet 20 is 19
dipped into an electrolytic bath containing a metal for plating purposes.
In addition, as explained above, the middle portion 28 of the underside of the 5 sheet 20 will also not be subject to plating when the sheet 20 is dipped into the electrolytic plating bath. Copper metal previously covering this metal portion had been removed, revealing the bare epoxy that
10 forms the base of the sheet 20. Metal will not adhere to or plate onto this bare epoxy using an electrolytic plating process.
The entire sheet 20 is dipped into an electrolytic copper plating bath and then
15 an electrolytic nickel plating bath. As a result, as may be seen in FIG. 8, a copper layer 46 and a nickel layer 48 are deposited on the base copper layer 44. After deposition of these copper 46 and nickel layers 48, the
20 cured photoresist polymer on the linear region 40, including the photoresist polymer on the fusible links 42, is removed from that region 40.
Photoresist polymer is then
25 immediately reapplied along the entire linear region 40. As may be seen in FIG. 9, however, a portion 50 at the center of the fusible link 42 is masked with a UV light-opaque substance. The entire linear region 40 is then subjected
30 to UV light, with the result that curing of the photoresist polymer occurs on all of that 20
region, except for the masked central portion 50 of the fusible link 42. The mask is removed from the central portion 50 of the fusible link, and the sheet 20 is rinsed. As 5 a result of this rinsing, the uncured photoresist above the central portion 50 of the fusible link 42 is removed from the fusible link 42. The cured photoresist along the remainder of the linear region 40,
10 however, remains.
Plating of metal will not occur on the portion of the sheet 20 covered by the cured photoresist . Because of the absence of the photoresist from the central portion 50 of
15 the fusible link 42, however, metal may be plated onto this central portion 50.
When the strip shown in FIG. 9 is dipped into an electrolytic tin-lead plating bath, a tin-lead layer 52 (FIG. 10) is
20 overlain over the copper 46 and nickel layers 48. A tin-lead spot 54 is also deposited onto the surface of the fusible link 42, i.e., essentially placed by an electrolytic plating process onto the central portion 50 of the
25 fusible link 42. This electrolytic plating process is essentially a thin film deposition process. It will be understood, however, that this tin-lead may also be added to the surface of the fusible link 42 by a photolithographic
30 process or by means of a physical vapor deposition process, such as sputtering or 21
evaporation in a high vacuum deposition chamber.
This spot 54 is comprised of a second conductive metal, i.e., tin-lead or 5 tin, that is dissimilar to the copper metal of the fusible link 42. This second conductive metal in the form of the tin-lead spot 54 is deposited onto the fusible link 42 in the form of a rectangle.
10 The tin-lead spot 54 on the fusible link 42 provides that link 42 with certain advantages. First, the tin-lead spot 54 melts upon current overload conditions, creating a fusible link 42 that becomes a tin-lead-copper
15 alloy. This tin-lead-copper alloy results in a fusible link 42 having a lower melting temperature than the copper alone. The lower melting temperature reduces the operating temperature of the fuse device of the
20 invention, and this results in improved performance of the device.
Although a tin-lead alloy is deposited on the copper fusible link 42 in this example, it will be understood by those
25 skilled in the art that other conductive metals may be placed on the fusible link 42 to lower its melting temperature, and that the fusible link 42 itself may be made of conductive metals other than copper. In
30 addition, the tin-lead alloy or other metal deposited on the fusible link 42 need not be 22
of a rectangular shape, but can take on any number of additional configurations.
The second conductive metal may be placed in a notched section of the link, or in 5 holes or voids in that link. Parallel fuse links are also possible. As a result of this flexibility, specific electrical characteristics can be engineered into the fuse to meet varying needs of the ultimate
10 user.
As indicated above, one of the possible fusible link configurations is a serpentine configuration. By using a serpentine configuration, the effective length
15 of the fusible link may be increased, even though the distance between the terminals at the opposite ends of that link remain the same. In this way, a serpentine configuration provides for a longer fusible link without
20 increasing the dimensions of the fuse itself.
The next step in the manufacture of the device of the invention is the placement, across a significant portion of the top of the sheet 20 between the terminal pads 34, 36, of
25 a protective layer 56 (FIG. 11) . This protective layer 56 is the second subassembly of the present fuse, and forms a relatively tight seal over the portion of the top of the sheet where the fusible links 42 exist. In
30 this way, the protective layer 56 inhibits corrosion of the fusible links 42 during their 23
useful lives. The protective layer 56 also provides protection from oxidation and impacts during attachment to the PC board. This protective layer also serves as a means of 5 providing for a surface for pick and place operations which use a vacuum pick-up tool. This protective layer 56 helps to control the melting, ionization and arcing which occur in the fusible link 42 during
10 current overload conditions. The protective layer 56 or cover coat material provides desired arc-quenching characteristics, especially important upon interruption of the fusible link 42.
15 The protective layer 56 may be comprised of a polymer, preferably a polyurethane gel or paste when a stencil print operation is used to apply the cover coat . A preferred polyurethane is made by Dymax
20 Corporation. Other similar gels, pastes, or adhesives are suitable for the invention. In addition to polymers, the protective layer 56 may also be comprised of plastics, conformal coatings and epoxies.
25 This protective layer 56 is applied to the strips 26 using a stencil printing process which includes the use of a common stencil printing machine. In the past, an injection of the material into a die mold was
30 performed while the sheet 20 was clamped between two dies. However, stencil printing 24
is a much faster process. Specifically, it has been found that the use of a stencil printing process while using a stencil printing machine, at least, doubles production 5 output of the number of fuses from a previous die mold operation. The stencil printing machine is made by Affiliated Manufacturers, Inc. of Northbranch, New Jersey, Model No. CP- 885.
10 In the stencil printing process, the material is applied to the sheet 20 in strips simultaneously, instead of two strips at a time in the die mold/injection filling process. As will be further explained below,
15 the material is cured much faster than the injection fill process because in the stencil printing process, the cover coat material is completely exposed to the UV radiation from the lamps as opposed to the injection filling
20 process where you have a filter that you have to transmit the energy from the lamp to the coating itself because the mold itself acts as a filter. Furthermore, the stencil printing process produces a more uniform cover coat
25 than the injection filling process, in terms of the height, the width of the covet coat. Because of that uniformity, the fuses can be tested and packaged automatically. With the injection filling process it was sometimes
30 difficult to precisely align the fuses in testing and packaging equipment due to some 25
non-uniform heights and widths of the cover coat.
The stencil printing machine comprises a slidable plate 70, a base 72. a 5 squeegee arm 74, a squeegee 76, and an overlay 78. The overlay 78 is mounted on the base 72 and the squeegee 76 is movably mounted on the squeegee arm 74 above the base 72 and overlay 78. The plate 70 is slidable underneath the
10 base 72 and overlay 78. The overlay 78 has parallel openings 80 which correspond to the width of the cover coat 56.
The stencil printing process begins by attaching an adhesive tape under the fuse
15 sheet 20. The fuse sheet 20, with the adhesive tape, is placed on the plate 70 with the adhesive tape between the plate 70 and the fuse sheet 20. The cover coat material is then applied with a syringe at one end of the
20 overlay 78. The plate 70 then slides underneath the overlay 78 and lodges the sheet 20 underneath the overlay 78 in correct alignment with the parallel openings 80. The squeegee 76 then lowers to contact the overlay
25 78 beyond the material on the top of the overlay 78. The squeegee 76 then moves across the overlay 78 where the openings 80 exist, thereby forcing the cover coat material through the openings 80 and onto the sheet.
30 Thus, the cover coat now covers the fuse link area 40 (FIGS. 8 & 9) . The squeegee 76 is 26
then raised, the sheet 20 is unlodged from the overlay 78, and the sheet 20 is placed in a UV light chamber so that the material can solidify and form the protective layer 56 5 (FIGS. 11 & 12) . The openings 80 in the overlay 78 are wide enough so that the protective layer partially overlaps the pads 34, 36, as shown in FIGS. 11 & 12. In addition, the material used for the cover coat
10 should have a viscosity in the gel or paste range so that after the material is spread onto the sheet 20, it will flow in a manner which creates a generally flat top surface 49, but not flow into the holes 14 or groves 16.
15 Although a colorless, clear cover coat is aesthetically pleasing, alternative types of cover coats may be used. For example, colored, clear materials may be used. These colored materials may be simply
20 manufactured by the addition of a dye to a clear polyurethane gel or paste. Color coding may be accomplished through the use of these colored gels and pastes. In other words, different colors of gels can correspond to
25 different amperages, providing the user with a ready means of determining the amperage of any given fuse. The transparency of both of these coatings permit the user to visually inspect the fusible link 42 prior to installation, and
30 during use, in the electronic device in which the fuse is used. 27
The use of this protective layer 56 has significant advantages over the prior art, including the prior art, so-called, "capping" method. Due to the placement of the 5 protective layer 56 over the entire top of a fuse body, the location of the protective layer relative to the location of the fusible link 42 is not critical.
The sheet 20 is then ready for a so-
10 called dicing operation, which separates the rows and columns 27, 29 from one another, and into individual fuses. In this dicing operation, a diamond saw or the like is used to cut the sheet 20 along parallel planes 57
15 (FIG. 11) , and again perpindicular to planes 57, through the center of the holes 14, into individual thin film surface-mounted fuses 58 (FIG. 12) . One of the directions of cuts bisect the terminal areas through the center
20 of the holes 14, thereby exposing and creating the grooves 16 of the terminal pads 34, 36. These grooves 16 appear on either side of the fusible link 42.
This cutting operation completes the 25 manufacture of the thin film surface-mounted fuse 58 (FIG. 12) of the present invention.
Fuses in accordance with this invention are rated at voltages and amperages greater than the ratings of prior art devices.
30 Tests have indicated that fuses which fall under the "603" standard sizing would have a 28
fuse voltage rating of 32 volts AC, and a fuse amperage rating of between 1/16 ampere and 2 amperes. Even though the fuses in accordance with this invention can protect circuits over 5 a broad range of amperage ratings, the actual physical size of these fuses remains constant. In summary, the fuse of the present invention exhibits improved control of fusing characteristics by regulating voltage drops
10 across the fusible link 42. Consistent clearing times are ensured by (1) the ability to control, through deposition and photolithography processes, the dimensions and shapes of the fusible link 42 and terminal
15 pads 34, 36; and (2) proper selection of the materials of the fusible link 42. Restriking tendencies are minimized by selection of an optimized material for the substrate 13 and protective layer 56.
20 While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only
25 limited by the scope of the accompanying Claims.

Claims

29CLAIMSWhat is claimed is:
1. A thin film surface-mount fuse, said fuse comprising two material subassemblies: a. the first subassembly comprising 5 a fusible link, a supporting substrate and terminal pads including a plurality of conductive terminal pad layers, the supporting substrate having an upper surface, lower surface and opposing side surfaces, a first of
10 the plurality of conductive terminal pad layers and the fusible link formed as a single-continuous layer and extending across the upper surface of the supporting substrate, the first of the conductive terminal pad
15 layers further extending over at least a part of the opposing side surfaces and terminating on the lower surface of the substrate; and, b. the second subassembly comprising a single protective layer which
20 overlies the fusible link so as to provide protection from impacts and oxidation.
2. The surface-mount fuse of Claim 1, wherein said protective layer is made of a polymeric material.
3. The surface-mount fuse of Claim 1, wherein said protective layer is made of a polyurethane material. 30
4. The surface-mount fuse of Claim 1, wherein said supporting substrate is made of an FR-4 epoxy or a polyimide.
5. The surface-mount fuse of Claim
1, wherein said polymeric material is clear and colorless.
6. The surface-mount fuse of Claim
2, wherein said polymeric material is clear and colored.
7. A method for the manufacture of a thin film surface-mount fuse, comprising simultaneously depositing, upon the top of the substrate, a fusible link and a terminal pad
5 at opposite ends of said fusible link.
8. The method as set forth in Claim 7, further comprising depositing, upon a portion of the sides and upon the bottom of a substrate, terminal pads electrically
5 communicative with fuse link, said pads for connecting said surface-mount fuse with a printed circuit board.
9. The method as set forth in Claim 7, wherein said fusible link and wide terminals are deposited by vapor deposition. 31
10. The method as set forth in Claim 7, wherein said fusible link and wide terminals are electrochemically deposited.
11. A method of protecting a thin film surface-mount fuse having a fusible link and terminal pads, the terminal pads having a plurality of conductive terminal pad layers
5 and the substrate having a top, a bottom and opposing side surfaces, wherein a first of the plurality of conductive terminal pad layers and the fusible link form a single continuous film which extends across the top surface of
10 the substrate, the first of the conductive terminal pad layers further extending over at least a part of the opposing side surfaces and terminating on the lower surface of the substrate, said method comprising placing a
15 single protective layer over the entire top surface of the substrate.
32
12. A thin film surface mount fuse comprising: a. a substrate; b. a fusible link and a first 5 terminal pad layer formed as a single continuous layer disposed on the •substrate, wherein the fusible link and the first terminal pad layer are made of a metal selected from a group consisting of copper, 10 silver, nickel, titanium, aluminum and alloys thereof; c. a second terminal pad layer disposed on the first terminal pad layer, wherein the second terminal pad is made of the
15 same metal as the first layer; d. a third terminal pad layer disposed on the second terminal pad layer, wherein the third terminal pad layer is made of nickel; and,
20 e. a fourth terminal pad layer disposed on the third terminal pad layer, wherein the fourth terminal pad layer is made of tin-lead or tin.
13. The surface mount f se of Claim 12, wherein the fusible link has a central portion with a tin-lead spot being disposed on the central portion. 33
14. The surface mount fuse of Claim 12, wherein a protective coating is applied over the fusible link.
15. The surface mount fuse of Claim 14, wherein the protective coating is also applied over a portion of the fourth terminal pad layer.
16. A thin film surface-mount fuse, said fuse comprising: a. a substrate; b. a fusible link made of a first 5 conductive metal deposited on the substrate; c. a second conductive metal, other than the first conductive metal, deposited on the surface of the fusible link; d. terminal pads electrically 10 connected to the fusible link, the terminal pads having a plurality of conductive layers, wherein a first of the plurality of conductive layers and the fusible link are deposited simultaneously to form a single continuous 15 film.
17. The device of Claim 16, wherein a second of the plurality of conductive layers is deposited on the first of the plurality of conductive layers and consists of the same
5 metal as the first conductive metal. 34
18. The device of Claim 17, wherein a third of the plurality of conductive layers is deposited on the second of the plurality of conductive layers and consists of nickel.
19. The device of Claim 18, wherein a fourth of the plurality of conductive layers is deposited on the third of the plurality of conductive layers and consists of tin-lead.
20. The surface-mount fuse of Claim 16, wherein the first conductive metal is selected from the group including copper, silver, nickel, titanium, aluminum or alloys thereof.
21. The surface-mount fuse of Claim 16, wherein the second conductive metal is a tin-lead alloy.
22. The surface-mount fuse of Claim
21, wherein the second conductive metal is deposited onto the fusible link in the form of a rectangle.
23. The surface-mount fuse of Claim
22, wherein the fusible link has a central portion and the rectangle is deposited along the central portion of said fusible link.
PCT/US1996/009147 1995-06-07 1996-06-06 Improved method and apparatus for a surface-mounted fuse device WO1996041359A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK96919129T DK0830704T3 (en) 1995-06-07 1996-06-06 Improved method and apparatus for a surface mounted fuse
DE69600974T DE69600974T2 (en) 1995-06-07 1996-06-06 IMPROVED METHOD AND DEVICE FOR SURFACE MOUNTED LOCKING DEVICE
JP9501537A JPH10512094A (en) 1995-06-07 1996-06-06 Thin film surface mount fuse and method of manufacturing the same
AU61547/96A AU6154796A (en) 1995-06-07 1996-06-06 Improved method and apparatus for a surface-mounted fuse dev ice
EP96919129A EP0830704B1 (en) 1995-06-07 1996-06-06 Improved method and apparatus for a surface-mounted fuse device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US47256395A 1995-06-07 1995-06-07
US08/482,829 US5943764A (en) 1994-05-27 1995-06-07 Method of manufacturing a surface-mounted fuse device
US08/472,563 1995-06-07
US08/482,829 1995-06-07

Publications (2)

Publication Number Publication Date
WO1996041359A1 true WO1996041359A1 (en) 1996-12-19
WO1996041359B1 WO1996041359B1 (en) 1997-02-06

Family

ID=27043825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/009147 WO1996041359A1 (en) 1995-06-07 1996-06-06 Improved method and apparatus for a surface-mounted fuse device

Country Status (10)

Country Link
EP (1) EP0830704B1 (en)
JP (1) JPH10512094A (en)
CN (1) CN1191624A (en)
AT (1) ATE173355T1 (en)
AU (1) AU6154796A (en)
CA (1) CA2224070A1 (en)
DE (1) DE69600974T2 (en)
DK (1) DK0830704T3 (en)
ES (1) ES2124634T3 (en)
WO (1) WO1996041359A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029147A1 (en) * 1997-12-02 1999-06-10 Littelfuse, Inc. Printed circuit board assembly having an integrated fusible link
WO1999056297A1 (en) * 1998-04-24 1999-11-04 Wickmann-Werke Gmbh Electrical fuse element
GB2340317A (en) * 1998-05-05 2000-02-16 Littelfuse Inc Surface-mounted fuse
EP1120807A1 (en) * 2000-01-24 2001-08-01 Welwyn Components Limited Thick or thin film circuit with fuse
WO2002103735A1 (en) * 2001-06-11 2002-12-27 Wickmann-Werke Gmbh Fuse component
EP1388875A3 (en) * 2002-08-08 2006-04-12 Fujitsu Component Limited Hermetically sealed electrostatic MEMS
US9117615B2 (en) 2010-05-17 2015-08-25 Littlefuse, Inc. Double wound fusible element and associated fuse

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197351B (en) * 2006-12-05 2010-09-01 邱鸿智 Slow fusing type fuse structure of chip and its production method
CN101894717B (en) * 2009-05-21 2012-10-24 邱鸿智 Fuse structure provided with drilling electrode and die coating and manufacturing method thereof
JP5505142B2 (en) * 2010-07-06 2014-05-28 富士通株式会社 Fuse and manufacturing method thereof
CN101964287B (en) * 2010-10-22 2013-01-23 广东风华高新科技股份有限公司 Film chip fuse and preparation method thereof

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164725A (en) * 1977-08-01 1979-08-14 Wiebe Gerald L Three-piece solderless plug-in electrically conducting component
GB1604820A (en) * 1978-05-30 1981-12-16 Laur Knudson Nordisk Elektrici Electrical safety fuses
GB2089148A (en) * 1980-11-27 1982-06-16 Wickmann Werke Gmbh Electrical fuse
DE3530354A1 (en) * 1985-08-24 1987-03-05 Opel Adam Ag ELECTRICAL FUSE ARRANGEMENT
EP0270954A1 (en) * 1986-12-01 1988-06-15 Omron Tateisi Electronics Co. Chip-type fuse
WO1991014279A1 (en) * 1990-03-13 1991-09-19 Morrill Glasstek, Inc. Electrical component (fuse) and method of making it
JPH0433230A (en) * 1990-05-29 1992-02-04 Mitsubishi Materials Corp Chip type fuse
JPH04245132A (en) * 1991-01-30 1992-09-01 Hitachi Chem Co Ltd Base for chip fuse and chip fuse using it
JPH04245129A (en) * 1991-01-30 1992-09-01 Hitachi Chem Co Ltd Chip type fuse
JPH04248221A (en) * 1991-01-23 1992-09-03 Hitachi Chem Co Ltd Manufacture of chip type fuse
JPH04255627A (en) * 1991-02-08 1992-09-10 Hitachi Chem Co Ltd Manufacture of chip-type fuse
US5166656A (en) * 1992-02-28 1992-11-24 Avx Corporation Thin film surface mount fuses
JPH05166454A (en) * 1991-12-11 1993-07-02 Hitachi Chem Co Ltd Chip type fuse
EP0581428A1 (en) * 1992-07-16 1994-02-02 Sumitomo Wiring Systems, Ltd. Card type fuse and method of producing the same
WO1995033276A1 (en) * 1994-05-27 1995-12-07 Littelfuse, Inc. Surface-mounted fuse device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164725A (en) * 1977-08-01 1979-08-14 Wiebe Gerald L Three-piece solderless plug-in electrically conducting component
GB1604820A (en) * 1978-05-30 1981-12-16 Laur Knudson Nordisk Elektrici Electrical safety fuses
GB2089148A (en) * 1980-11-27 1982-06-16 Wickmann Werke Gmbh Electrical fuse
DE3530354A1 (en) * 1985-08-24 1987-03-05 Opel Adam Ag ELECTRICAL FUSE ARRANGEMENT
EP0270954A1 (en) * 1986-12-01 1988-06-15 Omron Tateisi Electronics Co. Chip-type fuse
WO1991014279A1 (en) * 1990-03-13 1991-09-19 Morrill Glasstek, Inc. Electrical component (fuse) and method of making it
JPH0433230A (en) * 1990-05-29 1992-02-04 Mitsubishi Materials Corp Chip type fuse
JPH04248221A (en) * 1991-01-23 1992-09-03 Hitachi Chem Co Ltd Manufacture of chip type fuse
JPH04245132A (en) * 1991-01-30 1992-09-01 Hitachi Chem Co Ltd Base for chip fuse and chip fuse using it
JPH04245129A (en) * 1991-01-30 1992-09-01 Hitachi Chem Co Ltd Chip type fuse
JPH04255627A (en) * 1991-02-08 1992-09-10 Hitachi Chem Co Ltd Manufacture of chip-type fuse
JPH05166454A (en) * 1991-12-11 1993-07-02 Hitachi Chem Co Ltd Chip type fuse
US5166656A (en) * 1992-02-28 1992-11-24 Avx Corporation Thin film surface mount fuses
EP0581428A1 (en) * 1992-07-16 1994-02-02 Sumitomo Wiring Systems, Ltd. Card type fuse and method of producing the same
WO1995033276A1 (en) * 1994-05-27 1995-12-07 Littelfuse, Inc. Surface-mounted fuse device

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 204 (E - 1202) 15 May 1992 (1992-05-15) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 015 (E - 1305) 12 January 1993 (1993-01-12) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 019 (E - 1306) 13 January 1993 (1993-01-13) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 035 (E - 1310) 22 January 1993 (1993-01-22) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 566 (E - 1446) 13 October 1993 (1993-10-13) *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999029147A1 (en) * 1997-12-02 1999-06-10 Littelfuse, Inc. Printed circuit board assembly having an integrated fusible link
WO1999056297A1 (en) * 1998-04-24 1999-11-04 Wickmann-Werke Gmbh Electrical fuse element
US6650223B1 (en) 1998-04-24 2003-11-18 Wickmann-Werke Gmbh Electrical fuse element
GB2340317A (en) * 1998-05-05 2000-02-16 Littelfuse Inc Surface-mounted fuse
DE19920475B4 (en) * 1998-05-05 2006-03-23 Littelfuse, Inc., Des Plaines Surface mounted thin film fuse
GB2340317B (en) * 1998-05-05 2002-09-11 Littelfuse Inc Chip protector surface-mounted fuse device
US6614341B2 (en) 2000-01-24 2003-09-02 International Resistive Company, Inc. Thick film circuit with fuse
EP1120807A1 (en) * 2000-01-24 2001-08-01 Welwyn Components Limited Thick or thin film circuit with fuse
WO2002103735A1 (en) * 2001-06-11 2002-12-27 Wickmann-Werke Gmbh Fuse component
US7489229B2 (en) 2001-06-11 2009-02-10 Wickmann-Werke Gmbh Fuse component
EP1388875A3 (en) * 2002-08-08 2006-04-12 Fujitsu Component Limited Hermetically sealed electrostatic MEMS
US7551048B2 (en) 2002-08-08 2009-06-23 Fujitsu Component Limited Micro-relay and method of fabricating the same
US9117615B2 (en) 2010-05-17 2015-08-25 Littlefuse, Inc. Double wound fusible element and associated fuse

Also Published As

Publication number Publication date
CN1191624A (en) 1998-08-26
AU6154796A (en) 1996-12-30
EP0830704B1 (en) 1998-11-11
CA2224070A1 (en) 1996-12-19
DE69600974D1 (en) 1998-12-17
EP0830704A1 (en) 1998-03-25
DK0830704T3 (en) 1999-07-26
ATE173355T1 (en) 1998-11-15
JPH10512094A (en) 1998-11-17
ES2124634T3 (en) 1999-02-01
DE69600974T2 (en) 1999-06-10
MX9709974A (en) 1998-06-28

Similar Documents

Publication Publication Date Title
US5943764A (en) Method of manufacturing a surface-mounted fuse device
US6191928B1 (en) Surface-mountable device for protection against electrostatic damage to electronic components
US6002322A (en) Chip protector surface-mounted fuse device
US5790008A (en) Surface-mounted fuse device with conductive terminal pad layers and groove on side surfaces
EP0364570B1 (en) Metallo-organic film fractional ampere fuses and method of making
US7367114B2 (en) Method for plasma etching to manufacture electrical devices having circuit protection
WO1993017442A1 (en) Thin film surface mount fuses
WO2007111610A1 (en) Hybrid chip fuse assembly having wire leads and fabrication method therefor
EP0830704B1 (en) Improved method and apparatus for a surface-mounted fuse device
EP0902957A2 (en) A surface-mount fuse and the manufacture thereof
US5974661A (en) Method of manufacturing a surface-mountable device for protection against electrostatic damage to electronic components
EP0834180B1 (en) Method and apparatus for a surface-mountable device for protection against electrostatic damage to electronic components
KR19990022733A (en) Method and apparatus for manufacturing surface mount fuse device
MXPA97009973A (en) Method and apparatus for a mountable device on a surface for protection against electrostatic damage to components electroni
MXPA97009974A (en) Method and improved apparatus for a superfield fused device
KR19990022732A (en) Method and apparatus for surface mount devices for electrostatic damage protection of electronic components

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195755.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2224070

Country of ref document: CA

Ref document number: 2224070

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970709175

Country of ref document: KR

Ref document number: PA/a/1997/009974

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1996919129

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996919129

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1996919129

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970709175

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019970709175

Country of ref document: KR