[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1995019325A1 - Porous aluminium nitride based bodies, method of preparation and use thereof - Google Patents

Porous aluminium nitride based bodies, method of preparation and use thereof Download PDF

Info

Publication number
WO1995019325A1
WO1995019325A1 PCT/FR1995/000010 FR9500010W WO9519325A1 WO 1995019325 A1 WO1995019325 A1 WO 1995019325A1 FR 9500010 W FR9500010 W FR 9500010W WO 9519325 A1 WO9519325 A1 WO 9519325A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
particles
porous body
alumina
equal
Prior art date
Application number
PCT/FR1995/000010
Other languages
French (fr)
Inventor
Jean-Pierre Disson
Roland Bachelard
Original Assignee
Elf Atochem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elf Atochem S.A. filed Critical Elf Atochem S.A.
Priority to EP95906367A priority Critical patent/EP0797556A1/en
Publication of WO1995019325A1 publication Critical patent/WO1995019325A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2072Other inorganic materials, e.g. ceramics the material being particulate or granular
    • B01D39/2079Other inorganic materials, e.g. ceramics the material being particulate or granular otherwise bonded, e.g. by resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2082Other inorganic materials, e.g. ceramics the material being filamentary or fibrous
    • B01D39/2089Other inorganic materials, e.g. ceramics the material being filamentary or fibrous otherwise bonded, e.g. by resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62286Fibres based on nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62873Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0464Impregnants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1225Fibre length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1233Fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1241Particle diameter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00905Uses not provided for elsewhere in C04B2111/00 as preforms
    • C04B2111/00913Uses not provided for elsewhere in C04B2111/00 as preforms as ceramic preforms for the fabrication of metal matrix comp, e.g. cermets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains

Definitions

  • the present invention relates to porous ceramic bodies and a process for preparing said porous bodies. It also relates to their uses, in particular for the preparation of composite materials.
  • porous bodies are described containing particles of Si ⁇ 2, AI2O3, ZnO, Zr ⁇ 2, MgO, PbO, B2O3, SÎ3N4, BN or AIN whose average size does not exceed 10 ⁇ m. These porous bodies are obtained by shaping a ceramic powder and sintering. After infiltration by a resin, the porous bodies lead to composite materials which can be used in the field of electronics.
  • porous ceramic bodies preforms reinforced with substantially spherical AIN particles of size between 10 and 100 ⁇ m. These porous bodies can be used to manufacture composite materials with a metal matrix.
  • porous ceramic bodies having now been found, said porous bodies being characterized in that they comprise particles of aluminum nitride (AIN) having an aspect ratio at least equal to 5.
  • AIN aluminum nitride
  • the term ratio of aspect is here used in its conventional sense, namely that it designates the diameter / thickness ratio.
  • the invention relates more particularly to porous bodies whose porosity is at least equal to 60% by volume.
  • the invention particularly relates to porous bodies made up of at least 60% by weight of AIN.
  • the invention also relates to mixed porous bodies in which said particles are associated with one or more other reinforcing products such as whiskers, short fibers, fine ceramic particles, the AIN content preferably remaining in the majority.
  • the invention also relates to a process for preparing porous ceramic bodies. This process by carbonitriding from alumina is characterized in that alumina particles are used having an aspect ratio at least equal to 5. According to a first preferred variant, the process is carried out using an alumina powder and carbon.
  • the alumina powder is generally chosen from powders whose particles are in the form of tabular crystals or fibers.
  • ⁇ alumina crystals are used which mainly have the appearance of polygonal plates, and advantageously hexagonal, and which have a size varying from 2 to 50 ⁇ m and preferably less than 15 ⁇ m and a thickness varying from 0.1 at 3 ⁇ m and preferably less than 1.5 ⁇ m.
  • Such crystals can be obtained for example by calcination of an ⁇ alumina precursor in the presence of flux according to the method of preparation described in application EP 0425325 in the name of the Applicant.
  • Carbon is generally chosen from lamp black, smoke black, tunnel black, oven black, activated carbon, carbon or graphite felt and graphite powder.
  • carbon precursors such as hydrocarbons, the thermal decomposition of which leads to carbon deposition.
  • saturated linear hydrocarbons such as methane or unsaturated hydrocarbons such as ethylene and acetylene or aromatics.
  • the process of the invention is generally implemented, by mixing amounts of carbon and the alumina such that the carbon / alumina molar ratio is between 2 and 20 and preferably 2.8 and 10. Values of the molar ratio greater than 20 are not of interest because they lead to macrocrystals containing a large excess of residual carbon, the elimination of which proves to be expensive.
  • the mixture comprising alumina and carbon generally undergoes a shaping step which can be, for example, an extrusion, an injection molding or an isostatic or uniaxial pressing.
  • the method of the invention is implemented using a porous body containing said particles of alumina and carbon.
  • a porous body based on alumina has a porosity at least equal to 55% by volume and preferably 70%.
  • the porous body is covered with carbon consisting, for example, of carbon black or graphite.
  • the porous body is subjected to carbon infiltration.
  • such an infiltration is carried out using the resin generating carbon by pyrolysis described above in liquid, molten, or dissolved or emulsified form.
  • the process is generally carried out in the presence of nitrogen and / or a nitrogen-generating gas such as ammonia.
  • the carbonitriding reaction is generally carried out at a temperature between 1350 and 1900 ° C, and preferably between 1400 and 1600 ° C, and for a time sufficient to obtain a porous body based on AlN. For information purposes only, this time can vary from 30 minutes to 15 hours.
  • the residual carbon can optionally be eliminated by combustion in air at a temperature between 500 and 800 ° C.
  • the porous body which is the subject of the invention is capable of numerous applications. Mention may in particular be made of its use for preparing composite materials, said materials being obtained by infiltration of the porous body, for example by a thermosetting polymer in the liquid state or in solution or thermoplastic in the molten state or in solution, a molten metal or a ceramic precursor in colloidal solution or in vapor phase.
  • the porous body according to the invention can, thanks to its low wettability by metals and its high resistance to corrosion by molten salts, constitute an excellent filter for molten metals.
  • acetylene black (Y50, SN2A), 74.8 g of formophenolic resin (R3593, CECA) and 90.0 g of alumina in the form of platelets are introduced. (grade Tj, Elf Atochem) in a Z-arm mixer.
  • the alumina wafers consist of monocrystals of alumina ⁇ in the form of more or less regular polygons (mainly hexagons) having an average diameter between 5 and 10 ⁇ m, a thickness between 0.2 and 0.6 ⁇ m and an aspect ratio of approximately 20.
  • the mixture is extruded to form cylindrical granules having a diameter of 3 mm which are then air dried at 150 ° C in order to polymerize the resin.
  • Porous bodies are obtained with a geometry similar to that of the starting granules and the porosity of which is equal to 70% (porosity calculated from the determination of the apparent density of the preform knowing the absolute density of the material). Analysis of these porous bodies using a scanning electron microscope shows that the AIN obtained consists of irregularly-shaped platelets, sometimes pierced, with morphological characteristics and dimensions close to those of the starting alumina ( Figure 1). The oxygen content of the porous body determined by X-ray fluorescence is equal to 1.1%, which corresponds to an almost total transformation of the alumina into AIN.
  • EXAMPLE 2 5.2 g of acetylene black (Y50, SN2A), 6.3 g of formophenolic resin (R3593, CECA) and 18.0 g of alumina in the form of platelets (T'o grade, Elf) are introduced Atochem) in a knife mixer. These wafers are ⁇ alumina single crystals, of polygonal shape with a hexagonal majority having a diameter between 2 and 7 ⁇ m and a thickness between 0.1 and 0.5 ⁇ m. The mixture is pressed at 30 bars to form a pellet which is dried at
  • Example 1 150 ° C in a ventilated oven.
  • the pellet is introduced into the oven of Example 1 heated to 1550 ° C under nitrogen (34 l / h) for 10 h. After natural cooling of the oven, the excess carbon from the pellet is eliminated by combustion in air at 700 ° C.
  • a porous body (pellet) is obtained, the percentage of AIN, evaluated according to the weight losses, is close to 100%.
  • the porosity of the porous body is equal to 71%.
  • the AIN obtained is in the form of plates of diameter between 2 to 7 ⁇ m and having an aspect ratio equal to 6. The plates have a very irregular surface and some are pierced.
  • Example 2 The procedure is carried out under the conditions of Example 2 in the presence of alumina in the form of T2 grade platelets (Elf Atochem).
  • alumina in the form of T2 grade platelets (Elf Atochem).
  • These polygonal ⁇ alumina plates mainly hexagonal, have a diameter between 10 and 16 ⁇ m, a thickness between 0.7 and 1.2 ⁇ m and an aspect ratio between 10 and 20.
  • a porous body is obtained (pellet) having a porosity equal to 70.7% consisting of AIN in the form of platelets of geometry similar to that of the starting alumina.
  • the conversion rate of alumina into AIN, evaluated by weighing, is 95%.
  • the surface of the AIN platelets is irregular and we note that some platelets have perforations.
  • a porous body consisting of alumina in the form of T'Q grade platelets (Elf Atochem) obtained according to the method of preparation described in European patent application EP 0 460 987 is used.
  • the porous body (6.15 g; porosity: 78%) is introduced into a container which can be evacuated equipped at its upper part with a dropping funnel filled with formophenolic resin (R 3593, CECA). After creating a vacuum in the container, the porous body is infiltrated with the resin. The impregnated porous body is dried at 150 ° C and subjected to pyrolysis at 900 ° C under a nitrogen atmosphere. The variation in weight of the porous body indicates that 2 g of carbon have been deposited.
  • the porous impregnated body is placed in the tubular furnace of Example 1 at a temperature of 1550 ° C. and under a nitrogen flow rate of 30 l / h for 12 h. Excess unreacted carbon is removed by combustion in air at
  • the weight fraction of AIN in the product is equal to 70%.
  • a porous body is obtained having a porosity of 76% and consisting of AIN in the form of polygonal plates of irregular surface having a diameter between 2 and 7 ⁇ m, a thickness between 0.1 and 0.5 ⁇ m and a ratio d 'aspect equal to 6.
  • the weight fraction of AIN in the product is 63%.
  • a porous body of porosity equal to 80% is obtained, consisting of AIN in the form of polygonal plates of irregular surface having a diameter of between 12 and 16 ⁇ m, a thickness of between 0.7 and 1.2 ⁇ m and a ratio of aspect between 10 and 20.
  • Example 4 The procedure is carried out under the conditions of Example 4 in the presence of a porous body weighing 8.2 g (porosity: 79.5%) and a furan resin (LQ 1300, Quaker Oats Chemicals). As the viscosity of the resin is high, the porous body is impregnated with the resin in a device maintained at a temperature of 70 ° C. The weight fraction of AIN in the product is 61%.
  • a porous body with a porosity equal to 79% is obtained, consisting of AIN in the form of polygonal plates with curvilinear edges similar to those described in Example 4.
  • a porous body consisting of alumina is used in the form of T'O grade platelets (Elf Atochem) prepared according to the embodiment described in patent application EP 0 460 987.
  • the porous body (6.7 g) is introduced into the tube furnace of Example 1 heated at 1550 ° C for 12 h under the current of a gas mixture consisting of nitrogen and methane (90:10 v / v) .
  • the excess carbon resulting from the decomposition of methane is eliminated by combustion in air at 650 ° C.
  • the change in weight during the heat treatment indicates an AIN content of 61%.
  • a porous body is obtained having a porosity equal to 70% consisting of AIN having characteristics similar to those described in Example 4.
  • porous body consisting of alumina in the form of T2 grade platelets (Elf Atochem) obtained according to the method of preparation described in European patent application EP 0460987.
  • the porous body (2.9 g; porosity: 80%) is placed between two layers of graphite felt (RVG 4000, Carbone Lorraine) and the assembly is introduced into a sintering oven, the atmosphere of which can be controlled.
  • the air from the sintering furnace is expelled and replaced with nitrogen.
  • the oven is brought to 1800 ° C. in 2 hours and maintained at this temperature for 4 hours. After cooling, it is found that part of the carbon felt surrounding the preform has disappeared.
  • the porous body obtained analyzed by X-ray diffraction, consists of 99% AIN.
  • the powder obtained is in the form of polygonal plates of irregular surface having a diameter between 10 and 16 ⁇ m, a thickness between 0.7 and 1.2 ⁇ m and an aspect ratio between 10 and 20 .
  • the procedure is carried out under example 4 in the presence of a porous Saffil® body (HERE) made up of amorphous alumina fibers having a diameter between 1 and 4 ⁇ m.
  • the porous body (3.5 g; porosity: 84%) is impregnated with a furan resin (LQ 1300, Quaker Oats Chemicals) under the conditions described in Example 6. 2 g of carbon are thus deposited on the porous body.
  • porous body with a porosity equal to 82% is obtained, consisting of AIN at 64%. Examination by scanning electron microscopy of a section of this porous body shows that it is made up of fibrils comprising an outer sheath of irregular appearance and a core ( Figure 2).
  • the porous body After coating with a resin and polishing, the porous body is subjected to an examination by scanning electron microscopy and probe with light element probe (Figure 3).
  • the elements Al and O appear in yellow and the elements Al and
  • the fibers have a sheath rich in nitrogen and a core rich in oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Porous ceramic bodies comprising aluminium nitride particles and having an aspect ratio at least equal to 5. The process for the production of said bodies involves the carbonitridation of alumina and is characterized by the use of alumina particles having an aspect ratio of at least 5. Said porous bodies are also useful in the manufacture of composite materials especially with metal, ceramic or polymer matrices.

Description

CORPS POREUX A BASE DE NITRURE D'ALUMINIUM. PROCEDE DE PREPARATION ET UTILISATIONS POROUS BODY BASED ON ALUMINUM NITRIDE. PREPARATION PROCESS AND USES
La présente invention a pour objet des corps poreux en céramique ainsi qu'un procédé de préparation desdits corps poreux. Elle concerne également leurs utilisations, notamment pour la préparation de matériaux composites.The present invention relates to porous ceramic bodies and a process for preparing said porous bodies. It also relates to their uses, in particular for the preparation of composite materials.
On connaît des procédés de préparation de corps poreux en céramique.Processes are known for preparing porous ceramic bodies.
Dans US 4 882 455, on décrit des corps poreux renfermant des particules de Siθ2, AI2O3, ZnO, Zrθ2, MgO, PbO, B2O3, SÎ3N4, BN ou d'AIN dont la taille moyenne n'excède pas 10 μm. Ces corps poreux sont obtenus par mise en forme d'une poudre céramique et frittage. Après infiltration par une résine, les corps poreux conduisent à des matériaux composites utilisables dans le domaine de l'électronique.In US 4 882 455, porous bodies are described containing particles of Siθ2, AI2O3, ZnO, Zrθ2, MgO, PbO, B2O3, SÎ3N4, BN or AIN whose average size does not exceed 10 μm. These porous bodies are obtained by shaping a ceramic powder and sintering. After infiltration by a resin, the porous bodies lead to composite materials which can be used in the field of electronics.
Dans US 5 190 738, on mentionne la préparation par frittage de corps poreux (préformes) en céramique renforcés par des particules d'AIN sensiblement sphériques de taille comprise entre 10 et 100 μm. Ces corps poreux peuvent être utilisés pour fabriquer des matériaux composites à matrice métallique.In US 5 190 738, mention is made of the sintering preparation of porous ceramic bodies (preforms) reinforced with substantially spherical AIN particles of size between 10 and 100 μm. These porous bodies can be used to manufacture composite materials with a metal matrix.
Il apparaît à la lecture des documents antérieurs que les corps poreux ont été jusqu'à présent préparés par frittage. Ce mode de fabrication ne permet pas de produire des corps poreux ayant une porosité importante et ne contenant pas d'agents de frittage.It appears from reading the previous documents that the porous bodies have so far been prepared by sintering. This manufacturing method does not make it possible to produce porous bodies having a large porosity and not containing sintering agents.
Il a maintenant été trouvé de nouveaux corps poreux en céramique, lesdits corps poreux étant caractérisés en ce qu'ils comprennent des particules de nitrure d'aluminium (AIN) présentant un rapport d'aspect au moins égal à 5. Le terme rapport d'aspect est ici utilisé dans son sens conventionnel, à savoir qu'il désigne le rapport diamètre/épaisseur.New porous ceramic bodies have now been found, said porous bodies being characterized in that they comprise particles of aluminum nitride (AIN) having an aspect ratio at least equal to 5. The term ratio of aspect is here used in its conventional sense, namely that it designates the diameter / thickness ratio.
L'invention concerne plus particulièrement des corps poreux dont la porosité est au moins égale à 60 % en volume.The invention relates more particularly to porous bodies whose porosity is at least equal to 60% by volume.
Parmi ces corps poreux, l'invention concerne tout particulièrement les corps poreux constitués d'au moins 60 % en poids d'AIN.Among these porous bodies, the invention particularly relates to porous bodies made up of at least 60% by weight of AIN.
Elle concerne également des corps poreux mixtes dans lesquels lesdites particules sont associées à un ou plusieurs autres produits de renforcement tels que whiskers, fibres courtes, particules fines de céramique, la teneur en AIN restant de préférence majoritaire. L'invention a également pour objet un procédé de préparation des corps poreux en céramique. Ce procédé par carbonitruration à partir d'alumine est caractérisé en ce qu'on utilise des particules d'alumine présentant un rapport d'aspect au moins égal à 5. Selon une première variante préférée, on met en oeuvre le procédé en utilisant une poudre d'alumine et du carbone.It also relates to mixed porous bodies in which said particles are associated with one or more other reinforcing products such as whiskers, short fibers, fine ceramic particles, the AIN content preferably remaining in the majority. The invention also relates to a process for preparing porous ceramic bodies. This process by carbonitriding from alumina is characterized in that alumina particles are used having an aspect ratio at least equal to 5. According to a first preferred variant, the process is carried out using an alumina powder and carbon.
La poudre d'alumine est généralement choisie parmi les poudres dont les particules se présentent sous la forme de cristaux tabulaires ou de fibres. De préférence, on utilise des cristaux d'alumine α ayant majoritairement l'aspect de plaquettes polygonales, et avantageusement hexagonales, et qui présentent une taille variant de 2 à 50 μm et de préférence inférieure à 15 μm et une épaisseur variant de 0,1 à 3 μm et de préférence inférieure à 1 ,5 μm.The alumina powder is generally chosen from powders whose particles are in the form of tabular crystals or fibers. Preferably, α alumina crystals are used which mainly have the appearance of polygonal plates, and advantageously hexagonal, and which have a size varying from 2 to 50 μm and preferably less than 15 μm and a thickness varying from 0.1 at 3 μm and preferably less than 1.5 μm.
De tels cristaux peuvent être obtenus par exemple par calcination d'un précurseur d'alumine α en présence de fondant selon le mode de préparation décrit dans la demande EP 0425325 au nom de la Demanderesse.Such crystals can be obtained for example by calcination of an α alumina precursor in the presence of flux according to the method of preparation described in application EP 0425325 in the name of the Applicant.
On peut également utiliser des fibres d'alumine généralement amorphe présentant un diamètre variant de 1 μm à plusieurs μm et une longueur de plusieurs mm. Le carbone est généralement choisi parmi le noir de lampe, le noir de fumée, le noir Tunnel, le noir au four, le charbon actif, le feutre de carbone ou de graphite et la poudre de graphite.It is also possible to use generally amorphous alumina fibers having a diameter varying from 1 μm to several μm and a length of several mm. Carbon is generally chosen from lamp black, smoke black, tunnel black, oven black, activated carbon, carbon or graphite felt and graphite powder.
On peut avantageusement remplacer tout ou partie du carbone par au moins un composé dont la pyrolyse sous atmosphère non oxydante conduit à un résidu carboné. A titre d'exemples de tels composés, on peut citer les résines phenoliques ou furanniques, les polyacrylonit les, les pitchs de pétrole, les polysaccharides et les dérivés de la cellulose.It is advantageously possible to replace all or part of the carbon with at least one compound whose pyrolysis under a non-oxidizing atmosphere leads to a carbonaceous residue. As examples of such compounds, mention may be made of phenolic or furan resins, polyacrylonites, petroleum pitches, polysaccharides and cellulose derivatives.
On peut également utiliser des précurseurs de carbone tels que les hydrocarbures dont la décomposition thermique conduit à un dépôt carboné. A titre d'exemple, on peut citer les hydrocarbures linéaires saturés tels que le méthane ou insaturés tels que l'éthylène et l'acétylène ou aromatiques.It is also possible to use carbon precursors such as hydrocarbons, the thermal decomposition of which leads to carbon deposition. By way of example, mention may be made of saturated linear hydrocarbons such as methane or unsaturated hydrocarbons such as ethylene and acetylene or aromatics.
On met généralement en oeuvre le procédé de l'invention, en mélangeant des quantités de carbone et l'alumine telles que le rapport molaire carbone/alumine est compris entre 2 et 20 et de préférence 2,8 et 10. Des valeurs du rapport molaire supérieures à 20 ne présentent pas d'intérêt car elles conduisent à des macrocristaux renfermant un fort excès de carbone résiduaire dont l'élimination s'avère coûteuse.The process of the invention is generally implemented, by mixing amounts of carbon and the alumina such that the carbon / alumina molar ratio is between 2 and 20 and preferably 2.8 and 10. Values of the molar ratio greater than 20 are not of interest because they lead to macrocrystals containing a large excess of residual carbon, the elimination of which proves to be expensive.
Le mélange comprenant l'alumine et le carbone subit généralement une étape de mise en forme pouvant être, par exemple, une extrusion, un moulage par injection ou un pressage isostatique ou uniaxial.The mixture comprising alumina and carbon generally undergoes a shaping step which can be, for example, an extrusion, an injection molding or an isostatic or uniaxial pressing.
Sans sortir du cadre de la présente invention, on peut envisager de mettre en oeuvre la présente variante du procédé en réalisant un mélange comprenant le carbone, le précurseur des plaquettes d'alumine et le fondant décrits ci-avant, ledit mélange étant préalablement mis en forme et calciné à une température inférieure à celle requise pour la carbonitruration.Without departing from the scope of the present invention, it is possible to envisage implementing the present variant of the process by producing a mixture comprising the carbon, the precursor of the alumina platelets and the flux described above, said mixture being previously shaped and calcined at a temperature below that required for carbonitriding.
Selon une deuxième variante, on met en oeuvre le procédé de l'invention en utilisant un corps poreux renfermant lesdites particules d'alumine et du carbone. Avantageusement, un tel corps poreux à base d'alumine présente une porosité au moins égale à 55 % en volume et de préférence 70 %.According to a second variant, the method of the invention is implemented using a porous body containing said particles of alumina and carbon. Advantageously, such a porous body based on alumina has a porosity at least equal to 55% by volume and preferably 70%.
Selon une première manière, on procède au recouvrement du corps poreux par le carbone constitué, par exemple, de noir de carbone ou de graphite.In a first way, the porous body is covered with carbon consisting, for example, of carbon black or graphite.
Selon une deuxième manière, on soumet le corps poreux à une infiltration par le carbone.In a second way, the porous body is subjected to carbon infiltration.
En général, une telle infiltration est effectuée en utilisant la résine générant du carbone par pyrolyse décrite ci-avant sous forme liquide, fondue, ou mise en solution ou en émulsion.In general, such an infiltration is carried out using the resin generating carbon by pyrolysis described above in liquid, molten, or dissolved or emulsified form.
On peut également réaliser l'infiltration par dépôt en phase vapeur, par exemple en effectuant la décomposition thermique d'hydrocarbures linéaires saturés tels que le méthane ou insaturés tels que l'éthylène et l'acétylène ou aromatiques.It is also possible to carry out infiltration by vapor deposition, for example by carrying out the thermal decomposition of saturated linear hydrocarbons such as methane or unsaturated such as ethylene and acetylene or aromatics.
Le procédé est généralement mis en oeuvre en présence d'azote et/ou d'un gaz générant de l'azote tel que l'ammoniac.The process is generally carried out in the presence of nitrogen and / or a nitrogen-generating gas such as ammonia.
La réaction de carbonitruration est en général effectuée à une température comprise entre 1350 et 1900°C, et de préférence entre 1400 et 1600°C, et pendant un temps suffisant pour obtenir un corps poreux à base d'AIN. A titre purement indicatif, ce temps peut varier de 30 minutes à 15 heures.The carbonitriding reaction is generally carried out at a temperature between 1350 and 1900 ° C, and preferably between 1400 and 1600 ° C, and for a time sufficient to obtain a porous body based on AlN. For information purposes only, this time can vary from 30 minutes to 15 hours.
A l'issue de la carbonitruration, on peut éventuellement éliminer le carbone résiduaire par combustion dans l'air à une température comprise entre 500 et 800°C. Le corps poreux objet de l'invention est susceptible de nombreuses applications. On peut citer notamment son utilisation pour préparer des matériaux composites, lesdits matériaux étant obtenus par infiltration du corps poreux, par exemple par un polymère thermodurcissable à l'état liquide ou en solution ou thermoplastique à l'état fondu ou en solution, un métal fondu ou un précurseur de céramique en solution colloïdale ou en phase vapeur.After carbonitriding, the residual carbon can optionally be eliminated by combustion in air at a temperature between 500 and 800 ° C. The porous body which is the subject of the invention is capable of numerous applications. Mention may in particular be made of its use for preparing composite materials, said materials being obtained by infiltration of the porous body, for example by a thermosetting polymer in the liquid state or in solution or thermoplastic in the molten state or in solution, a molten metal or a ceramic precursor in colloidal solution or in vapor phase.
En outre, le corps poreux selon l'invention peut, grâce à sa faible mouillabilité par les métaux et son importante résistance à la corrosion par les sels fondus, constituer un excellent filtre pour les métaux fondus.In addition, the porous body according to the invention can, thanks to its low wettability by metals and its high resistance to corrosion by molten salts, constitute an excellent filter for molten metals.
Les exemples qui suivent permettent d'illustrer l'invention.The following examples illustrate the invention.
EXEMPLE 1EXAMPLE 1
On introduit 63,5 g de noir d'acétylène (Y50, SN2A), 74,8 g de résine formophenolique (R3593, CECA) et 90,0 g d'alumine sous forme de plaquettes (grade T-j , Elf Atochem) dans un malaxeur à bras en Z. Les plaquettes d'alumine sont constituées de monocristaux d'alumineα sous forme de polygones (majoritairement d'hexagones) plus ou moins réguliers présentant un diamètre moyen compris entre 5 et 10 μm, une épaisseur comprise entre 0,2 et 0,6 μm et un rapport d'aspect d'environ 20.63.5 g of acetylene black (Y50, SN2A), 74.8 g of formophenolic resin (R3593, CECA) and 90.0 g of alumina in the form of platelets are introduced. (grade Tj, Elf Atochem) in a Z-arm mixer. The alumina wafers consist of monocrystals of aluminaα in the form of more or less regular polygons (mainly hexagons) having an average diameter between 5 and 10 μm, a thickness between 0.2 and 0.6 μm and an aspect ratio of approximately 20.
Le mélange est extrudé pour former des granulés cylindriques présentant un diamètre de 3 mm qui sont ensuite séchés à l'air à 150°C afin de polymériser la résine.The mixture is extruded to form cylindrical granules having a diameter of 3 mm which are then air dried at 150 ° C in order to polymerize the resin.
On introduit 27 g de granulés secs dans un creuset en graphite de 3,5 cm de diamètre dont le fond est muni d'orifices de 2 mm de diamètre. Le creuset est placé au centre d'un tube d'alumine hermétiquement clos constituant le moufle d'un four tubulaire. L'une des extrémités du moufle est munie d'un orifice permettant l'introduction d'azote et l'autre extrémité est pourvue d'un conduit permettant l'évacuation des gaz de combustion et de l'excès d'azote. Le four est chauffé à 1530°C sous courant d'azote (84 l/h) et la température est maintenue constante pendant 10 h. Après refroidissement du four, on élimine le carbone excédentaire présent dans les granulés par combustion dans l'air à 700°C.27 g of dry granules are introduced into a graphite crucible 3.5 cm in diameter, the bottom of which is provided with orifices 2 mm in diameter. The crucible is placed in the center of a hermetically sealed alumina tube constituting the muffle of a tubular furnace. One end of the muffle is provided with an orifice allowing the introduction of nitrogen and the other end is provided with a duct allowing the evacuation of combustion gases and excess nitrogen. The oven is heated to 1530 ° C under a stream of nitrogen (84 l / h) and the temperature is kept constant for 10 h. After the oven has cooled, the excess carbon present in the granules is eliminated by combustion in air at 700 ° C.
On obtient des corps poreux de géométrie similaire à celle des granulés de départ et dont la porosité est égale à 70 % (porosité calculée à partir de la détermination de la densité apparente de la préforme connaissant la densité absolue du matériau). L'analyse au microscope électronique à balayage de ces corps poreux montre que l'AIN obtenu est constitué de plaquettes de surface irrégulière, parfois percées, présentant des caractéristiques morphologiques et des dimensions proches de celles de l'alumine de départ (Figure 1 ). La teneur en oxygène du corps poreux déterminée par fluorescence des rayons X est égale à 1 , 1 % ce qui correspond à une transformation quasi totale de l'alumine en AIN.Porous bodies are obtained with a geometry similar to that of the starting granules and the porosity of which is equal to 70% (porosity calculated from the determination of the apparent density of the preform knowing the absolute density of the material). Analysis of these porous bodies using a scanning electron microscope shows that the AIN obtained consists of irregularly-shaped platelets, sometimes pierced, with morphological characteristics and dimensions close to those of the starting alumina (Figure 1). The oxygen content of the porous body determined by X-ray fluorescence is equal to 1.1%, which corresponds to an almost total transformation of the alumina into AIN.
EXEMPLE 2 On introduit 5,2 g de noir d'acétylène (Y50, SN2A), 6,3 g de résine formophenolique (R3593, CECA) et 18,0 g d'alumine sous forme de plaquettes (grade T'o, Elf Atochem) dans un malaxeur à couteaux. Ces plaquettes sont des monocristaux d'alumine α, de forme polygonale à majorité hexagonale présentant un diamètre compris entre 2 et 7 μm et une épaisseur comprise entre 0,1 et 0,5 μm. Le mélange est pressé à 30 bars pour former une pastille qui est séchée àEXAMPLE 2 5.2 g of acetylene black (Y50, SN2A), 6.3 g of formophenolic resin (R3593, CECA) and 18.0 g of alumina in the form of platelets (T'o grade, Elf) are introduced Atochem) in a knife mixer. These wafers are α alumina single crystals, of polygonal shape with a hexagonal majority having a diameter between 2 and 7 μm and a thickness between 0.1 and 0.5 μm. The mixture is pressed at 30 bars to form a pellet which is dried at
150°C dans une étuve ventilée. La pastille est introduite dans le four de l'exemple 1 chauffé à 1550°C sous azote (34 l/h) pendant 10 h. Après refroidissement naturel du four, le carbone excédentaire de la pastille est éliminé par combustion dans l'air à 700°C.150 ° C in a ventilated oven. The pellet is introduced into the oven of Example 1 heated to 1550 ° C under nitrogen (34 l / h) for 10 h. After natural cooling of the oven, the excess carbon from the pellet is eliminated by combustion in air at 700 ° C.
On obtient un corps poreux (pastille) dont le pourcentage d'AIN, évalué d'après les pertes en poids, est voisin de 100 %. La porosité du corps poreux est égale à 71 %. L'AIN obtenu se présente sous forme de plaquettes de diamètre compris entre 2 à 7 μm et ayant un rapport d'aspect égal à 6. Les plaquettes présentent une surface très irrégulière et quelques-unes sont percées.A porous body (pellet) is obtained, the percentage of AIN, evaluated according to the weight losses, is close to 100%. The porosity of the porous body is equal to 71%. The AIN obtained is in the form of plates of diameter between 2 to 7 μm and having an aspect ratio equal to 6. The plates have a very irregular surface and some are pierced.
EXEMPLE 3EXAMPLE 3
On procède dans les conditions de l'exemple 2 en présence d'alumine sous forme de plaquettes de grade T2 (Elf Atochem). Ces plaquettes polygonales d'alumine α, majoritairement hexagonales, présentent un diamètre compris entre 10 et 16 μm, une épaisseur comprise entre 0,7 et 1 ,2 μm et un rapport d'aspect compris entre 10 et 20.The procedure is carried out under the conditions of Example 2 in the presence of alumina in the form of T2 grade platelets (Elf Atochem). These polygonal α alumina plates, mainly hexagonal, have a diameter between 10 and 16 μm, a thickness between 0.7 and 1.2 μm and an aspect ratio between 10 and 20.
On obtient un corps poreux (pastille) ayant une porosité égale à 70,7 % constitué d'AIN sous forme de plaquettes de géométrie similaire à celle de l'alumine de départ. Le taux de transformation de l'alumine en AIN, évalué par pesée, est de 95 %. La surface des plaquettes d'AIN est irrégulière et on constate que certaines plaquettes présentent des perforations.A porous body is obtained (pellet) having a porosity equal to 70.7% consisting of AIN in the form of platelets of geometry similar to that of the starting alumina. The conversion rate of alumina into AIN, evaluated by weighing, is 95%. The surface of the AIN platelets is irregular and we note that some platelets have perforations.
EXEMPLE 4EXAMPLE 4
On utilise un corps poreux constitué d'alumine sous forme de plaquettes de grade T'Q (Elf Atochem) obtenu selon le mode de préparation décrit dans la demande de brevet européen EP 0 460 987.A porous body consisting of alumina in the form of T'Q grade platelets (Elf Atochem) obtained according to the method of preparation described in European patent application EP 0 460 987 is used.
Le corps poreux (6,15 g; porosité : 78 %) est introduit dans un récipient pouvant être mis sous vide équipé à sa partie supérieure d'une ampoule de coulée remplie de résine formophenolique (R 3593, CECA). Après avoir réalisé le vide dans le récipient, on infiltre le corps poreux avec la résine. Le corps poreux imprégné est séché à 150°C et soumis à pyrolyse à 900°C sous atmosphère d'azote. La variation de poids du corps poreux indique que 2 g de carbone ont été déposés.The porous body (6.15 g; porosity: 78%) is introduced into a container which can be evacuated equipped at its upper part with a dropping funnel filled with formophenolic resin (R 3593, CECA). After creating a vacuum in the container, the porous body is infiltrated with the resin. The impregnated porous body is dried at 150 ° C and subjected to pyrolysis at 900 ° C under a nitrogen atmosphere. The variation in weight of the porous body indicates that 2 g of carbon have been deposited.
Le corps poreux imprégné est placé dans le four tubulaire de l'exemple 1 à une température de 1550°C et sous un débit d'azote de 30 l/h pendant 12 h. L'excès de carbone n'ayant pas réagi est éliminé par combustion dans l'air àThe porous impregnated body is placed in the tubular furnace of Example 1 at a temperature of 1550 ° C. and under a nitrogen flow rate of 30 l / h for 12 h. Excess unreacted carbon is removed by combustion in air at
650°C. La fraction pondérale de l'AIN dans le produit, calculée sur la base des variations de poids, est égale à 70 %. On obtient un corps poreux ayant une porosité de 76 % et constitué d'AIN sous forme de plaquettes polygonales de surface irrégulière présentant un diamètre compris entre 2 et 7 μm, une épaisseur comprise entre 0,1 et 0,5 μm et un rapport d'aspect égal à 6.650 ° C. The weight fraction of AIN in the product, calculated on the basis of weight variations, is equal to 70%. A porous body is obtained having a porosity of 76% and consisting of AIN in the form of polygonal plates of irregular surface having a diameter between 2 and 7 μm, a thickness between 0.1 and 0.5 μm and a ratio d 'aspect equal to 6.
EXEMPLE 5EXAMPLE 5
On procède dans les conditions de l'exemple 4 en présence d'un corps poreux (3,4 g; porosité : 80,6 %) constitué d'alumine sous forme de plaquettes de grade T2 (Elf Atochem). Après traitement par la résine, la quantité de carbone déposé sur le corps poreux est égale à 1 ,36 g.The procedure is carried out under example 4 in the presence of a porous body (3.4 g; porosity: 80.6%) consisting of alumina in the form of T2 grade platelets (Elf Atochem). After treatment with the resin, the amount of carbon deposited on the porous body is equal to 1.36 g.
La fraction pondérale de l'AIN dans le produit est de 63 %.The weight fraction of AIN in the product is 63%.
On obtient un corps poreux de porosité égale à 80 % constitué d'AIN sous forme de plaquettes polygonales de surface irrégulière présentant un diamètre compris entre 12 et 16 μm, une épaisseur comprise entre 0,7 et 1 ,2 μm et un rapport d'aspect compris entre 10 et 20.A porous body of porosity equal to 80% is obtained, consisting of AIN in the form of polygonal plates of irregular surface having a diameter of between 12 and 16 μm, a thickness of between 0.7 and 1.2 μm and a ratio of aspect between 10 and 20.
L'examen du corps poreux au microscope électronique à balayage avec sonde à éléments légers montre que l'alumine résiduaire est majoritairement localisée au coeur des plaquettes d'AIN.Examination of the porous body using a scanning electron microscope with a light element probe shows that the residual alumina is mainly located in the heart of the AIN platelets.
EXEMPLE 6EXAMPLE 6
On procède dans les conditions de l'exemple 4 en présence d'un corps poreux pesant 8,2 g (porosité : 79,5 %) et d'une résine furannique (LQ 1300, Quaker Oats Chemicals). La viscosité de la résine étant élevée, on réalise l'imprégnation du corps poreux par la résine dans un dispositif maintenu à une température de 70°C. La fraction pondérale de l'AIN dans le produit est de 61 %.The procedure is carried out under the conditions of Example 4 in the presence of a porous body weighing 8.2 g (porosity: 79.5%) and a furan resin (LQ 1300, Quaker Oats Chemicals). As the viscosity of the resin is high, the porous body is impregnated with the resin in a device maintained at a temperature of 70 ° C. The weight fraction of AIN in the product is 61%.
On obtient un corps poreux de porosité égale à 79 % constitué d'AIN sous forme de plaquettes polygonales à bords curvilignes similaires à celles décrites à l'exemple 4.A porous body with a porosity equal to 79% is obtained, consisting of AIN in the form of polygonal plates with curvilinear edges similar to those described in Example 4.
EXEMPLE 7EXAMPLE 7
On utilise un corps poreux constitué d'alumine sous forme de plaquettes de grade T'O (Elf Atochem) préparé selon le mode de réalisation décrit dans la demande de brevet EP 0 460 987.A porous body consisting of alumina is used in the form of T'O grade platelets (Elf Atochem) prepared according to the embodiment described in patent application EP 0 460 987.
Le corps poreux (6,7 g) est introduit dans le four tubulaire de l'exemple 1 chauffé à 1550°C pendant 12 h sous courant d'un mélange gazeux constitué d'azote et de méthane (90:10 v/v).The porous body (6.7 g) is introduced into the tube furnace of Example 1 heated at 1550 ° C for 12 h under the current of a gas mixture consisting of nitrogen and methane (90:10 v / v) .
Le carbone excédentaire issu de la décomposition du méthane est éliminé par combustion dans l'air à 650°C. La variation de poids au cours du traitement thermique indique une teneur en AIN de 61 %.The excess carbon resulting from the decomposition of methane is eliminated by combustion in air at 650 ° C. The change in weight during the heat treatment indicates an AIN content of 61%.
On obtient un corps poreux ayant une porosité égale à 70 % constitué d'AIN présentant des caractéristiques similaires à celles décrites à l'exemple 4.A porous body is obtained having a porosity equal to 70% consisting of AIN having characteristics similar to those described in Example 4.
EXEMPLE 8EXAMPLE 8
On utilise un corps poreux constitué d'alumine sous forme de plaquettes de grade T2 (Elf Atochem) obtenu selon le mode de préparation décrit dans la demande de brevet européen EP 0460987. Le corps poreux (2,9 g; porosité : 80 %) est placé entre deux couches de feutre de graphite (RVG 4000, Carbone Lorraine) et l'ensemble est introduit dans un four de frittage dont l'atmosphère peut être contrôlée.Using a porous body consisting of alumina in the form of T2 grade platelets (Elf Atochem) obtained according to the method of preparation described in European patent application EP 0460987. The porous body (2.9 g; porosity: 80%) is placed between two layers of graphite felt (RVG 4000, Carbone Lorraine) and the assembly is introduced into a sintering oven, the atmosphere of which can be controlled.
L'air du four de frittage est chassé et remplacé par de l'azote. Le four est porté en 2 h à 1800°C et maintenu à cette température pendant 4 h. Après refroidissement, on constate qu'une partie du feutre de carbone entourant la préforme a disparu.The air from the sintering furnace is expelled and replaced with nitrogen. The oven is brought to 1800 ° C. in 2 hours and maintained at this temperature for 4 hours. After cooling, it is found that part of the carbon felt surrounding the preform has disappeared.
Le corps poreux obtenu, analysé par diffraction des rayons X, est constitué d'AIN à 99 %. Après désagrégation, la poudre obtenue se présente sous la forme de plaquettes polygonales de surface irrégulière présentant un diamètre compris entre 10 et 16 μm, une épaisseur comprise entre 0,7 et 1 ,2 μm et un rapport d'aspect compris entre 10 et 20.The porous body obtained, analyzed by X-ray diffraction, consists of 99% AIN. After disintegration, the powder obtained is in the form of polygonal plates of irregular surface having a diameter between 10 and 16 μm, a thickness between 0.7 and 1.2 μm and an aspect ratio between 10 and 20 .
EXEMPLE 9EXAMPLE 9
On procède dans les conditions de l'exemple 4 en présence d'un corps poreux Saffil® (ICI) constitué de fibres d'alumine amorphe ayant un diamètre compris entre 1 et 4 μm. Le corps poreux (3,5 g; porosité : 84 %) est imprégné par une résine furannique (LQ 1300, Quaker Oats Chemicals) dans les conditions décrites à l'exemple 6. On dépose ainsi 2 g de carbone sur le corps poreux.The procedure is carried out under example 4 in the presence of a porous Saffil® body (HERE) made up of amorphous alumina fibers having a diameter between 1 and 4 μm. The porous body (3.5 g; porosity: 84%) is impregnated with a furan resin (LQ 1300, Quaker Oats Chemicals) under the conditions described in Example 6. 2 g of carbon are thus deposited on the porous body.
Après carbonitruration, on obtient un corps poreux de porosité égale à 82 % constitué d'AIN à 64 %. L'examen en microscopie électronique à balayage d'une coupe de ce corps poreux montre qu'il est constitué de fibrilles comprenant une gaine extérieure d'aspect irrégulier et une âme (Figure 2).After carbonitriding, a porous body with a porosity equal to 82% is obtained, consisting of AIN at 64%. Examination by scanning electron microscopy of a section of this porous body shows that it is made up of fibrils comprising an outer sheath of irregular appearance and a core (Figure 2).
Après enrobage par une résine et polissage, le corps poreux est soumis à un examen par microscopie électronique à balayage et sonde à sonde à éléments légers (Figure 3). Les éléments Al et O apparaissent en jaune et les éléments Al etAfter coating with a resin and polishing, the porous body is subjected to an examination by scanning electron microscopy and probe with light element probe (Figure 3). The elements Al and O appear in yellow and the elements Al and
N en rouge. On constate que les fibres présentent une gaine riche en azote et un coeur riche en oxygène. N in red. It is found that the fibers have a sheath rich in nitrogen and a core rich in oxygen.

Claims

REVENDICATIONS
1. Corps poreux en céramique caractérisés en ce qu'ils comprennent des particules de nitrure d'aluminium présentant un rapport d'aspect au moins égal à 5.1. Porous ceramic body characterized in that they comprise aluminum nitride particles having an aspect ratio at least equal to 5.
2. Corps poreux selon la revendication 1 caractérisés en ce qu'ils présentent une porosité au moins égale à 60 % en volume.2. Porous body according to claim 1 characterized in that they have a porosity at least equal to 60% by volume.
3. Corps poreux selon l'une des revendications 1 ou 2 caractérisés en ce qu'ils comprennent au moins 60 % en poids de nitrure d'aluminium.3. Porous body according to one of claims 1 or 2 characterized in that they comprise at least 60% by weight of aluminum nitride.
4. Corps poreux selon l'un des revendications 1 à 3 caractérisés en ce que les particules ont l'aspect de cristaux tabulaires polygonaux.4. Porous body according to one of claims 1 to 3 characterized in that the particles have the appearance of polygonal tabular crystals.
5. Corps poreux selon l'une des revendications 1 à 3 caractérisés en ce que les particules ont l'aspect de fibres.5. Porous body according to one of claims 1 to 3 characterized in that the particles have the appearance of fibers.
6. Procédé de préparation des corps poreux selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on réalise la carbonitruration d'une poudre d'alumine dont les particules présentent un rapport d'aspect au moins égal à 5.6. A method of preparing porous bodies according to any one of claims 1 to 5, characterized in that the carbonitriding of an alumina powder is carried out, the particles of which have an aspect ratio at least equal to 5.
7. Procédé selon la revendication 6 caractérisé en ce que les particules présentent l'aspect de monocristaux polygonaux dont le diamètre varie de 2 à 40 μm et l'épaisseur varie de 0,1 à 3 μm.7. Method according to claim 6 characterized in that the particles have the appearance of polygonal single crystals whose diameter varies from 2 to 40 μm and the thickness varies from 0.1 to 3 μm.
8. Procédé selon la revendication 7 caractérisé en ce que le diamètre varie de 2 à 15 μm et l'épaisseur varie de 0,1 à 1 ,5 μm.8. Method according to claim 7 characterized in that the diameter varies from 2 to 15 microns and the thickness varies from 0.1 to 1.5 microns.
9. Procédé selon la revendication 6 caractérisé en ce que les particules présentent l'aspect de fibres.9. Method according to claim 6 characterized in that the particles have the appearance of fibers.
10. Procédé selon la revendication 6 caractérisé en ce que la carbonitruration est effectuée à une température comprise entre 1350 et 1900°C.10. Method according to claim 6 characterized in that the carbonitriding is carried out at a temperature between 1350 and 1900 ° C.
11. Procédé de préparation des corps poreux selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'on réalise la carbonitruration d'un corps poreux en alumine dont les particules présentent un rapport d'aspect au moins égal à 5.11. A method of preparing porous bodies according to any one of claims 1 to 5, characterized in that the carbonitriding of a body is carried out porous alumina whose particles have an aspect ratio at least equal to 5.
12. Procédé selon la revendication 11 caractérisé en ce que la porosité du corps poreux est au moins égale à 55 % en volume.12. Method according to claim 11 characterized in that the porosity of the porous body is at least equal to 55% by volume.
13. Procédé selon l'une des revendications 11 ou 12 caractérisé en ce que les particules présentent l'aspect de monocristaux polygonaux dont le diamètre varie de 2 à 40 μm et l'épaisseur varie de 0,1 à 3 μm.13. Method according to one of claims 11 or 12 characterized in that the particles have the appearance of polygonal single crystals whose diameter varies from 2 to 40 microns and the thickness varies from 0.1 to 3 microns.
14. Procédé selon la revendication 13 caractérisé en ce que le diamètre varie de 2 à 15 μm et l'épaisseur varie de 0, 1 à 1 ,5 μm.14. The method of claim 13 characterized in that the diameter varies from 2 to 15 microns and the thickness varies from 0.1 to 1.5 microns.
15. Procédé selon la revendication 11 caractérisé en ce que les particules présentent l'aspect de fibres.15. The method of claim 11 characterized in that the particles have the appearance of fibers.
16. Procédé selon la revendication 1 1 caractérisé en ce que la carbonitruration est effectuée à une température comprise entre 1350 et 1900°C.16. The method of claim 1 1 characterized in that the carbonitriding is carried out at a temperature between 1350 and 1900 ° C.
17. Utilisation des corps poreux selon l'une des revendications 1 à 5 pour le renforcement de matériaux composites à matrice polymère, métallique ou céramique.17. Use of the porous bodies according to one of claims 1 to 5 for the reinforcement of composite materials with a polymer, metallic or ceramic matrix.
18. Utilisation selon la revendication 17 caractérisée en ce que le polymère est choisi parmi les résines thermodurcissables ou thermoplastiques.18. Use according to claim 17 characterized in that the polymer is chosen from thermosetting or thermoplastic resins.
19. Utilisation du corps poreux selon l'une des revendications 1 à 5 pour la filtration de métaux fondus. 19. Use of the porous body according to one of claims 1 to 5 for the filtration of molten metals.
PCT/FR1995/000010 1994-01-14 1995-01-05 Porous aluminium nitride based bodies, method of preparation and use thereof WO1995019325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95906367A EP0797556A1 (en) 1994-01-14 1995-01-05 Porous aluminium nitride based bodies, method of preparation and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/00374 1994-01-14
FR9400374A FR2717172B1 (en) 1994-01-14 1994-01-14 Porous body comprising aluminum nitride particles, their preparation process and their applications.

Publications (1)

Publication Number Publication Date
WO1995019325A1 true WO1995019325A1 (en) 1995-07-20

Family

ID=9459048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/000010 WO1995019325A1 (en) 1994-01-14 1995-01-05 Porous aluminium nitride based bodies, method of preparation and use thereof

Country Status (3)

Country Link
EP (1) EP0797556A1 (en)
FR (1) FR2717172B1 (en)
WO (1) WO1995019325A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1027465A1 (en) * 1997-10-27 2000-08-16 Selee Corporation Method and apparatus for removing liquid salts from liquid metal
CN102560331A (en) * 2011-12-28 2012-07-11 成都易态科技有限公司 Method for adjusting aperture of metal porous material by carbonitriding and pore structure of metal porous material
CN115141022A (en) * 2022-07-28 2022-10-04 江苏正力新能电池技术有限公司 Preparation method of porous ceramic bottom supporting plate, porous ceramic bottom supporting plate and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD263750A1 (en) * 1985-07-03 1989-01-11 Akad Wissenschaften Ddr FIRE-RESISTANT PRODUCT WITH NITRIDER CERAMIC TIE
WO1990009461A2 (en) * 1989-02-15 1990-08-23 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers
US5004709A (en) * 1989-03-16 1991-04-02 Allied-Signal Inc. High surface area silicon nitride and use thereof
EP0431927A1 (en) * 1989-12-07 1991-06-12 The Dow Chemical Company Method for producing aluminium nitride by carbothermal reduction and apparatus
EP0460987A1 (en) * 1990-05-23 1991-12-11 Elf Atochem S.A. Ceramic preforms, process for their production and applications thereof
US5190738A (en) * 1991-06-17 1993-03-02 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD263750A1 (en) * 1985-07-03 1989-01-11 Akad Wissenschaften Ddr FIRE-RESISTANT PRODUCT WITH NITRIDER CERAMIC TIE
WO1990009461A2 (en) * 1989-02-15 1990-08-23 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers
US5004709A (en) * 1989-03-16 1991-04-02 Allied-Signal Inc. High surface area silicon nitride and use thereof
EP0431927A1 (en) * 1989-12-07 1991-06-12 The Dow Chemical Company Method for producing aluminium nitride by carbothermal reduction and apparatus
EP0460987A1 (en) * 1990-05-23 1991-12-11 Elf Atochem S.A. Ceramic preforms, process for their production and applications thereof
US5190738A (en) * 1991-06-17 1993-03-02 Alcan International Limited Process for producing unagglomerated single crystals of aluminum nitride

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 112, no. 14, 2 April 1990, Columbus, Ohio, US; abstract no. 124055x, H. SCHIKORE: "Porous nitride or oxynitride ceramic-based refractory products" page 331; *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1027465A1 (en) * 1997-10-27 2000-08-16 Selee Corporation Method and apparatus for removing liquid salts from liquid metal
EP1027465A4 (en) * 1997-10-27 2001-01-17 Selee Corp Method and apparatus for removing liquid salts from liquid metal
CN102560331A (en) * 2011-12-28 2012-07-11 成都易态科技有限公司 Method for adjusting aperture of metal porous material by carbonitriding and pore structure of metal porous material
CN115141022A (en) * 2022-07-28 2022-10-04 江苏正力新能电池技术有限公司 Preparation method of porous ceramic bottom supporting plate, porous ceramic bottom supporting plate and battery

Also Published As

Publication number Publication date
FR2717172B1 (en) 1996-04-12
FR2717172A1 (en) 1995-09-15
EP0797556A1 (en) 1997-10-01

Similar Documents

Publication Publication Date Title
CH625195A5 (en)
FR2790470A1 (en) PROCESS FOR PRODUCING FIBER REINFORCED SILICON CARBIDE COMPOSITES
FR2528823A1 (en) PROCESS FOR MANUFACTURING CARBON OR GRAPHITE ARTICLES CONTAINING REACTION-LINKED SILICON CARBIDE
FR2486931A1 (en) CERAMIC MATERIAL IN DENSE FRITTE SILICON CARBIDE
KR20120076341A (en) Ceramic carbon composite material, method for producing ceramic carbon composite material, ceramic-coated ceramic carbon composite material, and method for producing ceramic-coated ceramic carbon composite material
WO2007138052A1 (en) Max-phase powders and method for making same
FR2484998A1 (en) COMPOSITE SINTERED CERAMIC ARTICLE AND PROCESS FOR PRODUCING THE SAME
EP0247907B1 (en) Metal carbide and nitride powders for ceramics obtained by carbothermal reduction, and process for their manufacture
EP0677029A1 (en) Method for fabricating articles made of carbon-silicon carbide composite material, and composite carbon-silicon carbide material.
EP3700876B1 (en) Particulate ceramic composite material, part comprising the same, and method for the production of said part
EP0495700A1 (en) Method of densification of a porous substrate by a matrix containing carbon
FR2475034A1 (en) B-SIC LAMELLE, PREPARATION METHOD, CERAMIC AND REFRACTORY CONTAINING SAME
EP0651067A2 (en) Metal-ceramic composite material with high toughness and process for its manufacture
RU2235704C2 (en) Method of manufacturing a part from carbide-based refractory composite material
EP0751911B1 (en) Aluminium nitride based platelets, process for their preparation and use thereof
WO1995019325A1 (en) Porous aluminium nitride based bodies, method of preparation and use thereof
FR2735466A1 (en) PROCESS FOR PRODUCING ALUMINUM NITRIDE TRICHITES
EP2788288B1 (en) Improved process for synthesizing carbon nanotubes on multiple supports
EP0611180A1 (en) Process for obtaining a sialon containing ceramic material by reduction of an aluminosilicate precursor and use thereof for applying a ceramic coating onto a refractory substrate
CA2020495A1 (en) Silicon carbide microcrystalline fibres and production process of same
EP0240414A1 (en) Silicon nitride powders for ceramics obtained by carbothermal reduction, and process for their manufacture
FR2716208A1 (en) Process for producing whiskers or wiskers fibrous, long silicon carbide.
FR2650270A1 (en) CARBON FIBERS HAVING SERPENTINE FILAMENTS AND PROCESS FOR THEIR PRODUCTION
FR2687393A1 (en) CONTINUOUS PROCESS FOR THE PREPARATION OF SILICON NITRIDE BY CARBONITRURATION AND SILICON NITRIDE THUS OBTAINED
JP2586083B2 (en) Manufacturing method of fiber molding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995906367

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1995906367

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995906367

Country of ref document: EP