WO1995012896A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- WO1995012896A1 WO1995012896A1 PCT/JP1994/001853 JP9401853W WO9512896A1 WO 1995012896 A1 WO1995012896 A1 WO 1995012896A1 JP 9401853 W JP9401853 W JP 9401853W WO 9512896 A1 WO9512896 A1 WO 9512896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- semiconductor device
- regions
- channel
- impurity concentration
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 103
- 239000012535 impurity Substances 0.000 claims abstract description 99
- 239000000758 substrate Substances 0.000 claims abstract description 56
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 230000005669 field effect Effects 0.000 claims 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims 1
- 229910000673 Indium arsenide Inorganic materials 0.000 claims 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 claims 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims 1
- 229910021417 amorphous silicon Inorganic materials 0.000 claims 1
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 229910052581 Si3N4 Inorganic materials 0.000 description 16
- 238000000137 annealing Methods 0.000 description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- 230000004913 activation Effects 0.000 description 14
- 229910052785 arsenic Inorganic materials 0.000 description 13
- 229910052698 phosphorus Inorganic materials 0.000 description 13
- 238000005468 ion implantation Methods 0.000 description 12
- 238000001020 plasma etching Methods 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 11
- 238000002955 isolation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000005684 electric field Effects 0.000 description 7
- 238000005530 etching Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229910021332 silicide Inorganic materials 0.000 description 6
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 238000000407 epitaxy Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- -1 N i or M Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1083—Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66621—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66628—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66545—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
Definitions
- the present invention relates to a semiconductor device, and more particularly, to a semiconductor device that can operate at a very high speed.
- MOS FET MOS field-effect transistor
- this MOSFET has the disadvantage that the MOSFET has a high depletion layer capacitance due to the high impurity concentration in the channel portion and a large sub-threshold swing, so that it does not operate at high performance. If the sub-threshold swing of the device is large, the threshold voltage of the device cannot be lowered and the power supply voltage cannot be lowered, so that it is difficult to realize a semiconductor integrated circuit with low power consumption. Furthermore, in this MOSFET, the threshold voltage of the MOSFET is high due to the high impurity concentration of the channel. There is a drawback in that a device having a high pressure, a low pressure, and a threshold voltage cannot be realized.
- MOS FETs with a short channel length have the same conductivity type as the channel and the impurity concentration of the channel on the channel and drain substrates or on the channel side and on the channel side of the channel in order to suppress punch-through. It is known that a semiconductor layer region having a higher impurity concentration is provided. In this MOSFET, when a voltage is applied to the drain electrode, the extension of the depletion layer from the drain is reduced by this high-concentration impurity layer, and punch-through is reduced.
- this MOSFET has a disadvantage that the high-concentration impurity layer is provided on the bulk side of the substrate of the channel, so that the depletion layer capacity of the MOS FET is large and the subthreshold swing is large, so that the MOSFET does not operate at high performance. I got it.
- MOS FETs with a short channel length have been known in which the drain is surrounded by a semiconductor layer region having the same conductivity type as the channel and an impurity concentration higher than the impurity concentration of the channel in order to suppress punch-through.
- MOS FET when a voltage is applied to the drain electrode, the extension of the depletion layer from the drain to the substrate bulk side and the channel side is reduced by this high-concentration impurity layer, and punch-through is reduced.
- the MOSFET has a high impurity concentration semiconductor layer between the drain and the channel, and between the source and the channel. There is a disadvantage that it does not work Was.
- the impurity concentration existing between the drain and the channel and between the source and the channel is high. Due to the semiconductor layer, the depletion layer capacitance is large in the MO SFET with a short channel length, The drawback is that the hold swing is large!
- a semiconductor device that suppresses punch-through and has a low impurity concentration in a channel is indispensable for realizing a high-speed and high-performance semiconductor device.
- the present invention has been made to solve the above-mentioned problems of the related art, and provides a semiconductor device having high performance and realizing high-speed operation. Disclosure of the invention
- a semiconductor device has a first-type electrically conductive substrate and a second-type electrical conductivity opposite to the electrical conductivity of the substrate, and is mutually interconnected in or on the substrate.
- a first and second region spaced apart and defining a channel in the substrate between each other and forming an electrical connection with the substrate; and between the first and second regions.
- the conductivity is the same as that of the first type and has an impurity concentration higher than the impurity concentration of the channel of the substrate, and is disposed on at least one of the first and second regions on the substrate bulk side.
- a third region wherein the third region First and reduces the extension of the depletion layer to the channel from the first or the second region by application of a voltage between the second region, thereby characterized in that to reduce the punch-through.
- the semiconductor device of the present invention even in a semiconductor device having a short channel length, punch-through is suppressed, the channel mobility is high, and the sub-threshold swing is low.
- the semiconductor device since the semiconductor device has a high t, a high current drive capability, and a high performance that cannot be realized by a conventional semiconductor device, the circuit can be operated at high speed and power can be saved.
- FIG. 1 is a sectional structural view of a semiconductor device according to a first embodiment of the present invention.
- FIG. 2 is a sectional structural view of a semiconductor device according to a second embodiment of the present invention.
- FIG. 3 is a sectional structural view of a semiconductor device according to a third embodiment of the present invention.
- FIG. 4 is a sectional structural view of a semiconductor device according to a fourth embodiment of the present invention.
- FIG. 5 is a sectional structural view of a semiconductor device according to a fifth embodiment of the present invention.
- FIG. 6 is a sectional structural view of a semiconductor device according to a sixth embodiment of the present invention.
- FIG. 7 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the present invention.
- FIG. 8 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the present invention.
- FIG. 9 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the present invention.
- FIG. 10 is a graph showing the relationship between the drain current and the drain voltage of the semiconductor device according to the first example of the present invention.
- FIG. 11 is a graph showing the relationship between the drain current and the gate voltage of the semiconductor device according to the first example of the present invention.
- FIG. 12 is a graph showing the relationship between the threshold voltage and the gate length of the semiconductor device according to the first example of the present invention.
- FIG. 13 is a graph showing the relationship between the subthreshold swing and the gate length of the semiconductor device according to the first embodiment of the present invention.
- FIG. 14 is a graph showing the relationship between the drain current and the gate length of the semiconductor device according to the first example of the present invention.
- FIG. 1 is a sectional view of a semiconductor device showing the first embodiment.
- FIG. 1 11 is an electrode on the back of the substrate, 12 is a ⁇ + region, 13 is a high resistivity ⁇ -substrate (base), 14 is an isolation region, 15 is a silicon oxide film, a silicon nitride film or Ta 20. 5, T i 0 2, Z r0 2 or a 1 2 0 3 or the like high dielectric constant insulating film (gate insulating film), 1 6 a l, Mo, W, T a, T i, Moshiku is N i Etc. Metal, Mo Si. , WS i 2 , Ta Si.
- T i S i 2 or N i S i 2 a metal such as silicon side, or polysilicon (gate electrode), divorced oxide film or a silicon nitride film for isolation 17, 18 for isolation 19, 20 are p or p + regions (punch through control), 21 is n or n + regions (source), 22 is n or n + regions (drain), and 23 is n + Region (source), .24 is the n + region (drain), 25 is the metal electrode (source electrode), 26 is the metal electrode (drain electrode), and 27 is the Silicon oxide film for passivation, PSG film or silicon nitride film.
- the punch-through control 20 having an impurity concentration higher than the impurity concentration of the channel portion of the p-region 13 is formed on the substrate bulk side of the drain 22, and the non-through control 20 and the drain 22 are formed.
- a pn junction is formed, and the thickness of the punch-through control 20 is formed larger than the thickness of the depletion layer in the punch-through control 20 when a predetermined voltage is applied to the drain electrode 26.
- the termination is performed by the electric force lines from the drain 22 and the ionized impurity of the punch-through control 20.
- the depletion layer from the drain 22 to the channel region of p-region 13 In order to suppress elongation, and because the thickness of the punch-through control 20 is formed larger than the thickness of the depletion layer in the punch-through control 20 when a predetermined voltage is applied to the drain electrode 26. In order to suppress the extension of the depletion layer from the drain 22 to the p-region 13 on the substrate bulk side of the region 20, punch-through hardly occurs.
- the impurity concentration of the punch-through control 20 is selected to be a predetermined concentration, it is desirable to lower the impurity concentration of the channel portion of the p ⁇ region 13.
- the material of the gate electrode 16 desirably has a high diffusion potential with respect to the 1+ regions 23 and 24.
- the gate electrode material is composed of the n + region and the p + region. It is desirable to have a high diffusion potential for both regions.
- W gives a high diffusion potential. W has a diffusion potential of about 0.5 V for the n + region and about 0.6 V for the P + region.
- the gate electrode only needs to have a high potential barrier for both the n + region and the p + region of the work function, and may be Al, a refractory metal or a metal silicide. Therefore, the resistance of the gate electrode is small.
- n by + diffusion potential of the gate electrode 1 6 against the source region 2 3 causes a potential barrier in the channel region, realm 1 3 impurity concentration 1 0 l4 ⁇ 1 0 of channel portion Normally- off characteristics during the MOS transit are realized at approximately 1 cm- 3 . That is, the region 13 is a high resistivity region, and the impurity concentration is kept low. Therefore, the channel through which electrons flow The width is kept wide, and short channels can be realized without reducing the mobility of the carrier running in the channel. In other words, it is an M ⁇ S transistor with a large conversion conductance.
- the impurity concentration in the region 13 on the substrate bulk side from the gate insulating film is about 10 14 to 1 O lD cm ⁇ 3 , and the depletion layer capacitance is small. Therefore, the MOS transistor has a small subthreshold noise swing. That is, transistor operation is realized with a low power supply voltage.
- the junction surface between the regions 21 and 19 and the junction surface between the regions 22 and 20 are flat, and the area of the junction surface is small.
- the capacitance between the region and the substrate and between the drain region and the substrate is small.
- the materials of the electrodes 25 and 26 are, for example, A1 and W, and the resistance of the source electrode and the drain electrode is small.
- the source and drain electrodes, M o, T a, T i, metals such as N i or M, o S i 2, WS i 2, T a S i. May be a T i S i 2, N i S i 2 etc. of the metal silicide. Since the source resistance, drain resistance, and gate resistance are small, the source and drain capacitances are small, and the conversion conductance is large, the transistor has excellent high-speed performance.
- the impurity concentration of the drain region 22 is about 10 lo to 10 O ⁇ cm ⁇ , and the electric field strength in the region 22 near the gate insulating film 15 and the insulating isolation film 18 is small. It is kept low, has low hot carrier generation efficiency, and has high reliability and high reliability. In order to reduce the electric field strength in the region 22, it is desirable to lower the impurity concentration in the region 22. On the other hand, in order to reduce the resistance of the region 22 and reduce the drain resistance, it is desirable to increase the impurity concentration.
- the impurity concentration of the drain region 22 such that the resistance of the region 22 is small in the range of the impurity concentration where the electric field intensity in the region 22 is equal to or lower than the dielectric breakdown electric field intensity.
- the extension surface of the interface between the gate insulating film 15 and the region 13 in the region 22 The potential of the region corresponding to the extension of the channel along is higher than the potential of the channel portion of the p-region 13, that is, the electron energy of the extension region of the channel in the region 22 is P—region 13.Electron energy in channel 3
- the impurity concentration of the cross-through control 20 and the impurity concentration of the region 22 are selected so as to be lower.
- the interface between the gate insulating film 15 and the region 13 and the region 22 and the region 20 It is desirable to shorten the distance to the interface between the two.
- the impurity concentration of the region 22 is selected to be a predetermined concentration, the distance between the interface between the gate insulating film 15 and the region 13 and the interface between the region 22 and the region 20 are long in order to suppress punch-through. It is desirable to increase the impurity concentration of the punch-through control 20. In this structure, since the potential is gradually increased from the channel portion to the drain, that is, the electron energy is gradually decreased, electrons as carriers easily flow, and punch-through control 20 suppresses the punch-through. .
- FIG. 2 is a sectional view of a semiconductor device showing the second embodiment.
- 17a is a silicon oxide film or a silicon nitride film for insulating and isolating
- 19a 19b 20a 20b is a p or p + region (punch through control)
- 21a 21b is n or n +
- the region (source) and 22a and 22b are n or n + regions (drain).
- FIG. 3 is a sectional view of a semiconductor device showing the third embodiment.
- 19 c 19 d 20 c 20 d is the p or p + region (punch through control), 21 c 21 d is the n or n + region (source), 22 c. It is an n + region (drain).
- FIG. 4 is a sectional view of a semiconductor device according to a fourth embodiment.
- 19 e and 20 e are p—, p or p + regions.
- the impurity concentration of the region 20 e is higher than the impurity concentration of the region 13 and lower than the impurity concentration of the region 20.
- the impurity concentration of the region 22 is set to a predetermined concentration. If the impurity concentration of the region 20 is lowered, a depletion layer extends from the drain 22 to the channel portion of the region 13 to cause punch-through. Suppress the extension of the depletion layer to the channel part.
- the impurity concentration in the region 20 e When the impurity concentration in the region 20 e is increased, the mobility of the carrier electrons decreases, and the sub-threshold swing increases, so that the impurity concentration in the region 20 e may be low. desirable. Therefore, the impurity concentration of the region 20 e is made lower than the impurity concentration of the region 20, so that the mobility of carriers as carriers is kept high, and the region 20 and the region 20 e are formed so that carrier punch-through does not occur. It is desirable to select the impurity concentration of e. In this structure, since the region 20 and the region 20 e suppress the extension of the depletion layer from the drain to the channel portion, punch-through force is unlikely to occur.
- FIG. 5 is a sectional view of a semiconductor device showing the fifth embodiment.
- 23 a is a non-doped, n ⁇ , n or n + region
- 24 a is a non-doped, n ⁇ , n or n + region.
- the impurity concentration in the region 2 4 a is a throat one flops de ⁇ 1 0 18 c m_ 3 mm
- electrons in order to bleed the region 2 4 a is a number carrier of the n + regions 2 2, gate (1)
- the electric field intensity in the region 22 near the insulating film 15 and the vicinity of the insulating separation film 18 is kept low, so that a hot carrier generation efficiency is low and a highly reliable transistor is obtained.
- FIG. 6 is a sectional view of a semiconductor device showing the sixth embodiment.
- 15a is a silicon oxide film or a silicon nitride film (gate insulating film), 16a is a metal such as A1, Mo, W, Ta, Ti, or Ni; S i 2 , WS i 2, T a S i 2, T i S i 2 or N i S i 2 such metal silicide, if Ku polycrystalline silicon (gate Bok electrode), 1 8 a silicon oxide for isolation Film or silicon nitride film, 19 f and 20 f are p or p + regions (punch through control), 21 e is n or n + regions (source), and 22 e is n or n + regions ( The drain) and 28 are a silicon oxide film, a silicon nitride film, a metal oxide film or a metal fluoride film for insulating and separating.
- the interface between the region 22 e and the region 20 f is closer to the region 24 than the interface between the gate insulating film 15 a and the region 15 a in the region 13 on the substrate bulk side. That is, it is formed on the opposite side of the substrate bulk.
- the potential of the region corresponding to the extension of the channel in the region 22e becomes P-region
- the punch-through control is performed so that the potential of the channel portion 13 is higher than the potential of the channel portion, that is, the electron energy of the extension region of the channel in the region 22 e is lower than the electron energy of the channel portion of the p-region 13.
- An impurity concentration of 20 f and an impurity concentration of region 22 e are selected.
- the gate insulating film 15 a and the region 20 f are required to suppress punch-through. It is desirable to shorten the distance between the two.
- the impurity concentration of the region 22 e is set to a predetermined concentration, the punch-through control should be performed as the distance between the gate insulating film 15 a and the region 20 f becomes longer, in order to suppress punch-through. It is desirable to increase the impurity concentration at 0 f.
- the potential is gradually increased from the channel portion to the drain, that is, the electron energy is gradually decreased, electrons as carriers easily flow, and punch-through is performed by the punch-through control 20f. Restrained.
- the interface between the gate insulating film 15a and the region on the substrate bulk side of the region 15a in the region 13 is closer to the region 13 than the interface between the region 22e and the region 20f. It is formed on the substrate bulk side.
- the electric field strength between the source and drain in the channel section is reduced, so that punch-through of the carrier is suppressed, and the hot carrier generation efficiency in the channel section is kept low.
- Region 21 in Figure 1, region 21a, 21b in Figure 2, region 21c, 21d in Figure 3, region 21 in Figure 4, region 21 in Figure 5, 23a and the impurity concentration of the region 21e in FIG. 6 are desirably increased to reduce the resistance of each region. By increasing the impurity concentration in each region, a transistor having low source resistance and excellent high-speed performance can be obtained.
- the semiconductor device having the punch-through control at least on the substrate bulk side from the drain according to the present invention realizes a semiconductor integrated circuit using a transistor having excellent ultra-high speed and high reliability. it can.
- the p-substrate 13 having the p + region 12 on the back surface has been described as the substrate.
- the operation of the semiconductor device described above is also realized using an SOI substrate.
- a double gate transistor structure having a gate insulating film, a gate electrode or a gate electrode on the back surface, and punch-through control on at least the substrate bulk side of the back surface drain can be realized.
- the isolation region 14 is formed by using, for example, the LOCOS method. That is, after the surface of the substrate 13 is thermally oxidized, a silicon nitride film is deposited by the CVD method. The silicon nitride film or the silicon nitride film and the thermal oxide film corresponding to the region 14 are removed by reactive ion etching. Subsequently, after forming a thermal oxide film in the region 14 by thermal oxidation, the silicon nitride film and the thermal oxide film on the surface of the region 13 are removed by reactive ion etching.
- the region 14 is thus formed, but may be formed by any other method without being limited to the above method.
- a thermal oxide film having a thickness of 3 to 1 O nm is formed by thermally oxidizing the surface of the region 13.
- a high dielectric constant insulating film may be deposited by a CVD method.
- a metal, metal silicide or polycrystalline silicon layer is deposited by the CVD method, and a silicon oxide film or a silicon nitride film is further deposited by the CVD method, and a predetermined region is reactive as shown in FIG. 7 (a). Etch by ion etching.
- region 17 thermally oxidizes the surface of region 16 May form a silicon oxide.
- the thickness of the insulating layer in the region 17 is formed larger than the thickness of the thermal oxide film or the high dielectric constant insulating film in the region 15.
- the regions 19 and 20 having a predetermined impurity concentration shown in FIG. 7B are formed by ion implantation of B and annealing.
- the activation annealing temperature is preferably low, preferably 700 ° C. or lower, more preferably 500 ° C. or lower.
- rapid thermal annealing may be used as the activation annealing method in order to suppress the diffusion of B into the region 13.
- regions 21 and 22 having a predetermined impurity concentration are formed by ion implantation of As or P and activation annealing.
- the activation annealing temperature is preferably low, preferably 700 ° C or lower, and 500 ° C or lower. More desirable. Of course, rapid thermal annealing may be used as the activation annealing method in order to suppress the diffusion of As or P into the region 13 or the regions 19 and 20.
- the regions 19 and 20 or the regions 21 and 22 shown in FIG. 7B may be formed by reactive ion etching and epitaxy.
- the region 13 is selectively etched to a predetermined depth by reactive ion etching using the regions 17 and 14 as a mask.
- regions 19 and 20 are formed by selectively epitaxially growing B-doped single-crystal silicon having a predetermined impurity concentration on the surface of the region 13.
- regions 21 and 22 are formed by selectively epitaxially growing P-doped single-crystal silicon having a predetermined impurity concentration on the surfaces of the regions 19 and 20.
- etching is performed by reactive ion etching until the silicon oxide film or the silicon nitride film in a region other than the region 18 is removed.
- regions 23 and 24 are formed by selectively epitaxially growing P-doped single-crystal silicon on the surfaces of the regions 21 and 22.
- P or As is ion-implanted, followed by activation annealing to form regions 23 and 24 having a predetermined impurity concentration. You may.
- the regions 23 and 24 may of course be polycrystalline silicon. Of course the area 23 and 24 may be metal or metal silicide.
- a W or A1 layer is selectively formed by a CVD method or a sputtering method.
- the structure of the semiconductor device shown in FIG. 1 can be manufactured by forming the passivation layer 27 and then forming the back surface p + layer region 12 and the electrode 11.
- FIG. 8A An example of a manufacturing process for manufacturing the semiconductor device of FIG. 2 is shown in FIG.
- the surface of the region 13 is thermally oxidized to form a thermal oxide film having a thickness of 3 to 1 Onm.
- a high dielectric constant insulating film may be deposited by a CVD method.
- a metal, metal silicide or polycrystalline silicon layer is deposited by a CVD method, and a predetermined region is etched by reactive etching as shown in FIG. 8A.
- the surface of the region 16 is thermally oxidized to form a metal oxide or a silicon oxide.
- an insulating layer may be formed by depositing a silicon oxide film by a CVD method.
- the thickness of the insulating layer in the region 17a is formed larger than the thickness of the thermal oxide film or the high dielectric constant insulating film in the region 15.
- etching is performed until a predetermined area of the area 15 is removed by reactive ion etching.
- the regions 19a and 20a having a predetermined impurity concentration shown in FIG. 8C are formed by B ion implantation. Subsequently, regions 21a and 22a having a predetermined impurity concentration are formed by As or P ion implantation. Next, heat treatment is performed at a temperature of 500 ° C or more or 700 ° C or more for a predetermined time, and As or P is diffused using the regions 21a and 22a as As or P diffusion sources, as shown in FIG. ) Are formed, and at the same time, regions 19b and 20b are formed by diffusion of B using the regions 19a and 20a as diffusion sources of B.
- regions 19b, 2 Ob and 21b, 22b may be formed by oblique ion implantation of B and As or P and activation annealing after forming the structure shown in FIG. 8 (b). Also, after forming the structure shown in FIG. 8 (b). Also, after forming the structure shown in FIG. 8 (b).
- the regions 21, 22 and 22 are formed by reactive ion etching using regions 17, 18 and 14 as a mask. 19, 20 are selectively etched. Subsequently, B-doped single-crystal silicon having a predetermined impurity concentration is selectively grown on the surface of the region 13 by epitaxy to form regions 19c and 20c. Next, on the surfaces of the regions 19c and 20c, P-doped single-crystal silicon having a predetermined impurity concentration is epitaxially grown to form regions 21c and 22c. Here, the impurity concentration of the region 20c is formed lower than the impurity concentration of the region 20d.
- regions 19 and 20 having a predetermined impurity concentration are formed by ion implantation of B. Subsequently, a heat treatment is performed for a predetermined time at a temperature of 500 ° C. or more or 700 ° C. or more, and at the same time, the regions 19 and 20 are diffused by using e, forming 20 e.
- the regions 19 e and 20 e may be formed by oblique ion implantation of B and activation annealing after forming the structure shown in FIG.
- FIG. 8B it may be formed by oblique ion implantation of B and activation annealing.
- regions 21 and 22 having a predetermined impurity concentration are formed by As or P ion implantation and activation annealing.
- the activation annealing temperature is preferably low, and preferably 700 ° C. or less. , 500 ° C or less is more desirable.
- the rapid annealing method was used as the activation annealing method. Is also good.
- the regions 19 and 20 are selectively etched to a predetermined depth using the region 17 and the region 14 as masks by reactive ion etching.
- regions 21 and 22 may be formed by selectively epitaxially growing P-doped single-crystal silicon having a predetermined impurity concentration on the surfaces of regions 19 and 20.
- the semiconductor device of FIG. 5 has a non-doped, n-type, n-type or n + type with a lower impurity concentration than the regions 21 and 22 on the surfaces of the regions 21 and 22.
- Regions 23a and 24a are formed by selectively epitaxially growing type single crystal silicon, and regions 23 and 24 are formed by epitaxially growing n + type single crystal silicon having a higher impurity concentration.
- n or n + region layers 21e and 22e are formed on the surface of the region 13 by As or P ion implantation.
- n or n + type single crystal silicon may be epitaxially grown.
- a silicon oxide film is deposited by a CVD method, and a predetermined region is etched by reactive ion etching as shown in FIG.
- regions 19f and 20f are formed by B ion implantation and activation annealing.
- the impurity concentration of the regions 19 f and 20 f is formed lower than the impurity concentration of the n or n + region layers 21 e and 22 e on the surface of the region 13.
- etching is performed by isotropic etching until a predetermined region of the region 29 is removed. Subsequently, after selectively epitaxially growing P-doped single-crystal silicon 23, 24 on the surface of the regions 21 e, 22 e, W, Ta, T A metal film 25, 26 of i, Zr or Nb is formed. Next, a metal oxide film 28 is formed by thermal oxidation or anodic oxidation.
- the region 29 is removed by etching. Subsequently, after depositing a silicon oxide film or a silicon nitride film by the CVD method, the silicon oxide film or the silicon nitride film in a region other than the region 18a shown in FIG. 9C is removed by reactive ion etching. Etching until done.
- the regions 21a, 22e and 13 are selectively etched to a predetermined depth by reactive ion etching using the regions 18a, 28 and 14 as a mask.
- Region 15a is formed by thermal oxidation as shown in () I do.
- the gate electrode 1 6 a is by CVD, metal such as W, to deposit a metal Shirisai de or polycrystalline silicon, such as WS i 2, are formed.
- the structure in which the impurity concentration in each region is high is made by selectively epitaxially growing high-doped P-doped single-crystal silicon.
- each region is formed.
- it may be selectively formed by ion implantation of P or As and activation annealing.
- FIG. 10 is a graph showing the relationship between the drain current and the drain voltage of the semiconductor device according to the first embodiment.
- the horizontal axis of FIG. 10 represents the drain voltage, and the vertical axis represents the drain current.
- Numerical values in the figure represent gate voltages.
- the impurity concentration of the B-doped p-type substrate is 1 ⁇ 10 14 cm.
- the gate oxide thickness is 3 nm.
- Tungsten silicide (WS i 2 ) is used as the gate electrode.
- the gate length is 0.05 ⁇ m.
- the channel length is 0.05 ⁇ m and the channel width is 1. 13 Concentration of Roh inch through control 1 9, 20 is 2 10 18 cm- 3.
- the depth of the source region 21 and the drain region 22 is 0.01 ⁇ m
- the impurity concentration of P in the source region 21 and the drain region 22 is 2 ⁇ 10 19 cm— 3
- the impurity concentration of P in the drain region 24 is 2 ⁇ 102 () cm cm.
- Tungsten (W) is used for the source and drain electrodes.
- the semiconductor device according to Example 1 exhibited normal drain current-drain voltage characteristics even when the gate length was as short as 0.05 ⁇ m, and no punch-through occurred.
- the drain current one drain voltage characteristics of the semiconductor device of the MOS FET structure is the concentration of B in the punch-through control the same 1 X 10 14 cnT 3 and the concentration of substrate is not shown the transistor characteristics at all, the characteristics of the resistor Are obtained. In other words, it was found that the semiconductor device according to Example 1 did not cause punch-through even in a short channel, and performed normal transistor operation.
- FIG. 11 shows the drain current of the semiconductor device according to the first embodiment described with reference to FIG. 4 is a graph showing a relationship with a gate voltage.
- the horizontal axis represents the gate voltage
- the vertical axis represents the drain current.
- Numerical values in the figure represent drain voltages. It can be seen that the semiconductor device according to Example 1 exhibited normal sub-threshold characteristics even when the gate length was as short as 0.05 ⁇ m, and no punch-through occurred.
- the threshold voltage is 0.66V
- the threshold voltage is 0.58V.
- the change in threshold voltage due to the increase in drain voltage is 0.08 V, which is kept small.
- the semiconductor device according to Example 1 did not generate a punch-through force even in a short channel and operated normally.
- the drain voltage is 1.0 V
- the sub-threshold swing is 97 mV / decade, which is kept small even for a short channel length. That is, in the semiconductor device according to the first embodiment, the punch-through is suppressed and the impurity concentration of the substrate is kept low. It has been found that the hold swing is small and high-performance transistor operation is performed.
- FIG. 12 is a graph showing the relationship between the threshold voltage and the gate length of the semiconductor device according to the first embodiment described in FIG.
- the horizontal axis in FIG. 12 represents the gate length, and the vertical axis represents the threshold voltage. Numerical values in the figure represent drain voltages.
- the semiconductor device according to Example 1 shows normal transistor characteristics even when the gate length is extremely short, 0.05 / zm, and the punch-through is suppressed to a small extent.
- FIG. 13 is a graph showing the relationship between the sub-threshold swing and the gate length of the semiconductor device according to the first embodiment described in FIG.
- the horizontal axis in Fig. 13 represents the gate length, and the vertical axis represents the sub-threshold swing.
- the numbers in the figure represent the drain voltage.
- the gate length is as short as 0.05 ⁇ m
- the degree of punch-through is kept low and the impurity concentration of the substrate is kept low. It was found that the sub-threshold swing was small and high-performance transistor operation was performed.
- FIG. 14 shows the drain current of the semiconductor device according to the first embodiment described with reference to FIG. It is a graph which shows the relationship with gate length.
- the horizontal axis in FIG. 14 represents the gate length, and the vertical axis represents the drain current.
- the difference between the gate voltage and the threshold voltage is 0.3V. It was found that the semiconductor device according to Example 1 had a large drain current of 190 AZ zm at a very short gate length of 0.05 zm, that is, a large current driving capability, and operated a high-speed transistor. .
- the concentration of the channel portion where the threshold voltage is 0.08 V when the drain voltage is 0.1 and 1.0 V is 1.16 x 10 18 the drain current of the semiconductor device of the MOS FET structure is CM_ 3 is 101 // 1 2 about results showing the performance of a semiconductor device according to AZ / m example 1 is obtained. That is, it was found that the semiconductor device according to the first example operates as a high-speed transistor.
- the semiconductor device of the present invention is excellent in performance of suppressing punch-through, so that the channel length can be shortened as necessary, and therefore, an ultra-miniaturized semiconductor device can be realized.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
A semiconductor device which includes a substrate (13) having a first conductivity type; first and second regions (21, 22) having a second conductivity type opposite to that of the substrate, the two regions being separate from each other in or on the substrate to define a channel inside the substrate between them; an electrode (16) positioned on an insulating layer (15) above the channel between the first and second regions in such a manner that it does not come into direct electric contact with either the first or second region; and third regions (19, 20) having the same first conductivity type as that of the channel inside the substrate and a higher impurity concentration than that of the channel, and positioned on the bottom side of the first and/or second regions, wherein the third regions serve to limit the extension of a depletion layer from the first or second region into the channel due to the voltage applied between the first and second regions, and punch-through is thereby reduced.
Description
技術分野 Technical field
本発明は、 半導体装置に係わり、 より詳細には超高速動作の可能な半導体装置 に関する。 背景技術 The present invention relates to a semiconductor device, and more particularly, to a semiconductor device that can operate at a very high speed. Background art
従来の技術を、 半導体装置として MOS FET、 とくにチャネル長が短い MOS FETを例にとり説明する。 The conventional technology will be described using an example of a MOS FET as a semiconductor device, particularly a MOS FET with a short channel length.
従来、 半導体集積回路において、 素子の微細化により、 高速化が達成されてき た。 たとえば、 半導体集積回路における MOS FET素子のチヤネノレ長を短くす ることにより、 素子の電流駆動能力の向上と負荷容量 (次段素子のゲート容量) の減少により、 半導体集積回路の高速化が達成されてきた。 Conventionally, in semiconductor integrated circuits, high speed has been achieved by miniaturization of elements. For example, by shortening the channel length of a MOS FET element in a semiconductor integrated circuit, the current drive capability of the element has been improved and the load capacitance (gate capacitance of the next-stage element) has been reduced, so that the speed of the semiconductor integrated circuit has been increased. Have been.
しかしながら、 MOS FET素子のチャネル長を短くすると、 パンチスルーが 顕著になり、 素子はもはや正常な MOSFET動作をしえなくなつてきている。 従来、 チャネル長が短い MOS FETとしては、 パンチスルーを抑制するため に、 チャネル部の不純物濃度を高くしたものが知られている。 この MOSFET は、 ドレイン電極に電圧が印加された場合、 ドレインからの空乏層の延びをこの 高不純物濃度チャネル部で小さくし、 パンチスルーを低減するものである。 しかし、 この MOS FETは、 チャネルの不純物濃度が高いために、 この M 0 S F E Tではキャリアのチヤネル移動度が低くなり、 高速で動作しないとい う欠点があった。 また、 この MOSFETでは、 チャネル部の不純物濃度が高い ために、 MO S F ETの空乏層容量が大きく、 サブスレシュホールドスィングが 大きいため、 高性能で動作しないという欠点があった。 素子のサブスレシュホー ルドスイングが大きいと、 素子の閾電圧を低くできず、 電源電圧を低くできない ため、 消費電力が少ない半導体集積回路の実現が困難となる。 さらに、 この MOSFETでは、 チャネル部の不純物濃度が高いために、 MOSFETの閾電
圧が高く、 低し、閾電圧の素子が実現できないという欠点があつた。 However, when the channel length of a MOS FET device is shortened, punch-through becomes remarkable, and the device can no longer operate normally. Conventionally, a MOS FET with a short channel length has been known in which the impurity concentration in the channel portion is increased in order to suppress punch-through. In this MOSFET, when a voltage is applied to the drain electrode, the extension of the depletion layer from the drain is reduced in this high impurity concentration channel portion, and punch-through is reduced. However, this MOS FET has a drawback that, because of the high impurity concentration of the channel, the M 0 SFET has low carrier channel mobility and cannot operate at high speed. In addition, this MOSFET has the disadvantage that the MOSFET has a high depletion layer capacitance due to the high impurity concentration in the channel portion and a large sub-threshold swing, so that it does not operate at high performance. If the sub-threshold swing of the device is large, the threshold voltage of the device cannot be lowered and the power supply voltage cannot be lowered, so that it is difficult to realize a semiconductor integrated circuit with low power consumption. Furthermore, in this MOSFET, the threshold voltage of the MOSFET is high due to the high impurity concentration of the channel. There is a drawback in that a device having a high pressure, a low pressure, and a threshold voltage cannot be realized.
この場合、 素子を高速かつ高性能で動作させるためには、 移動度が高くかつサ ブスレシュホールドスイングが小さいこと力要求される。 したがって、 移動度を 高くかつサブスレシュホ一ルドスイングを小さくするためには、 チャネル部の不 純物濃度を低くする必要がある。 In this case, in order to operate the element with high speed and high performance, it is required to have high mobility and small sub-threshold swing. Therefore, in order to increase the mobility and reduce the sub-threshold swing, it is necessary to lower the impurity concentration in the channel portion.
また、 従来、 チヤネノレ長が短い MOS FETとしては、 パンチスルーを抑制す るために、 チャネルおよびドレインの基板 くノレク側もしくはチヤネルの基板 くル ク側にチヤネルと同じ導電型でかつチャネルの不純物濃度より不純物濃度が高 半導体層領域を設けたもの力知られている。 この MOSFETは、 ドレイン電極 に電圧が印加された場合、 ドレインからの空乏層の延びをこの高濃度不純物層で 小さくし、 パンチスルーを低減するものである。 Conventionally, MOS FETs with a short channel length have the same conductivity type as the channel and the impurity concentration of the channel on the channel and drain substrates or on the channel side and on the channel side of the channel in order to suppress punch-through. It is known that a semiconductor layer region having a higher impurity concentration is provided. In this MOSFET, when a voltage is applied to the drain electrode, the extension of the depletion layer from the drain is reduced by this high-concentration impurity layer, and punch-through is reduced.
し力、し、 この MOSFETは、 ドレインからチャネル側へ空乏層が延びるた め、 チャネル長が短い MOS FETではパンチスルーが起こり、 正常に動作しな いという欠点があった。 また、 この MOSFETでは、 チャネルの基板バルク側 に高濃度不純物層が設けてあるために、 MOS FETの空乏層容量が大きく、 サ ブスレシュホールドスィングが大きいため、 高性能で動作しないという欠点があ つた。 However, since the depletion layer extends from the drain to the channel side in this MOSFET, punch-through occurs in MOS FETs with a short channel length, and the MOSFET does not operate normally. In addition, this MOSFET has a disadvantage that the high-concentration impurity layer is provided on the bulk side of the substrate of the channel, so that the depletion layer capacity of the MOS FET is large and the subthreshold swing is large, so that the MOSFET does not operate at high performance. I got it.
この場合、 素子を高性能で動作させるためには、 サブスレシュホールドスイン グが小さいこと力要求される。 したがって、 空乏層容量を小さくするためには、 チャネルの基板バルク側の不純物濃度を低くする必要がある。 In this case, a small sub-threshold swing is required to operate the device with high performance. Therefore, in order to reduce the depletion layer capacitance, it is necessary to lower the impurity concentration on the substrate bulk side of the channel.
また、 従来、 チャネル長が短い MOS FETとしては、 パンチスルーを抑制す るために、 ドレインをチャネルと同じ導電型でかつチャネルの不純物濃度より不 純物濃度が高い半導体層領域で囲むものが知られている。 この MOS FETは、 ドレイン電極に電圧が印加された場合、 ドレインから基板バルク側およびチヤネ ル側への空乏層の延びをこの高濃度不純物層で小さくし、 パンチスルーを低減す るものである。 Conventionally, MOS FETs with a short channel length have been known in which the drain is surrounded by a semiconductor layer region having the same conductivity type as the channel and an impurity concentration higher than the impurity concentration of the channel in order to suppress punch-through. Have been. In this MOS FET, when a voltage is applied to the drain electrode, the extension of the depletion layer from the drain to the substrate bulk side and the channel side is reduced by this high-concentration impurity layer, and punch-through is reduced.
し力、し、 この MOSFETは、 ドレインとチャネルとの間、 ならびにソースと チャネルとの間に不純物濃度が高い半導体層が存在するため、 この MOS FET ではキャリアのチヤネル移動度が低くなり、 高速で動作しないという欠点があつ
た。 また、 この MO S F E Tでは、 ドレインとチャネルとの間、 ならびにソース とチヤネルとの間に存在する不純物濃度が高 、半導体層により、 チヤネル長が短 い MO S F E Tにおいて、 空乏層容量が大きく、 サブスレシュホールドスイング が大き!^、ため、 高性能で動作しないという欠点があつた。 The MOSFET has a high impurity concentration semiconductor layer between the drain and the channel, and between the source and the channel. There is a disadvantage that it does not work Was. In this MOS SFET, the impurity concentration existing between the drain and the channel and between the source and the channel is high. Due to the semiconductor layer, the depletion layer capacitance is large in the MO SFET with a short channel length, The drawback is that the hold swing is large!
この場合、 素子を高速で動作させるためには、 移動度が高いことが要求され る。 したがって、 ソースとドレインの間のチャネルの不純物濃度を低くする必要 がある。 In this case, high mobility is required to operate the device at high speed. Therefore, it is necessary to lower the impurity concentration of the channel between the source and the drain.
このように、 パンチスルーを抑制し、 かつチャネルの不純物濃度が低い半導体 装置は、 高速かつ高性能半導体装置の実現に不可欠である。 As described above, a semiconductor device that suppresses punch-through and has a low impurity concentration in a channel is indispensable for realizing a high-speed and high-performance semiconductor device.
本発明は、 上記従来技術の課題を解決するためになされたものであり、 高い性 能を有し、 高速動作を実現する半導体装置を提供するものである。 発明の開示 The present invention has been made to solve the above-mentioned problems of the related art, and provides a semiconductor device having high performance and realizing high-speed operation. Disclosure of the invention
本発明による半導体装置は、 第 1型の電気伝導性の基体と、 前記基体の電気伝 導性とは逆の第 2型の電気伝導性を有し、 前記基体中もしくは前記基体上に相互 に間隔をあけて配置されて、 相互間に基体中のチャネルを画定し、 前記基体との 電気接続部を形成する第 1および第 2の領域と、 前記第 1および第 2の領域間に あるが、 前記第 1および第 2の領域へ、 もしくはいずれの領域へも電気的に直接 接触しないように絶縁層を介して、 前記チャネルの上に置かれた電極と、 前記基 体中のチャネルの電気伝導性とは同じ第 1型の電気伝導性かつ前記基体のチヤネ ルの不純物濃度より高い不純物濃度を有し、 前記第 1および第 2の領域の少なく とも一方の少なくとも基体バルク側に置かれた第 3の領域とを備え、 前記第 3の 領域により、 前記第 1と第 2の領域の間への電圧の印加による前記第 1もしくは 第 2の領域から前記チャネルへの空乏層の延びを小さくし、 それにより、 パンチ スルーを低減することを特徴とする。 作用 A semiconductor device according to the present invention has a first-type electrically conductive substrate and a second-type electrical conductivity opposite to the electrical conductivity of the substrate, and is mutually interconnected in or on the substrate. A first and second region spaced apart and defining a channel in the substrate between each other and forming an electrical connection with the substrate; and between the first and second regions. An electrode placed on the channel via an insulating layer so as not to make direct electrical contact with the first and second regions, or with any of the regions, and an electric current of a channel in the substrate. The conductivity is the same as that of the first type and has an impurity concentration higher than the impurity concentration of the channel of the substrate, and is disposed on at least one of the first and second regions on the substrate bulk side. And a third region, wherein the third region First and reduces the extension of the depletion layer to the channel from the first or the second region by application of a voltage between the second region, thereby characterized in that to reduce the punch-through. Action
本発明の半導体装置は、 チャネル長が短い半導体装置においても、 パンチス ル一を抑制し、 チヤネル移動度が高く、 かつサブスレシュホールドスイングがゾ Jヽ
さく、 従来の半導体装置では実現できなかったような高 t、電流駆動能力かつ高 、 性能を備えているため、 回路の高速化および省電力化が可能となった。 図面の簡単な説明 According to the semiconductor device of the present invention, even in a semiconductor device having a short channel length, punch-through is suppressed, the channel mobility is high, and the sub-threshold swing is low. In addition, since the semiconductor device has a high t, a high current drive capability, and a high performance that cannot be realized by a conventional semiconductor device, the circuit can be operated at high speed and power can be saved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施例の半導体装置の断面構造図である。 FIG. 1 is a sectional structural view of a semiconductor device according to a first embodiment of the present invention.
図 2は、 本発明の第 2の実施例の半導体装置の断面構造図である。 FIG. 2 is a sectional structural view of a semiconductor device according to a second embodiment of the present invention.
図 3は、 本発明の第 3の実施例の半導体装置の断面構造図である。 FIG. 3 is a sectional structural view of a semiconductor device according to a third embodiment of the present invention.
図 4は、 本発明の第 4の実施例の半導体装置の断面構造図である。 FIG. 4 is a sectional structural view of a semiconductor device according to a fourth embodiment of the present invention.
図 5は、 本発明の第 5の実施例の半導体装置の断面構造図である。 FIG. 5 is a sectional structural view of a semiconductor device according to a fifth embodiment of the present invention.
図 6は、 本発明の第 6の実施例の半導体装置の断面構造図である。 FIG. 6 is a sectional structural view of a semiconductor device according to a sixth embodiment of the present invention.
図 7は、 本発明の半導体装置の製造工程を示す断面図である。 FIG. 7 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the present invention.
図 8は、 本発明の半導体装置の製造工程を示す断面図である。 FIG. 8 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the present invention.
図 9は、 本発明の半導体装置の製造工程を示す断面図である。 FIG. 9 is a cross-sectional view illustrating a manufacturing process of the semiconductor device of the present invention.
図 1 0は、 本発明の第 1の実施例に係わる半導体装置のドレイン電流とドレイ ン電圧の関係を示すグラフである。 FIG. 10 is a graph showing the relationship between the drain current and the drain voltage of the semiconductor device according to the first example of the present invention.
図 1 1は、 本発明の第 1の実施例に係わる半導体装置のドレイン電流とゲート 電圧との関係を示すグラフである。 FIG. 11 is a graph showing the relationship between the drain current and the gate voltage of the semiconductor device according to the first example of the present invention.
図 1 2は、 本発明の第 1の実施例に係わる半導体装置の閾電圧とゲート長との 関係を示すグラフである。 FIG. 12 is a graph showing the relationship between the threshold voltage and the gate length of the semiconductor device according to the first example of the present invention.
図 1 3は、 本発明の第 1の実施例に係わる半導体装置のサブスレシュホールド スィングとゲー卜長との関係を示すグラフである。 FIG. 13 is a graph showing the relationship between the subthreshold swing and the gate length of the semiconductor device according to the first embodiment of the present invention.
図 1 4は、 本発明の第 1の実施例に係わる半導体装置のドレイン電流とゲ一ト 長との関係を示すグラフである。 FIG. 14 is a graph showing the relationship between the drain current and the gate length of the semiconductor device according to the first example of the present invention.
(符号の説明) (Explanation of code)
1 1 基板裏面の電極、 1 1 Electrode on the back of the board
1 2 p +領域、 1 2 p + area,
1 3 高抵抗率 p -基板 (基体) 、 1 3 High resistivity p-substrate (substrate),
1 4 絶縁分離領域、 1 4 Isolation area,
1 5 ゲート絶縁膜、
16 ゲート電極、 1 5 Gate insulating film, 16 Gate electrode,
17 絶縁分離膜、 17 Insulation separation membrane,
18 絶縁分離膜、 18 Insulation separation membrane,
19、 20 パンチスルーコントロール、 19, 20 punch-through control,
21 ηもしくは η +ソース、 21 η or η + source,
22 ηもしくは η+ドレイン、 22 η or η + drain,
23 η +ソース、 23 η + source,
24 η +ドレイン、 24 η + drain,
25 ソース電極、 25 source electrodes,
26 ドレイン電極、 26 drain electrode,
27 パッシベ一シヨン膜、 27 Passive membrane,
28 金属酸化膜。 発明を実施するための最良の形態 28 Metal oxide film. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施例 1 ) (Example 1)
図 1はその第 1の実施例を示す半導体装置の断面図である。 FIG. 1 is a sectional view of a semiconductor device showing the first embodiment.
なお、 ここでは半導体装置内に含まれる ηチャネル MO Sのみを示す。 図 1 で、 1 1は基板裏面の電極、 12は ρ+領域、 13は高抵抗率 ρ -基板 (基 体) 、 14は絶縁分離領域、 15はシリコン酸化膜、 シリコン窒化膜もしくは Ta205、 T i 02、 Z r02もしくは A 1203等の高誘電率絶縁膜 (ゲート絶縁 膜) 、 1 6は A l、 Mo、 W、 T a、 T i、 もしく は N i等の金属、 Mo S i。、 WS i 2、 T a S i。、 T i S i 2、 もしくは N i S i 2等の金属シリ サイド、 もしくは多結晶シリコン (ゲート電極) 、 17は絶縁分離するためのシ リコン酸化膜もしくはシリコン窒化膜、 18は絶縁分離するためのシリコン酸ィ匕 膜もしくはシリコン窒化膜、 19、 20は pもしくは p+領域 (パンチスルーコ ントロール) 、 21は nもしくは n+領域 (ソース) 、 22は nもしくは n+領 域 (ドレイン) 、 23は n+領域 (ソース) 、.24は n+領域 (ドレイン) 、 25は金属電極 (ソース電極) 、 26は金属電極 (ドレイン電極) 、 27はパッ
シベーション用シリコン酸化膜、 P S G膜もしくはシリコン窒化膜である。 図 1で、 p -領域 1 3のチャネル部の不純物濃度より高い不純物濃度のパンチ スルーコントロール 2 0は、 ドレイン 2 2の基板バルク側に形成されており、 ノ ンチスルーコントロール 2 0とドレイン 2 2とにより p n接合が形成され、 パン チスルーコントロール 2 0の厚さは、 ドレイン電極 2 6に所定の電圧を印加した 場合のパンチスルーコントロール 2 0内の空乏層厚さより厚く形成されている。 この構造では、 P —領域 1 3のチャネル部の不純物濃度がパンチスルーコント ロール 2 0の不純物濃度より低いために、 ドレイン 2 2からの電気力線でパンチ スルーコントロール 2 0のイオン化不純物で終端する電気力線が多く、 チャネル 部のィォン化不純物で終端する電気力線が少なく、 ドレイン電極 2 6に電圧を印 加した場合、 ドレイン 2 2から p —領域 1 3のチャネル部への空乏層の延びを抑 制するため、 かつパンチスルーコントロール 2 0の厚さがドレイン電極 2 6に所 定の電圧を印加した場合のパンチスルーコントロール 2 0内の空乏層厚さより厚 く形成されているために、 ドレイン 2 2から領域 2 0の基板バルク側の p—領域 1 3への空乏層の延びを抑制するため、 パンチスルーが起こりにくい。 図 1で、 パンチスルーコントロール 2 0の不純物濃度を所定の濃度に選んだ場合、 p -領 域 1 3のチヤネル部の不純物濃度を低くすることが望ましい。 Here, only the η-channel MOS included in the semiconductor device is shown. In FIG. 1, 11 is an electrode on the back of the substrate, 12 is a ρ + region, 13 is a high resistivity ρ-substrate (base), 14 is an isolation region, 15 is a silicon oxide film, a silicon nitride film or Ta 20. 5, T i 0 2, Z r0 2 or a 1 2 0 3 or the like high dielectric constant insulating film (gate insulating film), 1 6 a l, Mo, W, T a, T i, Moshiku is N i Etc. Metal, Mo Si. , WS i 2 , Ta Si. , T i S i 2 or N i S i 2 a metal such as silicon side, or polysilicon (gate electrode), divorced oxide film or a silicon nitride film for isolation 17, 18 for isolation 19, 20 are p or p + regions (punch through control), 21 is n or n + regions (source), 22 is n or n + regions (drain), and 23 is n + Region (source), .24 is the n + region (drain), 25 is the metal electrode (source electrode), 26 is the metal electrode (drain electrode), and 27 is the Silicon oxide film for passivation, PSG film or silicon nitride film. In FIG. 1, the punch-through control 20 having an impurity concentration higher than the impurity concentration of the channel portion of the p-region 13 is formed on the substrate bulk side of the drain 22, and the non-through control 20 and the drain 22 are formed. As a result, a pn junction is formed, and the thickness of the punch-through control 20 is formed larger than the thickness of the depletion layer in the punch-through control 20 when a predetermined voltage is applied to the drain electrode 26. In this structure, since the impurity concentration in the channel region of the P region 13 is lower than the impurity concentration of the punch-through control 20, the termination is performed by the electric force lines from the drain 22 and the ionized impurity of the punch-through control 20. When the voltage is applied to the drain electrode 26, the depletion layer from the drain 22 to the channel region of p-region 13 In order to suppress elongation, and because the thickness of the punch-through control 20 is formed larger than the thickness of the depletion layer in the punch-through control 20 when a predetermined voltage is applied to the drain electrode 26. In order to suppress the extension of the depletion layer from the drain 22 to the p-region 13 on the substrate bulk side of the region 20, punch-through hardly occurs. In FIG. 1, when the impurity concentration of the punch-through control 20 is selected to be a predetermined concentration, it is desirable to lower the impurity concentration of the channel portion of the p − region 13.
図 1で、 ゲート電極 1 6の材料は、 1 +領域2 3、 2 4に対して高い拡散電位 をもつものが望ましく、 C MO Sにおいては、 ゲート電極材料は、 n +領域と p +領域の両方の領域に対して高い拡散電位をもつものが望ましい。 たとえば、 W にすると、 高い拡散電位が得られる。 Wでは、 n +領域に対して 0 . 5 V程度、 P +領域に対して 0 . 6 V程度の拡散電位をもつことになる。 もちろん、 ゲート 電極は仕事関数の値が n +領域、 p +領域のいずれに対しても高い電位障壁をも つものであればよく、 A l、 高融点金属や金属シリサイドでもよい。 したがつ て、 ゲート電極の抵抗は小さい。 また、 この構造では、 n +ソース領域 2 3に対 するゲート電極 1 6の拡散電位によって、 チャネル部に電位障壁を生じさせ、 領 域 1 3のチヤネル部の不純物濃度が 1 0 l4〜 1 0 1ϋ c m—3程度で MO S トランジ ス夕でのノーマリオフ特性を実現している。 すなわち、 領域 1 3は高抵抗率領域 であって、 不純物濃度は低く保たれている。 したがって、 電子が流れるチャネル
幅が広く保たれ、 チャネルを走るキヤリアの移動度が低下することなく短チヤネ ルが実現できる。 すなわち、 変換コンダクタンスの大きな M〇S トランジスタと なる。 In FIG. 1, the material of the gate electrode 16 desirably has a high diffusion potential with respect to the 1+ regions 23 and 24. In CMOS, the gate electrode material is composed of the n + region and the p + region. It is desirable to have a high diffusion potential for both regions. For example, W gives a high diffusion potential. W has a diffusion potential of about 0.5 V for the n + region and about 0.6 V for the P + region. Of course, the gate electrode only needs to have a high potential barrier for both the n + region and the p + region of the work function, and may be Al, a refractory metal or a metal silicide. Therefore, the resistance of the gate electrode is small. Further, in this structure, n by + diffusion potential of the gate electrode 1 6 against the source region 2 3 causes a potential barrier in the channel region, realm 1 3 impurity concentration 1 0 l4 ~ 1 0 of channel portion Normally- off characteristics during the MOS transit are realized at approximately 1 cm- 3 . That is, the region 13 is a high resistivity region, and the impurity concentration is kept low. Therefore, the channel through which electrons flow The width is kept wide, and short channels can be realized without reducing the mobility of the carrier running in the channel. In other words, it is an M〇S transistor with a large conversion conductance.
図 1で、 ゲート絶縁膜より基板バルク側の領域 1 3の不純物濃度は、 1 0 14〜 1 O lD c m— 3程度であり、 空乏層容量は小さい。 したがって、 サブスレシュホー ノレドスイングが小さい MO Sトランジスタとなる。 すなわち、 低い電源電圧でト ランジスタ動作が実現する。 In FIG. 1, the impurity concentration in the region 13 on the substrate bulk side from the gate insulating film is about 10 14 to 1 O lD cm− 3 , and the depletion layer capacitance is small. Therefore, the MOS transistor has a small subthreshold noise swing. That is, transistor operation is realized with a low power supply voltage.
図 1で、 領域 2 1と領域 1 9との接合面、 領域 2 2と領域 2 0との接合面は平 面であり、 接合面の面積が小さいため、 ソース領域とドレイン領域間およびソー ス領域と基板間、 ドレイン領域と基板間の容量が小さい。 In FIG. 1, the junction surface between the regions 21 and 19 and the junction surface between the regions 22 and 20 are flat, and the area of the junction surface is small. The capacitance between the region and the substrate and between the drain region and the substrate is small.
図 1で、 電極 2 5、 2 6の材料は、 たとえば A 1や Wであり、 ソース電極およ びドレイン電極の抵抗が小さい。 もちろん、 ソース電極およびドレイン電極は、 M o、 T a、 T i、 N i等の金属、 もしくは M o S i 2、 W S i 2、 T a S i。、 T i S i 2、 N i S i 2等の金属シリサイドでもよい。 ソース抵抗、 ドレイン抵 抗、 ゲート抵抗が小さく、 また、 ソース、 ドレイン容量も小さいうえに、 変換コ ンダクタンスが大きいから、 高速性能に優れたトランジスタとなる。 In FIG. 1, the materials of the electrodes 25 and 26 are, for example, A1 and W, and the resistance of the source electrode and the drain electrode is small. Of course, the source and drain electrodes, M o, T a, T i, metals such as N i or M, o S i 2, WS i 2, T a S i. May be a T i S i 2, N i S i 2 etc. of the metal silicide. Since the source resistance, drain resistance, and gate resistance are small, the source and drain capacitances are small, and the conversion conductance is large, the transistor has excellent high-speed performance.
図 1で、 ドレイン領域 2 2の不純物濃度は 1 0 lo〜l O ^ c m ϋ程度であり、 ゲ一ト絶縁膜 1 5近傍および絶縁分離膜 1 8近傍での領域 2 2内の電界強度が低 く保たれており、 ホットキヤリァの生成効率が低く、 信頼性の高 t、トランジスタ となる。 領域 2 2内の電界強度を低くするためには、 領域 2 2の不純物濃度を低 くすることが望ましい。 一方、 領域 2 2の抵抗を小さくしてドレイン抵抗を小さ くするためには、 不純物濃度を高くすることが望ましい。 したがって、 ドレイン 領域 2 2の不純物濃度は、 領域 2 2での電界強度が絶縁破壊電界強度以下になる 不純物濃度の範囲で、 領域 2 2の抵抗が小さくなるように選ぶことが望ましい。 図 1で、 ドレイン電極 2 6に電圧を印加しない場合、 もしくはドレイン電極 2 6に所定の電圧を印加した場合、 領域 2 2内において、 ゲート絶縁膜 1 5と領 域 1 3の界面の延長面に沿ったチャネルの延長部に相当する領域の電位は、 p - 領域 1 3のチャネル部の電位より高くなるように、 すなわち領域 2 2内のチヤネ ルの延長領域の電子エネルギは、 P—領域 1 3のチャネル部の電子エネルギょり
低くなるように、 ンチスルーコントロール 20の不純物濃度と領域 22の不純 物濃度が選ばれている。 図 1で、 領域 22の不純物濃度および領域 20の不純物 濃度を所定の濃度に選んだ場合、 パンチスルーを抑制するためには、 ゲート絶縁 膜 15と領域 1 3の界面と、 領域 22と領域 20の界面との距離を短くすること 力望ましい。 また、 領域 22の不純物濃度を所定の濃度に選んだ場合、 パンチス ルーを抑制するためには、 ゲート絶縁膜 15と領域 1 3の界面と、 領域 22と領 域 20の界面との距離が長いほど、 パンチスルーコントロール 20の不純物濃度 を高くすること力望ましい。 この構造では、 チャネル部からドレインまで、 電位 が順次高くなつているため、 すなわち電子エネルギが順次低くなつているため、 キャリアである電子が流れやすく、 かつパンチスルーコントロール 20により ンチスルーを抑制している。 In FIG. 1, the impurity concentration of the drain region 22 is about 10 lo to 10 O ^ cm 、, and the electric field strength in the region 22 near the gate insulating film 15 and the insulating isolation film 18 is small. It is kept low, has low hot carrier generation efficiency, and has high reliability and high reliability. In order to reduce the electric field strength in the region 22, it is desirable to lower the impurity concentration in the region 22. On the other hand, in order to reduce the resistance of the region 22 and reduce the drain resistance, it is desirable to increase the impurity concentration. Therefore, it is desirable to select the impurity concentration of the drain region 22 such that the resistance of the region 22 is small in the range of the impurity concentration where the electric field intensity in the region 22 is equal to or lower than the dielectric breakdown electric field intensity. In FIG. 1, when no voltage is applied to the drain electrode 26 or when a predetermined voltage is applied to the drain electrode 26, the extension surface of the interface between the gate insulating film 15 and the region 13 in the region 22 The potential of the region corresponding to the extension of the channel along is higher than the potential of the channel portion of the p-region 13, that is, the electron energy of the extension region of the channel in the region 22 is P—region 13.Electron energy in channel 3 The impurity concentration of the cross-through control 20 and the impurity concentration of the region 22 are selected so as to be lower. In FIG. 1, when the impurity concentration of the region 22 and the impurity concentration of the region 20 are selected to be predetermined, in order to suppress punch-through, the interface between the gate insulating film 15 and the region 13 and the region 22 and the region 20 It is desirable to shorten the distance to the interface between the two. In addition, when the impurity concentration of the region 22 is selected to be a predetermined concentration, the distance between the interface between the gate insulating film 15 and the region 13 and the interface between the region 22 and the region 20 are long in order to suppress punch-through. It is desirable to increase the impurity concentration of the punch-through control 20. In this structure, since the potential is gradually increased from the channel portion to the drain, that is, the electron energy is gradually decreased, electrons as carriers easily flow, and punch-through control 20 suppresses the punch-through. .
(実施例 2) (Example 2)
図 2はその第 2の実施例を示す半導体装置の断面図である。 FIG. 2 is a sectional view of a semiconductor device showing the second embodiment.
図 2で、 1 7 aは絶縁分離するためのシリコン酸化膜もしくはシリコン窒化 膜、 1 9 a 19 b 20 a 20 bは pもしくは p+領域 (パンチスルーコン トロール) 、 21 a 21 bは nもしくは n+領域 (ソース) 、 22 a 22 b は nもしくは n+領域 (ドレイン) である。 In FIG. 2, 17a is a silicon oxide film or a silicon nitride film for insulating and isolating, 19a 19b 20a 20b is a p or p + region (punch through control), and 21a 21b is n or n + The region (source) and 22a and 22b are n or n + regions (drain).
図 2で、 ドレイン領域 22 bの不純物濃度は領域 22 aの不純物濃度より低 ヽ ために、 領域 22 b内の電界強度が低く保たれており、 ホッ トキャリアの生成効 率が低く、 信頼性の高!、トランジスタとなる。 In FIG. 2, since the impurity concentration of the drain region 22b is lower than the impurity concentration of the region 22a, the electric field intensity in the region 22b is kept low, and the hot carrier generation efficiency is low and the reliability is low. High !, transistor.
(実施例 3) (Example 3)
図 3はその第 3の実施例を示す半導体装置の断面図である。 FIG. 3 is a sectional view of a semiconductor device showing the third embodiment.
図 3で、 1 9 c 1 9 d 20 c 20 dは pもしくは p +領域 (パンチス ルーコン トロール) 、 2 1 c 2 1 dは nもしくは n +領域 (ソース) 、 22 c. 22 dは nもしくは n+領域 (ドレイン) である。 In Figure 3, 19 c 19 d 20 c 20 d is the p or p + region (punch through control), 21 c 21 d is the n or n + region (source), 22 c. It is an n + region (drain).
図 3で、 パンチスルーコントロール領域 20 cの不純物濃度は領域 20 dの不 純物濃度より低いために、 領域 22 cと領域 20 c間の容量が小さく、 すなわち ドレイン領域と基板間の容量が小さく、 高速性能に優れたトランジス夕となる。 In FIG. 3, since the impurity concentration of the punch-through control region 20c is lower than the impurity concentration of the region 20d, the capacitance between the region 22c and the region 20c is small, that is, the capacitance between the drain region and the substrate is small. , It will be a good evening with excellent high speed performance.
(実施例 4)
1 3 (Example 4) 13
9 9
図 4はその第 4の実施例を示す半導体装置の断面図である。 FIG. 4 is a sectional view of a semiconductor device according to a fourth embodiment.
図 4で、 1 9 e、 2 0 eは、 p—、 pもしくは p +領域である。 In FIG. 4, 19 e and 20 e are p—, p or p + regions.
図 4で、 領域 2 0 eの不純物濃度は、 領域 1 3の不純物濃度より高く、 領域 2 0の不純物濃度より低くなつている。 この構造では、 ゲート絶縁膜 1 5と領域 1 3の界面と領域 2 2と領域 2 0の界面との距離を所定の長さに、 および領域 2 2の不純物濃度を所定の濃度に選んだ場合、 領域 2 0の不純物濃度を低くする と、 ドレイン 2 2から領域 1 3のチャネル部へ空乏層が延びてパンチスルーを引 き起こすので、 領域 2 0 eにより、 ドレイン 2 2から領域 1 3のチヤネノレ部への 空乏層の延びを抑制する。 し力、し、 領域 2 0 eの不純物濃度を高くすると、 キヤ リァである電子の移動度が低くなり、 またサブスレシュホールドスィングが大き くなるので、 領域 2 0 eの不純物濃度は低いことが望ましい。 したがって、 領域 2 0 eの不純物濃度は領域 2 0の不純物濃度より低くして、 キヤリァである電子 の移動度を高く保ち、 かつキャリアのパンチスルーが起こらないように、 領域 2 0および領域 2 0 eの不純物濃度を選ぶことが望ましい。 この構造では、 領域 2 0および領域 2 0 eがドレインからチャネル部への空乏層の延びを抑制してい るため、 パンチスルー力起こりにくい。 In FIG. 4, the impurity concentration of the region 20 e is higher than the impurity concentration of the region 13 and lower than the impurity concentration of the region 20. In this structure, when the distance between the interface between the gate insulating film 15 and the region 13 and the interface between the region 22 and the region 20 is set to a predetermined length and the impurity concentration of the region 22 is set to a predetermined concentration. If the impurity concentration of the region 20 is lowered, a depletion layer extends from the drain 22 to the channel portion of the region 13 to cause punch-through. Suppress the extension of the depletion layer to the channel part. When the impurity concentration in the region 20 e is increased, the mobility of the carrier electrons decreases, and the sub-threshold swing increases, so that the impurity concentration in the region 20 e may be low. desirable. Therefore, the impurity concentration of the region 20 e is made lower than the impurity concentration of the region 20, so that the mobility of carriers as carriers is kept high, and the region 20 and the region 20 e are formed so that carrier punch-through does not occur. It is desirable to select the impurity concentration of e. In this structure, since the region 20 and the region 20 e suppress the extension of the depletion layer from the drain to the channel portion, punch-through force is unlikely to occur.
(実施例 5 ) (Example 5)
図 5はその第 5の実施例を示す半導体装置の断面図である。 FIG. 5 is a sectional view of a semiconductor device showing the fifth embodiment.
図 5で、 2 3 aはノンドープド、 n—、 nもしくは n +領域、 2 4 aはノン ドープド、 n—、 nもしくは n +領域である。 In FIG. 5, 23 a is a non-doped, n−, n or n + region, and 24 a is a non-doped, n−, n or n + region.
図 5で、 領域 2 4 aの不純物濃度はノンド一プド〜 1 0 18 c m_3程度であり、 n +領域 2 2の多数キヤリアである電子は領域 2 4 aへ滲み出すために、 ゲ一ト 絶縁膜 1 5近傍および絶縁分離膜 1 8近傍での領域 2 2内の電界強度が低く保た れており、 ホッ 卜キャリアの生成効率が低く、 信頼性の高いトランジスタとな る。 In Figure 5, the impurity concentration in the region 2 4 a is a throat one flops de ~ 1 0 18 c m_ 3 mm, electrons in order to bleed the region 2 4 a is a number carrier of the n + regions 2 2, gate (1) The electric field intensity in the region 22 near the insulating film 15 and the vicinity of the insulating separation film 18 is kept low, so that a hot carrier generation efficiency is low and a highly reliable transistor is obtained.
(実施例 6 ) (Example 6)
図 6はその第 6の実施例を示す半導体装置の断面図である。 FIG. 6 is a sectional view of a semiconductor device showing the sixth embodiment.
図 6で、 1 5 aはシリコン酸化膜もしくはシリコン窒化膜 (ゲ一ト絶縁膜) 、 1 6 aは A 1、 M o、 W、 T a、 T i、 もしくは N i等の金属、 M o S i 2、
W S i 2、 T a S i 2、 T i S i 2、 もしくは N i S i 2等の金属シリサイド、 もし くは多結晶シリコン (ゲー卜電極) 、 1 8 aは絶縁分離するためのシリコン酸化 膜もしくはシリコン窒化膜、 1 9 f、 2 0 f は pもしくは p +領域 (パンチス ルーコントロール) 、 2 1 eは nもしくは n +領域 (ソース) 、 2 2 eは nもし くは n +領域 (ドレイン) 、 2 8は絶縁分離するためのシリコン酸化膜、 シリコ ン窒化膜、 金属酸化膜もしくは金属フッ化膜である。 In FIG. 6, 15a is a silicon oxide film or a silicon nitride film (gate insulating film), 16a is a metal such as A1, Mo, W, Ta, Ti, or Ni; S i 2 , WS i 2, T a S i 2, T i S i 2 or N i S i 2 such metal silicide, if Ku polycrystalline silicon (gate Bok electrode), 1 8 a silicon oxide for isolation Film or silicon nitride film, 19 f and 20 f are p or p + regions (punch through control), 21 e is n or n + regions (source), and 22 e is n or n + regions ( The drain) and 28 are a silicon oxide film, a silicon nitride film, a metal oxide film or a metal fluoride film for insulating and separating.
図 6で、 領域 2 2 eと領域 2 0 f との界面はゲ一ト絶縁膜 1 5 aと領域 1 3内 の領域 1 5 aより基板バルク側の領域との界面より領域 2 4側、 すなわち基板バ ルクより反対側に形成されている。 この構造で、 ドレイン電極 2 6に電圧を印加 しない場合、 もしくはドレイン電極 2 6に所定の電圧を印加した場合、 領域 2 2 e内のチャネルの延長部に相当する領域の電位は、 P—領域 1 3のチャネル 部の電位より高くなるように、 すなわち領域 2 2 e内のチャネルの延長領域の電 子エネルギは、 p—領域 1 3のチヤネノレ部の電子エネルギより低くなるように、 パンチスルーコントロール 2 0 f の不純物濃度と領域 2 2 eの不純物濃度が選ば れている。 図 6で、 領域 2 2 eの不純物濃度および領域 2 0 f の不純物濃度を所 定の濃度に選んだ場合、 パンチスルーを抑制するためには、 ゲート絶縁膜 1 5 a と領域 2 0 f との距離を短くすることが望ましい。 また、 領域 2 2 eの不純物濃 度を所定の濃度に選んだ場合、 パンチスルーを抑制するためには、 ゲート絶縁膜 1 5 aと領域 2 0 f との距離が長いほど、 パンチスルーコントロール 2 0 fの不 純物濃度を高くすることが望ましい。 この構造では、 チャネル部からドレインま で、 電位が順次高くなつているため、 すなわち電子エネルギが順次低くなつてい るため、 キャリアである電子が流れやすく、 かつパンチスルーコントロール 2 0 f によりパンチスルーを抑制している。 In FIG. 6, the interface between the region 22 e and the region 20 f is closer to the region 24 than the interface between the gate insulating film 15 a and the region 15 a in the region 13 on the substrate bulk side. That is, it is formed on the opposite side of the substrate bulk. In this structure, when no voltage is applied to the drain electrode 26, or when a predetermined voltage is applied to the drain electrode 26, the potential of the region corresponding to the extension of the channel in the region 22e becomes P-region The punch-through control is performed so that the potential of the channel portion 13 is higher than the potential of the channel portion, that is, the electron energy of the extension region of the channel in the region 22 e is lower than the electron energy of the channel portion of the p-region 13. An impurity concentration of 20 f and an impurity concentration of region 22 e are selected. In FIG. 6, when the impurity concentration of the region 22 e and the impurity concentration of the region 20 f are selected to be the predetermined concentrations, the gate insulating film 15 a and the region 20 f are required to suppress punch-through. It is desirable to shorten the distance between the two. Further, when the impurity concentration of the region 22 e is set to a predetermined concentration, the punch-through control should be performed as the distance between the gate insulating film 15 a and the region 20 f becomes longer, in order to suppress punch-through. It is desirable to increase the impurity concentration at 0 f. In this structure, since the potential is gradually increased from the channel portion to the drain, that is, the electron energy is gradually decreased, electrons as carriers easily flow, and punch-through is performed by the punch-through control 20f. Restrained.
図 6で、 ゲート絶縁膜 1 5 aと領域 1 3内の領域 1 5 aより基板バルク側の領 域との界面は領域 2 2 eと領域 2 0 f との界面より領域 1 3側、 すなわち基板バ ルク側に形成されている。 この構造では、 チャネル部のソースとドレインの間の 電界強度が軽減されるため、 キヤリアのパンチスルーが抑制されることに加え て、 チヤネル部でのホットキャリァの生成効率が低く保たれ、 信頼性が高!/、トラ ンジス夕となる。
図 1での領域 2 1、 図 2での領域 2 1 a、 2 1 b、 図 3での領域 2 1 c、 2 1 d、 図 4での領域 2 1、 図 5での領域 2 1、 2 3 a、 図 6での領域 2 1 eの 不純物濃度は、 各々の領域の抵抗を小さくするために、 高くすることが望まし い。 各々の領域の不純物濃度を高くすることにより、 ソース抵抗が小さく、 高速 性能に優れたトランジスタとなる。 In FIG. 6, the interface between the gate insulating film 15a and the region on the substrate bulk side of the region 15a in the region 13 is closer to the region 13 than the interface between the region 22e and the region 20f. It is formed on the substrate bulk side. With this structure, the electric field strength between the source and drain in the channel section is reduced, so that punch-through of the carrier is suppressed, and the hot carrier generation efficiency in the channel section is kept low. Is high! Region 21 in Figure 1, region 21a, 21b in Figure 2, region 21c, 21d in Figure 3, region 21 in Figure 4, region 21 in Figure 5, 23a and the impurity concentration of the region 21e in FIG. 6 are desirably increased to reduce the resistance of each region. By increasing the impurity concentration in each region, a transistor having low source resistance and excellent high-speed performance can be obtained.
このように、 本発明のドレインより少なくとも基板バルク側にパンチスルーコ ン卜ロールを備えた半導体装置により、 超高速性に優れ、 かつ高信頼性に優れた トランジスタを用 、た半導体集積回路を実現できる。 As described above, the semiconductor device having the punch-through control at least on the substrate bulk side from the drain according to the present invention realizes a semiconductor integrated circuit using a transistor having excellent ultra-high speed and high reliability. it can.
図 1から図 6で、 基板として、 裏面に p +領域 1 2を備えている p—基板 1 3 について説明したが、 以上述べた半導体装置の動作は、 S O I基板を用いても実 現され、 もしくは裏面にゲート絶縁膜、 ゲート電極もしくはゲート電極を備え、 かつ裏面ドレインの少なくとも基板バルク側にパンチスルーコントロールを備え た二重ゲートトランジスタ構造を用いても実現される。 In FIG. 1 to FIG. 6, the p-substrate 13 having the p + region 12 on the back surface has been described as the substrate. However, the operation of the semiconductor device described above is also realized using an SOI substrate. Alternatively, a double gate transistor structure having a gate insulating film, a gate electrode or a gate electrode on the back surface, and punch-through control on at least the substrate bulk side of the back surface drain can be realized.
次に図 1の半導体装置を製作するための製造工程の一例を図 7に示す。 基板 1 3に p—基板を用いた場合につき説明する。 もちろん領域 1 3はゥエル構造に してもよい。 分離領域 1 4はたとえば L O C O S法を用いて形成する。 すなわ ち、 基板 1 3の表面を熱酸化した後、 C V D法でシリコン窒化膜を堆積する。 領 域 1 4に相当するシリコン窒化膜もしくはシリコン窒化膜および熱酸化膜をリァ クティブイオンエッチングにより除去する。 続いて、 熱酸化により、 領域 1 4の 熱酸化膜を形成した後、 領域 1 3の表面のシリコン窒化膜および熱酸化膜をリア . クティブイオンエツチングにより除去する。 Next, an example of a manufacturing process for manufacturing the semiconductor device of FIG. 1 is shown in FIG. The case where a p-substrate is used as the substrate 13 will be described. Of course, the region 13 may have a pail structure. The isolation region 14 is formed by using, for example, the LOCOS method. That is, after the surface of the substrate 13 is thermally oxidized, a silicon nitride film is deposited by the CVD method. The silicon nitride film or the silicon nitride film and the thermal oxide film corresponding to the region 14 are removed by reactive ion etching. Subsequently, after forming a thermal oxide film in the region 14 by thermal oxidation, the silicon nitride film and the thermal oxide film on the surface of the region 13 are removed by reactive ion etching.
このようにして領域 1 4が形成されるが、 以上の方法に限らず他のいかなる方 法で形成してもよい。 The region 14 is thus formed, but may be formed by any other method without being limited to the above method.
次に、 領域 1 3の表面を熱酸化することにより、 3〜1 O nmの厚さの熱酸化 膜を形成する。 もちろん C V D法により高誘電率絶縁膜を堆積してもよい。 続い て、 C V D法により金属、 金属シリサイドもしくは多結晶シリコン層を堆積し、 さらに、 C V D法によりシリコン酸化膜もしくはシリコン窒化膜を堆積し、 図 7 ( a ) に示すように所定の領域をリアクティブイオンエツチングによってエッチ ングする。 もちろん領域 1 7は、 領域 1 6の表面を熱酸化し、 金属酸化物もしく
はシリコン酸化物を形成してもよい。 ここで、 領域 1 7の絶縁層の厚さは領域 1 5の熱酸化膜もしくは高誘電率絶縁膜の厚さより厚く形成されている。 Next, a thermal oxide film having a thickness of 3 to 1 O nm is formed by thermally oxidizing the surface of the region 13. Of course, a high dielectric constant insulating film may be deposited by a CVD method. Subsequently, a metal, metal silicide or polycrystalline silicon layer is deposited by the CVD method, and a silicon oxide film or a silicon nitride film is further deposited by the CVD method, and a predetermined region is reactive as shown in FIG. 7 (a). Etch by ion etching. Of course, region 17 thermally oxidizes the surface of region 16 May form a silicon oxide. Here, the thickness of the insulating layer in the region 17 is formed larger than the thickness of the thermal oxide film or the high dielectric constant insulating film in the region 15.
図 7 ( b ) に示す所定の不純物濃度の領域 1 9、 2 0は Bのイオン注入および 活性化ァニールで形成する。 領域 1 3への Bの拡散を抑制するために、 活性化ァ ニール温度は低いことが望ましく、 7 0 0 °C以下が望ましく、 5 0 0 °C以下がよ り望ましい。 もちろん領域 1 3への Bの拡散を抑制するために、 活性化ァニール 法としてラピッ ドサ一マルアニーリングを用いてもよい。 続いて、 所定の不純物 濃度の領域 2 1、 2 2は A sもしくは Pのイオン注入および活性化ァニールで形 成する。 領域 1 3もしくは領域 1 9、 2 0への A sもしくは Pの拡散を抑制する ために、 活性化ァニーノレ温度は低いことが望ましく、 7 0 0 °C以下が望ましく、 5 0 0 °C以下がより望ましい。 もちろん領域 1 3もしくは領域 1 9、 2 0への A sもしくは Pの拡散を抑制するために、 活性化ァニール法としてラピッドサ一 マルアニーリングを用いてもよい。 The regions 19 and 20 having a predetermined impurity concentration shown in FIG. 7B are formed by ion implantation of B and annealing. In order to suppress the diffusion of B into the region 13, the activation annealing temperature is preferably low, preferably 700 ° C. or lower, more preferably 500 ° C. or lower. Of course, rapid thermal annealing may be used as the activation annealing method in order to suppress the diffusion of B into the region 13. Subsequently, regions 21 and 22 having a predetermined impurity concentration are formed by ion implantation of As or P and activation annealing. In order to suppress the diffusion of As or P into the region 13 or the regions 19 and 20, the activation annealing temperature is preferably low, preferably 700 ° C or lower, and 500 ° C or lower. More desirable. Of course, rapid thermal annealing may be used as the activation annealing method in order to suppress the diffusion of As or P into the region 13 or the regions 19 and 20.
図 7 ( b ) に示す領域 1 9、 2 0もしくは領域 2 1、 2 2は、 もちろんリアク ティブイオンエツチングぉよびェピタキシャル成長で形成してもよい。 図 7 ( a ) に示す構造を形成した後、 リアクティブイオンエッチングにより、 領域 1 7および領域 1 4をマスクとして領域 1 3を所定の深さまで選択的にエツチン グする。 続いて、 領域 1 3の表面上に選択的に所定の不純物濃度の Bドープド単 結晶シリコンをェピタキシャル成長させて、 領域 1 9、 2 0を形成する。 次に領 域 1 9、 2 0の表面上に選択的に所定の不純物濃度の Pドープド単結晶シリコン をェピタキシャル成長させて、 領域 2 1、 2 2を形成する。 The regions 19 and 20 or the regions 21 and 22 shown in FIG. 7B may be formed by reactive ion etching and epitaxy. After the structure shown in FIG. 7A is formed, the region 13 is selectively etched to a predetermined depth by reactive ion etching using the regions 17 and 14 as a mask. Subsequently, regions 19 and 20 are formed by selectively epitaxially growing B-doped single-crystal silicon having a predetermined impurity concentration on the surface of the region 13. Next, regions 21 and 22 are formed by selectively epitaxially growing P-doped single-crystal silicon having a predetermined impurity concentration on the surfaces of the regions 19 and 20.
次に、 C V D法によりシリコン酸化膜もしくはシリコン窒化膜を堆積した後、 リアクティブイオンエツチングにより領域 1 8以外の領域のシリコン酸化膜もし くはシリコン窒化膜が除去されるまでエッチングする。 Next, after depositing a silicon oxide film or a silicon nitride film by the CVD method, etching is performed by reactive ion etching until the silicon oxide film or the silicon nitride film in a region other than the region 18 is removed.
次に、 領域 2 1、 2 2の表面上に選択的に Pドープド単結晶シリコンをェピ夕 キシャル成長させて、 領域 2 3、 2 4を形成する。 もちろん選択的にノンドープ ド単結晶シリコンを成長させた後、 Pもしくは A sをィォン注入し、 つし、で活性 化ァニールを施すことによって、 所定の不純物濃度の領域 2 3、 2 4を形成して もよい。 領域 2 3、 2 4はもちろん多結晶シリコンでもよい。 もちろん領域
23、 24は金属もしくは金属シリサイドでもよい。 次に、 図 7 (d) に示すよ うに、 C VD法もしくはスパッタ法により選択的に Wもしくは A 1層を形成す る。 Next, regions 23 and 24 are formed by selectively epitaxially growing P-doped single-crystal silicon on the surfaces of the regions 21 and 22. Of course, after selectively growing non-doped single-crystal silicon, P or As is ion-implanted, followed by activation annealing to form regions 23 and 24 having a predetermined impurity concentration. You may. The regions 23 and 24 may of course be polycrystalline silicon. Of course the area 23 and 24 may be metal or metal silicide. Next, as shown in FIG. 7 (d), a W or A1 layer is selectively formed by a CVD method or a sputtering method.
さらに、 図 1に示す半導体装置の構造は、 パッシベーシヨン層 27の形成、 そ して裏面 p+層領域 1 2および電極 1 1の形成によって製作できる。 Further, the structure of the semiconductor device shown in FIG. 1 can be manufactured by forming the passivation layer 27 and then forming the back surface p + layer region 12 and the electrode 11.
次に図 2の半導体装置を製作するための製造工程の一例を図 8に示す。 絶縁分 離領域 1 4を形成した後、 領域 1 3の表面を熱酸化することにより、 3〜 1 Onmの厚さの熱酸化膜を形成する。 もちろん CVD法により高誘電率絶縁膜 を堆積してもよい。 続いて、 CVD法により金属、 金属シリサイドもしくは多結 晶シリコン層を堆積し、 図 8 (a) に示すように所定の領域をリアクティブィォ ンエツチングによってエツチングする。 Next, an example of a manufacturing process for manufacturing the semiconductor device of FIG. 2 is shown in FIG. After the formation of the insulating isolation region 14, the surface of the region 13 is thermally oxidized to form a thermal oxide film having a thickness of 3 to 1 Onm. Of course, a high dielectric constant insulating film may be deposited by a CVD method. Subsequently, a metal, metal silicide or polycrystalline silicon layer is deposited by a CVD method, and a predetermined region is etched by reactive etching as shown in FIG. 8A.
領域 1 6の表面を熱酸化し、 金属酸化物もしくはシリコン酸化物を形成する。 もちろん CVD法によりシリコン酸化膜を堆積し、 絶縁層を形成してもよい。 こ こで、 領域 1 7 aの絶縁層の厚さは領域 15の熱酸化膜もしくは高誘電率絶縁膜 の厚さより厚く形成されている。 次に図 8 (b) に示すように、 リアクティブィ オンエツチングにより、 領域 1 5の所定の領域が除去されるまでエツチングす る The surface of the region 16 is thermally oxidized to form a metal oxide or a silicon oxide. Of course, an insulating layer may be formed by depositing a silicon oxide film by a CVD method. Here, the thickness of the insulating layer in the region 17a is formed larger than the thickness of the thermal oxide film or the high dielectric constant insulating film in the region 15. Next, as shown in FIG. 8 (b), etching is performed until a predetermined area of the area 15 is removed by reactive ion etching.
図 8 (c) に示す所定の不純物濃度の領域 19 a、 20 aは Bのイオン注入で 形成する。 続いて、 所定の不純物濃度の領域 21 a、 22 aは Asもしくは Pの イオン注入で形成する。 次に 500°C以上もしくは 700°C以上の温度で所定の . 時間の間熱処理し、 領域 21 a、 22 aを Asもしくは Pの拡散源とした Asも しくは Pの拡散により図 8 (d) に示す領域 21 b、 22 bを形成し、 同時に領 域 19 a、 20 aを Bの拡散源とした Bの拡散により領域 19 b、 20 bを形成 する。 もちろん領域 19 b、 2 Obおよび 21 b、 22 bは図 8 (b) に示す構 造を形成した後、 Bおよび Asもしくは Pの斜め方向イオン注入および活性化ァ ニールによって形成してもよい。 また、 図 8 (a) に示す構造を形成した後、 B て形成してもよい。 The regions 19a and 20a having a predetermined impurity concentration shown in FIG. 8C are formed by B ion implantation. Subsequently, regions 21a and 22a having a predetermined impurity concentration are formed by As or P ion implantation. Next, heat treatment is performed at a temperature of 500 ° C or more or 700 ° C or more for a predetermined time, and As or P is diffused using the regions 21a and 22a as As or P diffusion sources, as shown in FIG. ) Are formed, and at the same time, regions 19b and 20b are formed by diffusion of B using the regions 19a and 20a as diffusion sources of B. Of course, the regions 19b, 2 Ob and 21b, 22b may be formed by oblique ion implantation of B and As or P and activation annealing after forming the structure shown in FIG. 8 (b). Also, after forming the structure shown in FIG.
図 8 (d) に示す領域 19 b、 20 bもしくは領域 2 1 b、 22 bは、 もちろ
ん領域 1 9 a、 2 0 aおよび領域 2 1 a、 2 2 aをリアクティブイオンエツチン グぉよびェピタキシャル成長で形成した後、 5 0 0 °C以上もしくは 7 0 0 °C以上 の温度で所定の時間の間熱処理し、 領域 2 1 a、 2 2 aを Pの拡散源とした Pの 拡散により領域 2 1 b、 2 2 bを形成し、 同時に領域 1 9 a、 2 0 aを Bの拡散 源とした Bの拡散により領域 1 9 b、 2 O bを形成してもよい。 Regions 19b and 20b or regions 21b and 22b shown in Fig. 8 (d) After forming reactive regions 19a and 20a and regions 21a and 22a by reactive ion etching and epitaxy, temperature of 500 ° C or more or 700 ° C or more The region 21a and 22a are formed by diffusion of P using the regions 21a and 22a as a diffusion source of P, and the regions 19a and 20a are formed at the same time. Regions 19b and 2Ob may be formed by diffusion of B as a diffusion source of B.
図 3の半導体装置は、 図 7 ( c ) に示す構造を形成した後、 次に、 リアクティ ブイオンエッチングにより、 領域 1 7、 領域 1 8および領域 1 4をマスクとして 領域 2 1、 2 2および領域 1 9、 2 0を選択的にエッチングする。 続いて、 領域 1 3の表面上に選択的に所定の不純物濃度の Bドープド単結晶シリコンをェピタ キンャル成長させて、 領域 1 9 c、 2 0 cを形成する。 次に領域 1 9 c、 2 0 c の表面上に選択的に所定の不純物濃度の Pドープド単結晶シリコンをェピタキシ ャル成長させて、 領域 2 1 c、 2 2 cを形成する。 ここで、 領域 2 0 cの不純物 濃度は領域 2 0 dの不純物濃度より低く形成されている。 After the structure shown in FIG. 7 (c) is formed in the semiconductor device of FIG. 3, the regions 21, 22 and 22 are formed by reactive ion etching using regions 17, 18 and 14 as a mask. 19, 20 are selectively etched. Subsequently, B-doped single-crystal silicon having a predetermined impurity concentration is selectively grown on the surface of the region 13 by epitaxy to form regions 19c and 20c. Next, on the surfaces of the regions 19c and 20c, P-doped single-crystal silicon having a predetermined impurity concentration is epitaxially grown to form regions 21c and 22c. Here, the impurity concentration of the region 20c is formed lower than the impurity concentration of the region 20d.
図 4の半導体装置は、 図 7 ( a ) に示す構造を形成した後、 Bのイオン注入に より所定の不純物濃度の領域 1 9、 2 0を形成する。 続いて、 5 0 0 °C以上もし くは 7 0 0 °C以上の温度で所定の時間の間熱処理し、 同時に領域 1 9、 2 0を B の拡散源とした Bの拡散により領域 1 9 e、 2 0 eを形成する。 もちろん領域 1 9 e、 2 0 eは図 7 ( a ) に示す構造を形成した後、 Bの斜め方向イオン注入 および活性化ァニールによって形成してもよい。 また、 図 8 ( b ) に示す構造を 形成した後、 Bの斜め方向イオン注入および活性化ァニールによって形成しても よい。 In the semiconductor device of FIG. 4, after the structure shown in FIG. 7A is formed, regions 19 and 20 having a predetermined impurity concentration are formed by ion implantation of B. Subsequently, a heat treatment is performed for a predetermined time at a temperature of 500 ° C. or more or 700 ° C. or more, and at the same time, the regions 19 and 20 are diffused by using e, forming 20 e. Of course, the regions 19 e and 20 e may be formed by oblique ion implantation of B and activation annealing after forming the structure shown in FIG. Alternatively, after the structure shown in FIG. 8B is formed, it may be formed by oblique ion implantation of B and activation annealing.
次に、 所定の不純物濃度の領域 2 1、 2 2は A sもしくは Pのイオン注入およ び活性化ァニールで形成する。 領域 1 3もしくは領域 1 9、 1 9 e、 2 0、 2 0 eへの A sもしくは Pの拡散を抑制するために、 活性化ァニール温度は低い こと力望ましく、 7 0 0 °C以下が望ましく、 5 0 0 °C以下がより望ましい。 もち ろん領域 1 3もしくは領域 1 9、 1 9 e、 2 0、 2 0 eへの A sもしくは Pの拡 散を抑制するために、 活性化ァニール法としてラピッドサ一マルア二一リングを 用いてもよい。 もちろんリアクティブイオンエッチングにより、 領域 1 7および 領域 1 4をマスクとして領域 1 9、 2 0を所定の深さまで選択的にエッチングし
た後、 領域 1 9、 20の表面上に選択的に所定の不純物濃度の Pドープド単結晶 シリコンをェピタキシャル成長させて、 領域 21、 22を形成してもよい。 図 5の半導体装置は、 図 7 (c) に示す構造を形成した後、 領域 2 1、 22の 表面上に不純物濃度が領域 21、 22より低いノンドープド、 n -型、 n型もし くは n+型単結晶シリコンを選択的にェピタキシャル成長させて領域 23 a、 24 aを形成し、 続いて不純物濃度がより高い n+型単結晶シリコンをェピタキ シャル成長させて領域 23、 24を形成する。 Next, regions 21 and 22 having a predetermined impurity concentration are formed by As or P ion implantation and activation annealing. In order to suppress the diffusion of As or P into the region 13 or the regions 19, 19 e, 20 and 20 e, the activation annealing temperature is preferably low, and preferably 700 ° C. or less. , 500 ° C or less is more desirable. Of course, in order to suppress the diffusion of As or P into the region 13 or the regions 19, 19 e, 20 and 20 e, the rapid annealing method was used as the activation annealing method. Is also good. Of course, the regions 19 and 20 are selectively etched to a predetermined depth using the region 17 and the region 14 as masks by reactive ion etching. After that, regions 21 and 22 may be formed by selectively epitaxially growing P-doped single-crystal silicon having a predetermined impurity concentration on the surfaces of regions 19 and 20. After forming the structure shown in FIG. 7 (c), the semiconductor device of FIG. 5 has a non-doped, n-type, n-type or n + type with a lower impurity concentration than the regions 21 and 22 on the surfaces of the regions 21 and 22. Regions 23a and 24a are formed by selectively epitaxially growing type single crystal silicon, and regions 23 and 24 are formed by epitaxially growing n + type single crystal silicon having a higher impurity concentration.
次に図 6の半導体装置を製作するための製造工程の一例を図 9に示す。 絶縁分 離領域 14を形成した後、 Asもしくは Pのイオン注入により、 領域 1 3の表面 に nもしくは n+領域層 21 e、 22 eを形成する。 もちろん nもしくは n+型 単結晶シリコンをェピタキシャル成長させてもよい。 続いて、 CVD法によりシ リコン酸化膜を堆積し、 図 9 (a) に示すように所定の領域をリアクティブィォ ンエッチングによってエッチングする。 次に図 9 (a) に示すように Bのイオン 注入および活性化ァニールにより、 領域 19 f、 20 fを形成する。 ここで、 領 域 19 f、 20 fの不純物濃度は領域 13表面の nもしくは n+領域層 2 1 e、 22 eの不純物濃度より低く形成されている。 Next, an example of a manufacturing process for manufacturing the semiconductor device of FIG. 6 is shown in FIG. After forming the isolation region 14, n or n + region layers 21e and 22e are formed on the surface of the region 13 by As or P ion implantation. Of course, n or n + type single crystal silicon may be epitaxially grown. Subsequently, a silicon oxide film is deposited by a CVD method, and a predetermined region is etched by reactive ion etching as shown in FIG. Next, as shown in FIG. 9 (a), regions 19f and 20f are formed by B ion implantation and activation annealing. Here, the impurity concentration of the regions 19 f and 20 f is formed lower than the impurity concentration of the n or n + region layers 21 e and 22 e on the surface of the region 13.
次に図 9 (b) に示すように、 等方性エッチングにより、 領域 29の所定の領 域が除去されるまでエッチングする。 続いて、 領域 21 e、 22 eの表面上に選 択的に P ド一プド単結晶シリコン 23、 24をェピタキシャル成長させた後、 CVD法もしくはスパッタ法により選択的に W、 Ta、 T i、 Z rもしくは Nb 等の金属膜 25、 26を形成する。 次に熱酸化もしくは陽極酸化により、 金属酸 化膜 28を形成する。 Next, as shown in FIG. 9B, etching is performed by isotropic etching until a predetermined region of the region 29 is removed. Subsequently, after selectively epitaxially growing P-doped single-crystal silicon 23, 24 on the surface of the regions 21 e, 22 e, W, Ta, T A metal film 25, 26 of i, Zr or Nb is formed. Next, a metal oxide film 28 is formed by thermal oxidation or anodic oxidation.
次に領域 29をエッチングにより、 除去する。 続いて、 CVD法によりシリコ ン酸化膜もしくはシリコン窒化膜を堆積した後、 リアクティブイオンエツチング により、 図 9 (c) に示す領域 18 a以外の領域のシリコン酸化膜もしくはシリ コン窒化膜が除去されるまでエツチングする。 Next, the region 29 is removed by etching. Subsequently, after depositing a silicon oxide film or a silicon nitride film by the CVD method, the silicon oxide film or the silicon nitride film in a region other than the region 18a shown in FIG. 9C is removed by reactive ion etching. Etching until done.
次にリアクティブイォンェッチングにより、 領域 1 8 a、 領域 28および領域 14をマスクとして領域 2 1 e、 22 eおよび領域 1 3を所定の深さまで選択的 にエッチングした後、 図 9 (d) に示すように熱酸化により、 領域 1 5 aを形成
する。 さらに、 ゲート電極 1 6 aは、 CVD法により、 W等の金属、 WS i 2等 の金属シリサイ ド、 もしくは多結晶シリコンを堆積して、 形成する。 Next, the regions 21a, 22e and 13 are selectively etched to a predetermined depth by reactive ion etching using the regions 18a, 28 and 14 as a mask. Region 15a is formed by thermal oxidation as shown in () I do. Furthermore, the gate electrode 1 6 a is by CVD, metal such as W, to deposit a metal Shirisai de or polycrystalline silicon, such as WS i 2, are formed.
図 1での領域 2 1、 図 2での領域 2 1 a、 2 1 b、 図 3での領域 2 1 c、 2 1 d、 図 4での領域 2 1、 図 5での領域 21、 23 a、 図 6での領域 2 1 eの 各々の領域の抵抗を小さくするために、 各々の領域の不純物濃度が高くした構造 は、 高い不純物濃度の Pドープド単結晶シリコンを選択的にェピタキシャル成長 させて各々の領域を形成する。 もちろん各々の領域を形成した後、 選択的に Pも しくは A sのイオン注入および活性化ァニールによって形成してもよい。 Region 21 in Figure 1, 21a and 21b in Figure 2, 21c and 21d in Figure 3, 21 in Figure 4 and 21 and 23 in Figure 5. a, In order to reduce the resistance of each of the regions 21 e in Fig. 6, the structure in which the impurity concentration in each region is high is made by selectively epitaxially growing high-doped P-doped single-crystal silicon. Thus, each region is formed. Of course, after each region is formed, it may be selectively formed by ion implantation of P or As and activation annealing.
図 10は、 第 1の実施例に係わる半導体装置のドレイン電流とドレイン電圧と の関係を示すグラフである。 図 1 0の横軸はドレイン電圧を表し、 縦軸はドレイ ン電流を表している。 図中の数値はゲート電圧を表している。 Bドープド p型基 板の不純物濃度は 1 X 1 014cm である。 ゲート酸化膜の厚さは 3 nmであ る。 ゲート電極としてはタングステンシリサイ ド (WS i2) が使用されてい る。 ゲート長は 0. 05〃mである。 チャネル長は 0. 05〃mであり、 チヤネ ル幅は 1 である。 ノ ンチスルーコントロール 1 9、 20の13の濃度は2 1018cm— 3である。 ソース領域 21およびドレイン領域 22の深さは 0. 01 μ mであり、 ソ一ス領域 2 1およびドレイン領域 22の Pの不純物濃度は 2 x 1 019 c m— 3であり、 ソース領域 23およびドレイン領域 24の Pの不純物濃度 は 2 X 1 02()cm ύである。 ソースおよびドレイン電極としてはタングステン (W) が使用されている。 FIG. 10 is a graph showing the relationship between the drain current and the drain voltage of the semiconductor device according to the first embodiment. The horizontal axis of FIG. 10 represents the drain voltage, and the vertical axis represents the drain current. Numerical values in the figure represent gate voltages. The impurity concentration of the B-doped p-type substrate is 1 × 10 14 cm. The gate oxide thickness is 3 nm. Tungsten silicide (WS i 2 ) is used as the gate electrode. The gate length is 0.05〃m. The channel length is 0.05〃m and the channel width is 1. 13 Concentration of Roh inch through control 1 9, 20 is 2 10 18 cm- 3. The depth of the source region 21 and the drain region 22 is 0.01 μm, the impurity concentration of P in the source region 21 and the drain region 22 is 2 × 10 19 cm— 3 , The impurity concentration of P in the drain region 24 is 2 × 102 () cm cm. Tungsten (W) is used for the source and drain electrodes.
実施例 1に係わる半導体装置は、 ゲート長が 0. 05〃mと短いチャネル長に おいても、 正常なドレイン電流一 ドレイン電圧特性を示し、 パンチスルーが起こ つていないことがわかる。 一方、 パンチスルーコントロールの Bの濃度を基板の 濃度と同じ 1 X 1014cnT3である MOS FET構造の半導体装置のドレイン電 流一ドレイン電圧特性はトランジスタ特性を全く示さず、 抵抗体としての特性を 示す結果が得られている。 すなわち、 実施例 1に係わる半導体装置は短いチヤネ ルにお L、てもパンチスルーが起こらず、 正常なトランジスタ動作をすることがわ かった。 It can be seen that the semiconductor device according to Example 1 exhibited normal drain current-drain voltage characteristics even when the gate length was as short as 0.05 μm, and no punch-through occurred. The drain current one drain voltage characteristics of the semiconductor device of the MOS FET structure is the concentration of B in the punch-through control the same 1 X 10 14 cnT 3 and the concentration of substrate is not shown the transistor characteristics at all, the characteristics of the resistor Are obtained. In other words, it was found that the semiconductor device according to Example 1 did not cause punch-through even in a short channel, and performed normal transistor operation.
図 1 1は、 図 1 0で述べた第 1の実施例に係わる半導体装置のドレイン電流と
ゲート電圧との関係を示すグラフである。 図 1 1の横軸はゲート電圧を表し、 縦 軸はドレイン電流を表している。 図中の数値はドレイン電圧を表している。 実施例 1に係わる半導体装置は、 ゲート長が 0 . 0 5〃mと短いチヤネノレ長に おいても、 正常なサブスレシュホールド特性を示し、 パンチスルーが起こってい ないことがわかる。 ドレイン電圧が 0 . I Vの場合の閾電圧は 0 . 6 6 Vであ り、 ドレイン電圧が 1 . 0 Vの場合の閾電圧は 0 . 5 8 Vである。 ドレイン電圧 の増加による閾電圧の変化は 0 . 0 8 Vであり、 小さく抑えられている。 すなわ ち、 実施例 1に係わる半導体装置は短いチャネルにおいてもパンチスルー力起こ らず、 正常なトランジスタ動作をすることがわかった。 また、 ドレイン電圧が 1 . 0 Vの場合のサブスレシュホールドスイングは 9 7 mV/ d e c a d eであ り、 短いチヤネノレ長においても小さく保たれている。 すなわち、 実施例 1に係わ る半導体装置は、 パンチスルーが抑制されていることに加えて、 基板の不純物濃 度が低く保たれているために、 短 、チャネルにお L、てもサブスレシュホールドス ィングが小さく、 高性能トランジスタ動作をすることがわかつた。 FIG. 11 shows the drain current of the semiconductor device according to the first embodiment described with reference to FIG. 4 is a graph showing a relationship with a gate voltage. In FIG. 11, the horizontal axis represents the gate voltage, and the vertical axis represents the drain current. Numerical values in the figure represent drain voltages. It can be seen that the semiconductor device according to Example 1 exhibited normal sub-threshold characteristics even when the gate length was as short as 0.05 μm, and no punch-through occurred. When the drain voltage is 0.5V, the threshold voltage is 0.66V, and when the drain voltage is 1.0V, the threshold voltage is 0.58V. The change in threshold voltage due to the increase in drain voltage is 0.08 V, which is kept small. That is, it was found that the semiconductor device according to Example 1 did not generate a punch-through force even in a short channel and operated normally. When the drain voltage is 1.0 V, the sub-threshold swing is 97 mV / decade, which is kept small even for a short channel length. That is, in the semiconductor device according to the first embodiment, the punch-through is suppressed and the impurity concentration of the substrate is kept low. It has been found that the hold swing is small and high-performance transistor operation is performed.
図 1 2は、 図 1 0で述べた第 1の実施例に係わる半導体装置の閾電圧とゲ一ト 長の関係を示すグラフである。 図 1 2の横軸はゲート長を表し、 縦軸は閾電圧を 表している。 図中の数値はドレイン電圧を表している。 FIG. 12 is a graph showing the relationship between the threshold voltage and the gate length of the semiconductor device according to the first embodiment described in FIG. The horizontal axis in FIG. 12 represents the gate length, and the vertical axis represents the threshold voltage. Numerical values in the figure represent drain voltages.
実施例 1に係わる半導体装置は、 ゲート長が 0 . 0 5 /z mと極めて短くても、 正常なトランジスタ特性を示し、 パンチスルーの程度力 氐く抑えられていること がわかる。 It can be seen that the semiconductor device according to Example 1 shows normal transistor characteristics even when the gate length is extremely short, 0.05 / zm, and the punch-through is suppressed to a small extent.
図 1 3は、 図 1 0で述べた第 1の実施例に係わる半導体装置のサブスレシュ ホールドスィングとゲート長との関係を示すグラフである。 図 1 3の横軸はゲー ト長を表し、 縦軸はサブスレシュホールドスイングを表している。 図中の数値は ドレイン電圧を表している。 FIG. 13 is a graph showing the relationship between the sub-threshold swing and the gate length of the semiconductor device according to the first embodiment described in FIG. The horizontal axis in Fig. 13 represents the gate length, and the vertical axis represents the sub-threshold swing. The numbers in the figure represent the drain voltage.
実施例 1に係わる半導体装置は、 ゲート長が 0 . 0 5〃mと極めて短いチヤネ ノレ長においても、 パンチスルーの程度が低く抑えられかつ基板の不純物濃度が低 く保たれているために、 サブスレシュホールドスイングが小さく、 高性能トラン ジス夕動作をすることがわかった。 In the semiconductor device according to the first embodiment, even when the gate length is as short as 0.05 μm, the degree of punch-through is kept low and the impurity concentration of the substrate is kept low. It was found that the sub-threshold swing was small and high-performance transistor operation was performed.
図 1 4は、 図 1 0で述べた第 1の実施例に係わる半導体装置のドレイン電流と
ゲート長との関係を示すグラフである。 図 14の横軸はゲート長を表し、 縦軸は ドレイン電流を表している。 ゲート電圧と閾電圧との差は 0. 3Vである。 実施例 1に係わる半導体装置は、 ゲート長が 0. 05 zmと極めて短いチヤネ ル長において、 ドレイン電流が 190 AZ zmと大きく、 すなわち電流駆動能 力が大きく、 高速トランジスタ動作をすることがわかった。 一方、 チヤネノレ部の 不純物濃度を高くした MO S F ETにおいて、 ドレイン電圧が 0. 1 と 1. 0 Vの場合の閾電圧が 0. 08 Vとなるチャネル部の濃度が 1. 1 6 x 1018cm_3である MOS FET構造の半導体装置のドレイン電流は、 101 // AZ /mと実施例 1に係わる半導体装置の 1 2程度の性能を示す結果が得られ ている。 すなわち、 実施例 1に係わる半導体装置は、 高速トランジスタ動作をす ることがわかった。 FIG. 14 shows the drain current of the semiconductor device according to the first embodiment described with reference to FIG. It is a graph which shows the relationship with gate length. The horizontal axis in FIG. 14 represents the gate length, and the vertical axis represents the drain current. The difference between the gate voltage and the threshold voltage is 0.3V. It was found that the semiconductor device according to Example 1 had a large drain current of 190 AZ zm at a very short gate length of 0.05 zm, that is, a large current driving capability, and operated a high-speed transistor. . On the other hand, in the case of MOSFET in which the impurity concentration of the channel portion is increased, the concentration of the channel portion where the threshold voltage is 0.08 V when the drain voltage is 0.1 and 1.0 V is 1.16 x 10 18 the drain current of the semiconductor device of the MOS FET structure is CM_ 3 is 101 // 1 2 about results showing the performance of a semiconductor device according to AZ / m example 1 is obtained. That is, it was found that the semiconductor device according to the first example operates as a high-speed transistor.
なお、 実施例 2、 実施例 3、 実施例 4、 実施例 5、 実施例 6、 に係わる半導体 装置においても図 10、 図 1 1、 図 12、 図 13、 図 14に示すものと同様な結 果が得られている。 産業上の利用可能性 Note that the semiconductor devices according to the second, third, fourth, fifth, and sixth embodiments also have the same connections as those shown in FIGS. 10, 11, 12, 13, and 14. The fruits have been obtained. Industrial applicability
本発明の半導体装置は、 パンチスルーを抑制する性能に優れているため、 必要 に応じてチャネル長を短くすることが可能であり、 したがって、 超微細化半導体 装置を実現できる。 The semiconductor device of the present invention is excellent in performance of suppressing punch-through, so that the channel length can be shortened as necessary, and therefore, an ultra-miniaturized semiconductor device can be realized.
セルファラインによる製作が可能であるため超微細な加工が可能となり、 した がって、 超微細加工された超高集積度の半導体装置が得られる。 Since it can be manufactured by self-alignment, ultra-fine processing can be performed, and therefore, an ultra-high-density semiconductor device with ultra-fine processing can be obtained.
本発明によれば、 高い電流駆動能力を備え、 回路の高速動作を実現する半導体 装置を提供することができる。
According to the present invention, it is possible to provide a semiconductor device having high current driving capability and realizing high-speed operation of a circuit.
Claims
1 . 第 1型の電気伝導性の基体と、 前記基体の電気伝導性とは逆の第 2型の電 気伝導性を有し、 前記基体中もしくは前記基体上に相互に間隔をあけて配置され て、 相互間に基体中のチャネルを画定し、 前記基体との電気接続部を形成する第1. a first type of electrically conductive substrate; and a second type of electrical conductivity opposite to the electrical conductivity of the substrate, and are spaced apart from each other in or on the substrate. Forming a channel in the substrate between each other and forming an electrical connection with the substrate.
1および第 2の領域と、 前記第 1および第 2の領域間にあるが、 前記第 1および 第 2の領域へもしくは t、ずれの領域へも電気的に直接接触しないように絶縁層を 介して、 前記チャネルの上に置かれた電極と、 前記基体中のチャネルの電気伝導 性とは同じ第 1型の電気伝導性かつ前記基体のチャネルの不純物濃度より高い不 純物濃度を有し、 前記第 1および第 2の領域の少なくとも一方の少なくとも基体 バルク側に置かれた第 3の領域とを備え、 前記第 3の領域により、 前記第 1と第 2の領域の間への電圧の印加による前記第 1もしくは第 2の領域から前記チヤネ ルへの空乏層の延びを小さくし、 それにより、 パンチスルーを低減することを特 徴とする半導体装置。 Between the first and second regions, and between the first and second regions, but via an insulating layer so as not to be in direct electrical contact with the first and second regions or with the t and shift regions. An electrode placed on the channel, and an electrical conductivity of the channel in the substrate having the same type 1 electrical conductivity and an impurity concentration higher than an impurity concentration of the channel of the substrate; A third region disposed on at least one of the first and second regions on the substrate bulk side, and applying a voltage between the first and second regions by the third region. A semiconductor device characterized by reducing the extension of a depletion layer from the first or second region to the channel due to the above, thereby reducing punch-through.
2 . 前記第 1および第 2の領域の少なくとも一方の基体バルク側およびチヤネ ル側に置かれた前記第 3の領域において、 基体バルク側の領域の不純物濃度は、 チャネル側の領域の不純物濃度より高いことを特徴とする請求項 1に記載の半導 2. In the third region placed on at least one of the first and second regions on the substrate bulk side and the channel side, the impurity concentration on the substrate bulk side is higher than the impurity concentration on the channel side region. 2. The semiconductor according to claim 1, wherein the semiconductor is high.
3 . 前記第 1および第 2の領域の少なくとも一方の基体バルク側の第 3の領域 の厚さは、 前記第 1と第 2の領域の間への電圧の非印加もしくは印加状態で前記 第 3の領域内で形成される空乏層の厚さと同等もしくはより厚いことを特徴とす る請求項 1または 2に記載の半導体装置。 3. The thickness of the third region on at least one of the first and second regions on the substrate bulk side is such that the third region is not applied or applied with a voltage between the first and second regions. 3. The semiconductor device according to claim 1, wherein the thickness of the depletion layer is equal to or greater than the thickness of the depletion layer formed in the region.
4 . 前記第 1および第 2の領域の少なくとも一方の基体バルタ側の第 3の領域 の不純物濃度は、 前記第 3の領域が直接接触する前記第 1および第 2の領域のい ずれかの不純物濃度と同等もしくはより低いことを特徴とする請求項 1ないし 3 の、、ずれか 1項に記載の半導体装置。 4. The impurity concentration of at least one of the first and second regions in the third region on the substrate side of the base is determined by the impurity concentration of any one of the first and second regions in direct contact with the third region. 4. The semiconductor device according to claim 1, wherein the concentration is equal to or lower than the concentration.
5 . 前記チャネルの不純物濃度が 1 0 17 c m—3以下であることを特徴とする請 求項 1ないし 4のいずれか 1項に記載の半導体装置。 5. The semiconductor device according to claim 1, wherein an impurity concentration of the channel is equal to or less than 10 17 cm −3 .
6 . 前記チャネルの不純物濃度が 1 0 lu c m— 3以下であることを特徴とする請
求項 1ないし 5のいずれか 1項に記載の半導体装置。 6.請impurity concentration of the channel is equal to or is 1 0 lu cm- 3 or less 6. The semiconductor device according to any one of claims 1 to 5.
7 . 前記チャネルの不純物濃度が 1 0 15 c m—3以下であることを特徴とする 請求項 1ないし 6のいずれか 1項に記載の半導体装置。 7. The semiconductor device according to claim 1, wherein an impurity concentration of the channel is less than or equal to 10 15 cm −3 .
8 . 前記チャネルの不純物濃度が 1 0 14 c m— 3以下であることを特徴とする 請求項 1ないし 7の t、ずれか 1項に記載の半導体装置。 8. The semiconductor device according to claim 1, wherein the impurity concentration of the channel is 10 14 cm− 3 or less.
9 . 前記第 1および第 2の領域の少なくとも一方と前記第 3の領域の界面を含 む近傍に空乏層が形成される領域と前記チャネルが形成される領域の少なくとも 一部が接することを特徴とする請求項 1ないし 8のいずれか 1項に記載の半導体 1 0 . 前記チャネルの表面に連続する延長面と、 前記第 1および第 2の領域の 少なくとも一方と前記第 3の領域の界面との距離が 5 0 n m以下であることを特 徴とする請求項 1ないし 9の L、ずれか 1項に記載の半導体装置。 9. A region where a depletion layer is formed in the vicinity including an interface between at least one of the first and second regions and the third region and at least a part of a region where the channel is formed are in contact with each other. The semiconductor according to claim 1, wherein an extension surface continuous with a surface of the channel, and an interface between at least one of the first and second regions and the third region. 10. The semiconductor device according to claim 1, wherein the distance is 50 nm or less.
1 1 . 前記チャネルの表面に連続する延長面と、 前記第 1および第 2の領域の 少なくとも一方と前記第 3の領域の界面との距離が 2 O n m以下であることを特 徴とする請求項 1ないし 1 0のいずれか 1項に記載の半導体装置。 11. A feature characterized in that a distance between an extended surface continuous with the surface of the channel and an interface between at least one of the first and second regions and the interface of the third region is 2 O nm or less. Item 10. The semiconductor device according to any one of Items 1 to 10.
1 2 . 前記チャネルの表面に連続する延長面と、 前記第 1および第 2の領域の 少なくとも一方と前記第 3の領域の界面との距離が 1 0 n m以下であることを特 徴とする請求項 1ないし 1 1のいずれか 1項に記載の半導体装置。 12. The distance characterized by the fact that a distance between an extension surface continuous with the surface of the channel and an interface between at least one of the first and second regions and the interface of the third region is 10 nm or less. Item 2. The semiconductor device according to any one of Items 1 to 11.
1 3 . 前記チャネルの表面に連続する延長面と、 前記第 1および第 2の領域の 少なくとも一方と前記第 3の領域の界面との距離が 5 n m以下であることを特徴 とする請求項 1ないし 1 2のいずれか 1項に記載の半導体装置。 13. The distance between an extended surface continuous with the surface of the channel and an interface between at least one of the first and second regions and the interface of the third region is 5 nm or less. 13. The semiconductor device according to any one of items 1 to 12.
1 4 . 前記チャネルの表面に連続する延長面と、 前記第 1および第 2の領域の 少なくとも一方と前記第 3の領域の界面の少なくとも 1部が交わることを特徴と する請求項 1ないし 1 3のいずれか 1項に記載の半導体装置。 14. An extended surface continuous with the surface of the channel, and at least a part of an interface between the third region and at least one of the first and second regions intersects with each other. The semiconductor device according to any one of the preceding claims.
1 5 . 前記半導体装置が電界効果トランジスタ動作およびバイポーラトランジ ス夕動作の少なくとも 、ずれかのトランジスタ動作をすることを特徴とする請求 項 1ないし 1 4のいずれか 1項に記載の半導体装置。 15. The semiconductor device according to any one of claims 1 to 14, wherein the semiconductor device performs at least one of a field effect transistor operation and a bipolar transistor operation.
1 6 . 前記半導体装置が MO S型電界効果トランジスタであることを特徴とす る請求項 1ないし 1 5の I、ずれか 1項に記載の半導体装置。
16. The semiconductor device according to any one of claims 1 to 15, wherein the semiconductor device is a MOS field-effect transistor.
1 7 . 前記半導体装置が M E S型もしくは接合型電界効果トランジスタである ことを特徴とする請求項 1ないし 1 6のいずれか 1項に記載の半導体装置。17. The semiconductor device according to any one of claims 1 to 16, wherein the semiconductor device is a MES type or a junction field effect transistor.
1 8 . 前記半導体装置は S O I構造であることを特徴とする請求項 1ないし 1 7の L、ずれか 1項に記載の半導体装置。 18. The semiconductor device according to claim 1, wherein the semiconductor device has an SOI structure.
1 9 . 前記半導体装置は一つもしくは二つ以上のチャネルを有することを特徴 とする請求項 1ないし 1 8の 、ずれか 1項に記載の半導体装置。 19. The semiconductor device according to any one of claims 1 to 18, wherein the semiconductor device has one or more channels.
2 0 . 前記半導体装置は、 前記チャネルの上に、 一つもしくは二つ以上の前記 電極を有することを特徴とする請求項 1ないし 1 9のいずれか 1項に記載の半導 2 1 . 前記基体もしくは前記チャネルは、 シリコン、 ゲルマニウム、 シリコン ゲルマニウム、 ガリウム砒素、 インジウムリン、 インジウムアンチモン、 ガリウ ムアルミニウム砒素、 ガリウムインジウム砒素、 アルミニウムインジウム砒素で あることを特徴とする請求項 1ないし 2 0のいずれか 1項に記載の半導体装置。 2 2 . 前記シリコンは、 単結晶シリコン、 多結晶シリコンもしくはァモルファ スシリコンであることを特徴とする請求項 1ないし 2 1のいずれか 1項に記載の 半導体装置。
20. The semiconductor device according to any one of claims 1 to 19, wherein the semiconductor device has one or more of the electrodes on the channel. The substrate or the channel is made of silicon, germanium, silicon germanium, gallium arsenide, indium phosphide, indium antimony, gallium aluminum arsenide, gallium indium arsenide, or aluminum indium arsenide. 2. The semiconductor device according to item 1. 22. The semiconductor device according to claim 1, wherein the silicon is single-crystal silicon, polycrystalline silicon, or amorphous silicon.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5/274674 | 1993-11-02 | ||
JP27467493A JPH07131007A (en) | 1993-11-02 | 1993-11-02 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1995012896A1 true WO1995012896A1 (en) | 1995-05-11 |
Family
ID=17544987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1994/001853 WO1995012896A1 (en) | 1993-11-02 | 1994-11-02 | Semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH07131007A (en) |
WO (1) | WO1995012896A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2352875A (en) * | 1996-03-01 | 2001-02-07 | Sven E Wahlstrom | Fabrication of a field effect transistor having a recessed gate electrode |
WO2001018877A1 (en) * | 1999-09-07 | 2001-03-15 | Sharp Kabushiki Kaisha | Semiconductor device and method of manufacture thereof |
GB2355583A (en) * | 1999-06-29 | 2001-04-25 | Hyundai Electronics Ind | Method of forming a transistor having elevated source and drain regions |
US6413830B1 (en) | 1996-03-01 | 2002-07-02 | Sven E. Wahlstrom | Dynamic random access memory |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4856297B2 (en) * | 1997-12-02 | 2012-01-18 | 公益財団法人国際科学振興財団 | Manufacturing method of semiconductor device |
JP4493796B2 (en) * | 2000-03-30 | 2010-06-30 | 東京エレクトロン株式会社 | Method for forming dielectric film |
US7026219B2 (en) * | 2001-02-12 | 2006-04-11 | Asm America, Inc. | Integration of high k gate dielectric |
US7186630B2 (en) | 2002-08-14 | 2007-03-06 | Asm America, Inc. | Deposition of amorphous silicon-containing films |
JP5007488B2 (en) * | 2005-01-06 | 2012-08-22 | ソニー株式会社 | Method for manufacturing insulated gate field effect transistor |
JP2006339476A (en) * | 2005-06-03 | 2006-12-14 | Elpida Memory Inc | Semiconductor device and manufacturing method thereof |
JP4950599B2 (en) * | 2006-09-01 | 2012-06-13 | 株式会社東芝 | Manufacturing method of semiconductor device |
JP4600837B2 (en) * | 2006-12-19 | 2010-12-22 | エルピーダメモリ株式会社 | Manufacturing method of semiconductor device |
CN103730498B (en) * | 2012-10-16 | 2017-12-12 | 中国科学院微电子研究所 | Semiconductor device and method for manufacturing the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62198162A (en) * | 1986-02-26 | 1987-09-01 | Toshiba Corp | Mos transistor and manufacture thereof |
-
1993
- 1993-11-02 JP JP27467493A patent/JPH07131007A/en active Pending
-
1994
- 1994-11-02 WO PCT/JP1994/001853 patent/WO1995012896A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62198162A (en) * | 1986-02-26 | 1987-09-01 | Toshiba Corp | Mos transistor and manufacture thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2352875A (en) * | 1996-03-01 | 2001-02-07 | Sven E Wahlstrom | Fabrication of a field effect transistor having a recessed gate electrode |
GB2352875B (en) * | 1996-03-01 | 2001-03-21 | Sven E Wahlstrom | Dynamic random access memory |
US6413830B1 (en) | 1996-03-01 | 2002-07-02 | Sven E. Wahlstrom | Dynamic random access memory |
GB2355583A (en) * | 1999-06-29 | 2001-04-25 | Hyundai Electronics Ind | Method of forming a transistor having elevated source and drain regions |
GB2355583B (en) * | 1999-06-29 | 2004-04-14 | Hyundai Electronics Ind | Method of manufacturing a transistor having elevated source and drain regions |
WO2001018877A1 (en) * | 1999-09-07 | 2001-03-15 | Sharp Kabushiki Kaisha | Semiconductor device and method of manufacture thereof |
US6677212B1 (en) | 1999-09-07 | 2004-01-13 | Sharp Kabushiki Kaisha | Elevated source/drain field effect transistor and method for making the same |
JP4664557B2 (en) * | 1999-09-07 | 2011-04-06 | シャープ株式会社 | Manufacturing method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH07131007A (en) | 1995-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2951629B2 (en) | Si / SiGe junction type field effect transistor and method of manufacturing the same | |
US6319799B1 (en) | High mobility heterojunction transistor and method | |
US7414268B2 (en) | High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities | |
US5663584A (en) | Schottky barrier MOSFET systems and fabrication thereof | |
US5393999A (en) | SiC power MOSFET device structure | |
US7939902B2 (en) | Field effect transistor having source and/or drain forming schottky or schottky-like contact with strained semiconductor substrate | |
KR100495023B1 (en) | A semiconductor device and manufacturing method thereof | |
US20090311836A1 (en) | Extremely-thin silicon-on-insulator transistor with raised source/drain | |
JP4851080B2 (en) | LDMOS transistor device, integrated circuit and manufacturing method thereof | |
WO2001093338A1 (en) | Buried channel strained silicon fet using an ion implanted doped layer | |
JPH1197693A (en) | Semiconductor device and manufacture thereof | |
JP2003092405A (en) | Semiconductor device and its manufacturing method | |
WO1993023878A1 (en) | Semiconductor device | |
US7525138B2 (en) | JFET device with improved off-state leakage current and method of fabrication | |
WO1995012896A1 (en) | Semiconductor device | |
US5486484A (en) | Lateral power MOSFET structure using silicon carbide | |
WO2004105086A2 (en) | Schotty-barrier tunneling transistor | |
EP1695389B1 (en) | Low-power multiple-channel fully depleted quantum well cmosfets | |
JP7164204B2 (en) | tunnel field effect transistor and electronic device | |
WO2021216408A1 (en) | Semiconductor power devices having gate dielectric layers with improved breakdown characteristics and methods of forming such devices | |
JP4457209B2 (en) | Insulated gate thin film transistor and control method thereof | |
WO2008007749A1 (en) | Transistor and semiconductor device | |
JPH05343686A (en) | Semiconductor device and manufacture thereof | |
US6160293A (en) | Sub-quarter micron silicon-on-insulator MOS field effect transistor with deep silicide contact layers | |
EP3788652B1 (en) | Integrated circuit device and method of manufacturing thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |