WO1994020523A1 - Tumor targeting with l-enantiomeric oligonucleotide conjugates of immunoreagents and of chelated radionuclides - Google Patents
Tumor targeting with l-enantiomeric oligonucleotide conjugates of immunoreagents and of chelated radionuclides Download PDFInfo
- Publication number
- WO1994020523A1 WO1994020523A1 PCT/US1994/002610 US9402610W WO9420523A1 WO 1994020523 A1 WO1994020523 A1 WO 1994020523A1 US 9402610 W US9402610 W US 9402610W WO 9420523 A1 WO9420523 A1 WO 9420523A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- enantiomeric
- residue
- precursor
- reagent
- group
- Prior art date
Links
- 108091034117 Oligonucleotide Proteins 0.000 title claims abstract description 248
- 230000008685 targeting Effects 0.000 title claims abstract description 85
- 206010028980 Neoplasm Diseases 0.000 title claims description 33
- 230000002285 radioactive effect Effects 0.000 claims abstract description 75
- 238000000034 method Methods 0.000 claims abstract description 66
- 230000000295 complement effect Effects 0.000 claims abstract description 60
- 125000005647 linker group Chemical group 0.000 claims abstract description 55
- 239000002738 chelating agent Substances 0.000 claims abstract description 28
- 238000009396 hybridization Methods 0.000 claims abstract description 18
- 238000003384 imaging method Methods 0.000 claims abstract description 9
- 239000012634 fragment Substances 0.000 claims abstract description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 4
- 125000003729 nucleotide group Chemical group 0.000 claims description 125
- 239000002773 nucleotide Substances 0.000 claims description 120
- -1 poly(alkylene glycol Chemical compound 0.000 claims description 102
- 239000003153 chemical reaction reagent Substances 0.000 claims description 74
- 108090000623 proteins and genes Proteins 0.000 claims description 70
- 102000004169 proteins and genes Human genes 0.000 claims description 67
- 102000003781 Inhibitor of growth protein 1 Human genes 0.000 claims description 63
- 108090000191 Inhibitor of growth protein 1 Proteins 0.000 claims description 63
- 108020004414 DNA Proteins 0.000 claims description 59
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 claims description 58
- 239000002243 precursor Substances 0.000 claims description 57
- 229910019142 PO4 Inorganic materials 0.000 claims description 43
- 239000010452 phosphate Substances 0.000 claims description 43
- 239000000126 substance Substances 0.000 claims description 31
- 150000001875 compounds Chemical class 0.000 claims description 23
- 238000002059 diagnostic imaging Methods 0.000 claims description 19
- 239000000427 antigen Substances 0.000 claims description 18
- 108091007433 antigens Proteins 0.000 claims description 18
- 102000036639 antigens Human genes 0.000 claims description 18
- 239000003431 cross linking reagent Substances 0.000 claims description 18
- 241000124008 Mammalia Species 0.000 claims description 15
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 claims description 15
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 14
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 14
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 12
- 125000003277 amino group Chemical group 0.000 claims description 12
- 125000000524 functional group Chemical group 0.000 claims description 11
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 6
- 108060002716 Exonuclease Proteins 0.000 claims description 4
- 102000013165 exonuclease Human genes 0.000 claims description 4
- FLCQLSRLQIPNLM-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2-acetylsulfanylacetate Chemical compound CC(=O)SCC(=O)ON1C(=O)CCC1=O FLCQLSRLQIPNLM-UHFFFAOYSA-N 0.000 claims description 3
- FPKVOQKZMBDBKP-UHFFFAOYSA-N 1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 FPKVOQKZMBDBKP-UHFFFAOYSA-N 0.000 claims description 3
- VHYRLCJMMJQUBY-UHFFFAOYSA-N 1-[4-[4-(2,5-dioxopyrrol-1-yl)phenyl]butanoyloxy]-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCC1=CC=C(N2C(C=CC2=O)=O)C=C1 VHYRLCJMMJQUBY-UHFFFAOYSA-N 0.000 claims description 3
- HHSGWIABCIVPJT-UHFFFAOYSA-M sodium;1-[4-[(2-iodoacetyl)amino]benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1=CC=C(NC(=O)CI)C=C1 HHSGWIABCIVPJT-UHFFFAOYSA-M 0.000 claims description 3
- KQZLRWGGWXJPOS-NLFPWZOASA-N 1-[(1R)-1-(2,4-dichlorophenyl)ethyl]-6-[(4S,5R)-4-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-5-methylcyclohexen-1-yl]pyrazolo[3,4-b]pyrazine-3-carbonitrile Chemical compound ClC1=C(C=CC(=C1)Cl)[C@@H](C)N1N=C(C=2C1=NC(=CN=2)C1=CC[C@@H]([C@@H](C1)C)N1[C@@H](CCC1)CO)C#N KQZLRWGGWXJPOS-NLFPWZOASA-N 0.000 claims 1
- 229940125877 compound 31 Drugs 0.000 claims 1
- 150000005690 diesters Chemical class 0.000 claims 1
- 201000010099 disease Diseases 0.000 abstract description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 5
- 239000003937 drug carrier Substances 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 74
- 235000018102 proteins Nutrition 0.000 description 65
- 102000053602 DNA Human genes 0.000 description 58
- 239000002585 base Substances 0.000 description 57
- 239000000523 sample Substances 0.000 description 52
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 49
- 239000002953 phosphate buffered saline Substances 0.000 description 49
- 150000007523 nucleic acids Chemical class 0.000 description 48
- 102000039446 nucleic acids Human genes 0.000 description 47
- 108020004707 nucleic acids Proteins 0.000 description 47
- 239000000203 mixture Substances 0.000 description 46
- 239000000243 solution Substances 0.000 description 46
- 238000006243 chemical reaction Methods 0.000 description 44
- 230000015572 biosynthetic process Effects 0.000 description 43
- 238000003786 synthesis reaction Methods 0.000 description 38
- 239000000872 buffer Substances 0.000 description 33
- 238000002360 preparation method Methods 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 150000001412 amines Chemical class 0.000 description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 27
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 26
- 125000000217 alkyl group Chemical group 0.000 description 19
- 239000000499 gel Substances 0.000 description 19
- 125000004432 carbon atom Chemical group C* 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 239000002777 nucleoside Substances 0.000 description 16
- 238000011282 treatment Methods 0.000 description 16
- 125000003118 aryl group Chemical group 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 239000011780 sodium chloride Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000011541 reaction mixture Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 14
- UAFBBLZEQSKFBK-UHFFFAOYSA-J tetrasodium;2-[[6-[6-[6-[[bis(carboxylatomethyl)amino]methyl]pyridin-2-yl]-4-(3-isothiocyanato-4-methoxyphenyl)pyridin-2-yl]pyridin-2-yl]methyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(N=C=S)C(OC)=CC=C1C1=CC(C=2N=C(CN(CC([O-])=O)CC([O-])=O)C=CC=2)=NC(C=2N=C(CN(CC([O-])=O)CC([O-])=O)C=CC=2)=C1 UAFBBLZEQSKFBK-UHFFFAOYSA-J 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- 102000004190 Enzymes Human genes 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 12
- 150000005829 chemical entities Chemical class 0.000 description 12
- 239000000306 component Substances 0.000 description 12
- 239000005547 deoxyribonucleotide Substances 0.000 description 12
- 229940088598 enzyme Drugs 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 150000008300 phosphoramidites Chemical class 0.000 description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 11
- 229910052693 Europium Inorganic materials 0.000 description 11
- 239000000908 ammonium hydroxide Substances 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 230000021615 conjugation Effects 0.000 description 11
- 239000000543 intermediate Substances 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 11
- 230000005855 radiation Effects 0.000 description 11
- 229920002477 rna polymer Polymers 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 125000001424 substituent group Chemical group 0.000 description 11
- IVWWFWFVSWOTLP-YVZVNANGSA-N (3'as,4r,7'as)-2,2,2',2'-tetramethylspiro[1,3-dioxolane-4,6'-4,7a-dihydro-3ah-[1,3]dioxolo[4,5-c]pyran]-7'-one Chemical compound C([C@@H]1OC(O[C@@H]1C1=O)(C)C)O[C@]21COC(C)(C)O2 IVWWFWFVSWOTLP-YVZVNANGSA-N 0.000 description 10
- CKTSBUTUHBMZGZ-CHKWXVPMSA-N 4-amino-1-[(2s,4r,5s)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound O=C1N=C(N)C=CN1[C@H]1O[C@@H](CO)[C@H](O)C1 CKTSBUTUHBMZGZ-CHKWXVPMSA-N 0.000 description 10
- 101710163270 Nuclease Proteins 0.000 description 10
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 10
- 239000000376 reactant Substances 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 9
- 229910021641 deionized water Inorganic materials 0.000 description 9
- 238000010828 elution Methods 0.000 description 9
- 125000003835 nucleoside group Chemical group 0.000 description 9
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 9
- 125000006239 protecting group Chemical group 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 8
- PYMYPHUHKUWMLA-LMVFSUKVSA-N aldehydo-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 8
- 229960002685 biotin Drugs 0.000 description 8
- 239000011616 biotin Substances 0.000 description 8
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 241000894007 species Species 0.000 description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 7
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 7
- SRBFZHDQGSBBOR-SOOFDHNKSA-N D-ribopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@@H]1O SRBFZHDQGSBBOR-SOOFDHNKSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- KDCGOANMDULRCW-UHFFFAOYSA-N Purine Natural products N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 7
- 229920001223 polyethylene glycol Polymers 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 229960005311 telbivudine Drugs 0.000 description 7
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 6
- QWTBDIBOOIAZEF-UHFFFAOYSA-N 3-[chloro-[di(propan-2-yl)amino]phosphanyl]oxypropanenitrile Chemical compound CC(C)N(C(C)C)P(Cl)OCCC#N QWTBDIBOOIAZEF-UHFFFAOYSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229960000643 adenine Drugs 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 150000001413 amino acids Chemical class 0.000 description 6
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 150000004985 diamines Chemical class 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 6
- NNMXSTWQJRPBJZ-UHFFFAOYSA-K europium(iii) chloride Chemical compound Cl[Eu](Cl)Cl NNMXSTWQJRPBJZ-UHFFFAOYSA-K 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 229940029575 guanosine Drugs 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 238000002372 labelling Methods 0.000 description 6
- 150000003833 nucleoside derivatives Chemical class 0.000 description 6
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 125000004434 sulfur atom Chemical group 0.000 description 6
- CQWFJIVHGWJYKB-UHNVWZDZSA-N (3s,4r)-3,4-dihydro-2h-pyran-3,4-diol Chemical compound O[C@H]1COC=C[C@H]1O CQWFJIVHGWJYKB-UHNVWZDZSA-N 0.000 description 5
- MXHRCPNRJAMMIM-CHKWXVPMSA-N 1-[(2s,4r,5s)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dione Chemical compound C1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 MXHRCPNRJAMMIM-CHKWXVPMSA-N 0.000 description 5
- LOSXTWDYAWERDB-UHFFFAOYSA-N 1-[chloro(diphenyl)methyl]-2,3-dimethoxybenzene Chemical compound COC1=CC=CC(C(Cl)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1OC LOSXTWDYAWERDB-UHFFFAOYSA-N 0.000 description 5
- 229930024421 Adenine Natural products 0.000 description 5
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 125000002947 alkylene group Chemical group 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000013522 chelant Substances 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000001212 derivatisation Methods 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- 125000000623 heterocyclic group Chemical group 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 150000002540 isothiocyanates Chemical class 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- 239000012475 sodium chloride buffer Substances 0.000 description 5
- 239000001488 sodium phosphate Substances 0.000 description 5
- 229910000162 sodium phosphate Inorganic materials 0.000 description 5
- IQFYYKKMVGJFEH-CSMHCCOUSA-N telbivudine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1O[C@@H](CO)[C@H](O)C1 IQFYYKKMVGJFEH-CSMHCCOUSA-N 0.000 description 5
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 4
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 4
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 4
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- 102100031013 Transgelin Human genes 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 4
- 150000001408 amides Chemical group 0.000 description 4
- UMGDCJDMYOKAJW-UHFFFAOYSA-N aminothiocarboxamide Natural products NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000009920 chelation Effects 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000012894 fetal calf serum Substances 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 238000010353 genetic engineering Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 125000000548 ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 238000003260 vortexing Methods 0.000 description 4
- OLXZPDWKRNYJJZ-VQVTYTSYSA-N (2s,3r,5s)-5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1C[C@@H](O)[C@H](CO)O1 OLXZPDWKRNYJJZ-VQVTYTSYSA-N 0.000 description 3
- YBANXOPIYSVPMH-UHFFFAOYSA-N 3-[[di(propan-2-yl)amino]-[6-[[(4-methoxyphenyl)-diphenylmethyl]amino]hexoxy]phosphanyl]oxypropanenitrile Chemical compound C1=CC(OC)=CC=C1C(NCCCCCCOP(OCCC#N)N(C(C)C)C(C)C)(C=1C=CC=CC=1)C1=CC=CC=C1 YBANXOPIYSVPMH-UHFFFAOYSA-N 0.000 description 3
- 0 CCO[C@@](C)(C=*CO)NC(N=C(*(C)*)N)=C(*)N=* Chemical compound CCO[C@@](C)(C=*CO)NC(N=C(*(C)*)N)=C(*)N=* 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 125000003710 aryl alkyl group Chemical group 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 235000020958 biotin Nutrition 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 238000007385 chemical modification Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 229940104302 cytosine Drugs 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 108091005573 modified proteins Proteins 0.000 description 3
- 102000035118 modified proteins Human genes 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 102000005962 receptors Human genes 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 229910052702 rhenium Inorganic materials 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 239000012064 sodium phosphate buffer Substances 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- 210000004881 tumor cell Anatomy 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 2
- RJOMMQBVQLCJOX-UHFFFAOYSA-N (4-chloropyrimidin-2-yl)oxy-trimethylsilane Chemical compound C[Si](C)(C)OC1=NC=CC(Cl)=N1 RJOMMQBVQLCJOX-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Chemical compound C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 2
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 2
- JFJNVIPVOCESGZ-UHFFFAOYSA-N 2,3-dipyridin-2-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CN=C1C1=CC=CC=N1 JFJNVIPVOCESGZ-UHFFFAOYSA-N 0.000 description 2
- RMFWVOLULURGJI-UHFFFAOYSA-N 2,6-dichloro-7h-purine Chemical compound ClC1=NC(Cl)=C2NC=NC2=N1 RMFWVOLULURGJI-UHFFFAOYSA-N 0.000 description 2
- IBNJYMSLQFJRQV-UHFFFAOYSA-N 2-chloro-1-(6-fluoro-2-methyl-3,4-dihydro-2h-quinolin-1-yl)ethanone Chemical compound FC1=CC=C2N(C(=O)CCl)C(C)CCC2=C1 IBNJYMSLQFJRQV-UHFFFAOYSA-N 0.000 description 2
- KMEMIMRPZGDOMG-UHFFFAOYSA-N 2-cyanoethoxyphosphonamidous acid Chemical compound NP(O)OCCC#N KMEMIMRPZGDOMG-UHFFFAOYSA-N 0.000 description 2
- LBDUBRVDQRTAPK-UHFFFAOYSA-N 2-fluoro-6-phenylmethoxy-7h-purine Chemical compound C=12NC=NC2=NC(F)=NC=1OCC1=CC=CC=C1 LBDUBRVDQRTAPK-UHFFFAOYSA-N 0.000 description 2
- QQSDUFSTDSMUBD-UHFFFAOYSA-N 3-chloro-n-(2,4,6-trimethylphenyl)propanamide Chemical compound CC1=CC(C)=C(NC(=O)CCCl)C(C)=C1 QQSDUFSTDSMUBD-UHFFFAOYSA-N 0.000 description 2
- NQUVCRCCRXRJCK-UHFFFAOYSA-N 4-methylbenzoyl chloride Chemical compound CC1=CC=C(C(Cl)=O)C=C1 NQUVCRCCRXRJCK-UHFFFAOYSA-N 0.000 description 2
- OLXZPDWKRNYJJZ-UHFFFAOYSA-N 5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-ol Chemical compound C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(CO)O1 OLXZPDWKRNYJJZ-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 2
- WSNMPAVSZJSIMT-UHFFFAOYSA-N COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 Chemical compound COc1c(C)c2COC(=O)c2c(O)c1CC(O)C1(C)CCC(=O)O1 WSNMPAVSZJSIMT-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 2
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 2
- 125000000824 D-ribofuranosyl group Chemical group [H]OC([H])([H])[C@@]1([H])OC([H])(*)[C@]([H])(O[H])[C@]1([H])O[H] 0.000 description 2
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000007860 aryl ester derivatives Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 235000012216 bentonite Nutrition 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 2
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 238000006664 bond formation reaction Methods 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 125000004181 carboxyalkyl group Chemical group 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 238000001142 circular dichroism spectrum Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000005549 deoxyribonucleoside Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000005264 electron capture Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 125000001033 ether group Chemical group 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- LNBHUCHAFZUEGJ-UHFFFAOYSA-N europium(3+) Chemical compound [Eu+3] LNBHUCHAFZUEGJ-UHFFFAOYSA-N 0.000 description 2
- AWDWVTKHJOZOBQ-UHFFFAOYSA-K europium(3+);trichloride;hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Eu+3] AWDWVTKHJOZOBQ-UHFFFAOYSA-K 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 125000001207 fluorophenyl group Chemical group 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 150000002373 hemiacetals Chemical class 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000007327 hydrogenolysis reaction Methods 0.000 description 2
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 229940127121 immunoconjugate Drugs 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- ZBKFYXZXZJPWNQ-UHFFFAOYSA-N isothiocyanate group Chemical group [N-]=C=S ZBKFYXZXZJPWNQ-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- IMAKHNTVDGLIRY-UHFFFAOYSA-N methyl prop-2-ynoate Chemical compound COC(=O)C#C IMAKHNTVDGLIRY-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000011580 nude mouse model Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 238000002731 protein assay Methods 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 239000012217 radiopharmaceutical Substances 0.000 description 2
- 229940121896 radiopharmaceutical Drugs 0.000 description 2
- 230000002799 radiopharmaceutical effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000004007 reversed phase HPLC Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- 239000007974 sodium acetate buffer Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000003107 substituted aryl group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 229910052713 technetium Inorganic materials 0.000 description 2
- FGTJJHCZWOVVNH-UHFFFAOYSA-N tert-butyl-[tert-butyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound CC(C)(C)[Si](C)(C)O[Si](C)(C)C(C)(C)C FGTJJHCZWOVVNH-UHFFFAOYSA-N 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- BAERPNBPLZWCES-UHFFFAOYSA-N (2-hydroxy-1-phosphonoethyl)phosphonic acid Chemical compound OCC(P(O)(O)=O)P(O)(O)=O BAERPNBPLZWCES-UHFFFAOYSA-N 0.000 description 1
- OIRDTQYFTABQOQ-DEGSGYPDSA-N (2S,3S,4R,5S)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound [C@H]1([C@@H](O)[C@@H](O)[C@@H](O1)CO)N1C2=NC=NC(=C2N=C1)N OIRDTQYFTABQOQ-DEGSGYPDSA-N 0.000 description 1
- BZSALXKCVOJCJJ-IPEMHBBOSA-N (4s)-4-[[(2s)-2-acetamido-3-methylbutanoyl]amino]-5-[[(2s)-1-[[(2s)-1-[[(2s,3r)-1-[[(2s)-1-[[(2s)-1-[[2-[[(2s)-1-amino-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-hydroxy Chemical compound CC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCC)C(=O)N[C@@H](CCCC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](C(N)=O)CC1=CC=CC=C1 BZSALXKCVOJCJJ-IPEMHBBOSA-N 0.000 description 1
- SHXHPUAKLCCLDV-UHFFFAOYSA-N 1,1,1-trifluoropentane-2,4-dione Chemical compound CC(=O)CC(=O)C(F)(F)F SHXHPUAKLCCLDV-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- UOFGSWVZMUXXIY-UHFFFAOYSA-N 1,5-Diphenyl-3-thiocarbazone Chemical compound C=1C=CC=CC=1N=NC(=S)NNC1=CC=CC=C1 UOFGSWVZMUXXIY-UHFFFAOYSA-N 0.000 description 1
- CULQNACJHGHAER-UHFFFAOYSA-N 1-[4-[(2-iodoacetyl)amino]benzoyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1=CC=C(NC(=O)CI)C=C1 CULQNACJHGHAER-UHFFFAOYSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- YKBGVTZYEHREMT-UHFFFAOYSA-N 2'-deoxyguanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1CC(O)C(CO)O1 YKBGVTZYEHREMT-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- HHLZCENAOIROSL-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound OC(=O)CN1CCNCCN(CC(O)=O)CCN(CC(O)=O)CC1 HHLZCENAOIROSL-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical class NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- DGMOBVGABMBZSB-UHFFFAOYSA-N 2-methylpropanoyl chloride Chemical compound CC(C)C(Cl)=O DGMOBVGABMBZSB-UHFFFAOYSA-N 0.000 description 1
- OFLNEVYCAMVQJS-UHFFFAOYSA-N 2-n,2-n-diethylethane-1,1,1,2-tetramine Chemical compound CCN(CC)CC(N)(N)N OFLNEVYCAMVQJS-UHFFFAOYSA-N 0.000 description 1
- CJAZCKUGLFWINJ-UHFFFAOYSA-N 3,4-dihydroxybenzene-1,2-disulfonic acid Chemical compound OC1=CC=C(S(O)(=O)=O)C(S(O)(=O)=O)=C1O CJAZCKUGLFWINJ-UHFFFAOYSA-N 0.000 description 1
- SBZHVJDTNXBZIG-UHFFFAOYSA-N 5-[(6-chloro-2-methoxyacridin-9-yl)amino]pentan-1-ol Chemical compound C1=C(Cl)C=CC2=C(NCCCCCO)C3=CC(OC)=CC=C3N=C21 SBZHVJDTNXBZIG-UHFFFAOYSA-N 0.000 description 1
- YCPXWRQRBFJBPZ-UHFFFAOYSA-N 5-sulfosalicylic acid Chemical compound OC(=O)C1=CC(S(O)(=O)=O)=CC=C1O YCPXWRQRBFJBPZ-UHFFFAOYSA-N 0.000 description 1
- KNSJCCNMJYXLOL-UHFFFAOYSA-N 6,12-epoxy-6h,12h-dibenzo[b,f][1,5]dioxocin Chemical compound O1C2=CC=CC=C2C2OC1C1=CC=CC=C1O2 KNSJCCNMJYXLOL-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- 108010051457 Acid Phosphatase Proteins 0.000 description 1
- 102000013563 Acid Phosphatase Human genes 0.000 description 1
- 102100039819 Actin, alpha cardiac muscle 1 Human genes 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 239000008001 CAPS buffer Substances 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 108020004394 Complementary RNA Proteins 0.000 description 1
- 102000004420 Creatine Kinase Human genes 0.000 description 1
- 108010042126 Creatine kinase Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 125000003603 D-ribosyl group Chemical group C1([C@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108020004206 Gamma-glutamyltransferase Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000959247 Homo sapiens Actin, alpha cardiac muscle 1 Proteins 0.000 description 1
- 101001024703 Homo sapiens Nck-associated protein 5 Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 1
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 125000003376 L-ribosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@@H](O1)CO)* 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 1
- 108700010674 N-acetylVal-Nle(7,8)- allatotropin (5-13) Proteins 0.000 description 1
- CWXACBSDDAXDBT-UHFFFAOYSA-N NC1NNC1CO Chemical compound NC1NNC1CO CWXACBSDDAXDBT-UHFFFAOYSA-N 0.000 description 1
- 229910017912 NH2OH Inorganic materials 0.000 description 1
- 102100036946 Nck-associated protein 5 Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 102100035703 Prostatic acid phosphatase Human genes 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000002262 Schiff base Substances 0.000 description 1
- 150000004753 Schiff bases Chemical class 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229910009523 YCl3 Inorganic materials 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 238000000184 acid digestion Methods 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000011166 aliquoting Methods 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000005276 alkyl hydrazino group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000010976 amide bond formation reaction Methods 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- UMDFLFHAXYPYQN-UKTARXLSSA-N anhydro nucleoside Chemical compound C([C@H]1O[C@H]2N3C=C(C(N=C3O[C@@H]1[C@@H]2F)=O)C)OC(=O)C1=CC=CC=C1 UMDFLFHAXYPYQN-UKTARXLSSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003127 anti-melanomic effect Effects 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- OIRDTQYFTABQOQ-UHFFFAOYSA-N ara-adenosine Natural products Nc1ncnc2n(cnc12)C1OC(CO)C(O)C1O OIRDTQYFTABQOQ-UHFFFAOYSA-N 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 125000002648 azanetriyl group Chemical group *N(*)* 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000011545 carbonate/bicarbonate buffer Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000005708 carbonyloxy group Chemical group [*:2]OC([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000005026 carboxyaryl group Chemical group 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000006790 cellular biosynthetic process Effects 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000012069 chiral reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229940106681 chloroacetic acid Drugs 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- HLVXFWDLRHCZEI-UHFFFAOYSA-N chromotropic acid Chemical compound OS(=O)(=O)C1=CC(O)=C2C(O)=CC(S(O)(=O)=O)=CC2=C1 HLVXFWDLRHCZEI-UHFFFAOYSA-N 0.000 description 1
- 238000002983 circular dichroism Methods 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 230000008876 conformational transition Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- VGONTNSXDCQUGY-UHFFFAOYSA-N desoxyinosine Natural products C1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 VGONTNSXDCQUGY-UHFFFAOYSA-N 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229960005215 dichloroacetic acid Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- WQABCVAJNWAXTE-UHFFFAOYSA-N dimercaprol Chemical compound OCC(S)CS WQABCVAJNWAXTE-UHFFFAOYSA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- JGUQDUKBUKFFRO-CIIODKQPSA-N dimethylglyoxime Chemical compound O/N=C(/C)\C(\C)=N\O JGUQDUKBUKFFRO-CIIODKQPSA-N 0.000 description 1
- KAKKHKRHCKCAGH-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate;hexahydrate Chemical compound O.O.O.O.O.O.[Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 KAKKHKRHCKCAGH-UHFFFAOYSA-L 0.000 description 1
- 125000004119 disulfanediyl group Chemical group *SS* 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 1
- 229950004394 ditiocarb Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- AEOCXXJPGCBFJA-UHFFFAOYSA-N ethionamide Chemical compound CCC1=CC(C(N)=S)=CC=N1 AEOCXXJPGCBFJA-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 125000004672 ethylcarbonyl group Chemical group [H]C([H])([H])C([H])([H])C(*)=O 0.000 description 1
- 239000003885 eye ointment Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 102000006640 gamma-Glutamyltransferase Human genes 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 125000005179 haloacetyl group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004415 heterocyclylalkyl group Chemical group 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000006303 iodophenyl group Chemical group 0.000 description 1
- 125000001261 isocyanato group Chemical group *N=C=O 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000001810 isothiocyanato group Chemical group *N=C=S 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000012035 limiting reagent Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000012011 nucleophilic catalyst Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-O oxonium Chemical compound [OH3+] XLYOFNOQVPJJNP-UHFFFAOYSA-O 0.000 description 1
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 125000000286 phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 108010077051 polycysteine Proteins 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920002643 polyglutamic acid Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- JCBJVAJGLKENNC-UHFFFAOYSA-M potassium ethyl xanthate Chemical compound [K+].CCOC([S-])=S JCBJVAJGLKENNC-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 208000023958 prostate neoplasm Diseases 0.000 description 1
- 108010043671 prostatic acid phosphatase Proteins 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- UYLWKSJTHLRFBX-UHFFFAOYSA-N purin-6-one Chemical compound O=C1N=CN=C2N=CN=C12 UYLWKSJTHLRFBX-UHFFFAOYSA-N 0.000 description 1
- IGFXRKMLLMBKSA-UHFFFAOYSA-N purine Chemical compound N1=C[N]C2=NC=NC2=C1 IGFXRKMLLMBKSA-UHFFFAOYSA-N 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 238000011363 radioimmunotherapy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- BBCGXZULVWBCGP-UHFFFAOYSA-N s-acetyl 2-(2,5-dioxopyrrolidin-1-yl)ethanethioate Chemical compound CC(=O)SC(=O)CN1C(=O)CCC1=O BBCGXZULVWBCGP-UHFFFAOYSA-N 0.000 description 1
- ORIHZIZPTZTNCU-YVMONPNESA-N salicylaldoxime Chemical compound O\N=C/C1=CC=CC=C1O ORIHZIZPTZTNCU-YVMONPNESA-N 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 125000001439 semicarbazido group Chemical group [H]N([H])C(=O)N([H])N([H])* 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 238000002603 single-photon emission computed tomography Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 108010068698 spleen exonuclease Proteins 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- ACTRVOBWPAIOHC-XIXRPRMCSA-N succimer Chemical compound OC(=O)[C@@H](S)[C@@H](S)C(O)=O ACTRVOBWPAIOHC-XIXRPRMCSA-N 0.000 description 1
- 229960005346 succimer Drugs 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- BCNZYOJHNLTNEZ-UHFFFAOYSA-N tert-butyldimethylsilyl chloride Chemical compound CC(C)(C)[Si](C)(C)Cl BCNZYOJHNLTNEZ-UHFFFAOYSA-N 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- YNHJECZULSZAQK-UHFFFAOYSA-N tetraphenylporphyrin Chemical compound C1=CC(C(=C2C=CC(N2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3N2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 YNHJECZULSZAQK-UHFFFAOYSA-N 0.000 description 1
- TXBBUSUXYMIVOS-UHFFFAOYSA-N thenoyltrifluoroacetone Chemical compound FC(F)(F)C(=O)CC(=O)C1=CC=CS1 TXBBUSUXYMIVOS-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- 125000004001 thioalkyl group Chemical group 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- ATGUDZODTABURZ-UHFFFAOYSA-N thiolan-2-ylideneazanium;chloride Chemical compound Cl.N=C1CCCS1 ATGUDZODTABURZ-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 238000004846 x-ray emission Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1093—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2121/00—Preparations for use in therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2123/00—Preparations for testing in vivo
Definitions
- This invention relates to sequential targeting and delivery of immunoreagent compositions which find particular utility in the therapy and diagnostic imaging of cancer by means of a tumor targeted sequential delivery system comprising a primary non-radioactive targeting immunoreagent and a secondary radioactive delivery agent.
- This invention also relates to novel methods for the attachment of L-enantiomeric
- oligonucleotides and chelates, to proteins, and to bifurcated tumor targeting and delivery vectors for the treatment and diagnostic imaging of tumors.
- radioimmunotherapy and diagnostic imaging with the various currently available radiopharmaceuticals which include radionuclide-containing immunoreactive proteins can be less than optimal because these radionuclide-containing immunoreactive proteins
- radiopharmaceuticals may bind to non-target normal tissue. This binding can result in undesirable toxicity to normal tissue during therapeutic applications as well as in high background signals during diagnostic imaging applications. Inefficient covalent bonding of the radioactive component with protein in conjugate
- radionuclide preparation can be another. problem due to release of the radioactive component which may then deposit in healthy tissue. Also, long plasma half-lives of currently available radionuclide-containing immunoreactive proteins and slow clearance of radionuclide from the body can result in prolonged exposure of normal tissue to damaging effects of radiation and can produce unacceptable toxic effects in otherwise normal and disease free tissues in the body, especially in those tissues and cells most sensitive to radiation damage, e.g., the stem cells of the bone marrow and
- immunoreactive protein is restricted by the number of sites of chelation available, an increase in that number which can be achieved by increasing the number of chelating agents conjugated to the protein can produce a decrease in the immunoreactivity of the protein. This can limit the number of such chelating agents that can be attached to the protein.
- the number of chelating agents that can be attached to an immunoreactive protein is also limited by the number of available groups such as, for example, amino groups suitable for use in attachment of the chelating agents and by the potential immunogenicity of the thus modified protein which, being highly derivatized, could be recognized by a host immune system as being haptenated.
- Nucleic acids in the form of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) encode and transfer genetic information for the cellular synthesis of proteins and enzymes.
- Naturally occuring nucleic acids are composed of nucleosides such as 2'-deoxyadenosine (dA), 2'-deoxyguanosine (dG), 2'-deoxycytidine (dC), and thymidine (T) in DNA and of adenosine (A), guanosine (G), cytidine (C), and uridine (U) in RNA.
- dA 2'-deoxyadenosine
- dG 2'-deoxyguanosine
- dC 2'-deoxycytidine
- T thymidine
- A adenosine
- G guanosine
- C cytidine
- U uridine
- modified nucleosides such as those containing 2'-O-methylribosyl groups and those containing bases such as N 4 ,N 4 -dimethyladenine and N 7 -methylguanidine are found in messenger, transfer, and ribosomal RNA.
- nucleosidyl purine and pyrimidine bases adenine with thymine and guanine with cytosine in DNA, and adenine with uracil and guanine with cytosine in RNA.
- sequences of bases in two separate oligonucleotide strands or in two regions of a single strand are complementary to each other, the complementary sequences can hybridize with each other via hydrogen bonds between complementary base pairs to form a right-handed double helix with a B-type conformation, the two phosphate-ribose ester backbones of which are antiparallel.
- each nucleoside unit is a D-enantiomer whose structure is defined by the chirality of the D-deoxyribose ring which has
- each nucleoside unit is also a D-enantiomer whose structure is defined by the chirality of the D-ribose ring which has substituents at the 1'-(b), 2'-(a), 3'-(a), and 4'- (b) positions as represented schematically in Structure I wherein R 1 is OH and "Base” represents an adenine, guanine, uracil or cytosine moiety.
- the phosphate diesters and the bases do not comprise chiral centers.
- oligonucleotides composed of naturally configured D- enantiomers have been used as primers for nucleic acid polymerizing enzymes, as synthons in the construction of artificial genes for the preparation of proteins by recombinant DNA techniques, and as diagnostic probes to detect and characterize cellular nucleic acid sequences.
- synthetically prepared oligonucleotides have been investigated for use in the control of gene expression in living cells, and as therapeutic agents in the inhibition of viral replication and in the treatment of cancer. These applications rely on the sequence specific complementary binding properties of the
- Synthetically prepared oligonucleotides composed of naturally configured D-enantiomers can be generated by a variety of methods, the currently most useful of which include solid phase synthesis via phosphoramidite intermediates and solid phase synthesis via H- phosphonate intermediates as described by E. Uhlmann and A. Peyman in Chemical Reviews, 1990, 90, 544.
- a 5' hydroxyl group of a growing DNA oligomer chain of D-enantiomers having amide protecting groups on the exocylic amine groups of the bases therein and which is attached to a solid phase support reacts with an activated D-nucleoside 5'-O- dimethoxytrityl-3'-(2-cyanoethyl N,N-diisopropyl)- phosphoramidite in the presence of 1H-tetrazole as a catalyst.
- Commonly used protecting groups include the benzoyl group for the protection of the exocyclic amino groups of adenine and cytosine and the isobutyryl group for the protection of the exocyclic amino group of guanine. Any unreacted 5'-hydroxyl groups are capped with acetate groups by reaction with acetic anhydride in the presence of 4-N,N-dimethylaminopyridine. The resulting phosphite is then oxidized with iodine to form a phosphotriester.
- the 5'-O-dimethoxyxrityl group is removed under acid conditions using dichloroacetic acid, and the reaction sequence is repeated using another activated D-nucleoside 5'-O-dimethoxytrityl-3'-(2- cyanoethyl N,N-diisopropyl) phosphoramidite.
- the oligonucleotide is freed from amide protecting groups and cleaved from the support by treatment with ammonium hydroxide. The oligonucleotide is then purified or isolated by methods such as precipitation, electrophoresis, or
- L-d(AAAAAA) hexameric L-DNA
- L-d(AAAAAA) L-d(AAAAAA)
- D-d(AAAAAA) D-poly(U)
- D-poly(U) a natural D-RNA enantiomer
- L-DNA has been shown to hybridize in vitro with natural enantiomeric D-RNA and to be stable to nuclease resistance, in practice such a duplex formation with targeted D-RNA is not readily achievable in vivo since it is necessary for the L-DNA to cross at least one cell membrane to find the intact D-RNA.
- the present invention is directed to a non- radioactive targeting immunoreagent that comprises a tumor antigen recognizing moiety, one or more L- enantiomeric oligonucleotides comprising non-self- associating L-enantiomeric oligonucleotide sequences, and one or more linking groups.
- the present invention is also directed to a
- radioactive targeting immunoreagent that comprises an L- enantiomeric oligonucleotide comprising an L- enantiomeric oligonucleotide sequence that is
- the present invention is also directed to
- compositions comprising one or more of the above-described immunoreagents and a
- the present invention is further directed to methods for treating and imaging disease sites such as tumor sites in a patient.
- Said methods comprise administration to the patient of an effective amount of the above-described non-radioactive targeting
- the present invention provides many advantages compared to conventional targeting immunoreagents.
- the non-radioactive targeting immunoreagent can accumulate at a tumor site in vivo while it is not accumulated at normal tissue sites.
- the in vivo residence half life of the non- radioactive targeting immunoreagent is long enough to permit its accumulation at a tumor site.
- the in vivo residence half life of the radioactive targeting reagent is shorter than the residence half life of the non-radioactive targeting immunoreagent.
- the portion of the radioactive targeting reagent that does not hybridize to tumor associated non- radioactive targeting reagent is rapidly cleared from the patient.
- radionuclide or a chelate containing a radionuclide an amplification of the number of radionuclides per site of modification per targeting immunoreagent can be
- targeting reagent can hybridize in vitro and in vivo.
- oligonucleotides of the non-radioactive targeting immunoreagent and the radioactive targeting reagent will not hybridize with isomeric, complementary sequenced, naturally occurring D-enantiomeric oligonucleotides.
- oligonucleotides of the non-radioactive targeting immunoreagent and the radioactive targeting reagent are stable to nuclease activity.
- oligonucleotides of the non-radioactive targeting immunoreagent and the radioactive targeting reagent and the hybrid formed between the complementary L- enantiomeric oligonucleotides will not bind to enzymes which are specific for binding to isomeric D- enantiomeric oligonucleotides.
- the hybrid formed between complementary sequenced L-enantiomeric oligonucleotides of the non-radioactive targeting immunoreagent and the radioactive targeting reagent is stable to nuclease activity.
- oligonucleotides of the non-radioactive targeting immunoreagent and the radioactive targeting reagent do not self hybridize.
- the non-radioactive targeting immunoreagent and the radioactive targeting reagent can comprise a wide variety of spacing, linking, and chelating groups, L- enantiomeric oligonucleotide sequences and
- oligonucleotides of the non-radioactive targeting immunoreagent can comprise L-enantiomeric
- oligonucleotide sequences which can be tandemly linked by spacing groups, wherein a segment of each L- enantiomeric oligonucleotide sequence can hybridize with a segment of the radioactive targeting reagent.
- oligonucleotides of the non-radioactive targeting immunoreagent can be linked to an antibody by means of either a 5'- or a 3'-substituent such as a 5'-amine or 3'-amine.
- Reagents are provided that have a specificity for tumors and a wide variety of compositions can be prepared in accordance with the present invention.
- This invention describes various novel
- bioconjugates which possess utility in therapeutic and diagnostic imaging compositions and methods.
- This invention further describes novel methods of preparing bioconjugates by the attachment of various L- enantiomeric oligonucleotide sequences to chelating agents, preferably terpyridine containing chelating agents, and to immunoreagents such as proteins,
- this invention describes novel bioconjugates useful for sequential targeting and amplified delivery of novel radioactive immunoreagent compositions which find particular utility in
- this invention describes the preparation and use of targeting immunoreagents that comprise a tumor antigen recognizing moiety, one or more L-enantiomeric oligonucleotides comprising non-self- associating L-enantiomeric oligonucleotide sequences, and one or more linking groups.
- These targeting immunoreagents react with a radioactive sequential targeting reagent that comprises an L-enantiomeric oligonucleotide sequence that is complementary in sequence to and capable of hybridization with one or more fragments of the said non-self-associating L- enantiomeric oligonucleotide sequences, one or more chelating agents, one or more linking groups, and having one or more radionuclides associated therewith.
- the L-enantiomeric nucleotides are L- enantiomers of natural D-deoxyribonucleotides.
- the above-described targeting immunoreagents form a compound that comprises moieties represented by the structure IV: Structure IV
- Z is the residue of an immunoreactive protein
- L z and L Q are independently a chemical bond or a linking group
- I is an L-enantiomeric oligonucleotide comprising a contiguous sequence of from 12 to about 50 L- enantiomeric nucleotide units wherein said contiguous sequence contains one or more members of a family of homologous contiguous sequences, the individual homologs of said family comprising from 12 to about 30 L- enantiomeric nucleotide units, and provided that
- contiguous sequences of six or more L-enantiomeric nucleotide units of said L-enantiomeric oligonucleotide do not hybridize with any other contiguous sequences of six or more contiguous L-enantiomeric nucleotide units anywhere in structure IV;
- Q l is a spacing group
- a is 0 or an integer from 1 to about 6;
- I i is an L-enantiomeric oligonucleotide comprising a contiguous sequence of from 12 to about 50 L- enantiomeric nucleotide units, a contiguous sequence therein comprising a portion of I;
- E is an end capping group
- p is an integer from 1 to about 10.
- a is an integer from 1 to about 6.
- the above- described targeting reagent comprises moieties
- described targeting reagent comprises moieties
- cl is a contiguous sequence of from 12 to about 50 L-enantiomeric nucleotide units wherein said contiguous sequence contains one or more members of a family of homologous contiguous sequences, the individual homologs of said family comprising from 12 to about 30 L- enantiomeric nucleotide units, where the nucleotide sequences of said homologs are complementary to the nucleotide sequences of members of the set of L- enantiomeric oligonucleotides in a co-administerable targeting immunoreagent, and where contiguous sequences of six or more L-enantiomeric nucleotide units of said complementary L-enantiomeric oligonucleotide do not hybridize with any other contiguous sequences of six or more contiguous L-enantiomeric nucleotide units anywhere in structure V;
- Q cI is a spacing group
- L 1 , L 2 , and L 3 are independently a chemical bond or a linking group
- W 1 , W 2 , and W 3 are each a residue of a chelating group;
- M 1 , M 2 , and M 3 comprise elements with oxidation states equal to or greater than +1, and at least one of M 1 , M 2 and M 3 is a radionuclide;
- x, y, and z are independently zero or one provided that at least one of x, y, or z is one;
- w and b are independently zero or an integer from 1 to about 4.
- an L-enantiomeric nucleotide unit is defined as the mirror image of the naturally occurring nucleotide unit
- an L- enantiomeric nucleoside is defined as the mirror image of the naturally occurring, isomeric D-enantiomeric nucleoside
- an L-enantiomeric oligonucleotide sequence is defined as the mirror image of the naturally occurring, isomeric D-enantiomeric oligonucleotide sequence.
- Non-limiting examples of L-enantiomeric nucleosides are set forth below.
- oligonucleotides from isomeric D-enantiomeric nucleotide intermediates. Examples of such methods include those discussed in "Chemistry of Nucleosides and Nucleotides", edited by Leroy B. Townsend, Plenum Press, N.Y., 1988.
- the synthesis of L-enantiomeric oligonucleotides by such methods requires the use of L-enantiomeric reagents such as L-enantiomeric nucleoside and nucleotide derivatives.
- the preparations of various L-enantiomeric nucleosides are well documented by Robins, M. et al (1970), J. Org. Chem., 35, p636-639; Holy, A. (1972), Coll. Czechoslov.
- a preferred method of synthesis of L-enantiomeric oligonucleotides of this invention comprises solid phase synthesis utilizing L-enantiomeric nucleotide phosphoramidite intermediates which contain blocking groups on the hydroxyl groups therein.
- the blocking of a 5'-hydroxyl group in a ribonucleoside moiety and in a deoxyribonucleoside moiety is
- an acid labile trityl group such as, for example, a monomethoxytrityl group (sometimes hereafter referred to as an MMT group) or a
- dimethoxytrityl group (sometimes hereafter referred to as a DMT group) employing the respective trityl
- trityl- blocked 5'-hydroxyl group is preferably done with an acid such as, for example, acetic acid in water, a chloroacetic acid in a solvent such as dichloromethane, or benzenesulfonic in a solvent such as chloroform or methanol as a reagent.
- an acid such as, for example, acetic acid in water, a chloroacetic acid in a solvent such as dichloromethane, or benzenesulfonic in a solvent such as chloroform or methanol as a reagent.
- the blocking of a 2'-hydroxyl group in a ribonucleic acid moiety is preferably done with a silyl chloride reagent such as, for example, t- butyldimethylchlorosilane which reacts with a ribosyl 2'-hydroxyl group to form a t-butyldimethylsilyl ether.
- a silyl chloride reagent such as, for example, t- butyldimethylchlorosilane which reacts with a ribosyl 2'-hydroxyl group to form a t-butyldimethylsilyl ether.
- the deblocking of such a t-butyldimethylsilyl ether can be achieved by treatment with, for example, sodium hydroxide dissolved in a solvent such as, for example, methanol.
- Preferred L-enantiomeric nucleotides are L-2- deoxyribonucleotides, and preferred L-enantiomeric oligonucleotides are oligo-L-2-deoxyribonucleotides.
- L-enantiomeric deoxyribonucleotides that are useful in the synthesis of the L-enantiomeric oligo- L-deoxyribonucleotides of this invention are L- enantiomeric deoxyribonucleosides such as, for example, derivatives of compounds 1 to 5 which have the 5'-OH in each blocked, for example, with a dimethoxytrityl (DMT) group, each of which is activated at the 3'-OH for phosphate bond formation in the oligonucleotide, for example, by treatment with 2-cyanoethyl-N,N- diisopropylphosphoryl chloride to produce the respective 3'-(2-cyanoethyl-N,N-diisopropyl)phosphoramidite intermediates.
- DMT dimethoxytrityl
- 2-cyanoethyl-N,N- diisopropylphosphoryl chloride to produce the respective 3'-(2-cyanoethyl-N
- L-adenosine 3'-O-phosphoramidite derivative, A10 that is suitable for use in the synthesis of the L- enantiomeric oligo-L-deoxyribonucleotide materials of this invention is outlined in Scheme 1.
- Scheme 1 is prepared from L-arabinal (A1) by treatment with p-toluoyl chloride and methanol according to the method described by Smejkal, I. et al (1964), Coll.
- A6 The exocyclic amine of A6 is then blocked by diacylation with benzoyl chloride to form A7 which contains two benzoate esters in addition to the blocked amine.
- the benzoate esters are removed by saponification with sodium hydroxide in water to form A8.
- This diol is then treated with dimethoxytrityl chloride (available from Aldrich Chemical Company) to form A9 which has a DMT ether at the 5'-position.
- A9 is then treated with 2- cyanoethyl N,N-diisopropylchlorophosphoramidite
- A10 the desired diprotected 5'-O-dimethoxytrityl-2'- deoxy-L-adenosine 3'-O-2-cyanoethylphosphoramidite.
- A10 is used as an intermediate in the synthesis of L- oligonucleotide sequences of the compositions of
- Production of such sequences can be done, for example, using an automated oligonucleotide synthesizer using procedures described by the manufacturer for the
- a preferred method of preparing a blocked 2'-deoxy- L-guanosine 3'-O-phosphoramidite derivative, G8, that is suitable for use in the synthesis of the L-enantiomeric oligo-L-deoxyribonucleotide materials of this invention is outlined in Scheme 2.
- 1-O-Methyl-3,5-di-O-p-toluyl- 2-deoxy-L-erythro-pentofuranose (A2 in Scheme 1) is prepared from L-arabinal (A1) by treatment with p- toluoyl chloride and methanol according to the method described by Smejkal, I. et al (1964), Coll. Czechoslov. Chem.
- the methyl acetal (A2) is hydrolyzed in dilute hydrochloric acid to provide the hemiacetal (G2) which is acylated with acetic anhydride to form 1-acetyl 3,5-di-O-p-toluyl-beta-L-erythro- pentofuranose (G3).
- Fusion of G3 and 2-fluoro-6- benzyloxypurine (G4) provides G5 which is then treated with alcoholic ammonia to provide the desired product (G6) which is purified by chromatography.
- the 6-benzyl protecting group of G6 is removed by .hydrogenolysis with palladium on carbon in ammonium hydroxide to yield 2- amino-9-(2-deoxy-L-erythro-pentofuranosyl)purin-6-one (G7; L-dG).
- G7; L-dG 2- amino-9-(2-deoxy-L-erythro-pentofuranosyl)purin-6-one
- the exocyclic 2-amino group of G7 is then protected by acylation with isobutyryl chloride, the 5'- hydroxyl group is protected as a DMT ether using
- Structure V of this invention Production of such sequences can be done, for example, using an automated oligonucleotide synthesizer using procedures described by the manufacturer for the synthesis and purification of isomeric D-oligonucleotides.
- a preferred method of preparing a blocked 2'-deoxy- L-uridine 3'-O-phosphoramidite derivative, U7, that is suitable for use in the synthesis of the L-enantiomeric oligo-L-deoxyribonucleotide materials of this invention is outlined in Scheme 3.
- the reaction of L-arabinose (U1) with cyanamide yields 2'-amino-1,2-oxazoline (U2) which upon treatment with methyl propiolate (U3) affords anhydro-L-uridine (U4).
- the anhydro derivative U4 is opened with HBr to give the 2'-bromo-nucleoside (U5), which upon catalytic hydrogenation affords 2-deoxy-L- uridine (U6).
- U6 The 5'-hydroxyl group of U6 is protected as a DMT ether using dimethoxytrityl chloride, and the 3'-hydroxyl is treated with 2-cyanoethyl N,N- diisopropylchlorophosphoramidite to provide U7, the desired protected 5'-O-dimethoxytrityl-2'-deoxy-L- uridine 3'-O-2-cyanoethylphosphoramidite.
- U7 is used as an intermediate in the synthesis of L-oligonucleotide sequences of the compositions of Structure IV and
- Structure V of this invention Production of such sequences can be done, for example, using an automated oligonucleotide synthesizer using procedures described by the manufacturer for the synthesis and purification of isomeric D-oligonucleotides.
- a preferred method of preparing a blocked L- thymidine 3'-O-phosphoramidite derivative, T7, that is suitable for use in the synthesis of the L-enantiomeric oligo-L-deoxyribonucleotide materials of this invention is outlined in Scheme 4.
- the synthetic method is analogous to the preparation of the 2'-deoxy-L-uridine 3'-O-phosphoramidite derivative, U7, described in Scheme 3 using L-arabinose as a chiral starting material.
- L-arabinose is treated with cyanamide to provide 2'-amino-1,2-oxazoline (U2) which is then reacted with methyl methacrylate with heating to yield the anhydro-nucleoside (T4).
- T4 is opened with
- T5 2-bromo-L-thymidine
- T6 L-thymidine
- T6 The 5'-hydroxyl group of T6 is protected as a DMT ether using dimethoxytrityl chloride, and the 3'-hydroxyl is treated with 2-cyanoethyl N,N- diisopropylchlorophosphoramidite to provide T7, the desired protected 5'-O-dimethoxytrityl-L-thymidine 3'-O- 2-cyanoethylphosphoramidite.
- T7 is used as an
- Structure V of this invention Production of such sequences can be done, for example, using an automated oligonucleotide synthesizer using procedures described by the manufacturer for the synthesis and purification of isomeric D-oligonucleotides.
- a preferred method of preparing a blocked 2'-deoxy- L-cytidine 3'-O-Ohosphoramidite derivative, C7, that is suitable for use in the synthesis of the L-enantiomeric oligo-L-deoxyribonucleotide materials of this invention is outlined in Scheme 5.
- L-arabinal, A1 is treated with HCl and toluyl chloride to provide the 3,5- di-O-p-toluyl-2-deoxy-L-ribofuranosyl chloride (C2).
- dimethoxytrityl chloride and the 3'-hydroxyl is treated with 2-cyanoethyl N,N-diisopropylchlorophosphoramidite to provide C7, the desired protected 5'-O- dimethoxytrityl-2'-deoxy-L-cytidine 3'-O-2- cyanoethylphosphoramidite.
- C7 is used as an
- Structure V of this invention Production of such sequences can be done, for example, using an automated oligonucleotide synthesizer using procedures described by the manufacturer for the synthesis and purification of isomeric D-oligonucleotides.
- L-dA the 2'-deoxy-L- guanosine (G7) is sometimes hereinafter referred to as L-dG; the 2'-deoxy-L-uridine (U6) is sometimes
- L-dU L-thymidine
- T6 L-thymidine
- C5 2'- deoxy-L-cytidine
- the term “residue” is used herein in context with a chemical entity.
- Said chemical entity comprises, for example, a chelating group, or a linking group, or a protein reactive group, or an immunoreactive group, or an immunoreactive protein, or an antibody, or an antibody fragment, or a cross-linking agent such as a heterobifunctional cross-linking agent, or an L- enantiomeric oligonucleotide, or a spacing group, or an end capping group.
- the term “residue” is defined as that portion of the chemical entity which exclusively remains when one or more chemical bonds therein when considered as an independent chemical entity, is altered, modified, or replaced to comprise one or more covalent bonds to one or more other chemical entities.
- a "residue of an L- enantiomeric oligonucleotide" in the context of, for example, I and I i in Structure IV or of cl in Structure V comprises an L-enantiomeric oligonucleotide modified at least for divalent attachment to the residue of another chemical entity, i.e., the residue of said L- enantiomeric oligonucleotide comprises at least a divalent L-enantiomeric oligonucleotidyl sequence.
- the residue of a chelating group in the context of W 1 , W 2 or W 3 of Structure V comprises a chelating group which is at least
- Z preferably is an antibody or antibody fragment which recognizes and is specific for a tumor associated antigen.
- the above-described protein can contain an
- immunoreactive group covalently bonded thereto through a chemical bond or a linking group derived from the residue of a protein reactive group and the residue of a reactive group on the protein.
- immunoreactive protein which can be abbreviated by "IRP” also includes an organic compound which is capable of covalently bonding to the protein and which is found in a living organism or is useful in the diagnosis, treatment or genetic engineering of cellular material or living organisms, and which has a capacity for
- the immunoreactive group can be selected from a wide variety of naturally occurring or synthetically prepared materials, including, but not limited to enzymes, amino acids, peptides, polypeptides, proteins, lipoproteins, glycoproteins, lipids, phospholipids. hormones, growth factors, steroids, vitamins,
- polysaccharides polysaccharides, viruses, protozoa, fungi, parasites, rickettsia, molds, and components thereof, blood components, tissue and organ components,
- haptens lectins
- toxins nucleic acids (including oligonucleotides), antibodies (monoclonal and polyclonal), anti-antibodies, antibody fragments, antigenic materials (including proteins and
- an immunoreactive group can be any substance which when presented to an immunocompetent host will result in the production of a specific antibody capable of binding with that substance, or the antibody so produced, which participates in an antigen- antibody reaction.
- Preferred immunoreactive groups are antibodies and various immunoreactive fragments thereof, as long as they contain at least one reactive site for reaction with a protein reactive group as described herein on the residue of the L-enantiomeric oligonucleotide or with linking groups as described herein. That site can be inherent to the immunoreactive species or it can be introduced through appropriate chemical modification of the immunoreactive species.
- other immunoreactive species include antibodies produced by the techniques outlined above, other immunoreactive species produced by the techniques outlined above, other immunoreactive fragments thereof, as long as they contain at least one reactive site for reaction with a protein reactive group as described herein on the residue of the L-enantiomeric oligonucleotide or with linking groups as described herein. That site can be inherent to the immunoreactive species or it can be introduced through appropriate chemical modification of the immunoreactive species.
- antibodies produced by the techniques outlined above other immunoreactive fragments thereof, as long as they contain at least one reactive site for reaction with a protein reactive group as described herein on the residue of the
- the immunoreactive group does not bind to the residue of an L-enantiomeric oligonucleotide in structure IV so as to inhibit the binding of the L- enantiomeric oligonucleotide to a complementary
- antibody fragment refers to an immunoreactive material which comprises a residue of an antibody, which antibody characteristically exhibits an affinity for binding to an antigen.
- affinity for binding to an antigen refers to the thermodynamic expression of the strength of interaction or binding between an antibody combining site and an antigenic determinant and, thus, of the stereochemical compatibility between them. As such, it is the expression of the equilibrium or association constant for the antibody-antigen interaction.
- affinity as used herein also refers to the
- thermodynamic expression of the strength of interaction or binding between a ligand and a receptor and, thus, of the stereochemical compatibility between them. As such, it is the expression of the equilibrium or association constant for the ligand-receptor interaction.
- antibody fragments exhibit a percentage of said affinity for binding to said antigen, that percentage being in the range of 0.001 per cent to 1,000 per cent, preferably 0.01 per cent to 1,000 per cent, more preferably 0.1 per cent to 1,000 per cent, and most preferably 1.0 per cent to 100 per cent, of the relative affinity of said antibody for binding to said antigen.
- An antibody fragment can be produced from an antibody by a chemical reaction comprising one or more chemical bond cleaving reactions; by a chemical reaction comprising of one or more chemical bond forming
- reactions employing as reactants one or more chemical components selected from a group comprising amino acids, peptides, carbohydrates, linking groups as defined herein, spacing groups as defined herein, protein reactive groups as defined herein, and antibody
- An antibody fragment such as are produced as described herein and by a molecular biological process, a bacterial process, or by a process comprising or resulting from the genetic engineering of antibody genes.
- An antibody fragment can be derived from an antibody by a chemical reaction comprising one or more of the following reactions:
- bonds being selected from, for example, carbon-nitrogen bonds, sulfur-sulfur bonds, carbon-carbon bonds, carbon-sulfur bonds, and carbon-oxygen bonds, and wherein the method of said cleavage is selected from:
- a catalysed chemical reaction comprising the action of a biochemical catalyst such as an enzyme such as papain or pepsin which enzymes to those skilled in the art are known to produce antibody fragments commonly referred to as Fab and Fab'2, respectively;
- a biochemical catalyst such as an enzyme such as papain or pepsin which enzymes to those skilled in the art are known to produce antibody fragments commonly referred to as Fab and Fab'2, respectively;
- a catalysed chemical reaction comprising the action of an electrophilic chemical catalyst such as a hydronium ion which, for example, favorably occurs at a pH equal to or less than 7;
- a catalysed chemical reaction comprising the action of a nucleophilic catalyst such as a hydroxide ion which, for example, favorably occurs at a pH equal to or greater than 7;
- a nucleophilic catalyst such as a hydroxide ion which, for example, favorably occurs at a pH equal to or greater than 7;
- an anionic sulfide group comprising an -S- group in the form of a salt such as a -S- Na + group
- a chemical reaction comprising an oxidation reaction such as the oxidation of a carbon-oxygen bond of a hydroxyl group or the oxidation of a carbon-carbon bond of a vicinal diol group such as occurs in a carbohydrate moiety; or
- one or more reagents comprising amino acids, peptides, carbohydrates, linking groups as defined herein, spacing groups as defined herein, protein reactive groups as defined herein, and antibody fragments such as are produced as described in (a), above; or
- an antibody fragment can be derived by
- non-covalent bonds comprise hydrophobic interactions such as occur in an aqueous medium between chemical species that independently comprise mutually accessible regions of low polarity such as regions comprising aliphatic and carbocyclic groups, and of hydrogen bond interactions such as occur in the binding of an oligonucleotide with a
- an antibody fragment can be produced as a result of the methods of molecular biology or by genetic engineering of antibody genes, for example, in the genetic engineering of a single chain immunoreactive group or a Fv fragment.
- An antibody fragment can be produced as a result a combination of one or more of the above methods.
- the immunoreactive group can be an enzyme which has a reactive group for
- Representative enzymes include, but are not limited to, aspartate aminotransaminase, alanine aminotransaminase, lactate dehydrogenase, creatine phosphokinase, gamma glutamyl transferase, alkaline acid phosphatase, prostatic acid phosphatase, horseradish peroxidase and various esterases.
- the immunoreactive group can be modified or chemically altered to provide a reactive group for use in the attachment to the residue of the L- enantiomeric oligonucleotide, I, through a linking group as described below by techniques known to those skilled in the art.
- Such techniques include the use of linking moieties and chemical modification such as described in WO-A-89/02931 and WO-A-89/2932, which are directed to modification of oligonucleotides, and U.S. Patent No. 4,719,182.
- compositions of this invention are for the diagnostic imaging of tumors and the radiological treatment of tumors.
- Preferred immunological groups therefore include antibodies to tumor-associated antigens.
- An antibody is sometimes hereinafter referred to as Ab.
- Specific non-limiting examples of antibodies include B72.3 and related antibodies
- colorectal tumors Pan-carcinoma
- 7E11C5 and related antibodies which recognize prostate tumors
- CC49 and related antibodies which recognize colorectal tumors
- TNT and related antibodies which recognize necrotic tissue
- PR1A3 and related antibodies which recognize colon carcinoma
- ING-1 and related antibodies which are described in International Patent Publication WO-A- 90/02569
- B174, C174 and related antibodies which recognize squamous cell carcinomas
- B43 and related antibodies which are reactive with certain lymphomas and leukemias
- An especially preferred antibody is ING-1.
- L z and L Q are independently a chemical bond or the residue of a linking group.
- the phrase "residue of a linking group” as used herein refers to a moiety that remains, results, or is derived from the reaction of a protein reactive group with a reactive site on the protein.
- the phrase "protein reactive group” as used herein refers to any group which can react with a functional group typically found on a protein. However, it is specifically
- a protein reactive groups can also react with a functional group typically found on a non- protein biomolecule.
- a linking group useful in the practice of this invention derives from a group which can react with any biological molecule containing an immunoreactive group, whether or not the biological molecule is a protein, to form a linking group between the immunoreactive group and the L-enantiomeric
- oligonucleotide containing species as described below.
- linking groups are derived from protein reactive groups selected from but not limited to:
- vinylsulfonyl vinylcarbonyl; epoxy; isocyanato; isothiocyanato; aldehyde; aziridine;
- succinimidoxycarbonyl activated acyl groups such as carboxylic acid halides; mixed anhydrides and the like; and other groups known to be useful in conventional photographic gelatin hardening agents;
- immunoreactive group i.e., proteins or biological molecules containing the immunoreactive group modified to contain reactive groups such as those mentioned in
- the "linking group” can be derived from protein reactive groups selected from amino, alkylamino, arylamino, hydrazino, alkylhydrazino, arylhydrazino, carbazido, semicarbazido, thiocarbazido, thiosemicarbazido, sulfhydryl, sulfhydrylalkyl,
- the alkyl portions of said linking groups can contain from 1 to about 20 carbon atoms.
- the aryl portions of said linking groups can contain from about 6 to about 20 carbon atoms;
- hardeners, bisepoxides, and bisisocyanates can become a part of, i.e., a linking group in, the protein-(L- enantiomeric oligonucleotide-containing species) conjugate during the crosslinking reaction.
- Other useful crosslinking agents can facilitate the crosslinking, for example, as consumable catalysts, and are not present in the final conjugate. Examples of such crosslinking agents are carbodiimide and carbamoylonium crosslinking agents as disclosed in U.S. Patent No. 4,421,847 and the ethers of U.S. Patent No. 4,877,724.
- one of the reactants such as the immunoreactive group
- the other such as the L-enantiomeric oligonucleotide-containing species, must have a reactive amine, alcohol, or sulfhydryl group.
- the crosslinking agent first reacts
- Preferred useful linking groups are derived from various heterobifunctional cross-linking reagents such as those listed in the Pierce Chemical Company
- reagents include:
- Sulfo-SMCC Sulfosuccinimidyl 4-(N- maleimidomethyl)cyclohexane-1- carboxylate;
- Sulfo-SIAB Sulfosuccinimidyl (4- iodoacetyl)aminobenzoate
- Sulfo-SMPB Sulfosuccinimidyl 4-(p- maleimidophenyl)butyrate
- linking groups in whole or in part, can also comprise and be derived from nucleotides and residues of
- nucleotides both naturally occurring and modified.
- linking groups of this invention are derived from the reaction of a reactive functional group such as an amine or sulfhydryl group as are available in the above Clonetech reagents, one or more of which has been incorporated into an L-enantiomeric oligonucleotide sequence of this invention, with, for example, one or more of the previously described protein reactive groups such as heterobifunctional protein reactive groups, one or more of which has been incorporated into an
- I and I i each independently comprise an L-enantiomeric oligonucleotide of a contiguous sequence of from 12 to about 50 L- enantiomeric nucleotide units wherein said contiguous sequence contains one or more members of a family of homologous contiguous sequences; wherein the individual homologs of said family comprise from 12 to about 30 L- enantiomeric nucleotide units; wherein the homologs of said family of sequences, both individually or as a set of homologous sequences being hereinafter sometimes referred to as "the Sequence"; and wherein any
- contiguous sequence of six or more L-enantiomeric nucleotide units does not hybridize with any other contiguous sequence of six or more contiguous L- enantiomeric nucleotide units anywhere in structure IV.
- Members of the set of homologous contiguous sequences which comprise "the Sequence" can be found in both the sequence I and the sequence I i , and at least one such sequence is common to both I and I i .
- the L-enantiomeric oligonucleotide sequence of I and I i in Structure IV can comprise L-DNA, L-RNA, purine and pyrimidine base-modified L-DNA or L-RNA, backbone- modified L-DNA or L-RNA such as methyl phosphonate or thiophosphonate or carbohydrate modified L-DNA or L-RNA analogs, whole or partially modified, or combinations thereof as long as a complementary L-enantiomeric oligonucleotide sequence incorporated into the
- radioactive targeting moiety of Structure V described below can hybridize to said L-enantiomeric
- L-enantiomeric oligonucleotide sequence to form a hybrid which exhibits a Tm (melting temperature) greater than about 37 °C.
- Preferred L-enantiomeric oligonucleotides are non-base- modified and non-backbone-modified L-DNA and L-RNA, more preferred are L-DNA comprising L-dA, L-T, L-dG, L-dU and L-dC L-enantiomeric nucleotide units.
- L-enantiomeric oligonucleotides are L-DNA comprising L-dA, L-T, L-dG, and L-dC L- enantiomeric nucleotide units.
- the L-enantiomeric oligonucleotide sequence I and I i can comprise double stranded L-DNA or L-RNA. That is, the L-enantiomeric oligonucleotide sequence may comprises complementary L- DNA or L-RNA which forms a double helix molecule.
- complementary L-enantiomeric oligonucleotide sequence incorporated into the radioactive targeting moiety interacts with the duplex L-DNA or L-RNA of I and I i in such a way as to form triplex (triple helix) L-DNA, triplex L-RNA, or a triplex L-DNA:L-RNA hybrid.
- L-enantiomeric oligonucleotide sequences comprising the "Sequence" are shown below.
- the following sequences comprise a set of homologous L-enantiomeric oligonucleotide sequences which when considered individually or in any combination comprise a set herein defined as the "Sequence":
- sequence (viii) contains sequence (vii) which contains sequence (vi) which contains sequence (v), and so on.
- I contains, for example sequence (iii)
- I i contains, for example, sequence (v)
- Another I i in structure IV can contain (viii), in which case it would also contain (i) through (vii) as well as (viii).
- all three sequences would contain at least (iii) [as well as (i) and (ii)], and the two I i 's would contain at least (v) [as well as (i) through (iv)].
- an L-enantiomeric oligonucleotide that comprises a
- contiguous sequence of L-enantiomeric nucleotides which sequence being complementary to at least sequence (i), would hybridize to all sequences (i) through (viii) as would any member of a set of contiguous complementary sequences, the individual members of which comprise the sequence complementary to any of (i) through (viii).
- a set of contiguous complementary sequences can comprise cl as will be described below.
- An especially preferred sequence is: L- d(TTATGGACGGAGAAGCTAA) (SEQ ID NO:8).
- L-enantiomeric oligonucleotide sequences of this invention can be tandemly linked by means of chemical bonds, by linking groups such as described above, or by spacing groups as described below.
- the sequential order of L-enantiomeric oligonucleotide sequences of this invention can be tandemly linked by means of chemical bonds, by linking groups such as described above, or by spacing groups as described below.
- nucleotides in the L-enantiomeric oligonucleotide sequences of this invention can be from the 5' to the 3' end or from the 3' to the 5' end. Attachment of the L- enantiomeric oligonucleotide sequences of this invention via linking groups as described above to the immune reactive group as described above can be accomplished via 3' or via 5' sites or via derivatives attached to 3' or 5' sites of the L-enantiomeric oligonucleotide.
- the "Sequence” may also be composed of a double stranded L-DNA or L-RNA. That is, the "Sequence” may consist of complementary L- enantiomeric oligonucleotides which non-covalently interact to form double stranded L-DNA or L-RNA.
- Q I is a spacing group which separates and links two or more L- enantiomeric oligonucleotide sequences of this
- Q I can comprise a linking group as defined above, alone, or in combination with an L-enantiomeric nucleotide or an L-enantiomeric oligonucleotide
- each spacing group can be linked to from two to about six L-enantiomeric oligonucleotide sequences, at least two of which contain the Sequence of this invention.
- the spacing group is linked to two L-enantiomeric oligonucleotide sequences each of which contains the Sequence of this invention.
- the spacing group is an L-enantiomeric oligonucleotide sequence.
- Non limiting examples of preferred spacing groups are L-enantiomeric oligonucleotides comprising the following sequences: L-d(ACT);
- An especially preferred spacing group is an L- enantiomeric oligonucleotide: L-d(ACTCTC).
- the condition described above i.e., that the L-enantiomeric oligonucleotide sequence of this invention comprises a non-self associating sequence, still applies when considering the selection of L- enantiomeric oligonucleotide spacing groups linked in combination with the L-enantiomeric oligonucleotide Sequence groups.
- a is from 0 to about 6, preferably an integer from 1 to about 6, more preferably one to about 4, and most preferably one or two.
- p is an integer from 1 to 10, preferably 1 to about 6, and more preferably 1 to 3. It is also contemplated that mixtures of immunoreactive proteins comprising mixtures of Z modified as defined in structure IV together with Z not so modified will also be useful in this invention. In this case, the bulk mixture properties of "p" of such mixtures would be useful in this invention.
- the bulk p values would be from about 0.1 to about 10.0, more preferably from about 0.2 to about 5.0, and most preferably from about 0.4 to about 3.
- E is an end capping group.
- E is preferably an L-enantiomeric nucleotide group or a group of one or more D-oligonucleotides that is modified so as to reduce or prevent the action of exonuclease enzymatic activity on the D-enantiomeric oligonucleotide sequence therein.
- E can be a 3'- or 5'-phosphate-linked ribose group containing one or more substituents such as an alkyl group of 1 to about 10 carbon atoms.
- E can be a 5'- or 3'-ether group such as an alkyl ether, an aryl ether, an aralkyl ether, a substituted aryl ether or an aralkyl ether wherein the alkyl groups contain from 1 to about 10 carbon atoms and the aryl groups contain from 6 to 10 carbon atoms, and wherein the alkyl or aryl groups may contain oxygen, nitrogen or sulfur atoms or be substituted by alkyl or aryl groups containing oxygen, nitrogen or sulfur atoms.
- E can be a 5'-O- or 3'-O- phosphate ester group such as an alkyl ester, an aryl ester, an aralkyl ester, a substituted.
- aryl ester or an aralkyl ester wherein the alkyl groups contain from 1 to about 10 carbon atoms and the aryl groups contain from 6 to 10 carbon atoms, and wherein the alkyl or aryl groups may contain oxygen, nitrogen or sulfur atoms or be substituted by alkyl or aryl groups containing oxygen, nitrogen or sulfur atoms.
- E can be a poly (alkylene oxidyl) group on the ribosyl moiety, preferably at the 5'- or 3'- position, either as an ether group or linked by a phosphate ester to the 5'- or 3'-oxygen of the L- ribosyl group.
- the poly(alkylene oxidyl) group can be, for example, a poly(ethylene oxidyl) or poly(propylene oxidyl) or a poly(propylene oxidyl-co-ethylene oxidyl) group, each polymer containing from 2 to about 100 repeating units.
- a phosphate ester comprising such entities is also useful, as well as a phosphate ester or modified ribose comprising elements of a suitable linking group as defined above.
- E can also comprise a Z or it can be attached to Q I by elements of L z as defined above to form a cyclic structure.
- E can also comprise compounds with a two carbon-one nitrogen atom internucleoside linkage.
- E comprises a poly (alkylene glycol) phosphate diester.
- the poly(alkylene glycol) moiety can have from 2 to about 100 repeating units.
- the poly(alkylene glycol) moiety can have from 2 to about 100 repeating units.
- poly(alkylene glycol) is a poly(ethyleene glycol).
- a currently preferred poly(alkylene glycol) phosphate diester is a tetra(ethylene glycol) phosphate diester, hereinafter sometimes referred to as a "Teg” or "Teg unit".
- Teg tetra(ethylene glycol) phosphate diester
- Such poly(alkylene glycol) phosphate diesters can be linked in tandem to each other to form a dimer phosphate ester sequence, a trimer sequence, a tetramer sequence, and so forth.
- One or two such units is preferred.
- Such units can also be attached to residues of Q I , L z , L Q , I, I i or Z described above.
- a preferred end group E comprises a Teg unit linked by a phosphate ester bond to an L-enantiomeric nucleotide such as T.
- Other preferred end capping units for an L-DNA sequence comprise a residue of L-dA, L-dG, L-T, L-dC, and L-dU or an oligonucleotide sequence comprised therefrom.
- modified nucleotide moiety is intended to mean a chemical entity which comprises one or more chemical groups that are analogous to one or more portions of a naturally occurring D-enantiomeric nucleotide or of a residue of a naturally occurring D-enantiomeric
- a "modified D-enantiomeric nucleotide moiety" comprises that chemical entity which exclusively remains when one or more chemical bonds, of which said naturally occurring D-enantiomeric nucleotide is
- modified D-enantiomeric nucleotide moieties comprise reactive functional groups, such as amine and sulfhydryl groups. They can be commercially available such as, for example, those modified D-enantiomeric nucleotide moieties and
- linking groups of this invention are derived from the reaction of a reactive functional group such as an amine or sulfhydryl group as are available in the above
- Clonetech reagents one or more of which has been incorporated into an L-enantiomeric oligonucleotide sequence of this invention, with, for example, one or more of the previously described protein reactive groups such as heterobifunctional protein reactive groups, one or more of which has been incorporated into an
- a "modified D-enantiomeric nucleotide moiety” can comprise a D-enantiomeric nucleotide moiety that is modified so as to reduce or prevent the action of exonuclease enzymatic activity on the D-enantiomeric oligonucleotide sequence.
- It can be a 3'- or 5'- phosphate linked ribose or a 3'- or 5'-phosphate linked 2'-deoxyribose group containing one or more substituents such as an alkyl group of 1 to about 10 carbon atoms, or an ether group such as alkyl or aryl or aralkyl or substituted aryl or aralkyl ether wherein the alkyl groups contain from 1 to about 10 carbon atoms and such alkyl or aryl groups may contain or be substituted by substituents containing oxygen, nitrogen or sulfur atoms, or a poly(alkylene oxidyl) group, preferably at the 5'- or 3'-ribose position, respectively, or
- a "modified D-enantiomeric nucleotide moiety" comprising a phosphate ester comprising said
- substituents is also useful, as well as a phosphate ester or modified ribose comprising elements of a suitable linking group as defined above.
- a "modified D- enantiomeric nucleotide moiety" can also comprise a residue of Z or it can be attached to Q I by elements of L z as defined above to form a cyclic structure.
- modified D-enantiomeric nucleotide moiety can also comprise compounds with a two carbon-one nitrogen atom internucleoside linkage.
- a "modified D-enantiomeric nucleotide moiety” comprises a poly(alkylene glycol) phosphate diester.
- the poly(alkylene glycol) moiety can have from 2 to about 100 repeating units.
- the poly(alkylene glycol) is a poly(ethylene glycol).
- a currently preferred poly(alkylene glycol) phosphate diester is a tetra(ethylene glycol) phosphate diester, hereinafter sometimes referred to as a "Teg" or "Teg unit”.
- Such poly(alkylene glycol) phosphate diesters can be linked in tandem to each other to form a dimer phosphate ester sequence, a trimer sequence, a tetramer sequence, and so forth.
- One or two such units is preferred.
- Such units can also be attached to residues of Q I , L z , L Q , I, I i or Z described herein.
- a preferred "modified D-enantiomeric nucleotide moiety" comprises a Teg unit linked by a phosphate ester bond to a D- enantiomeric nucleotide such as L-T.
- oligonucleotides, cl which are complementary to the members of the set of L-enantiomeric oligonucleotides comprising the "Sequence" of I in structure IV include the L-DNA L-enantiomeric oligonucleotides:
- An especially preferred complementary sequence comprises:
- the L-enantiomeric oligonucleotide sequence cl can comprise double stranded L-DNA or L-RNA. That is, the L-enantiomeric
- oligonucleotide sequence may comprise complementary L- DNA or L-RNA which forms a double helix molecule.
- immunoreagent interacts with the duplex L-DNA or L-RNA of cl in such a way as to form triplex (triple helix) L- DNA, triplex L-RNA, or a triplex L-DNA:L-RNA hybrid.
- Q cI in structure V is a spacing group; Q cl can be selected from Q I as described for structure IV.
- Q cl comprises an L-enantiomeric
- Q cI can also comprise an L- enantiomeric oligonucleotide, preferably a sequence such as (xxvii) to (xxxii) above which is complementary to the "Sequence" in structure IV.
- Q cI can also comprise an L- enantiomeric oligonucleotide, preferably a sequence such as (xxvii) to (xxxii) above which is complementary to the "Sequence" in structure IV.
- L 1 , L 2 , and L 3 in structure V are independently a chemical bond, preferably a phosphate ester bond, or a linking group which are defined as L z and L Q in the above structure V.
- L 1' L 2 , and L 3 can also be a chemical bond, preferably a phosphate ester bond, or a linking group which are defined as L z and L Q in the above structure V.
- L 1' L 2 , and L 3 can also
- W 1 , W 2 , and W 3 in structure V are residues of chelating groups.
- a chelating agent is a compound containing donor atoms that can combine by coordinate bonding with a metal atom to form a cyclic structure called a chelation complex or chelate. This class of compounds is described in the Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 5, 339-368.
- residues of suitable chelating agents can be independently selected from polyphosphates, such as sodium tripolyphosphate and hexametaphosphoric acid; aminocarboxylic acids, such as
- nitrilotriacetic acid N,N-di(2-hydroxyethyl)glycine, ethylenebis(hydroxyphhnylglycine) and diethylenetriamine pentacetic acid
- 1,3-diketones such as acetylacetone, trifluoroacetylacetone, and thenoyltrifluoroacetone
- hydroxycarboxylic acids such as tartaric acid, citric acid, gluconic acid, and 5-sulfosalicylic acid
- polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, and triaminotriethylamine;
- aminoalcohols such as triethanolamine and N-(2- hydroxyethyl)ethylenediamine
- aromatic heterocyclic bases such as 2,2'-dipyridyl, 2,2'-diimidazole, dipicoline amine and 1,10-phenanthroline
- phenols such as oalicylaldehyde, disulfopyrocatechol, and
- chromotropic acid aminophenols, such as 8- hydroxyquinoline and oximesulfonic acid; oximes, such as dimethylglyoxime and salicylaldoxime; peptides
- proximal chelating functionality such as polycysteine, polyhistidine, polyaspartic acid
- polyglutamic acid or combinations of such amino acids; Schiff bases, such as disalicylaldehyde 1,2- propylenediimine; tetrapyrroles, such as
- macrocylic compounds such as dibenzo[18]crown-6,
- Preferred residues of chelating agents contain polycarboxylic acid groups and include: ethylenediamine- N, NN, N',N'-tetraacetic acid (EDTA); N,N,N',N",N"- diethylene-triaminepentaacetic acid (DTPA); 1,4,7,10- tetraazacyclododecane-N,N',N",N"'-tetraacetic acid
- DOTA 1,4,7,10-tetraazacyclododecane-N,N',N"-triacetic acid
- DO3A 1,4,7,10-tetraazacyclododecane-N,N',N"-triacetic acid
- OTTA 1-oxa-4,7,10-triazacyclododecane-N,N',N"- triacetic acid
- CDTPA trans(1,2)- cyclohexanodiethylenetriamine pentaacetic acid
- Preferred residues of chelating agents contain polycarboxylic acid groups and include the following:
- Suitable residues of chelating agents comprise proteins modified for the chelation of metals such as technetium and rhenium as described in U.S. Patent No. 5,078,985, the disclosure of which is hereby incorporated by reference.
- suitable residues of chelating agents are derived from N 3 S and N 2 S 2 containing
- a residue of each of the chelating agents W 1 , W 2 , and W 3 in structure V is independently linked to the complementary L-enantiomeric oligonucleotide moiety cl or spacing group Q cI through a chemical bond or a linking group, i.e., L 1 , L 2 and L 3 in structure V, above.
- Preferred linking groups include nitrogen atoms in groups such as amino, imido, nitrilo and imino groups; alkylene, preferably containing from 1 to 18 carbon atoms such as methylene, ethylene, propylene, butylene and hexylene, such alkylene optionally being interrupted by 1 or more heteroatoms such as oxygen, nitrogen and sulfur or heteroatom-containing groups;
- ester i.e., carbonyloxy and oxycarbonyl
- thioester i.e., carbonylthio, thiocarbonyl
- thioamide i.e., iminothiocarbonyl
- urethane i.e., iminocarbonyloxy, and oxycarbonylimino
- thiourethane i.e., iminothiocarbonyloxy
- an amino acid linkage i.e., a
- k l and X 1 , X 2 , X 3 independently are H, alkyl, containing from 1 to 18, preferably 1 to 6 carbon atoms, such as methyl, ethyl and propyl, such alkyl optionally being interrupted by 1 or more heteroatoms such as oxygen, nitrogen and sulfur, substituted or unsubstituted aryl, containing from 6 to 18, preferably 6 to 10 carbon atoms such as phenyl, hydroxyiodophenyl, hydroxyphenyl, fluorophenyl and naphthyl, aralkyl, preferably containing from 7 to 12 carbon atoms, such as benzyl, heterocyclyl, preferably containing from 5 to 7 nuclear carbon and one or more heteroatoms such as S, N, P or O, examples of preferred heterocyclyl groups being pyridyl, quinolyl, imidazolyl and thienyl;
- heterocyclylalkyl the heterocyclyl and alkyl portions of which preferably are described above;
- linking groups can be used, such as, for example, alkyleneimino and
- linking groups may be suitable for use herein, such as linking groups commonly used in protein heterobifunctional and homobifunctional conjugation and crosslinking chemistry as described for L z or L Q in structure IV.
- Especially preferred linking groups include unsubstituted or substituted phosphate ester groups containing amino groups which when linked to the residue of a chelating agent via an isothiocyanate group on the chelating agent form a thiourea group.
- the linking groups can contain various substituents which do not interfere with the coupling reaction between chelate W 1 , W 2 , or W 3 and L-enantiomeric oligonucleotide cl or the spacing group.
- the linking groups can also contain substituents which can otherwise interfere with such reaction, but which during the coupling reaction, are prevented from so doing with suitable protecting groups commonly known in the art and which substituents are regenerated after the coupling reaction by suitable deprotection.
- the linking groups can also contain substituents that are introduced after the coupling reaction.
- the linking group can be substituted with a group such as a halogen, such as F, Cl, Br or I; an ester group; an amide group;
- alkyl preferably containing from 1 to about 18, more preferably, 1 to 4 carbon atoms such as methyl, ethyl, propyl, i-propyl, butyl, and the like; substituted or unsubstituted aryl, preferably containing from 6 to about 20, more preferably 6 to 10 carbon atoms such as phenyl, naphthyl, hydroxyphenyl, iodophenyl,
- alkoxy the alkyl portion of which preferably contains from 1 to about 18 carbon atoms as described for alkyl above; alkoxyaralkyl, such as ethoxybenzyl; substituted or unsubstituted
- heterocyclyl preferably containing from 5 to 7 nuclear carbon and heteroatoms such as S, N, P or O, examples of preferred heterocyclyl groups being pyridyl, quinolyl, imidazolyl and thienyl; a carboxyl group; a carboxyalkyl group, the alkyl portion of which preferably contains from 1 to 8 carbon atoms; or the residue of a chelating group.
- M 1 , M 2 and M 3 each comprise elements with oxidation states equal to or greater than +1, and at least one of which is a radionuclide.
- each of M 1 , M 2 and M 3 comprise a metal isotope, preferably a radioactive metal isotope, sometimes herein referred to as a metal radioisotope, which radioisotope is useful in a therapeutic or in a diagnostic imaging application.
- Preferred metal radioisotopes are selected from, for example, Sc, Fe, Pb, Ga, Y, Bi, Mn, Cu, Cr, Zn, Ge, Mo, Tc, Ru, In, Sn, Re, Sr, Sm, Lu, Eu, Ru, Dy, Sb, W, Re, Po, Ta and TI.
- Useful emissions from such radioisotopes include spontaneous alpha emissions, beta emissions, gamma emissions.
- X-ray emissions, positron emissions, and such emissions as are induced by the processes of electron capture and internal conversion Said emissions can be purely of one kind such as pure alpha, pure beta, pure gamma and the like, or of combinations of nuclear emissions such as beta and gamma emissions and the like.
- Radioisotopes with emissions comprising, for example, alpha radiation or beta radiation are useful in therapeutic applications, especially in the therapy of cancer.
- Useful isotopes in therapeutic applications include, for example, alpha radiation emitting isotopes such as, for example, 207 Pb, 211 Pb, 208 Pb, 212 Pb, 212 Bi, 207 Ti, and 223 Ra; beta radiation emitting isotopes such as, for example 47 Sc, 66 Ga, 67 Cu, 77 As, 90 Y, 105 Rh,
- Radioisotopes especially preferred in therapeutic applications include 212 Pb, 212 Bi, 90 ⁇ , 1 77 Lu, 186 Re, and 188 Re. Currently the most preferred radioisotope is 90 Y.
- Radioisotopes with emissions comprising, for example, gamma radiation or positron radiation are useful in diagnostic imaging applications, especially in diagnostic imaging of cancer.
- Useful isotopes in diagnostic imaging applications include, for example, gamma radiation emitting isotopes such as 47 Sc, 51 Cr, 6 7 Cu, 67 Ga, 97 Ru, 99m Tc, 111 In, 117m Sn, 141 Ce, 167 Tm, 199 Au, 87 Y and 203 Pb; and positron radiation emitting isotopes such as 44 Sc, 48 V, 64 Cu, 66 Ga, 69 Ge, 72 As, 86 Y and 89 Zr.
- Radioisotopes especially preferred in diagnostic imaging applications include 64 Cu, 99m Tc, 111 In and 87 Y. Currently, the most preferred are 99m Tc and 111 In.
- radionuclides can be incorporated, for example, by covalent bonding into
- QcI and include radioactive isotopes of halogens such as radioactive isotopes of iodine, for example, 123 I, 124 l, 125 I and 131 I as well as radioactive isotopes of astatine such as 211 At.
- radioactive isotopes of halogens such as radioactive isotopes of iodine, for example, 123 I, 124 l, 125 I and 131 I as well as radioactive isotopes of astatine such as 211 At.
- Methods of generating an image useful in the diagnostic imaging of, for example, cancer in a mammal comprise detecting emissions imagewise from
- radioisotopes as employed in the compositions and methods of this invention.
- Said image generating methods comprise the use of, for example, a collimated camera detector such as a gamma camera commonly employed in radioimmunoscintigraphy (RIS), and the use of linked X-ray detectors commonly employed in positron emission tomography (PET) and in single photon emission
- a collimated camera detector such as a gamma camera commonly employed in radioimmunoscintigraphy (RIS)
- RIS radioimmunoscintigraphy
- PET positron emission tomography
- SPET tomography
- x, y, and z are independently zero or 1 provided that at least one of x, y, or z is one; and w and b are zero or an integer from 1 to about 4.
- compositions can be prepared as outlined in the schemes that follow.
- the protein (antibody such as TNG-1, antibody fragment, enzyme, receptor) is chemically modified for later covalent coupling to a thiolated L- enantiomeric oligonucleotide (to Ab-M) or to a
- oligonucleotide to Ab-SH.
- Chemical modification is effected using a bifunctional cross linking agent, preferably a heterobifunctional cross linking agent having both a group capable of reacting with protein functional groups (e.g. amine in Ab-amine) and also having a further group capable of reacting with thiol groups.
- the latter is selected from haloacetyl, halo- acetamidyl, maleimido, and activated disulfide
- Maleimido and thioalkyl groups are introduced to an antibody by utilizing the heterobifunctional linkers, sulfosuccinimido-4-(M-maleimidomethyl)-cyclohexane-1- carboxylate (Sulfo-SMCC), 2-iminothiolane (2-IT), or succinimidyl-S-acetylthioacetate (SATA).
- the reaction of a sample containing antibody with a linking agent is for a time sufficient to introduce an average of about 0.5-3 linking agent molecules per antibody molecule in the sample.
- the derivatized antibody is purified using a gel filtration column, and more preferably a Sephadex G- 25 column.
- ING-1 is a preferred protein containing amine groups such as lysine amines as represented by Ab-amine.
- TrS-5'-L-d(l-Q I -l)-3'-Biotin TrS-5'-L-d(Oligo)-3'-Biotin
- L-enantiomeric oligonucleotides and modified L- enantiomeric oligonucleotides are synthesized according to standard methods such as solid phase synthesis that are well known in the art for the synthesis of D- enantiomeric oligonucleotides.
- Derivatizations of L- enantiomeric oligonucleotides L-d(I-Q I -I) are achieved using the reaction of 5'-TEG-L-enantiomeric oligomer- NH 2 -3' with SATA or SMCC to afford L-enantiomeric oligomer-3'-SH or L-enantiomeric oligomer-3'-M (see Scheme 7).
- L-enantiomeric oligonucleotides are preferred:
- SEQ ID No: 31 denotes the preferred spacer, -L-d[ACTCTC]-, which separates two sequences each containing the preferred sequence -L-d(TTATGGACGGAGAAGCTAA)- (SEQ ID No: 8).
- L-enantiomeric oligomers are also derivatized to afford a bifunctionalized L-enantiomeric oligomer: 5'-HS-L-d(I-Q I -I)-NH 2 -3' via introduction of
- the modified maleimido antibody (Ab-M, Scheme 6) and the thiolated L-enantiomeric oligonucleotide (5'-HS- L-d(I-Q I -I)-NH 2 -3') can be assembled to yield the modified antibody-L-enantiomeric oligonucleotide conjugate (Ab-M-5 -S-succinimido-L-d (I-Q I -I) -NH 2 -3 ' ) as shown in Scheme 11 .
- Ab-S-M-3 ' -L-d ( I-Q I -I) - TEG-5 ' is prepared from Ab-SH and 5 ' -TEG-L-d ( I-Q I -I) - maleimide-3 ' as shown in Scheme 13.
- L-d(oligo) represents an L- enantiomeric oligodeoxyribonucieotide such as an L- deoxyribonucleotide, L-d(I); d(cl) represents the complementary L-enantiomeric oligodeoxyribonucieotide sequence; L-d(I-Q I -I) is an L-enantiomeric
- TMT represents a member of a class of terpyridine chelates, preferably as described above.
- a preferred TMT is 4'-(3-isothiocyanato-4- methoxyphenyl)-6,6"-bis[N,N-di(carboxymethyl)- aminomethxl]-2,2':6',2"-terpyridine, TMT-NCS.
- an effective dose of a radioactive targeting reagent as described above in a pharmaceutically acceptable medium is prepared by exposing a composition comprising a complementary L- enantiomeric oligonucleotide sequence containing one or more chelating groups such as the
- oligodeoxyribonucleotide sequence as described above to a composition containing a radioactive metal isotope such that the molar amount of the radionuclide metal isotope is less than the molar amount of the chelating groups.
- the exposure lasts an effective time during which uptake of of the radionuclide metal isotope into the chelating agents occurs.
- an effective dose of a non-radioactive targeting immunoreagent as described above in a pharmaceutically acceptable medium is
- the non-radioactive targeting immunoreagent is allowed to accumulate at the target site such as at a tumor site in the patient.
- the radioactive targeting reagent is allowed to accumulate at the target site, said target site being the non-radioactive targeting immunoreagent which has accumulated at the tumor site in the patient.
- the present invention also comprises one or more of the immunoreagents of this invention formulated into compositions together with one or more non-toxic
- physiologically acceptable carriers, adjuvants or vehicles which are collectively referred to herein as carriers, for parenteral injection for oral administration in solid or liquid form, for rectal or topical administration, or the like.
- compositions can be administered to humans and animals either orally, rectally, parenterally
- compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions and sterile powders for reconstitution into sterile injectable solutions or dispersions.
- suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propylene glycol, polyethylene glycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate.
- Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
- compositions may also contain adjuvants such as preserving, wetting, emulsifying, and dispensing agents.
- adjuvants such as preserving, wetting, emulsifying, and dispensing agents.
- Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like.
- isotonic agents for example sugars, sodium chloride and the like.
- Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules.
- the active compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or
- fillers or extenders as for example, starches, lactose, sucrose, glucose, mannitol and silicic acid
- binders as for example, carboxymethylcellulose, alignates, gelatin, polyvinylpyrrolidone, sucrose and acacia
- humectants as for example, glycerol
- disintegrating agents as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain complex silicates and sodium carbonate
- solution retarders as for example paraffin
- absorption accelerators as for example, quaternary ammonium compounds
- wetting agents as for example
- lubricants as for example, talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate or mixtures thereof.
- the dosage forms may also comprise buffering agents.
- compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols, and the like.
- Solid dosage forms such as tablets, dragees, capsules, pills and granules can be prepared with coatings and shells, such as enteric coatings and others well known in the art. They may contain opacifying agents, and can also be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner.
- embedding compositions which can be used are polymeric substances and waxes.
- the active compounds can also be in micro- encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan or mixtures of these substances, and the like.
- inert diluents commonly used in the art, such as water or other solvents, solubilizing agents and e
- composition can also include adjuvants, such as wetting agents,
- Suspensions in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols,
- microcrystalline cellulose aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.
- compositions for rectal administrations are provided.
- suppositories which can be prepared by mixing the compounds of the present invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and, therefore, melt in the rectum or vaginal cavity and release the active component.
- suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and, therefore, melt in the rectum or vaginal cavity and release the active component.
- Dosage forms for topical administration of a compound of this invention include ointments, powders, sprays and inhalants.
- the active component is admixed under sterile conditions with a physiologically
- compositions of the present invention may be varied so as to obtain an amount of active ingredient that is effective to obtain a desired therapeutic response for a particular composition and method of administration.
- the selected dosage level therefore depends upon the desired therapeutic effect, on the route of
- the total daily therapeutic dose of the compounds of this invention administered to a host in a single or divided dose may be in amounts, for example, of from about 100 picomol to about 5 micromols per kilogram of body weight. Dosage unit compositions may contain such amounts of such submultiples thereof as may be used to make up the daily dose. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the body weight, general health, sex, diet, time and route of administration, rates of absorption and excretion, combination with other drugs and the severity of the particular disease being treated.
- the present invention is directed to a method of diagnosis comprising the
- a method for diagnostic imaging for use in medical procedures in accordance with this invention comprises administering to the body of a test subject in need of a diagnostic image an effective diagnostic image producing amount of the above-described compositions.
- an effective diagnostic image producing amount of a non-radioactive targeting immunoreagent as described above in a pharmaceutically acceptable medium is administered to a patient and said non-radioactive targeting immunoreagent is allowed to accumulate at the target site such as at a tumor site in said patient.
- a diagnostic imaging effective dose of a radioactive targeting reagent as described above in a pharmaceutically acceptable medium is administered to said patient, and said radioactive targeting reagent is allowed to accumulate at the target site, said target site being the said non-radioactive targeting immunoreagent accumulated at said tumor site in said patient.
- the image pattern can then be
- the total diagnostic imaging effective dose of the compounds of this invention administered to a host in a single or divided dose may be in amounts, for example, of from about 1 picomol to about 0.5 micromols per kilogram of body weight. Dosage unit compositions may contain such amounts of such submultiples thereof as may be used to make up the effective diagnosting imaging dose. It will be understood, however, that the specific dose level for any particular patient will depend upon a variety of factors including the body weight, general health, sex, diet, time and route of administration, rates of absorption and excretion, combination with other drugs and the severity of the particular disease being treated.
- test subjects can include mammalian species such as rabbits, dogs. cats, monkeys, sheep, pigs, horses, bovine animals and the like.
- compositions of the present invention After administration of the compositions of the present invention, the subject mammal is maintained for an effective time which is a time period sufficient for the administered compositions to be distributed
- a sufficient time period for the non- radioactive targeting immunoreagent is generally from about 1 hour to about 2 weeks or more and, preferably from about 2 hours to about 1 week.
- a sufficient time period for the radioactive targeting reagent such as the preferred 90 Y is generally measured in terms of half- life of the radionuclide and as such is in the range of from about 1 to about 10 half-lives or more and, preferably from about 2 hours to about 6 half-lives.
- a targeting immunoreagent of this invention as described in Structure IV comprising an antibody Z, linking groups L z and L Q , an L-enantiomeric
- oligonucleotide sequence I is designed as follows utilizing anticipated complementary binding properties between complementary pairs of mirror image D-enantiomeric oligonucleotides as a model for analogous physical properties imputed to the desired L- enantiomeric oligonucleotide.
- a sample mirror image, naturally occurring D- enantiomeric oligodeoxyribonucleotide with the following sequence (herein referred to as SEQ ID NO: 32) is analyzed for conformity to the criteria described previously for Structure IV wherein groups L z , I, Q I , I i , and L Q and E are as represented below as D- enantiomers:
- oligonucleotide are then made in accordance with the criteria outlined for structure IV to replace selected bases in regions of self-complementarity such that excessive base pairing is removed in iterative analysis. Additional D-enantiomeric and additional L-enantiomeric nucleotides are also inserted into the respective spacer sequences to ensure that, in helical conformations, the respective terminal groups of two respective
- D-cI and L-cI when hybridized to the two D-enantiomer sequences I and II and to the two L-enantiomer sequences, respectively are orthogonal to each other.
- oligonucleotide (SEQ ID NO: 33) with the following sequence is designed.
- the mirror image L-enantiomer (SEQ ID NO: 34) is synthesized and the L-enantiomer is conjugated to an immunoreactive molecule (i.e., to an antibody such as ING-1):
- the groups L z and L QE at the 5' or the 3' end comprise groups X and Y.
- X and Y can each independently be an amine-containing group (such as, for example, those available from Clontech Industries, each of which amine- containing groups being sometimes hereinafter
- NH 2 cryptically referred to as "NH 2 " or as "amine”
- one of X and Y is selected from an amine-containing group and the other is selected from one or more TEG groups as described above.
- one of X and Y can also be a terminal hydroxyl group (in which case the 3'-YT in the above sequence becomes a deoxyribosyl-OH group on removal from the solid phase support, and more
- X is a 5'OH group available by removal of a DMT group with acid at the end of the synthetic sequence before deprotecting the amine groups with ammonium hydroxide), or one of X and Y can also be a terminal phosphate ester group (in which case the 3'-YT or the
- 5'-X becomes a -OPO 3 H 2 group or an ionized salt such as a sodium salt thereof), as desired.
- phosphate terminal groups can be made by treatment of the 5'-OH terminal group with 2-cyanoethyl N,N-diisopropyl chlorophosphoramidite at the end of the synthesis.
- a 3'-phosphate group can be introduced after synthesis of the oligomer and its removal from the solid support by treatment of the 3-hydroxyl group with phosphoric acid anhydide followed by hydrolysis in water.
- this L-enantiomeric oligonucleotide cryptically referred to as 5'-Teg-L- d(I-Q I -I)-3'-amine, is:
- oligonucleotide cryptically referred to as 5'-amine-L- d( I-Q I -I )-3'Teg, is:
- oligonucleotide cryptically referred to as 5'-amine-L- d( I-Q I -I )-3'OH, is:
- oligonucleotide cryptically referred to as 5'-amine-L- d( I-Q I -I )-3'OPO 3 H 2 , is:
- This L-enantiomeric oligonucleotide is prepared on an Applied Biosystems oligonucleotide synthesizer originally designed by the manufacturer to be used for the synthesis of naturally occurring D-enantiomeric oligonucleotides.
- the method applicable to the tritylon protocol for the synthesis of naturally occurring D- enantiomeric oligonucleotides is used as directed by the equipment manufacturer but is modified to instead use L- 2-deoxynucleotide phosphoramidite reagent precursors 5'- dimethoxytrityl L-cytidine-3'-O-phosp oramidite, 5'- dimethoxytrityl L-adenosine-3'-O-phosphoramidite, 5'- dimethoxytrityl L-guanosine-3'-O-phosp'oramidite, and 5'-dimethoxytrityl L-thymidine-3'-O-phosphoramidite prepared as described above rather than the D- enantiomers.
- L- 2-deoxynucleotide phosphoramidite reagent precursors 5'- dimethoxytrityl L-cytidine-3'-O-phosp oramidite, 5'- dimethoxy
- TEG group a tetra(ethylene glycol) phosphate diester linked in this invention by a phosphate ester bond to 5'- dimethoxytrityl L-thymidine-3'-O-phosphoramidite [which is the L-enantiomer (mirror image) of the reagent disclosed in WO/92/02534 which refers to a
- oligonucleotide is desalted and further purified by elution down an OPEC Cartridge (Clonetech) with
- polyacrylamide gel is used to further purify the L- enantiomeric oligonucleotide.
- the L-DNA band is
- oligonucleotide is estimated using absorbance at 260 nm.
- This L-enantiomeric oligonucleotide is prepared on an Applied Biosystems oligonucleotide synthesizer by the trityl-off protocol otherwise used for D-enantiomers as directed by the equipment manufacturer but modified to use L-2-deoxynucleotide phosphoramidite reagent
- the L-enantiomeric oligonucleotide sequence of Example 2a minus the Teg group is prepared on an Applied Biosystems oligonucleotide synthesizer by the trityl-on protocol as directed by the equipment manufacturer using L-2-deoxynucleotide phosphoramidite reagent precursors (5'-dimethoxytrityl L-cytidine-3'-O-phosphoramidite, 5'- dimethoxytrityl L-adenosine-3'-O-phosphoramidite, 5'- dimethoxytrityl L-guanosine-3'-O-phosphoramidite, and 5'-dimethoxytrityl L-thymidine-3'-O-phosphoramidite as described above). Clonetech's Uni-link Amino Modifier is used as the precursor to the 3'-amine group.
- Clonetech's C6-ThioModifier is used as the precursor to the 5'-thiol group (which is herein referred to
- Example 2a TEG in Example 2a. Following synthesis of the whole L- enantiomeric oligonucleotide, the base protecting groups and solid support are removed with ammonium hydroxide. The L-enantiomeric oligonucleotide is desalted and further purified by elution down an OPEC Cartridge
- L-enantiomeric oligonucleotide (Clonetech) with deionized water.
- concentration of L-enantiomeric oligonucleotide is estimated using absorbance at 260 nm.
- L-d(cI) containing the L-enantiomeric nucleotide sequence 5'X-L- d(TTAGCTTCTCCGTCCATAAYT)-3' (SEQ ID NO: 38) complementary to the L-enantiomeric oligonucleotide I is prepared on an Applied Biosystems oligonucleotide synthesizer as outlined in Example 2a.
- the 3'- (Y) and 5'- (X) amine- containing groups are incorporated as directed by the equipment manufacturer using Uni-link Amino Modifier (Clonetech) for the precursor to the 3'-amine group, and Clonetech's 6 carbon monomethoxytrityl AminoModifier (N- MMT-C6-AminoModifier: Catalog # 5202) as precursor to the 5'-amine group.
- the protecting groups are removed with ammonium hydroxide, and the amine- functionalized L-enantiomeric oligonucleotide is
- the L-enantiomeric oligonucleotide is further purified by polyacrylamide gel electrophoresis or reverse-phase HPLC.
- concentration of L-enantiomeric oligonucleotide is estimated using absorbance at 260 nm.
- L-enantiomeric oligonucleotide, I containing the L-enantiomeric nucleotide sequence 5'X-L- d(TTATGGACGGAGAAGCTAAYT)-3' (SEQ ID NO: 39) is prepared on an Applied Biosystems oligonucleotide synthesizer as outlined in Example 3a.
- the 3'- (Y) and 5'- (X) amine- containing groups are incorporated as directed by the equipment manufacturer using Uni-link Amino Modifier (Clonetech) for the precursor to the 3'-amine group, and Clonetech's 6 carbon monomethoxytrityl AminoModifier (N- MMT-C6-AminoModifier: Catalog # 5202) as the precursor to the 5'-amine group.
- the protecting groups are removed with ammonium hydroxide, and the amine- functionalized L-enantiomeric oligonucleotide is purified by elution down an OPEC Cartridge (Clonetech) with deionized water.
- oligonucleotide is further purified by polyacrylamide gel electrophoresis or reverse-phase HPLC.
- concentration of L-enantiomeric oligonucleotide is estimated using absorbance at 260 nm.
- oligonucleotide synthesizer as outlined in Example 2a. After final deblocking and cleavage from the solid support, the protecting groups are removed with ammonium hydroxide. The L-enantiomeric oligonucleotide is purified by elution down an OPEC Cartridge (Clonetech) with deionized water. The L-enantiomeric
- oligonucleotide is further purified by polyacrylamide gel electrophoresis.
- concentration of L- enantiomeric oligonucleotide is estimated using
- L-enantiomeric oligonucleotide, I containing the L-enantiomeric nucleotide sequence 5'-L- d(TTATGGACGGAGAAGCTAA) -3 ' (SEQ ID NO: 8) is prepared on an Applied Biosystems oligonucleotide synthesizer as outlined in Example 3c. After final deblocking and cleavage from the solid support, the protecting groups are removed with ammonium hydroxide, and the L- enantiomeric oligonucleotide is purified by elution down an OPEC Cartridge (Clonetech) with deionized water. The L-enantiomeric oligonucleotide is further purified by polyacrylamide gel electrophoresis. The concentration of L-enantiomeric oligonucleotide is estimated using absorbance at 260 nm.
- L-d(cI) concentrations below equimolar with respect to 5*-Teg-L-d( I-Q I -I )-3 , -NH 2 .
- concentrations of L-d(cI) below equimolar with respect to 5*-Teg-L-d( I-Q I -I )-3 , -NH 2 .
- a ternary complex L-d(cI):5'-Teg-L-d(I-Q I - I)-3'-NH 2 :L-d(cI)
- a suspension of about 40 mmoles of TMT amine (PCT US91/08253) in 650 mL methanol is stirred at room temperature and deionized water is added dropwise (about 70 mL) until a clear pale yellow solution develops.
- the solution is cooled in an ice bath to 10°C and about 60 mmoles 35 S-thiophosgene is added dropwise over about 3 minutes.
- a precipate of TMT isothiocyanate forms and the solution is stirred continuously for a further 2.5 hours.
- the solution and precipitate are concentrated to near dryness on a rotovap under reduced pressure ( ⁇ 15mm Hg) at room temperature.
- TMT-NCS TMT isothiocyanate
- oligonucleotides either 5'-H 2 N-L-d(cI)-3'-NH 2 solution of Example 3a or 5'-H 2 N-L-d(I)-3'-NH 2 solution of
- Example 3b in 500 microL of 1.0 M carbonate/bicarbonate buffer at pH 9.0 is added 12 mg of TMT isothiocyanate (PCT US91/08253). The reaction mixture is vortex mixed and kept at 37°C for 2 hours and at room temperature for overnight. The resulting reaction mixture is quenched with ethanolamine (15 microM) and the product is purified by Sephadex G-25 column chromatography using deionized water as the eluting solvent.
- PCT US91/08253 TMT isothiocyanate
- TMT's per molecule of L-enantiomeric oligonucleotide diamine is quantified by an asssay using the time resolved fluorescence of Europium metal chelated to the TMT.
- 6b General procedure for labelling of Ing-1-TMT, 5'- TMT-L-d(cI)-3'-TMT, and 5'-TMT-L-d(I)-3'-TMT conjugates with fluorescent metals.
- Binding of lanthanides such as europium (3 + ) to chelating agents that contain an aromatic moiety held close to the co-ordination sphere can lead to
- the metal then produces emissions characterized by a very large Stokes shift and fluorescence lifetimes of up to several seconds.
- the fluorescence at 615 nm is measured at a time-delay of 400 microseconds after an excitation pulse at 340 nm. This time delay is useful for high sensitivity
- a known amount of Ing-1-TMT, 5'- TMT-L-d(cI)-3'-TMT, or 5'-TMT-L-d(I)-3'-TMT conjugate is titrated with increasing amounts of added EUCl 3 in an aqueous buffer.
- one microliter of a solution containing 1-30 picomoles of the conjugate is added, in duplicate, to wells in a Costar EIA/RIA 96-well plate containing a precalculated amount of Tris.HCl buffer (pH 7.4).
- the buffer volume is derived by subtracting from 99 the volume in microliters of aqueous EUCl 3 (typically 10 -4 M to 10 -6 M in Tris.HCl buffer). The total volume in each well is thereby fixed at 100 microliters.
- Aqueous EUCl 3 is then added to the buffered solution of the conjugate.
- the plate is then covered and shaken at low speed for one hour.
- the time resolved fluorescence is then measured using a Delfia 1232 time-resolved fluorometer (Wallac Inc.) and the data are analyzed. It is found that each conjugated TMT molecule chelates one Europium ion and that both 5'-TMT-L-d(cl)-3'-TMT and 5'- TMT-L-d(I)-3'-TMT conjugates bind two Europium ions per molecule of conjugate.
- TMT-NCS 35 S-labeled TMT-NCS (prepared as in Example 5) is substituted for the 12 mg of TMT isothiocyanate (PCT US91/08253) in the method of Example 6a and the reaction carried out as described above.
- the number of TMT's per molecule of 5'-H2N-L-d(cI)-3'-NH 2 is quantified by counting the TMT-L-d(cl)-TMT product in a liquid
- a solution of the L-enantiomeric oligonucleotide TMT conjugates, either (TMT-L-d(cl)-TMT) from Example 6a or TMT-L-d(I)-TMT from Example 6a, in deionized water at room temperature is treated with a solution of 90 YCl 3 (>500 Ci/mg; from Amersham Corp.) in 0.5 M sodium acetate buffer at pH 6.0 to a specific activity of 0.1 Ci/pmole for one hour at room temperature.
- the labeling efficiency is determined by removing 1.0 microliter of the sample and spotting it on to a Gelman ITLC-SG strip. The strip is developed in a glass beaker
- Example 7(a) is mixed with increasing amounts (0.375 to 12 pmoles) of 5'-Teg-L-d(I-Q I -I)-3'-NH 2 from Example 2a in PBS at 37°C for one hour. A 5 mL aliquot from each of these hybridizations is removed, mixed with SDS- containing buffer, and run on a 12% PAGE gel.
- TMT-L-d(cl)-TMT labeled with 90 Y to a specific activity of 28 mCi/28 mg is injected into a 25 g nude mouse bearing a subcutaneous tumor in its right flank.
- blood samples are taken from the tail and counted for 90 Y radioactivity in a liquid scintillation counter.
- the results reveal that more than 95% of the injected dose of 90 Y is removed from the blood stream in the first 30 minutes following injection. After 2 hours following injection the radioactivity in the blood levels off and a minute fraction ( ⁇ 0.01% of injected dose ) continues to circulate during the next 22 hours.
- a Sulfo-SMCC solution (108 nmoles) in phosphate buffered saline (PBS) is added to a sample of a chimeric antibody (ING-1; 18 nmoles) solution in phosphate buffer (pH 7).
- PBS phosphate buffered saline
- ING-1 18 nmoles
- the resulting mixture is allowed to stand for 30 minutes with occasional mixing at room temperature.
- the reaction is stopped with 60 nmoles basic tris buffer.
- the reaction mixture is diluted with phosphate buffered saline, added to a prewashed PD-10 column, and eluted with PBS to afford ING-1-maleimide. This material is stored on ice until use.
- a sample of a chimeric antibody (ING-1; 5 nmoles) solution in 0.1 M carbonate buffer (pH 8.8) is mixed with 200 nmoles of an aqueous solution of 2- iminothiolane. The resulting mixture is allowed to stand for 30 min with occasional mixing at room
- reaction mixture is diluted with phosphate buffed saline, added to a prewashed PD-10 column (Pharmacia), and eluted with PBS to afford mercaptoalkyl-ING-1. This material is stored on ice until use.
- a sample of a solution of 5'-Teg-L-d(I-Q I -I)-3'-NH 2 (30 nmoles) in water is mixed with 1 M carbonate buffer (pH 9) to give a final buffer concentration of 890 mM.
- 1 M carbonate buffer pH 9
- Into the buffered L-DNA is added 12 mmoles of an aqueous solution of 2-iminothiolane hydrochloride. These reactants are vortex mixed and kept at 37°C for 30 minutes.
- hydrochloride Cl- For use in conjugation to a
- 5'-H 2 N-L-d( I-Q I -I )-3'-Teg is reacted with sulfo- SMCC in the same manner as 5'-Teg-L-d(I-Q I -I)-3'-NH 2 in 9c to afford 5'-Maleimide-L-d( I-Q I -I )-3'Teg.
- the sulfhydryl group of the acetylthioacetylated L-enantiomeric oligonucleotide is deacylated by the addition of 30 mL of a pH 7.5 solution containing 100 mM sodium phosphate, 25 mM EDTA, and 500 mM NH 2 OH. The reaction is allowed to proceed for two hours at room temperature after which time the material is passed down a NAP-5 column using PBS for the elution. The product, 5'-Teg-L-d(I-Q I -I)-3'NH-CO-CH 2 - SH, is used immediately to obviate oxidative
- the sample containing the product is resuspended in fresh PBS, and ultrafiltration, concentration by centrifugation and resuspension are repeated a further 3 times until the ratio of optical densities at 260 nm and 280 nm is constant.
- L-d(I-Q l - I) the number of L-enantiomeric oligonucleotide molecules, L-d(I-Q l - I), is estimated to be between 1 and 2 L-d( I-Q I -I ) per antibody in the sample.
- concentration of ING-1 in a conjugate solution is determined by the BioRad protein assay using bovine immunoglobulin as the protein standard. These data agreed well with the antibody concentrations determined by examination of the optical density of the conjugate at 280 nm once it has been corrected for absorbance due to the conjugated L-d( I-Q I -I ) . Both these sets of data are further confirmed by subjecting the antibody-L-d(I- Q l -I) conjugates to acid digestion and amino acid analysis.
- Antibody-L-d( I-Q I -I ) conjugates are examined for their ability to bind to antigens on the surface of a human tumor cell line to which the antibody is raised.
- the immunoreactivity of the conjugates is compared by flow cytometry with a standard preparation of the antibody before being subjected to modification and conjugation to L-d( I-Q I -I ).
- Target HT29 cells a human adenocarcinoma cell line: ATTC
- the cells After extensive washing to remove unbound antibody, the cells are resuspended in 100 mL flow buffer and incubated at 4°C for 1 hour with goat-anti-human antibody labeled with fluorescene isothiocyanate (FITC). After further washing in flow buffer the samples are analyzed by flow cytometry on a Coulter EPICS 753 flow cytometer.
- FITC fluorescene isothiocyanate
- Fluorescene from Fluorescene isothiocyanite (FITC) and propidium iodide (PI) is excited using the 488 nm emission line of an argon laser. The output is set at 500 mW in light regulation mode. Single cells are identified by 90 degree and forward angle light scatter. Analysis windows are applied to these parameters to separate single cells from aggregates and cell debris. Fluorescence from FITC and propidium are separated with a 550 nm long pass dichroic filter and collected through a 530 nm band pass filter (for FITC), and a 635 nm band pass filter (for PI). Light scatter parameters are collected as integrated pulses and fluorescence is collected as log integrated pulses.
- FITC Fluorescene isothiocyanite
- PI propidium iodide
- Dead cells are excluded from the assay by placing an analysis window on cells negative for PI uptake.
- the mean fluorescence per sample (weighted average from 2500 cells) is calculated for each histogram.
- FITC calibration beads are analysed in each experiment to establish a fluorescence standard curve.
- the average fluorescence intensity for each sample is then expressed as the average FITC equivalents per cell.
- Immunoreactivity is calculated by comparing the average fluorescence intensity of the unknown sample with values from the standard curve. From the
- the SDS PAGE gels of ING-1-L-d( I-Q I -I ) and ING-1 antibody demonstrate that the molecular weight of the ING-1-L-d( I-Q I -I ) conjugates are higher than that of the antibody ING-1 alone.
- the sample is resuspended in fresh PBS and this sequence of concentration by centrifugation is repeated a further 3 times until the ratio of optical densities at 260 nm and 280 nm is constant.
- a 6 nmole sample of ING-1-Maleimide (Ab-M from Example 8a) in PBS is reacted with 40 nmoles of Teg-5'- L-d( I-Q I -I )-3'-NH-CO-CH 2 -SH (from Example 9e) at 4°C for 16 hours.
- the product is concentrated in a Centricon-300 ® device by
- oligonucleotide molecules per antibody is estimated.
- a sample (10 nmoles) of 5'-Trityl(S)-L-d( I-Q I -I )- 3'-NH 2 from Example 2c is diluted into PBS and a
- a 6 nmole sample of ING-1-Maleimide (from Example 8a) in PBS is reacted with 40 nmoles of HS-5'-L-d(I-Q ⁇ - I)-3'-Teg at 4°C for 16 hours.
- the reactants are diluted with PBS and eluted in 4 mL from a pre-washed Econopac 106-DG column (BioRad) to afford ING-1- Maleimide-S-5'-L-d( I-Q I -I )-3'-Teg.
- the product is concentrated in a Centricon-300 ® concentration device by centrifugation at 1000 g for 25 minutes.
- the sample is resuspended in fresh PBS and concentration by
- centrifugation is repeated a further 3 times until the ratio of optical densities at 260 nm and 280 nm is constant.
- optical density of these samples are examined in a spectrophotometer at 260 nm and 280 nm.
- the ratio of optical densities at these two wavelengths is
- the cuvettes are cooled to 20°C, loaded into a Cary 13 instrument, and the absorbance is analysed by UV light (260 nm) while the cuvette temeerature is ramped up from 20°C to 80°C and then back down to 20°C at a rate of 0.5°C/min. Analysis of the data reveals that cl is able to
- Example 10a) and 50 microL 90 Y-TMT-L-d(cI)-TMT- 90 Y solution from Example 9a are mixed with freshly prepared human serum (200 mL) or PBS (200 mL; pH7.2) and
- the gels are autoradiographed on a phosphoimager system to show that 90 Y-TMT-L-d(cI)-TMT- 90 Y is able to hybridize with ING-1-L-d( I-Q I -I ).
- the reaction mixture of each is kept on ice for 10 minutes. Aliquots of each reaction mixture are mixed with SDS buffer and loaded onto two duplicate 8 to 16% polyacrylamide gels. The gels are subjected to electrophoresis at a constant voltage for 2 hours.
- One gel is electroblotted onto nitrocellulose paper using CAPS buffer for 20 minutes according to the manufacturer's protocol (Hoefer semi-dry transfer method). After washing thrice with a solution of 0.05% Tween 20 in PBS, the gel is blocked with a solution of 3% BSA in PBS at room temperature for 1 hour. Following further washing with Tween/PBS, the gel is overlaid with a solution of a murine anti-TMT antibody (10mg/ml in PBS/Tween) and left overnight at room temperature. The western blot is developed using a goat anti-mouse IgG antibody conjugated to horseradish peroxidase (BioRad Western blot kit) and peroxidase substrate. The blot demonstrates that the TMT-L-d(cl)-TMT can be detected via the TMT's as being hybridized to bands that
- TMT-NCS Preparation of Ab-TMT by direct conjugation (ING-1/TMT) TMT-NCS (or a suitable derivative thereof) can be conjugated to an antibody molecule to yield an antibody- TMT conjugate molecule that displays the ability to bind to a target antigen recognized by the antibody variable region.
- a conjugate molecule can be used to deliver metal ions that are chelated by the TMT moiety in order to localize and/or treat the tumor that is targeted by such an immunoconjugate.
- the antibody is selected such that it has a broad reactivity with an antigen molecule expressed on tumor cells, thereby providing an antibody-TMT conjugate that can deliver radionuclides to the tumors for therapeutic or diagnostic purposes.
- the chimeric antibody, ING-1 (International patent publication WO 90/02569) consists of a murine variable region and a human immunoglobulin constant region. The antibody is produced by culturing a mouse myeloma cell line
- ING-1 is used at a concentration of 5.0 mg/mL in 50 mM sodium acetate and 150 mM sodium chloride buffered at pH 5.6.
- the conjugation of ING-1 to TMT-NCS is achieved by first adding 1.0 M carbonate plus 150 mM sodium chloride buffer, pH 9.3, to ING-1 until the antibody solution reaches a pH of 9.0. A sample of that ING-1 solution containing 5 mg of protein is then pipetted into an acid washed, conical, glass reaction vial. A solution of TMT-NCS is prepared by dissolving 100 mg in 10 mL of 1.0 M carbonate plus 150 mM sodium chloride buffer, pH 9.0. The conjugation reaction is started by the
- conjugate solutions are determined by the BioRad protein assay using bovine immunoglobulin as the protein
- ING-1/TMT is reacted with a solution of Europium chloride until saturation of the metal-binding capacity of the TMT occurs.
- a 0.375 mg aliquot of the ING-1/TMT in 2.5 ml in 0.05 M Tris HCl buffer pH 7.5 is pipetted into a 5 ml quartz cuvette.
- a 20 mM Europium chloride (Europium chloride hexahydrate; Aldrich) solution in 0.05 M Tris HCl buffer pH 7.5 is prepared.
- the ratio of TMT molecules per molecule of antibody is in the range from 0.3:1 to 2:1.
- the antigen to which the antibody, ING-1, binds is prepared from LS174T or HT 29 cells (available from American Type Tissue Collection, ATTC) by scraping confluent monolayers of cells from the walls of culture flasks with a cell scraper. The cells from many flasks are combined and a sample is taken and counted to estimate the total number of cells harvested. At all times the cells are kept on ice. Following
- the cells are washed once in 25 mL ice-cold 50 mM sodium phosphate buffer supplemented with 150 mM sodium chloride, pH 7.4 (PBS), pelleted under the same conditions and transfered in 10 mL PBS to an ice-cold glass mortar.
- the cells are homogenized at 4°C using a motor-driven pestle and then centrifuged at 3000 x g for 5 minutes. The antigen-rich supernatant is removed from the other cell debris and subjected to further
- the pellet (antigen fraction) from this final step is suspended in 100 mL of PBS for every million cells harvested. Following an estimate of the protein concentration (BioRad BCA protein assay using bovine immunoglobulin as the protein standard) the antigen is stored at -20°C until use.
- Each well of a 96-well Costar microtiter plates is coated with antigen by adding 100 mL/well of cell lysate (10 mg/ml) prepared as above. The microtiter plates are allowed to dry overnight in a 37°C incubator. After washing the plates five times with 0.05% Tween-20 (Sigma) they are blotted dry. The wells of each plate are blocked by adding 125 mL/well of a 1% BSA (bovine serum albumin, Sigma A-7906) solution in PBS and incubated for 1 hour at room
- Biotinylated ING-1 1.0 mg/mL in 0.1% BSA is added to each well (50mL/well) and the plates are then incubated for 2 hours at room temperature.
- the plates are blotted dry and incubated at room temperature for one hour with dilute (1:2000 in 0.1% BSA) streptavidinalkaline phosphatase (Tago; #6567). After a further five washes, color is developed in each well upon the addition of 100 mL per well of phosphatase substrate reagent (Sigma). After one hour at room temperature, the color is read using a 405 nm filter in a Titertek Multiscan microplate reader.
- the immunoconjugates of ING-1 with TMT are found to have immunoreactivity comparable to native ING-1.
- HT29 cells are grown to confluency in tissue culture flasks using McCoy's media supplemented with 10% fetal calf serum. The cells are harvested by scraping the flask walls with a cell scraper. Cells from many separate flasks are pooled, 'centrifuged to a pellet. resuspended at 5 x 10 5 /mL in a solution of ice-cold 50 mM sodium phosphate with 150 mM sodium chloride buffer pH 7.4 (PBS) supplemented with 0.1% bovine serum albumin (Sigma) and 0.02% sodium azide (Flow buffer).
- PBS sodium chloride buffer pH 7.4
- the cells are washed in this same buffer and then counted.
- An antibody standard curve is constructed by diluting ING-1 with an irrelevant (non binding), isotype-matched control antibody (human IgG1) to give a number of samples ranging in ING-1 content from 10% to 100%.
- the standard curve is made in flow buffer so that each sample contains 1.0 mg protein per mL. Samples from the standard curve and unknowns are then incubated with 5 x 10 5 HT29 cells at 4°C for 1 hour. After extensive washing to remove unbound antibody, the cells are resuspended in 100 mL flow buffer and incubated at 4°C for 1 hour with goat-anti-human antibody labeled with fluorescene isothiocyanate (FITC). After further washing in flow buffer the samples are analyzed by flow cytometry on a Coulter EPICS 753 flow cytometer.
- FITC fluorescene isothiocyanate
- Fluorescene FITC and propidium iodide (PI) are excited using the 488 nm emission line of an argon laser.
- the output is set at 500 mw in light regulation mode.
- Single cells are identified by 90 degree and forward angle light scatter. Analysis windows are applied to these parameters to separate single cells from
- Fluorescence from FITC and propidium are separated with a 550 nm long pass dichroic filter and collected through a 530 nm band pass filter (for FITC), and a 635 nm band pass filter (for PI).
- Light scatter parameters are collected as integrated pulses and fluorescence is collected as log integrated pulses. Dead cells are excluded from the assay by placing an analysis window on cells negative for PI uptake. The mean fluorescence per sample (weighted average from 2500 cells) is calculated for each
- FITC calibration beads are analysed in each experiment to establish a standard curve. The average fluorescence intensity for each sample is then expressed as the average FITC equivalents per cell.
- Immunoreactivity is calculated by comparing the average fluorescence intensity of the unknown sample with values from the standard curve. Samples of ING-1/TMT have immunoreactivity values comparable to the native ING-1 antibody by this method. (13d) Determination of aggregate formation by size- exclusion HPLC.
- a 30 cm x 7.5 mm TSK-G3000SW size-exclusion HPLC column (Supelco) fitted with a guard column of the same material is equilibrated with 12 column volumes of 10 mM sodium phosphate buffer pH 6.0 supplemented with 150 mM sodium chloride using a Waters 600E HPLC system with a flow rate of 1.0 mL per minute at 400-600 PSI.
- a sample (25 mL) of BioRad gel filtration protein standards is injected on to the column. The retention time of each standard is monitored by a Waters 490 UV detector set at 280 nm.
- ING-1/TMT has a major peak also at 9.1 minutes but a minor peak, attributable to aggregates, can sometimes be seen at 7.3 minutes. By comparison of the peak areas, the aggregate peak is less than 5% of the total.
- a volume of radioactive Yttrium chloride ( 90 ⁇ in 0.04 M hydrochloric acid at a specific activity of >500 Ci/mg; Amersham-Mediphysics) is neutralized using two volumes of 0.5 M sodium acetate pH 6.0.
- the neutralized 9 0 Y (1.0 mCi) is added to 1.0 mL of ING-1/TMT (1 mg/mL) in 50 mM sodium acetate buffer containing 150 mM sodium chloride at pH 5.6.
- the labelling is allowed to proceed for one hour and then the reaction mixture is loaded onto a PD-10 chromatography column which has been prewashed and equilibrated in a buffer containing 50 mM sodium phosphate with 150 mM sodium chloride pH 7.4 (PBS). The sample is eluted from the column with 1.5 mL of PBS. Fractions of radiolabeled ING-1/TMT (0.5 mL) are collected, assayed for radioactivity, and pooled.
- the labeling efficiency is determined by removing 1.0 mL of the sample and spotting it on to a Gelman ITLC-SG strip.
- the strip is developed in a glass beaker containing 0.1 M sodium citrate, pH 6.0, for a few minutes until the solvent front has reached three- quaters of the way to the top of the paper.
- the strip is inserted into a System 200 Imaging Scanner (Bioscan) which has been optimized for 90 ⁇ and is controlled by a Compaq 386/20e computer. In this system free 90 Y migrates at the solvent front while the ING-1/TMT/ 90 Y remains at the origin.
- Binding of lanthanides such as europium (3+) to chelating agents that contain an aromatic moiety held close to the co-ordination sphere can lead to
- a 0.5 mg aliquot of the ING-1/TMT in 2.5 mL in 0.05 M Tris HCl buffer pH 7.5 is pipetted into a 4 mL conical reaction vial containing a small stirring bar.
- a 250 mM europium chloride (europium chloride hexahydrate: Aldrich) solution in 0.05 M Tris HCl buffer pH 7.5 is prepared.
- An aliquot (50 mL) of this europium chloride solution is added to the reaction vial containing ING-1/TMT, and the resulting solution is stirred very slowly on a magnetic stirrer at room temperature.
- the labelling is allowed to proceed for one hour and then the reaction mixture is loaded on to a PD-10 chromatography column which had been pre-washed and equilibrated in a buffer containing 10 mM sodium phosphate and 150 mM sodium chloride at pH 6.0 (PBS).
- PBS pH 6.0
- the sample is eluted from the column with 3.5 mL of PBS.
- the fluorescence of a 50 mL sample of the metal-ING-1/TMT complex is determined in a Perkin Elmer LS 50 spectrofluorometer using an excitation wavelength of 340 nm (10 nm slit width).
- fluorescent emission is recorded at 618 nm using a 10 nm slit width and a 430 nm cutoff filter.
- Each functional chelating site on the ING-1/TMT conjugate binds one europium ion.
- an average of between 0.1 and 3 fluorescent europium ions are bound per molecule of antibody in solution.
- Fluorescently labeled CY5.18-L-d(I- Q l -I) is prepared as in Example 2d.
- Fluorescently labeled CY5.18-L-d(cI) and CY5.18-L-d(I) are prepared as in Example 3e.
- Flow cytometry is carried out
- HT-29 cells (0.5 x 10 6 ) are incubated on ice for 30 min with 1 mg each of the ING-1-L-d( I-Q I -I ) samples. The cells are washed twice with flow buffer and pelleted at 1400 rpm for 5 minutes between washes. Next the cells in each sample are incubated with 5 mg CY5.18-L-d(cI) or CY5.18- L-d(I) for 3 hours on ice. Some cells are incubated with CY5.18-L-d(cI) and CY5.18-L-d(I) alone. After extensive washing with flow buffer, the cells are subjected to analysis on a fluorescence activated cell sorter. CY5-18 calibration beads are analysed to establish a standard curve of relative fluorescence intensity versus CY5-18 concentration. The mean
- fluorescence per sample (weighted average from 2500 cells) is calculated for each histogram. The average fluorescence intensity for each sample is then expressed as the average CY5-18 equivalents per cell. Identical experiments are carried out in which the medium used for incubation of the cells with the components is 100% fetal calf serum in place of flow buffer.
- TMT-L-d(cl)-TMT is radiolabeled to a specific activity of 0.1 mCi/pmole as described in Example 7.
- ING-1-TMT- 90 Y is prepared as in Example 13e.
- Three tubes each containing 1 x 10 5 HT-29 cells in DMEM medium supplemented with 10% fetal calf serum are prepared and kept at 4°C
- McCoys media containing 10% FCS and 50 microgram/ml of gentamyacin The cells are washed with phosphate buffered saline, and 5 ml of Trypsin Versene is added. The HT-29 cells are then incubated at 37°C in 5% CO 2 for 15 minutes, complete media (5 ml) is added, and the cells are removed and washed in PBS. The HT-29 cells are then blocked with 10 micrograms of sheared salmon sperm (natural D-enantiomer) DNA per 10 6 cells at 4°C for 30 minutes, washed in PBS and used in the hybridization assay as follows.
- Delfia 1232 time-resolved fluorimeter by aliquoting four 100 microL portions into separate wells in a Costar
- EIA/RIA 96-well plate from each tube after vortexing.
- the results are processed as described in Example 15f.
- the counts per seconds (cps) of the Eu-TMT-L-d(cI)-TMT- Eu treated cells are considered as background and are subtracted from the cps data from the hybridization experiments (Eu-TMT-L-d(cI)-TMT-Eu/Ing-1-L-d( I-Q I -I )).
- This result and the cps data from the Ing-1/TMT-Eu binding experiment are translated as picomoles of bound TMT molecules per cell from the individual standard curves created independently.
- ING-1/TMT-Eu and ING-conjugates 0.25 microgram or 1.65 picomoles; Eu-TMT-L-d(cI)-TMT-Eu: 100 ng or 15 picomoles per 5 X 10 5 cells.
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- MOLECULE TYPE DNA (genomic)
- FEATURE FEATURE
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Immunology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94911542A EP0691981A1 (en) | 1993-03-10 | 1994-03-10 | Tumor targeting with l-enantiomeric oligonucleotide conjugates of immunoreagents and of chelated radionuclides |
CA002157902A CA2157902A1 (en) | 1993-03-10 | 1994-03-10 | Tumour targeting with l-enantiomeric oligonucleotide conjugates of immunoreagents and of chelated radionuclides |
AU64025/94A AU6402594A (en) | 1993-03-10 | 1994-03-10 | Tumor targeting with l-enantiomeric oligonucleotide conjugates of immunoreagents and of chelated radionuclides |
JP6520313A JPH08512019A (en) | 1993-03-10 | 1994-03-10 | Tumor targeting using L-enantiomeric oligonucleotide conjugates consisting of immunoreactive agent and chelated radionuclide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3308393A | 1993-03-10 | 1993-03-10 | |
US08/033,083 | 1993-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1994020523A1 true WO1994020523A1 (en) | 1994-09-15 |
Family
ID=21868470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1994/002610 WO1994020523A1 (en) | 1993-03-10 | 1994-03-10 | Tumor targeting with l-enantiomeric oligonucleotide conjugates of immunoreagents and of chelated radionuclides |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0691981A1 (en) |
JP (1) | JPH08512019A (en) |
AU (1) | AU6402594A (en) |
CA (1) | CA2157902A1 (en) |
WO (1) | WO1994020523A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0639083A1 (en) * | 1992-05-07 | 1995-02-22 | Nycomed Imaging As | Complexing agents and targeting immunoreagents |
US6395716B1 (en) * | 1998-08-10 | 2002-05-28 | Novirio Pharmaceuticals Limited | β-L-2′-deoxy-nucleosides for the treatment of hepatitis B |
US6444652B1 (en) * | 1998-08-10 | 2002-09-03 | Novirio Pharmaceuticals Limited | β-L-2'-deoxy-nucleosides for the treatment of hepatitis B |
EP1264603A1 (en) * | 2001-06-10 | 2002-12-11 | Noxxon Pharma AG | Use of L-polynucleotides for in vivo imaging |
EP1288309A1 (en) * | 2001-08-30 | 2003-03-05 | Noxxon Pharma AG | Methods for labeling L-nucleic acids |
WO2003035665A1 (en) * | 2001-10-26 | 2003-05-01 | Noxxon Pharma Ag | Modified l-nucleic acid |
EP1306382A1 (en) * | 2001-10-26 | 2003-05-02 | Noxxon Pharma AG | Modified L-nucleic acids |
US6787526B1 (en) | 2000-05-26 | 2004-09-07 | Idenix Pharmaceuticals, Inc. | Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides |
US6875751B2 (en) | 2000-06-15 | 2005-04-05 | Idenix Pharmaceuticals, Inc. | 3′-prodrugs of 2′-deoxy-β-L-nucleosides |
EP1485500A4 (en) * | 2001-10-24 | 2005-12-07 | Beckman Coulter Inc | Efficient synthesis of protein-oligonucleotide conjugates |
US7186700B2 (en) | 2002-09-13 | 2007-03-06 | Idenix Pharmaceuticals, Inc. | β-L-2′-deoxynucleosides for the treatment of resistant HBV strains and combination therapies |
US7323451B2 (en) | 2002-08-06 | 2008-01-29 | Idenix Pharmaceuticals, Inc. | Crystalline and amorphous forms of beta-L-2′-deoxythymidine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863713A (en) * | 1986-06-23 | 1989-09-05 | The Board Of Trustees Of Leland Stanford Jr. Univ. | Method and system for administering therapeutic and diagnostic agents |
WO1992008494A2 (en) * | 1990-11-08 | 1992-05-29 | Sterling Winthrop Inc. | Targeting radioactive immunoreagents |
US5158880A (en) * | 1988-09-23 | 1992-10-27 | E. I. Du Pont De Nemours And Company | Process for preparing solid perfluorocarbon polymer supports having attached perfluorocarbon-substituted ligand or binder |
-
1994
- 1994-03-10 CA CA002157902A patent/CA2157902A1/en not_active Abandoned
- 1994-03-10 EP EP94911542A patent/EP0691981A1/en not_active Withdrawn
- 1994-03-10 WO PCT/US1994/002610 patent/WO1994020523A1/en not_active Application Discontinuation
- 1994-03-10 AU AU64025/94A patent/AU6402594A/en not_active Abandoned
- 1994-03-10 JP JP6520313A patent/JPH08512019A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4863713A (en) * | 1986-06-23 | 1989-09-05 | The Board Of Trustees Of Leland Stanford Jr. Univ. | Method and system for administering therapeutic and diagnostic agents |
US5158880A (en) * | 1988-09-23 | 1992-10-27 | E. I. Du Pont De Nemours And Company | Process for preparing solid perfluorocarbon polymer supports having attached perfluorocarbon-substituted ligand or binder |
WO1992008494A2 (en) * | 1990-11-08 | 1992-05-29 | Sterling Winthrop Inc. | Targeting radioactive immunoreagents |
Non-Patent Citations (1)
Title |
---|
Journal of the American Chemical Society, Volume 113, No. 21, issued 09 October 1991, H. URATA et al., "Mirror-Image DNA", pages 8174-8175, see entire document. * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0639083A1 (en) * | 1992-05-07 | 1995-02-22 | Nycomed Imaging As | Complexing agents and targeting immunoreagents |
US6395716B1 (en) * | 1998-08-10 | 2002-05-28 | Novirio Pharmaceuticals Limited | β-L-2′-deoxy-nucleosides for the treatment of hepatitis B |
US6444652B1 (en) * | 1998-08-10 | 2002-09-03 | Novirio Pharmaceuticals Limited | β-L-2'-deoxy-nucleosides for the treatment of hepatitis B |
US9290533B2 (en) * | 1998-08-10 | 2016-03-22 | Novartis Ag | β-L-2′-deoxy-nucleosides for the treatment of hepatitis B |
US20110257120A1 (en) * | 1998-08-10 | 2011-10-20 | Idenix Pharmaceuticals, Inc. | Beta-l-2'-deoxy-nucleosides for the treatment of hepatitis b |
US7795238B2 (en) * | 1998-08-10 | 2010-09-14 | Idenix Pharmaceuticals, Inc. | β-L-2′-deoxy-nucleosides for the treatment of hepatitis B |
US7304043B2 (en) | 1998-08-10 | 2007-12-04 | Idenix Pharmaceuticals, Inc. | β-L-2′-deoxy-nucleosides for the treatment of hepatitis B |
US6566344B1 (en) * | 1998-08-10 | 2003-05-20 | Idenix Pharmaceuticals, Inc. | β-L-2′-deoxy-nucleosides for the treatment of hepatitis B |
US6569837B1 (en) * | 1998-08-10 | 2003-05-27 | Idenix Pharmaceuticals Inc. | β-L-2′-deoxy pyrimidine nucleosides for the treatment of hepatitis B |
US6946450B2 (en) * | 1998-08-10 | 2005-09-20 | Idenix Pharmaceuticals, Inc. | β-L-2′-deoxy-nucleosides for the treatment of hepatitis B |
US6787526B1 (en) | 2000-05-26 | 2004-09-07 | Idenix Pharmaceuticals, Inc. | Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides |
US7585851B2 (en) | 2000-06-15 | 2009-09-08 | Idenix Pharmaceuticals, Inc. | 3′-prodrugs of 2′-deoxy-β-L-nucleosides |
US6875751B2 (en) | 2000-06-15 | 2005-04-05 | Idenix Pharmaceuticals, Inc. | 3′-prodrugs of 2′-deoxy-β-L-nucleosides |
EP1264603A1 (en) * | 2001-06-10 | 2002-12-11 | Noxxon Pharma AG | Use of L-polynucleotides for in vivo imaging |
WO2002100442A3 (en) * | 2001-06-10 | 2003-04-10 | Noxxon Pharma Ag | Use of l-polynucleotides and derivatives thereof for in vivo imaging |
WO2003020969A3 (en) * | 2001-08-30 | 2003-12-18 | Noxxon Pharma Ag | Method for marking l-nucleic acids |
EP1288309A1 (en) * | 2001-08-30 | 2003-03-05 | Noxxon Pharma AG | Methods for labeling L-nucleic acids |
EP1485500A4 (en) * | 2001-10-24 | 2005-12-07 | Beckman Coulter Inc | Efficient synthesis of protein-oligonucleotide conjugates |
WO2003035665A1 (en) * | 2001-10-26 | 2003-05-01 | Noxxon Pharma Ag | Modified l-nucleic acid |
US7629456B2 (en) | 2001-10-26 | 2009-12-08 | Noxxon Pharma Ag | Modified L-nucleic acid |
EP1306382A1 (en) * | 2001-10-26 | 2003-05-02 | Noxxon Pharma AG | Modified L-nucleic acids |
US7589079B2 (en) | 2002-08-06 | 2009-09-15 | Novartis Ag | Crystalline and amorphous forms of beta-L-2′-deoxythymidine |
US7323451B2 (en) | 2002-08-06 | 2008-01-29 | Idenix Pharmaceuticals, Inc. | Crystalline and amorphous forms of beta-L-2′-deoxythymidine |
US7858594B2 (en) | 2002-08-06 | 2010-12-28 | Novartis Pharma Ag | Crystalline and amorphous forms of beta-L-2′-deoxythymidine |
US7928086B2 (en) | 2002-09-13 | 2011-04-19 | Novartis Ag | β-L-2′-deoxynucleosides for the treatment of resistant HBV strains and combination therapies |
US8158606B2 (en) | 2002-09-13 | 2012-04-17 | Novartis, Ag | β-L-2′-deoxynucleosides for the treatment of resistant HBV strains and combination therapies |
US7186700B2 (en) | 2002-09-13 | 2007-03-06 | Idenix Pharmaceuticals, Inc. | β-L-2′-deoxynucleosides for the treatment of resistant HBV strains and combination therapies |
Also Published As
Publication number | Publication date |
---|---|
AU6402594A (en) | 1994-09-26 |
EP0691981A1 (en) | 1996-01-17 |
JPH08512019A (en) | 1996-12-17 |
CA2157902A1 (en) | 1994-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5733523A (en) | Targeted delivery of a therapeutic entity using complementary oligonucleotides | |
US6248870B1 (en) | Unsymmetrical complexing agents and targeting immunoreagents useful in therapeutic and diagnostic compositions and methods | |
WO1994012216A1 (en) | Sequential targeting of tumor sites with oligonucleotide conjugates of antibody and complementary oligonucleotide conjugates of chelated radionuclide | |
WO1994020523A1 (en) | Tumor targeting with l-enantiomeric oligonucleotide conjugates of immunoreagents and of chelated radionuclides | |
JP3143506B2 (en) | Pharmaceutical compositions for targeted delivery of therapeutic substances | |
JP2009197024A (en) | Conjugate made of metal complex and oligonucleotide, medicine containing the conjugate, and their use in radiodiagnosis as well as method for their production | |
AU5984094A (en) | Immunoreactive reagents employing dihydrofolate reductase | |
US20020077306A1 (en) | Conjugates made of metal complexes and oligonucleotides, agents containing the conjugates, their use in radiodiagnosis as well as process for their production | |
EP0613379B1 (en) | Therapeutic compounds | |
AU7244894A (en) | Immunoreactive reagents employing monoamine oxidase | |
Wagner et al. | Synthesis of copper-64 and technetium-99m labeled oligonucleotides with macrocyclic ligands | |
AU6128694A (en) | Immunoreactive reagents employing heterodimers | |
US7713528B1 (en) | Method for in vivo delivery of active compounds using reagent conjugate | |
Gambhir | New Gene Based Probes for Imaging Breast Cancer with PET | |
AU2036099A (en) | Conjugates made of metal complexes and oligonucleotides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 1995 525701 Country of ref document: US Date of ref document: 19950905 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1994911542 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2157902 Country of ref document: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 1994911542 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1994911542 Country of ref document: EP |