[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1994008754A1 - Grinding method and grinding system for billet - Google Patents

Grinding method and grinding system for billet Download PDF

Info

Publication number
WO1994008754A1
WO1994008754A1 PCT/JP1993/000218 JP9300218W WO9408754A1 WO 1994008754 A1 WO1994008754 A1 WO 1994008754A1 JP 9300218 W JP9300218 W JP 9300218W WO 9408754 A1 WO9408754 A1 WO 9408754A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
abrasive
nozzle
slab
base material
Prior art date
Application number
PCT/JP1993/000218
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Matsumura
Yoshikazu Ikemoto
Keiji Tsujita
Hidetaka Tanaka
Kazumi Daitoku
Tomoharu Shimokasa
Fujiya Nogami
Kenji Minami
Original Assignee
Kawasaki Jukogyo Kabushiki Kaisha
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo Kabushiki Kaisha, Nippon Steel Corporation filed Critical Kawasaki Jukogyo Kabushiki Kaisha
Priority to AU35748/93A priority Critical patent/AU670573B2/en
Priority to BR9305541A priority patent/BR9305541A/en
Priority to KR1019940700115A priority patent/KR0161671B1/en
Priority to DE69325807T priority patent/DE69325807T2/en
Priority to EP93904335A priority patent/EP0645214B1/en
Publication of WO1994008754A1 publication Critical patent/WO1994008754A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/08Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces
    • B24C3/10Abrasive blasting machines or devices; Plants essentially adapted for abrasive blasting of travelling stock or travelling workpieces for treating external surfaces
    • B24C3/12Apparatus using nozzles

Definitions

  • the present invention relates to the grinding of a substrate surface, and more particularly to a method and a grinding system for grinding a flaw on the surface of a steel material in a continuous production line and a subsequent process.
  • Boules, slabs, billets, or slabs that are rolled in a continuous manufacturing process may have various flaws during the forging and rolling process. There is an inconvenience in the subsequent post-process, leading to a reduction in product yield and product quality.
  • the flaws are removed by maintenance work during the production of slabs such as slabs, blooms and billets, and the slabs from which the flaws have been removed are continued. It is supplied to the post-process to prevent a decrease in product yield and product quality.
  • hot scarf cutting and grinding are used as a means of gauging the billet. Grinding with a hot head scarf is generally used, and the former hot scarf cutting is performed by, for example, a portal frame as disclosed in Japanese Patent Application Laid-Open No. 52-56444. Japanese Patent Laid-Open Publication No.
  • H08-27139 discloses a crater operating table having two or more craters mounted vertically and horizontally on a support beam on the side surface where two beams are arranged in parallel, and a plurality of craters.
  • Japanese Patent Application Publication No. 52-810, No. 48, No. 8 Uses multiple torches arranged in a row to perform ablation to remove wide defects without performing auxiliary ablation. Are disclosed.
  • a grinding wheel is ground using a hydraulic cylinder or an air cylinder.
  • a stainless steel billet as disclosed in Japanese Patent Application Laid-Open No. H11-242729.
  • a method has also been devised to grind the steel with a grinder in a specific temperature range, to avoid the self-hardening of the stainless steel, and to remove defects effectively. .
  • the method mainly used for descaling at the stage of producing a billet includes, for example, As in the invention disclosed in Japanese Patent Application Laid-Open No. 51977984, a predetermined abrasive is wet-sprayed from a nozzle onto the surface of a stainless steel plate to perform both grinding and descaling.
  • Various types of slab care means such as have been proposed.
  • a grinding wheel is ground using a hydraulic cylinder or an air cylinder.
  • the stainless steel slab and the stainless steel slab are ground with a grinder.
  • the method of cleaning the grinder within a specific temperature range also requires work in a bad environment of high temperature and high dust generation, similar to the hot scarf method described above, depending on the type of billet.
  • the purpose of the invention of this application is to solve the problems of slab maintenance based on the above-mentioned conventional technology, and the slab after grinding is important for improving the working environment and automation.
  • the flaw defect part can be selectively removed according to the state of the flaw defect, thereby reducing the cost of the product.
  • the aim is to provide an excellent method of grinding slabs that can improve the yield, improve the quality of products, and ensure the quality of products by utilizing the processing technology in the steelmaking industry. It is.
  • ultra-high-speed water is used in a state in which predetermined fine-grained abrasives such as garnet sand, silica sand, aluminum, iron sand, and iron grid are mixed in high-pressure water at a predetermined pressure.
  • predetermined fine-grained abrasives such as garnet sand, silica sand, aluminum, iron sand, and iron grid are mixed in high-pressure water at a predetermined pressure.
  • the grinding system according to the present invention further develops conventional wet blasting and liquid honing to increase pressure (typically 300 kgf / cm 2 or more) and improve energy density.
  • a grinding system for the surface of a base material such as a steel slab, using an abrasive wafer with improved measuring and processing efficiency.
  • a defect detection system that detects flaws on the surface of the base material, and a defect detection system for the same
  • a grinding control system that sends controlled grinding conditions based on flaw information detected from the system, an abrasive supply system that controls the supply of abrasive based on signals from the grinding control system, and a grinding control system
  • a grinding nozzle device system provided with a nozzle that moves relative to the base material based on the signal of the base material, and an abrasive collection system that collects the abrasive after the grinding process and returns it to the abrasive supply system are required.
  • a defect detection device used in a defect detection system for detecting flaws on the surface of a base material magnetic particle flaw detection, ultrasonic flaw detection, an image processing apparatus using a television camera, or the like can be used.
  • Grinding with an abrasive water jet is a non-thermal processing method and does not cause any thermal effects or blurring of surface defects due to melting of the material surface, so flaw detection after processing
  • the grinding wheel is easy because it is easy to machine, and the machining is easy with 0 N / 0 FF. Since there are few problems related to tool life as in the case of (1), an automation system can be easily constructed.
  • the abrasive water jet can be used in a wide area.
  • a circulating system for abrasives is established. Continuous operation can be performed even when abrasive wafers that move relative to multiple substrates are applied to the grinding of wide substrate surfaces.
  • Fig. 1 is a schematic diagram of a grinding mode showing the principle of grinding of abrasive water jets.
  • FIG. 2 is a schematic view of a grinding mode showing partial depth grinding by an abrasive water jet.
  • FIG. 3 is a schematic diagram showing the grinding mode of surface grinding by abrasive wobble jet.
  • FIG. 4 is a cross-sectional view showing a main part of a grinding system according to the present invention for performing surface grinding of a slab material,
  • Fig. 5 is a sectional front view of the same part
  • Fig. 6 is a plan view showing the defect on the surface of the slab material and the movement of the nozzle.
  • Fig. 7 is a longitudinal sectional view of the same
  • FIG. 8 is a block diagram showing a slab material grinding system according to the present invention.
  • FIG. 9 is a plan view of a slab material grinding system according to the present invention.
  • Fig. 10 is a front view showing the main parts of the grinding system shown in Fig. 9,
  • Fig. 11 is a side view showing the main parts of the grinding system shown in Fig. 9,
  • FIG. 12 is a block diagram showing another embodiment of the present invention
  • FIG. 13 is a plan view showing the embodiment shown in FIG. 12
  • FIG. 14 is a diagram shown in FIG.
  • FIG. 15 is a front view showing the essential parts of the embodiment shown in FIG. 13;
  • FIG. 16 is a side view showing a main part shown in FIG. 15 in the best mode for carrying out the invention.
  • Figs. 1 to 3 are schematic diagrams of the principle of grinding of artificial slabs by a high-pressure water jet (abrasive water jet) mixed with an abrasive.
  • a high-pressure water jet abrasive water jet
  • This is a nozzle of a cutting device, and is finely divided into high-pressure water of a predetermined pressure supplied to a mixing chamber (not shown), for example, garnet sand, quartz sand, aluminum, iron sand, iron iron.
  • An abrasive such as a grit is mixed in to form a small-diameter jet 2 of a predetermined small size, which is injected at an ultra-high speed onto a slab material 3 of a billet to be polished.
  • the various modes of cutting (grinding) when the traverse speed (nozzle feed speed or feed speed of the slab material 3) of the nozzle 1 relative to the slab material 3 is increased (slowed) are shown. are doing.
  • FIG. 1 shows a mode used for normal cutting in which the entire thickness t of the slab material 3 to be ground is cut via grinding, and the relative speed region is the slab material 3.
  • the drag line 4 is formed over the thickness t of the slab material when a sufficient low-speed region that can be cut well is used.
  • Fig. 2 shows the case where the nozzle 1 and the slab material 3 are relatively moved at a higher speed than in the case of Fig. 1, and cutting is performed up to the bottom of the slab material 3 with the thickness t.
  • the cutting depth is periodically changed at the bottom of the cutting by the difference of ⁇ h, at the cutting phenomenon.
  • Figure 3 is Ri der If you cormorants by performing traverse at higher speed relative speed between Roh nozzle 1 and the slab member 3 Ri by the case of FIG. 2, the cutting depth h 2 is Naru rather shallow, bottom depth change delta h 2 is minor, therefore, cut the groove bottom Ri Do Ni will I be smoothed, is an aspect Do that enables so-called groove switching grinding.
  • the invention of this application is an abrasion water evening.
  • This method applies the grinding principle and the cutting speed range that require an enthusiast to the surface grinding of the billet slab material.
  • the surface of the slab material 3 of the billet is made of abrasive grains of the abrasive in an ultra-high-speed jet jet in which the abrasive is mixed in high-pressure water.
  • the erosion effect on the slab material 3 makes it possible to remove the defect in an ideal state without heat generation, even though it is microscopic, even though it is microscopic. Become.
  • the surface of the billet slab material 3 can be made uniform or at the surface or in the vicinity of the flaw defect site depending on the relative feed operation of the nozzle 1 that forms the jet jet described above. Can be partially and selectively smoothed through grinding.
  • the surface of the slab material 3 of the billet, or the system up which detects defects etc. before, after, or both of the above-mentioned grinding, or both are used.
  • the presence / absence, position, and size of flaws in the vicinity can be detected, and this can be input or feed-knocked as information to cope with grinding.
  • FIGS. 4 and 5 show the grinding mode of the slab material 3 of the billet and the structure of the nozzle head 4 in one embodiment of the invention of the present application.
  • abrasives 6 such as garnet sand supplied by a hose 5 etc. are generated by a water nozzle 8 connected to a high-pressure water pipe 7.
  • the negative pressure generated by the Venturi effect of the high-speed water jet 9 is sucked and supplied to the mixing chamber 10 using the negative pressure generated by the venturi effect.
  • the water jet 9 and the abrasive 6 are mixed and accelerated inside the abrasive nozzle 1 to be ejected, so that the jet 2 has a smaller diameter than the abrasive nozzle 1 and has a smaller diameter than that of the abrasive nozzle 1.
  • the slab material 3 that is projected onto a predetermined part of the slab material 3 and moves relatively Grinding it's in the processing principle.
  • the abrasive was supplied at 0.5 Jig Z min or more.
  • high pressure water is supplied at a pressure of 100 kgf / cm or more and a flow rate of 2 ⁇ / min or more and the injection distance between the nozzle and the billet is set within 200 mm, for example, slab material
  • the projection angle to 3 is 10 to 170.
  • the relative speed between the slab material 3 and the abrasive nozzle 1 during the swinging and rotation of the abrasive nozzle 1 is about 1 to 10 mZ min, and extremely good results can be obtained. did it.
  • these conditions are slightly different depending on conditions such as the type of the abrasive 6.
  • FIGS. 6 and 7 further illustrate an example of the operation method of the abrasive nozzle 1 described above.
  • the defects 1 2, 1 2 ′, 1 2 ′, 1 2 ′ ′ As shown in the figures, various combinations of the cutting range, direction, and pitch feed for the slab material 3 can be adopted as shown in the figure.
  • the abrasive nozzle 1 can be ground in the same manner as described above by a rotary motion having an appropriate radius and a pitch feed instead of the swing.
  • Fig. 8 is a block diagram showing the entire system including the inspection process.
  • an articulated robot is used as the driving device 13 of the abrasive nozzle 1.
  • Inspection stage 1 before grinding The search results obtained in step 4 are used as the positional information (location, size, depth, etc.) of the polishing of the defects 12 etc. of the slab material 3 by the defect detection mechanism 15 such as the CCD camera. Defect detection system. Input to 16 and the grinding (scarfing) stage 17 automatically performs the grinding accordingly.
  • the television camera is scanned over the entire surface of the continuous steel slab by the force roller drive device operated by the signal from the force roller drive control device, and the information is imaged.
  • the position, including the size, shape, area, depth, etc., of the flaw is converted by the processing equipment into coordinates corresponding to the slab surface, and the addresses are converted to the slab surface based on these coordinates. I do.
  • the information from this image processing device is input to the general control computer, and the information on the shape, depth, grinding range, procedure, and position of the flaws input is driven and instructed by the grinding system.
  • the high-pressure fluid nozzle for abrasive injection is scanned over the steel slab by an addressing guide mechanism.
  • inspection during and after grinding is performed by optical means in combination with the defect detection mechanisms 15 ′, 15 ′ '' and the defect detection system 16, and the results are ground. It can be used for feedback inside or for re-grinding.
  • a method is employed in which the used abrasive 6 is collected, supplied to the abrasive supply device 19, and reused. Then, the abrasive, which has been pulverized into fine powder and atomized, is separated and removed by a collecting and re-transmitting device 18.
  • FIGS. 9, 10, and 11 show the appearance of the entire system of the embodiment shown in FIG. 8, and the system has a continuous contact time of 7 minutes on average. In this mode, three articulated robots perform a cooperative operation to grind the surface of a slab material 3 of a billet. The slab material 3 is transported in the direction of the arrow.
  • the system uses a defect detection system 101, an abrasive water jet nozzle device 102, and a supply system 103 for supplying high-pressure water and abrasive to the nozzle. And a recovery processing system 104 for recovering the recycled abrasive and supplying it to the supply system 103 again.
  • Information from each of these systems is input to the grinding control device 105, and the input information is controlled by the judgment function of the grinding control device 105. Is configured.
  • the slab W to be processed is processed through three stages: an inspection stage S1, a grinding stage S2, and an inspection stage S3. Inspection stage S 1 and inspection stage S 3 Either may be omitted.
  • the defect detection system system 101 includes a defect detection system system 111 for detecting defects on the slab surface before grinding, a defect detection system system 112 for detecting the state of surface defects during the grinding process, and It has a defect detection system system 113 that detects defects on the slab surface after grinding for the next process, detects the state of surface defects at each stage, and uses that information as a grinding control device 105 And the power is controlled by the variation of the abrasive water nozzle unit 102 and the supply system 103.
  • Abrasive water jet nozzle device 102 is controlled by a nozzle drive control device 106 and a nozzle drive device 107 controlled by a grinding control device 105. It consists of a driven nozzle 108.
  • FIGS. 13 to 16 are diagrams showing the specific arrangement of the system shown in FIG.
  • a supply system 103 composed of a high-pressure water generator 31 for supplying high-pressure water to the nozzle and an abrasive supply device 32 shown in FIG. 12 is provided.
  • the slab is composed of a nozzle device 122 and a nozzle device 122 for grinding the lower surface of the slab turned by the reversing device 42.
  • Each of the nozzle devices 122, 122 has three nozzles 108 arranged in the longitudinal direction of the steel plate slab W produced by the continuous forming machine 41, respectively.
  • Each nozzle 108 is located on the base 1 2 3 that straddles the slab moving floor 109. It is attached to the tip of a 6-axis robot 125 provided on the guide 124, and each nozzle 108 has a nozzle drive controller 106 and a nozzle shown in Fig. 12
  • the driving is controlled by the driving device 107.
  • the driving device of this nozzle 108 is a robot
  • An NC device can be used, and the robot can be an articulated robot that is mounted on the ground or suspended from the ceiling, mounted on a wall, or used in combination with one or more robots. Multiple units can be used. Further, the driving device may be fixed, or may be driven on one or more axes as shown in this figure.
  • the abrasive nozzle head may be a direct injection method (a method in which abrasive and water are mixed in advance at a high pressure and the slurry is sprayed from the nozzle portion in a high pressure state).
  • Various modes can be adopted as the method of operating the shake, such as various combinations of rotational swinging motions.
  • non-contact and automatic grinding can be performed by jetting a high-pressure water jet mixed with an abrasive onto a steel slab.
  • a high-pressure water jet mixed with an abrasive onto a steel slab In a harsh working environment with noise and heat due to the use of means for removing defects and scratches by manually performing scarfing (melting) and grinding wheels.
  • Significant improvement (unmanned, etc.) is possible, and in addition, harmful defects and defects existing on or near the surface of the slab can be stably and reliably removed, and there is no melting or thermal deterioration of the material. An excellent effect that can be removed at a required depth is obtained without accompanying. Circulate the abrasive if necessary
  • the combined use of the ring utilization system enables continuous work without deteriorating the function of the abrasive water jet itself, leading to an excellent system that leads to resource saving and cost down. System can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A grinding method, in which an abrasive material (6) is ejected from a nozzle (1, 108) onto a billet (3, W) so as to grind the same, and which is applied to a continuous casting step or a step subsequent thereto, which method is characterized in that abrasive material-mixed high-pressure water is applied in the form of a jet to the surface of a billet so as to grind a flaw-carrying portion (12, 12', 12'', 12''') thereof; and a grinding system for practising this grinding method, having a supply source (19-20, 103) of a high-pressure liquid and an abrasive material, a nozzle (4, 102) connected to the supply source, and a combination of an abrasive material recovering unit (104) for recovering as necessary the abrasive material, which has been used for a grinding operation, and returning the same to the supply source, and a flaw detecting means (15-16, 101).

Description

明 細 書 鋼片の研削方法および研削システム 技術分野  Description Billet grinding method and grinding system Technical field
本発明は基材表面の研削に係わり、 特に連続铸造ライ ンおよびその後工程において鋼材の表面の疵部分を研削 する方法および研削システムに関する。  The present invention relates to the grinding of a substrate surface, and more particularly to a method and a grinding system for grinding a flaw on the surface of a steel material in a continuous production line and a subsequent process.
背景技術  Background art
連続铸造工程で铸造されるブル一ム、 スラブ、 ビレ ツ ト、 或いは、 铸造圧延加工された鋼片はその铸造ゃ圧延 過程で種々 の疵欠陥を伴う こ とがあ り、 該疵欠陥は引き 続 く 後工程で製品歩留 りや製品品質の低下を招 く 不都合 さがある。  Boules, slabs, billets, or slabs that are rolled in a continuous manufacturing process may have various flaws during the forging and rolling process. There is an inconvenience in the subsequent post-process, leading to a reduction in product yield and product quality.
そ こで、 これに対処するに、 疵欠陥をスラ ブ、 ブルー ム、 ビレ ツ ト等の鋼片製造の段階で手入れ作業によ り除 去し、 疵が除去された鋼片を引き続 く 後工程に供給 して 製品歩留 りや製品品質の低下を防止する よ う に している ( 而して、 か 、る鋼片手入れ作業の手段と してはホ ッ ト スカーフによる溶削、 グライ ンダーによる研削が一般的 に用いられてお り、 前者のホ ッ トスカーフによる溶削と しては、 例えば、 特開昭 5 2 - 5 6 4 4 号公報発明のよ う に、 門型フ レーム梁を 2 本平行に配置した側面、 及び、 上面の支持ビームに複数の火口を有する上下動、 横移動 可能に取付けた火口操作台を設ける よ う に した り、 特開 昭 5 2 - 8 1 0 4 8 号公報発明のよ う に横列 させた複数 本の ト ーチを用いて溶削 し、 補助溶削を行う こ とな く 広 幅欠陥の除去を可能とする等の方法が開示されている。 In order to deal with this, the flaws are removed by maintenance work during the production of slabs such as slabs, blooms and billets, and the slabs from which the flaws have been removed are continued. It is supplied to the post-process to prevent a decrease in product yield and product quality. ( However, as a means of gauging the billet, hot scarf cutting and grinding are used. Grinding with a hot head scarf is generally used, and the former hot scarf cutting is performed by, for example, a portal frame as disclosed in Japanese Patent Application Laid-Open No. 52-56444. Japanese Patent Laid-Open Publication No. H08-27139 discloses a crater operating table having two or more craters mounted vertically and horizontally on a support beam on the side surface where two beams are arranged in parallel, and a plurality of craters. Japanese Patent Application Publication No. 52-810, No. 48, No. 8: Uses multiple torches arranged in a row to perform ablation to remove wide defects without performing auxiliary ablation. Are disclosed.
又、 グライ ンダーによる研削と しては、 例えば、 特開 昭 4 8 - 4 6 9 9 3 号公報発明のよ う に、 砥石車を油圧 シ リ ン ダーや空気シ リ ンダ一を用いて研削性を向上させ、 ビレ ツ ト等の研削を行う よ う に した り、 或いは、 特開平 1 一 2 4 2 7 2 9 号公報発明のよ う に、 ステ ン レス铸片、 ステ ン レス鋼片をグライ ンダーによ り研削する際に、 特 定温度範囲でグラ イ ンダー手入れを行い、 ステ ン レ スの 自硬性を回避して効果的に欠陥部除去を行う方法等も案 出されている。  As for the grinding by a grinder, for example, as disclosed in Japanese Patent Application Laid-Open No. 48-46993, a grinding wheel is ground using a hydraulic cylinder or an air cylinder. To improve grinding performance, such as grinding of a billet or the like, or a stainless steel piece, a stainless steel billet as disclosed in Japanese Patent Application Laid-Open No. H11-242729. A method has also been devised to grind the steel with a grinder in a specific temperature range, to avoid the self-hardening of the stainless steel, and to remove defects effectively. .
更に、 上述ホ ッ トスカーフによ る溶削やグラ イ ンダー によ る研削等の疵手入除去の手段の他に、 鋼片製造の段 階で脱スケールを主体と した方法と して、 例えば、 特開 昭 5 1 一 9 7 8 9 4 号公報発明のよ う に、 ステ ン レス鋼 板の表面に湿式で所定の研磨材をノ ズルから噴射して研 削と脱スケールを併せて行う等の各種の鋼片手入れ手段 が提案されてはいる。  Furthermore, in addition to the above-mentioned means for removing flaws such as hot cutting using a hot scarf and grinding using a grinder, the method mainly used for descaling at the stage of producing a billet includes, for example, As in the invention disclosed in Japanese Patent Application Laid-Open No. 51977984, a predetermined abrasive is wet-sprayed from a nozzle onto the surface of a stainless steel plate to perform both grinding and descaling. Various types of slab care means such as have been proposed.
しか しながら、 上述 した各種の鋼片手入れ手段は以下 の如 く 種々 の問題がある。  However, the various slab care methods described above have various problems as described below.
まず、 スカ ー フ溶削に係る特開昭 5 2 — 5 6 4 4 号公 報発明のよ う に、 門型フ レーム梁を 2 本平衡配置した側 面、 及び、 上面の火口操作台支持ビームに複数の火口を 有する上下動、 横移動可能に取付けた火口操作台を設け る態様や、 特開昭 5 2 — 8 1 0 4 8 号公報発明のよ う に、 横列させた複数本の ト ーチを用いて溶削 し、 補助溶削を 行う こ とな く 広幅欠陥の溶削を可能とする等の方式では、 ホ ッ ト スカー フ作業自体が高温、 高粉塵を伴う こ とから 作業環境を著し く 悪化する不具合があるばかりでな く 、 ホ ッ ト スカ ー フ処理後の溶削鋼片の表面に残存する疵欠 陥の判別が困難であるという難点がある。 First, as in the invention disclosed in Japanese Patent Application Publication No. JP-A-5-26464, which relates to scarf cutting, the side where two portal frame beams are arranged in an equilibrium manner, and the crater operation table supported on the upper surface A crater operation table with multiple craters mounted on the beam so that it can be moved vertically and horizontally As described in Japanese Patent Application Laid-Open No. Sho 52-81048, a wide defect can be formed by performing ablation using a plurality of torches arranged in a row and performing auxiliary ablation. In such a method, the hot scarf work itself is accompanied by high temperature and high dust, so that not only the work scarcely deteriorates the working environment but also the hot scarf work. However, it is difficult to determine the flaws remaining on the surface of the machined steel slab after the heat treatment.
更に、 ホ ッ ト スカー フ方式では溶削深さのコ ン ト ロ ー ルが不可能であ り、 溶削ムラが発生 し、 このため、 疵欠 陥の取り残し、 或いは、 取り残し防止のためにホ ッ トス カー フ量が多 く な り、 結果的に歩留 り の低下を招 く 欠点 がある。  Furthermore, in the hot scarf method, it is impossible to control the depth of cutting, which causes uneven cutting. There is a disadvantage in that the amount of hot scarf increases, resulting in a decrease in yield.
更に、 かかるホ ッ ト スカーフ方式で作業環境の改善と 作業効率の向上のために自動化を図る際も他の方法に比 べ大がかり な設備を要し、 経済的にコス ト高となる不利 点力 ある。  In addition, such a hot scarf method requires large-scale equipment compared to other methods when automation is used to improve the working environment and improve work efficiency, which is economically expensive. is there.
又、 グライ ンダーによる研削方式と して上記特開昭 4 8 - 4 6 9 9 3 号公報発明に示されている よ う に、 砥石 車を油圧シ リ ンダーや空気シ リ ンダーを用いて研削性を 向上させ、 ビレ ツ ト等の研削を行う方法ゃ特開平 1 一 2 4 2 7 2 9 号公報発明のよ う にステ ン レ ス铸片、 ステ ン レス鋼片をグライ ンダーによ り研削する際に、 特定温度 範囲でグライ ンダ一手入れを行う方法も鋼片の種類によ つては上述ホ ッ ト スカー フ方式と同様に高温、 高粉塵発 生という悪環境下での作業とな り、 しかも、 研削後の表 面に残存する疵欠陥の判別 も上述同様に困難である不都 合さがあ り、 疵取り コス トが極めて高い等のデメ リ ッ ト を伴う ものである。 In addition, as disclosed in the above-mentioned invention of Japanese Patent Application Laid-Open No. 48-46993, a grinding wheel is ground using a hydraulic cylinder or an air cylinder. For improving grinding performance and grinding of billets etc. As in the invention disclosed in Japanese Patent Application Laid-Open No. H11-242927, the stainless steel slab and the stainless steel slab are ground with a grinder. When grinding, the method of cleaning the grinder within a specific temperature range also requires work in a bad environment of high temperature and high dust generation, similar to the hot scarf method described above, depending on the type of billet. And after grinding As described above, it is difficult to determine the flaw defect remaining on the surface, and this has disadvantages such as extremely high flaw removal cost.
そ して、 グライ ンダー巾を広 く する と、 不要な削り量 が多 く 、 駆動力が大き く な り、 ラ ンニ ン グ コ ス トが大と なって歩留ま り も悪 く 、 このため、 グライ ンダーの巾を 狭 く する と、 能率が低下し、 多 く のグライ ンダーを要し、 手入れ時間が長 く な く な り好ま し く ない点があ り、 又、 前記特開昭 5 1 - 9 7 8 9 4 号公報発明のよ う に、 ステ ン レ ス鋼板の表面に湿式で研磨材をノ ズルから噴射して 研削と脱スケールを行う 等の鋼片の疵手入れ除去方式は 現状では後者の脱スケールを行う こ とが主体であって、 鋼片の疵欠陥を研削除去するには技術的に未だ不充分で あ り、 実効上採用出来ないものである。  If the width of the grinder is increased, the amount of unnecessary shaving increases, the driving force increases, the running cost increases, and the yield decreases. Therefore, when the width of the grinder is reduced, the efficiency is reduced, a large amount of grinder is required, and the maintenance time is not long, which is not preferable. 5 1-9 7 8 9 4 As in the invention disclosed in JP-A No. 4-9, a method of removing and removing flaws on steel slabs, such as grinding and descaling by spraying abrasives from nozzles on the surface of stainless steel plates in a wet manner At present, the latter is mainly used for descaling, and is technically insufficient to grind and remove flaws on steel slabs, and cannot be practically adopted.
こ の出願の発明の目的は上述従来技術に基づ く 鋼片手 入れの問題点を解決すべき技術的課題と し、 作業環境の 改善、 自動化に当た り重要な研削後の鋼片ゃ铸片の表面 に残存する疵欠陥の判別を容易に行う こ とが出来るばか りでな く 、 疵欠陥の状態に応じて該疵欠陥部を選択的に 除去可能と し、 製品のコ ス ト ダウ ンを図 り、 歩留 り を向 上し、 更に、 製品の品質も確実に保証出来る よ う に して 製鉄産業における加工技術利用分野に益する優れた鋼片 研削方法を提供せんとする ものである。  The purpose of the invention of this application is to solve the problems of slab maintenance based on the above-mentioned conventional technology, and the slab after grinding is important for improving the working environment and automation. In addition to being able to easily determine the flaw defect remaining on the surface of the piece, the flaw defect part can be selectively removed according to the state of the flaw defect, thereby reducing the cost of the product. The aim is to provide an excellent method of grinding slabs that can improve the yield, improve the quality of products, and ensure the quality of products by utilizing the processing technology in the steelmaking industry. It is.
発明の開示 Disclosure of the invention
こ の出願の発明による研削方法は前述課題を解決する ために、 ガ一ネ ッ 卜サ ン ド、 珪砂、 アル ミ ナ、 砂鉄、 铸 鉄グ リ ッ ド等の所定の微粒状の研磨材を所定圧の高圧力 水に混入 した状態で超高速水噴流的に し、 ノ ズルよ り連 続して所定小サイ ズの細径のジェ ッ ト と して噴出 し、 ス ラブ等の鋼片の表面に衝突的に投射する こ とによ り、 該 鋼片の表面近傍に存在する製品と しては有害な欠陥ゃ疵 を非接触方式で自動的に研削除去する よ う に し、 更に、 研削加工の前、 後の一方、 或いは、 双方において、 鋼片 の表面、 及び、 表面近傍を自動的にセ ン シ ン グし、 欠陥 ゃ疵の有無、 位置等をサーチする機能を付加する こ とに よ り、 研削ラ イ ンの完全自動化、 無人化を可能にする よ う に した技術的手段を講じた ものである。 The grinding method according to the invention of this application solves the above-mentioned problems. For this purpose, ultra-high-speed water is used in a state in which predetermined fine-grained abrasives such as garnet sand, silica sand, aluminum, iron sand, and iron grid are mixed in high-pressure water at a predetermined pressure. By jetting it as a jet with a small diameter of a predetermined small size continuously from the nozzle and projecting it impingingly on the surface of a slab or other steel piece As a product existing near the surface of the billet, harmful defects and flaws are automatically ground and removed in a non-contact manner. Further, before or after grinding, or both. By automatically sensing the surface of the billet and the vicinity of the surface, and adding a function to search for the presence and location of defects and flaws, complete automation of the grinding line is achieved. It takes technical measures to make it unmanned.
また、 本発明によ る研削システムは、 従来の湿式ブラ ス ト加工や液体ホーニング加工をさ らに発展させて、 高 圧化 (通常 3 0 0 k g f / c m 2 以上) とエネルギー密度の 向上を計り、 加工効率を高めたアブレイ シブゥ オ ーター ジ ッ ト によ る鋼材スラブのよ う な基材表面の研削シス テムであって、 基材表面の疵を検知する欠陥検出系と、 同欠陥検出系から検出 した疵情報に基づいて制御された 研削条件を発信する研削制御系と、 同研削制御系からの 信号に基づいて研磨材の供給を制御する研磨材供給系と、 同研削制御系からの信号に基づいて基材と相対移動する ノ ズルを設けた研削ノ ズル装置系と、 研削処理後の研磨 材を回収 して前記研磨材の供給系に戻す研磨材回収系 と をそれぞれ必要に応じて組み合わせたシステムからなる。 基材表面の疵を検知する欠陥検出系に使用する欠陥検 出装置と しては、 磁粉探傷、 超音波探傷、 あるいは、 テ レ ビカ メ ラによる画像処理装置等を用いる こ とができ る。 アブレイ シブウ ォ ータ一 ジエ ツ ト による研削は、 非熱 的な加工法であ り、 熱影響や素材表面の溶融による表面 欠陥のぼけを何ら生じる こ とがないので、 加工後の疵検 出が容易であ り、 かつ、 加工の 0 N / 0 F F も容易であ るので、 溶削時のよ う な点火 ミ スがな く 、 さ らにまた非 接触加工であるが故に、 研削砥石の場合のよ う な工具寿 命に関する問題が少ないので、 自動化システムを容易に 構築でき る。 In addition, the grinding system according to the present invention further develops conventional wet blasting and liquid honing to increase pressure (typically 300 kgf / cm 2 or more) and improve energy density. A grinding system for the surface of a base material, such as a steel slab, using an abrasive wafer with improved measuring and processing efficiency.A defect detection system that detects flaws on the surface of the base material, and a defect detection system for the same A grinding control system that sends controlled grinding conditions based on flaw information detected from the system, an abrasive supply system that controls the supply of abrasive based on signals from the grinding control system, and a grinding control system A grinding nozzle device system provided with a nozzle that moves relative to the base material based on the signal of the base material, and an abrasive collection system that collects the abrasive after the grinding process and returns it to the abrasive supply system are required. Depending on the system You. As a defect detection device used in a defect detection system for detecting flaws on the surface of a base material, magnetic particle flaw detection, ultrasonic flaw detection, an image processing apparatus using a television camera, or the like can be used. Grinding with an abrasive water jet is a non-thermal processing method and does not cause any thermal effects or blurring of surface defects due to melting of the material surface, so flaw detection after processing The grinding wheel is easy because it is easy to machine, and the machining is easy with 0 N / 0 FF. Since there are few problems related to tool life as in the case of (1), an automation system can be easily constructed.
さ らに、 使用後の研磨材の回収系を高圧流体ジ ッ ト に混合される研磨材の供給系に連結させた場合には、 ァ ブレイ シブウ ォ ー夕ー ジヱ ッ トを広区域の連続した表面 研削に適用 した場合に、 研磨材の循環系が成り立つ。 複 数の基材に対して相対移動するアブレイ シブゥ オ ーター ジ ッ ト ノ ズルを巾広基材表面の研削に適用 して も連続 操業を行う こ とが可能になる。  In addition, if the used abrasive recovery system is connected to the abrasive supply system mixed with the high-pressure fluid jet, the abrasive water jet can be used in a wide area. When applied to continuous surface grinding, a circulating system for abrasives is established. Continuous operation can be performed even when abrasive wafers that move relative to multiple substrates are applied to the grinding of wide substrate surfaces.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図はアブレイ シブウ ォ ー夕一 ジエ ツ 卜の研削原理 を示す研削態様の模式図、  Fig. 1 is a schematic diagram of a grinding mode showing the principle of grinding of abrasive water jets.
第 2 図はアブ レイ シブウ ォ ーター ジヱ ッ ト による部分 的深さ研削を示す研削態様の模式図、  FIG. 2 is a schematic view of a grinding mode showing partial depth grinding by an abrasive water jet.
第 3 図はアブレイ シブウ ォ ー夕ー ジヱ ッ ト によ る表面 研削の研削態様を示す模式図、 第 4 図はスラブ材の表面研削を実施 してぃる本発明に よる研削システムの要部を示す断面図、 Fig. 3 is a schematic diagram showing the grinding mode of surface grinding by abrasive wobble jet. FIG. 4 is a cross-sectional view showing a main part of a grinding system according to the present invention for performing surface grinding of a slab material,
第 5 図は同一部断面正面図、  Fig. 5 is a sectional front view of the same part,
第 6 図はスラブ材の表面の欠陥部と、 ノ ズルの移動状 態を示す平面図、  Fig. 6 is a plan view showing the defect on the surface of the slab material and the movement of the nozzle.
第 7 図は同縦断面図、  Fig. 7 is a longitudinal sectional view of the same,
第 8 図は本発明によ るスラブ材の研削システムを示す ブロ ッ ク図、  FIG. 8 is a block diagram showing a slab material grinding system according to the present invention,
第 9 図は本発明によ るスラブ材の研削システムの平面 図、  FIG. 9 is a plan view of a slab material grinding system according to the present invention.
第 1 0 図は第 9 図に示す研削システムの要部を示す正 面図、  Fig. 10 is a front view showing the main parts of the grinding system shown in Fig. 9,
第 1 1 図は第 9 図に示す研削システムの要部を示す側 面図、  Fig. 11 is a side view showing the main parts of the grinding system shown in Fig. 9,
第 1 2 図は本発明の他の実施例を示すブロ ッ ク図、 第 1 3 図は第 1 2 図に示された実施例を示す平面図、 第 1 4 図は第 1 3 図に示された実施例を示す側面図、 第 1 5 図は第 1 3 図に示された実施例の要部を示す正 面図、  FIG. 12 is a block diagram showing another embodiment of the present invention, FIG. 13 is a plan view showing the embodiment shown in FIG. 12, and FIG. 14 is a diagram shown in FIG. FIG. 15 is a front view showing the essential parts of the embodiment shown in FIG. 13;
第 1 6 図は第 1 5 図に示された要部を示す側面図であ 発明を実施するための最良の形態  FIG. 16 is a side view showing a main part shown in FIG. 15 in the best mode for carrying out the invention.
第 1 〜 3 図は研磨材を混入 した高圧水噴流 (アブレイ シブウ ォ ーター ジエ ツ ト) による铸造スラブの研削原理 の模式図であ り、 1 は所謂アブレイ シブウ ォ ーター ジェ ッ ト装置のノ ズルであ り、 図示 しない ミ キシ ン グチャ ン バに供給された所定圧の高圧水に微粒状の例えば、 ガ一 ネ ッ トサン ド、 珪砂、 アル ミ ナ、 砂鉄、 铸鉄グ リ ッ ト等 の研磨材を混入させて所定小サイ ズの細径のジェ ッ ト 2 を形成して被磨材の鋼片のスラブ材 3 に超高速で噴射す る よ う にされ、 ノ ズル 1 のスラブ材 3 に対する相対 ト ラ バース速度 (ノ ズル送り速度、 或いは、 スラ ブ材 3 の送 給速度) を速 く (遅 く ) した場合の切断 (研削) の種々 の態様を示 している。 Figs. 1 to 3 are schematic diagrams of the principle of grinding of artificial slabs by a high-pressure water jet (abrasive water jet) mixed with an abrasive. This is a nozzle of a cutting device, and is finely divided into high-pressure water of a predetermined pressure supplied to a mixing chamber (not shown), for example, garnet sand, quartz sand, aluminum, iron sand, iron iron. An abrasive such as a grit is mixed in to form a small-diameter jet 2 of a predetermined small size, which is injected at an ultra-high speed onto a slab material 3 of a billet to be polished. The various modes of cutting (grinding) when the traverse speed (nozzle feed speed or feed speed of the slab material 3) of the nozzle 1 relative to the slab material 3 is increased (slowed) are shown. are doing.
而して、 第 1 図は研削されるべきスラブ材 3 の厚さ t の全てに亘り研削を介 して切断する通常の切断に用いら れる態様であ り、 相対速度領域はスラブ材 3 を良好に切 断可能な充分な低速領域が使用される場合であ り、 スラ ブ材 の板厚 t に亘つて ドラ グライ ン 4 が形成される。  Thus, FIG. 1 shows a mode used for normal cutting in which the entire thickness t of the slab material 3 to be ground is cut via grinding, and the relative speed region is the slab material 3. The drag line 4 is formed over the thickness t of the slab material when a sufficient low-speed region that can be cut well is used.
これに対し、 第 2 図は第 1 図の場合よ り高速でノ ズル 1 とスラ ブ材 3 とを相対移動させた場合であ り、 スラブ 材 3 の板厚 t の底部までは切断が行われないで、 切断深 さ を切断底部に於いて切断現象的には Δ h , の差だ け周期的に変動する よ う にする態様である。  On the other hand, Fig. 2 shows the case where the nozzle 1 and the slab material 3 are relatively moved at a higher speed than in the case of Fig. 1, and cutting is performed up to the bottom of the slab material 3 with the thickness t. In this case, the cutting depth is periodically changed at the bottom of the cutting by the difference of Δh, at the cutting phenomenon.
第 3 図は第 2 図の場合よ り ノ ズル 1 とスラブ材 3 との 相対速度を更に高速で ト ラバースを行う よ う に した場合 であ り、 切断深さ h 2 は浅 く なるが、 底深さ変動 Δ h 2 は小さ く 、 したがって、 切断溝底面は平滑化される よ う にな り、 所謂溝切研削が可能とな る態様である。 Figure 3 is Ri der If you cormorants by performing traverse at higher speed relative speed between Roh nozzle 1 and the slab member 3 Ri by the case of FIG. 2, the cutting depth h 2 is Naru rather shallow, bottom depth change delta h 2 is minor, therefore, cut the groove bottom Ri Do Ni will I be smoothed, is an aspect Do that enables so-called groove switching grinding.
而 して、 こ の出願の発明はアブ レイ シブウ ォ ー夕一ジ エ ツ ト のかかる研削原理、 切削速度領域を鋼片のスラブ 材の 3 の表面研削に応用する ものである。 Thus, the invention of this application is an abrasion water evening. This method applies the grinding principle and the cutting speed range that require an enthusiast to the surface grinding of the billet slab material.
又、 こ の出願の発明では、 上述原理を用いる こ とによ つて鋼片のスラブ材 3 の表面は高圧水に研磨材を混入 し た超高速ジ ッ ト噴流中の研磨材の砥粒のスラブ材 3 に 対するエロ ー ジ ョ ン作用によ り微視的ではあ っ て も、 確 実な研削作用を受け、 熱発生のない理想的な状態で疵欠 陥を除去する ことが可能となる。  Also, in the invention of this application, by using the above principle, the surface of the slab material 3 of the billet is made of abrasive grains of the abrasive in an ultra-high-speed jet jet in which the abrasive is mixed in high-pressure water. The erosion effect on the slab material 3 makes it possible to remove the defect in an ideal state without heat generation, even though it is microscopic, even though it is microscopic. Become.
上述ジ ッ ト噴流を形成する ノ ズル 1 部分の相対送り 操作の仕方によ り、 鋼片のスラブ材 3 の表面を一様に、 或いは、 表面、 又は、 その近傍に存在する疵欠陥部位の みを部分的に選択的に研削を介 して平滑化する こ とが出 来る ものである。  The surface of the billet slab material 3 can be made uniform or at the surface or in the vicinity of the flaw defect site depending on the relative feed operation of the nozzle 1 that forms the jet jet described above. Can be partially and selectively smoothed through grinding.
そ して、 上述研削加工の前、 後、 いづれか一方、 或い は、 双方に対して併用する欠陥等の検出を行う システム ア ッ プによ り、 鋼片のスラブ材 3 の表面、 或いは、 その 近傍に疵欠陥の有無、 及び、 位置、 サイ ズの検出が可能 とな り、 これを研削加工での対処情報と してイ ンプッ ト した り、 フ ィ ー ドノくッ ク した りする こ とによ り、 鋼片の 表面等の欠陥ゃ疵の除去工程を安定させ、 且つ、 確実に 保証する こ とが出来る と共に、 更に、 作業工程の完全自 動化を現出する こ とが出来る。  Then, the surface of the slab material 3 of the billet, or the system up which detects defects etc. before, after, or both of the above-mentioned grinding, or both are used. The presence / absence, position, and size of flaws in the vicinity can be detected, and this can be input or feed-knocked as information to cope with grinding. This makes it possible to stabilize and reliably assure the process of removing defects and flaws on the surface of steel slabs, and furthermore, it is possible to achieve complete automation of the work process. I can do it.
そ して、 研削加工後の鋼片の研削面は酸化スケール等 によ って覆われる こ とが無いので、 切削加工後における 欠陥の検出チ ェ ッ ク も比較的容易に行われる こ とになる。 次に、 こ の出願の発明の実施例を第 4 図以下の図面に 従つて説明する。 Also, since the ground surface of the slab after grinding is not covered with oxide scale, etc., it is relatively easy to check for defects after cutting. Become. Next, an embodiment of the invention of this application will be described with reference to FIG. 4 and subsequent drawings.
尚、 以下の説明において第 1 〜 3 図と同一態様部分は 同一符号を付して説明する ものとする。  In the following description, the same parts as those in FIGS. 1 to 3 are denoted by the same reference numerals and described.
第 4 図、 第 5 図はこ の出願の発明の 1 実施例における 鋼片のスラブ材 3 の研削態様をノ ズルへッ ド 4 の構造と 合わせて示 した ものであ り、 側面供給型のアブレイ シブ ノ ズルヘ ッ ド 4 に於いて、 ホース 5 等によ り供給される ガー ネ ッ 卜サ ン ド等の研磨材 6 は高圧水配管 7 に接続す る ウ ォ ーターノ ズル 8 で発生 した超高速の水噴流 9 のべ ンチュ リ ー効果によ って生じた負圧を利用 して ミ キシ ン グチ ャ ンバ 1 0 に吸引供給され、 該 ミ キシ ン グチ ャ ンバ — 1 0 力、ら延出するアブレイ シブノ ズル 1 内部に於いて、 上記水噴流 9 と研磨材 6 とが混合され、 加速され、 該ァ ブレイ シブノ ズル 1 よ り所定小サイズの細径のジヱ ッ ト 2 とな ってスラブ材 3 の所定部位に投射され、 相対移動 するスラブ材 3 の表面を前述した加工原理によ って研削 する。  FIGS. 4 and 5 show the grinding mode of the slab material 3 of the billet and the structure of the nozzle head 4 in one embodiment of the invention of the present application. In the abrasive nozzle head 4, abrasives 6 such as garnet sand supplied by a hose 5 etc. are generated by a water nozzle 8 connected to a high-pressure water pipe 7. The negative pressure generated by the Venturi effect of the high-speed water jet 9 is sucked and supplied to the mixing chamber 10 using the negative pressure generated by the venturi effect. The water jet 9 and the abrasive 6 are mixed and accelerated inside the abrasive nozzle 1 to be ejected, so that the jet 2 has a smaller diameter than the abrasive nozzle 1 and has a smaller diameter than that of the abrasive nozzle 1. The slab material 3 that is projected onto a predetermined part of the slab material 3 and moves relatively Grinding it's in the processing principle.
この場合、 アブレイ シブノ ズル 1 の軸線をスラブ材 3 の種類に応じて該スラブ材 3 に対する適当な角度で保持 しつつ、 表面の欠陥等を充分カバーする よ う に適切な速 度と ピ ッ チ送 りで揺動、 或いは、 回転させながらスラブ 材 3 に対 して相対的に移動させる こ とによ って、,所定の 研削等を行う こ とが出来る。  In this case, while maintaining the axis of the abrasive nozzle 1 at an appropriate angle with respect to the slab material 3 according to the type of the slab material 3, an appropriate speed and pitch so as to sufficiently cover surface defects and the like are provided. By moving the slab material 3 relatively to the slab material 3 while swinging or rotating by feeding, predetermined grinding and the like can be performed.
実験によれば、 研磨材を 0 . 5 Ji g Z m i n 以上で供給す る と共に、 圧力 1 0 0 O kgf / cm 以上、 流量 2 ^ /min 以上で高圧水を供給 し、 ノ ズルと鋼片までの噴射 距離を 2 0 0 mm以内と した場合、 例えば、 ス ラブ材 3 へ の投射角は 1 0 〜 1 7 0 。 であ り、 アブレイ シブノ ズル 1 の揺動、 回転時の該スラブ材 3 と該アブレイ シブノ ズ ル 1 の相対速度は 1 〜 1 0 mZ m i n 程度であ り、 極めて 良好な結果を得る こ とができた。 但 し、 この条件は研磨 材 6 の種類等の条件で若干異なる。 According to the experiment, the abrasive was supplied at 0.5 Jig Z min or more. When high pressure water is supplied at a pressure of 100 kgf / cm or more and a flow rate of 2 ^ / min or more and the injection distance between the nozzle and the billet is set within 200 mm, for example, slab material The projection angle to 3 is 10 to 170. The relative speed between the slab material 3 and the abrasive nozzle 1 during the swinging and rotation of the abrasive nozzle 1 is about 1 to 10 mZ min, and extremely good results can be obtained. did it. However, these conditions are slightly different depending on conditions such as the type of the abrasive 6.
第 6 図、 第 7 図は上記のアブレイ シブノ ズル 1 の操作 方法の例について更に詳説する ものであ り、 図に示す様 に、 欠陥 1 2, 1 2 ' , 1 2 " , 1 2 ' ' ' に対するアブ レイ シブノ ズル 1 の揺動方法はスラブ材 3 に対する切削 範囲、 方向、 ピッ チ送り について図示の如 く 種々 な組合 せ態様が採用可能である。  FIGS. 6 and 7 further illustrate an example of the operation method of the abrasive nozzle 1 described above. As shown in the figures, the defects 1 2, 1 2 ′, 1 2 ′, 1 2 ′ ′ As for the method of swinging the abrasive nozzle 1 with respect to ′, various combinations of the cutting range, direction, and pitch feed for the slab material 3 can be adopted as shown in the figure.
尚、 第 7 図に示す実施例では第 6 図に示す欠陥 1 2 , 1 2 ' , 1 2 " , 1 2 ' ' ' 部分に対する研削加工部 3 ' と未加工部 3 の境界部に於いて、 極端な板厚差 (段 差) を生 じないよ う に適当に丸み加工を施している。  In the embodiment shown in FIG. 7, the boundary between the ground portion 3 ′ and the unprocessed portion 3 with respect to the defects 12, 12 ′, 12 ″, 12 ′ and 12 ′ ″ shown in FIG. However, it is appropriately rounded so as not to cause an extreme thickness difference (step).
そして、 アブレイ シブノ ズル 1 については揺動の代わ り に適当な半径の回転運動と ピッ チ送り によ って も上述 同様に研削可能である。  And, the abrasive nozzle 1 can be ground in the same manner as described above by a rotary motion having an appropriate radius and a pitch feed instead of the swing.
次に、 第 8 図は検査工程を含むシス テム全体を示すブ ロ ッ ク態様の図であって、 当該態様においてはアブレイ シブノ ズル 1 の駆動装置 1 3 と して多関節ロ ボッ トを使 用する よ う にされてお り、 研削の前段の検査ステー ジ 1 4 で得られたサーチ結果をスラブ材 3 の欠陥 1 2 等の研 削の位置情報 (場所、 大き さ、 深さ等) と して、 C C D カ メ ラ等の欠陥検出機構 1 5 によ り欠陥検出システム. 1 6 に入力 し、 それに従って、 研削 (スカーフイ ン グ) ス テージ 1 7 で自動的に研削を行える よ う になつている。 Next, Fig. 8 is a block diagram showing the entire system including the inspection process. In this embodiment, an articulated robot is used as the driving device 13 of the abrasive nozzle 1. Inspection stage 1 before grinding The search results obtained in step 4 are used as the positional information (location, size, depth, etc.) of the polishing of the defects 12 etc. of the slab material 3 by the defect detection mechanism 15 such as the CCD camera. Defect detection system. Input to 16 and the grinding (scarfing) stage 17 automatically performs the grinding accordingly.
研削面判定システムにおける力 メ ラ駆動制御装置から の信号によ って作動する力 メ ラ駆動装置によ つてテ レ ビ カ メ ラを連続铸造鋼片の全面を走査させて、 その情報を 画像処理装置によ って疵の大き さ, 形状, 面積, 深さ等 を含め、 その位置を鋼片表面に対応して座標変換する と と もに、 こ の座標に基づき鋼片表面に番地化する。 こ の 画像処理装置からの情報は、 統括制御計算機にィ ンプッ 卜 され、 イ ンプッ ト された疵の形状, 深さ, 研削範囲, 手順, 位置の情報は研削システムに駆動指合されて、 ノ ズル駆動制御装置、 駆動装置と、 研磨材混入 , 高圧水制 御装置とを制御駆動 して研磨材噴射用高圧流体ノ ズルを 番地化された誘導機構によ って鋼片上を走査せ しめて研 削する。  In the grinding surface determination system, the television camera is scanned over the entire surface of the continuous steel slab by the force roller drive device operated by the signal from the force roller drive control device, and the information is imaged. The position, including the size, shape, area, depth, etc., of the flaw is converted by the processing equipment into coordinates corresponding to the slab surface, and the addresses are converted to the slab surface based on these coordinates. I do. The information from this image processing device is input to the general control computer, and the information on the shape, depth, grinding range, procedure, and position of the flaws input is driven and instructed by the grinding system. By controlling and driving the slip drive control device and the drive device and the abrasive mixing and high-pressure water control device, the high-pressure fluid nozzle for abrasive injection is scanned over the steel slab by an addressing guide mechanism. Shave.
又、 必要に応じて研削中、 及び、 研削後における検査 を光学的手段によ り欠陥検出機構 1 5 ' , 1 5 ' ' と欠陥 検出システム 1 6 を介 して併用 し、 その結果を研削中の フ ィ ー ドバッ ク、 或いは、 再研削に利用する こ と も可能 である。  In addition, if necessary, inspection during and after grinding is performed by optical means in combination with the defect detection mechanisms 15 ′, 15 ′ '' and the defect detection system 16, and the results are ground. It can be used for feedback inside or for re-grinding.
又、 当該実施例においては使用済み研磨材 6 を回収し て研磨材供給装置 1 9 に供給 して再利用する方式を採用 し、 微粉状に粉砕して微粒化された研磨材を回収再送装 置 1 8 で分離除去している。 In this embodiment, a method is employed in which the used abrasive 6 is collected, supplied to the abrasive supply device 19, and reused. Then, the abrasive, which has been pulverized into fine powder and atomized, is separated and removed by a collecting and re-transmitting device 18.
尚、 2 0 は高圧水発生装置、 7 ' は高圧水配管、 2 1 はノ ズル駆動制御装置、 2 2 は全体的な研削制御装置で あ り、 2 3 は廃棄研磨材、 2 4 は新研磨材、 2 5 は検査 ステー ジである。 第 9 図、 第 1 0 図、 第 1 1 図は第 8 図 に示す実施例のシステム全体の外観図の態様を示 してお り、 当該システムでは平均 7 分のタ ク ト タイムで連続し て鋼片のスラブ材 3 等の表面研削を行う ために、 3 台の 多関節ロボ ッ ト によ る協調動作を行う態様である。 尚、 スラブ材 3 は矢印の方向に搬送される ものである。  20 is a high-pressure water generator, 7 'is a high-pressure water pipe, 21 is a nozzle drive controller, 22 is an overall grinding controller, 23 is a discarded abrasive, and 24 is a new abrasive. Abrasive, 25 is the inspection stage. FIGS. 9, 10, and 11 show the appearance of the entire system of the embodiment shown in FIG. 8, and the system has a continuous contact time of 7 minutes on average. In this mode, three articulated robots perform a cooperative operation to grind the surface of a slab material 3 of a billet. The slab material 3 is transported in the direction of the arrow.
次に、 第 1 2 図乃至第 1 6 図を参照して本発明の他の 実施例を説明する。  Next, another embodiment of the present invention will be described with reference to FIG. 12 to FIG.
これらの図において、 このシステムは欠陥検出系 1 0 1 と、 アブレイ シブウ ォ ータージエ ツ ト ノ ズル装置 1 0 2 と、 ノ ズルに高圧水と研磨材とを供給する供給系 1 0 3 と、 使用 した研磨材を回収し供給系 1 0 3 に再供給す るための回収処理系 1 0 4 とからなる。  In these figures, the system uses a defect detection system 101, an abrasive water jet nozzle device 102, and a supply system 103 for supplying high-pressure water and abrasive to the nozzle. And a recovery processing system 104 for recovering the recycled abrasive and supplying it to the supply system 103 again.
そ して、 これらの各系からの情報は研削制御装置 1 0 5 に入力され、 また、 入力された情報は研削制御装置 1 0 5 における判断機能によ って、 各系を制御する よ う に 構成されている。  Information from each of these systems is input to the grinding control device 105, and the input information is controlled by the judgment function of the grinding control device 105. Is configured.
また、 処理されるスラブ Wは、 検査ステー ジ S 1 と、 研削ステー ジ S 2 と、 検査ステー ジ S 3 の三段階を経て 処理される。 検査ステー ジ S 1 および検査ステー ジ S 3 はどち らかを省略して も よい。 The slab W to be processed is processed through three stages: an inspection stage S1, a grinding stage S2, and an inspection stage S3. Inspection stage S 1 and inspection stage S 3 Either may be omitted.
欠陥検出システム系 1 0 1 は、 研削前のスラブ表面の 欠陥検出のための欠陥検出システム系 1 1 1 と、 研削過 程中の表面欠陥の状態を検出する欠陥検出システム系 1 1 2 と、 次工程のための研削後のスラブ表面の欠陥検出 を行う欠陥検出システム系 1 1 3 を有し、 それぞれの段 階での表面欠陥の状態を検出 して、 その情報は研削制御 装置 1 0 5 に入力され、 その変動によ ってアブレイ シブ ウ ォ ー夕一ジヱ ッ ト ノ ズル装置 1 0 2 と供給系 1 0 3 力 制御される。  The defect detection system system 101 includes a defect detection system system 111 for detecting defects on the slab surface before grinding, a defect detection system system 112 for detecting the state of surface defects during the grinding process, and It has a defect detection system system 113 that detects defects on the slab surface after grinding for the next process, detects the state of surface defects at each stage, and uses that information as a grinding control device 105 And the power is controlled by the variation of the abrasive water nozzle unit 102 and the supply system 103.
アブレイ シブウ ォー夕一ジェ ッ ト ノ ズル装置 1 0 2 は、 研削制御装置 1 0 5 によ って制御される ノ ズル駆動制御 装置 1 0 6 とノ ズル駆動装置 1 0 7 によ って駆動される ノ ズル 1 0 8 とからなる。  Abrasive water jet nozzle device 102 is controlled by a nozzle drive control device 106 and a nozzle drive device 107 controlled by a grinding control device 105. It consists of a driven nozzle 108.
第 1 3 〜 1 6 図は、 上記第 1 2 図に示すシステムの具 体的な配置を示す図である。  FIGS. 13 to 16 are diagrams showing the specific arrangement of the system shown in FIG.
ノ ズルに高圧水を供給するための高圧水発生装置 3 1 と第 1 2 図に示す研磨材供給装置 3 2 とからなる供給系 1 0 3 と、 前後に配置されたスラブ上面研削用のノ ズル 装置 1 2 1 と、 反転装置 4 2 によ り転回されたスラブ下 面研削用のノ ズル装置 1 2 2 とからなる。 それぞれのノ ズル装置 1 2 1 , 1 2 2 は、 連続铸造機 4 1 によ って生 産された鋼板スラブ Wの長手方向にそれぞれ 3 個配置さ れたノ ズル 1 0 8 を有し、 それぞれのノ ズル 1 0 8 はス ラブ移動床 1 0 9 を跨 ぐ基台 1 2 3 に配置されたノ ズル 案内 1 2 4 上に設けられた 6 軸ロボッ 卜 1 2 5 の先端に 取り付け られてお り、 それぞれのノ ズル 1 0 8 は第 1 2 図に示すノ ズル駆動制御装置 1 0 6 と ノ ズル駆動装置 1 0 7 によ って駆動制御される。 A supply system 103 composed of a high-pressure water generator 31 for supplying high-pressure water to the nozzle and an abrasive supply device 32 shown in FIG. 12 is provided. The slab is composed of a nozzle device 122 and a nozzle device 122 for grinding the lower surface of the slab turned by the reversing device 42. Each of the nozzle devices 122, 122 has three nozzles 108 arranged in the longitudinal direction of the steel plate slab W produced by the continuous forming machine 41, respectively. Each nozzle 108 is located on the base 1 2 3 that straddles the slab moving floor 109. It is attached to the tip of a 6-axis robot 125 provided on the guide 124, and each nozzle 108 has a nozzle drive controller 106 and a nozzle shown in Fig. 12 The driving is controlled by the driving device 107.
こ のノ ズル 1 0 8 の駆動装置と しては、 ロボッ ト、 The driving device of this nozzle 108 is a robot,
N C装置を使用する こ とができ、 ロボッ ト は多関節ロボ ッ 卜を地上設置も し く は天吊 り、 壁掛け、 も し く はそれ らの組み合わせにて使用 し、 1 台 も し く は複数台用いる こ とができ る。 また、 駆動装置は固定して も よい し、 本 図の如 く 1 軸以上走行させて も よい。 また、 アブレイ シ ブノ ズルへッ ドと して直接噴射方式 (高圧で研磨材と水 を予め混合 したおいてノ ズル部よ り スラ リ ー状態で高圧 状態噴射させる方式) を用いた り、 ノ ズル操作方法と し て回転揺動運動を種々 組み合わせる こ とが出来る等種々 の態様が採用可能である。 An NC device can be used, and the robot can be an articulated robot that is mounted on the ground or suspended from the ceiling, mounted on a wall, or used in combination with one or more robots. Multiple units can be used. Further, the driving device may be fixed, or may be driven on one or more axes as shown in this figure. The abrasive nozzle head may be a direct injection method (a method in which abrasive and water are mixed in advance at a high pressure and the slurry is sprayed from the nozzle portion in a high pressure state). Various modes can be adopted as the method of operating the shake, such as various combinations of rotational swinging motions.
以上こ の出願の発明によれば、 研磨材を混入 した高圧 水ジ ヱ ッ 卜を鋼片に噴出する こ とによ って非接触的で自 動的な研削が可能であ り、 従来、 手動で実施していたス カ ー フ ィ ング (溶削) や、 砥石研削等によ る欠陥部や傷 部の除去手段を用いる こ とによ る騒音や熱を伴った苛酷 な作業環境の著しい改善 (無人化等) が可能とな り、 加 えて鋼片の表面、 或いは、 その近傍に存在する有害欠陥 ゃ疵を安定 して、 確実に除去出来、 素材に対するなんら 溶融や熱的変質等を伴う こ とな く 、 所要の深さ にて除去 出来る優れた効果が奏される。 必要に応じて研磨材の循 環利用系を併用すれば、 アブレイ シブウ ォ ー夕一 ジエ ツ ト 自体の機能を低下する こ とな く 、 連続作業が可能とな り、 資源の節約やコス ト ダウ ンに もつながる優れたシス テムの提供が可能となる。 According to the invention of this application, non-contact and automatic grinding can be performed by jetting a high-pressure water jet mixed with an abrasive onto a steel slab. In a harsh working environment with noise and heat due to the use of means for removing defects and scratches by manually performing scarfing (melting) and grinding wheels. Significant improvement (unmanned, etc.) is possible, and in addition, harmful defects and defects existing on or near the surface of the slab can be stably and reliably removed, and there is no melting or thermal deterioration of the material. An excellent effect that can be removed at a required depth is obtained without accompanying. Circulate the abrasive if necessary The combined use of the ring utilization system enables continuous work without deteriorating the function of the abrasive water jet itself, leading to an excellent system that leads to resource saving and cost down. System can be provided.
又、 鋼片の表面の欠陥や傷の除去のニーズは近年素材 の高性能化要求に伴ってますます増加の傾向にあ り、 こ の出願の発明は こ れに対して非常に有益な製造加工手段 を提供する こ とが出来る という優れた効果が果たされる ものである。  In addition, the need for removing defects and scratches on the surface of billets has been increasing in recent years along with the demand for higher performance of materials, and the invention of this application is a very useful manufacturing method. An excellent effect of being able to provide processing means is achieved.

Claims

請求の範囲 The scope of the claims
1. 連続铸造工程中またはその後工程にて研磨材を ノ ズルから鋼片に投射 して該鋼片を研削する方法におい て、 微粒状の研磨材を混入 した高圧水を鋼片の表面にジ エ ツ ト に して投射し、 その表面及びその近傍の少な く と も疵部分を研削する よ う にする こ とを特徴とする研削方 法。 1. In the method of grinding abrasive slabs by projecting abrasives from the nozzle onto the slab during or after the continuous manufacturing process, high-pressure water mixed with fine-grained abrasives is applied to the surface of the slabs. A grinding method characterized by projecting as an edge and grinding at least a flaw on the surface and in the vicinity thereof.
2. 連続铸造工程中またはその後工程における上記 ジ ッ ト による研削方法において、 欠陥の存在部位を略 平滑に仕上げる よ う にする—こ とを特徴とする請求の範囲 第 1 項記載の研削方法。  2. The grinding method according to claim 1, wherein, in the grinding method using the above-mentioned jig during or after a continuous manufacturing process, a portion where a defect is present is finished to be substantially smooth.
3. 上記研磨材を 0 . 5 kgZmin 以上で供給する と 共に、 圧力 1 0 0 O kg f Zcm2 以上、 流量 S ^ Zmin 以 上で高圧水を供給し、 これら研磨材および高圧水を高圧 状態で予め混合するか、 高圧水を噴出させた後のノ ズル へッ ド内で混合する こ とに よ って、 研磨材を混入 した高 圧水と し、 鋼片表面に対して投射角 (衝突角) が 1 0 ° 〜 1 7 0 ° 、 ノ ズル と鋼片までの噴射距離が 2 0 0 mm以 内となる条件で、 鋼片表面に投射して研削する よ う にす る こ とを特徴とする請求の範囲第 1 項、 第 2 項いづれか 記載の研削方法。 3.0 the abrasive. 5 kgZmin along with supplying at least the pressure 1 0 0 O kg f Zcm 2 or more, the flow rate S ^ Zmin supplying high-pressure water on more than, high pressure these abrasive and high pressure water By mixing in advance in the nozzle head or by mixing in the nozzle head after jetting high-pressure water, high-pressure water mixed with abrasive is formed, and the projection angle ( Under conditions where the impact angle is between 10 ° and 170 ° and the injection distance between the nozzle and the billet is within 200 mm, the steel is projected onto the billet surface and ground. The grinding method according to any one of claims 1 and 2, characterized in that:
4. 連続铸造工程ま たはその後工程にて研磨材をノ ズルから鋼片に投射 して該鋼片を研削する方法において、 該鋼片およびその表面近傍の欠陥部を自動的に検出 し、 該検出の前、 後あるいは同時の少な く と も一方にて微粒 状の研磨材を混入 した高圧水を鋼片の表面にジエ ツ ト に して投射 し、 その表面及びその近傍の少な く と も疵部分 を研削する よ う にする こ とを特徴とする研削方法。 4. In a method of projecting an abrasive material from a nozzle onto a steel slab in a continuous manufacturing process or a subsequent process to grind the steel slab, the method automatically detects the steel slab and a defect near the surface thereof, Before, after and / or at least one of the detections, high-pressure water mixed with fine-grained abrasive is jetted onto the surface of the slab and jetted onto the surface of the steel slab. A grinding method characterized by grinding flaws.
5 . 連続铸造工程中またはその後工程にて研磨材をノ ズルから鋼片に投射 して該鋼片を研削する方法において、 铸片の全面又は部分の疵検出を行い、 これを座標変換す る研削面判定システム と、 こ の研削面判定システムによ つて座標変換された情報によ って研磨材噴射用高圧流体 ノ ズルを駆動移動する こ とを特徴とする研削方法。  5. In the method of grinding abrasive slab by projecting abrasives from the nozzle onto the steel slab during or after the continuous manufacturing process, the whole surface or part of the slab is detected and the coordinates are transformed. A grinding method comprising: a grinding surface determination system; and a driving method for driving and moving a high pressure fluid nozzle for abrasive injection based on information converted in coordinates by the grinding surface determination system.
6 . アブレイ シブウ ォ ー夕一ジェ ッ ト による基材表 面の研削システムであ っ て、 研磨材を供給する研磨材供 給系 と、 基材と相対移動する ノ ズルを設けた研削ノ ズル 装置系 と、 研削処理後の研磨材を回収 して前記研磨材の 供給系に戻す研磨材回収系 とを有する研削システム。  6. A grinding system for the surface of a base material using an abrasive water jet, which is an abrasive supply system that supplies the abrasive and a grinding nozzle that has a nozzle that moves relative to the base material. A grinding system comprising: an apparatus system; and an abrasive recovery system that collects the abrasive after the grinding process and returns the abrasive to a supply system of the abrasive.
7. アブレイ シブゥ ォ 一夕一ジェ ッ ト による基材表 面の研削システムであ って、 基材表面の疵を検知する欠 陥検出系 と、 同欠陥検出系から検出 した疵情報に基づい て制御された研削条件を発信する研削制御系 と、 同研削 制御系からの信号に基づいて研磨材の供給を制御する研 磨材供給系 と同研削制御系からの信号に基づいて基材と 相対移動する ノ ズルを設けた研削ノ ズル装置系 とを有す る研削システム。  7. This is a grinding system for the surface of the base material by abrasive jets, based on a defect detection system that detects flaws on the base material surface and flaw information detected from the flaw detection system. A grinding control system that transmits controlled grinding conditions, a polishing material supply system that controls the supply of abrasives based on signals from the grinding control system, and a base material relative to the base material based on signals from the grinding control system. A grinding system having a grinding nozzle device system provided with a moving nozzle.
8 . ァブレイ シブウ ォ ータ ー ジヱ ッ ト によ る基材表 面の研削システムであ って、 基材表面の疵を検知する欠 陥検出系 と、 同欠陥検出系から検出 した疵情報に基づい て制御された研削条件を発信する研削制御系 と、 同研削 制御系からの信号に基づいて研磨材の供給を制御する研 磨材供給系 と、 同研削制御系からの信号に基づいて基材 と相対移動する ノ ズルを設けた研削ノ ズル装置系と、 研 削処理後の研磨材を回収して前記研磨材の供給系に戻す 研磨材回収系 とからなる研削シ ス テム。 8. This is a system for grinding the surface of a base material by means of an abrasive water jet. A defect detection system, a grinding control system that transmits controlled grinding conditions based on flaw information detected from the defect detection system, and an abrasive material that controls the supply of abrasive material based on signals from the grinding control system A supply system, a grinding nozzle device system provided with a nozzle that moves relatively to the base material based on a signal from the grinding control system, and an abrasive material after the polishing process is collected and supplied to the abrasive material supply system. Return A grinding system consisting of an abrasive recovery system.
PCT/JP1993/000218 1992-10-21 1993-02-23 Grinding method and grinding system for billet WO1994008754A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU35748/93A AU670573B2 (en) 1992-10-21 1993-02-23 Grinding method and grinding system for billet
BR9305541A BR9305541A (en) 1992-10-21 1993-02-23 Grinding process and system
KR1019940700115A KR0161671B1 (en) 1992-10-21 1993-02-23 Grinding Method and Grinding System
DE69325807T DE69325807T2 (en) 1992-10-21 1993-02-23 METHOD AND SYSTEM FOR GRINDING SLAMS
EP93904335A EP0645214B1 (en) 1992-10-21 1993-02-23 Grinding method and grinding system for billet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28331992A JPH06126630A (en) 1992-10-21 1992-10-21 Grinding system
JP4/283319 1992-10-21

Publications (1)

Publication Number Publication Date
WO1994008754A1 true WO1994008754A1 (en) 1994-04-28

Family

ID=17663929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000218 WO1994008754A1 (en) 1992-10-21 1993-02-23 Grinding method and grinding system for billet

Country Status (10)

Country Link
EP (1) EP0645214B1 (en)
JP (1) JPH06126630A (en)
KR (1) KR0161671B1 (en)
CN (1) CN1095728C (en)
AU (1) AU670573B2 (en)
BR (1) BR9305541A (en)
DE (1) DE69325807T2 (en)
ES (1) ES2134256T3 (en)
TW (1) TW245673B (en)
WO (1) WO1994008754A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308745A (en) * 2014-09-02 2015-01-28 黄文侃 Jet flow grinding technology for processing metal vehicle wheel hub surface
CN110014372A (en) * 2019-04-16 2019-07-16 攀钢集团攀枝花钢铁研究院有限公司 For clearing up the construction method of continuous casting billet surface impurity
CN113021193A (en) * 2021-03-18 2021-06-25 动力博石(广东)智能装备有限公司 System for cutting printed circuit board by adopting post-mixing type abrasive high-pressure water jet

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598730A (en) * 1994-08-30 1997-02-04 Snap-On Technologies, Inc. Pre-forge aluminum oxide blasting of forging billets as a scale resistance treatment
KR100591399B1 (en) * 2004-10-06 2006-06-19 대우조선해양 주식회사 Mobile blasting device for vessel pretreatment
TWI496662B (en) * 2009-06-26 2015-08-21 Sintokogio Ltd Steel ball shot device
CN101972980A (en) * 2010-09-15 2011-02-16 广州大学 Equipment for automatically strengthening and grinding surfaces of machines
CN102059644A (en) * 2010-10-27 2011-05-18 广州大学 Intelligent processing robot for improved grinding
CN102896584B (en) * 2011-07-29 2015-07-22 宝山钢铁股份有限公司 Process arrangement method for mixed jet cleaning
CN102873412A (en) * 2012-10-11 2013-01-16 南京工艺装备制造有限公司 Method for processing lead screw roller path by using water jet cutter
CN103481202B (en) * 2013-09-30 2016-02-17 杭州浙达精益机电技术股份有限公司 Based on the steel plate descaling device of slurry impelling and supersonic guide-wave compound
CN103586782B (en) * 2013-09-30 2016-07-13 杭州浙达精益机电技术股份有限公司 Steel tube surface abrasive jet descaling device
CN104907633B (en) * 2015-07-09 2017-05-17 上海维宏电子科技股份有限公司 Method for achieving automatic correction of Z axis position of cutting tool based on numerical control system
CN107848093A (en) 2015-08-10 2018-03-27 坂东机工株式会社 Dressing method and trimming device
CN105081985B (en) * 2015-08-19 2018-07-10 秦皇岛树诚科技有限公司 A kind of steel band mechanical scale-removing apparatus
CN105538166A (en) * 2016-01-25 2016-05-04 李伟民 Three-dimensional sand blasting device
CN106078529B (en) * 2016-05-30 2018-10-02 安徽栢林洁具有限公司 A method of handling bathroom cabinet plank using bottom abrasive material
CN106078527B (en) * 2016-05-30 2018-11-09 安徽栢林洁具有限公司 A method of handling bathroom cabinet plank using abrasive material
US10363648B2 (en) 2016-08-04 2019-07-30 C.J. Spray Apparatus, components, methods and systems for use in selectively texturing concrete surfaces
CN106272096B (en) * 2016-10-21 2018-10-12 贵州大学 A kind of low-carbon steel part carburizing rear surface intensifying method
CN111559048B (en) * 2020-04-25 2022-05-10 芜湖荣基实业有限公司 Welding device for producing high polymer plastic
CN113245108A (en) * 2021-05-28 2021-08-13 纪新刚 Method for treating a workpiece with a water jet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634431B2 (en) * 1977-04-26 1981-08-10
JPS61159373A (en) * 1984-12-28 1986-07-19 Fuji Photo Film Co Ltd Blast nozzle
JPS6316999A (en) * 1986-07-08 1988-01-23 川崎重工業株式会社 Abrasive water jet cutting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5049125A (en) * 1973-08-31 1975-05-01
JPS5195938A (en) * 1975-02-20 1976-08-23 HYOMENSHORISOCHI
JPS5835449B2 (en) * 1979-08-31 1983-08-02 中興化成工業株式会社 Method for manufacturing an inorganic fiber woven pipe having wavy irregularities on its surface
JPS5944187B2 (en) * 1981-12-25 1984-10-27 日立造船株式会社 Rust remover control method
BE895665A (en) * 1983-01-20 1983-05-16 Centre Rech Metallurgique Deseaming of metal prods., esp. steel slabs - esp. where TV camera is used to locate defects and to feed corresp. signals to computer controlling deseaming tool
GB2159451A (en) * 1984-05-25 1985-12-04 Hancock Cutting Machines Limit Drive arrangement for hand guided cutting torch
JPS6115937A (en) * 1984-06-30 1986-01-24 Kobe Steel Ltd Aluminum alloy plate for blind
KR930008692B1 (en) * 1986-02-20 1993-09-13 가와사끼 쥬고교 가부시기가이샤 Abrasive water jet cutting apparatus
CN87210089U (en) * 1987-07-13 1988-06-22 余兆丰 Simple apparatus for culturing liquid strain in depth layer
JPH01159373A (en) * 1987-09-10 1989-06-22 Seiko Epson Corp Target for sputtering
US5117366A (en) * 1989-06-28 1992-05-26 Stong Jerald W Automated carving system
JP2963158B2 (en) * 1990-07-24 1999-10-12 株式会社不二精機製造所 Slurry pumping type blasting machine
FR2669568B1 (en) * 1990-11-26 1995-02-17 Lorraine Laminage METHOD AND DEVICE FOR MACHINING WITH A TORCH FLAME FOR OXYCOUPTING ELIMINATES OF CRACKS IN SLABS IN A STEEL PLANT.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634431B2 (en) * 1977-04-26 1981-08-10
JPS61159373A (en) * 1984-12-28 1986-07-19 Fuji Photo Film Co Ltd Blast nozzle
JPS6316999A (en) * 1986-07-08 1988-01-23 川崎重工業株式会社 Abrasive water jet cutting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0645214A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104308745A (en) * 2014-09-02 2015-01-28 黄文侃 Jet flow grinding technology for processing metal vehicle wheel hub surface
CN110014372A (en) * 2019-04-16 2019-07-16 攀钢集团攀枝花钢铁研究院有限公司 For clearing up the construction method of continuous casting billet surface impurity
CN113021193A (en) * 2021-03-18 2021-06-25 动力博石(广东)智能装备有限公司 System for cutting printed circuit board by adopting post-mixing type abrasive high-pressure water jet

Also Published As

Publication number Publication date
ES2134256T3 (en) 1999-10-01
EP0645214A1 (en) 1995-03-29
JPH06126630A (en) 1994-05-10
EP0645214B1 (en) 1999-07-28
DE69325807D1 (en) 1999-09-02
AU670573B2 (en) 1996-07-25
AU3574893A (en) 1994-05-09
TW245673B (en) 1995-04-21
DE69325807T2 (en) 2000-03-16
BR9305541A (en) 1995-12-26
KR0161671B1 (en) 1998-12-15
EP0645214A4 (en) 1995-04-19
CN1085840A (en) 1994-04-27
CN1095728C (en) 2002-12-11

Similar Documents

Publication Publication Date Title
WO1994008754A1 (en) Grinding method and grinding system for billet
CN105666287B (en) Robot grinding and polishing system based on CMP and used for machining metal components in aviation field
JPH10180585A (en) Machine tools with automatic chip removal equipment
CN115229212B (en) Device and method for processing composite additive by synchronous laser cleaning and polishing of broadband laser cladding
CN108216411A (en) The pretreating process of climbing robot and ship steel surface
US5791968A (en) Grinding method and grinding system for steels
JP2008238259A (en) Method for repairing surface of hot-state slab
JP2883230B2 (en) Billet grinding method
JPH11254281A (en) Device and method for machining
WO2024099302A1 (en) Polishing pad recycling processing device
JPH0885063A (en) Water jet grinding method and device
JP2875745B2 (en) Numerical control polishing equipment
JP3280430B2 (en) High temperature slab flaw grinding method and apparatus
CN204736103U (en) Water under high pressure sand removal device
CN114260759A (en) Efficient identification and finishing method for surface defects of casting blank
CN208117504U (en) A kind of aluminium diecasting polishing control system
JPH0637075A (en) Processing method using grindstone
CN218613332U (en) Digit control machine tool grinding device
CN116652837B (en) Diamond coating polishing equipment and method
JP3223049B2 (en) Opening flaw removal method
JP2004025358A (en) Grinding device of glass substrate
JPH0675822B2 (en) Polishing method and apparatus
CN117754612A (en) A mobile welding grinding and polishing robot equipment for ship hull deck and its use method
CN208588598U (en) Full-automatic shale rock core numerical control system appearance device
CN208468005U (en) A kind of grinding apparatus of high-effective dust-removing chip removal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1993904335

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1994 193180

Date of ref document: 19940209

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993904335

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 711708

Date of ref document: 19960830

Kind code of ref document: A

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1993904335

Country of ref document: EP