[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1994005683A1 - Rokitamycin monohydrate crystal and process for producing the same - Google Patents

Rokitamycin monohydrate crystal and process for producing the same Download PDF

Info

Publication number
WO1994005683A1
WO1994005683A1 PCT/JP1993/001189 JP9301189W WO9405683A1 WO 1994005683 A1 WO1994005683 A1 WO 1994005683A1 JP 9301189 W JP9301189 W JP 9301189W WO 9405683 A1 WO9405683 A1 WO 9405683A1
Authority
WO
WIPO (PCT)
Prior art keywords
rkm
hydrate
acid
anhydride
rokitamycin
Prior art date
Application number
PCT/JP1993/001189
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kinoshita
Original Assignee
Asahi Kasei Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kogyo Kabushiki Kaisha filed Critical Asahi Kasei Kogyo Kabushiki Kaisha
Publication of WO1994005683A1 publication Critical patent/WO1994005683A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/08Hetero rings containing eight or more ring members, e.g. erythromycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention provides the following formula (1)
  • RKM Lokitamycin
  • RKM has been industrially synthesized using leucomycin A5 as a raw material
  • the obtained crude product is purified by column chromatography, the obtained eluate is concentrated, and the concentrated solution is dropped into water to crystallize.
  • the resulting precipitate was collected by filtration and dried to give a product.
  • this amorphous RKM anhydride has a strong bitter taste, and when formulated as a syrup, RKM is pre-treated by a spray drying method using a polymer film as a coating agent. To improve bitterness.
  • studies on the physical and chemical properties of RKM anhydride show that RKM anhydride itself is fat-soluble and hardly wets with water.
  • DK ester sugar fatty acid ester
  • the formulation was designed to improve dispersibility in gastric juice and speed up dissolution. (Japanese Patent Publication No. 2-591129, Pharmaceutical Sciences, 48, 147 (1988)).
  • DK ester sugar fatty acid ester
  • RKM anhydride had properties such as strong bitterness and poor wettability with water. Further, in the production of bulk RKM, it was difficult to further improve the quality by the purification method using only the column chromatography described above.
  • the inventor of the present invention has conducted intensive studies to solve the above-mentioned problem of bitterness. As a result, there has been no report of a monohydrate of a 16-membered macrolide antibiotic.
  • RKM anhydride or methanol-containing RKM crystal is dissolved in an aqueous solution of an organic acid such as sulfuric acid, propionic acid, tartaric acid, or citric acid, or an inorganic acid such as phosphoric acid, hydrochloric acid, or sulfuric acid. It has been found that a novel RKM ⁇ 1 hydrate crystal can be obtained simply and in high yield by the conversion.
  • this R KM-1 hydrate was obtained as a crystalline form of the R KM bulk powder with almost no bitterness, and was further improved in high purity, high thermal stability and improved water wetting. They have found that they have good properties, and have completed the present invention.
  • R KM monohydrate crystals represented by the formula (1) characterized in that R KM monohydrate crystals represented by the formula: It is.
  • the RKM as a raw material used in the present invention is not limited at all, for example, as long as it is a crude or appropriately purified RKM obtained by the above-described synthesis procedure or a RKM having the same.
  • RKM anhydride or methanol-containing crystals can be easily used, and in particular, high-purity RKM-monohydrate crystals can be obtained by using RKM methanol-containing crystals. I can do it.
  • an acidic aqueous solution is prepared.
  • an organic acid such as acetic acid, propionic acid, tartaric acid, and citric acid, or phosphoric acid, hydrochloric acid, sulfuric acid, etc.
  • An inorganic acid or a mixture thereof is prepared into an acidic aqueous solution having a pH of 1 to 4.
  • the acid is preferably an organic acid such as acetic acid or propionic acid, or an inorganic acid of phosphoric acid.
  • the acidic aqueous solution prepared in this manner was added with 0 Under cooling and stirring, the RKM anhydride and Z or the methanol-containing RKM crystal are dissolved at a concentration of 20 to 300 mgZml. After complete dissolution, to crystallize the RKM.1 hydrate, sodium hydroxide, sodium carbonate, sodium bicarbonate, hydration hydration, carbonation hydration, and carbonate
  • the above RKM-dissolved acidic aqueous solution is diluted with alkaline water obtained by diluting a hydrogen power, ammonium carbonate, ammonium water or the like to a concentration of about 20%, for example, at a pH of about pH 4 to 6.5, preferably PH 4.4. Adjust to around 5.0.
  • the RKM solution is gradually warmed to room temperature of 20 to 30 and allowed to stand for about 2 to 72 hours to form crystals.
  • the grown crystals are collected by filtration, washed with water, and depressurized.
  • the desired R KM ⁇ monohydrate crystals can be obtained by drying.
  • FIG. 3 shows an X-ray diffraction spectrum of the thus obtained RKM ⁇ monohydrate crystal of the present invention (hereinafter abbreviated as RKM hydrate).
  • RKM hydrate monohydrate crystal of the present invention
  • These are 5.2, 6.8, 8.3, 10.3, 11.2, 12.3, 13.3, 13.8, 1.7, 15.1, 1 5.8, 16.4, 17.1, 18.1, 19.1, 19.5, 20.4, 21.5, 22.0, 22.7, 2 3.8, 24.8, 25.1, 26.6 & 28.6 °
  • a diffraction angle of 2 ° shows a sharp X-ray diffraction spectrum, indicating that it is crystalline. It is obvious.
  • the RKM hydrate of the present invention is clearly different from the above-mentioned RKM anhydride and methanol-containing crystal in two values of the X-ray diffraction spectrum. Furthermore, the R KM hydrate of the present invention has one water molecule hydrated per R KM molecule from the results of instrumental analysis such as elemental analysis, moisture measurement (Karlfisher method) and thermogravimetric analysis. Was identified and found to be a novel crystal.
  • the antibacterial activity of the novel RKM hydrate of the present invention was the same as that of the conventional RKM anhydride. Furthermore, the RKM hydrate of the present invention showed no acute death by intraperitoneal administration to mice (5 mice per group) at 2000 mg kg, and no deaths were observed.
  • the new RKM hydrate obtained in this way has no bitterness and good wettability. Yes, therefore, in oral preparations, especially dry syrups and tablets, as compared to known RKM anhydrides, which have a strong bitter taste and exhibit poor wettability, which is an unfavorable property in preparation. It could be used to advantage. Furthermore, as an advantage in pharmacology, it has become possible to develop new formulations, such as lozenges, granules, ophthalmic ointments, and ointments, using the RKM hydrate of the present invention, which have been difficult in the past. It has very good specificity from a pharmaceutical standpoint.
  • the RKM hydrate of the present invention has a specific volume of about 30% smaller than conventionally known RKM anhydride, and has high hardness due to being crystalline, so that it is possible to reduce the size and hardness of tablets. In addition, it has extremely excellent characteristics, such as low static charge during grinding.
  • the RKM hydrate of the present invention is a crystal having various excellent properties as described above, which is extremely preferable for formulation, and can be easily formulated into a formulation suitable for a commonly used formulation. I can do it.
  • the RKM hydrate preparation may be administered to humans in an amount of 100 to 600 mg once to three times a day as in the case of the conventional RKM preparation.
  • FIG. 1 shows the X-ray diffraction spectrum of RKM anhydride
  • Figure 2 shows the X-ray diffraction spectrum of the methanol-containing RKM crystal
  • FIG. 3 shows the X-ray diffraction spectrum of RKM hydrate obtained according to the present invention (Example 1);
  • FIG. 4 shows a thermal stability curve of R KM hydrate and R KM anhydride obtained at 80 ° C. according to the present invention (Example 1).
  • FIG. 5 shows the dissolution curve of the acid-free gastric juice model in Formulation 5
  • FIG. 6 shows the dissolution curve of the acid-free gastric juice model in Formulation 6
  • FIG. 7 shows a dissolution curve of the acid-free gastric juice model in Formulation 7.
  • RKM The synthesis method of RKM is described in Patent (JP-B-59-46520, JP-B-63-50337) or literature (J. Antibiotics, 34, 101 (1) 9 8 1))). That is, the leucomycin A 5 as a starting material, was synthesized according to the following steps, was isolated and purified as R KM anhydride.
  • 1,2-dichloroethane phase was dried over anhydrous magnesium sulfate (10 g), concentrated to dryness under reduced pressure, and concentrated to 2'-10-acetyl-13> 9-di-trimethylsilyl leucomy. to obtain a thin a 5 6 3 g.
  • the 1,2-dichloroethane phase was separated. Then, the obtained 1,2-dichloroethane phase was dried over 10 g of anhydrous magnesium sulfate, concentrated under reduced pressure to dryness, and 2′-0-acetyl-17,18-ethanol-18,3 "—Gee 0—propionyl 3,9—Geetrimethylsilylleucomycin A 5 and 2 '— 0—Acetyl-3” — 0—Propionyl-1,3,9_di-1 0—Trimethylsilylleucomycin to obtain a mixture 6 8 g of a 5.
  • Moisture Korean moisture meter manufactured by Kyoto Denshi Kogyo Co., Ltd.: about 2.1% (theoretical value as monohydrate; 2.13%).
  • Thermogravimetric analysis (MacScience thermal analyzer); Weight change of about 2% near melting point 3 ⁇ 4: ⁇ ;
  • the RKM hydrate and the RKM anhydride obtained in the same manner as in Example 1 were stored for 80 weeks under severe conditions for 4 weeks, sampled daily, and measured for water content (Karl Fisher Method) and HPLC analysis to determine the absolute amount of RKM.
  • a sample for HPLC measurement was prepared by weighing about 5 mg of each RKM bulk powder and dissolving it in 5 ml of acetonitrile: 0.1% aqueous acetic acid (1: 1) solution. The results are shown in FIG. 4 (in the figure, 1-11 is RKM hydrate and 1 ⁇ _ is RKM anhydride).
  • RKM hydrate had better thermal stability than the anhydride.
  • Detector Spectrophotometer (wavelength: 2 32 nm)
  • Formulation 1 2 g of RKM hydrate, 0.8 g of glycine and 12 g of sucrose were mixed in a mortar and suspended in 80 ml of distilled water.
  • Formulation 2 2 g of RKM anhydride, 0.8 g of glycine, and 12 g of sucrose were mixed in a mortar and suspended in 80 ml of distilled water.
  • Formulation 3 RKM anhydride 400 mg Mg and 0.8 g sucrose were combined in a mortar and suspended in 80 ml of distilled water.
  • Formula 4 20 mg of RKM anhydride, 0.8 g of glycine and 12 g of sucrose were mixed in a mortar and suspended in 80 ml of distilled water.
  • the obtained granules were sized to obtain 550 g of granules A having a particle size of 30 to 83 mesh. After passing through 83 meshes, granules are similarly made into granules by the above-mentioned fluidized bed granulator, and 30 to 83 mesh fractions are collected. 680 g of granules B were obtained. Separately, 40 g of Aminoacetic Acid (JP, Showa Denko, trade name; glycine “fine powder”) and 263 g of D-mannitol (Towa Kasei, trade name, Mannit P) are used as binders.
  • Aminoacetic Acid JP, Showa Denko, trade name; glycine “fine powder”
  • 263 g of D-mannitol Towa Kasei, trade name, Mannit P
  • the granulation was performed in the same manner as Granule A using a solution prepared by dissolving 5 g of hydroxypropylcellulose in distilled water in 100 ml of distilled water, and granules C 300 having a particle size of 30 to 83 mesh were produced. g was obtained.
  • Granule B 33.5 g and granule C 16.5 g were mixed to obtain 500 g (100 mg titer in lg) of a dry syrup preparation containing RKM hydrate. This dry syrup is usually administered to a child three times a day with a dose of l to 2 g (titer of 100 to 200 mg as RKM).
  • a dissolution test was performed using a powder obtained by mixing RKM hydrate and anhydride in a mortar in accordance with the prescription composition based on the basic composition of the tablet.
  • Formulation 5 of RKM hydrate and Formulation 6 below for RKM anhydride were used in the following tests.
  • the dissolution test conditions were as follows: 160 ml of acid-free gastric juice model (40 ml of physiological saline, 120 ml of distilled water: 120 ml) was kept at 37 ° C in a 200 ml beaker, and stirred with a stirrer.
  • RKM hydrate has a specific volume of about 30% smaller than that of anhydrous, and can reduce the size of tablets and the like, making it possible to formulate drinkable formulations.
  • the present invention provides a novel RKM hydrate having significantly improved bitterness over RKM. No need to mask the bitterness by encapsulating RKM in the mic mouth by spray-drying method using a molecular film as a coating agent, without processing the raw powder, and with the same or better quality as the conventional product. Because it is possible to formulate syrups, and because RKM hydrate has excellent water wettability, it does not require conventional surface treatment with DK ester when formulating as tablets-dissolution test Based on the results, we will formulate tablets of the same quality as conventional products in terms of E.A. (bioavailability). As described above, the RKM hydrate obtained by the present invention is a crystal having the above-mentioned extremely excellent properties even in the formulation.
  • the RKM hydrate of the present invention obtained by the above-mentioned production method has a high purity, a high yield, a high thermal stability, and a single active ingredient or a fixed ratio of active ingredients suitable for the purpose on an industrial scale. It can also provide a separation and purification method that can produce products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Communicable Diseases (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A rokitamycin monohydrate crystal (hereinafter referred to as 'RKM hydrate') represented by formula (1), and a process for producing RKM hydrate by crystallizing rokitamycin from the acidic aqueous solution thereof. The novel RKM hydrate is so extremely improved in bitterness over rokitamycin itself that it is unnecessary to hide the bitterness of the rokitamycin heretofore used and it is possible to prepare medicated syrups with the qualities superior to those of the conventional ones in a simpler process from RKM hydrate. Further, RKM hydrate is so excellent in wettability with water that it is possible to prepare tablets with the qualities equivalent to those of the conventional ones without the necessity for conducting the conventional surface treatment with a sucrose/fatty acid ester.

Description

ロキタマイ シン . 1水和物結晶、 及びその製造法 技術分野  Lokitamycin monohydrate crystal and method for producing the same
本発明は下記の式 ( 1 ) 明  The present invention provides the following formula (1)
 Fine
Figure imgf000003_0001
で表されるロキタマイシン · 1水和物結晶、 及びロキタマイシンを酸性水溶液中 で結晶化することを特徴とする式 ( 1 ) で表される口'キタマイ シン · 1水和物結 晶、 及びその製造法に関する。 従来の技術
Figure imgf000003_0001
Lokutamycin monohydrate crystal represented by the following formula: and loctamicin monohydrate crystal represented by the formula (1) characterized by crystallizing rokitamicin in an acidic aqueous solution, and production thereof About the law. Conventional technology
ロキタマイ シン (以下 R KMと略す) は下記式 ( 2 )  Lokitamycin (hereinafter abbreviated as RKM) has the following formula (2)
( 2 )
Figure imgf000003_0002
で表される化合物であって、 キタサマイシン生産菌ス トレブトミセス ' キタサ ト ェンシス ( S t r e p t o m y c e s k i t a s a t o e n s i s ) に厲する 一変異株が生産するロイコマイ シン A5 を原料とし 3 " 位三級水酸基を選択的に プロピオニル化して得られる、 半合成マクロライ ド系抗生物質である。 その合成 法及び物理化学的性質については、 特許 (特公昭 5 9 - 4 6 5 2 0号公報) 及び 文献 ( J. An t i b i o t i c s , 3 4 , 1 0 0 1 ( 1 9 8 1 ) ) において公 知である。 その抗菌力は既存の 1 6員環マクロライ ドのキタサマイシン、 ジョサ マイシン、 ミデカマイシン及びミオ力マイシンより強く、 1 4員環のエリスロマ イ シンに匹敵する (同文献) 。 さらに、 R KMは、 既存のマクロライ ド系抗生物 質がまったく無効である耐性菌にも優れた抗菌作用をしめす薬剤であり、 また例 えばグリシン、 クェン酸を配合した経口投与用錠剤 (米国特許第 4 7 1 6 1 5 3 号明細書) やドライ · シロ ップ剤として安全性も高く、 今日、 広く使用されてい るものである。
(2)
Figure imgf000003_0002
A compound represented by the formula: which is a member of the kitasamycin-producing bacterium Streptomyces `` Kitasatoensis (Streptomyceskitasatoensis) '' A semi-synthetic macrolide antibiotic obtained by selectively propionylating the tertiary hydroxyl group at the 3 "-position using leukomycin A5 produced by one mutant as a raw material. (Japanese Patent Publication No. 59-46520) and the literature (J. Antibiotics, 34, 1001 (1989)). It is stronger than the four-membered macrolides, kitasamycin, josamycin, midecamycin, and myomycin, and is comparable to the fourteen-membered erythromycin (Id.). It has excellent antibacterial action against ineffective resistant bacteria. For example, tablets for oral administration containing glycine and citrate (US Pat. No. 4,716,153) and dry syrup Cheap as an agent Sex is also high, today, is shall have been widely used.
これら 1 4員環及び 1 6員環マクロライ ド系抗生物質は強い苦味を有する欠点 が知られていた。 また、 1 4員環マクロライ ド系抗生物質であるエリスロマイシ ンやその誘導体の 1水和物または 2水和物結晶 ( J 0 u r n a 1 o f P h a r m a c e u t i c a 1 S c i e n c e , 6 7 ( 8 ) p p l 0 8 7 (A u g. 1 9 7 8 ) 、 米国特許第 2 8 6 4 8 1 7号明細書、 特開昭 6 4— 3 8 0 9 6号公 報) が知られているが、 このエリ スロマイ シンまたはその誘導体の水和物結晶は 、 その溶解性を改善する目的でつく られたものである。 しかしながら、 これらの 化合物は経口投与において他のマクロライ ド系抗生物質と同様に強い苦味を有す るものであり、 何ら苦味の改善はなされていなかった。  These 14- and 16-membered macrolide antibiotics have been known to have the disadvantage of having a strong bitter taste. Also, monohydrate or dihydrate crystals of erythromycin, a 14-membered macrolide antibiotic, and its derivatives (J0 urna 1 of Pharmaceutica 1 Science, 67 (8) ppl87) (Aug. 1978), U.S. Pat. No. 2,864,177, and Japanese Unexamined Patent Publication (Kokai) No. S64-38096) are known. A hydrate crystal of syn or its derivative is made for the purpose of improving its solubility. However, these compounds had a strong bitter taste when administered orally similarly to other macrolide antibiotics, and no improvement in bitterness was achieved.
従来、 工業的には R KMはロイコマイシン A5 を原料として合成され、 得られ た粗生成物をカラムクロマ トグラフィ一により精製し、 得られた溶出液を濃縮し 、 濃縮液を水中に滴下し晶折した沈澱物を濾取し.、 これを乾燥して製品としてい た。 このようにして晶折した原末は非晶質で無水状態の R K M (以下、 R K M無 水物と略す) となるものであり、 この R KM無水物の X線回折スペク トルは第 1 図に示すとおりである。 これは面折角 ( 2 e 1 2 ° 及び 1 9 = をピークとす ブロードなスぺク トルを示すことからも非晶質であることが明白であった。 発明が解決しょうとする課題 Conventionally, RKM has been industrially synthesized using leucomycin A5 as a raw material, the obtained crude product is purified by column chromatography, the obtained eluate is concentrated, and the concentrated solution is dropped into water to crystallize. The resulting precipitate was collected by filtration and dried to give a product. The raw powder thus crystallized becomes an amorphous and anhydrous RKM (hereinafter abbreviated as RKM anhydrous), and the X-ray diffraction spectrum of this RKM anhydride is shown in Fig. 1. It is shown. It peaks at the fold angle (2 e 12 ° and 19 =) It was clear from the broad spectrum that it was amorphous. Problems to be solved by the invention
また、 この非晶質の R KM無水物は強い苦味を有しており、 シロ ップ剤として 製剤化する際、 高分子フィルムなどをコーティ ング剤とするスプレードライ法に より R KMを前処理して苦味の改善を計っていた。 更に、 R KM無水物の物理化 学的性質に関する研究から、 R KM無水物自体は、 脂溶性が高く水に濡れにくい 事から、 錠剤にする際、 安全性の高い通常経口製剤に用いられるショ糖脂肪酸ェ ステル (以下 D Kエステルと略す) を原末に対して 4 %使用し、 表面処理を施す ことにより、 胃液中での分散性を良好にし、 溶解を速やかにする製剤化を計って いた (特公平 2 - 5 9 1 2 9号公報、 薬剤学, 4 8 , 1 4 7 ( 1 9 8 8 ) ) 。 こ のように、 R KM無水物は、 それ自体強い苦味及び水に濡れ難いという性状を有 していた。 また、 R KM原末製造において、 上記のカラムクロマトグラフィーェ 程だけによる精製法ではさらなる品質向上は困難であった。  In addition, this amorphous RKM anhydride has a strong bitter taste, and when formulated as a syrup, RKM is pre-treated by a spray drying method using a polymer film as a coating agent. To improve bitterness. In addition, studies on the physical and chemical properties of RKM anhydride show that RKM anhydride itself is fat-soluble and hardly wets with water. By using a sugar fatty acid ester (hereinafter abbreviated as DK ester) at 4% based on the bulk powder and applying a surface treatment, the formulation was designed to improve dispersibility in gastric juice and speed up dissolution. (Japanese Patent Publication No. 2-591129, Pharmaceutical Sciences, 48, 147 (1988)). As described above, RKM anhydride had properties such as strong bitterness and poor wettability with water. Further, in the production of bulk RKM, it was difficult to further improve the quality by the purification method using only the column chromatography described above.
そこで、 R KMの品質向上を目的に、 その精製法を検討したところ、 R KM無 水物はメタノ一ルを用いて結晶化を行うことにより、 新規なメタノール舍有 R K M結晶を得ることが出来た。 このメ タノール舍有 R KM結晶の X線回折スぺク ト ルを第 2図に示す。 これは、 Ί . 8、 8. 3、 1 0. 3、 1 0. 7、 1 2. 1、 1 2. 6、 1 4. 2、 1 5. 8、 1 6. 6.、 1 8. 2、 2 0. 3、 2 1. 7 , 2 2. 1 , 2 3. 2、 2 4. 0及び 2 5. 5 ° の回折角 ( 2 e ) にシャープな回折 スペク トルを示すことから結晶性であることが明白であった。 しかしながら、 こ のものも同様に苦味を有するものであった。 課題を解决するための手段  Therefore, we examined the purification method for the purpose of improving the quality of RKM and found that RKM anhydrous could be crystallized using methanol to obtain new methanol-owned RKM crystals. Was. Figure 2 shows the X-ray diffraction spectrum of this methanol-owned RKM crystal. These are Ί .8, 8.3, 10.3, 10.7, 12.1, 12.6, 14.2, 15.8, 16.6., 18. 2,20.3,21.7,22.1,23.2,24.0,25.5 and 25.5 ° show a sharp diffraction spectrum at diffraction angles (2e). It was obvious that it was gender. However, this also had a bitter taste as well. Means for solving the problem
そこて、 本発明者は、 上記の苦味の問題点を解決すべく鋭意研究の結果、 従前 では 1 6員環マクロライ ド系抗生物質については全く 1水和物の報告はないと二 ろ、 R KM無水物またはメタノール舍有 R KM結晶を齚酸、 プロピオン酸、 酒石 酸、 クェン酸などの有機酸、 またはリ ン酸、 塩酸、 硫酸などの無機酸の水溶液に 溶解して結晶化せしめることにより、 簡便かつ高収率で全く新規な R KM · 1水 和物結晶が得られることを見い出した。 しかも全く意外なことに、 この R KM - 1水和物は R KM原末の苦味がほとんど感じられない結晶体として得られ、 更に 、 高純度かつ熱安定性が高く、 水濡れが改善された良好な性質を有することを見 い出し、 本発明を完成するに至った。 The inventor of the present invention has conducted intensive studies to solve the above-mentioned problem of bitterness. As a result, there has been no report of a monohydrate of a 16-membered macrolide antibiotic. In addition, RKM anhydride or methanol-containing RKM crystal is dissolved in an aqueous solution of an organic acid such as sulfuric acid, propionic acid, tartaric acid, or citric acid, or an inorganic acid such as phosphoric acid, hydrochloric acid, or sulfuric acid. It has been found that a novel RKM · 1 hydrate crystal can be obtained simply and in high yield by the conversion. Surprisingly, this R KM-1 hydrate was obtained as a crystalline form of the R KM bulk powder with almost no bitterness, and was further improved in high purity, high thermal stability and improved water wetting. They have found that they have good properties, and have completed the present invention.
本発明は、 上記の知見に基づいて完成されたもので、 下記式 ( 1 )  The present invention has been completed based on the above findings, and has the following formula (1)
OH  OH
, 0 Π ) 丄 J
Figure imgf000006_0001
で表される R KM · 1水和物結晶であり、 R KMを酸性水溶液中で結晶化するこ とを特徴とする式 ( 1 ) で表される R KM · 1水和物結晶の製造法である。
, 0 Π) 丄 J
Figure imgf000006_0001
A method for producing R KM monohydrate crystals represented by the formula (1), characterized in that R KM monohydrate crystals represented by the formula: It is.
本発明で使用される原料としての R K Mとは、 例えば前記した合成手順によつ て得られた粗製ないし適宜に精製された R K Mあるいはこれを舍有するものであ れば何ら限定されるものではない。 それらは例えば R KM無水物またはメタノ一 ル舍有結晶が簡便に利用でき、 特に R KMメタノ一ル舍有結晶を用いることによ り高純度の R KM · 1水和物結晶を得ることが出来る。  The RKM as a raw material used in the present invention is not limited at all, for example, as long as it is a crude or appropriately purified RKM obtained by the above-described synthesis procedure or a RKM having the same. . For example, RKM anhydride or methanol-containing crystals can be easily used, and in particular, high-purity RKM-monohydrate crystals can be obtained by using RKM methanol-containing crystals. I can do it.
本発明の R KM * 1水和物結晶を得るためには、 先ず、 酸性水溶液を調製する c 例えば、 酢酸、 プロビオン酸、 酒石酸、 クェン酸などの有機酸、 またはリ ン酸、 塩酸、 硫酸などの無機酸、 もしく はこれらを混合した酸を p H 1〜4の酸性水溶 液に調製する。 酸としては、 好ましくは酢酸、 プロピオン酸などの有機酸、 また はリ ン酸の無機酸である。 次いでこのようにして調製した酸性水溶液を 0 ·(:〜 1 0てに冷却撹拌下、 前記の R KM無水物及び Zまたはメタノ一ル舍有 R KM結晶 を 2 0〜300mgZml の濃度で溶解する。 完全に溶解した後、 R KM . 1水 和物を結晶化せしめるために、 水酸化ナ トリウム、 炭酸ナ トリウム、 炭酸水素ナ ト リ ウム、 水酸化力リ ゥム、 炭酸力リ ゥム、 炭酸水素力リ ゥ厶、 炭酸ァンモニゥ ム、 アンモニゥム水等をら〜 2 0 %濃度に希釈したアルカリ水で、 上記 R KM溶 解酸性水溶液を例えば P H 4〜6. 5付近、 好ましくは P H 4. 4〜5. 0付近 に調整する。 その後、 R KM溶解液を 2 0〜3 0ての室温まで徐々に异温し、 約 2〜7 2時間静置して結晶を形成せしめ、 この成長した結晶を濾取し、 水洗後、 減圧乾燥することにより目的の R KM · 1水和物結晶を得ることができる。 In order to obtain the RKM * monohydrate crystals of the present invention, first, an acidic aqueous solution is prepared. C For example, an organic acid such as acetic acid, propionic acid, tartaric acid, and citric acid, or phosphoric acid, hydrochloric acid, sulfuric acid, etc. An inorganic acid or a mixture thereof is prepared into an acidic aqueous solution having a pH of 1 to 4. The acid is preferably an organic acid such as acetic acid or propionic acid, or an inorganic acid of phosphoric acid. Then, the acidic aqueous solution prepared in this manner was added with 0 Under cooling and stirring, the RKM anhydride and Z or the methanol-containing RKM crystal are dissolved at a concentration of 20 to 300 mgZml. After complete dissolution, to crystallize the RKM.1 hydrate, sodium hydroxide, sodium carbonate, sodium bicarbonate, hydration hydration, carbonation hydration, and carbonate The above RKM-dissolved acidic aqueous solution is diluted with alkaline water obtained by diluting a hydrogen power, ammonium carbonate, ammonium water or the like to a concentration of about 20%, for example, at a pH of about pH 4 to 6.5, preferably PH 4.4. Adjust to around 5.0. Thereafter, the RKM solution is gradually warmed to room temperature of 20 to 30 and allowed to stand for about 2 to 72 hours to form crystals. The grown crystals are collected by filtration, washed with water, and depressurized. The desired R KM · monohydrate crystals can be obtained by drying.
このようにして得られた本発明の R KM · 1水和物結晶 (以下 R KM水和物と 略す) の X線回折スペク トルを第 3図に示す。 これは、 5. 2、 6. 8、 8. 3 、 1 0. 3、 1 1. 2、 1 2. 3、 1 3. 3、 1 3. 8、 1 . 7、 1 5. 1、 1 5. 8、 1 6. 4、 1 7. 1、 1 8. 1、 1 9. 1、 1 9. 5、 2 0. 4、 2 1. 5、 2 2. 0、 2 2. 7、 2 3. 8、 2 4. 8、 2 5. 1、 2 6. 6 &び 2 8. 6 ° の回折角 2 Θ にシャープな X線回折スぺク トルを示すことから結晶 性であることが明白である。  FIG. 3 shows an X-ray diffraction spectrum of the thus obtained RKM · monohydrate crystal of the present invention (hereinafter abbreviated as RKM hydrate). These are 5.2, 6.8, 8.3, 10.3, 11.2, 12.3, 13.3, 13.8, 1.7, 15.1, 1 5.8, 16.4, 17.1, 18.1, 19.1, 19.5, 20.4, 21.5, 22.0, 22.7, 2 3.8, 24.8, 25.1, 26.6 & 28.6 ° A diffraction angle of 2 ° shows a sharp X-ray diffraction spectrum, indicating that it is crystalline. It is obvious.
本発明の R KM水和物は、 前記の R KM無水物及びメタノール舍有結晶とは X 線回折スぺク トルの 2 値が明らかに異なる。 更に、 本発明の R KM水和物は、 元素分析、 水分測定 (カールフイ シヤー法) 及び熱重量分析等の機器分析結果か ら R KMの 1分子当たり水分子が 1個水和していることが同定され、 新規結晶体 であることが判明した。  The RKM hydrate of the present invention is clearly different from the above-mentioned RKM anhydride and methanol-containing crystal in two values of the X-ray diffraction spectrum. Furthermore, the R KM hydrate of the present invention has one water molecule hydrated per R KM molecule from the results of instrumental analysis such as elemental analysis, moisture measurement (Karlfisher method) and thermogravimetric analysis. Was identified and found to be a novel crystal.
本発明の新規な R KM水和物の抗菌活性は、 従来の R KM無水物の抗菌活性と 同一であった。 更に、 本発明の R KM水和物はマウス ( 1群 5匹) に対する腹腔 内投与による急性毒性は 2 0 0 0 m g k gにおいて死亡例は全く見られなかつ た。  The antibacterial activity of the novel RKM hydrate of the present invention was the same as that of the conventional RKM anhydride. Furthermore, the RKM hydrate of the present invention showed no acute death by intraperitoneal administration to mice (5 mice per group) at 2000 mg kg, and no deaths were observed.
このようにして得られた新規な R K M水和物は、 苦味もなく、 水濡れも良好で あり、 従って、 強い苦味を有し、 製剤上不都合な性質である水濡れの悪さを呈す る公知の R KM無水物と比較して経口投与用製剤、 特にドライ · シロ ップ剤や錠 剤において優位に使用できるものであった。 さらに、 製剤学上の利点として、 本 発明の R KM水和物を用いたトローチ剤、 顆粒剤、 眼軟膏剤、 軟膏剤など従来困 難とされていた新剤型の製剤の開発が可能となり、 製剤学的見地において、 非常 に優れた特異性を有するものである。 The new RKM hydrate obtained in this way has no bitterness and good wettability. Yes, therefore, in oral preparations, especially dry syrups and tablets, as compared to known RKM anhydrides, which have a strong bitter taste and exhibit poor wettability, which is an unfavorable property in preparation. It could be used to advantage. Furthermore, as an advantage in pharmacology, it has become possible to develop new formulations, such as lozenges, granules, ophthalmic ointments, and ointments, using the RKM hydrate of the present invention, which have been difficult in the past. It has very good specificity from a pharmaceutical standpoint.
また、 本発明の R KM水和物は従来公知の R KM無水物と比べ、 比容積が約 3 0 %小さく、 結晶であることから硬度が高く、 錠剤のサイズダウン及び高硬度化 が可能である他、 粉砕時における静電気の帯電が少ないなどの、 極めて優れた特 異性を有するものである。 このように、 本発明の R KM水和物は、 製剤化するに 極めて好ましい上述したような種々の優れた性質を有する結晶であり、 製剤上、 常用される処方にて容易に適宜な製剤となし得る。 一般的に云って、 R KM水和 物製剤は、 ヒ トについて、 従前の R KM製剤と同様 1 日 1〜3回、 1 0 0〜 6 0 0 m gを投与すればよい。 図面の簡単な説明  Further, the RKM hydrate of the present invention has a specific volume of about 30% smaller than conventionally known RKM anhydride, and has high hardness due to being crystalline, so that it is possible to reduce the size and hardness of tablets. In addition, it has extremely excellent characteristics, such as low static charge during grinding. As described above, the RKM hydrate of the present invention is a crystal having various excellent properties as described above, which is extremely preferable for formulation, and can be easily formulated into a formulation suitable for a commonly used formulation. I can do it. Generally speaking, the RKM hydrate preparation may be administered to humans in an amount of 100 to 600 mg once to three times a day as in the case of the conventional RKM preparation. BRIEF DESCRIPTION OF THE FIGURES
第 1図は R KM無水物の X線回折スぺク トルを示す ;  FIG. 1 shows the X-ray diffraction spectrum of RKM anhydride;
第 2図はメタノール含有 R KM結晶の X線回折スぺク トルを示す ;  Figure 2 shows the X-ray diffraction spectrum of the methanol-containing RKM crystal;
第 3図は本発明により得た (実施例 1 ) R KM水和物の X線回折スぺク トルを 示す ;  FIG. 3 shows the X-ray diffraction spectrum of RKM hydrate obtained according to the present invention (Example 1);
第 4図は本発明により得た (実施例 1 ) R KM水和物及び R KM無水物の 8 0 てにおける熱安定性曲線を示す。  FIG. 4 shows a thermal stability curve of R KM hydrate and R KM anhydride obtained at 80 ° C. according to the present invention (Example 1).
第 5図は処方 5における無酸胃液モデルでの溶出曲線を示す ;  FIG. 5 shows the dissolution curve of the acid-free gastric juice model in Formulation 5;
第 6図は処方 6における無酸胃液モデルでの溶出曲線を示す ;  FIG. 6 shows the dissolution curve of the acid-free gastric juice model in Formulation 6;
第 7図は処方 7における無酸胃液モデルでの溶出曲線を示すものである。 実施例 FIG. 7 shows a dissolution curve of the acid-free gastric juice model in Formulation 7. Example
次いで、 以下に参考例及び実施例を挙げて本発明を具体的に説明するが、 本発 明はこれらにより何ら限定されるものではない。  Next, the present invention will be specifically described with reference to Reference Examples and Examples, but the present invention is not limited thereto.
参考例 1 R KM合成法 Reference Example 1 R KM synthesis method
R KMの合成法は特許 (特公昭 5 9 - 4 6 5 2 0号公報、 特公昭 6 3 - 5 0 3 7号公報) または文献 ( J. An t i b i o t i c s , 3 4 , 1 0 0 1 ( 1 9 8 1 ) ) に基づいたものである。 即ち、 ロイコマイシン A5 を出発原料として、 次 の工程に従って合成し、 R KM無水物として単離精製した。 The synthesis method of RKM is described in Patent (JP-B-59-46520, JP-B-63-50337) or literature (J. Antibiotics, 34, 101 (1) 9 8 1))). That is, the leucomycin A 5 as a starting material, was synthesized according to the following steps, was isolated and purified as R KM anhydride.
( 1 ) 2 ' 位水酸基の保護反応  (1) Protection of 2 'hydroxyl group
培養液から単離されたロイコマイ シン A5 原末 5 0 gを無水 1 , 2—ジクコル ェタン 2 5 0 ml に溶解し、 室温撹拌下、 無水酢酸 2 1 ml を滴下し、 1. 5時 間反応させた。 次に、 氷冷水 1 Lを加え、 7 %アンモニア水で p H 1 0に調整後 、 約 1時間撹拌し、 1 , 2—ジクロルエタン相を分液した。 次いで得られた 1 > 2—ジクロルエタン相を無水硫酸マグネシウム 1 0 gで乾燥後、 減圧下濃縮乾固 し、 2 ' —0—ァセチルロイコマイシン A5 5 0 gを得た。 Roikomai Shin A 5 bulk powder anhydrous 1 5 0 g, isolated from the culture solution, 2 Jikukoru Etan was dissolved in 2 5 0 ml, stirring at room temperature, it was added dropwise 2 1 ml of acetic anhydride, 1 between 5:00 Reacted. Next, 1 L of ice-cold water was added, the pH was adjusted to 10 with 7% aqueous ammonia, and the mixture was stirred for about 1 hour to separate the 1,2-dichloroethane phase. After drying then the resulting 1> 2-dichloroethane phase over anhydrous magnesium sulfate 1 0 g, to concentrated under reduced pressure to dryness, 2 '-0- give the § cetyl leucomycin A 5 5 0 g.
( 2 ) 3、 9位水酸基の保護反応  (2) Protection of hydroxyl groups at positions 3 and 9
上記 2 ' — 0—ァセチルロイ コマイ シン Α5 δ 0 gを無水 1 > 2—ジクロルェ タン 2 5 0 ml に溶解させ、 次いで トリベンジルァ ミ ン 5 0 gを加えた。 撹拌冷 却下トリメチルクロルシラン 3 3 ml を滴下し、 1 5時間反応させた。 次に、 別 の容器に予め準備した水 1 L中に反応液を滴下し、 7 %アンモニア水で p H 9. 5に調整後、 1 > 2—ジクロルエタン相を分液した。 次いで、 得られた 1 , 2— ジクロルエタン相を無水硫酸マグネシウム 1 0 gで乾燥後、 減圧下濃縮乾固し、 2 ' 一 0—ァセチル一 3 > 9—ジ一〇一 ト リ メチルシリルロイ コマイ シン A 5 6 3 gを得た。 The 2 '- 0 Asechiruroi Komai thin Alpha 5 [delta] 0 g of anhydrous 1> was dissolved in 2 Jikurorue Tan 2 5 0 ml, was then added Toribenjirua Mi emissions 5 0 g. While stirring and cooling, 33 ml of trimethylchlorosilane was added dropwise and reacted for 15 hours. Next, the reaction solution was added dropwise to 1 L of water prepared in advance in another container, the pH was adjusted to 9.5 with 7% aqueous ammonia, and the 1> 2-dichloroethane phase was separated. Then, the obtained 1,2-dichloroethane phase was dried over anhydrous magnesium sulfate (10 g), concentrated to dryness under reduced pressure, and concentrated to 2'-10-acetyl-13> 9-di-trimethylsilyl leucomy. to obtain a thin a 5 6 3 g.
( 3 ) 3 " 位三級水酸基のプロピオニル化反応  (3) Propionylation of tertiary hydroxyl group at 3 "-position
上記-、 2 ' — 0—ァセチルー 3 , 9—ジ一 0— ト リ ノチルシリルロイ コマイ シ ン A 5 6 3 gを無水 1 > 2—ジクロルェタン 2 5 0 ml に溶解させ、 次いで トリ ベンジルァミ ン 1 5 0 gを加えて後、 氷冷下、 プロピオニルク口ライ ド 5 0 ml を滴下し、 次いで 7 5 'Cにて約 2 0時間還流した。 反応終了後、 室温になるまで 冷却してから、 別の容器に予め準備した 1 , 2—ジクロルエタン 2 5 0 ml 、 水 1 Lの混合液中に滴下し、 7 %アンモニア水で P H 9. 5に調整後、 1, 2—ジ クロルエタン相を分液した。 次いで得られた 1 , 2—ジクロルエタン相を無水硫 酸マグネシウム 1 0 gで乾燥後、 減圧下濃縮乾固し、 2 ' —0—ァセチルー 1 7 , 1 8—ェノ ール一 1 8、 3 " —ジー 0—プロピオ二ルー 3 , 9—ジー〇一 ト リ メチルシリルロイコマイ シン A5 及び 2 ' — 0—ァセチルー 3 " — 0—プロピオ ニル一 3 , 9 _ジ一 0— トリメチルシリルロイコマイシン A5 の混合物 6 8 gを 得た。 Above-, 2 '— 0—acetyl-3,9—di-1 0—trinotylsilylloy The emissions A 5 6 3 g was dissolved in anhydrous 1> 2 Jikuroruetan 2 5 0 ml, then after the addition of tri Benjiruami down 1 5 0 g, under ice-cooling, was added dropwise Puropioniruku port Rye de 5 0 ml, Then, the mixture was refluxed at 75'C for about 20 hours. After the completion of the reaction, the reaction mixture was cooled to room temperature, and then added dropwise to a previously prepared mixture of 1,2-dichloroethane (250 ml) and water (1 L). After the adjustment, the 1,2-dichloroethane phase was separated. Then, the obtained 1,2-dichloroethane phase was dried over 10 g of anhydrous magnesium sulfate, concentrated under reduced pressure to dryness, and 2′-0-acetyl-17,18-ethanol-18,3 "—Gee 0—propionyl 3,9—Geetrimethylsilylleucomycin A 5 and 2 '— 0—Acetyl-3” — 0—Propionyl-1,3,9_di-1 0—Trimethylsilylleucomycin to obtain a mixture 6 8 g of a 5.
( 4 ) 保護基の脱離反応  (4) Elimination reaction of protecting group
上記混合物 6 8 gをメタノール 2. 5 Lと 8 %炭酸カルシウム 2 7 5 ml の混 合溶媒に溶解させ、 室温で 1時間反応させた。 この反応液を酢酸で P H 7. 5に 調整し、 次いで、 6 3 °Cで 2 0時間加熱還流した後、 5て以下に冷却し、 反応液 中に生じた トリベンジルァミンの結晶を濾別した。 この トリベンジルァミ ンの結 晶は 5て以下に冷却した 9 0 %メタノール 2 2 0 m 1 で洗浄し、 濾液と洗浄液を 合併し、 減圧下でメタノールを完全に留去した。 次いで残留物をベンゼン 3 0 0 ml に溶解させ、 分配し、 残りの水相を分離除去した。 ベンゼン相は、 水 3 0 0 ml で洗浄後、 減圧下で約 1 0 O ml まで濃縮した。  68 g of the above mixture was dissolved in a mixed solvent of 2.5 L of methanol and 275 ml of 8% calcium carbonate, and reacted at room temperature for 1 hour. The reaction mixture was adjusted to pH 7.5 with acetic acid, heated under reflux at 63 ° C for 20 hours, cooled to 5 or less, and filtered to form tribenzylamine crystals in the reaction mixture. Different. The crystals of the tribenzylamine were washed with 90% methanol 220 ml cooled in the following manner. The filtrate and the washing solution were combined, and methanol was completely distilled off under reduced pressure. Then, the residue was dissolved in 300 ml of benzene, partitioned, and the remaining aqueous phase was separated off. The benzene phase was washed with 300 ml of water and then concentrated under reduced pressure to about 100 ml.
( 5 ) 単離精製  (5) Isolation and purification
ベンゼンにて充塡したシリ 力ゲル系力ラム ( 3 0 mm ^ X 6 0 O mm L ) に上 記ベンゼン濃縮液約 1 0 0 ml を吸着させ、 次いでベンゼン :酢酸ェチル: メタ ノール ( 3 6 : 4 : 1、 v/v ) にて展開した。 溶出液は経時的にサンプリ ング し、 高速液体ク口マトグラフィー (以下 H P L Cと略す) にて分析し、 R KM舍 量が 9 0 %以上の分画約 6 5 O ml を集め、 減圧下濃縮乾固した。 この濃縮残差 をエタノール 6 O ml に溶解させ、 このエタノール溶解液を水 8 0 0 m】 中に滴 下すると RKMが白色沈澱として折出した。 この沈澱を濾取し、 水洗後、 減圧乾 燥することにより R KM3 5 gを得た。 Approximately 100 ml of the above benzene concentrate is adsorbed on a silica gel gel (30 mm ^ X600 mmL) filled with benzene, and then benzene: ethyl acetate: methanol (36 : 4: 1, v / v). The eluate is sampled over time and analyzed by high-performance liquid chromatography (hereinafter abbreviated as HPLC). About 65 O ml fractions with an RKM content of 90% or more are collected and concentrated under reduced pressure. To dryness. This enrichment residue Was dissolved in 6 O ml of ethanol, and the ethanol solution was dropped into 800 m of water. As a result, RKM was precipitated as a white precipitate. The precipitate was collected by filtration, washed with water, and dried under reduced pressure to obtain 5 g of RKM3.
このようにして得られた RKMの物理化学的性質は、 特許 (特公昭 5 9 - 4 6 5 2 0号公報) 及び文献 ( J. An t i b i o t i c s , 34 , 1 0 0 1 ( 1 9 8 1 ) ) において公知の結果と一致した。 また、 X線回折スぺク トルは第 1図に 示したものと同一の X線回折パターンを示すことからも非晶質であることが明白 であり、 さらに、 元素分析、 水分測定 (カールフィ シャ一法) 及び熱重量分折の 結果からこの R KMは無水物であることが同定された。 参考例 2 R KMのメタノール舍有結晶の製造法  The physicochemical properties of the RKM thus obtained are described in Patent (Japanese Patent Publication No. 59-46520) and in the literature (J. Antibiotics, 34, 101 (1989)). ) Was consistent with the known results. The X-ray diffraction spectrum shows the same X-ray diffraction pattern as that shown in Fig. 1 and it is clear that it is amorphous. This method was identified as an anhydride from the results of (1 method) and thermogravimetric analysis. Reference Example 2 Manufacturing method of methanol possessed by RKM
上記参考例 1で得られた R KM無水物 3 5 gをメタノール 1 20 ml で 4 0て 撹拌下、 溶解した (R KM濃度約 3 0 0 m g/ml ;) 。 この溶解液は撹拌下、 4 0 'Cで白濁するまで蒸留水を加えた後、 1 O 'C以下に冷却し、 更に 2 0時間撹拌 して結晶を生じさせ、 この結晶を濾取後、 水洗し、 R KMのメタノール舍有結晶 (第 2図参照) 2 5 g (湿潤重量) を得た。 実施例 1 R K M水和物の製造法  35 g of the RKM anhydride obtained in Reference Example 1 was dissolved in 120 ml of methanol with stirring for 40 minutes (RKM concentration: about 300 mg / ml;). Distilled water was added to this solution under stirring at 40'C until it became cloudy, then cooled to 1O'C or less, and stirred for another 20 hours to form crystals. After washing with water, 25 g (wet weight) of methanol containing RKM (see FIG. 2) was obtained. Example 1 Method for producing RKM hydrate
参考例 2で得られた R KMメ タノール含有結晶 2 5 g (湿潤重量) を、 1 0て に冷却した 3 %酢酸水 1 0 0 ml に溶解した。 その後 1 0 %水酸化ナ トリゥム水 で P H 5に調整し、 室温 (約 2 6て) で 2 4時間静置後、 生じた結晶を濾取し、 水洗後、 減圧乾燥することにより R KM水和物 8 gを得た。  25 g (wet weight) of the RKM methanol-containing crystal obtained in Reference Example 2 was dissolved in 100 ml of 3% aqueous acetic acid cooled to 10%. Thereafter, the pH was adjusted to pH 5 with 10% aqueous sodium hydroxide, left at room temperature (about 26 to 24 hours) for 24 hours, and the resulting crystals were collected by filtration, washed with water, and dried under reduced pressure to obtain RKM water. 8 g of the hydrate was obtained.
この結晶を X線回折法 (理学電気社製 X線回折計) により分折したところ第 3 図のパターンを示した。 これは、 従来、 工業生産される R KM無水物 (第 1図参 照) とは明らかに異なった。 元素分折値 (実験式; C42H69N015 ' Hz 0とし て) は、 第 1表に示す通りである。 第 1表 The crystal was analyzed by X-ray diffraction (X-ray diffractometer manufactured by Rigaku Denki Co., Ltd.), and the pattern shown in FIG. 3 was shown. This is clearly different from the RKM anhydride conventionally produced industrially (see Fig. 1). Elemental analysis values (empirical formula; C 42 H 69 N 0 15 'Hz 0) are as shown in Table 1. Table 1
Figure imgf000012_0001
水分 (京都電子工業㈱製カールフイ シヤー水分計) ;約 2. 1 % ( 1水和物と しての理論値; 2. 1 3 %) 。
Figure imgf000012_0001
Moisture (Kalfisher moisture meter manufactured by Kyoto Denshi Kogyo Co., Ltd.): about 2.1% (theoretical value as monohydrate; 2.13%).
融点; 1 1 2 'C付近。  Melting point: around 1 1 2 'C.
熱重量分折 (マックサイエンス社製熱分折計) ;融点付近で約 2 %の重量変化 ¾: ττ;した。  Thermogravimetric analysis (MacScience thermal analyzer); Weight change of about 2% near melting point ¾: ττ;
示差走査熱量測定 (マックサイエンス社製熱分析計) ;融点付近で約 2 O cal/g の吸熱ピークが観察された。  Differential scanning calorimetry (Mac Science's thermal analyzer): An endothermic peak of about 2 Ocal / g was observed near the melting point.
以上のこれらの機器分折値からも、 また、 さらに乾燥しても減量がみられない 点からして、 この結晶は R KM 1分子に対し水 1分子を舍有していることが同定 された。 また、 質量分折 (MA S S ) スぺク トル、 ' Η—及び'3 C—核磁気共鳴 (NMR ) スぺク トル、 赤外線吸収 ( I R ) スペク トル、 紫外線吸収 ( U V ) ス ぺク トル、 旋光度 ( [ »] 。 ) 等の機器分折結果より得られる物理化学的性質は 特許 (特公昭 5 9— 4 6 5 2 0号公報) 及び文献 ( J . A n t i b i o t i c s , 3 4 , 1 0 0 1 ( 1 9 8 1 ) ) に記載されている公知の結果と一致した。 From the above-mentioned instrumental analysis values, and from the fact that weight loss was not observed even after further drying, it was identified that this crystal has one molecule of RKM and one molecule of water. Was. Further, the mass fraction folding (MA SS) spectrum, '.eta. and' 3 C-nuclear magnetic resonance (NMR) spectra, infrared absorption (IR) spectrum, ultraviolet absorption (UV) scan Bae-vector , Optical rotation ([»]) and other physicochemical properties obtained from the instrumental analysis results are described in patents (Japanese Patent Publication No. 59-46520) and literature (J. Antibiotics, 34, 1). 001 (1981)) was consistent with the known results.
さらに、 クロ口ホルム : メタノ一ル:氷酢酸:水 ( 8 0 : 7 : 7 : 1 ) の展開 溶媒を用いた R KM水和物の薄層クロマ トグラフィーの結果は、 1^ 値0. 3 6 (硫酸発色、 紫外線吸収等) に単一のスポッ トを示し、 これは R K Mの R f 値と 一致した。 かつ、 その生物活性は、 S. a u r e u s AT C C 6 5 3 8 P , S. Furthermore, the result of thin-layer chromatography of RKM hydrate using a developing solvent of chromate form: methanol: glacial acetic acid: water (80: 7: 7: 1) has a value of 1 ^ 0. A single spot was shown in 36 (sulfuric acid coloring, ultraviolet absorption, etc.), which was consistent with the Rf value of RKM. And its biological activity is S. aur eus ATCC C 6 5 3 8 P, S.
o g e n e s N. Y. 5 , M. 1 υ t e υ s A T C C 9 3 4 1などの検 定菌に対し従来の R KM無水物と同一の抗菌活性を示した。 実施例 2 R K M水和物の製造法 ogenes NY 5, M. 1 υ te υ s ATCC 9 3 4 1 It showed the same antibacterial activity against the conventional bacteria as RKM anhydride. Example 2 Method for producing RKM hydrate
上記参考例 2と同様にして得られた R KMメタノール舍有結晶 5 0 0 g (湿潤 重量) を 1 0 °Cに冷却した 3 %酢酸水 2 Lに溶解した。 その後、 1 0 %水酸化ナ トリゥム水で P H 5に調整後、 実施例 1で得られた R KM水和物 5 g添力 Πし、 室 温 (約 2 6 ) で 2 4時間静置後、 生じた結晶を濾取し、 水洗後、 減圧乾燥する ことにより R KM水和物 (第 3図に示す同一の X線回折パターンを示し、 実施例 500 g (wet weight) of RKM methanol-containing crystal obtained in the same manner as in Reference Example 2 above was dissolved in 2 L of 3% aqueous acetic acid cooled to 10 ° C. Then, the pH was adjusted to pH 5 with 10% aqueous sodium hydroxide, 5 g of RKM hydrate obtained in Example 1 was added, and the mixture was allowed to stand at room temperature (about 26) for 24 hours. The resulting crystals were collected by filtration, washed with water, and dried under reduced pressure to obtain RKM hydrate (showing the same X-ray diffraction pattern as shown in FIG. 3;
1の結晶と同一物であった) 約 2 5 0 gを得た。 実施例 3 R KM水和物の製造法 Approximately 250 g was obtained. Example 3 Method for producing R KM hydrate
まず、 水 1 0 0 ml にプロピオン酸 6 ml を溶解し、 1 0てに冷却した酸性水 に上記参考例 2と同様にして得られた R KMメタノール舍有結晶 3 5 g (湿潤重 量) を溶解後、 1 0 %水酸化ナ トリゥム水で P H 5に調整し、 次いで実施例 1で 得られた R KM水和物結晶 1 gを添加し、 室温 (約 2 6 °C) で 2 4時間静置後、 生じた結晶を濾取し、 水洗後、 減圧乾燥することにより R KM水和物 (第 3図に 示す X線回折図と同一の X線回折パターンを示し、 実施例 1の結晶と同一物であ つた) 1 2 gを得た。 実施例 4 R KM水和物の製造法  First, 6 ml of propionic acid was dissolved in 100 ml of water, and 35 g (wet weight) of RKM methanol-containing crystal obtained in the same manner as in Reference Example 2 in acidic water cooled to 10 ml. After dissolving, the pH was adjusted to pH 5 with 10% aqueous sodium hydroxide, then 1 g of the RKM hydrate crystal obtained in Example 1 was added, and the solution was added at room temperature (about 26 ° C). After standing for a period of time, the resulting crystals were collected by filtration, washed with water, and dried under reduced pressure to obtain RKM hydrate (showing the same X-ray diffraction pattern as the X-ray diffraction pattern shown in FIG. 3; 12 g was obtained. Example 4 Method for producing R KM hydrate
上記参考例 2と同様にして得られた R KMメタノール舍有結晶 3 5 g (湿潤重 量) を 1 0てに冷却した 3 %リ ン酸水 1 0 0 ml に溶解後、 1 0 %水酸化ナ トリ ゥム水で P H 5に調整し、 次いで実施例 1で得られた R KM水和物結晶 1 gを添 加し.、 室温 (約 2 6 ) で 2 4時間静置後、 生じた結晶を濾取し、 水洗後、 減圧 乾燥することにより R KM水和物 (第 3図に示す X線回折図と同一の X線回折パ ターンを示し、 実施例 1の結晶と同一物であった) l o gを得た。 - 実施例 5 R K M水和物の製造法 After dissolving 35 g (wet weight) of RKM methanol-containing crystal obtained in the same manner as in Reference Example 2 above in 100 ml of 3% phosphoric acid aqueous solution cooled to 10%, 10% water was added. The pH was adjusted to pH 5 with aqueous sodium oxide, then 1 g of the RKM hydrate crystal obtained in Example 1 was added, and the mixture was allowed to stand at room temperature (about 26) for 24 hours. The crystals obtained were collected by filtration, washed with water, and dried under reduced pressure to obtain RKM hydrate (showing the same X-ray diffraction pattern as the X-ray diffraction pattern shown in FIG. 3; Log) was obtained. - Example 5 Method for producing RKM hydrate
上記参考例 1で得られた R K M無水物 3 5 gを 1 0てに冷却した 3 %酢酸水 1 5 0 ml に溶解した。 その後、 1 0 %水酸化ナ トリウム水で P H 5に調整後、 実 施例 1で得られた R KM水和物 1 gを添加し、 室温 (約 2 6て) で 2 4時間静置 後、 生じた結晶を濾取し、 水洗後、 減圧乾燥することにより R KM水和物 (第 3 図に示す X線回折図と同一の X線回折パターンを示し、 実施例 1の結晶と同一物 であった) 1 6 gを得た。 実験例  35 g of RKM anhydride obtained in Reference Example 1 was dissolved in 150 ml of 3% acetic acid aqueous solution cooled to 10%. Then, the pH was adjusted to pH 5 with 10% aqueous sodium hydroxide, 1 g of RKM hydrate obtained in Example 1 was added, and the mixture was allowed to stand at room temperature (about 26 T) for 24 hours. The resulting crystals were collected by filtration, washed with water, and dried under reduced pressure to obtain RKM hydrate (having the same X-ray diffraction pattern as the X-ray diffraction pattern shown in FIG. 3 and being identical to the crystal of Example 1). 16 g was obtained. Experimental example
次に、 本発明の R KM水和物と従来の工業的生産による非晶質の R KM無水物 との対比実験について述べる。  Next, a comparison experiment between the RKM hydrate of the present invention and an amorphous RKM anhydride produced by conventional industrial production will be described.
実験例 1 安定性試験 Experimental Example 1 Stability test
実施例 1 と同様にして得られた R KM水和物及び R KM無水物を各々 8 0て、 4週間の苛酷条件下に保存し、 経日的にサンプリ ングし、 水分測定 (カールフィ シャ一法) 及び H P L C分折により、 R KMの絶対舍量を求めた。 H P L C測定 用サンプルは R KM各原末を約 5 m g秤量後、 5 ml のァセ トニト リル: 0. 1 %酢酸水 ( 1 : 1 ) 溶液に溶解し、 調製した。 その結果を第 4図 (図中、 一〇一 が R KM水和物、 一□_が R KM無水物) に示す。 R KM水和物は無水物に比べ 熱安定性が良好なものであった。  The RKM hydrate and the RKM anhydride obtained in the same manner as in Example 1 were stored for 80 weeks under severe conditions for 4 weeks, sampled daily, and measured for water content (Karl Fisher Method) and HPLC analysis to determine the absolute amount of RKM. A sample for HPLC measurement was prepared by weighing about 5 mg of each RKM bulk powder and dissolving it in 5 ml of acetonitrile: 0.1% aqueous acetic acid (1: 1) solution. The results are shown in FIG. 4 (in the figure, 1-11 is RKM hydrate and 1 □ _ is RKM anhydride). RKM hydrate had better thermal stability than the anhydride.
分析条件;  Analysis conditions;
カラム : ステンレス-、 4 mm 0 X l o O n m、 ljnisil Q: C 1 8 , 5 // m 移動相 : 0. 2 M酢酸ァンモニゥム溶液: メタノール : ァセ トニ ト リル = Column: stainless steel, 4 mm 0 X lo O nm, ljnisil Q : C18, 5 // m Mobile phase: 0.2 M ammonium acetate solution: methanol: acetonitril =
( 3 1. 5 : 6 2. 0 : 6. 5 )  (31.5: 62.0: 6.5)
検出器:分光光度計 (測定波長: 2 3 2 nm)  Detector: Spectrophotometer (wavelength: 2 32 nm)
カラム温度: 4 0  Column temperature: 40
流量 : 0. 8 m l /m i η . 実験例 2 官能試験 Flow rate: 0.8 ml / mi η. Experimental example 2 Sensory test
R KM水和物及び無水物について、 つぎの処方条件によりシロップ剤を作成し た。 これらのシロップ剤について、 選ばれた 1 0人 (成人) のパネラーにより官 能試験 (調製約 6 0分後) を実施した。 その結果を第 2表に示す (表中、 A :苦 味を感じない、 B : どちらとも言えない、 C :苦い) 。  For RKM hydrate and anhydride, syrups were prepared under the following formulation conditions. A functional test (about 60 minutes after preparation) was performed on selected syrups by 10 selected panelists (adults). The results are shown in Table 2 (A: no bitterness, B: neither, C: bitter).
処方 1 : R K M水和物 2 g、 グリ シン 0. 8 g、 白糖 1 2 gを乳鉢で混合し、 蒸留水 8 0 ml に懸濁した。  Formulation 1: 2 g of RKM hydrate, 0.8 g of glycine and 12 g of sucrose were mixed in a mortar and suspended in 80 ml of distilled water.
処方 2 : R KM無水物 2 g、 グリ シン 0. 8 g、 白糖 1 2 gを乳鉢で混合し、 蒸留水 8 0 ml に懸濁した。  Formulation 2: 2 g of RKM anhydride, 0.8 g of glycine, and 12 g of sucrose were mixed in a mortar and suspended in 80 ml of distilled water.
処方 3 : R KM無水物 4 0 0 m g グリ シン 0. 8 g、 白糖 1 2 gを乳鉢で溫 合し、 蒸留水 8 0 ml に懸濁した。  Formulation 3: RKM anhydride 400 mg Mg and 0.8 g sucrose were combined in a mortar and suspended in 80 ml of distilled water.
処方 4 : R K M無水物 2 0 m g、 グリ シン 0. 8 g、 白糖 1 2 gを乳鉢で混合 し、 蒸留水 8 0 ml に懸濁した。  Formula 4: 20 mg of RKM anhydride, 0.8 g of glycine and 12 g of sucrose were mixed in a mortar and suspended in 80 ml of distilled water.
第 2表  Table 2
Figure imgf000015_0001
R KM水和物の場合、 ほとんど苦味が感じられなかった。 一方、 R KM無水物 を苦味の隱ぺぃを行うための手段である高分子フィルムなどと共にスプレードラ ィ法によりマイクロカプセル化するような処理操作を行わずに、 そのまま用いた 場合、 上記の官能試験から明らかなように R KM無水物は R KM水和物の 1 / 1 0 0量においても苦味が感じられたのに対し、 R KM水和物を用いた処方では極 めて苦味が改善されたものであった。 参考例 3
Figure imgf000015_0001
In the case of RKM hydrate, almost no bitterness was felt. On the other hand, when the RKM anhydride is used as it is without performing a microcapsule treatment such as spray-drying with a polymer film that is a means for masking bitterness, the above-mentioned sensory test is performed. As is evident from the above, RKM anhydride showed bitterness even at 1/100 amount of RKM hydrate, whereas the formulation using RKM hydrate significantly reduced bitterness. It was. Reference example 3
次に、 R KM水和物結晶のドライ シロップの製剤例について説明する。  Next, preparation examples of dry syrup of RKM hydrate crystals will be described.
1^ } \4水和物 1 0 0 g力価と日局精製白糖 (三井精糖、 商品名 ; 白ザラ A A) 5 4 3. 9 gと日局結晶セルロース (旭化成工業、 商品名 ; アビセル R C— 5 9 1 ) 3 0 gを混合し、 結合剤として日局ヒ ドロキシプロピルセルロース (信越化 学、 商品名 ; H P C— ( L ) ) 1 0 gを蒸留水 2 0 0 ml に溶解した液を用い流 動層造粒機 (富士産業 (株) 、 S P RAY - G RAN U L AT O R M O D E L S TR EA- 1 ) を用いて通常の方法にて造粒した。 得られた顆粒を整粒し、 3 0〜 8 3メ ッシュの粒度である顆粒 A 5 5 0 gを得た。 また、 8 3メ ッシュを通 過したものは上記の流動層造粒機により同様にして顆粒となして 3 0〜 8 3メ ッ シュ区分を回収し、 先に得た顆粒 Aと合わせて合計 6 8 0 gの顆粒 Bを得た。 別に、 日局ァミノ酢酸 (昭和電工、 商品名 ; グリ シン 「微粉」 ) 4 0 gと日局 D—マンニトール (東和化成、 商品名 ; マンニッ ト P ) 2 6 3 gを混合し、 結合 剤として曰局ヒ ド口キシプロピルセルロース 5 gを蒸留水 1 0 0 ml に溶解した 液を用いて、 顆粒 Aと同様に造粒し、 3 0〜 8 3メ ッシュの粒度である顆粒 C 3 0 0 gを得た。 顆粒 B 3 4 3. 5 gと顆粒 C 1 5 6. 5 gを混合し、 R KM水和 物を舍有する ドライ シロップ製剤 5 0 0 g ( l g中 l O O m g力価) を得た。 こ のドライシ口ップは通常 l 〜 2 g ( R KMとして 1 0 0〜 2 0 0 m g力価) を 1 回とし 1 日 3回小児に投与される。 参考例 4 1 ^} \ 4 hydrate 100 g titer and JP refined sucrose (Mitsui refined sugar, trade name; white Zara AA) 5 43.9 g and JP crystal cellulose (Asahi Kasei Kogyo, trade name; Avicel RC — 59 1) 30 g was mixed, and 10 g of hydroxypropylcellulose (Shin-Etsu Chemical, trade name; HPC— (L)) was dissolved in 200 ml of distilled water as a binder. Granulation was performed using a fluidized bed granulator (Fuji Sangyo Co., Ltd., SP RAY-G RAN UL AT ORMODELS TR EA-1) using a conventional method. The obtained granules were sized to obtain 550 g of granules A having a particle size of 30 to 83 mesh. After passing through 83 meshes, granules are similarly made into granules by the above-mentioned fluidized bed granulator, and 30 to 83 mesh fractions are collected. 680 g of granules B were obtained. Separately, 40 g of Aminoacetic Acid (JP, Showa Denko, trade name; glycine “fine powder”) and 263 g of D-mannitol (Towa Kasei, trade name, Mannit P) are used as binders. The granulation was performed in the same manner as Granule A using a solution prepared by dissolving 5 g of hydroxypropylcellulose in distilled water in 100 ml of distilled water, and granules C 300 having a particle size of 30 to 83 mesh were produced. g was obtained. Granule B 33.5 g and granule C 16.5 g were mixed to obtain 500 g (100 mg titer in lg) of a dry syrup preparation containing RKM hydrate. This dry syrup is usually administered to a child three times a day with a dose of l to 2 g (titer of 100 to 200 mg as RKM). Reference example 4
RKM水和物 1 0 0 g力価と日局精製白糖 5 4 3. 9 gと日局結晶セルロース 3 0 gを混合し、 結合剤として日局ヒ ドロキシプロピルセルロース 1 0 gを蒸留 水 20 0 ml に溶解した液を用いて流動層造粒機を用いて通常の方法にて造粒し た。 得られた顆粒を整粒し、 3 0〜8 3メ ッシュの粒度である顆粒 A 5 5 0 gを 得た。 また、 この 8 3メ ッシュを通過したものは上記の流動層造粒機により同様 にして顆粒となして 3 0〜8 3メ ッシュ区分を回収し、 先に得た顆粒と合わせて 合計 68 0 gの顆粒 Bを得た。  100 g of RKM hydrate, 100 g of purified sucrose in Japan and 30 g of crystalline cellulose in Japan are mixed, and 10 g of hydroxypropyl cellulose in Japan is distilled as a binder. Using a solution dissolved in 0 ml, granulation was performed by a usual method using a fluidized bed granulator. The obtained granules were sized to obtain 550 g of granules A having a particle size of 30 to 83 mesh. After passing through this 83 mesh, granules are similarly formed into granules by the above-mentioned fluidized bed granulator, and 30 to 83 mesh categories are collected. g of granules B were obtained.
別に、 日局ァミノ酢酸 4 0 gと日局 D—マンニ トール 2 6 0 gを混合し、 結合 剤として日局ヒ ドロキシプロピルセルロース 5 g'を蒸留水 1 0 0 ml に溶解した 液に日局沈降炭酸カルシウム (白石カルシウム、 商品名 ; コロカルソ WB) 3 g を懸濁した液を用いて、 顆粒 Aと同様に造粒し、 3 0〜8 3メ ッシュの粒度であ る顆粒 C 30 0 gを得た。 顆粒 B 3 4 3. 5 gと顆粒 C 1 5 6. 5 gを混合し、 R K M水和物を舍有する ドライ シ口ップ製剤 5 0 0 g ( l g中 l O O m g力価) を得た。 実験例 3 溶出 (水濡れ) 試験  Separately, 40 g of JP Aminoacetic Acid and 260 g of D-Mannitol are mixed, and 5 g 'of hydroxypropylcellulose of JP is dissolved in 100 ml of distilled water as a binder. Granulated in the same manner as Granule A using a suspension of 3 g of locally precipitated calcium carbonate (Shiraishi calcium, trade name: Corocalco WB), and granules C 300 having a particle size of 30 to 83 mesh. g was obtained. Granule B3 43.5 g and granule C16.5.5 g were mixed to obtain 500 g (100 mg titer in lg) of a dry mouth preparation containing RKM hydrate. . Experimental Example 3 Dissolution (wet) test
R KM水和物及び無水物を錠剤の基本組成による処方組成に従い乳鉢で混合し た粉末を用い溶出試験を行った。 R K M水和物の処方については下記に処方 5、 R KM無水物の処方については下記に処方 6として示したものとをそれぞれ以下 の試験に用いた。 溶出試験の条件は、 無酸胃液モデル 1 6 0 m〗 (生理食塩水 4 0 ml 十蒸留水 1 2 0 ml :) を 2 0 0 ml ビーカ一内で 3 7 °Cに保ち、 スターラ —で撹拌 (約 2 0 0 r p m) 下、 薬剤の 1回臨床用量相当 (RKM2 0 0 m g含 有) を添加し経時的に溶出液を採取し、 濾過後、 薬物濃度を H P L Cにて上記と 同一の条件にて測定した。 対照として、 R KM無水物を D Kエステルで表面処理 した粉末 (処方 7 ) を用いた溶出試験を行った。 その結果を第 5図 (処方 5の場合) 、 第 6図 (処方 6の場合) 、 第 7図 (処方 7の場合) に示す。 製剤の生物学的利用能 (以下 B. に と略す) を推定する上 で、 溶出試験が一般に行われているが、 の溶出試験法は文献公知の方法 (特公 平 2— 5 9 1 2 9号公報、 薬剤学. 4 8 N o. 2 , 1 4 7 , 1 9 8 8 ) により 行った。 A dissolution test was performed using a powder obtained by mixing RKM hydrate and anhydride in a mortar in accordance with the prescription composition based on the basic composition of the tablet. Formulation 5 of RKM hydrate and Formulation 6 below for RKM anhydride were used in the following tests. The dissolution test conditions were as follows: 160 ml of acid-free gastric juice model (40 ml of physiological saline, 120 ml of distilled water: 120 ml) was kept at 37 ° C in a 200 ml beaker, and stirred with a stirrer. Under stirring (approximately 200 rpm), add a single clinical dose of the drug (containing 200 mg of RKM), collect the eluate over time, filter, and determine the drug concentration using HPLC as above. It was measured under the conditions. As a control, a dissolution test was performed using a powder (formulation 7) obtained by surface-treating RKM anhydride with DK ester. The results are shown in Fig. 5 (for prescription 5), Fig. 6 (for prescription 6), and Fig. 7 (for prescription 7). In order to estimate the bioavailability of a drug product (hereinafter abbreviated as B.), dissolution tests are generally performed. However, the dissolution test method is described in the literature (Japanese Patent Publication No. 2-5912). No. 9, Gazette. Pharmaceutical Science. 48 No. 2, 147, 198 88).
処方 5 : R KM水和物 2 0 0 m g  Formula 5: RKM hydrate 200 mg
グリ シン 3 4 0 m g クェン酸 7 0 m g 処方 6 : R KM無水物 2 0 0 m g  Glycine 340 mg genoic acid 70 mg Formula 6: R KM anhydride 200 mg
グリ シン 3 4 0 m g クェン酸 7 0 m g 処方 7 : D Kエステル表面処理 R KM無水物 (RKM無水物 1 0部を乳鉢に取 り、 ショ糖脂肪酸エステル F— 1 6 0の 0. 4重量部を水 1 0重量部に懸濁した 懸濁液で、 混合しながら充分に湿潤せしめた後、 減圧乾燥したもの。 )  Glycine 340 mg Cuenoic acid 70 mg Formulation 7: DK ester surface treatment R KM anhydride (10 parts of RKM anhydride placed in a mortar, 0.4 part by weight of sucrose fatty acid ester F-160) Is suspended in 10 parts by weight of water, thoroughly moistened with mixing, and dried under reduced pressure.)
2 1 0 m g  2 1 0 mg
グリ シン 3 4 0 m g クェン酸 7 0 m g 第 5図、 第 6図及び第 7図から明らかな通り、 処方 5の R KM水和物は、 処方 7のように D Kエステル表面処理による前処理をしなくても、 対照として挙げた 処方 7の製剤と同様の優れた溶出曲線を示した。 しかしながら、 処方 6の R KM 無水物の場合は、 水に濡れ難いために溶出速度の遅れが観察された。 この結果か ら、 R KM水和物は水濡れが非常に良く溶出試験液中に速やかに分散する優れた 性質を有する結晶であることが示された。 実験例 4 かさ密度 (比容積) 試験  Glycine 340 mg Cuenoic acid 70 mg As is clear from Figs. 5, 6 and 7, the RKM hydrate of formula 5 requires a pretreatment by DK ester surface treatment as in formula 7. Even without this, it showed an excellent dissolution curve similar to the formulation of Formulation 7, which was listed as a control. However, in the case of Formula 6 RKM anhydride, a delay in the dissolution rate was observed because it was difficult to wet with water. From these results, it was shown that RKM hydrate was a crystal having an excellent property of being very well wetted with water and being rapidly dispersed in the dissolution test solution. Experimental example 4 Bulk density (specific volume) test
目盛付試験管 ( 1 0 ml ) に、 それぞれ R KM水和物及び R KM無水物の各原 末 2 gを充塡し、 4〜 5 c m高さからタ ッピングを行い、 タ ッピング回数に対す る容積を計量した。 その結果を第 3表に示した。 R K M水和物は無水物に比べ約 3 0 %比容積が小さく、 錠剤などのサイズダウンが可能となり、 飲用し易い製剤 化が可能となる。 In a test tube with a scale (10 ml), add each of R KM hydrate and R KM anhydride 2 g of the powder was filled, tapping was performed from a height of 4 to 5 cm, and the volume of the tapping was measured. Table 3 shows the results. RKM hydrate has a specific volume of about 30% smaller than that of anhydrous, and can reduce the size of tablets and the like, making it possible to formulate drinkable formulations.
3 ¾  3 ¾
Figure imgf000019_0001
Figure imgf000019_0001
発明の効果 The invention's effect
以上の結果より、 本発明は R K Mより苦味の極めて改善された新規な R K M水 和物を提供するものであり、 これを使用すれば R K Mをシ口ップ剤として製剤化 する際、 従来の高分子フィルムなどをコーティ ング剤とするスプレードライ法に より R K Mをマイク口カプセル化して苦味を隠べいする必要が無く、 原末を加工 せずに、 従来品と同等或はそれ以上の品質のシロップ剤の製剤化が可能であるこ と、 又、 R K M水和物は水濡れが非常に優れているため、 錠剤として製剤化する 際-、 従来の D Kエステルによる表面処理の必要はなく、 溶出試験結果から、 E . A . (生物学的利用能) においても従来品と同等の品質の錠剤の製剤化を実施て さる。 以上、 本発明により得られた R K M水和物は製剤化においても、 上記の極めて 優れた性質を有する結晶である。 更に、 前述の製造法により得られた本発明の R K M水和物は高純度、 高収率かつ熱安定性が高く、 工業的規模における目的に合 致した有効成分の単品もしくは一定の成分比の製品を製造できる分離精製法をも 提供できるものである。 Based on the above results, the present invention provides a novel RKM hydrate having significantly improved bitterness over RKM. No need to mask the bitterness by encapsulating RKM in the mic mouth by spray-drying method using a molecular film as a coating agent, without processing the raw powder, and with the same or better quality as the conventional product. Because it is possible to formulate syrups, and because RKM hydrate has excellent water wettability, it does not require conventional surface treatment with DK ester when formulating as tablets-dissolution test Based on the results, we will formulate tablets of the same quality as conventional products in terms of E.A. (bioavailability). As described above, the RKM hydrate obtained by the present invention is a crystal having the above-mentioned extremely excellent properties even in the formulation. Furthermore, the RKM hydrate of the present invention obtained by the above-mentioned production method has a high purity, a high yield, a high thermal stability, and a single active ingredient or a fixed ratio of active ingredients suitable for the purpose on an industrial scale. It can also provide a separation and purification method that can produce products.

Claims

Below
ヨロ 請 求 の 範 囲  Scope of request
 Expression
(、  (,
一 - I
Figure imgf000021_0001
で表されるロキタマイ シン . 1水和物結晶。
One-I
Figure imgf000021_0001
Lokitamycin monohydrate crystal represented by
2. ロキタマイシンを酸性水溶液中で結晶化することを特徴とする式 ( 1 )
Figure imgf000021_0002
で表されるロキタマイ シン ' 1水和物結晶の製造法
2. Formula (1) characterized in that rokitamicin is crystallized in an acidic aqueous solution.
Figure imgf000021_0002
For the production of rokitamicin 'monohydrate crystals represented by
3. 酸性水溶液が、 有機酸または無機酸の P H 1〜4の水溶液である請求の 範囲第 2項記載の製造法。 3. The production method according to claim 2, wherein the acidic aqueous solution is an aqueous solution of an organic acid or an inorganic acid having a pH of 1 to 4.
4. 有機酸が、 酢酸、 プロピオン酸である請求の範囲第 3項記載の製造法。 4. The method according to claim 3, wherein the organic acid is acetic acid or propionic acid.
5. 無機酸が、 リ ン酸である請求の範囲第 3項記載の製造法 < 5. The method according to claim 3, wherein the inorganic acid is phosphoric acid.
PCT/JP1993/001189 1992-09-07 1993-08-25 Rokitamycin monohydrate crystal and process for producing the same WO1994005683A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4238083A JPH0687881A (en) 1992-09-07 1992-09-07 Rokitamycin monohydrate crystal and its production
JP4/238083 1992-09-07

Publications (1)

Publication Number Publication Date
WO1994005683A1 true WO1994005683A1 (en) 1994-03-17

Family

ID=17024912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001189 WO1994005683A1 (en) 1992-09-07 1993-08-25 Rokitamycin monohydrate crystal and process for producing the same

Country Status (2)

Country Link
JP (1) JPH0687881A (en)
WO (1) WO1994005683A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9902550D0 (en) * 1999-07-02 1999-07-02 Astra Ab New crystalline forms

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251013A (en) * 1975-10-16 1977-04-23 Yamanouchi Pharmaceut Co Ltd Method of preparing solvent-free josamycin crystals
JPS54148793A (en) * 1978-05-10 1979-11-21 Toyo Jozo Co Ltd Novel 3"-acylated macrolide antibiotic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251013A (en) * 1975-10-16 1977-04-23 Yamanouchi Pharmaceut Co Ltd Method of preparing solvent-free josamycin crystals
JPS54148793A (en) * 1978-05-10 1979-11-21 Toyo Jozo Co Ltd Novel 3"-acylated macrolide antibiotic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ANTIBIOTICS, Vol. 34, No. 8, p. 1001-1010, 25 August 1981, H. SAKAKIBARA et al., "Acyl Derivatives of 16-Membered Macrolides". *

Also Published As

Publication number Publication date
JPH0687881A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
JP2022003052A (en) Rifaximin
US5556839A (en) Form II Dirithromycin
EP3412678B1 (en) Macrocyclic polymorphs, compositions comprising such polymorphs, and methods of use and manufacture thereof
JP2992540B2 (en) Novel erythromycin derivatives, their preparation and use as pharmaceuticals
AU2016240841C1 (en) Crystal of 3,5-disubstituted benzene alkynyl compound
KR20010099806A (en) Ethanolate of azithromycin, process for manufacture, and pharmaceutical compositions thereof
EP2918585B1 (en) Pyrroloquinoline quinone disodium salt crystal
KR100371473B1 (en) New Erythromycin Derivatives, their Preparation Process and their Use as Medicaments
JP2011136990A (en) New erythromycin derivative, method for producing the same and use thereof as medicament
EP0087164A1 (en) Novel crystal modifications, processes for their production, and pharmaceutical preparations containing them
EP2855499A1 (en) Solid state forms of fidaxomycin and processes for preparation thereof
EP1485393A2 (en) 9-dexo-9a-aza-9a-methyl-9a-homoerythromycin a derivatives
AU2098701A (en) Novel forms of pravastatin sodium
WO1994005683A1 (en) Rokitamycin monohydrate crystal and process for producing the same
WO2021047528A1 (en) Maleate of nicotinyl alcohol ether derivative, crystal form thereof, and application thereof
CN111094313B (en) Crystalline form of idarubicin hydrochloride monohydrate
CN111410672A (en) Rebaudioside crystal in crystal form B, preparation method and application
TWI707851B (en) Novel crystals of piperazine compounds
GB2327084A (en) 9a-Aza-3-ketolide antibiotics
JPH07508495A (en) Oxytetracycline purification method and intermediates
JP4583601B2 (en) Novel 6-deoxyerythromycin derivatives, their production process and their use as pharmaceuticals
JP2018002644A (en) (S)-N-(4-AMINO-5-(QUINOLINE-3-YL)-6,7,8,9-TETRAHYDROPYRIMIDO[5,4-b]INDOLIZINE-8-YL)ACRYLAMIDE CRYSTAL
JP3532988B2 (en) Novel crystalline polymorph of piretanide and method for producing the same
US5091370A (en) Angolamycin derivatives
US3472930A (en) Spiramycin derivative

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT PT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase