[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1994004355A1 - Light-transparent heat-protection element - Google Patents

Light-transparent heat-protection element Download PDF

Info

Publication number
WO1994004355A1
WO1994004355A1 PCT/CH1993/000197 CH9300197W WO9404355A1 WO 1994004355 A1 WO1994004355 A1 WO 1994004355A1 CH 9300197 W CH9300197 W CH 9300197W WO 9404355 A1 WO9404355 A1 WO 9404355A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysilicate
protection element
heat protection
element according
mass
Prior art date
Application number
PCT/CH1993/000197
Other languages
German (de)
French (fr)
Inventor
Walter Egli
Horst Seidel
Simon Frommelt
Christoph Giesbrecht
Original Assignee
Vetrotech Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4235370&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1994004355(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DE59309595T priority Critical patent/DE59309595D1/en
Priority to DK93915627T priority patent/DK0620781T3/en
Priority to CA002120932A priority patent/CA2120932C/en
Priority to EP93915627A priority patent/EP0620781B1/en
Priority to JP50572394A priority patent/JP3710138B2/en
Application filed by Vetrotech Ag filed Critical Vetrotech Ag
Priority to US08/211,504 priority patent/US5565273A/en
Priority to AU45566/93A priority patent/AU4556693A/en
Publication of WO1994004355A1 publication Critical patent/WO1994004355A1/en
Priority to NO941272A priority patent/NO179404C/en
Priority to FI941624A priority patent/FI107717B/en
Priority to GR990401970T priority patent/GR3030889T3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • C09J1/02Adhesives based on inorganic constituents containing water-soluble alkali silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/069Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of intumescent material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00663Uses not provided for elsewhere in C04B2111/00 as filling material for cavities or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/92Fire or heat protection feature
    • Y10S428/921Fire or flameproofing

Definitions

  • the invention relates to a translucent heat protection element with at least one carrier element and a protective layer made of water-containing alkali silicate, and to a method for producing heat protection elements.
  • Translucent heat protection elements of this type are known in various embodiments and are used, among other things, as components. Glass plates are mostly used as carrier elements, although other translucent materials such as plastics are also used. Particularly high demands are placed on heat protection on components that form the boundaries of rooms in the form of glazing or are used for doors. From the publication DE C3 19 00 054 heat-insulating translucent laminated glasses are known in which a layer of dried water-containing alkali silicate is arranged between two glass surfaces. When heat is applied to this laminated glass, for example in the event of a fire, the intermediate layer made of alkali silicate foams and the water contained in the alkali silicate layer evaporates.
  • the intermediate layer is thereby impermeable to the heat radiation and forms effective protection against the undesired heat transfer for a certain time.
  • the glass parts adhere to the inflated foam layer.
  • several glass plates and intermediate layers made of alkali silicate are arranged one behind the other.
  • a thin layer of alkali silicate in liquid form is applied to one side of a glass plate and then dried by removing the excess water, for example by exposure to heat. This drying process is complex and requires a certain drying time, which delays the manufacturing process.
  • the second glass plate must then be glued to the intermediate or protective layer made of alkali silicate.
  • the production of such laminated glasses places high demands on the production conditions in order to ensure that the laminated glass is not clouded by air bubbles or other manufacturing defects.
  • the disadvantages of insufficient cohesion and adhesion of the hydrogel layer require additional complex measures.
  • the silicon dioxide content is a maximum of 20 percent by weight and the molar ratio between silicon dioxide and sodium oxide as alkali metal oxide ranges from two to a maximum of four.
  • the invention is therefore based on the object of creating a translucent heat protection element which has high transparency and aging resistance, in which the protective or intermediate layer can be produced by casting and without drying, and the protective layer has good inherent strength as well as liability to the adjacent support elements.
  • the starting material for the protective layer should be flowable and suitable for pouring into cavities and then harden in a suitable time to form the protective layer.
  • the protective layer is a hardened polysilicate formed from alkali silicate and a hardener, and in that the polysilicate has a molar ratio of silicon dioxide to alkali metal oxide which is greater than 4: 1.
  • a lithium, sodium or potassium silicate or a mixture thereof is preferably used as the alkali silicate and a sodium, potassium or lithium oxide or a mixture thereof is used as the alkali metal oxide.
  • Suitable hardeners are preferably silicon compounds which react with alkali silicate and contain silicon oxide, silicic acid or compounds which release silica in aqueous solution being preferred. This does not rule out the use of compounds which do not contain Si as hardeners or additional hardeners. Suitable are all compounds which do not form insoluble precipitates due to the reaction with alkali silicate and which would thereby have a negative effect on the optical properties. Compounds such as inorganic and organic acids, esters, acid amides, glyoxal, alkylene carbonates, alkali carbonates and bicarbonates are preferred. Borates, phosphates and para-formaldehyde. These can be used in combination with the main hardener made of silicic acid in small amounts, usually less than 5 percent, without the transparency of the polysilicate layer being impaired.
  • This protective layer of hardened polysilicate according to the invention has good inherent strength and forms good adhesion to the adjacent carrier elements in the form of glass plates or other translucent components.
  • the initial mass is flowable and easy to pour.
  • the hardened protective layer is of high optical quality and permeability and has good aging resistance.
  • the special properties of the protective layer in the form of the hardened polysilicate are achieved in that the polysilicate layer has a silicon dioxide content of between 30 and 55%.
  • the content of alkali metal oxide (M 2 0) in the form of sodium, potassium or lithium oxide or a mixture thereof is a maximum of 16%.
  • the hardened polysilicate layer contains up to 60% water.
  • heat protection elements with a protective layer according to the invention achieve a very high fire resistance value, since a relatively large amount of water is available for the evaporation process.
  • the high content of silicon dioxide is achieved in that the hardener is a silicon-containing compound, advantageously silicic acid or a compound that splits off silicic acid.
  • the polysilicate layer is advantageously arranged between two glass plates and forms a composite element with these.
  • heat protection elements are formed in which the heat protection element consists of a plurality of polysilicate layers each arranged between two glass plates and the glass plates and the polysilicate layers form a composite element.
  • the polysilicon Kat Anlagenen in direct connection with the adjacent glass plates forming the support elements.
  • the adhesion between polysilicate layers and glass plates enables the composite elements to be formed directly without an additional gluing process, which considerably simplifies the manufacturing process.
  • the process for producing a translucent heat protection element using a water-containing alkali silicate is characterized in that the alkali silicate is combined with a hardener which contains or releases silicon dioxide and a pourable mass is formed, this mass is introduced into a mold cavity or onto a carrier element is applied, then the mass is cured while maintaining the water content to form a solid polysilicate layer and the molar ratio of silicon dioxide to alkali metal oxides in the cured polysilicate is adjusted to a ratio which is greater than 4: 1.
  • the method according to the invention thus makes it possible to assemble composite elements which consist of a plurality of carrier elements arranged at a distance from one another and then to pour the intermediate space between the carrier elements with the pourable mass of alkali silicate and one or more hardeners.
  • the mass is very free-flowing and can also be poured into the interstices of composite glazing with a small distance between the glass plates without difficulty. Since the mass cures to a solid polysilicate layer without drying, ie without the release of water, the drying process can be dispensed with, which considerably simplifies the production of corresponding heat protection elements.
  • the reaction or curing time can be accelerated in a known manner by heating.
  • the pot life of the pourable mass at room temperature is definitely long enough for a normal production process to take place enable.
  • the mass can be introduced or poured into a mold cavity between two carrier elements, as described.
  • the latter would only be expedient if translucent heat protection elements with the protective layer according to the invention were to be produced on conventional systems for producing the known heat protection elements.
  • the mass of alkali silicate and hardener is preferably degassed before processing. This ensures that there are no gas inclusions in the hardened polysilicate layer which could interfere with the optical quality of the heat protection element according to the invention. However, the degassing can also take place only after the cavities have been filled.
  • an auxiliary in the form of anionic or nonionic surfactants can be added to the mass before processing and / or the carrier layers be pretreated with such an agent.
  • the carrier layers can preferably also be pretreated with an adhesion promoter, preferably with an organofunctional silane.
  • a heat protection element consists of glazing, which is assembled from four glass panes so that there is a gap of one millimeter between each two glass panes. Along the edges of the glass panes
  • a filling opening is left open for each cavity between two glass panes.
  • a pourable mass is prepared from an alkali silicate in the form of a potassium silicate and colloidal silica, which hardens to a polysilicate with a molar ratio of SiO 2 to K 2 0 equal to 4.7: 1.
  • This liquid mass is subjected to a degassing process in a known manner and then filled through the filler openings into the cavities between two glass panes. The mass is so flowable that it can be poured in without difficulty and can displace the air contained in the cavities without mixing.
  • the composite element formed in this way consisting of four glass panes and three protective layers of polysilicate in between, is stored in a suitable position until the reaction process is completed and the cured polysilicate of the three protective layers has the desired inherent strength. speed and adhesion to the glass plates. Be ⁇ for the reaction acceleration the temperature to 60 C ⁇ is er ⁇ increased.
  • the composite elements formed in this way can be handled in any manner known for laminated glass elements and can also be cut into other shapes.
  • the protective layer of hardened polysilicate arranged between the glass plates has a water content of 47 percent by weight.
  • the hardened polysilicate layers arranged between the glass panes in no way reduce the optical properties of the glass plate composite, and the heat protection element produced in this way is distinguished by optimal fire resistance properties.
  • this 15 percent of a freezing point-lowering agent was added in the form of a polyol.
  • the water content of the hardened polysilicate is 51.2 percent by weight.
  • the fire resistance properties are practically identical to those of the element structure in Example 1.
  • Example 3 In a varied embodiment of Examples 1 and 2, 35 mol percent of the potassium ion is replaced by sodium and a hydrated, precipitated silica with a water content of 21 percent is used as the hardener. The water content of the cured polysilicate is 44 percent by weight. The molar ratio of Si0 2 to (K 2 0 + Li 2 0 + Na 2 0) is also 5.0: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Materials For Medical Uses (AREA)
  • Magnetic Heads (AREA)

Abstract

The heat-protection element proposed consists of support elements in the form of glass plates, for instance. Between pairs of glass plates is a cavity in which is located a protective layer of cured polysilicate produced from an alkali-metal silicate and at least one curing agent, the molar ratio of silicon dioxide to alkali-metal oxide in the polysilicate being greater than 4:1. The starting compound used for the production of the polysilicate is a free-flowing material with a water content of up to 60 % and can be poured into the cavity between two support elements. When the compound hardens, the water content remains high. The polysilicate produced nevertheless has a high inherent strength and adheres well to the support elements.

Description

Lichtdurchlässiges HitzeschutzelementTranslucent heat protection element
Die Erfindung betrifft ein lichtdurchlässiges Hitzeschutz¬ element mit mindestens einem Trägerelement und einer Schutz¬ schicht aus wasserhaltigem Alkalisilikat sowie ein Verfahren zur Herstellung von Hitzeschutzelementen.The invention relates to a translucent heat protection element with at least one carrier element and a protective layer made of water-containing alkali silicate, and to a method for producing heat protection elements.
Lichtdurchlässige Hitzeschutzelemente dieser Art sind in verschiedenen Ausführungsformen bekannt und werden unter anderem als Bauelemente eingesetzt. Als Trägerelemente die¬ nen zumeist Glasplatten, wobei jedoch auch andere licht- durchlässige Materialien wie zum Beispiel Kunststoffe ver¬ wendet werden. Besonders hohe Ansprüche an den Hitzeschutz werden dabei an Bauelemente gestellt, welche in der Form von Verglasungen Abgrenzungen von Räumen bilden oder für Türen eingesetzt werden. Aus der Publikation DE C3 19 00 054 sind hitzeisolierende lichtdurchlässige Verbundgläser bekannt, bei welchen zwischen zwei Glasflächen eine Schicht aus ge¬ trocknetem wasserhaltigem Alkalisilikat angeordnet ist. Bei Einwirkung von Hitze auf dieses Verbundglas, zum Beispiel bei einem Brandfall, schäumt die Zwischenschicht aus Alkali- silikat auf, und das in der Alkalisilikatschicht enthaltene Wasser verdampft. Die Zwischenschicht wird dadurch für die Wärmestrahlung undurchlässig und bildet für eine bestimmte Zeit einen wirksamen Schutz gegen den unerwünschten Wärme¬ durchgang. Trotzdem mindestens eine der Glasplatten zer- splittert, haften die Glasteile an der aufgeblähten Schaum¬ schicht. Zur Verbesserung des Hitzeschutzes werden mehrere Glasplatten und Zwischenschichten aus Alkalisilikat hinter¬ einander angeordnet. Bei der Herstellung derartiger Verbund- gläser wird auf einer Seite einer Glasplatte eine dünne Schicht von Alkalisilikat in flüssiger Form aufgetragen und anschliessend durch Entzug des überschüssigen Wassers, zum Beispiel durch Wärmeeinwirkung, getrocknet. Dieser Trock- nungsprozess ist aufwendig und erfordert eine bestimmte Trocknungszeit, wodurch der Herstellungsvorgang verzögert wird. Die zweite Glasplatte muss dann anschliessend auf die Zwischen-, bzw. Schutzschicht aus Alkalisilikat aufgeklebt werden. Die Herstellung derartiger Verbundgläser stellt hohe Anforderungen an die Produktionsbedingungen um sicherzustel¬ len, dass keine Trübung des Verbundglases durch Luftblasen oder andere Herstellungsfehler entsteht.Translucent heat protection elements of this type are known in various embodiments and are used, among other things, as components. Glass plates are mostly used as carrier elements, although other translucent materials such as plastics are also used. Particularly high demands are placed on heat protection on components that form the boundaries of rooms in the form of glazing or are used for doors. From the publication DE C3 19 00 054 heat-insulating translucent laminated glasses are known in which a layer of dried water-containing alkali silicate is arranged between two glass surfaces. When heat is applied to this laminated glass, for example in the event of a fire, the intermediate layer made of alkali silicate foams and the water contained in the alkali silicate layer evaporates. The intermediate layer is thereby impermeable to the heat radiation and forms effective protection against the undesired heat transfer for a certain time. Despite the fact that at least one of the glass plates splinters, the glass parts adhere to the inflated foam layer. To improve the heat protection, several glass plates and intermediate layers made of alkali silicate are arranged one behind the other. In the manufacture of such composite a thin layer of alkali silicate in liquid form is applied to one side of a glass plate and then dried by removing the excess water, for example by exposure to heat. This drying process is complex and requires a certain drying time, which delays the manufacturing process. The second glass plate must then be glued to the intermediate or protective layer made of alkali silicate. The production of such laminated glasses places high demands on the production conditions in order to ensure that the laminated glass is not clouded by air bubbles or other manufacturing defects.
Aus EP A-2 192 249 ist es im weiteren bekannt, das Alkalisi- likat der Zwischenschicht in der Form einer Hydrogelschicht mit höherem Wassergehalt einzubringen. Diese Hydrogelschich- ten weisen einen Wassergehalt von 80 bis 90% auf und sind deshalb nicht selbsttragend. Derartige Hydrogelschichten werden vorgeschlagen um die optischen Eigenschaften der Zwi- schenschicht zu verbessern. Da die Hydrogelschicht selbst keine genügende Kohäsion und gegenüber den angrenzenden Glasschichten keine genügende Adhäsion aufweist wird vorge¬ schlagen, zur Verfestigung der Schicht ein organisches Bin¬ demittel, zum Beispiel Gummiarabicum, zuzumischen. Die Zumi- schung dieses Bindemittels ist notwendig um zu verhindern, dass das Hydrogel aus dem Zwischenraum zwischen den Verbund¬ gläsern oder beim Zerspringen einer der Glasscheiben aus¬ läuft. Die Nachteile der ungenügenden Kohäsion und Adhäsion der Hydrogelschicht erfordern zusätzliche aufwendige Mass- nahmen. Der Gehalt an Siliziumdioxid beträgt maximal 20 Ge¬ wichtsprozente und das Molverhältnis zwischen Siliziumdioxid und Natriumoxid als Alkali-Metalloxid bewegt sich zwischen zwei bis maximal vier.From EP A-2 192 249 it is further known to introduce the alkali silicate of the intermediate layer in the form of a hydrogel layer with a higher water content. These hydrogel layers have a water content of 80 to 90% and are therefore not self-supporting. Hydrogel layers of this type are proposed in order to improve the optical properties of the intermediate layer. Since the hydrogel layer itself does not have sufficient cohesion and, compared to the adjacent glass layers, it does not have sufficient adhesion, it is proposed to mix in an organic binder, for example gum arabic, to solidify the layer. The admixture of this binder is necessary in order to prevent the hydrogel from running out of the space between the laminated glasses or when one of the glass panes breaks apart. The disadvantages of insufficient cohesion and adhesion of the hydrogel layer require additional complex measures. The silicon dioxide content is a maximum of 20 percent by weight and the molar ratio between silicon dioxide and sodium oxide as alkali metal oxide ranges from two to a maximum of four.
Obwohl diese bekannten lichtdurchlässigen Hitzeschutzelemen¬ te in Bezug auf Hitze- und Brandschutz bereits hohen Anfor- derungen zu genügen vermögen, sind sie in Bezug auf Verar¬ beitung und Aufbringung der Zwischenschicht aus wasserhalti¬ gem Alkalisilikat noch unbefriedigend. Der Erfindung liegt deshalb die Aufgabe zu Grunde, ein lichtdurchlässiges Hitze- schutzelement zu schaffen, welches eine hohe Transparenz und Alterungsbeständigkeit aufweist , bei welchem die Schutz- , bzw. Zwischenschicht durch Vergiessen und ohne Trocknung herstellbar ist , und die Schutzschicht eine gute Eigenfe¬ stigkeit sowie Haftung zu den angrenzenden Trägerelementen aufweist . Die Ausgangsmasse für die Schutzschicht soll fliessfähig und zum Eingiessen in Hohlräume geeignet sein und anschliessend in angemessener Zeit zur Schutzschicht aushärten .Although these known translucent heat protection elements are already very demanding in terms of heat and fire protection. are sufficient, they are still unsatisfactory in terms of processing and application of the intermediate layer of water-containing alkali silicate. The invention is therefore based on the object of creating a translucent heat protection element which has high transparency and aging resistance, in which the protective or intermediate layer can be produced by casting and without drying, and the protective layer has good inherent strength as well as liability to the adjacent support elements. The starting material for the protective layer should be flowable and suitable for pouring into cavities and then harden in a suitable time to form the protective layer.
Diese Aufgabe wird erf indungsgemass dadurch gelöst , dass die Schutzschicht ein aus Alkalisilikat und einem Härter gebil¬ detes ausgehärtetes Polysilikat ist, und dass im Polysilikat ein Molverhältnis von Siliziumdioxid zu Alkali-Metalloxid besteht, welches grösser als 4 : 1 ist . Als Alkalisilikat wird vorzugsweise ein Lithium- , Natrium- oder Kaliumsilikat oder eine Mischung davon und als Alkali-Metalloxid ein Natrium- , Kalium- oder Lithiumoxid oder eine Mischung davon einge¬ setzt .According to the invention, this object is achieved in that the protective layer is a hardened polysilicate formed from alkali silicate and a hardener, and in that the polysilicate has a molar ratio of silicon dioxide to alkali metal oxide which is greater than 4: 1. A lithium, sodium or potassium silicate or a mixture thereof is preferably used as the alkali silicate and a sodium, potassium or lithium oxide or a mixture thereof is used as the alkali metal oxide.
Als Härter kommen vorzugsweise mit Alkalisilikat reaktions¬ fähige Siliziumverbindungen welche Siliziumoxid enthalten in Frage, wobei Kieselsäure oder Verbindungen welche Kieselsäu¬ re in wässriger Lösung freisetzen bevorzugt eingesetzt wer¬ den. Die Verwendung anderer, nicht Si-haltiger Verbindungen als Härter, bzw. Zusatz-Härter, wird dadurch nicht ausge¬ schlossen. Geeignet sind alle Verbindungen, die durch die Reaktion mit Alkalisilikat keine unlöslichen Niederschläge bilden und dadurch die optischen Eigenschaften negativ be¬ einflussen würden . Bevorzugt werden Verbindungen wie anorga- nische und organische Säuren, Ester, Säureamide, Glyoxal, Alkylenkarbonate , Alkalikarbonate und -hydrogenkarbonate . Borate, Phosphate und para-Formaldehyd. Diese können in Kom¬ bination mit dem Haupthärter aus Kieseisäure in geringen Mengen, üblicherweise weniger als 5 Prozent, eingesetzt wer¬ den, ohne dass dadurch die Transparenz- der Polysilikat- schicht beeinträchtigt wird.Suitable hardeners are preferably silicon compounds which react with alkali silicate and contain silicon oxide, silicic acid or compounds which release silica in aqueous solution being preferred. This does not rule out the use of compounds which do not contain Si as hardeners or additional hardeners. Suitable are all compounds which do not form insoluble precipitates due to the reaction with alkali silicate and which would thereby have a negative effect on the optical properties. Compounds such as inorganic and organic acids, esters, acid amides, glyoxal, alkylene carbonates, alkali carbonates and bicarbonates are preferred. Borates, phosphates and para-formaldehyde. These can be used in combination with the main hardener made of silicic acid in small amounts, usually less than 5 percent, without the transparency of the polysilicate layer being impaired.
Diese erfindungsgemässe Schutzschicht aus ausgehärtetem Po¬ lysilikat weist eine gute Eigenfestigkeit auf und bildet eine gute Haftung zu den angrenzenden Trägerelementen in der Form von Glasplatten oder anderen lichtdurchlässigen Bauele¬ menten. Die Ausgangsmasse ist fliessfähig und leicht ver- giessbar. Die ausgehärtete Schutzschicht ist von hoher opti¬ scher Qualität und Durchlässigkeit und weist eine gute Alte¬ rungsbeständigkeit auf. Die besonderen Eigenschaften der Schutzschicht in der Form des ausgehärteten Polysilikates werden dadurch erreicht, dass die Polysilikatschicht einen Gehalt an Siliziumdioxid zwischen 30 bis 55% aufweist. Der Gehalt an Alkali-Metalloxid (M20) in der Form von Natrium-, Kalium- oder Lithiumoxid oder einer Mischung davon beträgt maximal 16%. Die ausgehärtete Polysilikatschicht enthält bis zu 60% Wasser. Dadurch erreichen Hitzeschutzelemente mit einer erfindungsgemässen Schutzschicht einen sehr hohen Feuerwiderstandswert, da für den Verdampfungsprozess eine relativ grosse Wassermenge zur Verfügung steht. Der hohe Gehalt an Siliziumdioxid wird dadurch erreicht, dass der Härter eine siliziumhaltige Verbindung, vorteilhafterweise Kieselsäure oder eine Kieselsäure abspaltende Verbindung ist. In vorteilhafter Weise ist bei einem lichtdurchlässigen Hitzeschutzelement die Polysilikatschicht zwischen zwei Glasplatten angeordnet und bildet mit diesen ein Verbundele¬ ment. Zur Erreichung von höheren Hitzewiderstandswerten wer¬ den Hitzeschutzelemente gebildet, bei welchen das Hitze¬ schutzelement aus mehreren jeweils zwischen zwei Glasplatten angeordneten Polysilikatschichten besteht und die Glasplat- ten und die Polysilikatschichten ein Verbundelement bilden. Bei diesen erfindungsgemässen Anordnungen sind die Polysili- katschichten in direkter Verbindung mit den angrenzenden die Trägerelemente bildenden Glasplatten. Die Haftung zwischen Polysilikatschichten und Glasplatten ermöglicht die direkte Bildung der Verbundelemente ohne zusätzlichen Klebevorgang, wodurch der Herstellungsprozess wesentlich vereinfacht wird.This protective layer of hardened polysilicate according to the invention has good inherent strength and forms good adhesion to the adjacent carrier elements in the form of glass plates or other translucent components. The initial mass is flowable and easy to pour. The hardened protective layer is of high optical quality and permeability and has good aging resistance. The special properties of the protective layer in the form of the hardened polysilicate are achieved in that the polysilicate layer has a silicon dioxide content of between 30 and 55%. The content of alkali metal oxide (M 2 0) in the form of sodium, potassium or lithium oxide or a mixture thereof is a maximum of 16%. The hardened polysilicate layer contains up to 60% water. As a result, heat protection elements with a protective layer according to the invention achieve a very high fire resistance value, since a relatively large amount of water is available for the evaporation process. The high content of silicon dioxide is achieved in that the hardener is a silicon-containing compound, advantageously silicic acid or a compound that splits off silicic acid. In the case of a translucent heat protection element, the polysilicate layer is advantageously arranged between two glass plates and forms a composite element with these. To achieve higher heat resistance values, heat protection elements are formed in which the heat protection element consists of a plurality of polysilicate layers each arranged between two glass plates and the glass plates and the polysilicate layers form a composite element. In these arrangements according to the invention, the polysilicon Katschichten in direct connection with the adjacent glass plates forming the support elements. The adhesion between polysilicate layers and glass plates enables the composite elements to be formed directly without an additional gluing process, which considerably simplifies the manufacturing process.
Das Verfahren zur Herstellung eines lichtdurchlässigen Hitzeschutzelementes unter Verwendung eines wasserhaltigen Alkalisilikates ist gemäss der Erfindung dadurch gekenn- zeichnet, dass das Alkalisilikat mit einem Härter welcher Siliziumdioxid enthält oder freisetzt zusammengefügt und eine giessfähige Masse gebildet wird, diese Masse in einen Formhohlraum eingebracht oder auf ein Trägerelement aufge¬ bracht wird, anschliessend die Masse unter Erhaltung des Wassergehaltes zu einer festen Polysilikatschicht ausgehär¬ tet wird und dabei im ausgehärteten Polysilikat das Molver¬ hältnis von Siliziumdioxid zu Alkali-Metalloxiden auf ein Verhältnis welches grösser als 4:1 ist eingestellt wird.According to the invention, the process for producing a translucent heat protection element using a water-containing alkali silicate is characterized in that the alkali silicate is combined with a hardener which contains or releases silicon dioxide and a pourable mass is formed, this mass is introduced into a mold cavity or onto a carrier element is applied, then the mass is cured while maintaining the water content to form a solid polysilicate layer and the molar ratio of silicon dioxide to alkali metal oxides in the cured polysilicate is adjusted to a ratio which is greater than 4: 1.
Das erfindungsgemässe Verfahren ermöglicht somit Verbundele¬ mente, welche aus mehreren mit einem Abstand zueinander an¬ geordneten Trägerelementen bestehen, zusammenzustellen und anschliessend den Zwischenraum zwischen den Trägerelementen mit der giessf higen Masse aus Alkalisilikat und einem oder mehreren Härtern auszugiessen. Infolge des hohen Wasserge¬ haltes ist die Masse sehr gut fliessfähig und kann ohne Schwierigkeiten auch in die Zwischenräume von Verbundvergla¬ sungen mit geringem Abstand zwischen den Glasplatten einge¬ gossen werden. Da die Masse ohne Trocknung, d.h. ohne Abgabe von Wasser, zu einer festen Polysilikatschicht aushärtet kann auf den Trocknungsvorgang verzichtet werden, was die Herstellung entsprechender Hitzeschutzelemente wesentlich vereinfacht. Die Reaktions-, bzw. Aushärtzeit kann in be¬ kannter Weise durch Erwärmen beschleunigt werden. Die Topf- zeit der giessfahigen Masse ist bei Raumtemperatur auf alle Fälle genügend lang um einen normalen Produktionsablauf zu ermöglichen. Bei der Herstellung der Hitzeschutzelemente kann die Masse wie beschrieben in einen Formhohlraum zwi¬ schen zwei Trägerelementen eingebracht, bzw. eingegossen werden. Es ist aber auch möglich, die Masse auf ein Träger- element aufzubringen und anschliessend ein zweites Träger¬ element auf die noch nicht ausgehärtete Schutzschicht auf¬ zulegen oder das zweite Trägerelement nach dem Aushärten der Schutzschicht in der bekannten Weise mit dieser zu verkle¬ ben. Letzteres wäre jedoch nur dann zweckmässig, wenn auf herkömmlichen Anlagen zur Herstellung der bekannten Hitze¬ schutzelemente lichtdurchlässige Hitzeschutzelemente mit der erfindungsgemässen Schutzschicht hergestellt werden sollten. Ein Teil der Vorteile bleibt dann immer noch erhalten, da kein Trocknungsprozess notwendig ist und die Aushärtung der Masse zur Polysilikatschicht ohne Abgabe von Wasser, d.h. bei Erhaltung des Wassergehaltes erfolgt.The method according to the invention thus makes it possible to assemble composite elements which consist of a plurality of carrier elements arranged at a distance from one another and then to pour the intermediate space between the carrier elements with the pourable mass of alkali silicate and one or more hardeners. As a result of the high water content, the mass is very free-flowing and can also be poured into the interstices of composite glazing with a small distance between the glass plates without difficulty. Since the mass cures to a solid polysilicate layer without drying, ie without the release of water, the drying process can be dispensed with, which considerably simplifies the production of corresponding heat protection elements. The reaction or curing time can be accelerated in a known manner by heating. The pot life of the pourable mass at room temperature is definitely long enough for a normal production process to take place enable. During the production of the heat protection elements, the mass can be introduced or poured into a mold cavity between two carrier elements, as described. However, it is also possible to apply the composition to a support element and then to place a second support element on the not yet hardened protective layer or to glue the second support element to the protective layer in the known manner after it has hardened. However, the latter would only be expedient if translucent heat protection elements with the protective layer according to the invention were to be produced on conventional systems for producing the known heat protection elements. Some of the advantages are still retained, since no drying process is necessary and the mass is cured to the polysilicate layer without the release of water, ie while maintaining the water content.
Vorzugsweise wird die Masse aus Alkalisilikat und Härter vor dem Verarbeiten entgast. Dadurch wird sichergestellt, dass in der ausgehärteten Polysilikatschicht keine Gaseinschlüsse vorhanden sind, welche die optische Qualität des erfindungs¬ gemässen Hitzeschutzelementes stören könnten. Die Entgasung kann jedoch auch erst nach dem Befüllen der Hohlräume erfol¬ gen. Zur Steigerung der Adhäsion der Polysilikatschicht an den Trägerelementen kann der Masse vor dem Verarbeiten ein Hilfsmittel in Form von anionischen oder nichtionogenen Ten- siden zugefügt werden und/oder es können die Trägerschichten mit einem solchen Mittel vorbehandelt sein. Die Träger¬ schichten können in bevorzugter Weise auch mit einem Haft- Vermittler, vorzugsweise mit einem organofunktionellen Silan vorbehandelt sein.The mass of alkali silicate and hardener is preferably degassed before processing. This ensures that there are no gas inclusions in the hardened polysilicate layer which could interfere with the optical quality of the heat protection element according to the invention. However, the degassing can also take place only after the cavities have been filled. To increase the adhesion of the polysilicate layer to the carrier elements, an auxiliary in the form of anionic or nonionic surfactants can be added to the mass before processing and / or the carrier layers be pretreated with such an agent. The carrier layers can preferably also be pretreated with an adhesion promoter, preferably with an organofunctional silane.
Als Trägerelemente für das erfindungsgemässe lichtdurchläs¬ sige Hitzeschutzelement sind nicht nur Elemente aus Glas, insbesondere Glasplatten, sondern auch andere Werkstoffe mit den gewünschten optischen Eigenschaften geeignet, sofern sie den technischen und physikalischen Anforderungen, zum Bei¬ spiel an Hitzebeständigkeit, genügen. Der Widerstandswert der Hitzeschutzschicht wird in jedem Falle durch den erhöh¬ ten Wassergehalt verbessert. Als Trägermaterial kann auch ganz oder teilweise, thermisch oder chemisch vorgespanntes Glas verwendet werden.Not only elements made of glass, in particular glass plates, but also other materials with the desired optical properties are suitable as carrier elements for the translucent heat protection element according to the invention, provided that they meet the technical and physical requirements, for example heat resistance. The resistance value of the heat protection layer is improved in any case by the increased water content. Whole or partially, thermally or chemically toughened glass can also be used as the carrier material.
Die folgenden Beispiele veranschaulichen die vorliegende Erfindung.The following examples illustrate the present invention.
Beispiel 1example 1
Ein Hitzeschutzelement besteht aus einer Verglasung, welche aus vier Glasscheiben so zusammengebaut ist, dass zwischen je zwei Glasscheiben ein Abstand von einem Millimeter ent- steht. Entlang der Kanten der Glasscheiben werden dieA heat protection element consists of glazing, which is assembled from four glass panes so that there is a gap of one millimeter between each two glass panes. Along the edges of the glass panes
Schmalseiten der Hohlräume zwischen den Glasscheiben um des ganzen U fanges der Glasscheiben in bekannter Weise mit einem geeigneten Dichtungsmaterial versiegelt. Zu jedem Hohlraum zwischen je zwei Glasscheiben wird eine Einfüllöff- nung offengelassen. Aus einem Alkalisilikat in der Form eines Kaliumsilikates und kolloidaler Kieselsäure wird eine giessfähige Masse zubereitet, welche zu einem Polysilikat mit einem Molverhältnis von Si02 zu K20 gleich 4,7:1 aushär¬ tet. Diese flüssige Masse wird in bekannter Weise einem Ent- gasungsprozess unterworfen und dann durch die Einfüllöffnun¬ gen in die Hohlräume zwischen je zwei Glasscheiben einge¬ füllt. Die Masse ist dabei so fliessfähig, dass sie ohne Schwierigkeiten eingefüllt werden kann und dabei die in den Hohlräumen enthaltene Luft zu verdrängen vermag ohne dass eine Vermischung erfolgt. Nach dem vollständigen Füllen der Hohlräume werden auch die Einfüllöffnungen versiegelt. Das auf diese Weise gebildete Verbundelement aus vier Glasschei¬ ben und drei dazwischen liegenden Schutzschichten aus Poly¬ silikat wird in einer geeigneten Position gelagert bis der Reaktionsprozess abgeschlossen und das ausgehärtete Polysi¬ likat der drei Schutzschichten die gewünschte Eigenfestig- keit und Haftung zu den Glasplatten erreicht hat. Zur Be¬ schleunigung der Reaktion wird die Temperatur auf 60βC er¬ höht. Nach vollständiger Aushärtung des Polysilikates können die auf diese Weise gebildeten Verbundelemente in jeder für Verbundglaselemente bekannten Weise gehandhabt und auch in andere Formen geschnitten werden. Die zwischen den Glasplat¬ ten angeordnete Schutzschicht aus ausgehärtetem Polysilikat weist dabei einen Wassergehalt von 47 Gewichtsprozenten auf. Die zwischen den Glasscheiben angeordneten ausgehärteten Polysilikatschichten schmälern die optischen Eigenschaften des Glasplattenverbundes in keiner Weise, und das auf diese Weise hergestellte Hitzeschutzelement zeichnet sich durch optimale Feuerwiderstandseigenschaften aus.Narrow sides of the cavities between the glass panes around the whole U of the glass panes sealed in a known manner with a suitable sealing material. A filling opening is left open for each cavity between two glass panes. A pourable mass is prepared from an alkali silicate in the form of a potassium silicate and colloidal silica, which hardens to a polysilicate with a molar ratio of SiO 2 to K 2 0 equal to 4.7: 1. This liquid mass is subjected to a degassing process in a known manner and then filled through the filler openings into the cavities between two glass panes. The mass is so flowable that it can be poured in without difficulty and can displace the air contained in the cavities without mixing. After the cavities have been completely filled, the filling openings are also sealed. The composite element formed in this way, consisting of four glass panes and three protective layers of polysilicate in between, is stored in a suitable position until the reaction process is completed and the cured polysilicate of the three protective layers has the desired inherent strength. speed and adhesion to the glass plates. Be¬ for the reaction acceleration the temperature to 60 C β is er¬ increased. After the polysilicate has completely hardened, the composite elements formed in this way can be handled in any manner known for laminated glass elements and can also be cut into other shapes. The protective layer of hardened polysilicate arranged between the glass plates has a water content of 47 percent by weight. The hardened polysilicate layers arranged between the glass panes in no way reduce the optical properties of the glass plate composite, and the heat protection element produced in this way is distinguished by optimal fire resistance properties.
Beispiel 2Example 2
In einer abgeänderten Variante gemäss Beispiel 1 wurde eine Füllmasse verwendet, bei der ein Gemisch von Kalium- und Lithiumsilikat im Verhältnis von 8.5 : 1.5 und eine 30%-ige Kieselsäuredispersion in Wasser in einem Mengenverhältnis so zur Reaktion gebracht wurden, dass ein K-Li-Polysilikat mit einem Molverhältnis von Si02 zu (K20+Li20)= 5.0:1 resultiert. Vor dem Einfüllen der Masse wurde dieser 15 Prozent eines Gefrierpunkt senkenden Mittels in Form eines Polyols zuge¬ fügt. Der Wassergehalt des ausgehärteten Polysilikates be- trägt 51.2 Gewichtsprozent. Die Feuerwiderstandseigenschaf¬ ten sind praktisch identisch mit denjenigen des Elementauf¬ baus im Beispiel 1.In a modified variant according to Example 1, a filler was used in which a mixture of potassium and lithium silicate in the ratio of 8.5: 1.5 and a 30% dispersion of silica in water were reacted in a proportion such that a K-Li -Polysilicate with a molar ratio of Si0 2 to (K 2 0 + Li 2 0) = 5.0: 1 results. Before the mass was filled in, this 15 percent of a freezing point-lowering agent was added in the form of a polyol. The water content of the hardened polysilicate is 51.2 percent by weight. The fire resistance properties are practically identical to those of the element structure in Example 1.
Beispiel 3 In einer variierten Ausführungsform der Beispiele 1 und 2 werden 35 Mol-Prozente des Kaliumions durch Natrium ersetzt und als Härter eine hydratisierte, gefällte Kieselsäure mit einem Wassergehalt von 21 Prozent eingesetzt. Der Wasserge¬ halt des ausgehärteten Polysilikates liegt bei 44 Gewichts- prozent. Das Molverhältnis von Si02 zu (K20+Li20+Na20) beträgt hier ebenfalls 5.0:1. Example 3 In a varied embodiment of Examples 1 and 2, 35 mol percent of the potassium ion is replaced by sodium and a hydrated, precipitated silica with a water content of 21 percent is used as the hardener. The water content of the cured polysilicate is 44 percent by weight. The molar ratio of Si0 2 to (K 2 0 + Li 2 0 + Na 2 0) is also 5.0: 1.

Claims

Patentansprüche Claims
1. Lichtdurchlässiges Hitzeschutzelement mit mindestens einem Trägerelement und einer Schutzschicht aus wasser- haltigem Alkalisilikat, dadurch gekennzeichnet, dass die Schutzschicht ein aus Alkalisilikat und mindestens einem Härter gebildetes, ausgehärtetes Polysilikat ist und dass im Polysilikat ein Molverhältnis von Silizium¬ dioxid zu Alkali-Metalloxid besteht welches grösser als 4:1 ist.1. Translucent heat protection element with at least one carrier element and a protective layer made of water-containing alkali silicate, characterized in that the protective layer is a hardened polysilicate formed from alkali silicate and at least one hardener and that the polysilicate has a molar ratio of silicon dioxide to alkali metal oxide which is larger than 4: 1.
2. Hitzeschutzelement nach Patentanspruch 1, dadurch ge¬ kennzeichnet, dass das Alkalisilikat ein Lithium-, Na¬ trium- oder Kaliumsilikat oder eine Mischung davon ist.2. Heat protection element according to claim 1, characterized ge indicates that the alkali silicate is a lithium, sodium or potassium silicate or a mixture thereof.
3. Hitzeschutzelement nach Patentanspruch 1 oder 2, da¬ durch gekennzeichnet, dass das Alkali-Metalloxid ein Natrium-, Kalium- oder Lithiumoxid oder eine Mischung davon ist.3. Heat protection element according to claim 1 or 2, characterized in that the alkali metal oxide is a sodium, potassium or lithium oxide or a mixture thereof.
4. Hitzeschutzelement nach einem der Patentansprüche 1 bis4. Heat protection element according to one of claims 1 to
3, dadurch gekennzeichnet, dass die Polysilikatschicht zwischen 30 bis 55% Siliziumdioxid enthält.3, characterized in that the polysilicate layer contains between 30 to 55% silicon dioxide.
5. Hitzeschutzelement nach einem der Patentansprüche 1 bis5. Heat protection element according to one of claims 1 to
4, dadurch gekennzeichnet, dass die Polysilikatschicht maximal 16% Alkali-Metalloxid enthält.4, characterized in that the polysilicate layer contains a maximum of 16% alkali metal oxide.
6. Hitzeschutzelement nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass die Polysilikatschicht bis 60% Wasser enthält.6. Heat protection element according to one of the claims 1 to 5, characterized in that the polysilicate layer contains up to 60% water.
7. Hitzeschutzelement nach einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass die Polysilikatschicht ein Mittel zur Senkung des Gefrierpunktes des Wasser¬ anteiles enthält. 7. Heat protection element according to one of the claims 1 to 6, characterized in that the polysilicate layer contains a means for lowering the freezing point of the water portion.
8. Hitzeschutzelement nach einem der Patentansprüche 1 bis 7, dadurch .gekennzeichnet, dass der Härter eine Sili¬ ziumoxid enthaltende Verbindung ist.8. Heat protection element according to one of the claims 1 to 7, characterized in that the hardener is a compound containing silicon oxide.
9. Hitzeschutzelement nach Patentanspruch 8, dadurch ge¬ kennzeichnet, dass der Härter Kieselsäure oder eine Kieselsäure abspaltende Verbindung ist.9. Heat protection element according to claim 8, characterized ge indicates that the hardener is silica or a compound that releases silica.
10. Hitzeschutzelement nach Patentanspruch 8, dadurch ge- kennzeichnet, dass ein zusätzlicher Härter eine Verbin¬ dung wie anorganische oder organische Säuren, Ester, Säureamide, Glyoxal, Alkylenkarbonate, Alkalikarbonate und -hydrogenkarbonate, Borate, Phosphate oder para- Formaldehyd ist.10. Heat protection element according to claim 8, characterized in that an additional hardener is a compound such as inorganic or organic acids, esters, acid amides, glyoxal, alkylene carbonates, alkali carbonates and hydrogen carbonates, borates, phosphates or paraformaldehyde.
11. Hitzeschutzelement nach einem der Patentansprüche 1 bis11. Heat protection element according to one of claims 1 to
10, dadurch gekennzeichnet, dass die Polysilikatschicht zwischen zwei Glasplatten angeordnet ist und mit diesen ein Verbundelement bildet.10, characterized in that the polysilicate layer is arranged between two glass plates and forms a composite element with these.
12. Hitzeschutzelement nach einem der Patentansprüche 1 bis12. Heat protection element according to one of claims 1 to
11, dadurch gekennzeichnet, dass das Hitzeschutzelement aus mehreren jeweils zwischen zwei Glasplatten angeord¬ neten Polysilikatschichten besteht und die Glasplatten und die Polysilikatschichten ein Verbundelement bilden.11, characterized in that the heat protection element consists of several polysilicate layers each arranged between two glass plates and the glass plates and the polysilicate layers form a composite element.
13. Verfahren zur Herstellung eines lichtdurchlässigen Hitzeschutzelementes unter Verwendung eines wasserhal¬ tigen Alkalisilikates, dadurch gekennzeichnet, dass das Alkalisilikat mit einem Härter welcher Siliziumdioxid enthält oder freisetzt zusammengefügt und eine giess- fähige Masse gebildet wird, diese Masse in einen Form¬ hohlraum zwischen zwei Trägerelementen eingebracht oder auf ein Trägerelement aufgebracht wird, anschliessend die Masse unter Erhaltung des Wassergehaltes zu einer festen Polysilikatschicht ausgehärtet wird und dabei im ausgehärteten Polysilikat das Molverhältnis von Sili¬ ziumdioxid zu Alkali-Metalloxiden auf ein Verhältnis welches grösser als 4:1 ist eingestellt wird.13. A process for the production of a translucent heat protection element using a water-containing alkali silicate, characterized in that the alkali silicate is combined with a hardener which contains or releases silicon dioxide and a pourable mass is formed, this mass in a mold cavity between two carrier elements introduced or applied to a carrier element, then the mass is cured while maintaining the water content to a solid polysilicate layer and thereby in cured polysilicate, the molar ratio of silicon dioxide to alkali metal oxides is set to a ratio which is greater than 4: 1.
14. Verfahren nach Patentanspruch 13, dadurch gekennzeich¬ net, dass die Masse vor dem Verarbeiten einem Entga¬ sungsvorgang unterworfen wird.14. The method according to claim 13, characterized gekennzeich¬ net that the mass is subjected to a degassing process before processing.
15. Verfahren nach Patentanspruch 13, dadurch gekennzeich- net, dass zur Erhöhung der Adhäsion zwischen Polysili¬ katschicht und Trägerelementen der Masse ein anioni¬ sches oder nichtionogenes Tensid zugefügt wird und/oder die Oberflächen der Trägerelemente mit einem derartigen Tensid vorbehandelt werden.15. The method according to claim 13, characterized in that an anionic or non-ionic surfactant is added to the mass to increase the adhesion between the polysilicate layer and carrier elements and / or the surfaces of the carrier elements are pretreated with such a surfactant.
16. Verfahren nach Patentanspruch 13, dadurch gekennzeich¬ net, dass die Oberflächen der Trägerelemente mit einem Haftvermittler in der Form eines organofunktionellen Silan vorbehandelt werden. 16. The method according to claim 13, characterized gekennzeich¬ net that the surfaces of the carrier elements are pretreated with an adhesion promoter in the form of an organofunctional silane.
PCT/CH1993/000197 1992-08-11 1993-08-05 Light-transparent heat-protection element WO1994004355A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AU45566/93A AU4556693A (en) 1992-08-11 1993-08-05 Light-transparent heat-protection element
DK93915627T DK0620781T3 (en) 1992-08-11 1993-08-05 Light translucent heat protection element
CA002120932A CA2120932C (en) 1992-08-11 1993-08-05 Transparent heat protection element
EP93915627A EP0620781B1 (en) 1992-08-11 1993-08-05 Light-transparent heat-protection element
JP50572394A JP3710138B2 (en) 1992-08-11 1993-08-05 Translucent heat insulating material
DE59309595T DE59309595D1 (en) 1992-08-11 1993-08-05 TRANSPARENT HEAT PROTECTION ELEMENT
US08/211,504 US5565273A (en) 1992-08-11 1993-08-05 Transparent heat protection element
NO941272A NO179404C (en) 1992-08-11 1994-04-08 Light-permeable heat-protecting element
FI941624A FI107717B (en) 1992-08-11 1994-04-08 Light-transmitting heat protection element
GR990401970T GR3030889T3 (en) 1992-08-11 1999-07-30 Light-transparent heat-protection element.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH250892 1992-08-11
CH2508/92-1 1992-08-11

Publications (1)

Publication Number Publication Date
WO1994004355A1 true WO1994004355A1 (en) 1994-03-03

Family

ID=4235370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1993/000197 WO1994004355A1 (en) 1992-08-11 1993-08-05 Light-transparent heat-protection element

Country Status (16)

Country Link
US (1) US5565273A (en)
EP (1) EP0620781B1 (en)
JP (1) JP3710138B2 (en)
AT (1) ATE180207T1 (en)
AU (1) AU4556693A (en)
CA (1) CA2120932C (en)
DE (1) DE59309595D1 (en)
DK (1) DK0620781T3 (en)
EE (1) EE03095B1 (en)
ES (1) ES2133404T3 (en)
FI (1) FI107717B (en)
GR (1) GR3030889T3 (en)
LT (1) LT3204B (en)
LV (1) LV11049B (en)
NO (1) NO179404C (en)
WO (1) WO1994004355A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486625A (en) * 1994-07-08 1996-01-23 Schering Corporation Process for the preparation of chiral intermediates useful for the synthesis of antifungal agents
DE19731416C1 (en) * 1997-07-22 1998-09-17 Vetrotech Saint Gobain Int Ag Fire protection glazing filled with hardened hydrated alkali poly:silicate avoiding localised delamination in fire
WO1998049118A1 (en) * 1997-04-30 1998-11-05 Crosfield Limited Hardener for hardening silicate solutions
DE19827867C1 (en) * 1998-06-23 2000-01-13 Vetrotech Saint Gobain Int Ag Fire protection glazing
WO2000050235A1 (en) * 1999-02-25 2000-08-31 Vetrotech Saint-Gobain (International) Ag Fire protection glass
US6379825B1 (en) 1997-10-15 2002-04-30 Glaverbel, S.A. Transparent heat-swellable material
US6574929B2 (en) 1998-09-16 2003-06-10 Vetrotech Saint-Gobain (International) Ag Fire-resistant element for the closure of a room
WO2009111897A1 (en) * 2008-03-10 2009-09-17 Vetrotech Saint-Gobain (International) Ag Light-permeable heat protection element with aluminate-modified or borate-modified silicon dioxide
DE10237395B4 (en) * 2002-01-24 2012-12-20 C. G. I. International Limited Process for producing fire-resistant glazing and fire-resistant glazing
DE102012200799A1 (en) 2011-09-26 2013-03-28 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Fire protection element with protective coating and its manufacturing process
WO2014086561A1 (en) 2012-12-06 2014-06-12 Saint-Gobain Glass France Fire protection panel and fire protection glazing
WO2014154969A1 (en) 2013-03-26 2014-10-02 Saint-Gobain Glass France Fire-resistant glazing
DE102014011635A1 (en) 2013-09-04 2015-03-05 Chemiewerk Bad Köstritz GmbH Process for the preparation of nanostructurable microparticles from fluid media by spray-drying
EP2557141B1 (en) 2011-08-10 2015-04-08 AMATO GmbH Brandschutzsysteme Laminar fire prevention component, use of same and method for producing same
EP2949463A1 (en) 2014-05-28 2015-12-02 Saint-Gobain Glass France Fire protection pane and flame retardant glazing
EP2995450A1 (en) 2014-09-11 2016-03-16 Saint-Gobain Glass France Fire protection glazing
EP3023245A1 (en) 2014-11-24 2016-05-25 Saint-Gobain Glass France Translucent heat protection element
EP2132393B1 (en) 2007-03-15 2017-04-05 Vetrotech Saint-Gobain (International) AG Fire-protection composite glass for construction elements such as doors, walls, or windows
EP2084001B1 (en) 2006-10-31 2018-06-20 Pilkington Group Limited Method for the production of fire resistant glazings
EP3693347A1 (en) 2019-02-11 2020-08-12 Saint-Gobain Glass France Fire resistant interlayer
EP2938486B1 (en) 2012-12-27 2021-01-20 Saint-Gobain Glass France Composite glass
EP3816125A1 (en) * 2019-10-29 2021-05-05 ML SYSTEM Spólka Akcyjna Method of obtaining a selective fireproof layer modified with semiconductor nanoparticles and filling the chamber or chambers of a glass unit with this active layer as well as a glass unit containing this or those layers
EP3527365B1 (en) 2018-02-14 2022-08-10 Pyroguard UK Limited Fire resistant glazing unit
WO2023030925A1 (en) 2021-08-30 2023-03-09 Saint-Gobain Glass France Method for producing a fire protection glazing
WO2023186504A1 (en) 2022-03-29 2023-10-05 Saint-Gobain Glass France Fireproof glazing for doors
WO2023186506A1 (en) 2022-03-29 2023-10-05 Saint-Gobain Glass France Fireproof glazing for doors
FR3135413A1 (en) 2022-05-13 2023-11-17 Saint-Gobain Glass France Mirror that can be easily removed from a support on which it is stuck
WO2024133113A1 (en) 2022-12-22 2024-06-27 Saint-Gobain Glass France Corner connector for fire-protection glazing units

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4435841A1 (en) * 1994-10-07 1996-04-11 Flachglas Ag Fire protection glass unit
ATE209229T1 (en) * 1996-05-22 2001-12-15 Trespaphan Gmbh PROTECTIVE COATINGS MADE OF LITHIUM AND POTASSIUM COPOLYSILICATES
CN1100098C (en) * 1996-06-12 2003-01-29 赫彻斯特-特拉丝帕番有限公司 Vapor barrier coating for polymeric articles
ID19516A (en) * 1996-06-12 1998-07-16 Hoechst Celanese Corp Vapor Barrier Coatings for Polyimetic Objects
ID19111A (en) 1996-06-12 1998-06-18 Hoechst Celanese Corp METHOD OF MAKING POLYLELEFIN MATERIALS FOR COATING
JP3862760B2 (en) * 1996-06-12 2006-12-27 トレスパファン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Transparent barrier coating showing low film interference
WO1997047678A1 (en) 1996-06-12 1997-12-18 Hoechst Trespaphan Gmbh Method of priming polyolefin articles for coating
US6086991A (en) * 1996-06-12 2000-07-11 Hoechst Trespaphan Gmbh Method of priming poly(ethylene terephthalate) articles for coating
US20100273011A1 (en) * 1996-12-20 2010-10-28 Bianxiao Zhong Silicone Composition, Silicone Adhesive, Coated and Laminated Substrates
US6087016A (en) * 1997-06-09 2000-07-11 Inmat, Llc Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier
US6232389B1 (en) 1997-06-09 2001-05-15 Inmat, Llc Barrier coating of an elastomer and a dispersed layered filler in a liquid carrier and coated articles
DE19729336A1 (en) * 1997-07-09 1999-01-14 Vetrotech Saint Gobain Int Ag Fire-resistant laminated glass
US6055403A (en) * 1998-01-28 2000-04-25 Canon Kabushiki Kasiha Fixing member fixing apparatus and electrophotographic apparatus using them
EP1399314B1 (en) * 2001-06-12 2009-04-22 Doors & More S.R.L. Method and apparatus for the manufacture of heat-resistant, transparent, stratified elements
ITTN20020003A1 (en) * 2002-01-31 2003-07-31 Doors & More INTUMESCENT GASKET
BE1016472A3 (en) * 2005-03-02 2006-11-07 Glaverbel Glass anti-fire.
CN101360692B (en) * 2005-11-25 2012-08-22 旭硝子欧洲玻璃公司 Fire-resistant glazing
EA014547B1 (en) * 2006-03-20 2010-12-30 Агк Гласс Юроп Fire-resistant glazing
WO2007118885A1 (en) * 2006-04-19 2007-10-25 Agc Flat Glass Europe Sa Fireproof glazing
GB0621573D0 (en) * 2006-10-31 2006-12-06 Pilkington Group Ltd Metal cross linking agents in cast in place interlayers
KR101361593B1 (en) * 2006-12-20 2014-02-21 다우 코닝 코포레이션 Glass substrates coated or laminated with multiple layers of cured silicone resin compositions
CN101563300B (en) * 2006-12-20 2012-09-05 陶氏康宁公司 Glass substrates coated or laminated with cured silicone resin compositions
EP1997622A1 (en) 2007-05-25 2008-12-03 AGC Flat Glass Europe SA Fireproof glazing
EP2072247A1 (en) * 2007-12-17 2009-06-24 AGC Flat Glass Europe SA Fireproof glazing
DE102007060784A1 (en) * 2007-12-17 2009-06-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Low-temperature method for joining glass and the like for optics and precision mechanics
GB0803784D0 (en) * 2008-02-29 2008-04-09 Pilkington Group Ltd Fire resistant glazings
CN101959961B (en) * 2008-03-04 2013-10-30 陶氏康宁公司 Silicone composition, silicone adhesive, coated and laminated substrates
US8450442B2 (en) * 2008-03-04 2013-05-28 Dow Corning Corporation Borosiloxane composition, borosiloxane adhesive, coated and laminated substrates
KR20110013509A (en) * 2008-05-27 2011-02-09 다우 코닝 코포레이션 Adhesive tape and laminated glass
EP2130673A1 (en) * 2008-06-04 2009-12-09 AGC Flat Glass Europe SA Fireproof glazing
WO2009155714A1 (en) 2008-06-26 2009-12-30 Gevartis Ag Materials for producing transparent heat protection elements and light protection elements produced using such materials and also processes for producing them
TW201004795A (en) * 2008-07-31 2010-02-01 Dow Corning Laminated glass
EP2213635A1 (en) * 2009-01-29 2010-08-04 AGC Glass Europe Layers of alkali silicates for fireproof glazing
CH700398B1 (en) 2009-02-10 2014-01-31 Vetrotech Saint Gobain Int Ag Fire protection safety glass.
GB0915349D0 (en) 2009-09-03 2009-10-07 Pilkington Group Ltd Fire resistant glazings
GB0917905D0 (en) 2009-10-13 2009-11-25 Pilkington Group Ltd Fire resistant glazing
KR100958736B1 (en) * 2009-12-07 2010-05-18 주식회사 삼공사 Organic-inorganic hybrid transparent hydrogel complex for fire-retardant glass and fire-retardant glass assembly using the same, and the preparation method of said fire-retardant glass assembly
CH702479A1 (en) 2009-12-21 2011-06-30 Vetrotech Saint Gobain Int Ag Protection element and method for producing.
GB0922503D0 (en) 2009-12-23 2010-02-10 Pilkington Group Ltd Fire resistant glazings
CH703342A8 (en) 2010-06-29 2012-04-30 Vetrotech Saint Gobain Int Ag FIRE PROTECTION COMPOSITE GLASS.
EP2590817A1 (en) 2010-07-05 2013-05-15 Gevartis AG Heat shielding means in the form of a film
BE1019472A3 (en) * 2010-09-03 2012-07-03 Agc Glass Europe GLAZING ANT-FIRE.
JP2014500897A (en) 2010-11-09 2014-01-16 ダウ コーニング コーポレーション Hydrosilylation-cured silicone resin plasticized with organophosphate compounds
GB201115511D0 (en) 2011-09-08 2011-10-26 Pilkington Group Ltd Fire resistant glazings
GB201203529D0 (en) 2012-02-29 2012-04-11 Pilkington Group Ltd Fire resistant glazings
EP3395928A1 (en) * 2017-04-26 2018-10-31 Saint-Gobain Glass France Fire resistant element
PL233481B1 (en) * 2017-10-05 2019-10-31 Bojar Spolka Z Ograniczona Odpowiedzialnoscia Multi-layered fireproof glass pane and method for producing of multi-layered fireproof glass pane
KR20210094036A (en) 2018-11-29 2021-07-28 에보니크 오퍼레이션즈 게엠베하 Aqueous Silica Dispersion with Long Shelf Life for Refractory Glass
GB202109410D0 (en) 2021-06-30 2021-08-11 Pilkington Group Ltd Fire-resistant glazing
GB202109408D0 (en) 2021-06-30 2021-08-11 Pilkington Group Ltd Fire-resistant glazing
GB202114670D0 (en) 2021-10-14 2021-12-01 Pilkington Group Ltd Fire-reistant glazing
GB202116443D0 (en) 2021-11-15 2021-12-29 Pilkington Group Ltd A fire-resistant glazing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU60053A1 (en) * 1969-01-02 1970-02-18
FR2399513A1 (en) * 1977-08-03 1979-03-02 Bfg Glassgroup LIGHT TRANSMITTING FIRE PANEL
EP0132507A2 (en) * 1983-04-21 1985-02-13 Henkel Kommanditgesellschaft auf Aktien Binder comprising an alcali metal silicate solution
FR2607491A1 (en) * 1986-12-01 1988-06-03 Glaverbel CLEAR FIREWALL
DE4001677C1 (en) * 1990-01-22 1991-03-14 Vegla Vereinigte Glaswerke Gmbh, 5100 Aachen, De

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3721574A (en) * 1968-08-06 1973-03-20 R Schneider Silicate coatings compositions
CH610926A5 (en) * 1976-06-04 1979-05-15 Battelle Memorial Institute
GB1590837A (en) * 1976-11-30 1981-06-10 Bfg Glassgroup Manufacture of fire screening panels
FR2389409B1 (en) * 1977-05-02 1980-02-01 Rhone Poulenc Ind
DE2841623A1 (en) * 1978-09-25 1980-04-03 Woellner Werke FIRE PROTECTION COATING
US4478905A (en) * 1980-04-21 1984-10-23 Ppg Industries, Inc. Spandrel product with silicate coating
US4347285A (en) * 1981-02-26 1982-08-31 H. B. Fuller Company Curable aqueous silicate composition, uses thereof, and coatings or layers made therefrom
DE3227057C1 (en) * 1982-07-20 1983-09-29 Flachglas AG, 8510 Fürth Process for the production of a translucent, solid fire protection layer from a flammable material
GB2239213B (en) * 1989-12-23 1993-06-16 Glaverbel Fire-screening panels
US8960256B2 (en) 2008-11-26 2015-02-24 Carefree/Scott Fetzer Company Manual override system for motor-driven retractable awning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU60053A1 (en) * 1969-01-02 1970-02-18
FR2399513A1 (en) * 1977-08-03 1979-03-02 Bfg Glassgroup LIGHT TRANSMITTING FIRE PANEL
EP0132507A2 (en) * 1983-04-21 1985-02-13 Henkel Kommanditgesellschaft auf Aktien Binder comprising an alcali metal silicate solution
FR2607491A1 (en) * 1986-12-01 1988-06-03 Glaverbel CLEAR FIREWALL
DE4001677C1 (en) * 1990-01-22 1991-03-14 Vegla Vereinigte Glaswerke Gmbh, 5100 Aachen, De

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 107, no. 16, October 1987, Columbus, Ohio, US; abstract no. 139755w, SMOLIN V. A.: "METHOD FOR MANUFACTURING HEAT- AND RESISTANT COATINGS" page 351; column L; *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486625A (en) * 1994-07-08 1996-01-23 Schering Corporation Process for the preparation of chiral intermediates useful for the synthesis of antifungal agents
WO1998049118A1 (en) * 1997-04-30 1998-11-05 Crosfield Limited Hardener for hardening silicate solutions
US6159606A (en) * 1997-07-22 2000-12-12 Vetrotech Saint-Gobain International (Ag) Fire-resistant glazing panel
DE19731416C1 (en) * 1997-07-22 1998-09-17 Vetrotech Saint Gobain Int Ag Fire protection glazing filled with hardened hydrated alkali poly:silicate avoiding localised delamination in fire
WO1999004970A1 (en) * 1997-07-22 1999-02-04 Vetrotech Saint-Gobain (International) Ag Fireproof glazing
US6379825B1 (en) 1997-10-15 2002-04-30 Glaverbel, S.A. Transparent heat-swellable material
DE19827867C1 (en) * 1998-06-23 2000-01-13 Vetrotech Saint Gobain Int Ag Fire protection glazing
US6340508B1 (en) 1998-06-23 2002-01-22 Vetrotech Saint-Gobain (International) Ag Fire-resistant glazing assembly
US6574929B2 (en) 1998-09-16 2003-06-10 Vetrotech Saint-Gobain (International) Ag Fire-resistant element for the closure of a room
WO2000050235A1 (en) * 1999-02-25 2000-08-31 Vetrotech Saint-Gobain (International) Ag Fire protection glass
DE10237395B4 (en) * 2002-01-24 2012-12-20 C. G. I. International Limited Process for producing fire-resistant glazing and fire-resistant glazing
EP2084001B2 (en) 2006-10-31 2022-11-23 Pilkington Group Limited Method for the production of fire resistant glazings
EP2084001B1 (en) 2006-10-31 2018-06-20 Pilkington Group Limited Method for the production of fire resistant glazings
EP2132393B1 (en) 2007-03-15 2017-04-05 Vetrotech Saint-Gobain (International) AG Fire-protection composite glass for construction elements such as doors, walls, or windows
WO2009111897A1 (en) * 2008-03-10 2009-09-17 Vetrotech Saint-Gobain (International) Ag Light-permeable heat protection element with aluminate-modified or borate-modified silicon dioxide
CH704939B1 (en) * 2008-03-10 2012-11-15 Akzo Nobel Chemicals Int Bv Translucent heat protection element with aluminate or boratmodifiziertem silica.
US8859117B2 (en) 2008-03-10 2014-10-14 Norbert Schwankhaus Light-permeable heat protection element with aluminate-modified or borate-modified silicon dioxide
EP2557141B1 (en) 2011-08-10 2015-04-08 AMATO GmbH Brandschutzsysteme Laminar fire prevention component, use of same and method for producing same
WO2013045335A1 (en) 2011-09-26 2013-04-04 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh Fire‑protection element with protective coating, and method for producing the same
DE102012200799A1 (en) 2011-09-26 2013-03-28 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Fire protection element with protective coating and its manufacturing process
US10272648B2 (en) 2012-12-06 2019-04-30 Saint-Gobain Glass France Fire-resistant pane and fire-resistant glazing assembly
WO2014086562A1 (en) 2012-12-06 2014-06-12 Saint-Gobain Glass France Fire protection panel and fire protection glazing
DE202013012195U1 (en) 2012-12-06 2015-08-03 Saint-Gobain Glass France Fire protection pane and fire-resistant glazing
WO2014086561A1 (en) 2012-12-06 2014-06-12 Saint-Gobain Glass France Fire protection panel and fire protection glazing
US9937684B2 (en) 2012-12-06 2018-04-10 Saint-Gobain Glass France Fire-resistant pane and fire-resistant glazing assembly
DE202013012199U1 (en) 2012-12-06 2015-08-20 Saint-Gobain Glass France Fire protection pane and fire-resistant glazing
EP2938486B1 (en) 2012-12-27 2021-01-20 Saint-Gobain Glass France Composite glass
WO2014154969A1 (en) 2013-03-26 2014-10-02 Saint-Gobain Glass France Fire-resistant glazing
DE102014011635A1 (en) 2013-09-04 2015-03-05 Chemiewerk Bad Köstritz GmbH Process for the preparation of nanostructurable microparticles from fluid media by spray-drying
EP2949463A1 (en) 2014-05-28 2015-12-02 Saint-Gobain Glass France Fire protection pane and flame retardant glazing
EP2995450A1 (en) 2014-09-11 2016-03-16 Saint-Gobain Glass France Fire protection glazing
WO2016083375A1 (en) 2014-11-24 2016-06-02 Saint-Gobain Glass France Light-permeable heat protection element
EP3023245A1 (en) 2014-11-24 2016-05-25 Saint-Gobain Glass France Translucent heat protection element
EP3527365B1 (en) 2018-02-14 2022-08-10 Pyroguard UK Limited Fire resistant glazing unit
WO2020165161A1 (en) 2019-02-11 2020-08-20 Saint-Gobain Glass France Fire resistant interlayer
US11912624B2 (en) 2019-02-11 2024-02-27 Saint-Gobain Glass France Fire resistant interlayer
EP3693347A1 (en) 2019-02-11 2020-08-12 Saint-Gobain Glass France Fire resistant interlayer
EP3816125A1 (en) * 2019-10-29 2021-05-05 ML SYSTEM Spólka Akcyjna Method of obtaining a selective fireproof layer modified with semiconductor nanoparticles and filling the chamber or chambers of a glass unit with this active layer as well as a glass unit containing this or those layers
WO2023030925A1 (en) 2021-08-30 2023-03-09 Saint-Gobain Glass France Method for producing a fire protection glazing
WO2023186504A1 (en) 2022-03-29 2023-10-05 Saint-Gobain Glass France Fireproof glazing for doors
WO2023186506A1 (en) 2022-03-29 2023-10-05 Saint-Gobain Glass France Fireproof glazing for doors
FR3135413A1 (en) 2022-05-13 2023-11-17 Saint-Gobain Glass France Mirror that can be easily removed from a support on which it is stuck
WO2024133113A1 (en) 2022-12-22 2024-06-27 Saint-Gobain Glass France Corner connector for fire-protection glazing units

Also Published As

Publication number Publication date
EP0620781B1 (en) 1999-05-19
LTIP849A (en) 1994-08-25
NO941272L (en) 1994-04-08
DK0620781T3 (en) 1999-11-08
JPH07500310A (en) 1995-01-12
CA2120932C (en) 2004-03-30
LT3204B (en) 1995-03-27
DE59309595D1 (en) 1999-06-24
NO941272D0 (en) 1994-04-08
FI941624A0 (en) 1994-04-08
FI107717B (en) 2001-09-28
LV11049B (en) 1996-04-20
EE03095B1 (en) 1998-06-15
US5565273A (en) 1996-10-15
ATE180207T1 (en) 1999-06-15
ES2133404T3 (en) 1999-09-16
AU4556693A (en) 1994-03-15
GR3030889T3 (en) 1999-11-30
NO179404B (en) 1996-06-24
LV11049A (en) 1996-02-20
FI941624A (en) 1994-04-08
JP3710138B2 (en) 2005-10-26
EP0620781A1 (en) 1994-10-26
CA2120932A1 (en) 1994-03-03
NO179404C (en) 1996-10-02

Similar Documents

Publication Publication Date Title
EP0620781B1 (en) Light-transparent heat-protection element
EP0148280B1 (en) Water-containing hardenable shaped masses based on inorganic components, and method of producing shaped bodies
EP2252561B1 (en) Light-permeable heat protection element with aluminate-modified or borate-modified silicon dioxide
EP0705685B1 (en) Fire resistant glass unit
AT394519B (en) TRANSPARENT FIRE PROTECTION PANELS
EP1575771B1 (en) Fire protection means and method for the production thereof
EP0741003B1 (en) Fire protection element with layered structure, particularly as insert for fireproof doors and semi-product for use in the element
DE3246619A1 (en) Foamable water-containing hardenable inorganic moulding compositions, mouldings prepared therefrom and process for preparing the moulding composition
DE60026690T2 (en) FIRE PROTECTION GLASS
EP0406278A1 (en) Process for producing fluorescent or phosphorescent pigments coated with glass.
EP2516568A1 (en) Protective element and method for the production thereof
EP0542022B1 (en) Modified, transparent, aqueous alkali silicate solution, process for its preparation and its use for preparing transparent hydrogels
DE19738373C2 (en) Molding compound
EP0705686B1 (en) Process for forming a protective barrier edging of a mastic on a glass pane during the production of fireproof glass units
DE102004009525A1 (en) Rib material for display devices
WO2015124349A1 (en) Inorganic binding agent system for composite materials
DE1944523B2 (en) PROCESS FOR THE MANUFACTURING OF POROESE FOAM GLASS OF EVEN CELL STRUCTURE WITH A DENSITY OF O, O5 TO O.4G / CM HIGH 3 AND WITH HIGH CHEMICAL RESISTANCE BY HEATING A WATER GLASS, METAL OXIDES AND Possibly. MIXTURE CONTAINING PROPELLER
DE202015103555U1 (en) Precursor product for the production of a fire protection material
DE10011757A1 (en) Molded body has a water-containing component as hardener and an inorganic rock-like component containing thermally activated clay
DE4439428A1 (en) Crack-resistant lightweight inorganic insulating material
AT399846B (en) Method of producing a fireproof glass
DE102004046495A1 (en) Composite material containing hydrophobic aerogel particles, inorganic binder and inorganic dispersing agent, used for fire protection and heat insulation, has specific amount of aerogel particles out of direct contact with inorganic binder
DE202020100518U1 (en) Borosilicate glass for hollow glass spheres
DD159987A1 (en) METHOD FOR PRODUCING IMPROVED GLASS HYBRID MATERIAL
DE1596405A1 (en) Process for making glass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CZ FI HU JP KR NO NZ PL RO RU SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1993915627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2120932

Country of ref document: CA

Ref document number: 941624

Country of ref document: FI

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08211504

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993915627

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993915627

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 941624

Country of ref document: FI