WO1993021225A1 - Synthetic peptide, pulmonary surfactant containing the same, and remedy for respiratory distress syndrome - Google Patents
Synthetic peptide, pulmonary surfactant containing the same, and remedy for respiratory distress syndrome Download PDFInfo
- Publication number
- WO1993021225A1 WO1993021225A1 PCT/JP1993/000492 JP9300492W WO9321225A1 WO 1993021225 A1 WO1993021225 A1 WO 1993021225A1 JP 9300492 W JP9300492 W JP 9300492W WO 9321225 A1 WO9321225 A1 WO 9321225A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- val
- leu
- peptide
- lie
- surfactant
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/785—Alveolar surfactant peptides; Pulmonary surfactant peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to synthetic peptides. More specifically, the present invention relates to a synthetic peptide having a strong surface activity by being combined with a lipid mixture, a pulmonary surfactant comprising the synthetic peptide and a lipid mixture, and a therapeutic agent for respiratory distress syndrome containing the pulmonary surfactant as an active ingredient. . Background technology,
- Respiratory distress syndrome is a disease that causes severe respiratory distress as a result of the collapse of the alveoli due to a lack of pulmonary surfactant.
- Pulmonary surfactants to be supplemented include substances consisting of phospholipids, neutral lipids, total cholesterol and carbohydrates and a small amount of proteins present in lung tissue of mammals (Japanese Patent Publication No. 61-92925), In addition to the components, a substance containing fatty acids (hereinafter referred to as “S-TA”: Japanese Patent Publication No. 61-92924), a substance separated from pig lung lavage fluid and added with Ca (Japanese Journal of the Japanese Society of Surface Medicine, Vol. 12, No. 1, p.
- Some of the present inventors previously separated a lipoprotein from an animal-derived lung surfactant, and added the lipoprotein to a lipid mixture because the lipoprotein is an essential component for exhibiting lung surface activity.
- the surfactant exerts an excellent surface tension lowering effect, shortens the surface wavefront diffusion effect of the surfactant, and exerts a low surface tension on the flat mouth, thereby securing sufficient alveolar cavity volume, etc., resulting in respiratory distress syndrome. It has been discovered that it can be used to treat (Japanese Patent Publication No. 3-788371).
- SP-C derived from human lung is an apoprotein with extremely strong hydrophobicity, which is composed of 35 amino acid residues and whose N-terminal amino acid is phenylalanine and rich in hydrophobic amino acids such as amino acids.
- SP-C isolated from the lungs of pigs, pigs, rats, etc. also consists of 34 to 35 amino acids, and although the amino acid sequence at the N-terminal varies depending on the animal species, it is not Are extremely high in homology.
- Val Val Val Val Val Leu lie Val Val Val lie Val Gly Ala Leu Leu
- SP-B or SP-C promotes adsorption and diffusion of lung surfactant to the gas-liquid interface. To improve the surface activity of pulmonary surfatatantes.
- Therapeutic agent for respiratory distress syndrome which contains a pulmonary surfactant consisting of SP-C and a lipid mixture as an active ingredient, is extremely effective, but SP-C is extremely hydrophobic and difficult to isolate and purify. Due to the fact that it is contained in living organisms in extremely small amounts, it has not been put to practical use.
- Japanese Patent Application Laid-Open No. 3-52095 states that a mixture of a synthetic peptide containing the SP-C partial structure shown below and a lipid is effective for the treatment of respiratory distress syndrome Have been.
- the publication also describes a peptide having 32 amino acid residues having the following sequence as a minimum unit exhibiting high surface activity.
- the pulmonary surfactant preparation is often provided as a dry powder preparation which is converted into a physiological saline suspension wave at the time of use from the viewpoint of quality conservation.
- S-35 pulmonary surfactant preparations in which a synthetic peptide having the amino acid sequence of SP-C is mixed with a lipid mixture composed of choline phosphoglyceride, acidic phospholipid, and fatty acids, are: Since the cysteine residue present in the peptide forms a disulfide bond, the dispersibility in physiological saline is extremely poor due to factors such as high peptide agglutinability and strong hydrophobicity of the lung surfactant itself. It was difficult to make the suspension uniform enough to be used as such.
- a method for improving the suspendability of a pulmonary surfactant preparation a method of adding a suspending agent such as mannitol (Japanese Patent Application Laid-Open No. Sho 60-34905) and a method in which the temporary freezing temperature during drying is reduced to 1: 1.
- a freezing method performed at temperatures of up to 11 ° C. has been proposed (Japanese Patent Application Laid-Open No. Sho 63-107718), the operation is complicated, and it is hoped that a more convenient method for producing a drug product will be developed. Disclosure of the Invention
- the inventors of the present invention have conducted intensive studies on a synthetic peptide having a strong surface activity by being combined with a lipid mixture, and as a result, a peptide represented by the following specific sequence (hereinafter referred to as “the synthetic peptide of the present invention”)
- the pulmonary surfatatant containing) as an active ingredient was produced by a conventional freeze-drying method performed at 120 ° C or lower without the addition of a suspending agent, even when S-35, corin phosphoglycerol was used.
- Only lipid mixtures consisting of acidic phospholipids and fatty acids It has better uniform suspension than S-TA, and has the same strong surface activity as S-35 or S-TA. Knowing this, they completed the present invention.
- Xaa is absent or represents Cys, Ser or Ala
- Xbb represents Cys, Ser or Ala
- Xcc represents His or Asn
- Xdd represents Leu or Ile
- Xee is Val or l ie
- Xff represents I le, Leu or Val
- Xgg does not exist or represents Leu.
- the present invention is a synthetic peptide which is easy to isolate and purify due to the low frequency of production of immature peptides during production, and can be produced in large quantities in a short time.
- a synthetic peptide having good suspension properties and strong surface activity by being blended, a lung surfactant comprising a mixture of the synthetic peptide and lipid, and a treatment for respiratory distress syndrome containing the lung surfactant as an effective component An agent is provided.
- the synthetic peptide of the present invention can be produced by a chemical or genetic engineering technique, but a chemical production method is preferred in terms of isolation and purification.
- Examples of chemical production methods include “Peptide synthesis (by Nobuo Izumiya, Maruzen Co., Ltd., 1979)”, “Biochemistry—Lecture, Volume 1, Protein Chemistry IV, Chemical Modification and Peptides” Synthesis-(Shunpei Sakakibara, Tokyo Chemical Doujin Co., Ltd., 1973) "," Semi-chemical Chemistry Laboratory, Vol. 2, Protein Chemistry (below), Peptide Synthesis (Kimura Terutoshi, Tokyo Chemical) Dojin Co., Ltd., 1987), "Solid phase peptide synthesis, a practical approach;, Senoreton (E.
- Azide method acid chloride method, acid anhydride method, mixed acid anhydride method, DCC method, active ester method ( ⁇ -ditrophenyl ester method, P-hydroxysuccinic acid imid ester method, etc.), carboimidazole It can be manufactured by a liquid phase synthesis method such as a redox method, a redox method, a DCC-activation method, or a solid synthesis method.
- solid phase synthesis is preferred, and synthesis can be performed by an automatic synthesizer.
- the automatic synthesizer include a 431A peptide synthesizer (trademark; manufactured by Applied Biosystems) or a peptide synthesizer model 9900E (trademark; manufactured by Beckman).
- a pulmonary surfactant (hereinafter referred to as “surfactant of the present invention”) can be produced by blending choline phosphoglyceride, acidic phospholipid and fatty acids as a lipid mixture with the synthetic peptide of the present invention.
- the compounding ratio is 0.1 to 5.0% (W / W) for synthetic peptide and 50.6 to 85.0 for choline phosphoglyceride, based on the weight ratio of these components to the total dry weight of the final product.
- % (W / W) ⁇ It is appropriate to set acidic phospholipids to 4.5 to 37.6% (W / W) and fatty acids to 4.6 to 24.6% (WZW). It is.
- Choline phosphodalicerides that can be used in the surfactants of the present invention include 1,2-dipalmitoyl glyceride— (3.)-Phosphocholine (also known as dipalmitoyl phosphatidyl choline) and 1,2-distearoyl glyceride.
- corynephosphoglyceride may be an acyl group having 12 to 24 carbon atoms, preferably two saturated acyl groups.
- 2-Diacylglycerose- (3) -A mixture of two or more phosphocholins, and a mixture of the mixture and the above-mentioned single product can also be used.
- acidic phospholipids examples include 1,2-diacyl-sn-glycerol (3) monophosphoric acid (also known as L- ⁇ -phosphatidic acid), 1,2-diacyl-s ⁇ -glycerol— (3) -phospho-serine (Also known as phosphatidylserine), 1,2-diasyl-s ⁇ -glycerol— (3) —phospho-s ⁇ -glycerol (also known as phosphatidylglycerol) or 1,2-diasyl-s ⁇ -glycerol (3) —phospho (1) — L-1 my 0—Inositol (also known as phosphatidylinositol) is suitable.
- the 1-position and the 2-position may be substituted with the same or different kinds of acyl groups, respectively.
- the carbon number of the acyl group is preferably from 12 to 24.
- Fatty acids include free fatty acids, alkali metal salts of fatty acids, and fatty acids. Suitable are & alkyl esters, fatty acid glycerin esters, fatty acid amides, or mixtures of two or more of these, and furthermore, fatty alcohols or aliphatic amines.
- on fatty acids is meant to include the fatty alcohols and aliphatic amines referred to herein.
- Myristic acid, palmitic acid or stearic acid is suitable as a free fatty acid. Lumitic acid !? Good.
- sodium palmitate is used as the metal salt of fatty acid
- ethyl palmitate is used as fatty acid alkyl ester
- monopalmitin is used as fatty acid glycerin ester
- palmitic acid amide is used as fatty acid amide.
- Hexadecyl alcohol is preferred as the fatty alcohol, and hexadecylamine is preferred as the aliphatic amine.
- choline phosphoglycerides, acidic phospholipids and fatty acids may be any of products isolated from animals and plants, semi-synthetic products or chemically synthesized products, and commercially available products thereof can be used.
- the surfactant of the present invention is obtained by drying a mixed solution of the synthetic peptide solution of the present invention and the above-mentioned lipid mixture or compound solution under reduced pressure, suspending the obtained residue using a suitable suspending solvent, and then freeze-drying. It can be manufactured by a method.
- the solvent used for preparing the synthetic peptide solution of the present invention include formic acid, trifluoroacetic acid (TFA), trifluoroethanol, dimethyl sulfoxide (DMS0), chloroform / methanol, and chloroform.
- Examples of the solvent used for preparing the lipid mixture solution include chloroform, chloroform / methanol [2: 1 to 5: 1. (V / V)] —.
- Examples of the suspending solvent include water or a mixed solution of water and ethanol [4: 1 to 20: 1 (V / V)], and a mixed solution of water and ethanol is preferable.
- the suspension is carried out at 30 to 60 ° C., preferably 40 to 50 ° C., for 5 to 60 minutes, preferably for 15 to 30 minutes.
- the surfactant of the present invention it is inevitable that a trace amount of water remains in the production method, but it is preferable to dry the surfactant until the remaining weight ratio becomes 5.0% (W / W) or less based on the total weight. If it is dried to such an extent, residual ethanol cannot be detected when a water-ethanol mixture is used.
- the surfactant dry powder preparation of the present invention can be prepared in a variable-speed mixer or an ultrasonic generator at an appropriate physiological concentration of a monovalent or divalent metal salt, for example, 0.9% sodium chloride or 1.5%. It can be used by uniformly suspending and dispersing it using mM calcium chloride or a physiological buffer containing them.
- a monovalent or divalent metal salt for example, 0.9% sodium chloride or 1.5%. It can be used by uniformly suspending and dispersing it using mM calcium chloride or a physiological buffer containing them.
- the surface tension lowering effect was measured according to the method of Tanaka et al. (Journal of the Surface Science Society of Japan, Vol. 13, No. 2, No. 87, p. 87, 1982).
- the surfactant of the present invention is dropped onto physiological saline (surface area: 54.0 cm 2 ) so that the surfactant of the present invention is 1.0 to 2.0 / g per cm 2 , and the surface area is reduced. 54.
- the surface tension during compression and expansion in the range of 0 to 2 1.6 cm 2 over 2 to 5 minutes was measured at 37 ° C with a Wilhelmy surface tension measurement device (manufactured by Kyowa Interface Science Co., Ltd.). Measured continuously.
- the surface tension reducing effect of the surfactant of the present invention is as follows.
- the initial surface tension of saline at 37 ° C was 70.5 dyne
- the arrival time refers to the time required for the surface tension to reach a constant value immediately after dropping of the sample, and the equilibrium surface tension refers to the value at that time.
- the surfactant of the present invention formed a film on the gas-liquid surface in a short time of 3 to 65 seconds, and reduced the surface tension to 27.9 to 34.8 dyneZcm.
- a suspension of physiological saline at 37 ° C containing 0.2 to 1.0 mg of the surfactant of the present invention per liter was prepared, and the suspension of the surfactant of the present invention to the saline gas-liquid surface was prepared.
- the adsorption rate was measured according to the method of King et al. (American Journal of Physiology, Vol. 223, Vol. 7, pp. 15, 1972).
- the suspension was poured into the bottom of a 5 cm diameter water tank containing physiological saline, and the mixture was stirred gently with a magnetic stirrer. The speed was determined.
- the surfactant of the present invention reduced the surface tension to a range of 28.:! To 39.5 dyne cm after 30 to 120 seconds had elapsed after the stirring was stopped, and then showed a constant value.
- the suspension test of the lung surfactant was performed according to the method disclosed in Japanese Patent Application Laid-Open No. Sho 63-107718.
- the suspendability was determined based on the dispersion ratio at predetermined time intervals after the start of the suspension and the maximum dispersed particle diameter after 2 minutes from the start of the suspension.
- the determination of the suspension state was carried out by two persons, 10 samples each time at each time, and no judgment was made as to whether or not the suspension was any small lump in the container, and the formulation was uniformly dispersed in physiological saline This was done by determining whether a white, slightly viscous suspension had formed.
- the dispersion ratio was calculated as a percentage of the total number of samples (10 tubes) in which each individual completed the suspension at each time, and the average value was shown by the two individuals.
- the maximum dispersed particle size was determined by dispensing 6 mg of lung surfactant into a 20 ml vial of each sample, injecting 2 ml of physiological saline, and shaking continuously for 2 minutes under the same shaking conditions as described above. The largest particle was found by using a microscope and its diameter was determined by measuring with a vernier caliper.
- surfactants of the present invention were suspended within 2 minutes in most cases, and had a maximum particle diameter of 0.9 mm or less, and showed good suspendability.
- the acute toxicity of the surfactant of the present invention was tested using 5-week-old male ICR mice and Dister rats. Oral LD 5 in mice. And intraperitoneal LD 5 . Is 2.5-10.0 / 3 ⁇ 4: and 1.5-5.O gZkg, and those on the rat are 1.5-5.0 11 and 1.5-2.5 g Z kg.
- the surfactant of the present invention was intraperitoneally administered to mature Wistar rats for 3 months 0 to 600 mgZkg for 1 month, but no change in body weight or abnormality in macroscopic and histological observation of major organs was observed. .
- a rabbit immature fetus with a gestation period of 27 days produces little pulmonary surfactant and is in a pulmonary surfactant-deficient state, and is therefore a model animal for neonatal respiratory distress syndrome.
- lung volume the alveolar cavity volume (hereinafter, referred to as lung volume) was measured at 37 ° C under increasing and decreasing airway pressure.
- the measurement was continuously performed 5 minutes after the surfactant of the present invention was intratracheally administered using a water manometer connected to the trachea by incising the neck of the fetus.
- 2-channel independent drive cylinder with tracheal pressure connected to the trachea The pressure was increased to 30 cm water pressure using a dipump No. 940 (manufactured by Harvard, USA) to expand the alveoli.
- the airway pressure was reduced to 0 cm water pressure, the alveoli were contracted, and the lung volume at each water pressure was measured. Lung volume was expressed in milliliters per kilogram of body weight (m1Zkg).
- the administration of the surfactant of the present invention has a concentration of 1.0 to 6.0% (W /
- V was performed by a method of injecting 0.05 to 0.5 ml of a physiological saline suspension prepared directly into the airway.
- physiological saline was injected instead of the surfactant suspension of the present invention.
- the lung capacity (5 cm water pressure) of the immature rabbit at gestational age 27 was 1-5 m 1 / kg, and the alveoli were hardly expanded.
- gestational age 30 fetuses with normal levels of pulmonary surfactant have a lung volume (5 cm water pressure) of 39-53 m 1 / kg and alveolar dilation. Shows that it is possible to breathe normally.
- the lung volume (5 cm water pressure) of the immature fetus was 15 to 25 m 1 / kg and the alveolar expansion was insufficient.
- the lung capacity (5 cm water pressure) of the immature fetus to which the surfactant of the present invention was administered was 35 to 53 m 1 Zkg, indicating that the surfactant of the present invention improved the lung capacity of the immature fetus to a normal level.
- the present synthetic peptide has an action of strongly activating the surface activity of the lipid mixture, and the present surfactant comprising the present synthetic peptide and the lipid mixture exhibits surface activity, suspendability and Based on its pharmacological properties, it is an effective remedy for respiratory distress syndrome.
- the remedy for respiratory distress syndrome provided by the present invention is a single dose of 50 to 100 mg for children and 500 to 500 mg for adults.
- This dose is suspended in water, physiological saline, or a physiologically acceptable buffer, and adjusted to a concentration of 1.0 to 10% by weight (WZV).
- WZV 1.0 to 10% by weight
- Use by injecting or spraying 1 to 10 times into the respiratory tract 48 hours immediately after. In addition, they can be inhaled directly as powder without being suspended. Dosage, use and frequency may be adjusted as appropriate for the patient's condition and combination therapy.
- the therapeutic agent of the present invention may contain, if necessary, pharmaceutical additives such as stabilizers, preservatives, isotonic agents, buffers, suspending agents, or pharmaceuticals such as bronchodilators, antiallergic agents, anticancer agents, and antibacterial agents. It can be contained.
- pharmaceutical additives such as stabilizers, preservatives, isotonic agents, buffers, suspending agents, or pharmaceuticals such as bronchodilators, antiallergic agents, anticancer agents, and antibacterial agents. It can be contained.
- the dosage form is suitably a liquid preparation or a powder preparation to be used in suspension at the time of use.
- the therapeutic agent of the present invention is filled in a sealed container such as a vial or ampoule and stored as a sterile preparation.
- peptide A The peptide described in SEQ ID NO: 1 (hereinafter, referred to as “peptide A”) was converted to “Solid phase peptide synthesis” by E. Atherton and RC Sheppard. a practical approach) ”p. 25-189, 1989, Oxford University Press, Oxford] and KenicM, Akagi et al. [Chem. Pharm. Bull., 37 (10), p. 9 89)], the solid phase was synthesized using a multi-peptide solid-phase synthesis system “Koksan” (trade name; manufactured by Kokusaikagaku Co., Ltd.).
- N- ⁇ -9-fluorenylmethyloxycarbo-2-leucine (Fmoc-Leu) was added to [4-1 (hydroxymethyl) Phenoxymethyl-copoly (styrene 1% divinylbenzene)] N- «-9-Fluorenylmethyloxycarbocarbone-to-resin bonded to resin-0-Resin (Fmoc-Leu-0- Resin) 0.2 g of 0.5 mm was used.
- N-dimethylformamide (DMF) N-dimethylformamide
- the resin was washed four times with DMF. A 20% piperidine-DMF solution was added and shaken to perform deprotection.
- the amino acid was sequentially extended in the N-terminal direction on the resin to synthesize a peptide 0-resin in which the N-terminal and the functional group were completely protected.
- the condensation reaction during the introduction of Arg, Lys, His. Pro, and Cys was performed twice in 120 minutes.
- the amino group at the N-terminus of all amino acids was protected with an Fmoc group, and the functional side chains were protected with the following groups.
- CZM formaldehyde-methanol
- the presence of the peptide in the eluate ⁇ was monitored by 245 nm (spectrophotometer; Model 870-UV of JASCO Corporation) and a differential refractometer (Shimadzu Corporation; Model R ID-6A).
- Boc-Leu t-butyloxycarboxy-l-isocyanate
- B 0 c—L eu—PAM resin (0.70 mol / g, 0.35 g) is used as a reaction vessel in a peptide synthesizer (Model 990E, manufactured by Beckman).
- a peptide synthesizer Model 990E, manufactured by Beckman.
- Moved to The protected amino acid was extended in the N-terminal direction on the resin by a preformed symmetric anhydride method to synthesize a completely protected peptide 10-resin.
- the completely protected peptide 0—resin (155 mg) was swollen in methylene chloride for 5 minutes.
- the N—a—B0c protecting group was deprotected using TFA containing 1% (v / v) indole and 0.1% (v / v) ethanedithiol.
- the deprotected peptide-0-resin was then treated with p-cresol (1 ml), p-thiocresol (0.2 g) and DMSO (Lm1) in anhydrous hydrogen fluoride (HF) ( 1 1 m 1) at 0 ° C for 60 minutes Upon treatment, the peptide was excised from the resin.
- HF hydrous hydrogen fluoride
- HF and DMS 0 were distilled off at 0 ° C. under vacuum.
- the cut out peptide and resin were washed three times with 15 ml of cold getyl ether, and then the free peptide was extracted by washing three times with 10 ml of cold TFA washing solution.
- the extract was filtered immediately and added to ice-cold water (12 Om1-150 ml) to precipitate crude peptide B.
- the crude peptide B was centrifuged at 1,000 X g, 0 ° C for 30 minutes and collected as a precipitate.
- the precipitate was washed with getyl ether (15 ml). This washing step was further repeated using getyl ether, ethyl acetate and distilled water to obtain 83 mg of peptide B.
- the obtained peptide B was dissolved in a 50% aqueous solution of DMS and purified by high-performance liquid chromatography using a Bondasphere and C8-300 column.
- a 50% aqueous solution of acetonitrile containing 1% TFA was used for elution for 5 minutes.
- the eluate was then eluted with a linear concentration gradient of 80% acetonitrile aqueous solution containing 0.1% TFA for 30 minutes.
- the presence of the peptide in the eluate was determined at 245 nm (spectrophotometer; JASCO Corporation). It was monitored with a model company model 870-UV) and a differential refractometer (Shimadzu Corporation Model RID-6A).
- the peptide of SEQ ID NO: 3 (peptide C) was prepared in the same manner as in (Example 1).
- the peptide of SEQ ID NO: 5 (peptide E) was prepared in the same manner as in (Example 1).
- the peptide of SEQ ID NO: 6 (peptide F) was prepared in the same manner as in (Example 1).
- the peptide of SEQ ID NO: 7 (peptide G) was prepared in the same manner as in (Example 1).
- the peptide of SEQ ID NO: 8 (peptide H) was prepared in the same manner as in (Example 1).
- the peptide of SEQ ID NO: 9 (peptide I) was prepared in the same manner as in (Example 1).
- the peptide of SEQ ID NO: 10 (peptide J) was prepared in the same manner as in (Example 1).
- the synthetic peptide of the present invention was prepared using 1,2N hydrochloric acid ZTFA [2: 1 (V / V)] containing 5% (v / v) funinol under vacuum at 150 ° C for 2, 4, 6, 1 After acid hydrolysis for 2, 24, 48 and 72 hours to remove the acid, the hydrolyzed products were analyzed by Shimadzu Amino Acid Automatic Analysis System (LC-19A). In the hydrolysis for 2 to 72 hours, the amino acid value showing higher recovery was adopted, and the amino acid composition value was calculated.
- the molecular weight of the synthetic peptide of the present invention was measured by the fast atom bombardment method (FABMS).
- FABMS fast atom bombardment method
- a JMS-S102A type manufactured by JEOL Ltd.
- a cesium gun (10 KeV) was used as an ion source.
- the surfactant of the present invention is prepared by using the synthetic peptide and 1,2-dipalmitoylglycerol (3) -phosphocholine, 1,2-diasyl-sn-glycerol- (3) -phospho-sn-glycerol and palmitic acid as lipid components.
- the three components of the acid were prepared by mixing.
- 1,2-Dipalmitoyl glycerol— (3) Phosphocholine 204 mg, 1,2-Diacyl-s ⁇ -glycerol (3) —Phosphos ⁇ -glycerol (Chain 14 to 24 carbon atoms: Sigma) 6 3.
- Om1 and 2.8 mg of peptide B was added to 3 ml of TFAO. Dissolved. These solutions were mixed and evaporated to dryness under reduced pressure.
- the obtained residue was suspended in 100 ml of a water-ethanol mixture [9: 1 (V / V)] at 45 ° C for 20 minutes.
- the suspension was frozen at ⁇ 60 ° C. and dried at a vacuum of 60 to 110 ° Hg for 40 hours to obtain 301.9 mg of a white powdered surfactant.
- a surfactant was produced in the same manner as in (Example 12) except that peptide C was used instead of peptide B.
- Surfactants were produced in the same manner as in (Example 12) except that peptide D was used instead of peptide B.
- a surfactant was produced in the same manner as in (Example 12) except that peptide E was used instead of peptide B.
- Surfactants were produced in the same manner as in (Example 12) except that peptide F was used instead of peptide B.
- 1,2-dipalmitoyl glycerol— (3) phosphocholin 210 mg, 1,2-diacyl-s ⁇ -glycerol (3) —phospho-s ⁇ —glyceric ester (carbon number of the acyl group: 14 to 2 90 mg of Omg and 33.Omg of palmitic acid were dissolved in a mixture of form-methanol [3: 1 (V / V)] 40 Om1 and 3.Omg of peptide D was dissolved. Dissolved in 5 ml of TFAO. These solutions were mixed and evaporated to dryness under reduced pressure. The obtained residue was suspended in 120 ml of a water-ethanol mixture [9: 1 (V / V)] at 50 ° C for 15 minutes. This suspension was frozen in one 6 O e C was dried 2 8 hours at a vacuum degree 5 0 ⁇ 1 0 0 H g, was 3 3 7. 9 mg of Safakutan bets white powder.
- a surfactant was produced in the same manner as in (Example 17) except that peptide H was used instead of peptide G.
- Surfactant was produced in the same manner as in (Example 17) except that peptide J was used instead of peptide G.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pulmonology (AREA)
- Animal Behavior & Ethology (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
A peptide represented by the sequence (I), a pulmonary surfactant comprising the peptide and a lipid mixture, and a remedy for respiratory distress syndrome containing the surfactant as the active ingredient. In sequence (I) Xaa means the absence of any member or represents Cys, Ser or Ala; Xbb represents Cys, Ser or Ala; Xcc represents His or Asn; Xdd represents Leu or Ile; Xee represents Val or Ile; Xff represents Ile, Leu or Val; and Xgg means the absence of any member or represents Leu. The peptide is easy to isolate and purify, can be mass produced in a short time and has a potent surface activity when mixed with a lipid mixture. The pulmonary surfactant has a good suspending activity and a potent surface activity, thus being useful as a remedy for respiratory distress syndrome.
Description
明 細 書 合成べプチド、 それを含有する肺サーファクタント及び呼吸窮迫症 群治療剤 技術分野 Description Synthetic peptides, pulmonary surfactants containing them, and therapeutic agents for respiratory distress group
本発明は、 合成ペプチドに関する。 詳しくは、 脂質混合物と配合する ことにより強力な表面活性作用を有する合成べプチド、 該合成べプチド と脂質混合物からなる肺サーファクタント及び該肺サ一ファクタントを 有効成分として含有する呼吸窮迫症候群治療剤に関する。 背景技術 、 The present invention relates to synthetic peptides. More specifically, the present invention relates to a synthetic peptide having a strong surface activity by being combined with a lipid mixture, a pulmonary surfactant comprising the synthetic peptide and a lipid mixture, and a therapeutic agent for respiratory distress syndrome containing the pulmonary surfactant as an active ingredient. . Background technology,
呼吸窮迫症候群は、 肺サーファクタン卜の欠乏により肺胞が虚脱する 結果、 重篤な呼吸障害をきたす疾病であり、 未熟な新生児に多症し死亡 率が高い。 Respiratory distress syndrome is a disease that causes severe respiratory distress as a result of the collapse of the alveoli due to a lack of pulmonary surfactant.
近年、 この呼吸窮迫症候群に対し、 外部から経気道的に肺サーファク タントを投与する補充療法が開発され、 顕著な治療効果を収めている。 補充される肺サーファクタントとしては、 哺乳動物の肺臓組織に存在 するリ ン脂質、 中性脂質、 総コレステロール及び炭水化物並びに微量の 蛋白質からなる物質 (特公昭 6 1 - 9 9 2 5号公報) 、 前記成分のほか に脂肪酸を含有する物質 (以下「S— T A」 という。 :特公昭 6 1 - 9 9 2 4 号公報) 、 豚肺洗浄液より分離し、 これに C a を添加した物質 (日本界 面医学会雑誌、 第 1 2巻第 1号第 1頁、 1 9 8 0年) 、 コリ ンホスホグ リセリ ド、 酸性リン脂質、 脂肪酸類及び動物肺由来のリポ蛋白質をそれ ぞれ特定の比率で含有する物質 (特公平 3 - 7 8.3 7 1号公報) 、 ジパ ルミ トイルホスファチジルコリ ン及び脂肪アルコールからなる物質 (特
公平 3— 4 3 2 5 2号公報) 等が知られている。 In recent years, replacement therapy has been developed to administer pulmonary surfactant from the outside via the airway to respiratory distress syndrome, and has achieved remarkable therapeutic effects. Pulmonary surfactants to be supplemented include substances consisting of phospholipids, neutral lipids, total cholesterol and carbohydrates and a small amount of proteins present in lung tissue of mammals (Japanese Patent Publication No. 61-92925), In addition to the components, a substance containing fatty acids (hereinafter referred to as “S-TA”: Japanese Patent Publication No. 61-92924), a substance separated from pig lung lavage fluid and added with Ca (Japanese Journal of the Japanese Society of Surface Medicine, Vol. 12, No. 1, p. 1, 1989), corin phosphoglycerides, acidic phospholipids, fatty acids, and lipoproteins derived from animal lungs at specific ratios Substances (Japanese Patent Publication No. 3-78.371), substances composed of dipalmitoylphosphatidylcholine and fatty alcohol No. 3, 4 3 2 5 2).
本発明者等の一部は、 先に動物由来の肺サーファクタントからリポ蛋 白質を分離し、 該リポ蛋白質が肺表面活性を示すため不可欠の成分であ り、 該リボ蛋白質を脂質混合物に配合することにより、 サーファクタン トの優れた表面張力低下作用の発現並びにサーファクタント気波面拡散 作用の短縮及び低い平銜表面張力の発揮.により、 十分な肺胞腔容量の確 保等を可能にし、 呼吸窮迫症候群の治療に使用できることを発見した (特 公平 3— 7 8 3 7 1号公報) 。 Some of the present inventors previously separated a lipoprotein from an animal-derived lung surfactant, and added the lipoprotein to a lipid mixture because the lipoprotein is an essential component for exhibiting lung surface activity. As a result, the surfactant exerts an excellent surface tension lowering effect, shortens the surface wavefront diffusion effect of the surfactant, and exerts a low surface tension on the flat mouth, thereby securing sufficient alveolar cavity volume, etc., resulting in respiratory distress syndrome. It has been discovered that it can be used to treat (Japanese Patent Publication No. 3-788371).
近年、 哺乳動物の肺サーファクタントに特異的なアポ蛋白質として親 水性のサーファクタントアポ蛋白質 A及びサーファクタントアポ蛋白質 D並びに疎水性のサーファクタントアポ蛋白質 B (以下 「S P— B」 と いう。 ) 及びサーファクタントアポ蛋白質 C (以下 「S P— C」 という。 ) の 4種が確認された 〔アポ蛋白質の構造と機能についての総説 (秋野豊 明、 黒木由夫著、 呼吸と循環、 第 3 8巻第 1 8号第 7 2 2頁、 1 9 9 0 年;安田寬基等編、 「バイオサーファクタント _[ 、 第 2章 サーファク タントの生化学 —サーファクタントとアポ蛋白質第 1 3 1頁、 1 9 9 0 年、 株式会社サイエンスフォーラム) 〕 。 In recent years, as apoproteins specific to mammalian lung surfactant, lipophilic surfactant apoprotein A and surfactant apoprotein D, and hydrophobic surfactant apoprotein B (hereinafter referred to as “SP-B”) and surfactant apoprotein C have been used. (Hereinafter referred to as “SP-C”) [A review on the structure and function of apoproteins (Toyoaki Akino, Yoshio Kuroki, Respiration and Circulation, Vol. 38, No. 18, No. 7 22 pages, 1990; Ed. Yasuda, K. et al., “Biosurfactant_ [, Chapter 2 Biochemistry of Surfactants—Surfactants and Apoproteins” Page 31, 1990, Science Co., Ltd. Forum)]
ヒト肺由来の S P— Cは、 アミノ酸 3 5残基からなり、 N末端アミ ノ酸がフヱニルァラニンでバひン等の疎水性ァミノ酸に富む疎水性が極 めて強いアポ蛋白質である。 またゥシ、 ブタ、 ラッ ト等の肺から単離さ れた S P— Cも、 アミノ酸 3 4〜3 5残基からなり、 N末端側のアミノ 酸配列が動物種により異なっているがヒ十との相同性が極めて高い。
ヒ ト S P — cのアミ ノ酸配列 SP-C derived from human lung is an apoprotein with extremely strong hydrophobicity, which is composed of 35 amino acid residues and whose N-terminal amino acid is phenylalanine and rich in hydrophobic amino acids such as amino acids. SP-C isolated from the lungs of pigs, pigs, rats, etc. also consists of 34 to 35 amino acids, and although the amino acid sequence at the N-terminal varies depending on the animal species, it is not Are extremely high in homology. Human SP — amino acid sequence of c
Phe Gly l ie Pro Cys Cys Pro Val His Leu Lys Arg Leu Leu l ie ValPhe Gly lie Pro Cys Cys Pro Val His Leu Lys Arg Leu Leu lie Val
1 5 10 151 5 10 15
Val Val Val Val Val Leu l ie Val Val Val l ie Val Gly Ala Leu Leu Val Val Val Val Val Leu lie Val Val Val lie Val Gly Ala Leu Leu
20 25 30 20 25 30
Met Gly Leu Met Gly Leu
35 35
特表平 3 - 5 0 2 0 9 5号公報、 特開平 3 - 9 0 0 3 3号公報には、 S P 一 B又は S P— Cが肺サーファクタン 卜の気液界面への吸着、 拡散を促 進し、 肺サーファタタントの表面活性を改善することが記載されている。 In Japanese Patent Application Laid-Open No. Hei 3-5002095 and Japanese Unexamined Patent Publication No. Hei 3-90033, SP-B or SP-C promotes adsorption and diffusion of lung surfactant to the gas-liquid interface. To improve the surface activity of pulmonary surfatatantes.
S P - Cと脂質混合物とからなる肺サーファクタントを有効成分とす る呼吸窮迫症候群治療剤は、 極めて有効であるにもかかわらず、 S P— Cの疎水性が極めて強く単離 ·精製が困難であること及び生体中に極め て微量しか含まれていないこと等から、 実用化されるには至っていない。 特表平 3— 5 0 2 0 9 5号公報には、 下式に示す S P - Cの部分構造 を含む合成べプチ ドと脂質との混合物が、 呼吸窮迫症候群治療に効果的 である旨記載されている。 また、 同公報には、 高い表面活性を示す最小 単位として下記の配列を有するァミ ノ酸残基 3 2個のぺプチドが記載さ れている。 更に、 この最小単位のペプチドとこれより短いアミ ノ酸残基 を有する合成ペプチ ドとの表面活性の比較から、 表面活性の喪失は、 特 定の残基の喪失に起因するのではなく、 ポリぺプチ ドの長さの減少によ ると結論づけている。 Therapeutic agent for respiratory distress syndrome, which contains a pulmonary surfactant consisting of SP-C and a lipid mixture as an active ingredient, is extremely effective, but SP-C is extremely hydrophobic and difficult to isolate and purify. Due to the fact that it is contained in living organisms in extremely small amounts, it has not been put to practical use. Japanese Patent Application Laid-Open No. 3-52095 states that a mixture of a synthetic peptide containing the SP-C partial structure shown below and a lipid is effective for the treatment of respiratory distress syndrome Have been. The publication also describes a peptide having 32 amino acid residues having the following sequence as a minimum unit exhibiting high surface activity. In addition, a comparison of the surface activity of this minimal unit of peptide with synthetic peptides having shorter amino acid residues indicates that the loss of surface activity is not due to the loss of specific residues, but to the polypeptide. They conclude that this is due to a decrease in peptide length.
Cys Cys Pro Val His Leu Lys Arg Leu Leu l ie Val Val Val Val Val 1 5 10 15 Val Leu l ie Val Val Val l ie Val Gly Ala Leu Leu Met Gly Leu His Cys Cys Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val 1 5 10 15 Val Leu lie Val Val Val lie Val Gly Ala Leu Leu Met Gly Leu His
20 25 30
しかしながら、 一般的に合成べプチドの製造には、 そのアミノ酸配列 が長くなるにつれて合成時の未成熟なぺプチドの生成頻度が高くなり、 単離 ·精製が困難となること、 製造に長 間を要すること及び大量合成 が困難なこと等の欠点があるといわれてい'る。 20 25 30 However, in general, the production of synthetic peptides requires that the longer the amino acid sequence becomes, the more frequently immature peptides are produced during synthesis, which makes isolation and purification difficult, and that production requires a long time. It is said that there are drawbacks such as the necessity and difficulty in mass synthesis.
ところで、 肺サーファクタント製剤は、 品質保全の点から、 用時に生 理食塩水懸濁波とする乾燥粉末製剤として提供されることが多い。 By the way, the pulmonary surfactant preparation is often provided as a dry powder preparation which is converted into a physiological saline suspension wave at the time of use from the viewpoint of quality conservation.
しかしながら、 S P— Cのアミノ酸配列を有する合成べプチドをコリ ンホスホグリセリ ド、 酸性リン脂質及び脂肪酸類からなる脂質混合物に 配合した肺サーファクタント (以下 「S— 3 5」 という。 ) 製剤は、 ぺ プチド中に存在するシスティン残基がジスルフィ ド結合を形成するため ぺプチドの凝集性が高いこと、 肺サーファクタント自体の疎水性が強い こと等の要因から、 生理食塩水に対する分散性が極めて悪く、 製剤とし て使用できる程度に均一な懸濁液とすることが困難であった。 However, pulmonary surfactant (hereinafter referred to as “S-35”) preparations in which a synthetic peptide having the amino acid sequence of SP-C is mixed with a lipid mixture composed of choline phosphoglyceride, acidic phospholipid, and fatty acids, are: Since the cysteine residue present in the peptide forms a disulfide bond, the dispersibility in physiological saline is extremely poor due to factors such as high peptide agglutinability and strong hydrophobicity of the lung surfactant itself. It was difficult to make the suspension uniform enough to be used as such.
また、 肺サーファクタント製剤の懸濁性の改善法として、 マンニトー ル等の懸濁化剤を添加する方法 (特開昭 6 0 - 3 4 9 0 5号公報) 及び 乾燥時に一時凍結温度を一 1〜一 1 ひ °Cで行う凍結法 (特開昭 6 3 - 1 0 7 1 8号公報) が提案されているが、 操作が煩雑であり、 より簡 便な製剤の製造法の開発が望まれていた 発明の開示 In addition, as a method for improving the suspendability of a pulmonary surfactant preparation, a method of adding a suspending agent such as mannitol (Japanese Patent Application Laid-Open No. Sho 60-34905) and a method in which the temporary freezing temperature during drying is reduced to 1: 1. Although a freezing method performed at temperatures of up to 11 ° C. has been proposed (Japanese Patent Application Laid-Open No. Sho 63-107718), the operation is complicated, and it is hoped that a more convenient method for producing a drug product will be developed. Disclosure of the Invention
本発明者等は、 上記知見に鑑み、 脂質混合物と配合することにより強 力な表面活性作用を有する合成ペプチドにっき、 鋭意研究した結果、 下 記特定配列で示されるペプチド (以下 「本発明合成ペプチド」 という。 ) を有効成分とする肺サーファタタントが、 懸濁化剤無添加、 一 2 0 °C以 下で行う通常の凍結乾燥法により製造した場合でも、 S - 3 5、 コリ ン ホスホグリセリ ド、 酸性リン脂質及び脂肪酸類からなる脂質混合物のみ
からなる合成肺サーファクタント (以下 「S F— 3」 という。 ) 又は S 一 T Aに比べ、 均一懸濁性が良好で、 しかも S— 3 5又は S— T Aと同 等の強力な表面活性作用を有することを知り本発明を完成させた。 In view of the above findings, the inventors of the present invention have conducted intensive studies on a synthetic peptide having a strong surface activity by being combined with a lipid mixture, and as a result, a peptide represented by the following specific sequence (hereinafter referred to as “the synthetic peptide of the present invention”) The pulmonary surfatatant containing) as an active ingredient was produced by a conventional freeze-drying method performed at 120 ° C or lower without the addition of a suspending agent, even when S-35, corin phosphoglycerol was used. Only lipid mixtures consisting of acidic phospholipids and fatty acids It has better uniform suspension than S-TA, and has the same strong surface activity as S-35 or S-TA. Knowing this, they completed the present invention.
Xaa Xbb Pro Val Xcc Xdd Lys Arg Leu Leu Xee Val Val Val Val Val 1 5 10 15 Xaa Xbb Pro Val Xcc Xdd Lys Arg Leu Leu Xee Val Val Val Val Val 1 5 10 15
Val Leu Xff Val Val Val He Val Gly Ala Leu Xgg Val Leu Xff Val Val Val He Val Gly Ala Leu Xgg
20 25 20 25
(配列中、 Xaaは存在しないか又は Cys、 Ser若しくは Alaを表し、 Xbbは Cys、 Ser又は Alaを表し、 Xccは His又は Asnを表し、 Xddは Leu又は I leを表し、 Xeeは Val又は l ieを表し、 Xffは I le、 Leu又は Valを表し、 Xggは存在しな いか又は Leuを表す。 ) (In the sequence, Xaa is absent or represents Cys, Ser or Ala, Xbb represents Cys, Ser or Ala, Xcc represents His or Asn, Xdd represents Leu or Ile, Xee is Val or l ie, Xff represents I le, Leu or Val, and Xgg does not exist or represents Leu.)
本発明によれば、 製造時の未成熟なぺプチドの生成頻度が低いため単 離 ·精製が容易であり、 短時間で大量に製造することができる合成ぺプ チドであって、 脂質混合と配合することにより懸濁性が良好であり、 か つ、 強力な表面活性作用を有する合成ペプチド、 該合成ペプチドと脂質 混合物からなる肺サーファクタント及び該肺サーファクタントを有効成 分として含有する呼吸窮迫症候群治療剤が提供される。 According to the present invention, it is a synthetic peptide which is easy to isolate and purify due to the low frequency of production of immature peptides during production, and can be produced in large quantities in a short time. A synthetic peptide having good suspension properties and strong surface activity by being blended, a lung surfactant comprising a mixture of the synthetic peptide and lipid, and a treatment for respiratory distress syndrome containing the lung surfactant as an effective component An agent is provided.
本発明合成ペプチドは、 化学的又は遺伝子工学的手法により製造する 、 ことができるが、 単離 ·精製の点から化学的製造法が好ましい。 The synthetic peptide of the present invention can be produced by a chemical or genetic engineering technique, but a chemical production method is preferred in terms of isolation and purification.
化学的製造法としては、 「ペプチド合成 (泉屋信夫等著、 丸善株式会 社、 1 9 7 5年) 」 、 「生化学実 —講座、 第 1巻、 タンパク質の化学 I V 一化学修飾とぺプチド合成 - (榊原俊平著、 東京化学同人株式会社、 1 9 7 3 年) 」 、 「続生化学実験講座、 第 2卷、 タンパク質の化学 (下) ぺプチ ド合成 (木村皓俊著、 東京化学同人株式会社、 1 9 8 7年) 」 、 「ソリ ド フェイズ ペプチド シンティシス (Sol id phase peptide synthesis 一 a practical approach ; ,セノレ 卜 ン (E. Atherton) およびシエノ 一
ド (R. C. Sheppard) 著、 2 5〜: I 8 9、 Oxford University Press, Oxford 、 1 9 8 9年) 」 及び「Kenichi, Akagi et aL ( Chem. Pharm. Bull. , 第 3 7卷、 第 1 0号、 第 2 6 6 1〜2 6 6 4頁、 1 9 8 9年) 」 又は 「ザ · ペプチド (The Peptides) 〔グロス (Gross, E. ) 及びマイネンホーフ (Meinenhofe, J. ) 編、 バラニー (Barany, G. ) 及びメ リフィールド (Merrifierd, R) 著、 第 2巻第 1〜 2 8 4頁、 アカデミックプレス、 二 ユーヨーク、 1 9 & 0年) 〕 」 に記載されている方法、 例えば、 アジド 法、 酸クロライ ド法、 酸無水物法、 混合酸無水物法、 D C C法、 活性ェ ステル法 (ρ—二トロフエニルエステル法、 P —ヒ ドロキシコハク酸ィ ミ ドエステル法等) 、 カルボイミダゾール法、 酸化還元法、 D C C—活 性化法等の液相合成法又は固柜合成法等により製造することができる。 Examples of chemical production methods include “Peptide synthesis (by Nobuo Izumiya, Maruzen Co., Ltd., 1979)”, “Biochemistry—Lecture, Volume 1, Protein Chemistry IV, Chemical Modification and Peptides” Synthesis-(Shunpei Sakakibara, Tokyo Chemical Doujin Co., Ltd., 1973) "," Semi-chemical Chemistry Laboratory, Vol. 2, Protein Chemistry (below), Peptide Synthesis (Kimura Terutoshi, Tokyo Chemical) Dojin Co., Ltd., 1987), "Solid phase peptide synthesis, a practical approach;, Senoreton (E. Atherton) and Shieno De Shepherd, RC Sheppard, 25-: I89, Oxford University Press, Oxford, 1989) "and Kenichi, Akagi et aL (Chem. Pharm. Bull., Vol. 37, Vol. 1) No. 0, 2661-26464, 1989) "or" The Peptides "(Gross, E. and Meinenhofe, J., Barany (Barany, G.) and Merrifield, R., Vol. 2, pp. 1-284, Academic Press, New York, 19 & 0)]] , Azide method, acid chloride method, acid anhydride method, mixed acid anhydride method, DCC method, active ester method (ρ-ditrophenyl ester method, P-hydroxysuccinic acid imid ester method, etc.), carboimidazole It can be manufactured by a liquid phase synthesis method such as a redox method, a redox method, a DCC-activation method, or a solid synthesis method.
このうち固相合成法が好ましく、 自動合成装置により合成することが 可能である。 自動合成装置としては、 例えば 4 3 1 Aペプチド · シンセ サイザ (商標; アプライ ドバイオシステム社製) 又はべプチド合成装置 モデル 9 9 0 E (商標;ベックマン社製) が挙げられる。 Of these, solid phase synthesis is preferred, and synthesis can be performed by an automatic synthesizer. Examples of the automatic synthesizer include a 431A peptide synthesizer (trademark; manufactured by Applied Biosystems) or a peptide synthesizer model 9900E (trademark; manufactured by Beckman).
本発明合成ペプチドに脂質混合物としてコリンホスホグリセリ ド、 酸 性リン脂質及び脂肪酸類を配合することにより肺サ一ファクタント (以 下 「本発明サーファクタント」 という。 ) を製造することができる。 配合比は最終生成物の乾燥総重量に対するこれらの成分の重量比率が、 合成ペプチドは 0 . 1〜 5 · 0 % (W/W) 、 コリンホスホグリセリ ド は 5 0 . 6〜 8 5 . 0 % (W/W) ゝ 酸性リン脂質は 4. 5〜 3 7 . 6 % (W/W) 、 脂肪酸類は 4 . 6〜2 4 . 6 % (WZW) となるように 設定するのが適当である。 A pulmonary surfactant (hereinafter referred to as “surfactant of the present invention”) can be produced by blending choline phosphoglyceride, acidic phospholipid and fatty acids as a lipid mixture with the synthetic peptide of the present invention. The compounding ratio is 0.1 to 5.0% (W / W) for synthetic peptide and 50.6 to 85.0 for choline phosphoglyceride, based on the weight ratio of these components to the total dry weight of the final product. % (W / W) 適当 It is appropriate to set acidic phospholipids to 4.5 to 37.6% (W / W) and fatty acids to 4.6 to 24.6% (WZW). It is.
本発明サーファクタントにおいて使用できるコリンホスホダリセリ ド としては、 1 , 2—ジパルミ トイルグリセ口— (3.) —ホスホコリン (別 名ジパルミ トイルホスファチジルコリ ン) 、 1 , 2—ジステアロイルグ
リセロー ( 3 ) —ホスホコリ ン、 1 -パルミ トイルー 2—ステアロイル グリセロー ( 3 ) —ホスホコリン若しく は 1 ーステアロイル— 2 —パル ミ トィルグリセロー (3 ) —ホスホコリ ン等の 1 , 2 —ジァシルグリセ 口— ( 3 ) —ホスホコリ ン、 1 一へキサデシル— 2 —パルミ トイルグリ セロー (3 ) —ホスホコリ ン若しくは 1 一才クタデシルー 2 —パルミ ト ィルグリセロー (3 ) —ホスホコリ ン等の 1 一アルキル— 2 —アンルグ リセロー (3 ) —ホスホコリ ン又は 1, 2 —ジへキサデシルグリセロー ( 3 ) —ホスホコリ ン等の 1 , 2 —ジアルキルグリセロー (3 ) —ホス ホコリ ンが適当である。 これらの化合物についてはグリセロール残基の 2位の炭素に基づく光学異性体が存在するが、 本発明サーファクタン ト においては D体、 L体又は D L体のいずれを問わず使用することができ る。 このほかにコリ ンホスホグリセリ ドとしては、 上述の単品からなる コリ ンホスホグリセリ ド以外に、 炭素数が 1 2〜 2 4個のァシル基、 好 ましくは、 飽和ァシル基を 2個有する 1 , 2—ジァシルグリセ口— (3 ) —ホスホコリ ンの 2種以上からなる混合物、 更には当該混合物と上述の 単品との混合物も使用することができる。 Choline phosphodalicerides that can be used in the surfactants of the present invention include 1,2-dipalmitoyl glyceride— (3.)-Phosphocholine (also known as dipalmitoyl phosphatidyl choline) and 1,2-distearoyl glyceride. Lysero (3)-phosphocorin, 1-palmitoyl 2- 2-stearoyl glycerol (3)-phosphocholine or 1-stearoyl-2-palmitoyl glycerol (3)-1,2 such as phosphocorin-diacylglycerose-(3) —Phosphocholine, 1-hexadecyl—2—palmitoylglycerol (3) —phosphocholine or 1-year-old kutadecyl-2—palmitoylglycerol (3) —1-alkyl, such as phosphocorin-2—angluglycerol (3) — 1,2-Dialkylglycerol (3) -phosphocholine such as phosphocorin or 1,2-dihexadecylglycerol (3) -phosphocholine is suitable. These compounds have optical isomers based on the carbon at the 2-position of the glycerol residue, and any of the D-form, L-form and DL-form can be used in the surfactant of the present invention. In addition to this, in addition to the above-mentioned single-part corin phosphoglyceride, corynephosphoglyceride may be an acyl group having 12 to 24 carbon atoms, preferably two saturated acyl groups. , 2-Diacylglycerose- (3) -A mixture of two or more phosphocholins, and a mixture of the mixture and the above-mentioned single product can also be used.
酸性リ ン脂質としては、 1 , 2 —ジァシルー s n—グリセロー (3 ) 一 リ ン酸 (別名 L一 α—ホスファチジン酸) 、 1 , 2—ジァシル— s η ーグリセ口— (3 ) —ホスホーしーセリン (別名ホスファチジルセリン) 、 1 , 2 —ジァシルー s η—グリセ口— ( 3 ) —ホスホー s η—グリセロー ル (別名ホスファチジルグリセロール) 又は 1 , 2—ジァシルー s η— グリセロー ( 3 ) —ホスホー ( 1 ) — L一 m y 0—イノシ トール (別名 ホスファチジルイノシトール) が適当である。 これらの化合物において、 1位及び 2位は同一種類又は異なる種類のァシル基でそれぞれ置換され ていてもよい。 ここで、 ァシル基の炭素数は 1 2〜2 4個が好ましい。 脂肪酸類としては、 遊離脂肪酸、 脂肪酸のアルカ リ金属塩、 脂肪酸ァ
& ルキルエステル、 脂肪酸グリセリンエステル若しくは脂肪酸アミ ド又は これらの 2種以上からなる混合物、 更には脂肪アルコール又は脂肪族ァ ミ ンが適当である。 Examples of acidic phospholipids include 1,2-diacyl-sn-glycerol (3) monophosphoric acid (also known as L-α-phosphatidic acid), 1,2-diacyl-sη-glycerol— (3) -phospho-serine (Also known as phosphatidylserine), 1,2-diasyl-sη-glycerol— (3) —phospho-sη-glycerol (also known as phosphatidylglycerol) or 1,2-diasyl-sη-glycerol (3) —phospho (1) — L-1 my 0—Inositol (also known as phosphatidylinositol) is suitable. In these compounds, the 1-position and the 2-position may be substituted with the same or different kinds of acyl groups, respectively. Here, the carbon number of the acyl group is preferably from 12 to 24. Fatty acids include free fatty acids, alkali metal salts of fatty acids, and fatty acids. Suitable are & alkyl esters, fatty acid glycerin esters, fatty acid amides, or mixtures of two or more of these, and furthermore, fatty alcohols or aliphatic amines.
本明細書において 「脂肪酸類上とは、 ここでいう脂肪アルコール及び 脂肪族ァミンも包含する意味である。 In the present specification, "on fatty acids" is meant to include the fatty alcohols and aliphatic amines referred to herein.
遊離脂肪酸としてはミ リスチン酸、 パルミチン酸又はステアリン酸が 適当であるが、 ソヽ。ルミチン酸が!?ましい。 Myristic acid, palmitic acid or stearic acid is suitable as a free fatty acid. Lumitic acid !? Good.
脂肪酸のアル力リ金属塩としてはパルミチン酸ナトリゥムが、 脂肪酸 アルキルエステルとしてはパルミチン酸ェチルエステルが、 脂肪酸グリ セリンエステルとしてはモノパルミチンが、 脂肪酸ァミ ドとしてはパル ミチン酸アミ ドがそれぞれ好ましい。 Preferably, sodium palmitate is used as the metal salt of fatty acid, ethyl palmitate is used as fatty acid alkyl ester, monopalmitin is used as fatty acid glycerin ester, and palmitic acid amide is used as fatty acid amide.
脂肪アルコールとしてはへキサデシルアルコールが、 脂肪族アミンと してはへキサデシルァミンが好ましい。 Hexadecyl alcohol is preferred as the fatty alcohol, and hexadecylamine is preferred as the aliphatic amine.
上述のコリンホスホグリセリ ド、 酸性リン脂質及び脂肪酸類は動植物 から分離された製品、 半合成品又は化学合成品のいずれでもよく、 それ らの市販品を使用することができる。 The above-mentioned choline phosphoglycerides, acidic phospholipids and fatty acids may be any of products isolated from animals and plants, semi-synthetic products or chemically synthesized products, and commercially available products thereof can be used.
本発明サーファクタントは、 本発明合成べプチド溶液と上記脂質混 , 合物溶液との混合溶液を減圧乾固し、 得られた残留物を適当な懸濁溶媒 を用いて懸濁し、 次いで凍結乾燥する方法により製造することができる。 本発明合成ペプチド溶波の調製に使用される溶媒としては、 例えば、 ギ酸、 トリフルォロ酢酸 (T F A) 、 トリフルォロエタノール、 ジメチ ルスルホキシド (D M S O ) 、 クロ口ホルム/メタノール又はクロロホ ルムが挙げられる。 The surfactant of the present invention is obtained by drying a mixed solution of the synthetic peptide solution of the present invention and the above-mentioned lipid mixture or compound solution under reduced pressure, suspending the obtained residue using a suitable suspending solvent, and then freeze-drying. It can be manufactured by a method. Examples of the solvent used for preparing the synthetic peptide solution of the present invention include formic acid, trifluoroacetic acid (TFA), trifluoroethanol, dimethyl sulfoxide (DMS0), chloroform / methanol, and chloroform.
脂質混合物溶液の調製に使用される溶媒としては、 例えば、 クロロホ ルム、 クロ口ホル /メタノール 〔2 : 1〜5 :. 1 ( V / V ) 〕—が挙げ られる■。
懸濁溶媒としては水又は水—エタノール混合液 〔4 : 1〜20 : 1 (V /V) 〕 が挙げられるが、 水一エタノール混合液が好ましい。 懸濁は 3 0 〜6 0°C、 好ましくは 4 0〜5 0°Cで、 5〜6 0分間、 好ましくは 1 5 〜3 0分間かけて行う。 Examples of the solvent used for preparing the lipid mixture solution include chloroform, chloroform / methanol [2: 1 to 5: 1. (V / V)] —. Examples of the suspending solvent include water or a mixed solution of water and ethanol [4: 1 to 20: 1 (V / V)], and a mixed solution of water and ethanol is preferable. The suspension is carried out at 30 to 60 ° C., preferably 40 to 50 ° C., for 5 to 60 minutes, preferably for 15 to 30 minutes.
本発明サーファクタントには製法上、 微量の水分の残存は避けられな いが、 その残存重量比率が総重量に対して 5. 0 % (W/W) 以下にな るまで乾燥することが望ましい。 かかる程度まで乾燥すれば、 水一エタ ノール混合液を用いる場合、 ェタノールの残存は検出不能となる。 In the surfactant of the present invention, it is inevitable that a trace amount of water remains in the production method, but it is preferable to dry the surfactant until the remaining weight ratio becomes 5.0% (W / W) or less based on the total weight. If it is dried to such an extent, residual ethanol cannot be detected when a water-ethanol mixture is used.
また、 本発明サーファクタント乾燥粉末製剤は、 可変速度式ミ クスチ ヤー又は超音波発生装置内で適切な生理的な濃度の 1価又は 2価金属塩、 例えば 0. 9 %塩化ナ トリウム若しくは 1. 5 mM塩化カルシウム又は それらを含有する生理的な緩衝液を用いて均一に懸濁分散させて使用す ることができる。 In addition, the surfactant dry powder preparation of the present invention can be prepared in a variable-speed mixer or an ultrasonic generator at an appropriate physiological concentration of a monovalent or divalent metal salt, for example, 0.9% sodium chloride or 1.5%. It can be used by uniformly suspending and dispersing it using mM calcium chloride or a physiological buffer containing them.
次に、 このようにして製造された本発明サーファクタン卜の表面活性、 懸濁性及び薬理学的性質について詳述する。 Next, the surface activity, suspendability and pharmacological properties of the surfactant of the present invention thus produced will be described in detail.
[表面活性] [Surface activity]
①表面張力低下作用 ①Surface tension lowering action
表面張力低下作用の測定を田中等の方法 (日本界面医学会雑誌、 第 1 3 卷、 第 2号、 第 8 7頁、 1 9 8 2年) に準じて行った。 The surface tension lowering effect was measured according to the method of Tanaka et al. (Journal of the Surface Science Society of Japan, Vol. 13, No. 2, No. 87, p. 87, 1982).
本発明サーファクタント懸濁液を生理食塩水 (表面積; 54. 0 cm2) 上に、 1 c m2あたり本発明サーファクタントが 1. 0〜2. 0 / gとな るように滴下し、 該表面積を 54. 0〜2 1. 6 c m2の範囲内で 2〜 5 分かけて圧縮 ·拡張した際の表面張力をウイルヘルミ一表面張力測定装 置 (協和界面科学株式会社製) により、 37 °Cで連続的に測定した。 本発明サーファクタン 卜の表面張力低下作用は、.最大表面張力が 29.The surfactant of the present invention is dropped onto physiological saline (surface area: 54.0 cm 2 ) so that the surfactant of the present invention is 1.0 to 2.0 / g per cm 2 , and the surface area is reduced. 54. The surface tension during compression and expansion in the range of 0 to 2 1.6 cm 2 over 2 to 5 minutes was measured at 37 ° C with a Wilhelmy surface tension measurement device (manufactured by Kyowa Interface Science Co., Ltd.). Measured continuously. The surface tension reducing effect of the surfactant of the present invention is as follows.
7〜3 4. 5 d y n eノ c m、 最小表面張力が 1. 4〜8. 9 d y n e
Z cmであり、 生理食塩水の表面張力を低下させることが認められた。 同様にして測定した S F— 3の表面張力低下作用は、 最大表面張力が 25. 8〜50. 3 dyn e/cm、最小表醒力が 1. 0〜13. 5 d y n e / c mであつ'た o 7 ~ 34.5 dyne cm, minimum surface tension is 1.4 ~ 8.9 dyne Z cm, which was found to lower the surface tension of physiological saline. The surface tension lowering effect of SF-3 measured in the same manner was a maximum surface tension of 25.8 to 50.3 dyne / cm and a minimum awakening power of 1.0 to 13.5 dyne / cm. o
なお 37 °Cにおける生理食塩水の当初の表面張力は 70. 5 d y n e The initial surface tension of saline at 37 ° C was 70.5 dyne
/ c m めった o / cm m rare o
②気液面拡散作用 ② Gas-liquid diffusion
生理食塩氷の液面に、 表面積 l cm2あたり 0. 8〜 1. 5 gの本発 明サーファクタント懸濁液を滴下し、 滴下直後からの表面張力を垂直板 法により経時的に測定した。 測定温度は 37°Cであった。 0.8 to 1.5 g of the surfactant suspension of the present invention per 1 cm 2 of surface area was dropped on the surface of physiological saline ice, and the surface tension immediately after the dropping was measured over time by a vertical plate method. The measurement temperature was 37 ° C.
なお、 到達時間とは、 試料の滴下直後から表面張力が一定値にまでに 要する時間をいい、平衡表面張力とはその時の値をいう。 The arrival time refers to the time required for the surface tension to reach a constant value immediately after dropping of the sample, and the equilibrium surface tension refers to the value at that time.
本発明サーファクタントは 3ひ〜 65秒という短時間で気液面に膜を 形成し、 表面張力を 27. 9〜34. 8 d y n eZ cmにまで低下させ た。 The surfactant of the present invention formed a film on the gas-liquid surface in a short time of 3 to 65 seconds, and reduced the surface tension to 27.9 to 34.8 dyneZcm.
同様にして測定した S F— 3の気液面拡散作用は、 1 2 0秒経過後の 表面張力が 3 8. 1—5 2. 9 d y n eZcmであった。 In the gas-liquid surface diffusion effect of SF-3 measured in the same manner, the surface tension after 120 seconds passed was 38.1-52.9 dyneZcm.
③気液面吸着作用 ③ Gas-liquid surface adsorption
lm lあたり 0. 2〜1. Omgの本発明サーファクタントを含有す る 3 7 °Cの生理食塩水懸濁液を調製し、 懸濁された本発明サ一ファクタ ントの生理食塩水気液面への吸着速度を測定した。 A suspension of physiological saline at 37 ° C containing 0.2 to 1.0 mg of the surfactant of the present invention per liter was prepared, and the suspension of the surfactant of the present invention to the saline gas-liquid surface was prepared. Was measured.
吸着速度の測定はキングらの方法 (American Journal of Physiology , 第 223卷、 第 7 1 5頁、 1 9 72年) に従った。 The adsorption rate was measured according to the method of King et al. (American Journal of Physiology, Vol. 223, Vol. 7, pp. 15, 1972).
すなわち、 懸濁液を生理食塩水の入っている直径 5 c mのテフ口ン水 槽の底に注入後、 マグネティ ックスターラーでゆつく り攪拌し、 攪拌を 停止した後の表面張力の変動値より吸着速度を求めた。
本発明サーファクタントは、 攪拌を停止してから 3 0〜 1 2 0秒経過 後に、 表面張力を 28. :!〜 39. 5 d y n eノ c mの範囲に低下させ、 その後、 一定値を示した。 In other words, the suspension was poured into the bottom of a 5 cm diameter water tank containing physiological saline, and the mixture was stirred gently with a magnetic stirrer. The speed was determined. The surfactant of the present invention reduced the surface tension to a range of 28.:! To 39.5 dyne cm after 30 to 120 seconds had elapsed after the stirring was stopped, and then showed a constant value.
これは懸濁状態にある本発明サーファクタントが 3 0〜 1 2 0秒で気 液面に浮上吸着し、 強い表面活性をもつ膜を形成したことを示している。 同様にして測定した S F— 3は、 表面張力が 42. 2〜58. 3 d y n e Zc mの範囲で一定値を示し、 その所要時間は 1 5 0秒以上であった。 This indicates that the surfactant of the present invention in the suspension state floated and adsorbed on the gas-liquid surface in 30 to 120 seconds, and formed a film having strong surface activity. The SF-3 measured in the same manner showed a constant value in the surface tension range of 42.2 to 58.3 dyne Zcm, and the required time was 150 seconds or more.
このことは S F— 3の気液面吸着作用が本発明サーファクタントより も弱いことを示し、 本発明サーファクタン卜が強力な表面吸着促進力を もつことを示している。 This indicates that the gas-liquid surface adsorption effect of SF-3 is weaker than that of the surfactant of the present invention, and that the surfactant of the present invention has a strong surface adsorption promoting power.
[懸濁性] [Suspension]
肺サーファクタ トの懸濁性試験を、 特開昭 6 3 - 1 0 7 1 8公報の 方法に準じて行った。 The suspension test of the lung surfactant was performed according to the method disclosed in Japanese Patent Application Laid-Open No. Sho 63-107718.
すなわち、 懸濁開始後所定時間ごとの分散率及び懸濁開始後 2分経過 時の最大分散粒子径により、 懸濁性を判定した。 That is, the suspendability was determined based on the dispersion ratio at predetermined time intervals after the start of the suspension and the maximum dispersed particle diameter after 2 minutes from the start of the suspension.
分散率の試験は、 2 0m l容バイアルに肺サーファクタント 6 0mg を分取し、 生理食塩水 2m 1を注入し、 当該バイアルをイワキ KMシエー カー V— S型振盪器 (イワキ株式会社製) に装着して 2 7 0ス トローク /分で振盪し、 振盪開始 3 0秒後、 1分以降 ·4分まで 1分ごとに、 更に 4分以降 1 0分までは 2分ごとに各試料の分散状態を容器の外からルー ぺを通して肉眼で観察することにより行った。 To test the dispersibility, 60 mg of lung surfactant was dispensed into a 20 ml vial, 2 ml of physiological saline was injected, and the vial was placed on an Iwaki KM Shiaker V-S shaker (Iwaki Co., Ltd.). Attach and shake at 270 strokes / minute.After 30 seconds of shaking, disperse each sample every minute from 1 minute to 4 minutes, and every 2 minutes from 4 minutes to 10 minutes. The condition was visually observed from outside the container through a loop.
懸濁状態の判定は、 各時間ごとに各試料 1 0本ずつ 2人で行い、 懸濁 したか否かの判断は容器内に小塊を全く認めず、 製剤が生理食塩水中に 均一に分散して白色のやや粘稠性の懸濁液が形成されたか否かで行った。 分散率は各人が各時間ごとに懸濁が完了した試料の全本数 ( 1 0本) に対する百分率を求め、 これの 2人による平均値で表示した。
最大分散粒子径は各試料を 20 m I容バイアルに肺サーファクタント 6 Omgを分取し、 生理食塩水 2mlを注入し、 上述と同一の振盪条件 で 2分間連続して振盪し、 懸濁液中の最大粒子を顕微鏡を用いて探し出 し、 その直径をノギスで測定することにより求めた。 The determination of the suspension state was carried out by two persons, 10 samples each time at each time, and no judgment was made as to whether or not the suspension was any small lump in the container, and the formulation was uniformly dispersed in physiological saline This was done by determining whether a white, slightly viscous suspension had formed. The dispersion ratio was calculated as a percentage of the total number of samples (10 tubes) in which each individual completed the suspension at each time, and the average value was shown by the two individuals. The maximum dispersed particle size was determined by dispensing 6 mg of lung surfactant into a 20 ml vial of each sample, injecting 2 ml of physiological saline, and shaking continuously for 2 minutes under the same shaking conditions as described above. The largest particle was found by using a microscope and its diameter was determined by measuring with a vernier caliper.
本発明サーファクタントは、 いずれも大部分が 2分以内に懸濁し、 し かもその最大粒子径は 0. 9mm以下であり、 懸濁性が良好であった。 Most of the surfactants of the present invention were suspended within 2 minutes in most cases, and had a maximum particle diameter of 0.9 mm or less, and showed good suspendability.
[薬理学的性質] [Pharmacological properties]
①急性毒性 ①Acute toxicity
5週令の雄性 I CR系マウス及びゥィスター系ラッ トを用いて本発明 サーファクタントの急性毒性を試験した。 マウスでの経口 LD5。及び腹腔 内 LD5。は、 2. 5—10. 0 /¾: 及び1. 5〜5. O gZkgであ り、 ラッ トでのそれらは 1. 5〜5. 0 ノ1£ 及び1. 5〜2. 5 g Z k gであった。 The acute toxicity of the surfactant of the present invention was tested using 5-week-old male ICR mice and Dister rats. Oral LD 5 in mice. And intraperitoneal LD 5 . Is 2.5-10.0 / ¾: and 1.5-5.O gZkg, and those on the rat are 1.5-5.0 11 and 1.5-2.5 g Z kg.
②亜急性毒性 ② Subacute toxicity
毎日 3ひ 0〜600 mgZk gずつ 1月間、 本発明サーファクタント をウィスター系成熟ラッ 卜に腹腔内投与したが、 体重の変化及び主要臓 器の肉眼的、 組織学的観察における異常は認められなかった。 The surfactant of the present invention was intraperitoneally administered to mature Wistar rats for 3 months 0 to 600 mgZkg for 1 month, but no change in body weight or abnormality in macroscopic and histological observation of major organs was observed. .
③肺胞腔容量維持作用 ③ Alveolar cavity volume maintenance
在胎期間 27日の兎未熟胎仔は肺サーファクタントを殆ど産生せず、 肺サーファクタント欠乏状態にあることから、 新生児呼吸窮迫症候群の モデル動物とされている。 A rabbit immature fetus with a gestation period of 27 days produces little pulmonary surfactant and is in a pulmonary surfactant-deficient state, and is therefore a model animal for neonatal respiratory distress syndrome.
この在胎期間 27曰の兎胎仔 5匹を用いて、 気道内圧の増減下におけ る肺胞腔容量 (以下、 肺容量という。 ) を 37°Cで測定した。 Using 5 rabbit fetuses with a gestation period of 27, the alveolar cavity volume (hereinafter, referred to as lung volume) was measured at 37 ° C under increasing and decreasing airway pressure.
測定は胎仔の頸部を切開し、 気管に接続させた水マノメーターを用い て、 本発明サ一ファクタントを経気道的に投与した 5分後から連続的に 行われた。 気管内圧を、 気管に接続させた 2チャンネル独立駆動シリ ン
ジポンプ N o. 9 40 (米国ハーバード社製) を用いて 30 cm水圧ま で加圧し、 肺胞を拡張した。 次いで、 気道内圧を 0 cm水圧まで減圧し 肺胞を収縮させ、 各水圧における肺容量を測定した。 肺容量は体重 1 k g あたりのミ リ リ ッ トル (m 1 Zk g) で表示した。 The measurement was continuously performed 5 minutes after the surfactant of the present invention was intratracheally administered using a water manometer connected to the trachea by incising the neck of the fetus. 2-channel independent drive cylinder with tracheal pressure connected to the trachea The pressure was increased to 30 cm water pressure using a dipump No. 940 (manufactured by Harvard, USA) to expand the alveoli. Next, the airway pressure was reduced to 0 cm water pressure, the alveoli were contracted, and the lung volume at each water pressure was measured. Lung volume was expressed in milliliters per kilogram of body weight (m1Zkg).
本発明サーファクタントの投与はその濃度が 1. 0〜6. 0 % (W/ The administration of the surfactant of the present invention has a concentration of 1.0 to 6.0% (W /
V) になるように調製した生理食塩水懸濁液 0. 0 5〜0. 5m lを気 道内に直接注入する方法で行った。 V) was performed by a method of injecting 0.05 to 0.5 ml of a physiological saline suspension prepared directly into the airway.
機能的残気量を示す減圧時の 5 c m水圧の肺容量が大きいほど肺サー ファクタント活性が高いことを意味する。 The greater the lung capacity at 5 cm water pressure during decompression, which indicates functional residual capacity, the higher the pulmonary surfactant activity.
対照として、 本発明サーファクタン ト懸濁液に代えて生理食塩水を投 した。 対照群では、 在胎期間 2 7曰の兎未熟胎仔の肺容量 (5 c m水 圧) は 1〜5m 1 /k gで、 肺胞が殆ど拡張していなかった。 As a control, physiological saline was injected instead of the surfactant suspension of the present invention. In the control group, the lung capacity (5 cm water pressure) of the immature rabbit at gestational age 27 was 1-5 m 1 / kg, and the alveoli were hardly expanded.
また、 正常レベルの肺サーファクタントを有する在胎 3 0曰の瀹期胎 仔は、 肺容量 (5 c m水圧) が 3 9〜53 m 1 / k gであり、 肺胞が十 分に拡張しており、 正常な呼吸を営むことが可能であることを示す。 一 S F - 3を投与した場合には、 未熟胎仔の肺容量 ( 5 c m水圧) が 1 5〜2 5m 1 /k g と肺胞の拡張が不十分であった。 Also, gestational age 30 fetuses with normal levels of pulmonary surfactant have a lung volume (5 cm water pressure) of 39-53 m 1 / kg and alveolar dilation. Shows that it is possible to breathe normally. When one SF-3 was administered, the lung volume (5 cm water pressure) of the immature fetus was 15 to 25 m 1 / kg and the alveolar expansion was insufficient.
本発明サーファクタントを投与した未熟胎仔の肺容量 (5 c m水圧) は 3 5〜53 m 1 Zk gを示し、 本発明サーファクタントが未熟胎仔の 肺容量を正常レベルまで改善することが認められた。 The lung capacity (5 cm water pressure) of the immature fetus to which the surfactant of the present invention was administered was 35 to 53 m 1 Zkg, indicating that the surfactant of the present invention improved the lung capacity of the immature fetus to a normal level.
以上のように、 本合成ペプチドは、 脂質混合物の表面活性を強力に賦 活する作用を有し、 本合成べプチドと脂質混合物からなる本発明サ一フ ァクタントは、 表面活性、 懸濁性及び薬理学的な性質から有効な呼吸窮 迫症候群治療剤であるといえる。 As described above, the present synthetic peptide has an action of strongly activating the surface activity of the lipid mixture, and the present surfactant comprising the present synthetic peptide and the lipid mixture exhibits surface activity, suspendability and Based on its pharmacological properties, it is an effective remedy for respiratory distress syndrome.
本発明により提供される呼吸窮迫症候群治療剤.は 1回投与量として、 小児用には、 5 0〜 1 0 0 0mg、 成人用には 5 0 0〜5 0 0 0mgの
本発明サーファクタントを含有する。 この用量を水、 生理食塩液又は生 理的に許容される緩衝液等に懸濁し、 濃度が 1. 0〜1 0. ひ% (WZ V) になるように調整し、 これを呼吸障害発現直後から 48時間に気道 内に 1〜1 0回注入又は噴霧することにより使用する。 そのほか、 懸濁 させることなく、 そのまま粉末剤として直接、 吸入させることもできる。 用量、 使用法及び回数は患者の症状及び併用療法に応じて適宜変更して も良い。 The remedy for respiratory distress syndrome provided by the present invention is a single dose of 50 to 100 mg for children and 500 to 500 mg for adults. Contains the surfactant of the present invention. This dose is suspended in water, physiological saline, or a physiologically acceptable buffer, and adjusted to a concentration of 1.0 to 10% by weight (WZV). Use by injecting or spraying 1 to 10 times into the respiratory tract 48 hours immediately after. In addition, they can be inhaled directly as powder without being suspended. Dosage, use and frequency may be adjusted as appropriate for the patient's condition and combination therapy.
本発明治療剤には必要に応じて安定剤、 保存剤、 等張化剤、 緩衝剤、 懸濁化剤等の医薬品添加物又は気管支拡張剤、 抗アレルギー剤、 制癌剤、 抗菌剤等の医薬品を含有させることができる。 The therapeutic agent of the present invention may contain, if necessary, pharmaceutical additives such as stabilizers, preservatives, isotonic agents, buffers, suspending agents, or pharmaceuticals such as bronchodilators, antiallergic agents, anticancer agents, and antibacterial agents. It can be contained.
剤型は液剤又は用時に懸濁して用いる粉末剤が適当である。 本発明治 療剤はバィァル瓶又はアンプル瓶等の密封容器内に充填され、 無菌製剤 として保存される。 The dosage form is suitably a liquid preparation or a powder preparation to be used in suspension at the time of use. The therapeutic agent of the present invention is filled in a sealed container such as a vial or ampoule and stored as a sterile preparation.
以下に、 本発明を実施例をもって説明する。 Hereinafter, the present invention will be described with reference to examples.
[ぺプチドの製造] [Production of peptides]
(実施例 1) (Example 1)
配列番号 1記載のペプチド (以下、 「ペプチド A」 という。 ) をァセ ルトン (E. Atherton) 及びシヱパード (R. C. Sheppard) 著 「ソリ ド フ ェイス ぺプナ卜 シン "インス. (Solid phase peptide synthesis - a practical approach ) 」 て p. 25〜 189, 1989, Oxford University Press, Oxford] 及び KenicM, Akagi et al. [Chem. Pharm. Bull. , 37 ( 1 0) , p. 2 66 1〜 2664 (1 9 89) ] に記載の方法を参考 に、 マルチべプチド固相合成システム 「コックさん」 (商品名 ;国産化 - 学株式会社製) により固相合成した。 The peptide described in SEQ ID NO: 1 (hereinafter, referred to as “peptide A”) was converted to “Solid phase peptide synthesis” by E. Atherton and RC Sheppard. a practical approach) ”p. 25-189, 1989, Oxford University Press, Oxford] and KenicM, Akagi et al. [Chem. Pharm. Bull., 37 (10), p. 9 89)], the solid phase was synthesized using a multi-peptide solid-phase synthesis system “Koksan” (trade name; manufactured by Kokusaikagaku Co., Ltd.).
初発の樹脂として、 N— α— 9一フルォレニルメチルォキシカルボ 二ルーロイシン (Fmo c - L e u ) を [4一 (ヒ ドロォキシメチル)
フエノキシメチルーコポリ (スチレン 1 %ジビニルベンゼン) ] 樹脂に 結合させた N— «— 9一フルォレニルメチルォキシカルボ二ルー口イシ ン— 0—樹脂 (Fmo c— L e u— 0—樹脂) 0. 2 0mmo lノ 0. 5 gを使用した。 その樹脂を N, N—ジメチルホルムアミ ド (DMF) で 2 0分間膨潤させた後、 DMFで 4回樹脂を洗浄した。 2 0 %ピペリ ジン一 DMF溶液を加え振盪し脱保護を行った。 この脱保護を完全に行 うためにこの操作を 3回繰り返した。 次いで、 樹脂中の過剰のピベリ ジ ンを除去するため DMFで 3回、 N—メチルー 2—ピロリ ドンで 3回、 更に、 DMFで 3回洗浄した。 この際、 ピぺリ ジンの有無の確認を p H 試験紙で行った。 ― As the first resin, N-α-9-fluorenylmethyloxycarbo-2-leucine (Fmoc-Leu) was added to [4-1 (hydroxymethyl) Phenoxymethyl-copoly (styrene 1% divinylbenzene)] N- «-9-Fluorenylmethyloxycarbocarbone-to-resin bonded to resin-0-Resin (Fmoc-Leu-0- Resin) 0.2 g of 0.5 mm was used. After swelling the resin with N, N-dimethylformamide (DMF) for 20 minutes, the resin was washed four times with DMF. A 20% piperidine-DMF solution was added and shaken to perform deprotection. This operation was repeated three times to completely perform this deprotection. Then, the resin was washed three times with DMF, three times with N-methyl-2-pyrrolidone, and three times with DMF to remove excess piberidine in the resin. At this time, the presence or absence of peridine was confirmed using pH test paper. ―
その後、 DMF 6m l、 Fmo c— L e u O. 5 mm o 1、 N—ヒ ド ロキシベンゾト リアゾール 0. 5 mm 0 1及び N, N ' —ジイソプロピ ルカルポジイ ミ ド 0. 5 mm 0 1を加え 9 0分間振盪し縮合反応を行つ た。 次いで、 DMFで 4回樹脂を洗浄し、 過剰の試薬を除去した。 この 縮合反応の確認は、 ニンヒ ドリ ン法によるカイザーテス トで行った。 Then add 9 ml of DMF, 5 mmo of Fmoc-Leu O.5 mmo1, 0.5 mm of N-hydroxybenzotriazole and 0.5 mm of N, N'-diisopropylcarboimide and add 90 mm of 90 The mixture was shaken for a minute to carry out a condensation reaction. The resin was then washed four times with DMF to remove excess reagent. Confirmation of this condensation reaction was performed by Kaiser test by the ninhydrin method.
このようにして合成計画に従い、 順次ァミ ノ酸を樹脂上で N末端方向 に延長し、 N末端及び官能基を完全に保護したぺプチドー 0—樹脂を合 成した。 、 なお、 A r g、 L y s、 H i s . P r o、 C y sの導入時の縮合反応 は、 1 2 0分で 2回行った。 その後、 保護したペプチ ド一 0—樹脂に 2 0 %ピペリ ジン一 DM F溶液 加え N末端の Fmo c保護基の脱保護 を行い、 このペプチド一 0—樹脂を DMFで 6回、 メタノールで 6回洗 浄し、 減圧乾燥した。 その乾燥したぺプチドー 0—樹脂 ( 1 0 Omg) に氷冷下で攪拌しながら、 m—クレゾール ( 0. 2m l ) 、 1 , 2—ェ タンジチオール (0. 5m 1 ) 、 チオア二ソール ( 1. 2m l ) 、 T FA (7. 5 m 1 ) 及びトリメチルシリルブロマイ ド ( 1. 4m l ) を加え
た後、 12ひ分間氷冷下で攪拌し、 官能性側鎖の脱保護とともにべプチ ドを樹脂から切り出し、 グラスフィルター (G3) で濾過した。 この濾 過波をエバポレイタ一により約 5 m 1にまで減圧濃縮し、 ジェチルェ一 テルを加えてぺプチドを沈殿させた。 このペプチド沈殿物をグラスフィ ルター (G3) で濾取し、 ジェチルエーテルで 5回洗浄した後、 減圧乾 燥して粗製のペプチド Aを 55 mg取得した。 Thus, according to the synthesis plan, the amino acid was sequentially extended in the N-terminal direction on the resin to synthesize a peptide 0-resin in which the N-terminal and the functional group were completely protected. The condensation reaction during the introduction of Arg, Lys, His. Pro, and Cys was performed twice in 120 minutes. Then, add 20% piperidine-DMF solution to the protected peptide-10-resin to deprotect the N-terminal Fmoc protecting group, and then treat the peptide10-resin 6 times with DMF and 6 times with methanol. It was washed and dried under reduced pressure. While stirring the dried peptide 0-resin (10 Omg) under ice cooling, m-cresol (0.2 ml), 1,2-ethanedithiol (0.5 ml), thioanisol ( 1.2 ml), TFA (7.5 ml) and trimethylsilyl bromide (1.4 ml). After that, the mixture was stirred for 12 minutes under ice-cooling, and the peptide was cut out from the resin together with the deprotection of the functional side chain, and filtered with a glass filter (G3). The filtrate was concentrated under reduced pressure to about 5 ml with an evaporator, and a peptide was precipitated by adding getyl ether. The peptide precipitate was collected by filtration with a glass filter (G3), washed five times with getyl ether, and dried under reduced pressure to obtain 55 mg of crude peptide A.
なお、 すべてのアミノ酸の N末端のアミノ基は、 Fmo c基で保護し、 官能性側鎖を以下の基により保護した。 The amino group at the N-terminus of all amino acids was protected with an Fmoc group, and the functional side chains were protected with the following groups.
A r g--M t r ; (4ーメトキシー 2、 3、 6—トリメチルベンゼ ンスルホニル) . A rg--M tr; (4-methoxy-2,3,6-trimethylbenzenesulfonyl).
L y s - B o c ; ( t—ブチルォキシカルボ二ル) . Lys-Boc; (t-butyloxycarbonyl).
C y s -T r t ; (トリチル) . Cys-Trt; (trityl).
H I s -T r t ; (トリチル) . H I s -T r t; (trityl).
この粗製ペプチド約 7 mgを 0. 6m 1の TF Aに溶解した。 さらに、 同溶液にクロ口ホルム—メタノール (CZM) [2 : 1, (VXV) ] を添加し、 最終的に 3. 0 mlとした。 同試料を CZM混合溶媒 [2 : 1, (VZV) ] で平衡化したセフアデクス LH— 60カラム (ø 2. 5 cmX 90 cm) により精製し、 ぺプチド Aを採取した。 About 7 mg of this crude peptide was dissolved in 0.6 ml of TFA. Further, formaldehyde-methanol (CZM) [2: 1, (VXV)] was added to the solution to make a final volume of 3.0 ml. The sample was purified on a Sephadex LH-60 column (ø2.5 cm x 90 cm) equilibrated with a CZM mixed solvent [2: 1, (VZV)], and peptide A was collected.
溶出液 Φのべプチドの存在は、 245 nm (分光光度計; 日本分光株 式会社モデル 870 -UV) 及び示差屈折計 (島津製作所株式会社; モ デル R I D— 6 A) でモニターした。 The presence of the peptide in the eluate Φ was monitored by 245 nm (spectrophotometer; Model 870-UV of JASCO Corporation) and a differential refractometer (Shimadzu Corporation; Model R ID-6A).
(実施例 2) (Example 2)
配列番号 2記載のペプチド (ペプチド B) を「ザ ·ペプチド (The Peptides) 〔グロス (Gross, E.) 及びマイネンホーフ (Meinenhofe, J.) 編、 バラ ニー (Barany, G. ) 及びメリフィールド (Merrif ierd, R) 著、 第 2卷第 1〜 284頁、 アカデミ ックプレス、 ニューヨーク、 1980年) 〕 」
に記載の方法に従い、 固相合成法によりフユニルァセトアミ ドメチル (PAM) 樹脂上で合成した。 The peptide described in SEQ ID NO: 2 (peptide B) was referred to as “The Peptides [Gross, E.) and Meinenhofe (J.), Barany, G. and Merrif (Merrif). ierd, R), Vol. 2, pp. 1-284, Academic Press, New York, 1980)]] According to the method described in (1), synthesis was carried out on a solid-phase synthesis method on fuyunyl acetamidomethyl (PAM) resin.
C末端ァミ ノ酸残基のロイシンを t一ブチルォキシカルボ二ルー口ィ シン (B o c— L e u) とし、 ォキシメチルフヱニルァセ トアミ ド結合 を介して P AM樹脂に結合させた。 C末端結合後 B 0 c— L e u— P AM 樹脂 (0. 7 0mo l /g、 0. 3 5 g) をべプチド合成装置 (モデ ル 9 9 0 E、 べックマン社製) の反応容器に移した。 保護処理を施した ァミ ノ酸を予め形成した対称無水物法により樹脂上で N末端方向に延長 し、 完全に保護したペプチド一 0—樹脂を合成した。 但し、 アルギニン の縮合に際しては、 N, N—ジシクロへキシルカルポジイ ミ ド (DC C) /ヒ ドロキシベンゾトリアゾール [コニー等、 Chem. Ber., 1 03, 788 - 7 9 8 ( 1 9 7 0) ] を用いてダブル力ップリ ングした。 、 なお、 すべてのアミノ酸の N末端のアミノ基は、 B o c 基で保護し、 官能性側鎖を以下の基により保護した。 The leucine at the C-terminal amino acid residue is designated as t-butyloxycarboxy-l-isocyanate (Boc-Leu), which is bound to the PAM resin via an oxymethylphenylacetamide bond. I let it. After binding the C-terminal, B 0 c—L eu—PAM resin (0.70 mol / g, 0.35 g) is used as a reaction vessel in a peptide synthesizer (Model 990E, manufactured by Beckman). Moved to The protected amino acid was extended in the N-terminal direction on the resin by a preformed symmetric anhydride method to synthesize a completely protected peptide 10-resin. However, when condensing arginine, N, N-dicyclohexylcarpoimide (DCC) / hydroxybenzotriazole [Kony et al., Chem. Ber., 103, 788-798 (1970) ] To double force. The amino group at the N-terminus of all amino acids was protected with a Boc group, and the functional side chains were protected with the following groups.
A r g - T o s ; (トシル) . A r g -T os; (tosyl).
L y s— 2 C L Z ; ( 2—クロ口べンジルォキシカルボ二ル) . L y s— 2 C L Z; (2-chloro benzyloxycarbonyl).
C y s - 4M e B z l ; (4ーメチルベンジル) . Cys-4MeBzl; (4-methylbenzyl).
H i s - T 0 s ; (トシル) . H s -T 0 s; (Tosyl).
この縮合反応の確認はニン七 ドリ ン法によるカイザーテス 卜で行つ た。 Confirmation of this condensation reaction was carried out by Kaiser test by the Ninh Ndolin method.
完全に保護したぺプチ ドー 0—樹脂 ( 1 5 5mg) を塩化メチレン中 で 5分間膨潤させた。 N— a— B 0 c保護基を 1 % (v/v) イン ドー ル及び 0. 1 % (v/v) エタンジチオールを含有する T F Aを用いて 脱保護した。 次いで、 この脱保護したペプチ ド— 0—樹脂を、 p—ク レ ゾール (1ml) 、 p、ーチォクレゾール (0. 2 g) 及び DM SO ( Lm 1 ) を添加した無水フッ化水素 (H F) ( 1 1 m 1 ) で、 0°Cにて 6 0分間
処理し、 ペプチドを樹脂から切り出した。 The completely protected peptide 0—resin (155 mg) was swollen in methylene chloride for 5 minutes. The N—a—B0c protecting group was deprotected using TFA containing 1% (v / v) indole and 0.1% (v / v) ethanedithiol. The deprotected peptide-0-resin was then treated with p-cresol (1 ml), p-thiocresol (0.2 g) and DMSO (Lm1) in anhydrous hydrogen fluoride (HF) ( 1 1 m 1) at 0 ° C for 60 minutes Upon treatment, the peptide was excised from the resin.
HF及び DMS 0を真空下、 0°Cにて留去した。 この切り出したぺプ チド及び樹脂を 1 5m lの冷ジェチルエーテルで 3回洗浄し、 次いで遊 離のぺプチドを冷 T F Aの 1 0 m 1洗浄液で 3回洗浄することにより抽 出した。 この抽出液を直ちに濾過し、 氷冷水 ( 12 Om 1〜 150 m 1 ) に加えて粗製のペプチド Bを沈澱させた。 次いで、 この粗製のペプチド Bを 1 000 X g, 0°Cにて 30分間遠心分離し沈澱物として回収した。 この沈澱物をジェチルエーテル (1 5ml ) で洗浄した。 この洗浄工程 を、 更にジェチルエーテル、 酢酸ェチル、 蒸留水を用いて繰り返し行い ペプチド Bを 83 mg得た。 HF and DMS 0 were distilled off at 0 ° C. under vacuum. The cut out peptide and resin were washed three times with 15 ml of cold getyl ether, and then the free peptide was extracted by washing three times with 10 ml of cold TFA washing solution. The extract was filtered immediately and added to ice-cold water (12 Om1-150 ml) to precipitate crude peptide B. Then, the crude peptide B was centrifuged at 1,000 X g, 0 ° C for 30 minutes and collected as a precipitate. The precipitate was washed with getyl ether (15 ml). This washing step was further repeated using getyl ether, ethyl acetate and distilled water to obtain 83 mg of peptide B.
得られたぺプチド Bを 50 %DMSひ水溶液に溶解し、 //—ボンダス フェアー、 C 8— 300カラムにょる逆栢系高速液体クロマトグラフィー で精製した。 The obtained peptide B was dissolved in a 50% aqueous solution of DMS and purified by high-performance liquid chromatography using a Bondasphere and C8-300 column.
溶離液としては、 ひ. 1 %T F Aを含む 5 0 %ァセトニトリル水溶液 を用い 5分間溶出した。 次いで、 同溶離液と 0. 1 %TFAを含む 8 0 %ァセトニトリル水溶液による直線的な濃度勾配により 3 0分間溶出し 溶出液中のぺプチドの存在は、 245 nm (分光光度計; 日本分光株 式会社モデル 87 0— UV) および示差屈折計 (島津製作所株式会社モ デル R I D— 6 A) でモニターした。 As an eluent, a 50% aqueous solution of acetonitrile containing 1% TFA was used for elution for 5 minutes. The eluate was then eluted with a linear concentration gradient of 80% acetonitrile aqueous solution containing 0.1% TFA for 30 minutes. The presence of the peptide in the eluate was determined at 245 nm (spectrophotometer; JASCO Corporation). It was monitored with a model company model 870-UV) and a differential refractometer (Shimadzu Corporation Model RID-6A).
(実施例 3) (Example 3)
配列番号 3のペプチド (ペプチド C) を (実施例 1 ) と同様の方法で 調製した。 The peptide of SEQ ID NO: 3 (peptide C) was prepared in the same manner as in (Example 1).
- (実施例 4) -(Example 4)
配列番号 4のペプチド (ペプチド D) を (実施例 1) と同様の方法で 調製した。
(実施例 5 ) The peptide of SEQ ID NO: 4 (peptide D) was prepared in the same manner as in (Example 1). (Example 5)
配列番号 5のペプチド (ペプチド E) を (実施例 1) と同様の方法で 調製した。 The peptide of SEQ ID NO: 5 (peptide E) was prepared in the same manner as in (Example 1).
(実施例 6) (Example 6)
配列番号 6のペプチド (ペプチド F) を (実施例 1) と同様の方法で 調製した。 The peptide of SEQ ID NO: 6 (peptide F) was prepared in the same manner as in (Example 1).
(実施例 7) (Example 7)
配列番号 7のペプチド (ペプチド G) を (実施例 1 ) と同様の方法で 調製した。 The peptide of SEQ ID NO: 7 (peptide G) was prepared in the same manner as in (Example 1).
(実施例 8) (Example 8)
配列番号 8のペプチド (ペプチド H) を (実施例 1) と同様の方法で 調製した。 The peptide of SEQ ID NO: 8 (peptide H) was prepared in the same manner as in (Example 1).
(実施例 9) (Example 9)
配列番号 9のペプチド (ペプチド I) を (実施例 1) と同様の方法で 調製した。 The peptide of SEQ ID NO: 9 (peptide I) was prepared in the same manner as in (Example 1).
(実施例 1 0) (Example 10)
配列番号 1 0のべプチド (ぺプチド J ) を (実施例 1 ) と同様の方法 で調製した。 The peptide of SEQ ID NO: 10 (peptide J) was prepared in the same manner as in (Example 1).
[ぺプチドのァミノ酸組成] [Amino acid composition of peptide]
本発明合成べプチドを 5% ( v/v) フニノールを含む 1 2規定塩酸 ZT F A 〔2 : 1 (V/V) 〕 で、 真空下、 1 50 °Cにて 2、 4、 6、 1 2、 24、 48及び 72時間酸加水分解し、 酸を除いた後に、 加水分 解生成物を島津アミノ酸自動分析システム (LC一 9A) により分析し た。 2〜72時間加水分解において、 より高い回収率を示したアミノ酸 値を採用し、 アミノ酸組成値を算出した。 The synthetic peptide of the present invention was prepared using 1,2N hydrochloric acid ZTFA [2: 1 (V / V)] containing 5% (v / v) funinol under vacuum at 150 ° C for 2, 4, 6, 1 After acid hydrolysis for 2, 24, 48 and 72 hours to remove the acid, the hydrolyzed products were analyzed by Shimadzu Amino Acid Automatic Analysis System (LC-19A). In the hydrolysis for 2 to 72 hours, the amino acid value showing higher recovery was adopted, and the amino acid composition value was calculated.
[ぺプチドの分子量]
本発明合成ペプチドの分子量を高速原子衝撃法 (FABMS) により 測定した。 質量分析計には、 JMS— S 1 0 2 A型 (日本電子株式会社' 製) を使用し、 イオン源はセシウムガン (1 0 K e V) を用いた。 [Molecular weight of peptide] The molecular weight of the synthetic peptide of the present invention was measured by the fast atom bombardment method (FABMS). A JMS-S102A type (manufactured by JEOL Ltd.) was used as a mass spectrometer, and a cesium gun (10 KeV) was used as an ion source.
得られたペプチドのアミノ酸組成及び質量分折の結果を 〔表 1〕 に示 す。
The results of amino acid composition and mass analysis of the obtained peptide are shown in [Table 1].
表 1 本発明合成べプチドのァミノ酸組成値及び分子量 Table 1 Amino acid composition value and molecular weight of the synthetic peptide of the present invention
(表中の値は、 Gly を 1. 0とした時の各アミノ酸組成値を示す。 )
〔本発明サーファクタントの製造〕 (The values in the table indicate the amino acid composition values when Gly is set to 1.0.) (Production of the surfactant of the present invention)
本発明サーファクタントを、 本合成ペプチドと脂質成分として 1 , 2 —ジパルミ トイルグリセロー (3) —ホスホコリ ン、 1, 2—ジァシル 一 s n—グリセ口— ( 3 ) —ホスホー s n—グリセロ一ル及びパルミチ ン酸の 3成分とを、 混合して調製した。 The surfactant of the present invention is prepared by using the synthetic peptide and 1,2-dipalmitoylglycerol (3) -phosphocholine, 1,2-diasyl-sn-glycerol- (3) -phospho-sn-glycerol and palmitic acid as lipid components. The three components of the acid were prepared by mixing.
(実施例 1 1) (Example 11)
無菌処理したし 2—ジバルミ トイルグリセロー ( 3 ) —ホスホコリ ン 6 6 0 m g、 I , 2—ジァシル一 s II—グリセロー ( 3 ) —ホスホー s n—グリセロール (ァシル基の炭素数 14〜 24個:シグマ社製) 22 Orag 及びバルミチン酸 l O Omgを常温でク口口ホルム一メタノール混合液 、〔2 : 1 (VZV) 〕 1 0 00 Hi Iに溶解し、 ペプチド Aの 1 2mgを TFAO. 5mlに溶解した。 これらの溶液を混合し、 減圧乾固した。 得られた残留物を 40°Cで I 5分間かけて水一エタノール混合液 〔9 : 1 (V V) ] 1 0 0m lに懸濁した。 この懸濁液を一 5 0。Cで凍結さ せて真空度 8 5〜1 0 0 iH gで 3 6時間乾燥し、 サーファクタント ¾ 22 m gを白色粉末として得た。 Aseptically treated 2-divalmitoyl glycerol (3) -phosphocholine 660 mg, I, 2-diacyl s II-glycerol (3) -phospho sn-glycerol (14 to 24 carbon atoms in the acyl group: Sigma) 22 Orag and l-Omg of balmitic acid are dissolved at room temperature in a mixed solution of form-methanol in mouth and [2: 1 (VZV)] 100 Hi I, and 12 mg of peptide A is dissolved in 5 ml of TFAO. Was dissolved. These solutions were mixed and evaporated to dryness under reduced pressure. The obtained residue was suspended in 100 ml of a mixed solution of water and ethanol [9: 1 (VV)] at 40 ° C. for 5 minutes. This suspension was added for 150. The mixture was frozen with C and dried at a vacuum of 85 to 100 iHg for 36 hours to obtain Surfactant ¾22 mg as a white powder.
この粉末中にエタノールの残存は認められず、 サーファクタン卜の総 重量に対する各成分の含量は、 1, 2—ジパルミ トイルグリセロー (3) 一ホスホコリ ンは 6 4. 6 % (w/w) . 1, 2—ジァシルー s n—グ リセロー (3) —ホスホー s n—グリセロールは 2 1. 5% (w/w) 、 及びパルミチン酸は 9. 8 % ( /w) 、 ペプチド Aは 1. 2 % (w/ w) 及び水 2. 9 % ( /w) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of the surfactant was 64.6% (w / w) for 1,2-dipalmitoylglycerol (3) -phosphocorrin. 1,2-diacyl-sn-glycerol (3) -phospho-sn-glycerol is 21.5% (w / w), palmitic acid is 9.8% (/ w), peptide A is 1.2% (w / w) w / w) and water 2.9% (/ w).
得られたサーファクタントの各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表面張力 ; 3 2. 8 dyn e/cm Maximum surface tension: 32.8 dyn e / cm
最小表面張力 ; 2. 2 d y n e/cm
気液界面拡散作用 : Minimum surface tension: 2.2 dyne / cm Gas-liquid interface diffusion:
到達時間 ; 40秒 、 平衡表面張力 ; 29. 8 d y n e/ c m 気液面吸着作用 : Arrival time: 40 seconds, equilibrium surface tension: 29.8 dyne / cm
到達時間 ; 6 0秒 、 平衡表面張力 ; 3 1. 9 d y n eZc m 肺胞腔容量維持作用 : Arrival time: 60 seconds, equilibrium surface tension: 31.9 dyne eZcm Alveolar cavity volume maintenance action:
肺容量 ( 5 c m水圧) ; 5 1 m 1 /k g Lung capacity (5 cm water pressure); 51 m1 / kg
(実施例 1 2) (Example 1 2)
1 , 2—ジパルミ トイルグリセ口— ( 3 ) —ホスホコリン 204 m g、 1 , 2—ジァシルー s η—グリセロー ( 3 ) —ホスホー s η—グリセロー ル (ァシル基の炭素数 1 4〜 2 4個 : シグマ社製) 6 3. Omg及びパ ルミチン酸 27. Omgをクロ口ホルム—メタノール混合液 〔2 : 1 (V /V) ) 30 Om 1に溶解し、 ペプチド Bの 2. 8mgを TFAO. 3m l に溶解した。 これらの溶液を混合し、 減圧乾固した。 得られた残留物を 45 °Cで 20分間かけて水一エタノール混合液 〔9 : 1 (V/V) 〕 100ml に懸濁した。 この懸濁液を— 6 0 °Cで凍結させて真空度 6 0〜 1 1 0〃 H gで 4 0時間乾燥し、 白色粉末のサーファクタントを 3 0 1. 9 m g 得た。 1,2-Dipalmitoyl glycerol— (3) —Phosphocholine 204 mg, 1,2-Diacyl-s η-glycerol (3) —Phosphos η-glycerol (Chain 14 to 24 carbon atoms: Sigma) 6 3. Omg and palmitic acid 27. Omg was dissolved in a mixture of form-methanol (2: 1 (V / V)) 30 Om1 and 2.8 mg of peptide B was added to 3 ml of TFAO. Dissolved. These solutions were mixed and evaporated to dryness under reduced pressure. The obtained residue was suspended in 100 ml of a water-ethanol mixture [9: 1 (V / V)] at 45 ° C for 20 minutes. The suspension was frozen at −60 ° C. and dried at a vacuum of 60 to 110 ° Hg for 40 hours to obtain 301.9 mg of a white powdered surfactant.
この粉末中にエタノールの残存は認められず、 サーファクタン 卜の総 重量に対する各成分の含量は、 1 , 2—ジパルミ トイルグリセ口— (3) —ホスホコリ ンは 6 7. 6 % (w/w) 、 1 , 2—ジァシルー s n—グ リセロー (3) -ホスホー s n—グリセロールは 20. 9 % (w/w) 、 及びパルミチン酸は 8. 9 % (w/w) 、 ペプチ ド Bは 0. 9 % (w/ w) 及び水 1. 7 % (w/w) であった。 No ethanol remained in the powder, and the content of each component relative to the total weight of the surfactant was 1,7.6-dipalmitoylglycerol- (3) -phosphocorrin was 67.6% (w / w). 1,2-Diacyl-sn-glycerol (3) -phospho-sn-glycerol 20.9% (w / w), palmitic acid 8.9% (w / w), peptide B 0.9% (w / w) and water 1.7% (w / w).
得られたサーファクタン卜の各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表面張力 ; 3 4. 5 d y n e/cm
最小表面張力; 6. 7 d y n e / cm Maximum surface tension: 34.5 dyne / cm Minimum surface tension; 6.7 dyne / cm
気液界面拡散作用 : Gas-liquid interface diffusion:
到達時間; 6 0秒 平衡表面張力 ; 3 1. 2 d yn e/cm 気液面吸着作用 : Arrival time: 60 seconds Equilibrium surface tension: 31.2 dyne / cm Gas-liquid surface adsorption:
到達時間; 1 20秒 平衡表面張力; 34. 7 d y n e / c m 肺胞腔容量維持作用: Arrival time: 1 20 seconds Equilibrium surface tension; 34.7 dyne / cm alveolar volume maintenance:
肺容量 (5 cm水圧) 49 m 1 / k g- (実施例 1 3) Lung capacity (5 cm water pressure) 49 m 1 / kg- (Example 13)
ペプチド Bの代わりにペプチド Cを用いた以外は (実施例 1 2) と同 様にしてサーファクタントを製造した。 A surfactant was produced in the same manner as in (Example 12) except that peptide C was used instead of peptide B.
この粉末中にエタノールの残存は認められず、 サーファタタントの総 重量に対する各成分の含量は、 lr 2—ジパルミ トイルグリセロー (3) 一ホスホコリ ンは 6 7. 0 % (w/w) , 1, 2—ジァシルー s n—グ リセロー (3) —ホスホ— s n—グリセロールは 20. 7 % (w/w) 、 及びパルミチン酸は 8. 9 % (wZw) 、 ペプチド Cは 0. 9 % (w/ w) 及び水 2. 5 % iw/w) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of surfatatant was as follows: l r 2-dipalmitoyl glycerol (3) 67.0% (w / w) , 1,2-diacyl-sn-glycerol (3) -phospho-sn-glycerol is 20.7% (w / w), palmitic acid is 8.9% (wZw), and peptide C is 0.9% (w / w) w / w) and water 2.5% iw / w).
得られたサーファクタントの各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表面張力; 29. 7 d yn e/cm Maximum surface tension; 29.7 dyn e / cm
最小表面張力 ; 2. 3 d yn e/ cm Minimum surface tension; 2.3 dyn e / cm
気液界面拡散作用: Gas-liquid interface diffusion:
到達時間; 3 0秒 平衡表面張力 ; 27. 9 d yn e/cm 気波面吸着作用 : Arrival time: 30 seconds Equilibrium surface tension: 27.9 dyne / cm Air wave surface adsorption:
到達時間; 3 0秒 平銜表面張力; 2 &. l dyn eZcm 肺胞腔容量維持作用 : Arrival time: 30 seconds Flat mouth surface tension; 2 &. L dyn eZcm Alveolar cavity volume maintenance action:
肺容量 ( 5 c m水圧) 5 3 m 1 /k g-
(実施例 1 4 ) Lung capacity (5 cm water pressure) 53 m1 / kg- (Example 14)
ペプチド Bの代わりにペプチド Dを用いた以外は (実施例 1 2 ) と同 様にしてサーファクタン トを製造した。 Surfactants were produced in the same manner as in (Example 12) except that peptide D was used instead of peptide B.
この粉末中にエタノールの残存は認められず、 サーファクタン トの総 重量に対する各成分の含量は、 1 , 2—ジパルミ トイルグリセロー (3 ) —ホスホコリ ンは 6 8. 5 % (w/w) 、 1 , 2 —ジァシルー s n—グ リセロー (3) —ホスホー s n—グリセロールは 2 1. 2 % (w/w) 、 及びパルミチン酸は 9. 1 % (w/w) 、 ペプチド Dは 0. 9 % (w/ w) 及び水 0 · 3 % (w/w) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of the surfactant was 1,8.5-dipalmitoylglycerol (3) -phosphocorrin was 68.5% (w / w). 1,2—diacyl sn—glycerol (3) —phospho sn—glycerol 21.2% (w / w), palmitic acid 9.1% (w / w), peptide D 0.9% (w / w) and water 0.3% (w / w).
得られたサーファクタントの各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表面張力 ; 3 0. 8 d y n e / c m Maximum surface tension: 30.8 dyne / cm
最小表面張力 ; 5. 4 d y n e / c m Minimum surface tension; 5.4 dyne / cm
気液界面拡散作用 : Gas-liquid interface diffusion:
到達時間: 4 5秒 平衡表面張力 ; 2 8. 3 d v n e / c m 気液面吸着作用 : Arrival time: 45 seconds Equilibrium surface tension; 28.3 dvn / cm Gas / liquid surface adsorption:
到達時間 ; 4 0秒 平衡表面張力 ; 3 0. 7 d y n e / c m 肺胞腔容量維持作用 : Arrival time: 40 seconds Equilibrium surface tension: 30.7 dyne / cm alveolar cavity volume maintenance action:
肺容量 (5 c m水圧) 4 9 m 1 / k g Lung capacity (5 cm water pressure) 49 m1 / kg
(実施例 1 5 ) (Example 15)
ペプチド Bの代わりにペプチド Eを用いた以外は (実施例 1 2 ) と同 様にしてサーファクタントを製造した。 A surfactant was produced in the same manner as in (Example 12) except that peptide E was used instead of peptide B.
この粉末中にエタノールの残存は認められず、 サーファクタン トの総 重量に対する各成分の含量は、 1 , 2—ジパルミ トイルグリセロー (3) —ホスホコリ ンは 6 7. 8 % (w/w) , 1 , 2 —ジァシルー s n—グ リセ口— (3 ) —ホスホー s n—グリセロールは 2 0. 9 % (w/w) 、
及びパルミチン酸は 9. 0 % (w/w) 、 ペプチド Eは 0. 9 % ( / ) 及び水 1. 4 % (w/w) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of the surfactant was 1,2-dipalmitoylglycerol (3) -phosphocorrin was 67.8% (w / w), 1, 2-diacyl- sn-grease mouth-(3)-phospho- sn-glycerol is 20.9% (w / w), And palmitic acid were 9.0% (w / w), peptide E was 0.9% (/) and water was 1.4% (w / w).
得られたサーファクタントの各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表面張力 ; 3 0. 3 d y n e / c m Maximum surface tension; 30.3 dyne / cm
最小表面張力 ; 1. d yn eX c m Minimum surface tension; 1. dyn eX cm
気液界面拡散作用: Gas-liquid interface diffusion:
到達時間; 6 0秒 平衡表面張力 ; 2 9. 8 d y n e / c m 気液面吸着作甩: Arrival time: 60 seconds Equilibrium surface tension: 29.8 dyne / cm
到達時間; 9 0秒 平衡表面張力; 3 2 d y n e / c m 肺胞腔容量維持作用 : Arrival time; 90 seconds Equilibrium surface tension; 32 dyne / cm alveolar volume maintenance:
肺容量 (5 cm水圧) 4 7 m 1 /k g Lung capacity (5 cm water pressure) 4 7 m 1 / kg
(実施例 1 6 ) (Example 16)
ペプチド Bの代わりにペプチド Fを用いた以外は (実施例 1 2) と同 様にしてサーファクタントを製造した。 Surfactants were produced in the same manner as in (Example 12) except that peptide F was used instead of peptide B.
この粉末中にエタノールの残存は認められず、 サーファクタン卜の総 重量に対する各成分の含量は、 1, 2—ジパルミ トイルグリセロー (3) —ホスホコリンは 6 8. 5 % (w w) . 1 , 2 —ジァシル一 s n—グ リセロー (3) —ホスホー s n—グリセロールは 2 1 · 1 % (w/w) 、 及びバルミチン酸は 9. 1 % (w/w) 、 ペプチド Fは 0. 9 % ( / w) 及び水 0. 4 % (wZw) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of the surfactant was 1,2-dipalmitoylglycerol (3) -phosphocholine was 68.5% (ww) .1,2. —Diacyl mono sn—Glycerol (3) —Phospho sn—Glycerol is 21.1% (w / w), and Balmitic acid is 9.1% (w / w), peptide F is 0.9% (/ w) and water was 0.4% (wZw).
得られたサーファクタントの各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表面張力; 3 4. 1 d yn e / cm Maximum surface tension; 34.1 dyn e / cm
最小表面張ガ; 8. 9 d y n e / c m 一 気液界面拡散作用 :
到達時間 ; 6 5秒 、 平衡表面張力 ; 3 4. 8 d y n e / c m 気液面吸着作用 : Minimum surface tension: 8.9 dyne / cm diffusion at gas-liquid interface: Arrival time: 65 seconds, equilibrium surface tension: 34.8 dyne / cm Gas-liquid adsorption:
到達時間 ; 1 1 5秒 、 平衡表面張力 ; 3 9. 5 d y n e /c m 肺胞腔容量維持作用 : Arrival time: 115 seconds, equilibrium surface tension; 39.5 dyne / cm alveolar cavity volume maintenance action:
肺容量 (5 cm水圧) ; 3 9 m l /k g Lung volume (5 cm water pressure); 39 ml / kg
(実施例 1 7) (Example 17)
1 , 2—ジパルミ トイルグリセ口— ( 3 ) —ホスホコリ ン 2 1 0 m g、 1 , 2—ジァシルー s η—グリセロー ( 3 ) —ホスホー s η—グリセ口一 ル (ァシル基の炭素数 1 4〜 2 4個 : シグマ社製) 9 0. Omg及びパ ルミチン酸 33. Omgをクロ口ホルム—メタノール混合液 〔3 : 1 (V /V) ] 40 Om 1に溶解し、 ペプチド Dの 3. Omgを TFAO. 5m l に溶解した。 これらの溶液を混合し、 減圧乾固した。 得られた残留物を 50°Cで 15分間かけて水一エタノール混合液 〔9 : 1 (V/V) 〕 120ml に懸濁した。 この懸濁液を一 6 OeCで凍結させて真空度 5 0〜 1 0 0 H gで 2 8時間乾燥し、 白色粉末のサーファクタン トを 3 3 7. 9 m g た。 1,2-dipalmitoyl glycerol— (3) —phosphocholin 210 mg, 1,2-diacyl-sη-glycerol (3) —phospho-sη—glyceric ester (carbon number of the acyl group: 14 to 2 90 mg of Omg and 33.Omg of palmitic acid were dissolved in a mixture of form-methanol [3: 1 (V / V)] 40 Om1 and 3.Omg of peptide D was dissolved. Dissolved in 5 ml of TFAO. These solutions were mixed and evaporated to dryness under reduced pressure. The obtained residue was suspended in 120 ml of a water-ethanol mixture [9: 1 (V / V)] at 50 ° C for 15 minutes. This suspension was frozen in one 6 O e C was dried 2 8 hours at a vacuum degree 5 0~ 1 0 0 H g, was 3 3 7. 9 mg of Safakutan bets white powder.
この粉末中にエタノールの残存は認められず、 サーファクタン トの総 ― 重量に対する各成分の含量は、 1, 2—ジパルミ トイルグリセロー (3) —ホスホコリ ンは 6 2. 1 % (w/w) 、 1, 2—ジァシル— s n—グ リセロー (3) —ホスホー s n—グリセロールは 26. 6 % (w/w) 、 及びパルミチン酸は 9. 8 % (w/w) 、 ペプチ ド Gは 0. 9 % (w/ w) 及び水 0. 6 % (w/w) であった。 No ethanol remained in this powder, and the content of each component relative to the total-weight of the surfactant was 1,2-dipalmitoylglycerol (3)-62.1% (w / w) of phosphocorrin , 1,2-diacyl-sn-glycerol (3) -phospho-sn-glycerol is 26.6% (w / w), palmitic acid is 9.8% (w / w), and peptide G is 0. 9% (w / w) and water 0.6% (w / w).
得られたサーファクタン 卜の各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表面張力 ; 2 9. 6 d y n eZcm ― 最小表面張力 ; 1. 8 d y n e /c m
気液界面拡散作用 : Maximum surface tension: 29.6 dyn eZcm-Minimum surface tension: 1.8 dyne / cm Gas-liquid interface diffusion:
到達時間; 45秒 平衡表面張力; 29. 1 d y n e/cm 気液面吸着作用 : Arrival time: 45 seconds Equilibrium surface tension: 29.1 dyne / cm Gas-liquid surface adsorption:
到達時間; 80秒 平街表面張力 ; 3 2. 3 d y n e c m 肺胞腔容量維持作用: Arrival time: 80 seconds Flat street surface tension: 3 2.3 dynec m Alveolar cavity volume maintenance action:
肺容量 (5 cm水圧) 48 m I / k g Lung capacity (5 cm water pressure) 48 m I / kg
(実施例 1 8) (Example 18)
ペプチド Gの代わりにペプチド Hを用いた以外は (実施例 1 7) と同 様にしてサーファクタントを製造した。 A surfactant was produced in the same manner as in (Example 17) except that peptide H was used instead of peptide G.
この粉末中にエタノールの残存は認められず、 サーファタタントの総 重量に対する各成分の含量は、 1, 2—ジパルミ トイルグリセ口— (3) 一ホスホコリンは 6 1. 9 % ( /w) 、 1 , 2—ジァシルー s n—グ リセロー ( 3 ) —ホスホ— s n—グリセ口ールは 26. 5 % (w/w) 、 及びパルミチン酸は 9. 7 % Cw/w) 、 ペプチド Hは 0. 9 % (w/ w) 及び水 0. 9 % (w/w) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of the surfatatant was 1,2-dipalmitoylglycerol— (3) 1-phosphocholine was 61.9% (/ w), 1 , 2-diacyl-sn-glycerol (3)-phospho-sn-glycerol 26.5% (w / w), palmitic acid 9.7% Cw / w), peptide H 0.9. % (w / w) and water 0.9% (w / w).
得られたサーファクタントの各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用: Surface tension lowering effect:
最大表 ¾張力 3 2. 4 d yn e/ cm Maximum table ¾ tension 3 2.4 dyn e / cm
最小表面張力 1. 3 d y n e / cm Minimum surface tension 1.3 dyne / cm
気液界面拡散作甩 Gas-liquid interface diffusion
到達時間: 6 秒 平衡表面張力 ; 33. 1 d yn e/ cm 気液面吸着作用: Arrival time: 6 seconds Equilibrium surface tension; 33.1 dyne / cm Gas-liquid surface adsorption:
到達時間; 9 0秒 平衡表面張力; 34. 6 d y n e X c m 肺胞腔容量維持作用: Arrival time: 90 seconds Equilibrium surface tension: 34.6 dyne xcm Alveolar cavity volume maintenance:
肺容量 ( 5 c m水圧) 4 1 ni 1 / k g Lung capacity (5 cm water pressure) 41 ni1 / kg
(実施例 1 9 )
ぺプチド Gの代わりにべプチド I を用いた以外は (実施例 1 7 ) と同 様にしてサーファクタントを製造した。 (Example 19) Surfactant was produced in the same manner as in (Example 17) except that peptide I was used instead of peptide G.
この粉末中にエタノールの残存は認められず、 サーファクタン トの総 重量に対する各成分の含量は、 1, 2—ジパルミ トイルグリセロー (3 ) —ホスホコリ ンは 6 1 . 6 % (w/w) . 1 , 2 —ジァシルー s n—グ リセロー (3) —ホスホ— s n—グリセロールは 2 6. 4 % (w/w) 、 及びパルミチン酸は 9. 7 %ズ w/w) 、 ペプチド I は 0. 9 % (wZ w) 及び水 1. 4 % (w/w) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of the surfactant was 61.6% (w / w) for 1,2-dipalmitoylglycerol (3) -phosphocholine. 1, 2-diacyl-sn-glycerol (3)-phospho-sn-glycerol is 26.4% (w / w), palmitic acid is 9.7% of w / w), and peptide I is 0.9. % (wZw) and water 1.4% (w / w).
得られたサーファクタン 卜の各作用は次のとおりであった。 The actions of the obtained surfactant were as follows.
表面張力低下作用 : Surface tension lowering action:
最大表 張力 ; 3 2. 3 d y n e / c m Maximum table tension; 32.3 dyne / cm
最小表面張力 ; 5. e d y n e / c m Minimum surface tension; 5. e d y n e / cm
気液界面拡散作用 : Gas-liquid interface diffusion:
到達時間 ; 5 5秒 平衡表面張力 ; 2 9. Q d y n e / c m 気液面吸着作用 : Arrival time: 55 seconds Equilibrium surface tension: 2 9. Q dyne / cm Gas-liquid surface adsorption:
到達時間 ; 7 0秒 平衡表面張力 ; 3 1 . 7 d y n e / c m 肺胞腔容量維持作用 : Arrival time; 70 seconds Equilibrium surface tension; 31.7 dyne / cm alveolar cavity volume maintenance action:
肺容量 (5 c m水圧) 4 3 m 1 / k g Lung capacity (5 cm water pressure) 43 m1 / kg
(実施例 2 0 ) (Example 20)
ぺプチド Gの代わりにべプチド Jを用いた以外は (実施例 1 7 ) と同 様にしてサーファクタントを製造した。 Surfactant was produced in the same manner as in (Example 17) except that peptide J was used instead of peptide G.
この粉末中にエタノールの残存は認められず、 サーファクタン トの総 重量に対する各成分の含量は、 1 , 2 -ジパルミ トイルグリセロー (3 ) 一ホスホコリ ンは 6 1. 5 % (w/w) , 1, 2 —ジァシルー s n—グ リセロー (3) —ホスホー s n—グリセロールは 2 6. 4 % (w/w) 、 及びパルミチン酸は 9. 7 % (w/w) 、 ペプチ ド Jは 0. 9 % (w/
) 及び水 1. 6 % ( / ) であった。 No ethanol remained in this powder, and the content of each component relative to the total weight of the surfactant was 1,1.5-dipalmitoyl glycerol (3) -monophosphoricone was 61.5% (w / w), 1,2—Diacyl sn—Glycerol (3) —Phospho sn—Glycerol 26.4% (w / w), Palmitic acid 9.7% (w / w), Peptide J 0.9 % (w / ) And water 1.6% (/).
得られたサーファクタン卜の各作用は次のとおりであった < 表面張力低下作用 The actions of the obtained surfactant were as follows.
最大表 ¾力 3 3 9 d y n eノ c m Maximum force 3 3 9 d y n e no c m
最小表面張力 4 / d yn e/ c m Minimum surface tension 4 / dyn e / cm
気液界面拡散作用 Gas-liquid interface diffusion
到達時間; 6 5秒 平衡表面張力 ; 3 2. 9 d yn e/ c m 気液面吸着作用 : Arrival time: 65 seconds Equilibrium surface tension: 3 2. 9 dyn e / cm Gas-liquid surface adsorption:
到達時間; 1 1 5秒 平衡表面張力; 3 4. 2 d yn e/cm 肺胞腔容量維持作用 : Arrival time; 1 15 seconds Equilibrium surface tension; 34.2 dyne / cm Alveolar cavity volume maintenance action:
肺容量 (5 cm水圧) 40 m 1 / k g Lung capacity (5 cm water pressure) 40 m1 / kg
本発明サーファクタン トの懸濁性試験の結果を 〔表 2〕 に示す (
The results of the suspension test of the present invention Safakutan preparative shown in Table 2 (
表 2 本発明サーファクタン 卜の懸濁性 Table 2 Suspension properties of the surfactant of the present invention
Claims
配 列 表 配列番号: 1 Sequence list SEQ ID NO: 1
配列の長さ : 27 Array length: 27
配列の型:アミノ酸 Sequence type: amino acid
トポロジー:直鎖状 Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Cys Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Yal Val Val 1 5 10 15 Cys Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Yal Val Val 1 5 10 15
Leu lie Val Val Val He Val Gl Ala Leu Leu Leu lie Val Val Val He Val Gl Ala Leu Leu
20 25 20 25
配列番号: 2 SEQ ID NO: 2
配列の長さ : 27 Array length: 27
配列の型: アミノ酸 Sequence type: amino acid
トポロジー:直鎖状 Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Cys Cys Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val Cys Cys Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val
1 5 10 151 5 10 15
Val Leu He Yal Val Val He Val Gly Ala Leu Val Leu He Yal Val Val He Val Gly Ala Leu
20 25
配列番号 : 3 20 25 SEQ ID NO: 3
配列の長さ : 2 7 Array length: 2 7
配列の型 : アミ ノ酸 Sequence type: amino acid
トポロジー : 直鎖状 Topology: linear
配列の種類 : ペプチド Sequence type: Peptide
配列 Array
Cys Pro Val Asn lie Lys Arg Leu Leu lie Val Val Val Val Val Val Cys Pro Val Asn lie Lys Arg Leu Leu lie Val Val Val Val Val Val
1 5 10 151 5 10 15
Leu Leu Val Val Val lie Val Gly Ala Leu Leu Leu Leu Val Val Val lie Val Gly Ala Leu Leu
20 25 配列番号 : 4 20 25 SEQ ID NO: 4
配列の長さ : 2 7 - 配列の型 : アミ ノ酸 Sequence length: 27-Sequence type: amino acid
トポロジー : 直鎖状 Topology: linear
配列の種類 : ぺプチ ド Sequence type: peptide
配列 Array
Cys Cys Pro Val Asn lie Lys Arg Leu Leu lie Val Val Val Val Val 1 5 10 15 Val Leu Leu Val Val Val lie Val Gly Ala Leu Cys Cys Pro Val Asn lie Lys Arg Leu Leu lie Val Val Val Val Val 1 5 10 15 Val Leu Leu Val Val Val lie Val Gly Ala Leu
20 一 25 配列番号 : 5 20 1 25 SEQ ID NO: 5
配列の長さ : 2 7 Array length: 2 7
配列の型 : アミ ノ酸 Sequence type: amino acid
トポロジー : 直鎖状
配列の種類:ペプチド Topology: linear Sequence type: Peptide
配列 Array
Cys Pro Val Asn Leu Lys Arg Le Leu Val Val Val Val Val Val Val , Cys Pro Val Asn Leu Lys Arg Le Leu Val Val Val Val Val Val Val,
1 5 10 15 1 5 10 15
Leu Val Val Val Val lie Val Gly Ala Leu Leu Leu Val Val Val Val lie Val Gly Ala Leu Leu
20 25 20 25
配列番号: 6 SEQ ID NO: 6
配列の長さ : 2 7 Array length: 2 7
配列の型:アミノ酸 Sequence type: amino acid
トポロジー:直鎖状 Topology: linear
配列の種類:ペプチド Sequence type: Peptide
配列 Array
Cys Cys Pro Yal Asn Leu Lys Arg Leu Leu Val Val Val Val Yal Val Cys Cys Pro Yal Asn Leu Lys Arg Leu Leu Val Val Val Val Yal Val
1 5 10 15 1 5 10 15
Val Leu Yal Val Val Val lie Val Gly Ala Leu Val Leu Yal Val Val Val lie Val Gly Ala Leu
20 25 20 25
配列番号 r 7 SEQ ID NO: r 7
配列の長さ : 2 7 Array length: 2 7
配列の型:アミノ酸 Sequence type: amino acid
トポロジー:直鎖状 Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列
Ser Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val ValArray Ser Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val Val
1 5 10 151 5 10 15
Leu lie Val Val Val lie Val Gly Ala Leu Leu Leu lie Val Val Val lie Val Gly Ala Leu Leu
20 25 配列番号 : 8 20 25 SEQ ID NO: 8
配列の長さ : 2 7 Array length: 2 7
配列の型 : アミ ノ酸 Sequence type: amino acid
トポロジー : 直鎖状 Topology: linear
配列の種類 : ぺプチド Sequence type: Peptide
配列 Array
Ser Ser Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val Ser Ser Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val
1 5 10 151 5 10 15
Val Leu lie Val Val Val lie Val Gly Ala Leu Val Leu lie Val Val Val lie Val Gly Ala Leu
20 25 配列番号 : 9 20 25 SEQ ID NO: 9
配列の長さ : 27 Array length: 27
配列の型 : アミノ酸 Sequence type: amino acid
トポロジー : 直鎖状 Topology: linear
配列の種類 : ぺプチ ド Sequence type: peptide
配列 Array
Ala Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val Val 1 5 10 15 Leu lie Val Val Val lie Val Gly Ala Leu Leu Ala Pro Val His Leu Lys Arg Leu Leu lie Val Val Val Val Val Val 1 5 10 15 Leu lie Val Val Val lie Val Gly Ala Leu Leu
20 25
配列番号: 1 0 20 25 SEQ ID NO: 10
配列の長さ : 27 < 配列の型: アミノ酸 Sequence length: 27 <Sequence type: Amino acid
トポロジー:直鎖状 Topology: linear
配列の種類:ぺプチド Sequence type: peptide
配列 Array
Ala Ala Pro Val His Leu Lys Arg Leu Leu He Val Val Val Val Val Ala Ala Pro Val His Leu Lys Arg Leu Leu He Val Val Val Val Val
1 5 10 15 1 5 10 15
Val Leu lie Val Val Val lie Val Gly Ala Leu Val Leu lie Val Val Val lie Val Gly Ala Leu
20 25
20 25
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51818893A JP3376582B2 (en) | 1992-04-17 | 1993-04-16 | Synthetic peptide, pulmonary surfactant containing the same and therapeutic agent for respiratory distress syndrome |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4/98083 | 1992-04-17 | ||
JP4098083A JPH05294996A (en) | 1992-04-17 | 1992-04-17 | Synthetic peptides, lung surfactant containing the same and therapeutic agents for respiration distress syndrome |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1993021225A1 true WO1993021225A1 (en) | 1993-10-28 |
Family
ID=14210455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1993/000492 WO1993021225A1 (en) | 1992-04-17 | 1993-04-16 | Synthetic peptide, pulmonary surfactant containing the same, and remedy for respiratory distress syndrome |
Country Status (3)
Country | Link |
---|---|
JP (2) | JPH05294996A (en) |
AU (1) | AU3905693A (en) |
WO (1) | WO1993021225A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995015980A1 (en) * | 1993-12-08 | 1995-06-15 | Tokyo Tanabe Company Limited | Novel synthetic peptide, lung surfactant containing the same, and remedy for respiratory distress syndrome |
WO1995032992A1 (en) * | 1994-05-31 | 1995-12-07 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Synthetic peptide analogs of lung surfactant protein sp-c |
JP2002529394A (en) * | 1998-11-10 | 2002-09-10 | ビイク グルデン ロンベルク ヒエーミツシエ フアブリーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Therapeutic set containing a pulmonary surfactant composition |
US6737243B1 (en) | 1998-07-24 | 2004-05-18 | Altana Pharma Ag | Determination of the hydrophobic pulmonary surfactant protein SP-C |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU667438B2 (en) * | 1993-04-30 | 1996-03-21 | Mitsubishi-Tokyo Pharmaceuticals, Inc. | Method of purifying hydrophobic polypeptide |
AU2576895A (en) * | 1994-12-07 | 1996-06-26 | Tokyo Tanabe Company Limited | Intermediate for producing surfactant peptide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63503222A (en) * | 1986-05-06 | 1988-11-24 | サイオス ノバ インコーポレイテッド | A protein with a molecular weight of 6,000 daltons and its multimers bound to hydrophobic surfactants in the lungs |
JPH01501282A (en) * | 1986-12-08 | 1989-05-11 | ホイツトセツト,ジエフリー エイ. | Alveolar hydrophobic surfactant-related protein |
-
1992
- 1992-04-17 JP JP4098083A patent/JPH05294996A/en active Pending
-
1993
- 1993-04-16 AU AU39056/93A patent/AU3905693A/en not_active Abandoned
- 1993-04-16 WO PCT/JP1993/000492 patent/WO1993021225A1/en active Application Filing
- 1993-04-16 JP JP51818893A patent/JP3376582B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63503222A (en) * | 1986-05-06 | 1988-11-24 | サイオス ノバ インコーポレイテッド | A protein with a molecular weight of 6,000 daltons and its multimers bound to hydrophobic surfactants in the lungs |
JPH01501282A (en) * | 1986-12-08 | 1989-05-11 | ホイツトセツト,ジエフリー エイ. | Alveolar hydrophobic surfactant-related protein |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995015980A1 (en) * | 1993-12-08 | 1995-06-15 | Tokyo Tanabe Company Limited | Novel synthetic peptide, lung surfactant containing the same, and remedy for respiratory distress syndrome |
AU682738B2 (en) * | 1993-12-08 | 1997-10-16 | Mitsubishi-Tokyo Pharmaceuticals, Inc. | Novel synthetic peptide, lung surfactant containing the same, and remedy for respiratory distress syndrome |
US5827825A (en) * | 1993-12-08 | 1998-10-27 | Tokyo Tanabe Company Ltd. | Synthetic peptide, lung surfactant containing the same and remedy for respiratory distress syndrome |
CN1057099C (en) * | 1993-12-08 | 2000-10-04 | 三菱东京制药株式会社 | Novel synthetic peptide, lung surfactant containing the same and remedy for respiratory distress syndrome |
WO1995032992A1 (en) * | 1994-05-31 | 1995-12-07 | Byk Gulden Lomberg Chemische Fabrik Gmbh | Synthetic peptide analogs of lung surfactant protein sp-c |
AU690280B2 (en) * | 1994-05-31 | 1998-04-23 | Takeda Gmbh | Synthetic peptide analogs of lung surfactant protein SP-C |
US6737243B1 (en) | 1998-07-24 | 2004-05-18 | Altana Pharma Ag | Determination of the hydrophobic pulmonary surfactant protein SP-C |
JP2002529394A (en) * | 1998-11-10 | 2002-09-10 | ビイク グルデン ロンベルク ヒエーミツシエ フアブリーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Therapeutic set containing a pulmonary surfactant composition |
Also Published As
Publication number | Publication date |
---|---|
JP3376582B2 (en) | 2003-02-10 |
AU3905693A (en) | 1993-11-18 |
JPH05294996A (en) | 1993-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6013619A (en) | Pulmonary surfactants and therapeutic uses, including pulmonary lavage | |
US20130184198A1 (en) | Pulmonary Surfactant Formulations | |
US5827825A (en) | Synthetic peptide, lung surfactant containing the same and remedy for respiratory distress syndrome | |
JP5405307B2 (en) | Reconstructed surfactant with improved properties | |
JP2008526868A (en) | Surfactant treatment therapy | |
WO1993021225A1 (en) | Synthetic peptide, pulmonary surfactant containing the same, and remedy for respiratory distress syndrome | |
RU2144925C1 (en) | New synthetic peptides, pulmonary surface-active composition, drug for treatment of patient with respiratory distress-syndrome | |
US7022671B1 (en) | Surfactant protein C esters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CA JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |