[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1992014858A1 - Process for forming passivated film - Google Patents

Process for forming passivated film Download PDF

Info

Publication number
WO1992014858A1
WO1992014858A1 PCT/JP1992/000160 JP9200160W WO9214858A1 WO 1992014858 A1 WO1992014858 A1 WO 1992014858A1 JP 9200160 W JP9200160 W JP 9200160W WO 9214858 A1 WO9214858 A1 WO 9214858A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
stainless steel
less
film
passivation film
Prior art date
Application number
PCT/JP1992/000160
Other languages
French (fr)
Japanese (ja)
Inventor
Tadahiro Ohmi
Yoshiyuki Nakahara
Takashi Sakanaka
Eiji Ohta
Satoshi Mizokami
Original Assignee
Osaka Sanso Kogyo Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP03045867A priority Critical patent/JP3017301B2/en
Priority claimed from JP03045867A external-priority patent/JP3017301B2/en
Application filed by Osaka Sanso Kogyo Kabushiki-Kaisha filed Critical Osaka Sanso Kogyo Kabushiki-Kaisha
Priority to PCT/JP1992/000160 priority patent/WO1992014858A1/en
Priority to US08/081,353 priority patent/US5407492A/en
Publication of WO1992014858A1 publication Critical patent/WO1992014858A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces

Definitions

  • the present invention relates to a method for forming a passivation film, and in particular, to a method for forming a passivation film capable of forming a passivation film that releases very little water and can remove adhering water in a very short time.
  • Background art
  • the dimensions of unit elements are decreasing year by year in order to improve the degree of integration of integrated circuits, and the spacing between elements is from 1 m to submicron, and dimensions of 0.5 m or less.
  • Research and development are being actively carried out for the practical use of semiconductor devices with.
  • the production of such a semiconductor device is performed by repeating a process of forming a thin film, a process of etching the formed thin film into a predetermined circuit pattern, and the like.
  • Such a process is usually performed in an ultra-high vacuum state or a reduced-pressure atmosphere into which a predetermined gas is introduced, usually by placing silicon wafers in a vacuum chamber. If impurities are mixed in these steps, problems such as deterioration of the film quality of the thin film and inability to obtain fine processing accuracy occur. This is why ultra-high vacuum and ultra-high clean pressure-reduced atmosphere are required.
  • Figure 5 shows the relationship between the total leak amount (sum of the amount of gas released from the piping system and the inner surface of the reaction chamber and the external leak) and gas contamination of the system combining the gas piping system and the reaction chamber in the conventional equipment. It is a graph. The multiple lines in the figure indicate the results when the gas flow rate was changed to various values as a parameter.
  • Semiconductor processes tend to use increasingly lower gas flows to achieve more accurate processes, for example, it is common to use flow rates of 10 cc / min or less.
  • the inventor of the present invention has invented an ultra-high-purity gas supply system, and succeeded in suppressing the amount of leakage from the outside of the system to 1 xl O _11 To r r 'lZs ec, which is the current detection limit of the detector. I have.
  • the minimum value of the surface emission gas obtained by the surface treatment in the current ultra-high vacuum technology is 1 X 10 " 11 To rr ⁇ 1 / sec ⁇ cm 2 for stainless steel, which is exposed inside the chamber.
  • the surface area is, even if one smallest estimated for example, lm 2, 1 x 10 in total, Ri Do a leakage amount of ⁇ rr ⁇ I / sec, the purity of the order of 1 p pm to gas flow 10 cc / min only obtained such have gas.
  • cc / min only obtained such have gas.
  • a relatively stable general gas (0 2, ⁇ 2, A r, H., H e) reactivity from a wide variety of gases are used to strong specialty gases corrosive and toxic You.
  • hydrolysis three exhibit strong corrosion generates hydrochloric acid or hydrofluoric acid, boron chloride (BC 1 3) or boron trifluoride (BF 3) or the like is there.
  • boron chloride BC 1 3
  • boron trifluoride boron trifluoride
  • stainless steel is used for piping and chamber materials that handle these gases because of its reactivity, corrosion resistance, high strength, ease of secondary workability, ease of welding, and ease of polishing the inner surface. Often.
  • stainless steel has excellent corrosion resistance in a dry gas atmosphere, but is easily corroded in a chlorine-based or fluorine-based gas atmosphere where water is present. For this reason, corrosion resistance treatment is indispensable after stainless steel surface polishing.
  • As a treatment method there is a Ni-W-P coating that coats stainless steel with a highly corrosion-resistant metal. This method not only easily causes cracks and pinholes, but also uses a wet plating. In addition, there are problems such as the amount of water adsorbed on the inner surface and the amount of residual components in the solution being large.
  • Another method is to increase the corrosion resistance by passivation to form a thin oxide film on the metal surface.
  • Stainless steel is passivated only by immersion if there is a sufficient oxidizing agent in the solution, so it is usually immersed in a nitric acid solution at room temperature to perform passivation.However, this method is also a wet method. As a result, a large amount of moisture and residual processing solutions are present on the piping and the inner surface of the chamber. Water, in particular, can cause severe damage to stainless steel when chlorine-based or fluorine-based gas is supplied.
  • the present inventor has proposed that the ratio of the number of Ni atoms in the outer layer portion of the oxide film formed on the surface of the stainless steel member subjected to the electropolishing treatment is 2% or less and the inner layer portion is not more than 2%.
  • a patent application was filed on February 4, 1988 for a stainless steel member to be subjected to heat treatment in an oxidizing gas atmosphere of ⁇ 10 ° C. to 110 ° C. or lower. Applicant Tadahiro Omi).
  • This stainless steel member can easily remove moisture even if moisture adheres and even if it is adsorbed, by performing appropriate baking, and the amount of gas released from the member itself is small. It is a member.
  • the method for forming a passivation film of the present invention comprises the steps of: forming a stainless steel member having a surface roughness of Rma X 1 or less;
  • the passivation film is heated at a temperature of 300 to 420 ° C. in a mixed gas atmosphere of an oxygen gas containing 5 ppm to 25% by volume of oxygen and an inert gas as follows. It is characterized by forming. Action
  • the inventor of the present invention has made intensive studies to develop a stainless steel member that emits less water. As a result, it was found that when a passivation film was formed under certain conditions, a passivation film composed of an amorphous oxide was formed. Further, when this passivation film was examined, it was found that the film was dense and dense. Yes, it was found that the outgassing resistance was further improved compared to the stainless steel member filed earlier.
  • the surface roughness of the stainless steel member is set to Rmax 1. O ⁇ m or less. You. When Rmax exceeds 1.0 / m, the oxide film formed lacks in denseness, and improvement in outgassing resistance cannot be expected. In the range of Rmax 1. ⁇ zm or less, it is more preferably 0.1 / zm to 0.5 ⁇ m or less. If the maximum value of the difference between the heights of the convex and concave portions within a circle with a radius of 0.5 m at any point is set to 1 m or less, passivation with even better denseness and less gas release is achieved. A film can be formed. In addition, if the surface roughness is adjusted by, for example, electrolytic polishing, even if an altered layer is present, the altered layer is preferably removed, so that gas adsorption to the altered layer can be prevented, which is preferable.
  • the dew point temperature of the atmospheric gas is set to be lower than or equal to 95 ° C.
  • the dew point temperature By limiting the dew point temperature to -95 ° C or lower, it is possible to form an amorphous passivation film that is dense and has excellent gas emission resistance, as described later, with restrictions on impurity concentration and heating temperature. Become. If the temperature exceeds -95 ° C, the passivation film becomes less dense and has poor gas emission resistance. The present inventors have found that when the temperature exceeds —95 ° C., the passivation film becomes less dense and the gas emission resistance deteriorates. In addition, -110 ° C or less is more preferable.
  • the heat treatment is performed in a mixed gas atmosphere of oxygen gas and inert gas containing 5111 to 20% by volume of oxygen.
  • the present invention it is possible to form a sufficiently dense amorphous passivation by controlling the dew point and the impurities even with an oxygen amount of 5 ppm to 20% by volume. However, if it is less than 5 ppm, it is difficult to form a good oxide film, not the oxygen content. If the content exceeds 20% by volume, the outgassing resistance becomes poor.
  • the total impurity concentration in the atmosphere gas should be 1 Oppb or less. Preferably it is 5 ppb or less, more preferably 1 ppb or less. If it exceeds 1 O ppb, the passivation film will not be dense even if other conditions are within the scope of the present invention.
  • the heating for forming the passivation film is performed at 300 to 420 ° C. 300. If the temperature is lower than C, the temperature is too low and a dense oxide film is hardly formed. Above 420 ° C a crystalline passivation film is formed. Therefore, the heating is performed at a heating temperature of 300 to 420 ° C. The heating time varies depending on the heating temperature, but is preferably 30 minutes or more.
  • the passivation film formed by the above method usually has a thickness of 10 to 20 nm,
  • the member side is a passivation film made of an amorphous oxide in which atoms of Cr are rich.
  • FIG. 1 is a conceptual diagram showing an example of an apparatus for performing a passivation process.
  • Figure 2 is a conceptual diagram showing the test equipment for gas emission resistance.
  • Fig. 3 is a graph showing the gas emission resistance.
  • Figure 4 is a SEM photograph of a passive film showing the crystal structure of the film.
  • FIG. 5 is a graph showing the relationship between the amount of leakage and the impurity concentration in a conventional gas supply piping system.
  • reference numeral 101 denotes a stainless steel tube.
  • 105 is a header, and the header 105 has a plurality of gas inlets 110 formed therein.
  • the inlet 110 is provided with a taper at the outer periphery of the distal end thereof, and the stainless steel pipe I01 can be held at the tapered portion. .
  • 103 is an inert gas source (Ar source in this example)
  • 104 is an oxygen source
  • the gases from the inert gas source 103 and the oxygen source 104 are mixed through the mass flow controller 105.106, Introduced into stainless steel pipe 101 from inlet 1 10. According to this apparatus, it is possible to reduce the impurity concentration of the gas supplied into the stainless steel pipe to several P pb or less.
  • 121 and 122 are inert gas sources for supplying an inert gas into the furnace 130 to prevent oxidation of the outer surface of the stainless steel tube 101 and to prevent seizure.
  • 102 is a heater.
  • a passivation film was formed by the following procedure using the apparatus shown in FIG.
  • the inner surface of the stainless steel pipe 101 is purged using an inert gas (for example, Ar or He) having a concentration of impurities (water, hydrocarbon) of 1 Oppb or less.
  • an inert gas for example, Ar or He
  • the temperature is raised to about 150 ° C, and purging is further performed to almost completely desorb water molecules adsorbed on the inner surface of the stainless steel tube 101.
  • a mixed gas of oxygen and an inert gas Ar gas
  • Outgassing resistance was investigated using the configuration shown in Fig.2. That is, a mixed gas of oxygen gas and Ar gas passed through the gas purifier 401 was passed through a stainless steel tube 402 of the sample at a flow rate of 1.21 Z, and the amount of water contained in the gas was determined by APIMS. (Atmospheric ionized mass spectrometer) or low-temperature optical dew point meter 403. Figure 3 shows the results.
  • the crystallinity was examined with a scanning electron microscope or the like.
  • No. 3 Comparative Example
  • ⁇ ' ⁇ . 4 Comparative Example
  • Unfortunate No. 5 has a higher dew point temperature than the present invention
  • No. 7 has a higher heat treatment temperature
  • No. 8 has a lower heat treatment temperature.
  • the outgassing resistance was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

A process for forming a passivated film which is far reduced in the amount of gas discharge and can desorb an adsorbed gas more readily, which process comprises heating a stainless steel member with a surface roughness, Rmax, of 1.0 νm or less in an atmosphere of a mixture comprising oxygen gas and an inert gas and having a dew point of -95 °C or below, an impurity concentration of 10 ppb or less and an oxygen content of 5 ppm to 25 vol % at 300 to 420 °C.

Description

明細書  Specification
不動態膜の形成方法  Method of forming passivation film
技術分野  Technical field
本発明は不動態膜の形成方法に係り、 特に、 水分の放出が極めて少なく、 かつ 付着水分の脱離を極めて短時間で行うことができる不動態膜の形成が可能な不動 態膜の形成方法に関する。 背景技術  The present invention relates to a method for forming a passivation film, and in particular, to a method for forming a passivation film capable of forming a passivation film that releases very little water and can remove adhering water in a very short time. About. Background art
近年、 超高真空を実現する技術や、 あるいは真空チャンバ内に所定のガスを小 流量流し込み超高清浄な減圧雰囲気をつくり出す技術が非常に重要となってきて いる。  In recent years, a technology for realizing an ultra-high vacuum or a technology for flowing a predetermined gas into a vacuum chamber at a small flow rate to create an ultra-high-purity reduced-pressure atmosphere has become very important.
これらの技術は、 材料特性の研究、 各種薄膜の形成、 半導体デバイスの製造等 に広く用いられており、 その結果益々高い真空度が実現されているが、 さらに、 不純物元素および不純物分子の混入を極限まで減少させた減圧雰囲気を実現する ことが非常に強く望まれている。  These technologies are widely used in research of material properties, formation of various thin films, manufacture of semiconductor devices, etc., and as a result, a higher degree of vacuum has been realized, but furthermore, contamination of impurity elements and impurity molecules has been realized. It is very strongly desired to realize a reduced-pressure atmosphere reduced to the limit.
例えば、 半導体デバイスを例にとれば、 集積回路の集積度を向上させるため、 単位素子の寸法は年々小さくなつており、 素子間間隔が 1 mからサブミクロ ン、 さらに、 0 . 5 m以下の寸法を持つ半導体デバイスの実用化のために盛ん に研究開発が行われている。  For example, in the case of semiconductor devices, the dimensions of unit elements are decreasing year by year in order to improve the degree of integration of integrated circuits, and the spacing between elements is from 1 m to submicron, and dimensions of 0.5 m or less. Research and development are being actively carried out for the practical use of semiconductor devices with.
このような半導体デバイスの製造は、 薄膜を形成する工程や、 形成された薄膜 を所定の回路パターンにエッチングする工程等をくり返して行われる。 そしてこ のようなプロセスは、 通常シリコンゥヱハを真空チャンバ内に入れ、 超高真空状 態、 あるいは所定のガスを導入した減圧雰囲気で行われるのが普通である。 これ らの工程に、 もし不純物が混入すれば、 例えば薄膜の膜質が劣化したり、 微細加 ェの精度が得られなくなるなどの問題を生じる。 これが超高真空、 超高清浄な減 圧雰囲気が要求される理由である。  The production of such a semiconductor device is performed by repeating a process of forming a thin film, a process of etching the formed thin film into a predetermined circuit pattern, and the like. Such a process is usually performed in an ultra-high vacuum state or a reduced-pressure atmosphere into which a predetermined gas is introduced, usually by placing silicon wafers in a vacuum chamber. If impurities are mixed in these steps, problems such as deterioration of the film quality of the thin film and inability to obtain fine processing accuracy occur. This is why ultra-high vacuum and ultra-high clean pressure-reduced atmosphere are required.
超高真空や、 超高清浄な減圧雰囲気の実現をこれまで阻んでいた最大の原因の 一つとして、 チヤンバゃガス配管などに広く用いられているステンレス鋼の表面 力、ら放出されるガスがあげられる。 特に、 表面に吸着した水分が真空あるいは減 圧雰囲気中において脱離してくるのが最も大きな汚染源となっていることがわか つ 。 One of the biggest obstacles to the realization of ultra-high vacuum and ultra-high-purity decompression atmosphere has been the surface force of stainless steel, which is widely used for chamber gas pipes, and the released gas. can give. In particular, the moisture adsorbed on the surface It can be seen that desorption in a pressurized atmosphere is the biggest source of pollution.
図 5は、 従来装置におけるガス配管系および反応チャンバを合わせたシステム のトータルリーク量 (配管系および反応チャンバ内表面からの放出ガス量と外部 リークとの和) とガスの汚染の関係を示したグラフである。 図中の複数の線は、 ガスの流量をパラメータとして様々な値に変化させた場合の結果につ L、て示して いる。  Figure 5 shows the relationship between the total leak amount (sum of the amount of gas released from the piping system and the inner surface of the reaction chamber and the external leak) and gas contamination of the system combining the gas piping system and the reaction chamber in the conventional equipment. It is a graph. The multiple lines in the figure indicate the results when the gas flow rate was changed to various values as a parameter.
半導体プロセスは、 より精度の高いプロセスを実現するためガスの流量を益々 少なくする傾向にあり、例えば 10 c c/mi nやそれ以下の流量を用いるのが 普通となっている。  Semiconductor processes tend to use increasingly lower gas flows to achieve more accurate processes, for example, it is common to use flow rates of 10 cc / min or less.
かりに、 10 c cノ mi nの流量を用いたとすると、 現在広く用いられている 装置のように、 10 〜l 0_6To r r · IZS e c程度のシステムトータル リークがあると、 ガスの純度は 1 Oppm〜l%になり、高清浄プロセスとは程 遠いものになってしまう。 Assuming, 10 cc when Roh mi and using the flow rate of n, as in the devices that are currently widely used, if there is a total system leakage of about 10 ~l 0 _6 To rr · IZS ec, gas purity of 1 Oppm ~ 1%, far from the high clean process.
本発明者は超高清浄ガス供給システムを発明し、 システムの外部からのリーク 量を現状の検出器の検出限界の 1 x l O_11 To r r ' lZs e c以下に抑えこ むことに成功している。 The inventor of the present invention has invented an ultra-high-purity gas supply system, and succeeded in suppressing the amount of leakage from the outside of the system to 1 xl O _11 To r r 'lZs ec, which is the current detection limit of the detector. I have.
し力、し、 システム内部からのリーク、 すなわち、 前述のステンレス鋼の表面か らの放出ガス成分のため、 減圧雰囲気の不純物濃度を下げることができなかつ た。 現在の超高真空技術における表面処理により得られている表面放出ガス量の 最小値は、 ステンレス鑕の場合、 1 X 10"11 To r r · 1/s e c · c m2で あり、 チャンバの内部に露出している表面積を、例えば lm2と最も小さく見積 つたとしても、 トータルでは 1 x 10 ,Το r r · I /s e cのリーク量とな り、 ガス流量 10 c c/m i nに対し 1 p pm程度の純度のガスしか得られな い。 ガス流量をさらに小さくすると、 さらに純度が落ちることは言うまでもな い c Therefore, the impurity concentration in the reduced-pressure atmosphere could not be reduced due to the leakage from the inside of the system, that is, the above-mentioned gas component released from the surface of stainless steel. The minimum value of the surface emission gas obtained by the surface treatment in the current ultra-high vacuum technology is 1 X 10 " 11 To rr · 1 / sec · cm 2 for stainless steel, which is exposed inside the chamber. the surface area is, even if one smallest estimated for example, lm 2, 1 x 10 in total, Ri Do a leakage amount of Το rr · I / sec, the purity of the order of 1 p pm to gas flow 10 cc / min only obtained such have gas. When a further small gas flow, to fall more purity not needless to say c
チャンノく内表面からの脱ガス成分を、 トータルシステムの外部リーク量と同じ 1 X 10"11 To r r · lXs e cと同程度まで下げるには、 ステンレス鋼の表 面からの脱ガスを 1 x l O— la To r r ' lZs e c ' cm2以下とする必要が あり、 そのため、 ガス放出量を少なくするステンレス鋼の表面の処理技術が強く 求められていた。 In order to reduce the degassing component from the inner surface of the channel to the same level as the external leak of the total system, the same as 1 X 10 " 11 To rr · lXs ec, degassing from the surface of stainless steel by 1 xl O — La To rr 'lZs ec' cm 2 or less Therefore, there was a strong demand for a technology for treating the surface of stainless steel to reduce the amount of outgassing.
また一方、 半導体製造プロセスでは、 比較的安定な一般ガス (02 , Ν2 , A r , H。, H e ) から反応性、 腐食性および毒性の強い特殊ガスまで多種多様 なガスが使用される。 特に、 特殊ガスの中には雰囲気中に水分が存在すると加水 分解して塩酸やフッ酸を生成し強い腐食性を示す三塩化ホウ素 (B C 1 3 ) や三 フッ化ホウ素 (B F3 ) 等がある。 通常これらのガスを扱う配管やチャンバ材料 には反応性、 耐腐食性、 髙強度、 2次加工性の容易さ、 溶接の容易さ、 そして内 表面の研磨の施し易さからステンレス鋼が使用されることが多い。 On the other hand, in the semiconductor manufacturing process, a relatively stable general gas (0 2, Ν 2, A r, H., H e) reactivity from a wide variety of gases are used to strong specialty gases corrosive and toxic You. In particular, when moisture is present in the atmosphere in the specialty gases hydrolysis three exhibit strong corrosion generates hydrochloric acid or hydrofluoric acid, boron chloride (BC 1 3) or boron trifluoride (BF 3) or the like is there. Normally, stainless steel is used for piping and chamber materials that handle these gases because of its reactivity, corrosion resistance, high strength, ease of secondary workability, ease of welding, and ease of polishing the inner surface. Often.
しかしながら、 ステンレス鑭は、 乾燥ガス雰囲気中では耐食性に優れている が、 水分の存在する塩素系乃至フッ素系ガス雰囲気中では容易に腐食されてしま う。 このため、 ステンレス鋼の表面研磨後には耐腐食性処理が不可欠となる。 処 理方法としてはステンレス鋼に耐食性の強い金属を被覆する N i— W— Pコーテ イング等がある力 この方法ではクラック、 ピンホールが生じ易いばかりでな く、 湿式メツキを用いる方法であるために内表面の水分の吸着量や溶液残留成分 が多 t、等の問題を含んでいる。  However, stainless steel has excellent corrosion resistance in a dry gas atmosphere, but is easily corroded in a chlorine-based or fluorine-based gas atmosphere where water is present. For this reason, corrosion resistance treatment is indispensable after stainless steel surface polishing. As a treatment method, there is a Ni-W-P coating that coats stainless steel with a highly corrosion-resistant metal. This method not only easily causes cracks and pinholes, but also uses a wet plating. In addition, there are problems such as the amount of water adsorbed on the inner surface and the amount of residual components in the solution being large.
他の方法としては金属表面に薄い酸化物皮膜を作る不動態化処理による耐腐食 性処理力く挙げられる。 ステンレス鑭は、 液中に十分な酸化剤があれば浸漬しただ けで不動態化するので、 通常は常温で硝酸溶液に浸潰し、 不動態処理を行ってい しかし、 この方法も湿式の方法であるため、 配管やチャンバ内面に水分および 処理溶液の残留分が多く存在する。 特に水分は、 塩素系、 フッ素系ガスを流した 場合、 ステンレス鋼に痛烈なダメ一ジを与えることになる。  Another method is to increase the corrosion resistance by passivation to form a thin oxide film on the metal surface. Stainless steel is passivated only by immersion if there is a sufficient oxidizing agent in the solution, so it is usually immersed in a nitric acid solution at room temperature to perform passivation.However, this method is also a wet method. As a result, a large amount of moisture and residual processing solutions are present on the piping and the inner surface of the chamber. Water, in particular, can cause severe damage to stainless steel when chlorine-based or fluorine-based gas is supplied.
従って、 腐食性ガスに対してもダメージをうけることなく、 かつ水分の吸蔵や 吸着の少ない、 不動態膜を形成したステンレスによりチヤンバゃガス供給糸を構 成することが、 超高真空技術や半導体プロセスに非常に重要であるが、 これまで このような技術が全く存在しなかつた。  Therefore, it is possible to construct a chamber gas supply thread using stainless steel with a passive film formed without damaging corrosive gas and absorbing and absorbing less moisture. Although very important to the process, no such technology has ever existed.
そこで、 本発明者は、 電解研磨処理を施したステンレス鐧部材表面に形成され た酸化皮膜における外層部の N i原子数の比率が 2 %以下であると共に、 内層部 の C r原子数の比率が 3 0 %以上を占め、 かつ、 該酸化皮膜の厚さが 1 0〜 δ 0 n mであることを特徴とするステンレス鋼部材と、加熱処理を水分の露点温 度が- 1 0 °C〜一 1 0 5 °C以下の酸化性ガス雰囲気中で加熱処理を施するステン レス鋼部材およびその製造方法を昭和 6 3年 2月 4日付で特許出願を行った (出 願人大見忠弘) 。 Therefore, the present inventor has proposed that the ratio of the number of Ni atoms in the outer layer portion of the oxide film formed on the surface of the stainless steel member subjected to the electropolishing treatment is 2% or less and the inner layer portion is not more than 2%. A stainless steel member characterized in that the ratio of the number of Cr atoms occupies 30% or more and the oxide film has a thickness of 10 to δ0 nm; A patent application was filed on February 4, 1988 for a stainless steel member to be subjected to heat treatment in an oxidizing gas atmosphere of −10 ° C. to 110 ° C. or lower. Applicant Tadahiro Omi).
このステンレス鑭部材は、水分が付着な t、し吸着したとしても適度のベーキン グを行えば容易に水分の脱離を行うことが可能であり、 かつ、部材自身からのガ ス放出量も少ない部材である。  This stainless steel member can easily remove moisture even if moisture adheres and even if it is adsorbed, by performing appropriate baking, and the amount of gas released from the member itself is small. It is a member.
しかし、 プロセスガスの純度が半導体デバイス等の特性に与える影響がより明 確になり、純度が高ければ高 tゝほど高性能のデバイスが得られることが判明する につれ、 ガス放出量がより一層少なく、 また、 吸着したガスの脱離をより一層容 易に行い得るステンレス鋼部材の出現カ 望されている。 発明の開示  However, as the effect of process gas purity on the characteristics of semiconductor devices and the like becomes clearer, it becomes clear that the higher the purity, the higher the performance of the device, the lower the outgassing volume. In addition, there is a demand for a stainless steel member capable of desorbing the adsorbed gas more easily. Disclosure of the invention
上記課題を解決する本発明の不動態膜の形成方法は、 表面粗度が Rm a X 1 . 以下のステンレス鋼部材を、 露点温度が一 9 5 °C以下であり、 不純物 濃度が 1 0 p p b以下である、 酸素を 5 p p m〜2 5体積%含有する酸素ガスと 不活性ガスとの混合ガス雰囲気中で 3 0 0〜4 2 0 °Cの温度で加熱することによ り不動態膜を形成することを特徴とする。 作用  The method for forming a passivation film of the present invention, which solves the above-mentioned problems, comprises the steps of: forming a stainless steel member having a surface roughness of Rma X 1 or less; The passivation film is heated at a temperature of 300 to 420 ° C. in a mixed gas atmosphere of an oxygen gas containing 5 ppm to 25% by volume of oxygen and an inert gas as follows. It is characterized by forming. Action
本発明者は、 水分の放出がより一層少ないステンレス鐧部材の開発をすべく鋭 意研究を重ねた。 その結果、不動態膜の形成をある所定の条件下で行うと、 非晶 質酸化物よりなる不動態膜が形成されることを見い出し、 さらに、 この不動態膜 を調査すると、膜は緻密であり、 耐ガス放出性が先に出願したステンレス部材ょ りも一層向上して t、ることを知見した。  The inventor of the present invention has made intensive studies to develop a stainless steel member that emits less water. As a result, it was found that when a passivation film was formed under certain conditions, a passivation film composed of an amorphous oxide was formed. Further, when this passivation film was examined, it was found that the film was dense and dense. Yes, it was found that the outgassing resistance was further improved compared to the stainless steel member filed earlier.
本発明は以上の知見に基づ L、てなされたものであり、 以下にその詳細を説明す 。  The present invention has been made based on the above findings, and will be described in detail below.
本発明においては、 ステンレス鐧部材の表面粗度を Rmax 1 . O ^m以下とす る。 Rmax 1. 0 / mを超えると形成される酸化皮膜は、 緻密性に欠けたものと なり、 耐ガス放出性の向上は望めなくなる。 なお、 Rmax 1. Ο zm以下の範囲 のうち、 0. l /zm〜0. 5〃m以下がより好ましい。 なお、 任意の個所におけ る半径 0. 5 mの円内での凸部と凹部の高さの差の最大値を 1 m以下として おけばより一層緻密性に優れ、 ガス放出の少ない不動態膜の形成が可能となる。 また、 表面粗度の調整は例えば電解研磨により行えば、 仮に変質層が存在してい たとしてもその変質層は除去され、 変質層へのガスの吸着を防止することができ 好ましい。 In the present invention, the surface roughness of the stainless steel member is set to Rmax 1. O ^ m or less. You. When Rmax exceeds 1.0 / m, the oxide film formed lacks in denseness, and improvement in outgassing resistance cannot be expected. In the range of Rmax 1.Οzm or less, it is more preferably 0.1 / zm to 0.5〃m or less. If the maximum value of the difference between the heights of the convex and concave portions within a circle with a radius of 0.5 m at any point is set to 1 m or less, passivation with even better denseness and less gas release is achieved. A film can be formed. In addition, if the surface roughness is adjusted by, for example, electrolytic polishing, even if an altered layer is present, the altered layer is preferably removed, so that gas adsorption to the altered layer can be prevented, which is preferable.
一方、 本発明では、 雰囲気ガスの露点温度を一 95 °C以下とする。 露点温度を - 95°C以下に制限することにより、 後述する、 不純物濃度、 加熱温度の制限と 相待ち、 緻密で、 耐ガス放出性に優れた非晶質の不動態膜の形成が可能となる。 - 95°Cを超えると、 不動態膜は緻密でなくなり耐ガス放出性が悪くなる。 な お、 — 95°Cを超えると、 不動態膜は緻密でなくなり、 耐ガス放出性が悪化する ことは本発明者力知見したものである。 なお、 — 1 10°C以下がより好ましい。 On the other hand, in the present invention, the dew point temperature of the atmospheric gas is set to be lower than or equal to 95 ° C. By limiting the dew point temperature to -95 ° C or lower, it is possible to form an amorphous passivation film that is dense and has excellent gas emission resistance, as described later, with restrictions on impurity concentration and heating temperature. Become. If the temperature exceeds -95 ° C, the passivation film becomes less dense and has poor gas emission resistance. The present inventors have found that when the temperature exceeds —95 ° C., the passivation film becomes less dense and the gas emission resistance deteriorates. In addition, -110 ° C or less is more preferable.
—方、 本発明では、 5 111〜20体積%の酸素を含有する、 酸素ガスと不活 性ガスとの混合ガス雰囲気にお t、て熱処理を行う。 On the other hand, in the present invention, the heat treatment is performed in a mixed gas atmosphere of oxygen gas and inert gas containing 5111 to 20% by volume of oxygen.
本発明では、 露点、 不純物の制御により 5 p pm〜20体積%の酸素量でも十 分に緻密な非晶質の不動態の形成が可能となる。 ただ、 5ppm未満では、 酸素 量力叶分ではなく、 良好な酸化皮膜の形成が困難となる。 また、 20体積%を超 えると耐ガス放出性が悪くなる。  In the present invention, it is possible to form a sufficiently dense amorphous passivation by controlling the dew point and the impurities even with an oxygen amount of 5 ppm to 20% by volume. However, if it is less than 5 ppm, it is difficult to form a good oxide film, not the oxygen content. If the content exceeds 20% by volume, the outgassing resistance becomes poor.
—方、 雰囲気ガス中における不純物濃度をトータルで 1 Oppb以下とする。 好ましくは 5 ppb以下、 より好ましくは 1 ppb以下である。 1 O ppbを超 えると他の条件が本発明範囲内であつても不動態膜は緻密でなくなつてしまう。 不動態膜形成のための加熱は 300〜420°Cにおいて行う。 300。C未満で は、 温度が低すぎ緻密な酸化膜が形成されにくい。 420°Cを超えると結晶質の 不動態膜が形成される。 したがって、 加熱温度は 300〜420°Cにおいて行 なお、 加熱時間は加熱温度により異なるが、 30分以上力好ましい。  On the other hand, the total impurity concentration in the atmosphere gas should be 1 Oppb or less. Preferably it is 5 ppb or less, more preferably 1 ppb or less. If it exceeds 1 O ppb, the passivation film will not be dense even if other conditions are within the scope of the present invention. The heating for forming the passivation film is performed at 300 to 420 ° C. 300. If the temperature is lower than C, the temperature is too low and a dense oxide film is hardly formed. Above 420 ° C a crystalline passivation film is formed. Therefore, the heating is performed at a heating temperature of 300 to 420 ° C. The heating time varies depending on the heating temperature, but is preferably 30 minutes or more.
以上の方法により形成される不動態膜は、 通常膜厚が 10〜20nmであり、 部材側が C rの原子がリツチな非晶質酸化物よりなる不動態膜である。 図面の簡単な説明 The passivation film formed by the above method usually has a thickness of 10 to 20 nm, The member side is a passivation film made of an amorphous oxide in which atoms of Cr are rich. BRIEF DESCRIPTION OF THE FIGURES
図 1は不動態化処理を行うための装置例を示す概念図である。 図 2は耐ガス放 出性の試験装置を示す概念図である。 図 3は耐ガス放出性を示すグラフである。 図 4は膜の結晶構造を示す不動態膜の S EM写真である。 図 5は従来のガス供給 配管系のリーク量と不純物濃度との関係を示すグラフである。 発明を実施するための最良の形態  FIG. 1 is a conceptual diagram showing an example of an apparatus for performing a passivation process. Figure 2 is a conceptual diagram showing the test equipment for gas emission resistance. Fig. 3 is a graph showing the gas emission resistance. Figure 4 is a SEM photograph of a passive film showing the crystal structure of the film. FIG. 5 is a graph showing the relationship between the amount of leakage and the impurity concentration in a conventional gas supply piping system. BEST MODE FOR CARRYING OUT THE INVENTION
外径 12. 7mm、 肉厚 lmm、長さ 2mの SUS 316 Lステンレス鋼管の 内面を、 H2 S04 -Ho P04水溶液を用いて電解研磨し、 その表面粗度を 0. 1〜: I. 0/zmとした。 また、半径 5〃m内における凹部と凸部の高さの差 の最大値は I. 0 m以下とした。 Outer diameter 12. 7 mm, thickness lmm, the inner surface of the SUS 316 L stainless steel tube length 2m, H 2 S0 4 -Ho P0 4 aqueous solution was electropolished using a 0. 1 the surface roughness: I 0 / zm. The maximum value of the difference between the height of the concave portion and the height of the convex portion within a radius of 5 m was set to 1.0 m or less.
このステンレス鑭管を図 1に示す装置に収納し、不動態膜の形成を行った。 な お、 図 1において 101はステンレス鐧管である。 105はへッダーであり、 へ ッダ一 105にはガスの導入口 1 10が複数形成されている。 導入口 1 10はそ の先端外周にテーパーが設けられており、 このテーパー部にお t、てステンレス鐧 管 I 01を保持することができる。 .  The stainless steel tube was housed in the apparatus shown in FIG. 1 to form a passivation film. In FIG. 1, reference numeral 101 denotes a stainless steel tube. 105 is a header, and the header 105 has a plurality of gas inlets 110 formed therein. The inlet 110 is provided with a taper at the outer periphery of the distal end thereof, and the stainless steel pipe I01 can be held at the tapered portion. .
103は不活性ガス源 (本例では A r源) 、 104は酸素源であり、 不活性ガ ス源 1 03、 酸素源 1 04からのガスはマスフローコントローラー 1 05. 106を介して混合され、導入口 1 10からステンレス鋼管 101の内部に導入 される。 この装置によれば、 ステンレス鋼管内に供給するガスの不純物濃度を数 P p b以下にすることが可能である。  103 is an inert gas source (Ar source in this example), 104 is an oxygen source, and the gases from the inert gas source 103 and the oxygen source 104 are mixed through the mass flow controller 105.106, Introduced into stainless steel pipe 101 from inlet 1 10. According to this apparatus, it is possible to reduce the impurity concentration of the gas supplied into the stainless steel pipe to several P pb or less.
なお、 121, 122は炉 130内に不活性ガスを供給し、 ステンレス鋼管 101の外面の酸化を防止し、 また焼付を防止するための不活性ガス源である。 なお、 102はヒーターである。  In addition, 121 and 122 are inert gas sources for supplying an inert gas into the furnace 130 to prevent oxidation of the outer surface of the stainless steel tube 101 and to prevent seizure. In addition, 102 is a heater.
図 1に示す装置を用いて不動態膜を次のような手順により形成した。  A passivation film was formed by the following procedure using the apparatus shown in FIG.
すなわち、 不純物 (水分、 ハイドロカーボン) の濃度 1 Oppb以下の不活性 ガス (例えば Arあるいは He) を用いてステンレス鋼管 101の内面をパージ し、 十分に水分を抜いた後、 1 5 0 °C程度の温度に昇温してさらにパージを行 い、 ステンレス鋼管 1 0 1内表面に吸着している水分子をほぼ完全に脱離させ た。 次いで、 表 1に示す各種条件において、 酸素と不活性ガス (A rガス) と の混合ガスを導入するとともに加熱を行 、不動態膜を形成した。 That is, the inner surface of the stainless steel pipe 101 is purged using an inert gas (for example, Ar or He) having a concentration of impurities (water, hydrocarbon) of 1 Oppb or less. After the water has been sufficiently removed, the temperature is raised to about 150 ° C, and purging is further performed to almost completely desorb water molecules adsorbed on the inner surface of the stainless steel tube 101. Was. Next, under various conditions shown in Table 1, a mixed gas of oxygen and an inert gas (Ar gas) was introduced and heating was performed to form a passivation film.
以上の工程により形成された不動態膜を有するステンレス鋼管の試料につき以 下の項目の調査を行った。  The following items were investigated for stainless steel pipe samples having a passivation film formed by the above process.
(ガス放出性)  (Gas release)
耐ガス放出性は、 図 2に示す構成により調査した。 すなわち、 ガス純化装置 4 0 1を通した酸素ガスと A rガスとの混合ガスを 1 . 2 1 Z分の流量で試料の ステンレス鋼管 4 0 2を通し、 ガス中に含まれる水分量を A P I M S (大気ィォ ン化マス分析装置) 又は低温光学露点計 4 0 3により測定した。 その結果を図 3 に示す。  Outgassing resistance was investigated using the configuration shown in Fig.2. That is, a mixed gas of oxygen gas and Ar gas passed through the gas purifier 401 was passed through a stainless steel tube 402 of the sample at a flow rate of 1.21 Z, and the amount of water contained in the gas was determined by APIMS. (Atmospheric ionized mass spectrometer) or low-temperature optical dew point meter 403. Figure 3 shows the results.
(結晶性)  (crystalline)
結晶性は、 走査型電子顕微鏡等により調査した。  The crystallinity was examined with a scanning electron microscope or the like.
以上の試験結果を表 1、 図 3、 図 4 ( a) 及び図 4 (b ) に示す。 The test results are shown in Table 1, Figure 3, Figure 4 (a) and Figure 4 (b).
表 1 table 1
Figure imgf000010_0001
Figure imgf000010_0001
耐ガス放出性 ◎:非常に良好 〇:良好 X :不良  Outgassing resistance ◎: Very good 〇: Good X: Poor
表 1に示すように、露点温度、混合ガス中の不純物濃度、 酸素濃度、加熱温度 のいずれもが本発明の範囲内にある No. 1, No. 2, No. 6, Ko. 9, Χο. 1 0 (実施例) はいずれも耐ガス放出性に優れていた。 特に露点が一 1 10°C以下である No. 9 (実施例) は一段と耐ガス放出性に優れていた。 なお、 λ'ο. 9 (実施例) は、 415°Cで不動態化処理を行ったものであり、 図 4 (a) の S EM写真に示すように不動態膜は緻密な非晶質の膜となつている 二とがわかる。  As shown in Table 1, all of the dew point temperature, the impurity concentration in the mixed gas, the oxygen concentration, and the heating temperature are within the range of the present invention, No. 1, No. 2, No. 6, Ko. 9, Χο. 10 (Examples) were all excellent in outgassing resistance. In particular, No. 9 having a dew point of 110 ° C or less (Example) was more excellent in outgassing resistance. Note that λ'ο. 9 (Example) was obtained by passivation at 415 ° C. As shown in the SEM photograph of Fig. 4 (a), the passivation film was a dense amorphous film. It can be seen that the film has become two.
以上の実施例に対し、 No. 3 (比較例) は酸素含有量が本発明範囲より多 く、 λ'ο. 4 (比較例) は露点温度が本発明範囲より高く、 また混合ガス中の不 純物濃度が本発明範囲より高く、 No. 5 (比較例) は露点温度が本発明範囲よ り高く、 さらに No. 7は加熱処理温度が高く、 No. 8は加熱処理温度が低い ためいずれも耐ガス放出性は悪かった。 In contrast to the above examples, No. 3 (Comparative Example) had an oxygen content higher than the range of the present invention, and λ'ο. 4 (Comparative Example) had a dew point temperature higher than the range of the present invention. Unfortunate No. 5 (comparative example) has a higher dew point temperature than the present invention, and No. 7 has a higher heat treatment temperature and No. 8 has a lower heat treatment temperature. Also, the outgassing resistance was poor.
なお、 No. 7は、 550°Cで不動態化処理を行ったものであり、 図 4 (b) の S EM写真に示すように、 膜に粒界が明瞭に認められる不動態膜は多結晶膜と な っ ている。 なお、 N 0 . 1 1 は電解研磨を行っ たま ま(as- electoropol ished)、 すなわち不動態化処理を行つていないままのものであり耐 ガス放出性は良くなかった。 産業上の利用可能性  No. 7 was subjected to passivation at 550 ° C. As shown in the SEM photograph of Fig. 4 (b), there were many passivation films where grain boundaries were clearly observed in the film. It is a crystalline film. In addition, N 0.11 was as-electropolished, that is, it had not been subjected to the passivation treatment, and the gas emission resistance was not good. Industrial applicability
本発明によれば、 耐ガス放出性に優れた不動態膜の形成が可能となる。  According to the present invention, it is possible to form a passivation film having excellent gas release resistance.

Claims

請求の範囲 The scope of the claims
1. 表面粗度が Rm ax 1. 0〃 m以下のステンレス鑭部材を、 露点温度が 一 95°C以下であり、 不純物濃度が 1 Oppb以下である、 酸素を 5 ρρπ!〜 25体積%含有する酸素ガスと不活性ガスとの混合ガス雰囲気中で 300〜 420°Cの温度で加熱することにより不動態膜を形成することを特徴とする不動 態膜の形成方法。 1. A stainless steel member with a surface roughness of Rmax 1.0 1. m or less, a dew point temperature of 195 ° C or less, an impurity concentration of 1 Oppb or less, and oxygen of 5 ρρπ! A method for forming a passivation film, wherein the passivation film is formed by heating at a temperature of 300 to 420 ° C. in a mixed gas atmosphere of oxygen gas and inert gas containing up to 25% by volume.
PCT/JP1992/000160 1991-02-18 1992-02-18 Process for forming passivated film WO1992014858A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP03045867A JP3017301B2 (en) 1991-02-18 1991-02-18 Method of forming passivation film
PCT/JP1992/000160 WO1992014858A1 (en) 1991-02-18 1992-02-18 Process for forming passivated film
US08/081,353 US5407492A (en) 1991-02-18 1992-02-18 Process for forming passivated film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP03045867A JP3017301B2 (en) 1991-02-18 1991-02-18 Method of forming passivation film
JP3/45867 1991-02-18
PCT/JP1992/000160 WO1992014858A1 (en) 1991-02-18 1992-02-18 Process for forming passivated film

Publications (1)

Publication Number Publication Date
WO1992014858A1 true WO1992014858A1 (en) 1992-09-03

Family

ID=26385962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000160 WO1992014858A1 (en) 1991-02-18 1992-02-18 Process for forming passivated film

Country Status (1)

Country Link
WO (1) WO1992014858A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169391A (en) * 1987-01-07 1988-07-13 Kobe Steel Ltd Metal member for semiconductor producing device
JPS6431956A (en) * 1987-07-25 1989-02-02 Tadahiro Omi Manufacture of stainless steel member for semiconductor-manufacturing equipment
JPH01198463A (en) * 1988-02-04 1989-08-10 Tadahiro Omi Stainless steel member for semiconductor-manufacturing equipment and its production
JPH0243353A (en) * 1988-08-04 1990-02-13 Tadahiro Omi Device and method for metal oxidation treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169391A (en) * 1987-01-07 1988-07-13 Kobe Steel Ltd Metal member for semiconductor producing device
JPS6431956A (en) * 1987-07-25 1989-02-02 Tadahiro Omi Manufacture of stainless steel member for semiconductor-manufacturing equipment
JPH01198463A (en) * 1988-02-04 1989-08-10 Tadahiro Omi Stainless steel member for semiconductor-manufacturing equipment and its production
JPH0243353A (en) * 1988-08-04 1990-02-13 Tadahiro Omi Device and method for metal oxidation treatment

Similar Documents

Publication Publication Date Title
JP2768952B2 (en) Metal oxidation treatment apparatus and metal oxidation treatment method
JP3045576B2 (en) Method of forming passive film on stainless steel and stainless steel
JP3017301B2 (en) Method of forming passivation film
WO2018180655A1 (en) Dry etching method, semiconductor element manufacturing method, and chamber cleaning method
US6612898B1 (en) Method for forming oxidation-passive layer, fluid-contacting part, and fluid feed/discharge system
JP7187700B2 (en) System and method for storage and delivery of F3NO-free FNO gas and F3NO-free FNO gas mixtures for semiconductor processing
TW201715603A (en) Dry etching method, method for manufacturing semiconductor element and chamber cleaning method
JP2976301B2 (en) Stainless steel, its manufacturing method and pressure reducing device
JP2018107438A (en) Method for surface treatment of metal member, and method for manufacturing semiconductor element
TWI793417B (en) Metal removal method, dry etching method, and manufacturing method of semiconductor element
JPH0548295B2 (en)
JP2976333B2 (en) Stainless steel, its manufacturing method and pressure reducing device
JP2867376B2 (en) Metal material having fluorinated passivation film formed thereon, gas apparatus using the metal material, and method of forming fluorinated passivation film
WO1992014858A1 (en) Process for forming passivated film
US5906688A (en) Method of forming a passivation film
TWI765581B (en) Dry etching method, manufacturing method of semiconductor element, and cleaning method
JP2783128B2 (en) Stainless steel member for clean room and method of manufacturing the same
TW200414288A (en) Method for cleaning a process chamber
TW202141617A (en) Etching method
JPH04333570A (en) Method for cleaning silicon nitiride with gaseous hf
JP2559195B2 (en) Use of oxalyl chloride for producing chloride-doped silicon dioxide films on silicon substrates
JPH10298734A (en) Stainless steel, its manufacturing method and pressure reducing device
JPWO2019188030A1 (en) Substrate processing gas, storage container and substrate processing method
KR20240038985A (en) Etching method and manufacturing method of semiconductor device
JP3084306B2 (en) Method of forming fluorinated passivation film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 08081353

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2100751

Country of ref document: CA

122 Ep: pct application non-entry in european phase