明 細 書 Specification
蓄圧式燃料噴射装 s 技術分野 Accumulator type fuel injection device s Technical field
この発明は、 ディーゼルエンジン等に用いられる蓄圧式燃料噴射 装置に閬するものである。 背景技術 The present invention relates to an accumulator type fuel injection device used for a diesel engine or the like. Background art
従来、 例えば、 特開昭 5 9 - 1 6 5 8 5 8号公報にて示されてい るように、 ディーゼルエンジン用燃料噴射装置の 1つとして、 蓄圧 式燃料噴射装置がある, これは、 コモンレールと呼ばれる一種のサ ージタンクに高圧ポンプからの高圧燃料を蓄圧し、 これを噴射弁の 開弁によりエンジンに噴射供給するものである, 又、 この種の装置 において、 特開昭 6 0 - 1 5 9 3 6 6号公報では噴射弁に安全装 S を設け、 噴射弁の破損等により所定量以上の燃料が噴射弁に供耠さ れると镲料筷耠通路を塞ぐものが示されている, Conventionally, as shown in, for example, Japanese Patent Application Laid-Open No. 59-16858-58, as one of the fuel injection devices for diesel engines, there is a pressure-accumulation type fuel injection device. A high-pressure fuel from a high-pressure pump is stored in a type of surge tank called a surge tank, and this is injected and supplied to the engine by opening an injection valve. In Japanese Patent Publication No. 9 3656, a safety device S is provided for the injection valve, and the fuel passage is closed when a predetermined amount or more of fuel is supplied to the injection valve due to damage to the injection valve.
しかしながら、 このようなコモンレールと呼ばれる蓄圧配管には, 高圧供給ポンプのカム機構によって極めて高い圧力 (例えば 1 5 0 M P a ) にまで昇圧された燃料が蓄圧されているため、 髙圧供給ポ ンプからコモンレールを介して噴射弁に至るまでの超高圧流路のど こかが破損して高圧燃料が外部に淀出する可能性、 あるいは 1 つの 気筒の噴射弁により生じた反射波がコモンレールを介して他の気筒 に伝播され、 その気筒のイ ンジュクタの開閉時期に彩響を与え、 噴 射量, 噴射時期がばらついてしまう可能性が高いという問題があつ た。 However, since the fuel pressurized to a very high pressure (for example, 150 MPa) by the cam mechanism of the high-pressure supply pump is stored in such a pressure accumulation pipe called a common rail, the pressure from the low-pressure supply pump is high. There is a possibility that the high-pressure flow path up to the injection valve via the common rail will be damaged and the high-pressure fuel will spill outside, or the reflected wave generated by the injection valve of one cylinder will be transmitted to the other via the common rail. This has the problem that it is likely to be propagated to the cylinder and affect the opening and closing timing of the injector in that cylinder, and that the injection amount and injection timing will vary.
本発明は.. コモ ンレール周辺の高圧燃料通路 (例えばコモ ンレー ルと噴射弁との間の噴射管, 高圧供給ポンプとコモンレールとの簡 の供給管) が破損した場合でもコモンレール内に高圧燃料を保持し
ておく機構、 あるいは鬲圧燃料の脈動の発生を防ぐ機構を設けるこ とによってシステムの信頼性を向上することを目的とするものであ る 発明の開示 The present invention provides a method for supplying high-pressure fuel into the common rail even if the high-pressure fuel passage around the common rail (for example, the injection pipe between the common rail and the injection valve, or the simple supply pipe between the high-pressure supply pump and the common rail) is broken. Hold The purpose of the present invention is to improve the reliability of the system by providing a mechanism for preventing the occurrence of pulsation of the fuel under pressure or a mechanism for preventing pulsation of the fuel under pressure.
このため、 第 1発明では、 コモンレールからイ ンジヱクタへ淀れ る燃料量が所定值以上となるとこの燃料の流れを停止させる機構を 備えている, For this reason, the first invention is provided with a mechanism for stopping the flow of fuel when the amount of fuel stagnation from the common rail to the injector exceeds a predetermined amount.
また、 第 2発明では、 コモンレールから高圧ポンプへの燃料の逆 淀を阻止する機構を備えている。 In the second invention, a mechanism is provided for preventing fuel from stagnation from the common rail to the high-pressure pump.
また、 第 3癸明では、 ィ ンジ クタからコモンレールへの燧料の 逆法を阻止する機構を備えている。 In addition, the No. 3 Kiyoshi has a mechanism to prevent the reverse of flutter from the injector to the common rail.
また、 第 4発明は、 第 1発明と第 3発明の機構を組合せたもので ある。 図面の簡単な説明 The fourth invention is a combination of the mechanisms of the first invention and the third invention. BRIEF DESCRIPTION OF THE FIGURES
図 ί は第 1 の実旌例の全体瑭成図、 図 2 はィ ンジェクタの断面図、 図 3は逆止弁の断面図、 図 4は逆止弁の作勐を示す断面図、 図 5 は 安全装置の断面図、 図 6は安全装置の作動を示す断面図、 図 7は時 簡 t と噴射期簡 c との閩係を示す特性図、 図 8は時間 t と噴射量 q との関係を示す特性図、 図 9は時闉 t とボール 5 7の移動量 X との 鬨係を示す特性図、 図 1 0は安全装 Sの他の例を示す断面図、 図 1 1 は安全装置と逆止弁とを組合せた実施例の断面図、 図 1 2 , 1 3 は図 1 1 の実施例の変形例、 図 1 4は第 3の実施例の断面図、 図 1 5は第 4の実施例の全体構成図である, 発明を実施するための最良の形 H Fig. 2 shows the overall composition of the first example, Fig. 2 shows a cross-sectional view of the injector, Fig. 3 shows a cross-sectional view of the check valve, Fig. 4 shows a cross-sectional view showing the operation of the check valve, and Fig. 5 Is a cross-sectional view of the safety device, FIG. 6 is a cross-sectional view showing the operation of the safety device, FIG. 7 is a characteristic diagram showing the relationship between the time t and the injection period c, and FIG. 8 is a diagram showing the relationship between the time t and the injection amount q. FIG. 9 is a characteristic diagram showing the relationship between the time t and the movement amount X of the ball 57, FIG. 10 is a cross-sectional view showing another example of the safety equipment S, and FIG. Sectional view of an embodiment in which the device and the check valve are combined, FIGS. 12 and 13 are modified examples of the embodiment of FIG. 11, FIG. 14 is a sectional view of the third embodiment, and FIG. FIG. 4 is an overall configuration diagram of the embodiment of FIG. 4;
以下、 この発明を具体化した一実旄例を図面に従って鋭明する。
図 1 には本実施例のディーゼル機閟用燃料噴射装置の全体構成を 示すとともに、 図 2にはェンジンの各気筒の燃焼室毎に設けられた イ ンジェクタ 3 6を示す, Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows the overall configuration of the fuel injection device for diesel engines of this embodiment, and Fig. 2 shows the injectors 36 provided for each combustion chamber of each engine cylinder.
図 2において、 下都のケーシング部材 1 はボディ αァ 2 と連桔邬 3 とノ ズルボデー 4 とからなり、 リ テーユングナッ ト 5 により各部 材 2 , 3 , 4が一体化されている · そのノ ズルボデー 4内には弁体 摺動孔 6及び燃料溜り室 7が形成され、 先端にはその燃料潘り室 7 に連通するノズル孔 8が形成されている, 上記弁体摺動孔 6 にはノ ズルニー ドル 9 の大柽部 1 0が摺動自在に嵌合されている, このノ ズルニードル 9の大柽部 1 0には速桔部 1 1が形成されるとともに、 下方先端部には小径部 1 2及び弁体部 1 3がー体形成されている そして、 この弁体部 1 3により シー ト部 Xが開閉されノ ズル孔 8か らの噴射がォン · オフされる, In FIG. 2, the casing member 1 in the lower part of the city is composed of a body α 2, a chain 3 and a nozzle body 4, and the components 2, 3, 4 are integrated by a retaining nut 5. A valve body sliding hole 6 and a fuel reservoir 7 are formed in 4, and a nozzle hole 8 communicating with the fuel panning chamber 7 is formed at the end of the valve body sliding hole 6. The large diameter portion 10 of the slip needle 9 is slidably fitted. The large diameter portion 10 of the nozzle needle 9 has a speed adjustment portion 11 and a small diameter portion at the lower end. 12 and the valve body 13 are formed, and the seat X is opened and closed by the valve body 13, and the injection from the nozzle hole 8 is turned on / off.
上記ノ ズルニー ドル 9 の速桔部 1 1 の先端には、 フラ ンジ 1 4及 びビス ト ンビン 1 5がー体的に連結されるとともに、 ビス トンビン ί 5の端部にはビス ト ン 1 6が配置されている。 又、 ノ ズルニード ル 9 は、 ノ、'ネ 1 7により閉方向に付勢されている。 前記ビス ト ン 1 6 はボディ ロア 2に形成されたシリ ンダ 1 8内に摺動自在に嵌合さ れ、 又、 シリ ンダ 1 8内には前記ビス トン 1 6の先端部を臨ませる 圧力制御室 1 9が形成されている。 Flange 14 and biston bin 15 are physically connected to the tip of the speed connector 11 of the nozzle needle 9, and biston 1 is attached to the end of the biston bin ί5. 6 are located. Nozzle needle 9 is urged in the closing direction by no. The piston 16 is slidably fitted in a cylinder 18 formed in the body lower 2, and a pressure is applied inside the cylinder 18 so that the tip of the biston 16 is exposed. A control room 19 is formed.
圧力制御室 1 9上都にはオリ フィ スを有するプレー ト弁 2 0が設 けられるとともに、 そのプレート弁 2 0を押圧するパネ 2 1が配設 されている。 A plate valve 20 having an orifice is provided above the pressure control chamber 19, and a panel 21 for pressing the plate valve 20 is provided.
前記ボディ ロア 2上には三方制御弁 2 2 (電磁弁) を有する上部 のケーシング部材 2 3が密着接耪されている, 即ち、 円筒形状の ディアツパ 2 4をボディ ロア 2に蠑着し、 そのボディァッパ 2 4 の 内部孔に三方弁ボディ 2 5を配置しリチーニングナッ ト 2 6がボデ ィアツパ 2 4の内部孔内に鳏入されている。
前記 S方弁ボディ 2 5内にァウタバルブ 2 7が摺動自在に嵌合さ れ、 そのァウタバルブ 2 7の内部孔にはィ ンナバルブ 2 8が配置さ れている。 そして、 コイル 2 9が消磁されているときにはァゥタパ ルブ 2 7はバネ 3 0の力により下方位 fiにあり、 高圧倒通路 3 1 と 圧力制铒室 1 9 とが油通路 3 2を介して速通される。 又、 コイル 2 9が励磁されているときにはァウタバルブ 2 7は上勖し、 圧力制御 室 1 9 と ドレイ ン通路 (低圧倒通路) 3 3 とが油通路 3 2を介して 連通される β An upper casing member 23 having a three-way control valve 22 (solenoid valve) is in close contact with the body lower 2, that is, a cylindrical diasper 24 is extended to the body lower 2, The three-way valve body 25 is arranged in the internal hole of the body upper 24, and the refining nut 26 is inserted into the internal hole of the body-upper 24. An outer valve 27 is slidably fitted in the S-side valve body 25, and an inner valve 28 is disposed in an inner hole of the outer valve 27. When the coil 29 is demagnetized, the agitator valve 27 is at the lower position fi due to the force of the spring 30, and the high-pressure inverted passage 31 and the pressure control chamber 19 are rapidly moved through the oil passage 32. Passed. Moreover, beta communicated via Autabarubu 2 7 is Ue勖, the pressure control chamber 1 9 and drain passage (low overwhelmed passage) 3 3 Togaabura passage 3 2 when the coil 2 9 is energized
前記下都のケーシング部材 1 には燃料供給通路 3 4が形成され、 その一端がケーシング部材 (ボディ ロア 2 ) 1の表面に露出され、 他端が前記燃料潘り室 7に速通されるとともに、 上部のケーシング 部材 2 3の ¾圧倒通路 3 1に速通されている, さらに、 その下部の ケーシング部材 (ボディ αァ 2 ) 1 の表面部においてイ ンレッ ト 3 5が螺入され、 燃料供耠通路 3 4 と連通している · A fuel supply passage 34 is formed in the lower casing member 1, one end of which is exposed to the surface of the casing member (body lower 2) 1, and the other end of which is quickly passed through the fuel pan chamber 7. The upper casing member 23 is quickly passed through the overturning passage 31 of the upper casing member 23. Further, an inlet 35 is screwed into the surface of the lower casing member (body α 2) 1 to supply fuel.て い る Communicating with passages 3 4 ·
そして、 後述する蓄圧配管 (コモンレール) 3 8の高圧燃料は前 記イ ンレツ ト 3 5 , 隳料拱給通路 3 4を介して镲料潘り室 7 に供給 されるとともに、 三方制御弁 2 2に供耠される。 又、 前記ドレイ ン 通路 3 3 の燃料は ドレイ ンタ ンクに抜く ことができるようになって いる。 従って、 圧力制御室 1 9に対して高圧の燃料が供給されてい るときにはこの圧力を受けてピス トン 1 6からノズルニー ドル 9に 加わる閉弁方向の力が燃料湣り室 7の圧力によって開弁方向に加わ る力を上面ってノズルニードル 9はノズル孔 8を閉じている。 この 状態からミ方制御弁 2 2が制御され圧力制御室 1 9が低圧側の ドレ ィ ン通路 3 3 と連通して、 圧力制御室 1 9の燃料が低圧倒に流出す ることによりノ ズルニー ドル 9が開弁方向に移動して燃料が噴射さ れるこ ととなる。 このとき、 液圧はブレーキ弁 2 0 のオリ フィスの 作用によりゆっ く り降下する * The high-pressure fuel in the pressure accumulation pipe (common rail) 38 described later is supplied to the fuel pan chamber 7 through the inlet 35 and the fuel supply passage 34, and the three-way control valve 22 Supplied to Further, the fuel in the drain passage 33 can be drained to the drain tank. Therefore, when high-pressure fuel is supplied to the pressure control chamber 19, the valve 16 receives the pressure and the force in the valve closing direction applied from the piston 16 to the nozzle needle 9 opens the valve due to the pressure in the fuel outlet chamber 7. The nozzle needle 9 closes the nozzle hole 8 with an upward force applied in the direction. In this state, the control valve 22 is controlled, the pressure control chamber 19 communicates with the drain passage 33 on the low pressure side, and the fuel in the pressure control chamber 19 flows out at a low pressure. Dollar 9 moves in the valve opening direction and fuel is injected. At this time, the fluid pressure slowly drops due to the action of the orifice of the brake valve 20 *
図 1に示すように、 このような各気筒毎のイ ンジ クタ 3 6 は噴
射管 3 7を介して各気筒共通の高圧の蓄圧配管 3 8に接続されてい る。 この蓄圧配管 3 8 には供耠管 3 9 , チ ックバルブ 4 0を介し て高圧供耠ポンプ 4 1が接核されている, この高圧供耠ポンプ 4 1 は燃料タンク 4 2から低圧燃料ポンプ 4 3を経て吸入された燃料を 所定の高圧に昇圧し、 所定高圧に制御するものである。 即ち、 ェ ン ジン 4 4の回転に同期してカム 4 5が回転しシリ ンダ 4 6内のビス トン 4 7が往動して低圧供給ポンプ 4 3からの燃料が加圧され、 蓄 圧配管 3 8に供耠される。 又、 高圧供耠ポンプ 4 1 には常に蓄圧 E 管 3 8 の圧力を所定圧力に制御するため、 すなわち蓄圧配管 3 8 に 圧送する«射量を制御するため、 ピス ト ン 4 7の圧送行程中所定の タイ ミ ングで閉弁する吐出量制鑼用電磁弁 4 8を備えている。 As shown in Fig. 1, such an injector 36 for each cylinder is It is connected to a high-pressure accumulator pipe 38 common to each cylinder via a firing pipe 37. The high-pressure supply pump 41 is connected to the pressure-accumulation pipe 38 via a supply pipe 39 and a tick valve 40. The high-pressure supply pump 41 is connected to the low-pressure fuel pump 4 from the fuel tank 42. The fuel sucked in through 3 is pressurized to a predetermined high pressure and controlled to a predetermined high pressure. That is, the cam 45 rotates in synchronism with the rotation of the engine 44, and the biston 47 in the cylinder 46 moves forward to pressurize the fuel from the low-pressure supply pump 43, thereby accumulating pressure. Supplied to 3-8. Also, the high-pressure supply pump 41 always controls the pressure of the pressure accumulating E pipe 38 to a predetermined pressure, that is, in order to control the amount of radiation to be pressure-fed to the pressure accumulating pipe 38, the pumping stroke of the piston 47. It is equipped with a solenoid valve 48 for controlling the discharge rate that closes at a predetermined time.
電子制御ユニッ ト (以下、 E C Uという) 4 9は気筒判別セ ンサ 5 0 , ク ラ ンク角センサ 5 1及び食荷センサ 5 2より面転数と負荷 の情報が入力され、 これらの悟号より判断されるエンジン状舷に応 じて決定される最適の噴射時期, 噴射量 (噴射時藺) となるように E C U 4 3は三方制镩弁 2 2 に制御信号を出力する, The electronic control unit (hereinafter referred to as ECU) 49 receives information on the number of surface turns and load from the cylinder discrimination sensor 50, crank angle sensor 51, and food load sensor 52, and receives these information. The ECU 43 outputs a control signal to the three-way control valve 22 so that the optimum injection timing and injection amount (injection rush) determined according to the determined engine side can be obtained.
さらに、 蓄圧配管 3 8の圧力を検出する圧力センサ 5 3が蓄圧配 管 3 8に配設され、 E C U 4 9はこのセンサ 5 3の信号が予め負荷 や面転数に応じて設定した最適植となるように吐出量を制御する。 即ち、 圧力の負^運制御を行なって、 より精密な圧力設定を行なう ようになつている, この吐出量は高圧供給ポンプ 4 1 の吐出タイ ミ ング T Fを早めれば多くなる, Further, a pressure sensor 53 for detecting the pressure of the pressure accumulating pipe 38 is provided in the pressure accumulating pipe 38, and the ECU 49 transmits the signal of the sensor 53 to an optimal plant which is set in advance according to the load and the number of surface turns. The discharge amount is controlled so that In other words, a more precise pressure setting is performed by performing negative pressure control of the pressure. The discharge amount increases when the discharge timing TF of the high-pressure supply pump 41 is advanced,
噴射管 3 7の途中には逆止部材としての逆止弁 8 2が設けられて いる。 この逆止弁 8 2 は図 3に示すように、 ハンジング 8 3内に燃 料通路 8 4 . 弁体収納室 8 5 , 燃料通路 8 6が形成されている。 弁 体収納室 8 5 にはボール弁 8 7が配置されるとともに、 ボール弁 8 7を弁座 8 8に付勢するパネ 8 9が配設されている。 燃料通路 8 4 は噴射弁 3 6 に速通する噴射管 3 7 aに接繞されるとともに、 燃料
通路 8 6は蓄圧配管 3 8に違通する噴射管 3 7 bに接統されている。 逆止弁 8 2 のパネ 8 9はそのセッ ト荷重をコモンレール内圧最小 植 P 黼 i n とボール弁受圧面積 A 1 の稹 (= P *in « A 1 ) より小さ く設定してあり、 蓄圧配管 3 8の内圧によりボール弁 8 7をリフ ト し、 作動時は燃料が通通する, 又、 バネ 8 9の最大荷重は、 蓄圧配 管内圧最大値 P 麵 ax とボール弁受圧面積 A 1 の値 ( = P «ax ♦ A 1 ) より大き く設定され、 P «aX となってもボール弁 8 7 は上方の燃料 通路 8 4を塞がないようになっている。 In the middle of the injection pipe 37, a check valve 82 as a check member is provided. As shown in FIG. 3, the check valve 82 has a fuel passage 84, a valve body storage chamber 85, and a fuel passage 86 formed in a housing 83. A ball valve 87 is disposed in the valve body storage room 85, and a panel 89 for urging the ball valve 87 to the valve seat 88 is disposed. The fuel passage 84 is surrounded by an injection pipe 37a that is quickly connected to the injection valve 36, and The passage 86 is connected to an injection pipe 37 b communicating with the pressure accumulation pipe 38. Panels 89 of the check valve 82 have their set load set to be smaller than the common rail internal pressure minimum planting pressure P in and the ball valve pressure receiving area A 1 稹 (= P * in «A 1). The ball valve 87 is lifted by the internal pressure of 38, and the fuel passes when activated. The maximum load of the spring 89 is the maximum value of the accumulator piping internal pressure P 麵 ax and the value of the ball valve receiving pressure area A 1 (= P «ax ♦ A 1), so that even if P« a X , the ball valve 87 does not block the upper fuel passage 84.
そして、 イ ンジ クタ 3 6による燃料噴射が終了し、 噴射管 3 7 内にイ ンジ クタ 3 6倒から薔圧 S管 3 8への反射波が発生したと きには、 ポール弁 8 7が閉じ反射波が蓄圧配管 3 8内部に伝播する のが防止される * これにより、 噴射時期 ·噴射量のばらつきの原因 となる気筒簡の干渉 (蓄圧配管内の圧力変更) を防止できる β Then, when the fuel injection by the injector 36 ends and a reflected wave from the injector 36 falls to the rose pressure S pipe 38 in the injection pipe 37, the pole valve 87 is activated. reflected wave * Thus to be prevented from propagating inside the accumulator pipe 3 8 closed, interference of the cylinder easy to cause variation in the injection timing and injection quantity (pressure changes in the accumulator piping) can be prevented β
図 5に示すように、 蓄圧配管 3 8 と噴射管 3 7 との間には、 安全 装置 (フローリ ミ ッタ) 5 4が設けられている。 As shown in FIG. 5, a safety device (flow limiter) 54 is provided between the pressure accumulation pipe 38 and the injection pipe 37.
この安全装 S 5 4 は、 1¾部に Φ空円筒孔 6 0を有するハウジング 5 8 と、 中空円筒孔 6 0内に配 Sされ、 蓄圧配管 3 8から供給され る燃料量に応じて移動するビス ト ン 5 9 と、 このピス ト ン 5 9の蓄 圧配管 3 8倒の位置を規制する圧入された規制部材 6 2 と、 ビス ト ン 5 9 と一体的に移勖するボール弁 5 7 と、 このボール弁 5 7を蓄 圧配管 3 8倒へ付勢するスプリ ング 6 1 と、 ボール弁 5 7 とスプリ ング 6 1 との閽でボール弁 5 7及びスプリ ング 6 1を接铙保持する リテーナ 6 3 とを有している。 また、 中空円筒孔 6 0の噴射管 3 7 倒には、 圧入孔 6 4が形成されており、 この圧入孔 6 4の孔径はボ ール弁 5 7の外径より小さく設定されている * なお、 規制部材 6 2 にはオリ フィ ス 5 5 a , 5 5 , ビス ト ン 5 9にはオリ フィ ス 5 6 がそれぞれ形成されている。 The safety device S54 is provided in a housing 58 having a hollow cylindrical hole 60 in the 1¾ section and in the hollow cylindrical hole 60, and moves according to the amount of fuel supplied from the pressure accumulation pipe 38. The piston 59, the pressure accumulating pipe 3 8 of the piston 59, a press-fitted regulating member 62 that regulates the position of the piston 59, and a ball valve 57 that moves integrally with the piston 59 The ball valve 57 and the spring 61 are connected to and held by the spring 61 that urges the ball valve 57 toward the pressure accumulation pipe 38 and the ball valve 57 and the spring 61. And a retainer 63. A press-fit hole 64 is formed in the injection pipe 37 of the hollow cylindrical hole 60, and the diameter of the press-fit hole 64 is set smaller than the outer diameter of the ball valve 57 *. The restricting member 62 has orifices 55 a and 55, and the piston 59 has orifices 56.
次に、 この安全装置 5 4の作動を鋭明する,
図 7〜図 9は安全装置 5 4における燃料の噴射期間 c , 燃料の噴 射量 qおよびボール 5 7の移勳量 Xのタイムチャー トを示す. Next, the operation of the safety device 54 is sharpened, 7 to 9 show time charts of the fuel injection period c, the fuel injection amount q, and the transfer amount X of the ball 57 in the safety device 54.
この安全装 S 5 4において、 通常 (正常) 時は、 イ ンジュクタ 2 2の作動に伴い、 その噴射量に応じた燃料が蓄圧 E管 3 8から安全 装置 5 4内に涑入する。 この燃料は、 規制部材 6 2のオリフィ ス 5 5 a , 5 5 bからハウジング 5 8内に淀入し、 その淀量に じてビ ス ト ン 5 9を移動させる, また、 このピス ト ン 5 9 の移動に伴い、 ボール 5 7 も移動する, このボール 5 7の移動量は、 通常の作動状 舷においては、 その燃料の流れによる移動量) がボール 5 7の中心 から圧入孔までの钜離に対応した許容値 Xを越えないように設定さ れている, そのため、 ビス ト ン 5 9 のオリ フィス 5 6から流入した 燃料は、 ボール 5 7 の周囲を通遇して、 圧入孔 6 4へ通遇し、 噴射 管 3 7内を通通する, そして、 噴射管 3 7からイ ンジュクタ 2 2へ 供給される, In the safety device S54, during normal (normal) operation, the fuel corresponding to the injection amount flows into the safety device 54 from the pressure accumulating E pipe 38 with the operation of the injector 22. The fuel enters the housing 58 from the orifices 55a and 55b of the regulating member 62, and moves the piston 59 according to the amount of the stagnation. With the movement of 59, the ball 57 also moves. The amount of movement of the ball 57 in the normal operating side is the amount of movement due to the flow of fuel (from the center of the ball 57 to the press-fit hole). It is set so as not to exceed the allowable value X corresponding to the separation. Therefore, the fuel flowing from the orifice 56 of the piston 59 passes through the periphery of the ball 57 and is pressed into the press-in hole. 6 and pass through the injection pipe 37, and is supplied from the injection pipe 37 to the injector 22.
一方、 例えば、 E C U 4 9のマイコ ンのプログラム中にバグが発 生したり、 あるいは三方制钿弁 2 2の異常が生じたりすることで、 イ ンジュクタ 3 6 の噴射時簡が長くなり、 ボール 5 7 の移動量 Xが 許容値 Xを越えると、 ボール 5 7は図 4に示すように圧入孔 6 4内 に圧入され恒久的に係止される。 そのため、 安全装置 5 4 はィ ンジ クタ 3 6への燃料の供給を完全に停止する。 On the other hand, for example, when a bug occurs during the program of the microcomputer of the ECU 49 or an abnormality occurs in the three-way control valve 22, the injection time of the injector 36 becomes longer, and When the movement amount X of 57 exceeds the allowable value X, the ball 57 is pressed into the press-fit hole 64 as shown in FIG. 4 and is permanently locked. Therefore, the safety device 54 completely stops the supply of fuel to the injector 36.
また、 安全装 5 4 は、 蓄圧配管 3 8 と噴射管 3 7 との闥に配置 されているので、 噴射管 3 7に破損が生じたとしても、 安全装置 5 4によって、 イ ンジュクタ 3 6が故障した場合と同様に、 噴射管 3 7への燃料の供給が完全に停止される · In addition, since the safety device 54 is disposed in the bridge between the pressure accumulation pipe 38 and the injection pipe 37, even if the injection pipe 37 is damaged, the safety device 54 allows the injector 36 to be operated. As in the case of failure, the supply of fuel to the injection pipe 37 is completely stopped.
従って、 イ ンジュクタ 3 6の故障のみならず、 噴射管 3 7 の破損 に対しても、 安全装置 5 4によって、 蓄圧配管 3 8からィ ソ ジェ ク タ 3 6への燃料の供給を停止することができ、 安全性が大幅に向上 する。
次に、 安全装 S 5 の他の実 ¾例を図 1 0を用いて鋭明する。 図 5に示す実旌例では、 ボール 5 7が圧入孔 6 4に圧入されると、 恒久的にィ ンジ Λクタ 3 6への燃料の供耠を俘止するようにしたが、 この実施例では安全装 S 5 を流れる燃料量が一時的に許容值を越 えた場合には一時的にィ ンジ クタ 3 6への燃料の供耠を停止する とともに、 連耪的に許容値を越えた場合には恒久的に燃料の供耠を 停止するようにしたものである, Therefore, not only the failure of the injector 36 but also the damage of the injection pipe 37, the supply of fuel from the pressure accumulation pipe 38 to the isojector 36 must be stopped by the safety device 54. And safety is greatly improved. Next, another example of the safety device S5 will be sharpened using FIG. In the real旌例shown in FIG. 5, when the ball 5 7 is pressed into the press hole 6 4, although the Kyo耠of fuel to the permanent Nyi Nji Λ Kuta 3 6 so as to俘止, this embodiment In the case where the amount of fuel flowing through the safety device S5 temporarily exceeds the allowable limit, the supply of fuel to the injector 36 is temporarily stopped, and when the amount of fuel continuously exceeds the allowable value. In order to stop the fuel supply permanently,
すなわち、 図 1 0に示すように、 ハウジング 1 5 8内にボール 1 5 7が着座するシー ト部 1 6 7および通路 1 6 9を有するシー ト部 it 1 6 8を移勖可能に配設するとともに、 このシー ト部材 1 6 8 は リターンスプリ ング 1 6 5 によって付勢されている。 圧入孔 1 6 4 の孔柽は、 ポール 1 5 7の外径よりも大き く設定されるとともに、 ビス トン 1 5 9の外径より小さ く設定されている。 スプリ ング 1 6 1および 1 6 5は、 燃料通路 1 6 6を有するスぺーサ 1 7 2によつ て保持されている, この実施例によれば、 安全装 g l 5 4を淀れる 燃料 ¾が一時的に許容値を越えた場合には、 ビス ト ン 1 5 9および ボール 1 5 7が移動してシート部材 1 6 8のシー ト部 1 6 7に着座 してイ ンジヱクタ 3 6への燃料の供耠が一時的に停止される。 そし て、 この状 IIから安全装 S 1 5 4を流れる燃料量が許容範囲以内に 戻ると、 それに伴いビス トン 1 5 9およびボール 1 5 7 もスブリ ン グ 1 6 1 によって戻され、 蓄圧配管 3 8からの燃料が安全装置 1 5 4を通って再びィ ンジヱクタ 3 6へ供給されることになる。 That is, as shown in FIG. 10, a seat part 1667 having a ball 157 seated in a housing 158 and a seat part it166 having a passage 169 are provided so as to be movable. At the same time, the sheet member 168 is urged by the return spring 165. The hole of the press-fit hole 164 is set to be larger than the outer diameter of the pole 157 and smaller than the outer diameter of the biston 159. The springs 161 and 165 are held by a spacer 172 having a fuel passage 166. According to this embodiment, the fuel spilling through the safety device gl54 is provided. If the value temporarily exceeds the allowable value, the piston 159 and the ball 157 move to sit on the sheet portion 167 of the seat member 168 and apply a force to the injector 36. Fuel supply is temporarily stopped. Then, when the amount of fuel flowing through the safety device S154 returns to within the allowable range from this condition II, the biston 159 and the ball 157 are also returned by the spring 161, and the accumulator piping The fuel from 38 will be supplied to the injector 36 again through the safety device 15 4.
また、 イ ンジヱクタ 3 6に異常が発生したり、 あるいは噴射管 3 7が破損して連耪的に安全装置 1 5 4内を流れる燃料が許容範囲を 越えると、 ビス ト ン 1 5 9およびボール 1 5 7は移動して、 ピス ト ン 1 5 9は圧入孔 1 6 4に圧入される。 そのため、 ボール 5 7 ®移 動は完全に規制され、 イ ンジュクタ 2 2への燃料の供耠は恒久的に 停止される *
次に、 図 1 の逆止弁 8 2 と安全装 S 5 とを一体にした実施例に ついて説明する, Also, if an abnormality occurs in the injector 36, or if the injection pipe 37 is damaged and the fuel continuously flowing through the safety device 154 exceeds the allowable range, the piston 159 and the ball 157 moves and piston 159 is pressed into press-fit hole 164. Therefore, the movement of the ball 57 ® is completely restricted, and the supply of fuel to the injector 22 is stopped permanently * Next, an embodiment in which the check valve 82 of FIG. 1 and the safety device S5 are integrated will be described.
コモンレール 3 8 と噴射管 3 7 との闥には、 図 1 1 に示すような 安全装 S 2 5 4が設けられている, 安全装置 2 5 は、 導入口 2 5 6 , 中空円筒孔 2 6 0, 圧入孔 2 6 4及び導出口 2 6 5が形成され たハウジング 2 5 8 と、 中空円筒孔 2 6 0に摺動自在に配置された ピス ト ン 2 5 9 と、 ボール弁 2 5 7 と、 ボール弁 2 5 7を鬈入口 2 5 6倒へ付勢するパネ 2 6 6 とを有している。 ピス ト ン 2 5 9 には、 軸方向のオリ フィ ス 2 5 5 と、 径方向通路 2 6 2 とが形成されると ともに、 導入口 2 5 6を閉塞する環状シー ト部 2 6 3が形成されて いる。 The rail between the common rail 38 and the injection pipe 37 is provided with a safety device S254 as shown in Fig. 11. The safety device 25 has an inlet port 256 and a hollow cylindrical hole 26. 0, a housing 258 having a press-fit hole 264 and an outlet 265 formed therein, a piston 259 slidably disposed in the hollow cylindrical hole 260, and a ball valve 257 And a panel 266 for urging the ball valve 257 toward the inlet 265. In the piston 255, an axial orifice 255 and a radial passageway 262 are formed, and at the same time, an annular sheet portion 263 closing the inlet port 256 is formed. It is formed.
次に、 この安全装置 2 5 4の作動を説明する, Next, the operation of the safety device 254 will be described.
この安全装 g 2 5 4において、 通常 (正常) 時は、 イ ンジ 《 クタ 3 6の作動に伴い、 その «射量に応じた燃料がコモンレール 3 8か ら安全装置 2 5 4内へ流入する, In the safety device g 2 54, during normal (normal) operation, the fuel according to the amount of radiation flows into the safety device 2 54 from the common rail 38 according to the operation of the injector 36. ,
この燃料は、 導入口 2 5 6からハウジング 2 5 8 |¾に流入し、 そ の流量に応じてパネ 2 6 6の付勢力に抗してビス ト ン 2 5 9を移動 させる。 また、 このピス ト ン 2 5 9の移動に伴い、 ボール 2 5 7 も 一体的に移動する。 このボール 2 5 7の移動量は、 通常の作動状 I においては、 その燃料の流れにより移動量がボール 2 5 7の中心か ら圧入孔 2 6 4までの鉅離に対応した許容值を越えないように設定 されている。 そのため、 導入口 2 5 6から流入した燃料は、 環状シ ー ト部 2 6 3の外周に形成された環状室 2 6 1 , 柽方向通路 2 6 2 , オリ フィ ス 2 5 5を通って、 ボール 2 5 7の周西を通過し、 導出口 2 6 5内を通遏する。 そして、 導出口 2 6 5から噴射管 3 7を通つ てイ ンジュクタ 3 6へ燃料が供給される。 This fuel flows into the housing 256 through the inlet 256, and moves the piston 259 against the urging force of the panel 266 according to the flow rate. Further, with the movement of the piston 255, the ball 257 also moves integrally. In the normal operation state I, the movement amount of the ball 257 exceeds the allowable distance corresponding to the separation from the center of the ball 257 to the press-fit hole 264 due to the flow of fuel. Not set. Therefore, the fuel flowing from the inlet 256 passes through the annular chamber 261, the 通路 -directional passageway 262, and the orifice 255, which are formed on the outer periphery of the annular sheet portion 263. Passes west of ball 255 and passes through outlet 265. Then, fuel is supplied from the outlet port 26 5 to the injector 36 through the injection pipe 37.
また、 コモンレール 3 8からイ ンジ クタ 3 6へ流入する燃料が 狨少すると、 ボール 2 5 7及びビス ト ン 2 5 9をバネ 2 6 6 の付勢
力によって押し戻され、 環状シー ト都 2 6 3毒入口 2 5 6を閉塞す る そのため、 イ ンジェクタ 3 6による燃料噴射が柊了し、 噴射管 3 7内にィ ンジュクタ 3 6倒から蓄圧配管 3 8への反射波が発生し たときには、 ピス ト ン 2 5 9の環状シー ト部 2 6 3が導入口 2 5 6 を閉塞し、 反射波がコモンレール 3 8内部に伝播するのが防止され ている。 これにより、 噴射時期 · «射量のばらつきの原因となる気 筒間の干渉 (コモンレール 3 8內の圧力変更) を防止できる。 Also, when the amount of fuel flowing from the common rail 38 to the injector 36 is small, the ball 2 57 and the piston 25 9 are urged by the spring 26 6. It is pushed back by the force, and the annular sheet city 26 3 closes the poison inlet 25 6 Therefore, the fuel injection by the injector 36 ends in a holly, and the injection pipe 3 7 falls into the injector 36 and the accumulator pipe 3 When a reflected wave is generated on the common rail 38, the annular sheet part 263 of the piston 25 blocks the inlet 25, preventing the reflected wave from propagating inside the common rail 38. I have. As a result, it is possible to prevent interference between the cylinders (change in the pressure of the common rail 38 な る) that may cause a variation in the injection timing and the injection amount.
一方、 例えば、 E C U 4 9のマイコンプログラム中にバグが発生 したり、 あるいは三方制镩弁 2 2の異常が生じたりすることで、 ィ ジ クタ 3 6の噴射時期が長くなると、 コモンレール 3 8から安全 装置 2 5 4へ淀入する燃料量が增大する。 すると、 ボール 2 5 7及 びビス トン 2 5 9の移動量は許容範囲を超え、 ボール 2 5 7は圧入 孔 2 6 4内に圧入され、 恒久的に係止される。 そのため、 安全装置 2 5 4はイ ンジヱクタ 3 6への燃料の供給を完全に停止する。 On the other hand, if, for example, a bug occurs in the microcomputer program of the ECU 49 or an abnormality of the three-way control valve 22 occurs, and the injection timing of the detector 36 becomes longer, the common rail 38 The amount of fuel entering the safety device 2 5 4 increases. Then, the movement amount of the ball 257 and the biston 259 exceeds the allowable range, and the ball 257 is pressed into the press-in hole 264 and is permanently locked. Therefore, the safety device 25 4 completely stops supplying fuel to the injector 36.
以上のように、 本実旌例によれば、 安全装 IE 2 5 4によって異常 時におけるコモンレール 3 8からイ ンジ Λクタ 3 6への燃料供耠を 停止することができ、 また、 イ ンジヱクタ 3 6による燃料噴射終了 時にビス ト ン 2 5 9の環状シート部 2 6 3が導入口 2 5 6を閉塞す ることで反射波がコモンレール 3 8内に伝播するのを防止できる。 しかも、 この 2つの異なる機構は安全装置 2 5 4内に一体的に構成 されているので、 その組付性は大幅に向上する。 As described above, according to the present embodiment, the safety device IE254 can stop the fuel supply from the common rail 38 to the injector 36 in the event of an abnormality. At the end of fuel injection by 6, the annular sheet portion 2663 of the piston 255 closes the inlet 256, thereby preventing the reflected wave from propagating into the common rail 38. In addition, since these two different mechanisms are integrally formed in the safety device 254, the assemblability is greatly improved.
なお、 本実施例では、 安全装置 2 5 4は、 コモンレール 3 8 と噴 射管 3 7 との間に配置されているが、 コモンレール 3 8からィ ンジ ヱクタ 3 6への燃料配管中であればどの位置であっても良い。 また、 図 1 2に示すように、 ビス トン 2 5 9の靖都をテーバ形状 2 6 7 と して、 II入口 5 6のシー ト面 6 8を蘭閉するようにしても良い。 In the present embodiment, the safety device 254 is disposed between the common rail 38 and the injection pipe 37, but if it is in the fuel pipe from the common rail 38 to the injector 36. Any position may be used. Further, as shown in FIG. 12, the Yasuto of the biston 255 may be formed into a taper shape 267, and the sheet surface 68 of the II entrance 56 may be closed.
次に、 他の実施例を図 1 3に基づいて説明する, Next, another embodiment will be described with reference to FIGS.
図 1 3に示す実施例では、 ピス ト ン 2 5 9に、 方向通路 2 7 3
を形成するとともに、 この通路中にシー ト部 2 7 4を形成し、 かつ このシー ト部 2 7 4を開閉する逆止弁 2 7 0を配したものである。 この逆止弁 2 7 0 は、 プラ ンジャバルブ 2 7 2 とスプリ ング 2 7 1 とから構成され、 コモンレール 3 8俚からイ ンジヱクタ 3 6側への 燃料の流れに対して開弁し、 イ ンジュクタ 3 6側からコモ ンレール 3 8倒への圧力伝攆に対して閉弁するよう構成されており、 図 1 1 に示される実旌例と同様の効果を有する, In the embodiment shown in FIG. 13, the piston 25 9 has a directional passage 2 7 3 And a sheet part 274 is formed in the passage, and a check valve 270 for opening and closing the sheet part 274 is provided. The check valve 270 is composed of a plunger valve 272 and a spring 271 and opens when the fuel flows from the common rail 38 to the injector 36 side. The valve is configured to close against pressure transmission from the 6 side to the common rail 38, and has the same effect as the example shown in FIG. 11.
次にィ ンジ Λクタの相互干渉を防止することのみを狙った図 1 4 の実旌例について説明する Λ It will now be described real旌例in FIG 4 aimed only to prevent mutual interference of the I Nji Λ Kuta Λ
コモンレール 3 8内において、 噴射管 3 7 との接繞部には、 逆止 弁 3 6 2が設けられている。 すなわち、 図 1 4に示すようにコモ ン レール 3 8内には、 弁体収納室 3 6 5が、 コモンレール 3 8 の内部 通路 3 8 aに連通して形成されている · この弁体収納室 3 6 5内に は、 コモンレール 3 8から賓射管 3 7への燃料の法れのみ許容し、 噴射管 3 7からコモンレール 3 8への燃料の淀れを «断するプラ ン ジャバルブ 3 6 6 とスプリ ング 3 6 7 とから構成される逆止弁 3 8 2 と、 ブラ ンジャバルブ 3 6 6が鼸着するシー ト座 3 6 9を有する シー ト都材 3 6 8 とが設けられており、 噴射管 3 7に接接される燃 料継手 3 7 0がコモンレール 3 8へねじ込まれることによってシー ト部材 3 6 8 は固定され、 スプリ ング 3 6 7は保持される, In the common rail 38, a check valve 362 is provided at a portion in contact with the injection pipe 37. That is, as shown in FIG. 14, the valve body storage chamber 365 is formed in the common rail 38 so as to communicate with the internal passage 38 a of the common rail 38. The plunger valve 3 6 6 allows the fuel to flow only from the common rail 38 to the guest pipe 37 and prevents the fuel from flowing from the injection pipe 37 to the common rail 38. And a spring 367, and a sheet material 3668 having a seat 369 on which the plunger valve 366 is attached. By screwing the fuel joint 370 in contact with the injection pipe 37 into the common rail 38, the seat member 368 is fixed, and the spring 366 is held.
上記プランジャバルブ 3 6 6は、 噴射管 3 7の燃料圧を着座によ つてコモ ンレール 3 8へ吸い戻す機能を有する。 The plunger valve 366 has a function of sucking the fuel pressure of the injection pipe 37 back to the common rail 38 by seating.
逆止弁 3 6 2 のスプリ ング 3 6 7 はそのセ ッ ト荷重をコモンレー ル内圧最小値 P讓 i n とブラ ンジャバルブ 3 6 6の受圧面積 A 1 の積 ( = P a i n · A 1 ) より小さ く設定してあり、 コモンレール内圧に よりブラ ンジャバルブ 3 6 6をリ フ ト し、 作動時は燃料が通過する * 又、 スプリ ング 3 6 7 の最大荷重は、 コモンレール内圧最大値 P max とブランジャバルブ 6 6の受圧面積 A 1 の積 ( - Ρ ·3 χ · A 1 ) よ
り大き く設定されている。 The spring 367 of the check valve 362 has its set load smaller than the product of the minimum common rail internal pressure P Plesin and the pressure receiving area A1 of the plunger valve 366 (= PainA1). The plunger valve 366 is lifted by the common rail internal pressure, and the fuel passes when it is activated. * Also, the maximum load of the spring 366 is determined by the maximum common rail internal pressure Pmax and the plunger. The product of the pressure receiving area A 1 of the valve 6 6 (-Ρ · 3 χ · A 1) It is set larger.
そして、 イ ンジュクタ 3 6による燃料噴射が終了し、 噴射管 3 7 内にイ ンジヱクタ 3 6倒からコモンレール 3 8倒への反射波が発生 したときには図 1 4に示すようにプランジャバルブ 3 6 7が閉じ反 射波がコモンレール 3 8内部に伝播するのが防止される。 これによ り、 噴射時期 · 唛射量のばらつきの原因となる気筒繭の干涉 (コモ ンレール内の圧力変更) を防止できる, Then, when the fuel injection by the injector 36 ends and a reflected wave from the injector 36 falls to the common rail 38 falls in the injection pipe 37, the plunger valve 365, as shown in FIG. Closed reflected waves are prevented from propagating inside the common rail 38. This can prevent the cylinder cocoon from drying out (changing the pressure in the common rail), which causes variations in the injection timing and the amount of injection.
また、 逆止弁 3 6 3はあらかじめコモンレール 3 8内に組み込む ことができるので、 エンジン搭載時に噴射管 3 7を介してのイ ンジ クタ 3 6への接接がきわめて容易であり、 その作業性が大幅に向 上する。 In addition, since the check valve 36 3 can be incorporated in the common rail 38 in advance, it is extremely easy to connect the injector 36 via the injection pipe 37 when the engine is mounted, and the workability is improved. Is greatly improved.
このように、 本実施例によれば、 コモンレール 3 8内において、 噴射管 3 7 との接耪部に、 コモンレール 3 8からィ ンジェクタ 3 6 への燃料の供給を許容し、 かつイ ンジよクタ 3 6からコモンレール 3 8への圧力伝捸を規制する逆止弁 3 6 2 (逆止部材) を設け、 噴 射弁 3 6の燃料噴射に伴う噴射弁 3 6からコモンレール 3 8倒への 反射波を逆止弁 3 6 2にて規制するようにした, その結果、 噴射時 期 · 噴射量のばらつきの原因となる反射波による気筒間の干渉を全 ての内燃機閬の面転数量域にわたり防止できることとなる · また、 逆止弁 3 6 2はコモンレール 3 8内にあらかじめ組み込んでおく こ とができるので、 エンジン搭載時の作業性が大幅に向上する。 As described above, according to the present embodiment, in the common rail 38, the fuel supply from the common rail 38 to the injector 36 is allowed at the connection portion with the injection pipe 37, and the injector is connected to the injector 36. A check valve 36 (return member) is provided to regulate pressure transmission from 36 to the common rail 38, and reflection from the injection valve 36 to the common rail 38 along with fuel injection of the injection valve 36 The wave is regulated by the check valve 362. As a result, the interference between the cylinders due to the reflected wave, which causes the injection time and the injection amount to vary, is spread over the entire surface area of the internal combustion engine 閬. The check valve 36 2 can be installed in the common rail 38 in advance, greatly improving the workability when the engine is mounted.
なお、 上述した図 1 » 図 1 0の実施倒では、 コモンレール 3 8 と 噴射管 3 7 との間に安全装 Sを設けたが、 同様の安全装置を供給管 3 9 とコモンレール 3 8との接耪都に設ければ、 高圧供給ポンプ 4 1 とコモンレール 3 8 との簡の £管に破損が生じた場合でも、 コモ ンレール 3 8から高圧燃料が淀出するのを ぐことができる。 In addition, in the implementation of FIG. 1 described above and FIG. 10, a safety device S was provided between the common rail 38 and the injection pipe 37, but a similar safety device was provided between the supply pipe 39 and the common rail 38. If provided in the capital, even if the simple pipe between the high-pressure supply pump 41 and the common rail 38 is broken, it is possible to prevent the high-pressure fuel from flowing out from the common rail 38.
この場合、 安全装置は図 1 5に示す逆止弁 4 2 1 , 4 2 3あって も良い。 これら逆止弁 4 2 1 , 4 2 3は高圧ポンプ倒からコモンレ
ール倒への燃料の供給を許容し、 かつ、 コモンレール棚から高圧ボ ンブ倒への燃料の通通を規制するものである, In this case, the safety device may have check valves 4 2 1 and 4 2 3 shown in FIG. These check valves 4 2 1 and 4 2 3 are common To allow fuel to be supplied to the high-pressure bomb, and to restrict fuel flow from the common rail shelf to the high-pressure bomb.
一方、 燃料供耠管 3 9が破損されると、 コモンレール 3 8内に蓄 圧されている高圧燃料は、 逆止弁 4 2 1 , 4 2 3により燃料供耠管 3 9倒への通通が規制され、 高圧ポンプ捆へ苠ることはない * よつ て、 燃料供給配管 3 9 の破損時に、 コモンレール側からの燃料流出 を防ぐことができる。 On the other hand, if the fuel supply pipe 39 is damaged, the high-pressure fuel stored in the common rail 38 is passed through the fuel supply pipe 39 by the check valves 4 2 1 and 4 2 3. It is regulated and does not reach the high-pressure pump *, so that when the fuel supply pipe 39 is damaged, fuel can be prevented from flowing out from the common rail side.
又、 この燃料供給管 3 9の破損時には、 裔圧ポンプ 4 8からの燃 料がコモンレール 3 8に供耠される量が缄り従ってコモンレール圧 を所定の圧力に制御するため燃料吐出タイ ミ ング T F (燃料吐出量) が小さ く (早く ) 設定される, よって E C U 4 9は T Fが所定値 T 0を割ったとき、 燃料供給管 3 9に破損が生じたものとみなして高 圧ポンプ 4 8の駆動及び燃料噴射を停止する。 Also, when the fuel supply pipe 39 is broken, the amount of fuel supplied from the descendant pressure pump 48 is supplied to the common rail 38, so that the fuel discharge timing is used to control the common rail pressure to a predetermined pressure. The TF (fuel discharge amount) is set to a small value (faster). Therefore, when the TF falls below the predetermined value T0, the ECU 49 considers that the fuel supply pipe 39 has been damaged and the high-pressure pump 4 8. Stop driving and fuel injection.
このように本実施例では、 燃料供給管 3 9でのコモンレール 3 8 佣の端部に逆止弁 4 2 1 , 4 2 3を設け、 高圧ポンプ 4 8からコモ ンレール 3 8への燃料の供耠を許容し、 かつ、 コモンレール 3 8か ら高圧ボンプ 4 8への燃料の通遇を規制するようにした。 その結果、 燃料供給管 3 9が破損しても逆止弁 4 2 1 , 4 2 3によりコモンレ ール 3 8から燃料供給管 3 9への燃料の通通が規制され高圧燃料の 流出が防止できることとなる。 As described above, in this embodiment, the check valves 42 1 and 42 3 are provided at the end of the common rail 38 mm at the fuel supply pipe 39 to supply the fuel from the high pressure pump 48 to the common rail 38.耠 was allowed, and the fuel supply from the common rail 38 to the high-pressure pump 48 was regulated. As a result, even if the fuel supply pipe 39 is broken, the flow of fuel from the common rail 38 to the fuel supply pipe 39 is regulated by the check valves 4 2 1 and 4 2 3, and the outflow of high-pressure fuel can be prevented. Becomes
次に高圧ポンプ 4 8からコモンレール 3 8への 2系統の燃料供給 系のうち、 一系統が破損した場合でも残りの一系統だけの燃料供給 を行わせる工夫されたシステムについて説明する。 Next, among the two fuel supply systems from the high-pressure pump 48 to the common rail 38, a system devised to supply fuel to the remaining one system even if one system is damaged will be described.
一点鎮線で示すように燃料供給管 3 9には圧力センサ 4 3 3 , 4 3 4が設けられ、 圧力センサ 4 3 3 , 4 3 4 による燃料供給 3 9内 の燃料圧力が E C U 4 9に取り込まれるようになつている。 そして、 E C U 4 9 は圧力センサ 4 3 3 , 4 3 4による燃料供給 3 9内の燃 料圧力が所定の圧力値以下になると圧力の低下した方の燃料供辁管
に破損が生じたとして、 吐出量制御用 «磁弁を制御して破損した燃 料供耠管への燃料供耠を停止させ、 残りの燃料供給管による燃料供 耠を行わせる, As shown by the one-point line, the fuel supply pipe 39 is provided with pressure sensors 43, 43, and the fuel pressure in the fuel supply 39 by the pressure sensors 43, 43 is supplied to the ECU 49. It is being taken in. Then, when the fuel pressure in the fuel supply 39 by the pressure sensors 43, 43 becomes equal to or lower than a predetermined pressure value, the ECU 49 sets the fuel supply pipe having the reduced pressure. Assuming that the fuel supply has been damaged, the fuel supply to the damaged fuel supply pipe is stopped by controlling the discharge rate control magnetic valve, and the remaining fuel supply pipe is supplied with fuel.
このように本実施例では、 E C U 4 9は圧力センサ 4 3 3 , 4 3 4からの信号によりいずれの燃料供耠管が破損したか否かを判断し, 2つの燃料供給管のうちの一つが破損した場合には残りの燃料供辁 管を用いてコモンレール 3 8への燃料供耠を統行させるようにした ので、 本ディーゼルエンジンを車两に搭載した際には、 燃料供耠管 の一方が破損した場合にも車两を安全な場所まで移動させることが できることとなる。 産業上の利用可能性 As described above, in the present embodiment, the ECU 49 determines which fuel supply pipe has been damaged based on the signal from the pressure sensors 43 33 and 43 34, and determines one of the two fuel supply pipes. In the event that one of the diesel engines is damaged, fuel supply to the common rail 38 is controlled using the remaining fuel supply pipes. Even if one of them is damaged, the vehicle can be moved to a safe place. Industrial applicability
以上詳逮したように、 本発明によれば、 コモンレール周辺の高圧 燃料通路破損時の高圧燃料の流出や、 高圧燃料の厥動による悪影響 を簡単な機構で防止して、 システムの信頼性を向上させることがで さ ¾J β
As described above in detail, according to the present invention, the outflow of high-pressure fuel when the high-pressure fuel passage around the common rail is broken, and the adverse effects of high-pressure fuel thats moving are prevented by a simple mechanism, and the reliability of the system is improved. ¾J β