WO1991018705A1 - Process for treating the surfaces of workpieces with laser radiation - Google Patents
Process for treating the surfaces of workpieces with laser radiation Download PDFInfo
- Publication number
- WO1991018705A1 WO1991018705A1 PCT/DE1991/000489 DE9100489W WO9118705A1 WO 1991018705 A1 WO1991018705 A1 WO 1991018705A1 DE 9100489 W DE9100489 W DE 9100489W WO 9118705 A1 WO9118705 A1 WO 9118705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- beam spot
- workpiece
- incidence
- laser radiation
- angle
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0823—Devices involving rotation of the workpiece
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/06—Surface hardening
- C21D1/09—Surface hardening by direct application of electrical or wave energy; by particle radiation
Definitions
- the invention relates to a method for the surface treatment of cams for shafts of motor vehicles, in which a laser beam with an angle of incidence deviating from zero hits the workpiece surface with an elongated beam spot and is moved relative to it transversely.
- Surface treatment means, for example, tempering, hardening or remelting.
- the shafts of motor vehicles mentioned are, for example, camshafts or crankshafts whose cams or. Bearing seats are treated.
- the invention is therefore based on the object of improving a process with the features mentioned at the outset, which is generally known as a process for surface treatment with laser radiation, in such a way that a high process speed is linked to an improvement in the processing quality.
- This object is achieved in that linearly polarized laser radiation is used and its angle of incidence is adjusted to adapt the energy coupling into the cams in at least a partial area of the beam spot, deviating from the angle of incidence of the remaining areas of the beam spot.
- the adaptation of the absorption to the geometry of the cam to be machined is of crucial importance for the optimization of the process speed in connection with an increase in the machining quality.
- This adaptation is achieved by influencing the laser beam depending on the workpiece shape present. At least a portion of a beam spot of the laser radiation is selected in which the angle of incidence of the laser radiation is set differently from the angles of incidence of the remaining areas of the beam spot. As a result, the absorption of the energy differs in the areas of the beam spot mentioned.
- the angle of incidence according to the known dependence between absorption and this angle of incidence for linearly parallel polarized laser radiation, the workpiece can be heated in such a way that Different heat quantities are supplied to workpiece areas. For example, edge melting on a cam can be avoided by
- E RS ATZBLATT sufficient less energy is supplied without the heat supply having to be removed from areas away from the edge. There is an improvement in quality at high process speed.
- a moon crescent-shaped beam spot is advantageously used parallel to the cylinder axis in the case of a workpiece with a cylindrically curved surface.
- Workpieces with a cylindrically curved surface have a jacket region with a constant curvature, so that a moon-crescent-shaped beam spot, which is used parallel to the cylinder axis, covers surface areas at its ends which have a different height level with respect to the beam direction than the central areas of this beam spot .
- the laser radiation strikes the surface to be processed at the ends at a different angle, so that the energy absorption is correspondingly different than in the mitrel regions of the beam spot.
- the method can be carried out in such a way that, in the case of a workpiece width approximately corresponding to the length of the beam spot, a beam spot with a bend is used which extends transversely to the beam direction in the direction of surface portions of the workpiece which are located deeper when the cylinder is cylindrical Workpiece surface is convex, otherwise
- REPLACEMENT LEAF returns.
- the angle of incidence of the radiation at the ends of the beam spot is smaller than in the remaining areas of this beam spot in between. As a result, the energy coupling at the ends of the beam spot is reduced.
- This method is particularly suitable for workpieces with a width that essentially corresponds to the beam spot length. Depending on the treatment method, melting, deformation or melting can be avoided.
- the method can also be carried out in such a way that, in the case of a workpiece width which substantially exceeds the length of the beam spot, a beam spot with a bend is used which extends transversely to the beam direction in the direction of surface portions of the workpiece which are higher in the beam when the cylindrical workpiece surface is convexly curved , otherwise vice versa.
- the angles of incidence of the laser radiation at the ends of the beam spot are larger than the angles of incidence in the remaining central regions, so that at the. Ends of the beam spot is absorbed to an increased extent.
- the method is suitable for producing a machining track over its entire width with the same machining geometry and the same quality. As a result, there is no need for overlapping of machining tracks, for example, if larger workpiece surfaces have to be treated.
- a beam spot with an adjustable length and / or with an adjustable width is used.
- the method according to the invention is flexible insofar as it does not necessarily require the shaping of the beam spot. Rather, conventional beam spots can be used which have the areas of different angles of incidence of the laser radiation. The generation of the laser radiation must be produced with transverse to the laser beam correspondingly shaped optics then most to the desired angle of incidence to ensu ⁇ .
- the workpiece 12 shown in FIG. 1 is a circular cylinder with projections 20 shown in section.
- edges 21 are present, on which heat would build up if the workpiece were simultaneously irradiated with laser radiation over its entire width B, whereby it is assumed that the beam spot is arranged elongated and parallel to the cylinder axis 17 and has an intensity distribution that is uniform over its length. Since the entire workpiece surface 13 is to be heated with laser radiation, it is necessary to rotate it relative to the laser radiation 10, in which case the desired heating of all peripheral layers 11 takes place.
- the beam spot 14 shown schematically in FIG. 1 is approximately as long as the workpiece 12 is wide.
- the beam spot 14 can look approximately as shown in FIG. 4, from which it can be seen that the beam spot is approximately crescent-shaped, its width b being considerably smaller than its length 1.
- the laser radiation 10 due to the curved shape of the beam spot 14, strikes a partial area 15 of the beam spot 14 which is located transversely to the beam direction 18 than the central area 16. That is ⁇ to be traced back to the illustrated bend of the beam spot 14 parallel to the cylinder axis 17 transverse to the beam direction 18.
- the angle of incidence 0: 2 of the laser radiation 10 is smaller than in the area
- SPARE BLADE 16 As a result, there is less absorption in sub-area 15, as can be derived from FIG. 9.
- the absorption in the range of angles of incidence of size 0 3 is twice as large as at angles of incidence 0 3 when laser radiation that is linearly polarized in parallel is used.
- Linearly polarized laser radiation is understood in the usual way to mean laser radiation which vibrates only in the plane of incidence, that is to say in the plane defined by the incident beam 10 and the reflected beam 10 '.
- the workpiece 12 is also formed with a cylindrically curved surface 13, but in the region of the radiation from the beam spot 14, however, it is not curved convexly, but concavely curved.
- the workpiece surface 13 here is already flatter than in the areas as a result of the concave curvature ⁇ range 15. In the latter, there is an increased absorption. This is undesirable if it is assumed that the edge areas of the workpiece 12 anyway heat accumulate laterally, that is to say transversely to the relative movement direction 22 between the laser radiation 10 and the workpiece 12, due to the lateral limitation. To avoid this, the bend shown in FIG. 2 would have to be arranged exactly opposite, that is to say as in FIG. 3.
- FIG. 3 shows the arrangement of a crescent-shaped beam spot 14 on a cylindrical workpiece 12 with a convex curvature in the event that the extension given in the direction of the cylinder axis 17 is substantially greater than the length of the beam spot 14.
- the bend of the beam spot 14 thus extends transversely to the beam direction 18
- the workpiece 12 in FIG. 5 is approximately as long as the beam spot (not shown), so that when the laser radiation 10 and workpiece 12 move relative to one another in the direction 22, they move transversely thereto a heat build-up results.
- the procedure is such that a comparatively large angle of incidence 03 is selected in the areas 16 located in the center of the workpiece 12, whereas the angle of incidence 02 of the areas 15 located on the edge is smaller. Accordingly, the energy coupling in the areas 15 is lower.
- the inclination of the laser radiation 10 is in the central region 16 of the workpiece 12 of FIG. 6, which is laterally unlimited with respect to the length of the beam spot, not shown.
- the angle of incidence 0: 3 is thus smaller than the angle of incidence ⁇ 2 on the edge, which leads to a uniformly deep heating of the workpiece 12 over the entire length of the beam spot.
- the shape of the beam spot of the laser radiation 10 is of comparatively little importance for the workpieces 12 in FIGS. 5, 6.
- a crescent-shaped beam spot formation is indicated by the arrangement of the arrows symbolizing the laser radiation 10.
- the same treatment effect can be obtained when a linear beam spot formation is used, only the angle of incidence of the laser radiation 10 0. 3 provided in the regions 16 as shown respectively in relation to the angles of incidence are 02.
- the optics 23 consists of a plane mirror 24 arranged in a housing 28, which deflects the laser radiation 10 in the direction of a line focusing mirror 25 by 90 °.
- An elliptical mirror 26 is arranged at an adjustable distance L from this line focusing mirror 25, which deflects the radiation 10 by 90 ° and points it at the workpiece 12 to be irradiated, which is in a distance A.
- the shape of the beam spot corresponds to Fig. 4.
- processing can be carried out at high process speeds with optimum processing quality.
- Possible processing methods are: tempering, transformation hardening, remelting, alloying, dispersing or coating of outer layers or. Edge layers of the cam. Incorrect machining can be avoided, such as edge rounding due to melting or. Evaporation of material or uneven machining geometries.
- the workpieces that come into question are primarily those that are not arched in at least one direction, that is to say workpieces with flat surfaces and workpieces with cylindrical curved surfaces. In these, for example, with beam spots in the width of, for example. 30 to 40mm are machined.
- the process for the surface treatment of workpieces by means of laser radiation is used to achieve a high process speed with simultaneous improvement in the processing quality.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Laser Beam Processing (AREA)
Abstract
Described is a process for treating the surfaces of workpieces (12) by using laser radiation (10) to heat edge zones, in particular for treating shafts for motor vehicles. The process calls for a laser beam to strike the surface (13) of the workpiece at an angle of incidence which is other than zero, producing an oval light spot (14), the beam being moved at right angles to it. In order to be able to work at high speed and produce products of high quality, linearly polarized laser radiation (10) is used and, to optimize the transfer of energy into the workpiece (12), the angle of incidence (α2) in at least one sector (15) of the light spot (14) differs from the angle of incidence (α3) in the other sectors (e.g. 16) of the light spot (14).
Description
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e .V. , Leonrodstr . 54 , 8000 München 19 Fraunhofer Society for the Promotion of Applied Research e .V. , Leonrodstr. 54, 8000 Munich 19
Verfahren zur Oberflächenbehandlung von Werkstücken mit LaserstrahlunσProcess for surface treatment of workpieces with laser radiation
Technisches Gebiet Die Erfindung bezieht sich auf ein Verfahren zur Oberflä¬ chenbehandlung von Nocken für Wellen von Kraftfahrzeugen, bei dem ein Laserstrahl mit einem von Null abweichenden Einfalls¬ winkel auf die Werkstückoberfläche mit einem länglichen Strahl¬ fleck auf trifft und quer dazu relativbewegt wird. Dabei wird unter Oberflächenbehandlung beispielsweise das Anlassen, Härten oder Umschmelzen verstanden . Die genannten Wellen von Kraft¬ fahrzeugen sind beispielsweise Nockenwellen oder Kurbelwellen, deren Nocken bzw . Lagersitze behandelt werden .TECHNICAL FIELD The invention relates to a method for the surface treatment of cams for shafts of motor vehicles, in which a laser beam with an angle of incidence deviating from zero hits the workpiece surface with an elongated beam spot and is moved relative to it transversely. Surface treatment means, for example, tempering, hardening or remelting. The shafts of motor vehicles mentioned are, for example, camshafts or crankshafts whose cams or. Bearing seats are treated.
Stand der TechnikState of the art
Der industrielle Einsatz von Hochleistungslasern, wie bei¬ spielsweise Kohlendioxidlasern, zur Oberflächenveredelung von Werkstücken scheitert häufig daran, daß die Absorption der La¬ serstrahlung nicht genügend groß ist . Um die Energieeinkopplung zu erhöhen, ist es allgemein bekannt, linear parallel polari¬ sierte Laserstrahlung zu verwenden und diese mit einem Ein¬ fallswinkel von nahe 90° auf die zu bearbeitende Oberfläche desThe industrial use of high-power lasers, such as, for example, carbon dioxide lasers, for surface finishing of workpieces often fails because the absorption of the laser radiation is not sufficiently great. In order to increase the energy coupling, it is generally known to use laser radiation that is linearly polarized in parallel and to apply this with an angle of incidence of close to 90 ° to the surface of the surface to be processed
ERSATZBLÄTT
Werkstücks einzustrahlen. Infolgedessen erfolgt eine verstärkte Energieabsorption bzw. eine verstärkte -einkopplung. Infolge¬ dessen sind erhöhte Prozeßgeschwindigkeiten möglich, woraus ei¬ ne Verbesserung der Wirtschaftlichkeit des Behandlungsverfah¬ rens resultiert. Es hat sich jedoch gezeigt, daß die Bearbei¬ tungsqualität zu wünschen übrig läßt, beispielsweise sind Auf¬ schmelzungen an den Kanten behandelter Werkstückflächen zu be¬ obachten, oder das Erhitzen erfolgt in den quer zur Relativbe- wegungsrichtung des Laserstrahls liegenden Bereichen nicht ge¬ nügend in die Tiefe. Darstellung der ErfindungSPARE BLADE Of the workpiece. As a result, there is increased energy absorption or coupling. As a result, increased process speeds are possible, which results in an improvement in the economy of the treatment process. However, it has been shown that the processing quality leaves something to be desired, for example melting on the edges of treated workpiece surfaces is to be observed, or the heating is insufficient in the areas lying transversely to the relative movement direction of the laser beam into the deep. Presentation of the invention
Der Erfindung liegt daher die Aufgabe zugrunde, ein Ver¬ fahren mit den eingangs genannten Merkmalen, welches als Ver¬ fahren zur Oberflächenbehandlung mit Laserstrahlung allgemein bekannt ist, so zu verbessern, daß eine hohe Prozeßgeschwindig¬ keit mit einer Verbesserung der Bearbeitungsqualität verknüpft wird.The invention is therefore based on the object of improving a process with the features mentioned at the outset, which is generally known as a process for surface treatment with laser radiation, in such a way that a high process speed is linked to an improvement in the processing quality.
Diese Aufgabe wird dadurch gelöst, daß linear polarisierte Laserstrahlung verwendet und ihr Einfallswinkel zur Anpassung der Energieeinkopplung in den Nocken in zumindest einem Teilbe¬ reich des Strahlflecks abweichend von den Einfallswinkeln der verbleibenden Bereiche des Strahlflecks eingestellt wird.This object is achieved in that linearly polarized laser radiation is used and its angle of incidence is adjusted to adapt the energy coupling into the cams in at least a partial area of the beam spot, deviating from the angle of incidence of the remaining areas of the beam spot.
Von entscheidender Bedeutung für die Optimierung der Pro¬ zeßgeschwindigkeit in Verbindung mit einer Erhöhung der Bear¬ beitungsqualität ist die Anpassung der Absorption an die Geome¬ trie des zu bearbeitenden Nockens. Diese Anpassung wird durch Beeinflussung des Laserstrahls je nach vorhandener Werkstückge¬ stalt erreicht . Es wird zumindest ein Teilbereich eines Strahl¬ flecks der Laserstrahlung ausgewählt, in dem der Einfallswinkel der Laserstrahlung abweichend von den Einfallswinkeln der ver¬ bleibenden Bereiche des Strahlflecks eingestellt wird. Infolge¬ dessen ist die Absorption der Energie in den angesprochenen Be¬ reichen des Strahlflecks unterschiedlich. Durch die Wahl der Einfallswinkel entsprechend der bekannten Abhängigkeit zwischen Absorption und diesem Einfallswinkel für linear parallel pola¬ risierte Laserstrahlung kann das Werkstück so erhitzt werden, daß unterschiedlicher. Werkstückbereichen unterschiedliche Wär¬ memengen zugeführt werden. Beispielsweise kann ein Kantenauf¬ schmelzen an einem Nocken vermieden werden, indem den Kantenbe-The adaptation of the absorption to the geometry of the cam to be machined is of crucial importance for the optimization of the process speed in connection with an increase in the machining quality. This adaptation is achieved by influencing the laser beam depending on the workpiece shape present. At least a portion of a beam spot of the laser radiation is selected in which the angle of incidence of the laser radiation is set differently from the angles of incidence of the remaining areas of the beam spot. As a result, the absorption of the energy differs in the areas of the beam spot mentioned. By choosing the angle of incidence according to the known dependence between absorption and this angle of incidence for linearly parallel polarized laser radiation, the workpiece can be heated in such a way that Different heat quantities are supplied to workpiece areas. For example, edge melting on a cam can be avoided by
ERSATZBLATT
reichen weniger Energie zugeführt wird, ohne daß dabei die Wär¬ mezufuhr kantenferner Bereiche herabgesetzt werden muß. Es er¬ gibt sich eine Qualitätsverbesserung bei hoher Prozeßgeschwin¬ digkeit.E RS ATZBLATT sufficient less energy is supplied without the heat supply having to be removed from areas away from the edge. There is an improvement in quality at high process speed.
Für das Einstellen der Einfallswinkel der Laserstrahlung sind die verschiedensten Verfahrensschritte möglich. Eine"we¬ sentliche Möglichkeit is|_ es, wenn die Form des Strahlflecks auf die Geometrie der zu bearbeitenden Fläche abgestimmt wird. Die Beeinflussung der Form des Strahlflecks ermöglicht es, auf unterschiedlichen horizontalen Niveaus gelegene Oberflächenab¬ schnitte des Werkstücks zu bestrahlen. Damit ergibt sich bei gekrümmten Werkstückoberflächen die Möglichkeit, unterschiedli¬ che Einfallswinkel zur Wirkung kommen zu lassen. Dabei versteht sich, daß die Form des Strahlflecks jeweils individuell auf die Fläche des Werkstücks abgestimmt werden muß. Eine einmalige Ab¬ stimmung genügt, wenn die zu bearbeitende Fläche stets dieselbe Relativlage zum Strahlfleck hat. Ist das nicht der Fall, muß die Form des Strahlflecks in Abhängigkeit von den Änderungen der Relativlage des Werkstücks beispielsweise kontinuierlich entsprechend geändert werden.Various process steps are possible for setting the angle of incidence of the laser radiation. A "we¬ sentliche possibility is | it if the shape of the beam spot is tuned surface to be machined to the geometry _ The influence on the shape of the beam spot makes it on different horizontal levels located Oberflächenab¬ sections of the workpiece to irradiate this results.. In the case of curved workpiece surfaces, it is possible to allow different angles of incidence to take effect. It goes without saying that the shape of the beam spot must be individually matched to the surface of the workpiece. A one-off adjustment is sufficient if the surface to be machined is always If this is not the case, the shape of the beam spot has to be continuously changed, for example, depending on the changes in the relative position of the workpiece.
Vorteilhafterweise wird bei einem Werkstück mit zylin¬ drisch gewölbter Oberfläche ein mondsichelförmig gebogener Strahlfleck parallel zur Zylinderachse verwendet. Werkstücke mit zylindrisch gewölbter Oberfläche haben einen Mantelbereich mit konstanter Krümmung, so daß ein mondsichelförmig gebogener Strahlfleck, der parallel zur Zylinderachse verwendet wird, an seinen Enden Oberflächenbereiche bestreicht, die in Bezug* auf die Strahlrichtung ein anderes Höhenniveau haben, als Mittelbe¬ reiche dieses Strahlflecks. Infolgedessen trifft die Laser¬ strahlung an den Enden unter einem anderen Winkel auf die zu bearbeitende Oberfläche, so daß die Energieabsorption entspre¬ chend anders ist, als in den Mitrelbereichen des Strahlflecks.A moon crescent-shaped beam spot is advantageously used parallel to the cylinder axis in the case of a workpiece with a cylindrically curved surface. Workpieces with a cylindrically curved surface have a jacket region with a constant curvature, so that a moon-crescent-shaped beam spot, which is used parallel to the cylinder axis, covers surface areas at its ends which have a different height level with respect to the beam direction than the central areas of this beam spot . As a result, the laser radiation strikes the surface to be processed at the ends at a different angle, so that the energy absorption is correspondingly different than in the mitrel regions of the beam spot.
Das Verfahren kann so durchgeführt werden, daß im Falle einer der Länge des Strahlflecks etwa entsprechenden Werkstück¬ breite ein Strahlfleck mit einer Biegung verwendet wird, d-*e sich quer zur Strahlrichtung in Richtung strahltiefer gelegener Oberflächenabschnitte des Werkstücks erstreckt, wenn die zylin¬ drische Werkstückoberfläche konvex gewölbt ist, sonst umge-The method can be carried out in such a way that, in the case of a workpiece width approximately corresponding to the length of the beam spot, a beam spot with a bend is used which extends transversely to the beam direction in the direction of surface portions of the workpiece which are located deeper when the cylinder is cylindrical Workpiece surface is convex, otherwise
ERSATZBLATT
kehrt . Bei diesem Verfahren ist der Einfallswinkel der Strah¬ lung an den Enden des Strahlflecks kleiner, als in den dazwi¬ schen gelegenen verbleibenden Bereichen dieses Strahlflecks. Infolgedessen ist die Energieeinkopplung an den Enden des Strahlflecks verringer . Dieses Verfahren ist insbesondere für Werkstücke mit einer Breite geeignet, die im wesentlichen der Strahlflecklänge entspricht. Je nach Behandlungsverfahren kön¬ nen damit AufSchmelzungen, Deformationen oder Abschmelzungen vermieden werden.REPLACEMENT LEAF returns. In this method, the angle of incidence of the radiation at the ends of the beam spot is smaller than in the remaining areas of this beam spot in between. As a result, the energy coupling at the ends of the beam spot is reduced. This method is particularly suitable for workpieces with a width that essentially corresponds to the beam spot length. Depending on the treatment method, melting, deformation or melting can be avoided.
Das Verfahren kann auch so durchgeführt werden, daß im Falle einer die Länge des Strahlflecks wesentlich übersteigen¬ den Werkstückbreite ein Strahlfleck mit einer Biegung verwendet wird, die sich quer zur Strahlrichtung in Richtung strahlhöher gelegener Oberflächenabschnitte des Werkstücks erstreckt, wenn die zylindrische Werkstückoberfläche konvex gewölbt ist, sonst umgekehrt . Die Einfallswinkel der Laserstrahlung an den Enden des Strahlflecks sind größer, als die Einfallswinkel in den verbleibenden Mittelbereichen, so daß an der. Enden des Strahl- fiecks in gesteigertem Maße absorbiert wird. Das Verfahren ist geeignet, eine B.earbeitungsspur über ihre gesamte Breite mit gleicher Bearbeitungsgeometrie und gleicher Qualität zu erzeu¬ gen. Infolgedessen erübrigen sich beispielsweise Überlappungen von Bearbeitungsspuren, wenn größere Werkstückflächen behandelt werden müssen.The method can also be carried out in such a way that, in the case of a workpiece width which substantially exceeds the length of the beam spot, a beam spot with a bend is used which extends transversely to the beam direction in the direction of surface portions of the workpiece which are higher in the beam when the cylindrical workpiece surface is convexly curved , otherwise vice versa. The angles of incidence of the laser radiation at the ends of the beam spot are larger than the angles of incidence in the remaining central regions, so that at the. Ends of the beam spot is absorbed to an increased extent. The method is suitable for producing a machining track over its entire width with the same machining geometry and the same quality. As a result, there is no need for overlapping of machining tracks, for example, if larger workpiece surfaces have to be treated.
Damit das Verfahren flexibel eingesetzt werden kann, also bei Werkstücken unterschiedlicher Abmessungen, wird ein Strahl¬ fleck mit einstellbarer Länge und/oder mit einstellbarer Breite verwendet. Das erfindungsgemäße Verfahren ist insoweit flexi¬ bel, als es nicht unbedingt der Formung des Strahlflecks be¬ darf. Vielmehr können herkömmliche Strahlflecken verwendet wer¬ den, welche die Bereiche unterschiedlicher Einfallswinkel der Laserstrahlung aufweisen. Die Erzeugung der Laserstrahlung muß dann mit quer zum Laserstrahl entsprechend geformten Optiken erzeugt werden, um die gewünschten Einfallswinkel zu gewährlei¬ sten.In order that the method can be used flexibly, that is to say for workpieces of different dimensions, a beam spot with an adjustable length and / or with an adjustable width is used. The method according to the invention is flexible insofar as it does not necessarily require the shaping of the beam spot. Rather, conventional beam spots can be used which have the areas of different angles of incidence of the laser radiation. The generation of the laser radiation must be produced with transverse to the laser beam correspondingly shaped optics then most to the desired angle of incidence to ensu ¬.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Die Erfindung wird anhand der Zeichnung erläutert. Es zei- σen:The invention is explained with reference to the drawing. It shows:
ERSATZBLATT
Fig.l bis 3 unterschiedliche Werkstückgeometrien mit zy¬ lindrisch gewölbten Oberflächen, die mit gebogenen Strahlflecken behandelt werden, Fig. eine meßtechnisch ermittelte Form einer mondsichel¬ förmig gebogenen Strahlgeometrie, Fig.5, 6 ebene Werkstückoberflächen mit Bereichen, die mit Laserstrahlung unterschiedlicher Einfallswinkel be¬ strahlt werden, Fig.7, 8 schematische Darstellungen einer Einrichtung zur Erzeugung mondsichelförmig gebogener Strahlgeome¬ trien, und Fig.9 die Abhängigkeit der Absorption der Energie von La¬ serstrahlung vom Einfallswinkel α. Bester Weg zur Ausführung der ErfindungREPLACEMENT LEAF 1 to 3 different workpiece geometries with cylindrical, curved surfaces which are treated with curved beam spots, 7, 8 are schematic representations of a device for generating crescent-shaped curved beam geometries, and FIG. 9 shows the dependence of the absorption of the energy of laser radiation on the angle of incidence α. Best way to carry out the invention
Das in Fig.l dargestellte Werkstück 12 ist ein Kreiszylin¬ der mit geschnitten dargestellten Ansätzen 20. Infolgedessen sind Kanten 21 vorhanden, an denen sich ein Wärmestau einstel¬ len würde, wenn das Werkstück über seine gesamte Breite B gleichzeitig mit Laserstrahlung bestrahlt würde, wobei voraus¬ gesetzt ist, daß der Strahlfleck länglich und parallel zur Zy¬ linderachse 17 angeordnet ist sowie eine über seine Länge gleichmäßige Intensitätsverteilung besitzt. Da die gesamte Werkstückoberfläche 13 mit Laserstrahlung erhitzt werden soll, ist es erforderlich, sie relativ zur Laserstrahlung 10 zu dre¬ hen, wobei dann die gewünschte Erhitzung aller Randschichten 11 erfolgt . -The workpiece 12 shown in FIG. 1 is a circular cylinder with projections 20 shown in section. As a result, edges 21 are present, on which heat would build up if the workpiece were simultaneously irradiated with laser radiation over its entire width B, whereby it is assumed that the beam spot is arranged elongated and parallel to the cylinder axis 17 and has an intensity distribution that is uniform over its length. Since the entire workpiece surface 13 is to be heated with laser radiation, it is necessary to rotate it relative to the laser radiation 10, in which case the desired heating of all peripheral layers 11 takes place. -
Der in Fig.l schematisch dargestellte Strahlfleck 14 ist etwa so lang, wie das Werkstück 12 breit ist. Der Strahlfleck 14 kann etwa so aussehen, wie in Fig.4 dargestellt, aus der er¬ sichtlich ist, daß der Strahlfleck etwa mondsichelförmig ist, wobei seine Breite b erheblich geringer ist, als seine Länge 1.The beam spot 14 shown schematically in FIG. 1 is approximately as long as the workpiece 12 is wide. The beam spot 14 can look approximately as shown in FIG. 4, from which it can be seen that the beam spot is approximately crescent-shaped, its width b being considerably smaller than its length 1.
Aus Fig.l ist des weiteren abzuleiten, daß die Laserstrah¬ lung 10 infolge der gebogenen Form des Strahlflecks 14 auf ei¬ nen Teilbereich 15 des Strahlflecks 14 trifft, der quer zur Strahlrichrung 18 höher gelegen ist, als der mittlere Bereich 16. Das is~ auf die dargestellte Biegung des. der Zylinderachse 17 parallelen Strahlflecks 14 quer zur Strahlrichtung 18 zu¬ rückzuführen. In diesem höhergelegenen Teilbereich 15 ist der Einfallswinkel 0:2 der Laserstrahlung 10 kleiner, als im BereichFrom Fig.l it can further be deduced that the laser radiation 10, due to the curved shape of the beam spot 14, strikes a partial area 15 of the beam spot 14 which is located transversely to the beam direction 18 than the central area 16. That is ~ to be traced back to the illustrated bend of the beam spot 14 parallel to the cylinder axis 17 transverse to the beam direction 18. In this higher-lying partial area 15, the angle of incidence 0: 2 of the laser radiation 10 is smaller than in the area
ERSATZBLÄTT
16. Infolgedessen ergibt sich im Teilbereich 15 eine geringere Absorption, wie sich aus Fig.9 ableiten läßt. Die Absorption im Bereich von Einfallswinkeln der Größe 03 ist doppelt so groß, wie bei Einfallswinkeln 03, wenn linear parallel polarisierte Laserstrahlung verwendet wird. Unter linear parallel polari¬ sierter Laserstrahlung wird in üblicher Weise Laserstrahlung verstanden, die nur in der Einfallsebene schwingt, also in der durch den einfallenden Strahl 10 und den reflektierten Strahl 10 ' definierten Ebene.SPARE BLADE 16. As a result, there is less absorption in sub-area 15, as can be derived from FIG. 9. The absorption in the range of angles of incidence of size 0 3 is twice as large as at angles of incidence 0 3 when laser radiation that is linearly polarized in parallel is used. Linearly polarized laser radiation is understood in the usual way to mean laser radiation which vibrates only in the plane of incidence, that is to say in the plane defined by the incident beam 10 and the reflected beam 10 '.
Bezüglich Fig".1 ergibt sich eine erheblich geringere Er¬ hitzung der Teilbereiche 15 und damit eine Verminderung der Ge¬ fahr des ungewollten Aufschmelzens, des Deformierens oder des Abschmelzens dieser Teilbereiche 15 bzw. der Kante 21.With respect to FIG. 1, there is a considerably lower heating of the partial areas 15 and thus a reduction in the risk of unwanted melting, deforming or melting of these partial areas 15 or the edge 21.
In Fig.2 ist das Werkstück 12 ebenfalls mit einer zylin¬ drisch gewölbten Oberfläche 13 ausgebildet, im Bereich der Be¬ strahlung durch den Strahlfleck 14 jedoch nicht konvex gewölbt, sondern konkav gewölbt. Infolgedessen ergeben sich für die in Richtung 18 einfallende Laserstrahlung 10 in den Randbereichen 15 größere Einfallswinkel 02, als die Einfallswinkel 03 der mittleren Bereiche 16, da die Werkstückoberfläche.13 hier in¬ folge der konkaven Wölbung bereits flacher ist, als in den Be¬ reichen 15. In letzteren erfolgt also eine erhöhte Absorption. Das ist unerwünscht, wenn man davon ausgeht, daß die Randberei¬ che des Werkstücks 12 ohnehin seitlich, also quer zur Relativ- bewegungsrichtung 22 zwischen Laserstrahlung 10 und Werkstück 12 infolge der seitlichen Begrenzung einen Wärmestau erleiden. Zu dessen Vermeidung müßte die aus Fig.2 ersichtliche Biegung genau entgegengesetzt angeordnet sein, also wie in Fig.3.In FIG. 2, the workpiece 12 is also formed with a cylindrically curved surface 13, but in the region of the radiation from the beam spot 14, however, it is not curved convexly, but concavely curved. As a result, for the laser radiation 10 incident in the direction 18 there are greater angles of incidence 0 2 in the edge regions 15 than the angles of incidence 0 3 of the central regions 16, since the workpiece surface 13 here is already flatter than in the areas as a result of the concave curvature ¬ range 15. In the latter, there is an increased absorption. This is undesirable if it is assumed that the edge areas of the workpiece 12 anyway heat accumulate laterally, that is to say transversely to the relative movement direction 22 between the laser radiation 10 and the workpiece 12, due to the lateral limitation. To avoid this, the bend shown in FIG. 2 would have to be arranged exactly opposite, that is to say as in FIG. 3.
Fig.3 zeigt die Anordnung eines mondsichelförmig gebogenen Strahlflecks 14 an einem zylindrischen Werkstück 12 mit kon¬ vexer Wölbung für den Fall, daß die in Richtung der Zylinder¬ achse 17 gegebene Erstreckung wesentlich größer ist, als die Länge des Strahlflecks 14. In diesem Fall erfolgt ein Wärmeab¬ fluß in Richtung der Zylinderachse 17, so daß in den Teilberei¬ chen 15 des Strahlflecks 14 eine erhöhte Absorption gewünscht wird, um die Randschichten 11 des Werkstücks 12 über dessen ge¬ samte Breite gleichmäßig tief zu erhitzen. Die Biegung des Strahlflecks 14 erstreckt sich also quer zur Strahlrichtung 183 shows the arrangement of a crescent-shaped beam spot 14 on a cylindrical workpiece 12 with a convex curvature in the event that the extension given in the direction of the cylinder axis 17 is substantially greater than the length of the beam spot 14. In this case there is a heat outflow in the direction of the cylinder axis 17, so that increased absorption is desired in the partial areas 15 of the beam spot 14 in order to heat the edge layers 11 of the workpiece 12 uniformly deep over its entire width. The bend of the beam spot 14 thus extends transversely to the beam direction 18
ERSATZBLATT
in Richtung strahlhöhergelegener Oberflächenabschnitte 19', um in den Randbereichen die größeren Einfallswinkel c_2 zu bewir¬ ken, als im Bereich 16.E RS ATZBLATT in the direction of higher-lying surface sections 19 ′, in order to bring about the larger angles of incidence c_2 in the edge regions than in region 16.
Die Fig.5, 6 zeigen wölbungsfreie, plane Oberflächen 13. Das Werkstück 12 der Fig.5 ist etwa so lang, wie der nicht dar¬ gestellte Strahlfleck, so daß sich bei einer Relativbewegung von Laserstrahlung 10 und Werkstück 12 in Richtung 22 quer dazu ein Wärmestau ergibt. Infolgedessen wird so verfahren, daß in den in der Mitte des Werkstücks 12 befindlichen Bereichen 16 ein vergleichsweise großer Einfallswinkel 03 gewählt wird, wäh¬ rend die Einfallswinkel 02 der am Rande gelegenen Bereiche 15 demgegenüber kleiner ist . Dementsprechend ist auch die Energie¬ einkopplung in den Bereichen 15 geringer. Umgekehrt ist die Neigung der Laserstrahlung 10 in dem mittleren Bereich 16 des Werkstücks 12 der Fig.6, das seitlich in Bezug auf die Länge des nicht dargestellten Strahlflecks unbegrenzt ist . Der Ein¬ fallswinkel 0:3 ist also kleiner, als der randseitige Einfalls¬ winkel <2, was zu einer gleichmäßig tiefen Erhitzung des Werk¬ stücks 12 über die gesamte Länge des Strahlflecks führt.5, 6 show curvature-free, flat surfaces 13. The workpiece 12 in FIG. 5 is approximately as long as the beam spot (not shown), so that when the laser radiation 10 and workpiece 12 move relative to one another in the direction 22, they move transversely thereto a heat build-up results. As a result, the procedure is such that a comparatively large angle of incidence 03 is selected in the areas 16 located in the center of the workpiece 12, whereas the angle of incidence 02 of the areas 15 located on the edge is smaller. Accordingly, the energy coupling in the areas 15 is lower. Conversely, the inclination of the laser radiation 10 is in the central region 16 of the workpiece 12 of FIG. 6, which is laterally unlimited with respect to the length of the beam spot, not shown. The angle of incidence 0: 3 is thus smaller than the angle of incidence <2 on the edge, which leads to a uniformly deep heating of the workpiece 12 over the entire length of the beam spot.
Die Form des Strahlflecks der Laserstrahlung 10 ist bei den Werkstücken 12 der Fig.5, 6 von vergleichsweise geringer Be¬ deutung. Angedeutet ist durch die Anordnung der die Laserstrah¬ lung 10 symbolisierenden Pfeile eine sichelförmige Strahlfleck¬ ausbildung. Derselbe Behandlungseffekt kann jedoch erreicht werden, wenn eine linienförmige Strahlfleckausbildung verwendet wird, sofern nur die Einfallswinkel 0.3 der Laserstrahlung 10 in den Bereichen 16 wie jeweils dargestellt im Verhältnis zu den Einfallswinkeln 02 sind.The shape of the beam spot of the laser radiation 10 is of comparatively little importance for the workpieces 12 in FIGS. 5, 6. A crescent-shaped beam spot formation is indicated by the arrangement of the arrows symbolizing the laser radiation 10. However, the same treatment effect can be obtained when a linear beam spot formation is used, only the angle of incidence of the laser radiation 10 0. 3 provided in the regions 16 as shown respectively in relation to the angles of incidence are 02.
Die Fig.7, 8 zeigen die räumliche Anordnung einer Optik, mit der sichelförmige Strahlflecken erzeugt werden können. Die Optik 23 besteht aus in einem Gehäuse 28 angeordneten Planspie¬ gel 24, der die Laserstrahlung 10 in Richtung auf einen Linien- fokussierspiegel 25 um 90° umlenkt. In einstellbarem Abstand L von diesem Linienfokussierspiegel 25 ist ein elliptischer Spie¬ gel 26 angeordnet, der die Strahlung 10 um 90° ablenkt und auf das zu bestrahlende Werkstück 12 richtet, das sich in einer Di¬ stanz A befindet. Die Form des Strahlflecks entspricht Fig.4.7, 8 show the spatial arrangement of an optic with which sickle-shaped beam spots can be generated. The optics 23 consists of a plane mirror 24 arranged in a housing 28, which deflects the laser radiation 10 in the direction of a line focusing mirror 25 by 90 °. An elliptical mirror 26 is arranged at an adjustable distance L from this line focusing mirror 25, which deflects the radiation 10 by 90 ° and points it at the workpiece 12 to be irradiated, which is in a distance A. The shape of the beam spot corresponds to Fig. 4.
ERSATZBLATT
Mit Hilfe der vorbeschriebenen Verfahren kann bei optima¬ ler Bearbeitungsqualität mit hoher Prozeßgeschwindigkeit bear¬ beitet werden . Als Bearbeitungsverfahren kommen infrage : Anlas¬ sen, Umwandlungshärten, Umschmelzen, Legieren, Dispergieren oder Beschichten von Außenschichten bzw . Randschichten der Noc¬ ken . Fehlerhafte Bearbeitungen können vermieden werden, wie beispielsweise Kantenverrundungen infolge eines Auf schmelzens bzw . Verdampf ens von Werkstoff oder ungleichmäßige Bearbei¬ tungsgeometrien . Als Werkstücke kommen vornehmlich solche in¬ frage, die in zumindest einer Richtung ungewölbt sind, also Werkstücke mit planen Flächen und Werkstücke mit zylindrisch gewölbten Flächen . Bei diesen kann beispielsweise mit Strahl¬ fleckspuren in der Breite von z .B . 30 bis 40mm bearbeitet wer¬ den .REPLACEMENT LEAF With the aid of the above-described methods, processing can be carried out at high process speeds with optimum processing quality. Possible processing methods are: tempering, transformation hardening, remelting, alloying, dispersing or coating of outer layers or. Edge layers of the cam. Incorrect machining can be avoided, such as edge rounding due to melting or. Evaporation of material or uneven machining geometries. The workpieces that come into question are primarily those that are not arched in at least one direction, that is to say workpieces with flat surfaces and workpieces with cylindrical curved surfaces. In these, for example, with beam spots in the width of, for example. 30 to 40mm are machined.
Gewerbliche VerwertungCommercial recycling
Das Verfahren zur Oberflächenbehandlung von Werkstücken mittels Laserstrahlung wird zur Erzielung eine hohen Prozeßgeschwindigkeit mit gleichzeitiger Verbesserung der Bearbeitungsqualität angewandt .The process for the surface treatment of workpieces by means of laser radiation is used to achieve a high process speed with simultaneous improvement in the processing quality.
ERSATZBLATT
REPLACEMENT LEAF
Claims
1. Verfahren zur Oberflächenbehandlung von Nocken für Wellen von Kraftfahrzeugen mit Laserstrahlung durch Erhitzen von Randschichten, bei dem ein Laserstrahl mit einem von Null abweichenden Einfallswinkel auf die Werkstückoberfläche mit einem länglichen Strahlfleck auftrifft und quer dazu relativbewegt wird, dadurch gekennzeichnet, daß linear polarisierte Laserstrahlung (10) verwendet und ihr Ein¬ fallswinkel (c_2) zur Anpassung der Energieeinkopplung in den Nocken in zumindest einem Teilbereich (15) des Strahl¬ flecks (14) abweichend von den Einfallswinkeln (C-.3) der verbleibenden Bereiche (z.B.16) des Strahlflecks (14) ein¬ gestellt wird.1. A method for the surface treatment of cams for shafts of motor vehicles with laser radiation by heating peripheral layers, in which a laser beam with an incidence angle deviating from zero strikes the workpiece surface with an elongated beam spot and is moved transversely thereto, characterized in that linearly polarized laser radiation ( 10) and their angle of incidence (c_2) for adapting the energy coupling into the cams in at least one partial area (15) of the beam spot (14) deviating from the angles of incidence (C-.3) of the remaining areas (for example 16) of the Beam spot (14) is set.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Form des Strahlflecks (14) auf die Geometrie der zu bearbeitenden Fläche (13) abgestimmt wird.2. The method according to claim 1, characterized in that the shape of the beam spot (14) is matched to the geometry of the surface to be machined (13).
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß bei einem Werkstück (12) mit zylindrisch gewölb¬ ter Oberfläche (13) ein mondsichelförmig gebogener Strahl¬ fleck (14) parallel zur Zylinderachse (17) verwendet wird.3. The method according to claim 1 or 2, characterized gekennzeich¬ net that a moon crescent-shaped beam spot (14) is used parallel to the cylinder axis (17) in a workpiece (12) with a cylindrical vaulted surface (13).
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß im Falle einer der Länge (1) des Strahlflecks (14) etwa entsprechenden Werkstückbreite (B) ein Strahlfleck (14) mit einer Biegung verwendet wird, die sich quer zur Strahlrichtung (18) in Richtung strahltiefer gelegener Oberflächenabschnitte (19) des Werkstücks (12) erstreckt, wenn die zylindrische Werkstückoberfläche (13) konvex ge¬ wölbt ist, sonst umgekehrt.- Method according to claim 3, characterized in that in the case of a workpiece width (B) approximately corresponding to the length (1) of the beam spot (14), a beam spot (14) with a bend is used which extends transversely to the beam direction (18) in the direction Surface sections (19) of the workpiece (12) which are located deeper in the beam, if the cylindrical workpiece surface (13) is convex, otherwise vice versa.
ERSATZBLATT Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß im Falle einer die Länge (1) des Strahlflecks (14) wesent¬ lich übersteigenden Werkstückbreite (B) ein Strahlfleck (14) mit einer Biegung verwendet wird, die sich quer zur Strahlrichtung (18) in Richtung strahlhöher gelegener Oberflächenabschnitte (19 ' ) des Werkstücks (12) erstreckt, wenn die zylindrische Werkstückoberfläche (13) konvex ge¬ wölbt ist, sonst umgekehrt .REPLACEMENT LEAF A method according to claim 3, characterized in that in the case of a workpiece width (B) substantially exceeding the length (1) of the beam spot (14), a beam spot (14) with a bend is used which is transverse to the beam direction (18) in Extends in the direction of surface sections (19 ') of the workpiece (12) which are located at a higher beam if the cylindrical workpiece surface (13) is convexly curved, otherwise vice versa.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, daß ein Strahlfleck ( 14 ) mit einstellbarer Länge (1) und/oder mit einstellbarer Breite (b) verwendet wird.Method according to one of Claims 1 to 5, characterized in that a beam spot (14) with an adjustable length (1) and / or with an adjustable width (b) is used.
ERSATZBLATT REPLACEMENT LEAF
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4018355.6 | 1990-06-08 | ||
DE19904042349 DE4042349A1 (en) | 1990-06-08 | 1990-06-08 | METHOD FOR TREATMENT OF WORKPIECES WITH LASER RADIATION |
DE4018355A DE4018355A1 (en) | 1990-06-08 | 1990-06-08 | METHOD FOR TREATMENT OF WORKPIECES WITH LASER RADIATION |
DEP4042349.2 | 1990-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991018705A1 true WO1991018705A1 (en) | 1991-12-12 |
Family
ID=25893961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1991/000489 WO1991018705A1 (en) | 1990-06-08 | 1991-06-07 | Process for treating the surfaces of workpieces with laser radiation |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE4042349A1 (en) |
WO (1) | WO1991018705A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2534056A (en) * | 2012-09-06 | 2016-07-13 | Etxe-Tar S A | Method and system for laser hardening of a surface of a journal of a crankshaft |
US20220055078A1 (en) * | 2020-08-20 | 2022-02-24 | Harbin Institute Of Technology | Laser cleaning equipment and cleaning method for shaft component |
US20220410208A1 (en) * | 2019-10-31 | 2022-12-29 | Safran Aircraft Engines | Method for compacting an anti-corrosive paint of a turbine engine part |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT404798B (en) * | 1994-01-17 | 1999-02-25 | Fischer Gmbh | METHOD FOR HARDENING STEEL RUNNERS FOR SKI AND PLASMA HEAD FOR HARDENING EDGES IN STEEL MATERIALS AND DEVICE FOR HARDENING EDGES IN STEEL MATERIALS |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0127045A2 (en) * | 1983-05-23 | 1984-12-05 | International Business Machines Corporation | Apparatus for producing a light source of required shape |
JPS6389624A (en) * | 1986-10-03 | 1988-04-20 | Nissan Motor Co Ltd | Surface hardening method for cam shaft |
WO1988008353A1 (en) * | 1987-04-25 | 1988-11-03 | Fraunhofer-Gesellschaft Zur Förderung Der Angewand | Joining device and process using laser radiation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4304978A (en) * | 1978-10-05 | 1981-12-08 | Coherent, Inc. | Heat treating using a laser |
DE3126953C2 (en) * | 1981-07-08 | 1983-07-21 | Arnold, Peter, Dr., 8000 München | Process for the thermal treatment of the surface of workpieces by means of a linearly polarized laser beam |
DE4018355A1 (en) * | 1990-06-08 | 1992-01-09 | Fraunhofer Ges Forschung | METHOD FOR TREATMENT OF WORKPIECES WITH LASER RADIATION |
-
1990
- 1990-06-08 DE DE19904042349 patent/DE4042349A1/en active Granted
-
1991
- 1991-06-07 WO PCT/DE1991/000489 patent/WO1991018705A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0127045A2 (en) * | 1983-05-23 | 1984-12-05 | International Business Machines Corporation | Apparatus for producing a light source of required shape |
JPS6389624A (en) * | 1986-10-03 | 1988-04-20 | Nissan Motor Co Ltd | Surface hardening method for cam shaft |
WO1988008353A1 (en) * | 1987-04-25 | 1988-11-03 | Fraunhofer-Gesellschaft Zur Förderung Der Angewand | Joining device and process using laser radiation |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 12, no. 326 (C-525)(3173) 05 September 1988, & JP-A-63 89624 (NISSAN MOTOR CO LTD) 20 April 1988, siehe das ganze Dokument * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2534056A (en) * | 2012-09-06 | 2016-07-13 | Etxe-Tar S A | Method and system for laser hardening of a surface of a journal of a crankshaft |
GB2534056B (en) * | 2012-09-06 | 2017-04-19 | Etxe-Tar S A | Method and system for laser hardening of a surface of a journal of a crankshaft |
GB2520214B (en) * | 2012-09-06 | 2017-05-03 | Etxe-Tar S A | Method and system for laser hardening of a surface of a workpiece |
US10138528B2 (en) | 2012-09-06 | 2018-11-27 | Etxe-Tar, S.A. | Method and system for laser hardening of a surface of a workpiece |
US10961597B2 (en) | 2012-09-06 | 2021-03-30 | Exteotar, S.A. | Method and system for laser hardening of a surface of a workpiece |
US20220410208A1 (en) * | 2019-10-31 | 2022-12-29 | Safran Aircraft Engines | Method for compacting an anti-corrosive paint of a turbine engine part |
US12083555B2 (en) * | 2019-10-31 | 2024-09-10 | Safran Aircraft Engines | Method for compacting an anti-corrosive paint of a turbine engine part |
US20220055078A1 (en) * | 2020-08-20 | 2022-02-24 | Harbin Institute Of Technology | Laser cleaning equipment and cleaning method for shaft component |
US11738374B2 (en) * | 2020-08-20 | 2023-08-29 | Harbin Institute Of Technology | Laser cleaning equipment and cleaning method for shaft component |
Also Published As
Publication number | Publication date |
---|---|
DE4042349A1 (en) | 1991-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0872303B1 (en) | Process and apparatus for splitting flat pieces of brittle material, particularly of glass | |
DE69627802T2 (en) | Method and device for welding workpieces by means of two or more laser beams whose spots are oscillated from one side of the welding direction to the other side | |
DE69527858T2 (en) | Optical device for material processing by laser | |
EP0144817B1 (en) | Process for manufacturing wear-resistant running faces of combustion-engine cylinders | |
DE69328189T2 (en) | METHOD AND DEVICE FOR WELDING AND VARIOUS HEAT TREATMENTS | |
DE69708604T2 (en) | PUNCHING KNIFE AND MANUFACTURING METHOD | |
DE2940127A1 (en) | METHOD AND DEVICE FOR HEAT TREATMENT | |
EP0329787A1 (en) | Method and device for laser processing of an object | |
EP2314412A2 (en) | Laser machining apparatus and method for forming a surface on an unfinished product | |
EP0468328A1 (en) | Mirror for altering the geometric shape of a light beam | |
DE3126953C2 (en) | Process for the thermal treatment of the surface of workpieces by means of a linearly polarized laser beam | |
DE2927130A1 (en) | METHOD AND DEVICE FOR THE HEAT TREATMENT OF SURFACES OF STEEL WORKPIECES | |
DE102012003202A1 (en) | Device useful for processing workpieces, preferably blades by wet laser, comprises a base, machining unit movably mounted on base, which carries wet laser unit, and workpiece support, where wet laser unit comprises e.g. laser beam source | |
DE3905551C2 (en) | ||
DE69126030T2 (en) | METHOD FOR HARDENING RIFLE ROLLERS | |
EP3414044B1 (en) | Method of producing at least a sub-region of a layer of a three-dimensional component | |
DE4407190A1 (en) | Process for preparing the joining areas of coated workpieces for welding with laser radiation and lap joint for welding coated workpieces | |
DE69618017T2 (en) | PUNCHING KNIFE AND MANUFACTURING METHOD | |
DE19616863C2 (en) | Arrangement for coherence reduction and beam homogenization of high-power laser radiation | |
WO1991018705A1 (en) | Process for treating the surfaces of workpieces with laser radiation | |
DE4018355C2 (en) | ||
DE19751195C1 (en) | Method and device for welding by means of laser radiation | |
DE4001280C2 (en) | ||
DE112017006002T5 (en) | Laser beam processing method and laser beam machine | |
DE102020000518B3 (en) | Device for large-area laser processing for grain orientation of electrical steel sheets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |