WO1989009419A1 - Liquid crystal elastomer components - Google Patents
Liquid crystal elastomer components Download PDFInfo
- Publication number
- WO1989009419A1 WO1989009419A1 PCT/EP1989/000313 EP8900313W WO8909419A1 WO 1989009419 A1 WO1989009419 A1 WO 1989009419A1 EP 8900313 W EP8900313 W EP 8900313W WO 8909419 A1 WO8909419 A1 WO 8909419A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid
- crystalline
- elastomer
- elastomers
- optical
- Prior art date
Links
- MGYGFNQQGAQEON-UHFFFAOYSA-N Cc(cc1)ccc1N=C=O Chemical compound Cc(cc1)ccc1N=C=O MGYGFNQQGAQEON-UHFFFAOYSA-N 0.000 description 1
- 0 O=C=NC1CC*CC1 Chemical compound O=C=NC1CC*CC1 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/061—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-optical organic material
- G02F1/065—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electro-optical organic material in an optical waveguide structure
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/126—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
Definitions
- the invention relates to optical components which essentially consist of liquid-crystalline elastomers, a process for their production and their use in integrated optics.
- liquid crystal materials have found an increasingly widespread technical application due to their diverse suitable physical and chemical properties. Under the influence of electrical fields, for example, light absorption, light scattering, birefringence, reflectivity or the color can be changed.
- electrical fields for example, light absorption, light scattering, birefringence, reflectivity or the color can be changed.
- polymers in which the structural principles of liquid-crystalline compounds were implemented.
- linear and lateral liquid crystal main chains and side chains - polymers have been synthesized and investigated [H. Finkelmann, Angew. Chem. 9 £, 840 (1987)].
- Liquid-crystalline side chain polymers can be oriented in electric fields by exposing the polymer to an alternating electric field above the glass transition temperature [V.P. Shibaev et al., Polymer Communications 24, 364 (1983)], which leads to alignment of the mesogenic groups.
- This field-induced orientation can be frozen by cooling the polymer in the field below the glass temperature. The orientation then remains stable even after the electrical field has been switched off.
- Aligned liquid-crystalline polymer films are distinguished from the non-aligned environment by their optical transparency and different birefringence.
- Dipolar oriented polymeric liquid crystals for the production of nonlinear optical components are of great interest.
- Meredith et al. [Macromolecules 15_, 1385 (1982)] describe a process for producing dipolar-oriented films of a liquid-crystalline polymer, doped with the NLO chromophore DANS.
- liquid-crystalline elastomers polymer networks with mesogenic side groups, which are called liquid-crystalline elastomers, are obtained.
- the chain segments and mesogenic groups are movable above the glass transition temperature, but the material as such retains as a result of the crosslinking its dimensional stability.
- the particular interest in these liquid crystalline elastomers is their orientation by means of mechanical action. If, for example, a tensile stress is applied to an elastomer film above the glass transition temperature in the liquid-crystalline state, the longitudinal axes of the mesogenic side groups are oriented parallel to a preferred direction.
- liquid-crystalline elastomers can also be selectively oriented in localized areas by mechanical action.
- a liquid-crystalline elastomer with locally changed birefringence is obtained in this way. Because of the selectively achieved birefringence change in selectable ranges, the materials obtained in this way are therefore particularly suitable for the production of optical components.
- the properties typical of such elastomers, anisotropic phase behavior and, at the same time, dimensional stability and rubber elasticity, are of importance from an application point of view.
- the invention therefore relates to a liquid-crystalline elastomer with locally changed birefringence.
- the invention also relates to an optical component containing a liquid-crystalline elastomer.
- the invention further relates to a process for the production of liquid-crystalline elastomers, suitable for use in optical components, characterized in that the elastomer in the liquid-crystalline state is locally subjected to a change in layer thickness, a local change in the Birefringence occurs.
- the invention finally elements using liquid crystalline elastomer in optical Bauele ⁇ and the use of such components in integrated optics.
- the mesogenic side groups (2) are bound to a polymer backbone (1) via flexible spacers (3) terminally or laterally (shown here terminally).
- (4) represents the cross-linking unit between two neighboring polymer chains.
- mesogenic groups are bound as side groups to a polymer network and which lead to a liquid-crystalline phase state of the elastomer.
- Suitable elastomers are, for example, polysiloxanes [H. Finkelmann, et al. in Makromol.Chem. Rapid Commun. 5_, 287 (1984) and J. Schhartle, H. Finkelmann, Mol. Cryst. Liq.Cryst. 142, 85 (1987)].
- other liquid-crystalline elastomers known to the person skilled in the art can also be used.
- Copolymers which also carry non-liquid-crystalline chromophores as side groups are also preferred.
- Preferred spacers are alkylene groups -fCH-. n is preferably 1 to 6, in particular 3 to 6. In general, when the spacer length is shortened, the polymer backbone is stiffened and thus the glass transition temperature increases.
- mesogenic groups those are preferred which lead to a high clearing point, for example groups with 3 aromatics.
- Preferred elastomers which are in the liquid-crystalline state at room temperature are those with polyacrylate, polysiloxane, polyphosphazene as the polymer backbone and copolymers with non-liquid-crystalline chromophores which lower the clearing point.
- the preferred spacer length n is greater than 6, preferably n is in the range from 6 to 18.
- Preferred mesogenic groups are those with long-chain residues in the longitudinal axis of the mesogenic unit, for example alkyl, alkoxy and oxaalkyl groups with up to 15 links that lead to the lowering of the clearing point.
- the elastomers are usually produced by the methods customary in macromolecular chemistry, for example by simple, random copolymerization or by statistical polymer-analogous addition reactions with polyfunctional crosslinker molecules.
- Another simple method is the copolymerization of a mesogenic monomer with a functional comonomer into a liquid-crystalline copolymer, which is converted into the network by a crosslinker in a second reaction step [R. Zentel, Liq.Cryst. 1_, 589 (1986)].
- Copolymers in which non-liquid-crystalline chromophores are bound as side groups are important from an application point of view, for example in order to lower the birefringence too high or to vary other specific material properties.
- Copolymers with side groups having nonlinear optical properties are suitable as materials for nonlinear optics.
- liquid-crystalline elastomers can also be used as matrix polymers with low-molecular NLO chromophores dissolved therein.
- elastomers doped with low molecular weight liquid crystals for the production of pressure sensors.
- the mechanical elevations can be in the ⁇ m range and reflect the contours of a waveguide.
- the elevations of the carrier are transferred into the originally flat surface of the elastomer.
- the elastomer is locally deformed in areas of the change in layer thickness of the elastomer produced in this way.
- these local mechanical changes in layer thickness lead to local deformation of the optical axis and thus to a local change in the birefringence of the elastomer.
- These local changes in the optical axis are permanently retained at temperatures below T lc and are frozen permanently and mechanically stably in the solid state at temperatures below the glass temperature of the elastomer.
- the macroscopic orientation of the optical axis (s) of the elastomer can take place spontaneously by mechanical deformation of the elastomer film.
- the position of the optical axis (s) in relation to the interface of an elastomer film is determined both by the direction of the mechanical deformation of the film and by the phase structure (nematic, smectic) and the chemical constitution of the elastomer.
- the carrier can be made of any material on whose surface the elevations necessary for the local deformation of the elastomer are applied.
- Preferred carrier materials are glass or polymers such as polymethyl methacrylate, polystyrene or polycarbonate. It can however, other materials known to those skilled in the art can also be used as supports.
- the elevations (or depressions) are generally in the ⁇ m range, for example 1-3 ⁇ m. However, they can also be larger. This depends, among other things, on the layer thickness of the elastomer.
- electrically conductive areas can be applied by conventional techniques.
- the contact between the elastomer and carrier can result in the two materials being bonded, or else a bond can be avoided. If bonding is not desired, the structure of the support surface can be inserted into the elastomer and, after the temperature has dropped below the glass transition temperature, can be removed. The surface structure is then permanently retained in the elastomer.
- optical waveguides produced by the described method according to the invention are characterized by low attenuation; values of approximately 1 dB cm are sometimes achieved. They can therefore advantageously be used in passive components of the integrated optics, for example in polarizers.
- Optical waveguides which consist of non-centrosymmetrically aligned elastomers and non-linear optical components with high second-order susceptibilities, are suitable for use in optical isolators, modulators, couplers, optical switches and light valves for optical communications technology and information storage.
- Optical waveguides consisting of elastomers and nonlinear optical components with high 3rd order susceptibility, can be used in components for optical communication technology and information processing.
- optical memories and holographic gratings can also be produced by the method according to the invention.
- the spacer lengths given mean the number n of the spacer fCH-.
- the onomeric ratios are given in mole percent.
- Polymer backbone polymethacrylate
- a macroscopically pre-oriented film of the elastomer with a layer thickness of 50 ⁇ m is heated to 70 ° C and placed on a support made of glass, which bears a mechanical elevation of 3 ⁇ m that reflects the contours of a waveguide. It is then cooled to room temperature.
- An elastomer film with locally changed birefringence is obtained, specifically in the boundary regions of the change in layer thickness. Structures are thus deliberately inscribed in the selected areas of the film. This material shows excellent properties as an optical fiber.
- Polymer backbone polymethacrylate
- Polymer backbone polymethacrylate
- Polymer backbone polymethacrylate
- Polymer backbone polymethacrylate mesogenic group:
- the materials according to Examples 2 to 7 also show good to excellent properties as optical waveguides.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Liquid Crystal Substances (AREA)
Abstract
Optical components composed essentially of liquid crystal elastomers, process for producing them and their use in integrated optics.
Description
Flüssigkristallin-elastomere Bauelemente Liquid crystalline elastomer components
Die Erfindung betrifft optische Bauelemente, die im wesentlichen aus flüssigkristallinen Elastomeren be¬ stehen, ein Verfahren zu ihrer Herstellung sowie deren Anwendung in der Integrierten Optik.The invention relates to optical components which essentially consist of liquid-crystalline elastomers, a process for their production and their use in integrated optics.
Das schnelle Wachstum der Integrierten Optik macht die Entwicklung neuer optischer Bauelemente wie Schalter, Modulatoren, Koppler und Polarisatoren notwendig. Solche Elemente finden Anwendung in der optischen Datenüber- tragung und optischen Sensortechnik.The rapid growth of integrated optics makes it necessary to develop new optical components such as switches, modulators, couplers and polarizers. Such elements are used in optical data transmission and optical sensor technology.
Zu ihrer Herstellung sind Materialien notwendig, in denen in möglichst einfacher Weise optische Strukturen erzeugt werden können. ■=- ■'-For their production, materials are necessary in which optical structures can be produced in the simplest possible way. ■ = - ■ ' -
In diesem Zusammenhang haben Flüssigkristallmaterialien aufgrund ihrer vielfältigen geeigneten physikalischen und chemischen Eigenschaften eine immer breiter werdende technische Anwendung gefunden. Unter dem Einfluß elek¬ trischer Felder können beispielsweise Lichtabsorption, Lichtstreuung, Doppelbrechung, Reflexionsvermögen oder die Farbe verändert werden.
Vor einiger Zeit ist es nun gelungen, Polymere zu erzeugen, in denen die Strukturprinzipien flüssigkristalliner Ver¬ bindungen realisiert sind. Inzwischen sind lineare und laterale Flüssigkristallhauptketten- und -seitenketten .- polymere synthetisiert und untersucht worden [H. Finkel¬ mann, Angew. Chem. 9£, 840 (1987)].In this context, liquid crystal materials have found an increasingly widespread technical application due to their diverse suitable physical and chemical properties. Under the influence of electrical fields, for example, light absorption, light scattering, birefringence, reflectivity or the color can be changed. Some time ago it was now possible to produce polymers in which the structural principles of liquid-crystalline compounds were implemented. In the meantime, linear and lateral liquid crystal main chains and side chains - polymers have been synthesized and investigated [H. Finkelmann, Angew. Chem. 9 £, 840 (1987)].
Flüssigkristalline Seitenkettenpolymere lassen sich in elektrischen Feldern dadurch orientieren, daß das Polymer oberhalb der Glastemperatur einem elektrischen Wechsel- feld ausgesetzt wird [V.P. Shibaev et al., Polymer Com¬ munications 24, 364 (1983)], was zu einer Ausrichtung der mesogenen Gruppen führt.Liquid-crystalline side chain polymers can be oriented in electric fields by exposing the polymer to an alternating electric field above the glass transition temperature [V.P. Shibaev et al., Polymer Communications 24, 364 (1983)], which leads to alignment of the mesogenic groups.
Diese feldinduzierte Orientierung läßt sich einfrieren, indem das Polymer im Feld unter die Glastemperatur abge- kühlt wird. Die Orientierung bleibt dann auch nach Ab¬ schalten des elektrischen Feldes stabil.This field-induced orientation can be frozen by cooling the polymer in the field below the glass temperature. The orientation then remains stable even after the electrical field has been switched off.
Ausgerichtete flüssigkristalline Polymerfilme zeichnen sich gegenüber der nicht ausgerichteten Umgebung durch ihre optische Transparenz und unterschiedliche Doppel- brechung aus.Aligned liquid-crystalline polymer films are distinguished from the non-aligned environment by their optical transparency and different birefringence.
In M. Piskunov, et al., Makromol.Chem. , Rapid Communi¬ cations 3_, 443 (1982) wird ein Verfahren beschrieben, um nematische flüssigkristalline Seitenkettenpolymere in magnetischen Feldern auszurichten-In M. Piskunov, et al., Makromol. Chem. , Rapid Communications 3_, 443 (1982) describes a method for aligning nematic liquid-crystalline side chain polymers in magnetic fields.
H. Finkelmann et al. in Mol.Cryst.Liq.Cryst. 9_2, 49 (1983) beschreiben die Orientierung von dünnen Filmen nematischer flüssigkristalliner Seitenkettenpolymerer an Oberflächen
analog der Oberflächenorientierung niedermolekularer Flüssigkristalle. Diese Oberflächenorientierung gelingt nur bei Temperaturen knapp unterhalb des Klärpunktes und erfordert eine sehr lange Temperierdauer.H. Finkelmann et al. in Mol.Cryst.Liq.Cryst. 9_2, 49 (1983) describe the orientation of thin films of nematic liquid-crystalline side chain polymers on surfaces analogous to the surface orientation of low molecular weight liquid crystals. This surface orientation is only successful at temperatures just below the clearing point and requires a very long tempering period.
H.J. Coles und R. Simon [Polymer 2_6, 1801 (1985)] be¬ schreiben die Verwendung flüssigkristalliner Seiten- kettenpolymerer als optische Speichermedien.H.J. Coles and R. Simon [Polymer 2_6, 1801 (1985)] describe the use of liquid-crystalline side chain polymers as optical storage media.
Von großem Interesse sind dipolar orientierte polymere Flüssigkristalle zur Herstellung nichtlinear optischer Bauteile. Meredith et al. [ Macromolecules 15_, 1385 (1982)] beschreiben ein Verfahren zur Herstellung dipolar orien¬ tierter Filme eines flüssigkristallinen Polymers, dotiert mit dem NLO-Chromophor DANS.Dipolar oriented polymeric liquid crystals for the production of nonlinear optical components are of great interest. Meredith et al. [Macromolecules 15_, 1385 (1982)] describe a process for producing dipolar-oriented films of a liquid-crystalline polymer, doped with the NLO chromophore DANS.
Von besonderem anwendungstechnischem Interesse ist die funktioneile Integration nichtlinear optischer Komponenten mit optischen Wellenleiterstrukturen für Anwendungen in der optischen Nachrichtentechnik sowie der optischen Sig¬ nalverarbeitung und Speicherung. In der Internationalen Offenlegungsschrift WO 87/06019 wird die Verwendung smek- tischer niedermolekularer Flüssigkristalle für die Her¬ stellung optischer Bauteile beschrieben. Durch Ausrichten eines Teiles des Flüssigkristallfilms lassen sich Bre¬ chungsindexmuster in den Flüssigkristall einschreiben, die als Lichtwellenleiter und Beugungsgitter Verwendung finden.The functional integration of nonlinear optical components with optical waveguide structures for applications in optical communications technology and optical signal processing and storage is of particular interest in terms of application technology. The international publication WO 87/06019 describes the use of smectic low molecular weight liquid crystals for the production of optical components. By aligning a part of the liquid crystal film, refractive index patterns can be inscribed in the liquid crystal which are used as optical waveguides and diffraction gratings.
Werden in einem flüssigkristallinen Polymer die Polymer¬ ketten durch bifunktionelle Moleküle miteinander verknüpft, so erhält man Polymernetzwerke mit mesogenen Seitengruppen, die flüssigkristalline Elastomere genannt werden. Bei diesen Materialien sind oberhalb der Glastemperatur zwar die Kettensegmente und mesogenen Gruppen beweglich, das Material als solches behält jedoch infolge der Vernetzung
seine Formstabilität. Das besondere Interesse an diesen flüssigkristallinen Elastomeren gilt ihrer Orientierbar- keit mittels mechanischer Einwirkung. Legt man beispiels¬ weise an einen Elastomerfilm oberhalb der Glastemperatur im flüssigkristallinen Zustand eine Zugspannung an, so orientieren sich die Längsachsen der mesogenen Seiten¬ gruppen parallel zu einer Vorzugsrichtung. Kühlt man den Film unter die Glastemperatur ab und entlastet ihn da¬ nach, so bleibt die Orientierung dauerhaft erhalten. [J. Schätzle, H. Finkelmann, Mol.Cryst.Liq.Cryst. 142, 85 (1987)]. Die mechanische Deformation der Elastomere hat also auf die Orientierung der flüssigkristallinen Moleküle den gleichen Einfluß wie elektrische oder mag¬ netische Felder auf die Orientierung niedermolekularer Flüssigkristalle oder nicht"vernetzter flüssigkristal¬ liner Polymere.If the polymer chains in a liquid-crystalline polymer are linked to one another by bifunctional molecules, polymer networks with mesogenic side groups, which are called liquid-crystalline elastomers, are obtained. With these materials, the chain segments and mesogenic groups are movable above the glass transition temperature, but the material as such retains as a result of the crosslinking its dimensional stability. The particular interest in these liquid crystalline elastomers is their orientation by means of mechanical action. If, for example, a tensile stress is applied to an elastomer film above the glass transition temperature in the liquid-crystalline state, the longitudinal axes of the mesogenic side groups are oriented parallel to a preferred direction. If the film is cooled below the glass transition temperature and then relieved of the load, the orientation is permanently maintained. [J. Schätzle, H. Finkelmann, Mol.Cryst.Liq.Cryst. 142, 85 (1987)]. The mechanical deformation of the elastomers has thus on the orientation of the liquid crystalline molecules the same influence as electrical or mag¬ netic fields on the orientation of low molecular weight liquid crystals or not "cross-linked polymers flüssigkristal¬ liner.
Es wurde nun gefunden, daß sich flüssigkristalline Ela¬ stomere auch selektiv in abgegrenzten Bereichen (lokal) durch mechanische Einwirkung orientieren lassen. Man erhält auf diese Weise ein flüssigkristallines Elastomer mit lokal veränderter Doppelbrechung. Die so erhaltenen Materialien eignen sich deshalb aufgrund der selektiv erzielten Doppelbrechungsänderung in wählbaren Bereichen in vorzüglicher Weise zur Herstellung von optischen Bau- elementen.It has now been found that liquid-crystalline elastomers can also be selectively oriented in localized areas by mechanical action. A liquid-crystalline elastomer with locally changed birefringence is obtained in this way. Because of the selectively achieved birefringence change in selectable ranges, the materials obtained in this way are therefore particularly suitable for the production of optical components.
Dabei sind die für solche Elastomere typischen Eigen¬ schaften, anisotropes Phasenverhalten und gleichzeitig Formbeständigkeit und Gummielastizität, von anwendungs¬ technischer Bedeutung.
Gegenstand der Erfindung ist daher ein flüssigkristallines Elastomer mit lokal veränderter Doppelbrechung.The properties typical of such elastomers, anisotropic phase behavior and, at the same time, dimensional stability and rubber elasticity, are of importance from an application point of view. The invention therefore relates to a liquid-crystalline elastomer with locally changed birefringence.
Gegenstand der Erfindung ist auch ein optisches Bau¬ element, enthaltend ein flüssigkristallines Elastomer.The invention also relates to an optical component containing a liquid-crystalline elastomer.
Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung von flüssigkristallinen Elastomeren, geeignet zur Verwendung in. optischen Bauelementen, da¬ durch gekennzeichnet, daß man das Elastomer im flüssig¬ kristallinen Zustand lokal einer Schichtdickenänderung unterwirft, wobei in diesen Bereichen eine lokale Ver¬ änderung der Doppelbrechung erfolgt.The invention further relates to a process for the production of liquid-crystalline elastomers, suitable for use in optical components, characterized in that the elastomer in the liquid-crystalline state is locally subjected to a change in layer thickness, a local change in the Birefringence occurs.
Gegenstand der Erfindung ist'schließlich die Verwendung von flüssigkristallinen Elastomeren in optischen Bauele¬ menten sowie die Verwendung solcher Bauelemente in der Integrierten Optik.The invention 'finally elements using liquid crystalline elastomer in optical Bauele¬ and the use of such components in integrated optics.
Das Formelbild I zeigt zum besseren Verständnis schema¬ tisch den Aufbau eines flüssigkristallinen Elastomers:Formula I shows schematically the structure of a liquid crystalline elastomer for better understanding:
An einem Polymerrückgrat (1) sind die mesogenen Seiten¬ gruppen (2) über flexible Spacer (3) terminal oder lateral (hier terminal dargestellt) gebunden. (4) stellt die vernetzende Einheit zwischen zwei benachbarten Poly¬ merketten dar.
Für die vorliegende Erfindung eignen sich grundsätzlich alle Systeme, bei denen an ein Polymernetzwerk mesogene Gruppen als Seitengruppen gebunden sind und die zu einem flüssigkristallinen Phasenzustand des Elastomers führen. Geeignete Elastomere sind beispielsweise Polysiloxane [H. Finkelmann, et al. in Makromol.Chem. Rapid Commun. 5_, 287 (1984) und J. Schätzle, H. Finkelmann, Mol.Cryst. Liq.Cryst. 142, 85 (1987)]. Es können aber auch andere, dem Fachmann bekannte flüssigkristalline Elastomere ein- gesetzt werden. Weiterhin sind Copolymere bevorzugt, die als Seitengruppen auch nicht-flüssigkristalline Chromo- phore tragen.The mesogenic side groups (2) are bound to a polymer backbone (1) via flexible spacers (3) terminally or laterally (shown here terminally). (4) represents the cross-linking unit between two neighboring polymer chains. In principle, all systems are suitable for the present invention in which mesogenic groups are bound as side groups to a polymer network and which lead to a liquid-crystalline phase state of the elastomer. Suitable elastomers are, for example, polysiloxanes [H. Finkelmann, et al. in Makromol.Chem. Rapid Commun. 5_, 287 (1984) and J. Schätzle, H. Finkelmann, Mol. Cryst. Liq.Cryst. 142, 85 (1987)]. However, other liquid-crystalline elastomers known to the person skilled in the art can also be used. Copolymers which also carry non-liquid-crystalline chromophores as side groups are also preferred.
Von den Elastomeren, die bei Raumtemperatur im Glaszustand vorliegen, sind diejenigen besonders bevorzugt, bei denen das Polymerrückgrat Polymethacrylat, -chloracrylat oder ein Polystyrolderivat ist. Bevorzugte Spacer sind Alkylen- gruppen -fCH- . n bedeutet vorzugsweise 1 bis 6, insbe¬ sondere 3 bis 6. Im allgemeinen tritt bei Verkürzung der Spacerlänge eine Versteifung des Polymerrückgrates und damit eine Erhöhung der Glastemperatur ein. Von den meso¬ genen Gruppen sind diejenigen bevorzugt, die zu einem hohen Klärpunkt führen, beispielsweise Gruppen mit 3 Aromaten.Of the elastomers that are in the glass state at room temperature, those in which the polymer backbone is polymethacrylate, chloroacrylate or a polystyrene derivative are particularly preferred. Preferred spacers are alkylene groups -fCH-. n is preferably 1 to 6, in particular 3 to 6. In general, when the spacer length is shortened, the polymer backbone is stiffened and thus the glass transition temperature increases. Of the mesogenic groups, those are preferred which lead to a high clearing point, for example groups with 3 aromatics.
Bevorzugte Elastomere, die bei Raumtemperatur im flüssig¬ kristallinen Zustand vorliegen, sind solche mit Polyacry- lat, Polysiloxan, Polyphosphazen als Polymerrückgrat sowie Copoly erisate mit nicht-flüssigkristallinen Chromophoren, die den Klärpunkt erniedrigen. Bei dieser Gruppe von Elastomeren ist die bevorzugte Spacerlänge n größer als 6, vorzugsweise liegt n im Bereich von 6 bis 18. Bevorzugte mesogene Gruppen sind solche mit langkettigen Resten in der Längsachse der mesogenen Einheit, beispielsweise Alkyl-, Alkoxy- und Oxaalkylgruppen mit bis zu 15 Ketten¬ gliedern, die zur Erniedrigung des Klärpunktes führen.
Von den Elastomeren, die smektische oder nematische Phasen aufweisen, sind diejenigen bevorzugt, bei denen sich der Direktor bei Dehnung des Materials senkrecht beziehungs¬ weise bei Kompression parallel zur Deformationsachse orien- tiert.Preferred elastomers which are in the liquid-crystalline state at room temperature are those with polyacrylate, polysiloxane, polyphosphazene as the polymer backbone and copolymers with non-liquid-crystalline chromophores which lower the clearing point. In this group of elastomers, the preferred spacer length n is greater than 6, preferably n is in the range from 6 to 18. Preferred mesogenic groups are those with long-chain residues in the longitudinal axis of the mesogenic unit, for example alkyl, alkoxy and oxaalkyl groups with up to 15 links that lead to the lowering of the clearing point. Of the elastomers which have smectic or nematic phases, preference is given to those in which the director is oriented perpendicular to the deformation axis when the material is stretched, or parallel to the axis of deformation when compressed.
Die Elastomere werden üblicherweise nach den in der Makromolekularen Chemie gängigen Verfahren, beispiels¬ weise durch einfache, statistische Copolymerisation oder durch statistische polymeranaloge Additionsreaktionen mit polyfunktionellen Vernetzermolekülen hergestellt.The elastomers are usually produced by the methods customary in macromolecular chemistry, for example by simple, random copolymerization or by statistical polymer-analogous addition reactions with polyfunctional crosslinker molecules.
Eine weitere, einfache Methode ist die Copolymerisation eines mesogenen Monomers mit einem funktioneilen Comono- mer zu einem flüssigkristallinen Copolymer, das in einem zweiten Reaktionsschritt durch einen Vernetzer in das Netzwerk überführt wird [R. Zentel, Liq.Cryst. 1_, 589 (1986)] .Another simple method is the copolymerization of a mesogenic monomer with a functional comonomer into a liquid-crystalline copolymer, which is converted into the network by a crosslinker in a second reaction step [R. Zentel, Liq.Cryst. 1_, 589 (1986)].
Copolymere, in denen auch nicht-flüssigkristalline Chromo- phore als Seitengruppen gebunden sind, sind anwendungs¬ technisch von Bedeutung, um beispielsweise einen zu hohen Wert für die Doppelbrechung zu senken oder andere spezi¬ fische Materialeigenschaften zu variieren.Copolymers in which non-liquid-crystalline chromophores are bound as side groups are important from an application point of view, for example in order to lower the birefringence too high or to vary other specific material properties.
Copolymere mit nichtlinear optische Eigenschaften auf¬ weisenden Seitengruppen eignen sich als Materialien für die nichtlineare Optik. Alternativ dazu können auch flüssigkristalline Elastomere als Matrixpolymere mit darin gelösten niedermolekularen NLO-Chromophoren ver¬ wendet werden. Weiterhin bevorzugt sind mit niedermole¬ kularen Flüssigkristallen dotierte Elastomere zur Her¬ stellung von Drucksensoren.
In einem bevorzugten, erfindungsgemäßen Verfahren wird ein 1.c.-Elastomerfilm (I.e. = liquid crystalline = flüssig¬ kristallin), vorzugsweise ein makroskopisch einheitlich geordneter Film, bei einer Temperatur oberhalb seiner Glas- temperatur und unterhalb seiner flüssigkristallin-isotropen Phasenumwandlungstemperatur (T, _.) auf einen Träger ge¬ bracht, der in Form eines Stempels mechanische Erhebungen trägt. Die mechanischen Erhebungen können im μm-Bereich sein und die Konturen eines Wellenleiters wiedergeben. Bei der Kontaktierung Elastomer/Träger werden die Erhebungen des Trägers in die ursprünglich ebene Fläche des Elastomers übertragen. In. Bereichen der so erzeugten Schichtdickenän¬ derung des Elastomers wird lokal das Elastomer deformiert. Diese lokalen mechanischen Schichtdickenänderungen führen, je nach Lage der optischen Achse zur Grenzfläche des Ela¬ stomers, zu einer lokalen Deformation der optischen Achse und damit zu einer lokalen Veränderung der Doppelbrechung des Elastomers. Diese lokalen Änderungen der optischen Achse bleiben bei Temperaturen unterhalb Tlc_- permanent erhalten und sind bei Temperaturen unterhalb der Glastem¬ peratur des Elastomers dauerhaft und mechanisch stabil im Festzustand eingefroren.Copolymers with side groups having nonlinear optical properties are suitable as materials for nonlinear optics. Alternatively, liquid-crystalline elastomers can also be used as matrix polymers with low-molecular NLO chromophores dissolved therein. Also preferred are elastomers doped with low molecular weight liquid crystals for the production of pressure sensors. In a preferred method according to the invention, a 1st c. Elastomer film (Ie = liquid crystalline), preferably a macroscopically ordered film, is at a temperature above its glass temperature and below its liquid crystal isotropic phase transition temperature (T, _.) brought onto a carrier which carries mechanical elevations in the form of a stamp. The mechanical elevations can be in the μm range and reflect the contours of a waveguide. When contacting the elastomer / carrier, the elevations of the carrier are transferred into the originally flat surface of the elastomer. In. The elastomer is locally deformed in areas of the change in layer thickness of the elastomer produced in this way. Depending on the position of the optical axis relative to the interface of the elastomer, these local mechanical changes in layer thickness lead to local deformation of the optical axis and thus to a local change in the birefringence of the elastomer. These local changes in the optical axis are permanently retained at temperatures below T lc and are frozen permanently and mechanically stably in the solid state at temperatures below the glass temperature of the elastomer.
Die makroskopische Orientierung der optischen Achse (n) des Elastomers kann durch mechanische Deformation des Elastomerfilms oder auch spontan erfolgen. Die Lage der optischen Achse(n) zur Grenzfläche eines Elastomerfilms wird sowohl durch die Richtung der mechanischen Defor¬ mation des Films als auch durch die Phasenstruktur (ne- matisch, smektisch) und die chemische Konstitution des Elastomers bestimmt.The macroscopic orientation of the optical axis (s) of the elastomer can take place spontaneously by mechanical deformation of the elastomer film. The position of the optical axis (s) in relation to the interface of an elastomer film is determined both by the direction of the mechanical deformation of the film and by the phase structure (nematic, smectic) and the chemical constitution of the elastomer.
Der Träger kann aus einem beliebigen Material.bestehen, auf dessen Oberfläche die für die lokale Deformation des Elastomers notwendigen Erhebungen aufgebracht sind. Bevor¬ zugte Trägermaterialien sind Glas oder Polymere wie Poly- methylmethacrylat, Polystyrol oder Polycarbonat. Es können
jedoch auch andere, dem Fachmann bekannte Materialien als Träger Verwendung finden. Die Erhebungen (oder Ver¬ tiefungen) liegen im allgemeinen im μm-Bereich, z.B. 1-3 μm. Sie können jedoch auch größer dimensioniert sein. Dies hängt unter anderem von der Schichtdicke des Ela¬ stomers ab. Zusätzlich können bei nicht-elektrisch lei¬ tenden Trägern elektrisch leitfähige Bereiche durch kon¬ ventionelle Techniken aufgebracht werden.The carrier can be made of any material on whose surface the elevations necessary for the local deformation of the elastomer are applied. Preferred carrier materials are glass or polymers such as polymethyl methacrylate, polystyrene or polycarbonate. It can however, other materials known to those skilled in the art can also be used as supports. The elevations (or depressions) are generally in the μm range, for example 1-3 μm. However, they can also be larger. This depends, among other things, on the layer thickness of the elastomer. In addition, in the case of non-electrically conductive carriers, electrically conductive areas can be applied by conventional techniques.
Je nach Beschaffenheit der Oberfläche des Elastomers oder des Trägers kann es bei der Kontaktierung Elastomer/ Träger zu einer Verklebung beider Materialien kommen oder aber eine Verklebung vermieden werden. Ist keine Verkle¬ bung erwünscht, kann die Struktur der Trägeroberfläche in das Elastomer eingetragen und nach Absenkung der Tem- peratur unterhalb der Glastemperatur der Träger entfernt werden. Die Oberflächenstruktur bleibt dann im Elastomer dauerhaft erhalten.Depending on the nature of the surface of the elastomer or the carrier, the contact between the elastomer and carrier can result in the two materials being bonded, or else a bond can be avoided. If bonding is not desired, the structure of the support surface can be inserted into the elastomer and, after the temperature has dropped below the glass transition temperature, can be removed. The surface structure is then permanently retained in the elastomer.
Anwendungsbeispiele hierfür sind die Herstellung von Pre߬ lingen, Chips, Platten und Folien.Examples of applications for this are the production of compacts, chips, plates and foils.
Die nach dem beschriebenen, erfindungsgemäßen Verfahren hergestellten optischen Wellenleiter zeichnen sich durch niedrige Dämpfung aus, es werden teilweise Werte von etwa 1 dB cm erreicht. Somit können sie vorteilhaft in passi¬ ven Bauelementen der Integrierten Optik, beispielsweise in Polarisatoren, Verwendung finden.The optical waveguides produced by the described method according to the invention are characterized by low attenuation; values of approximately 1 dB cm are sometimes achieved. They can therefore advantageously be used in passive components of the integrated optics, for example in polarizers.
Optische Wellenleiter, die aus nichtzentrosymmetrisch aus¬ gerichteten Elastomeren und nichtlinear optischen Komponen¬ ten mit hohen Suszeptibilitaten 2. Ordnung bestehen, eignen sich zur Verwendung in optischen Isolatoren, Modulatoren, Kopplern, optischen Schaltern und Lichtventilen für die optische Nachrichtentechnik und Informationsspeicherung.
Optische Wellenleiter, bestehend aus Elastomeren und nichtlinear optischen Komponenten mit hohen Suszeptibili¬ taten 3. Ordnung, können in Bauelementen für die optische Kommunikationstechnik und Informationsverarbeitung Ver- wendung finden.Optical waveguides, which consist of non-centrosymmetrically aligned elastomers and non-linear optical components with high second-order susceptibilities, are suitable for use in optical isolators, modulators, couplers, optical switches and light valves for optical communications technology and information storage. Optical waveguides, consisting of elastomers and nonlinear optical components with high 3rd order susceptibility, can be used in components for optical communication technology and information processing.
Weiterhin können nach dem erfindungsgemäßen Verfahren auch optische Speicher und holographische Gitter herge¬ stellt werden.Furthermore, optical memories and holographic gratings can also be produced by the method according to the invention.
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Die angegebenen Spacerlängen be¬ deuten die Zahl n des Spacers fCH- «, Die onomerenver- hältnisse sind in Molprozent angegeben.The following examples are intended to illustrate the invention without limiting it. The spacer lengths given mean the number n of the spacer fCH-. The onomeric ratios are given in mole percent.
Beispiel 1example 1
verwendetes Elastomer:elastomer used:
Monomeren- verhältnisMonomer ratio
Polymerrückgrat: PolymethacrylatPolymer backbone: polymethacrylate
Comonomer: fO-(CH2)2-OH oComonomer: f O- (CH 2 ) 2 -OH o
Spacerlänge: 6Spacer length: 6
Glas emperatur : 45 °C, Klärpunkt: 120 °C
Ein makroskopisch vororientierter Film des Elastomers mit einer Schichtdicke von 50 μm wird auf 70 °C erhitzt und auf einen Träger aus Glas gebracht, der eine mechanische Erhebung von 3 μm trägt, die die Konturen eines Wellen- leiters wiedergibt. Anschließend wird auf Raumtemperatur abgekühlt. Man erhält einen Elastomerfilm mit lokal ver¬ änderter Doppelbrechung, und zwar in den Grenzbereichen der Schichtdickenänderung. Somit sind in den ausgewählten Bereichen des Films gezielt Strukturen eingeschrieben. Dieses Material zeigt hervorragende Eigenschaften als Lichtwellenleiter.Glass temperature: 45 ° C, clearing point: 120 ° C A macroscopically pre-oriented film of the elastomer with a layer thickness of 50 μm is heated to 70 ° C and placed on a support made of glass, which bears a mechanical elevation of 3 μm that reflects the contours of a waveguide. It is then cooled to room temperature. An elastomer film with locally changed birefringence is obtained, specifically in the boundary regions of the change in layer thickness. Structures are thus deliberately inscribed in the selected areas of the film. This material shows excellent properties as an optical fiber.
Analog Beispiel 1 werden in folgende Elastomere Struk¬ turen eingeschrieben.Analogously to Example 1, the following elastomer structures are inscribed.
Beispiel 2Example 2
4 Elastomere wie in Beispiel 1 beschrieben, jedoch mit den Spacerlängen 7, 8, 10 und 12.4 elastomers as described in Example 1, but with spacer lengths 7, 8, 10 and 12.
Beispiel 3Example 3
4 Elastomere folgender Struktur mit Spacerlängen 6 und 11:4 elastomers of the following structure with spacer lengths 6 and 11:
Monomeren- VerhältnisMonomer ratio
Polymerrückgrat: PolymethacrylatPolymer backbone: polymethacrylate
mesogene Gruppe:mesogenic group:
m: 6,8m: 6.8
Beispiel 4Example 4
4 Elastomere folgender Struktur mit Spacerlängen 6 und 11:4 elastomers of the following structure with spacer lengths 6 and 11:
Monomeren- verhältnisMonomer ratio
Polymerrückgrat: PolymethacrylatPolymer backbone: polymethacrylate
mesogene Gruppe:mesogenic group:
Comonomer: C omonomer:
m: 6,8
Beispiel 5m: 6.8 Example 5
4 Elastomere folgender Struktur mit Spacerlängen 6 und 11:4 elastomers of the following structure with spacer lengths 6 and 11:
Monomeren- verhältnisMonomer ratio
Polymerrückgrat: PolymethacrylatPolymer backbone: polymethacrylate
mesogene Gruppe:mesogenic group:
Comonomer:Comonomer:
m: 6,8m: 6.8
Beispiel 6Example 6
4 Elastomere folgender Struktur mit Spacerlängen 6 und 11:4 elastomers of the following structure with spacer lengths 6 and 11:
Monomeren- VerhältnisMonomer ratio
Polymerrückgrat: Polymethacrylat
mesogene Gruppe:Polymer backbone: polymethacrylate mesogenic group:
Comonomer:Comonomer:
m_ 6,8m_ 6.8
Beispiel 7Example 7
5 Elastomere folgender Struktur [Monomerenverhältnisse nach H. Finkelmann et al. Makromol. Chem., Rapid Commun. 5_, 287-293 (1984)] mit den Spacerlängen5 elastomers of the following structure [monomer ratios according to H. Finkelmann et al. Macromol. Chem., Rapid Commun. 5_, 287-293 (1984)] with the spacer lengths
3 (nematisch, Glastemperatur: 12 °C, Klärpunkt: 59 °C),3 (nematic, glass temperature: 12 ° C, clearing point: 59 ° C),
6 (smektisch, Glastemperatur: -5 °C, Klärpunkt: 80 °C), 8, 10 und 12.6 (smectic, glass temperature: -5 ° C, clearing point: 80 ° C), 8, 10 and 12.
Polymerrückgrats Poly(hydrogenmethylsiloxan)Polymer backbone poly (hydrogenmethylsiloxane)
O CH3 CH3 O CH 3 CH 3
I I I II I I I
Vernetzer: CH3-Si-CH2-CH2-(Si-0)9-Si-CH2-CH2-Si-CH3 Crosslinker: CH 3 -Si-CH 2 -CH 2 - (Si-0) 9 -Si-CH 2 -CH 2 -Si-CH 3
! I I I CH3 CH3 O! III CH 3 CH 3 O
Die Materialien gemäß den Beispielen 2 bis 7 zeigen eben¬ falls gute bis hervorragende Eigenschaften als Lichtwellen¬ leiter.
The materials according to Examples 2 to 7 also show good to excellent properties as optical waveguides.
Claims
1. Flüssigkristallines Elastomer dadurch gekennzeichnet, daß es Bereiche mit lokal veränderter Doppelbrechung besitzt.1. Liquid crystalline elastomer, characterized in that it has areas with locally changed birefringence.
2. Optisches Bauelement, enthaltend ein flüssigkristal- lines Elastomer.2. Optical component containing a liquid-crystalline elastomer.
3. Verfahren zur Herstellung von flüssigkristallinen Elastomeren, geeignet zur Verwendung in optischen Bauelementen, dadurch gekennzeichnet, daß man das Elastomer im flüssigkristallinen Zustand lokal einer Schichtdickenänderung unterwirft, wobei in diesen Bereichen eine lokale Veränderung der Doppelbrechung erfolgt.3. A process for the production of liquid-crystalline elastomers, suitable for use in optical components, characterized in that the elastomer is locally subjected to a change in layer thickness in the liquid-crystalline state, a local change in birefringence taking place in these areas.
4. Verwendung von flüssigkristallinen Elastomeren in optischen Bauelementen.4. Use of liquid crystalline elastomers in optical components.
5. Verwendung von optischen Bauelementen nach Anspruch 2 in der Integrierten Optik. 5. Use of optical components according to claim 2 in the integrated optics.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP3811334.1 | 1988-04-02 | ||
DE19883811334 DE3811334A1 (en) | 1988-04-02 | 1988-04-02 | LIQUID CRYSTAL ELASTOMER COMPONENTS |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989009419A1 true WO1989009419A1 (en) | 1989-10-05 |
Family
ID=6351369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1989/000313 WO1989009419A1 (en) | 1988-04-02 | 1989-03-22 | Liquid crystal elastomer components |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0366741A1 (en) |
JP (1) | JPH02504556A (en) |
DE (1) | DE3811334A1 (en) |
WO (1) | WO1989009419A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0522637A2 (en) * | 1991-07-10 | 1993-01-13 | Koninklijke Philips Electronics N.V. | Planar optical element |
DE4124859A1 (en) * | 1991-07-26 | 1993-01-28 | Merck Patent Gmbh | LIQUID CRYSTALLINE ELASTOMERS OR DUOMERS WITH FIXED ANISOPROPER NETWORK |
US9969847B2 (en) | 2014-03-17 | 2018-05-15 | Jozef Stefan Institute | Polymer dispersed liquid crystal elastomers (PDLCE) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10026264A1 (en) | 2000-05-26 | 2001-11-29 | Bayerische Motoren Werke Ag | Motor vehicle outer skin |
JP7225424B2 (en) * | 2019-09-27 | 2023-02-20 | 富士フイルム株式会社 | optical element |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU507723B2 (en) * | 1976-01-12 | 1980-02-28 | Australian Telecommunications Commission | Optical waveguide |
EP0033070A2 (en) * | 1980-01-25 | 1981-08-05 | International Business Machines Corporation | Active waveguide element |
EP0137679A1 (en) * | 1983-08-24 | 1985-04-17 | University Patents, Inc. | Diacetylenes having liquid crystal phases |
-
1988
- 1988-04-02 DE DE19883811334 patent/DE3811334A1/en not_active Withdrawn
-
1989
- 1989-03-22 JP JP50372089A patent/JPH02504556A/en active Pending
- 1989-03-22 WO PCT/EP1989/000313 patent/WO1989009419A1/en not_active Application Discontinuation
- 1989-03-22 EP EP19890904051 patent/EP0366741A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU507723B2 (en) * | 1976-01-12 | 1980-02-28 | Australian Telecommunications Commission | Optical waveguide |
EP0033070A2 (en) * | 1980-01-25 | 1981-08-05 | International Business Machines Corporation | Active waveguide element |
EP0137679A1 (en) * | 1983-08-24 | 1985-04-17 | University Patents, Inc. | Diacetylenes having liquid crystal phases |
Non-Patent Citations (3)
Title |
---|
Angew. Chem., Band 99, 1987, VCH Verlagsgesellschaft mbH (Weinheim, DE), H. Finkelman: "Fl}ssigkristalline polymere", Seiten 840-848 * |
Applied Optics, Band 19, Nr. 20, 15. Oktober 1980, American Institute of Optics (New York, US), A.R. Nelson: "Photoelastic waveguides in LiTaO3 and LiNbO3", Seiten 3423-3424 * |
Displays Technology, Band 1, 1985, Gordon and Breach Science Publishers, Ltd & OPA Ltd (UK), H. Finkelmann et al.: "Liquid crystal side chain polymers: properties and aspects for applications", Seiten 81-94 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0522637A2 (en) * | 1991-07-10 | 1993-01-13 | Koninklijke Philips Electronics N.V. | Planar optical element |
EP0522637A3 (en) * | 1991-07-10 | 1993-08-04 | N.V. Philips' Gloeilampenfabrieken | Planar optical element |
DE4124859A1 (en) * | 1991-07-26 | 1993-01-28 | Merck Patent Gmbh | LIQUID CRYSTALLINE ELASTOMERS OR DUOMERS WITH FIXED ANISOPROPER NETWORK |
US9969847B2 (en) | 2014-03-17 | 2018-05-15 | Jozef Stefan Institute | Polymer dispersed liquid crystal elastomers (PDLCE) |
Also Published As
Publication number | Publication date |
---|---|
DE3811334A1 (en) | 1989-10-19 |
EP0366741A1 (en) | 1990-05-09 |
JPH02504556A (en) | 1990-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68914207T2 (en) | Ferroelectric liquid crystalline composition, optical device using this composition and method of manufacturing this optical device. | |
EP0772069B1 (en) | Optical device | |
EP0041184B1 (en) | Liquid-crystal display cell and method of manufacturing same | |
DE3855669T2 (en) | Liquid crystal optical device and its manufacturing method | |
DE68917914T2 (en) | LIGHT-MODULATING MATERIALS CONTAINING LIQUID CRYSTAL MICRODROPS DISPERSED IN A POLYMER MATTRESS. | |
EP0231856B1 (en) | Method for reversible optical data storage | |
DE4402571A1 (en) | liquid crystal device | |
DE3825066A1 (en) | METHOD FOR PRODUCING THICKNESS, ANISOTROPIC LAYERS ON SURFACE-STRUCTURED CARRIERS | |
DE4430810A1 (en) | Liquid crystal display | |
Hikmet et al. | Anisotropic polymerization shrinkage behaviour of liquid-crystalline diacrylates | |
KR100257892B1 (en) | Liquid crystal light shutter | |
CN100523958C (en) | Liquid crystal display device | |
DE635048T1 (en) | NEW OPTICAL NONLINEAR ARYLHYDRAZONE AND OPTICALLY NONLINEAR POLYMERS THEREOF. | |
DE69427910T2 (en) | CROSSLINKABLE POLYMER, ESPECIALLY APPLICABLE IN OPTICS AND NON-LINEAR OPTICS, MATERIALS AND OBJECTS MADE THEREOF, AND METHOD FOR PRODUCING THIS POLYMER | |
WO1989009419A1 (en) | Liquid crystal elastomer components | |
DE3784487T2 (en) | METHOD AND DEVICE FOR TILTED ALIGNMENT OF A LIQUID CRYSTAL WITH INCREASED PHOTOSTABILITY. | |
DE69125529T2 (en) | Information recording medium and information recording / storage method using the medium | |
DE69029768T2 (en) | Liquid crystal polymer composition and liquid crystal polymer device | |
EP0724006A1 (en) | Liquid crystalline epoxy resins in polymer dispersed liquid crystal composites | |
DE69131113T2 (en) | Liquid crystal copolymer compound, composition containing it, and liquid crystal polymer device using it | |
CH673900A5 (en) | ||
KR20070105308A (en) | Switchable narrow band reflectors produced in a single curing step | |
EP0188785B2 (en) | Use of polymers with liquid-crystal properties as information supports | |
EP0337405A2 (en) | Nonlinear optical medium with a stable noncentrosymmetric polymeric structure | |
DE3779476T2 (en) | DELETABLE OPTICAL PLATE WITH OPTICALLY TRANSPARENT SUBSTRATE. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1989904051 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1989904051 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1989904051 Country of ref document: EP |