WO1989003731A1 - Sheet metal pressing resin mold and method of manufacturing same - Google Patents
Sheet metal pressing resin mold and method of manufacturing same Download PDFInfo
- Publication number
- WO1989003731A1 WO1989003731A1 PCT/JP1987/001029 JP8701029W WO8903731A1 WO 1989003731 A1 WO1989003731 A1 WO 1989003731A1 JP 8701029 W JP8701029 W JP 8701029W WO 8903731 A1 WO8903731 A1 WO 8903731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- sheet metal
- reinforcing
- shoulder
- resin mold
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/20—Making tools by operations not covered by a single other subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/88—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
- B29C70/887—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced locally reinforced, e.g. by fillers
Definitions
- the present invention relates to a resin mold for metal stamping and a method of manufacturing the same.
- a thermosetting resin is applied to a deformed spiral-shaped multilayer body formed of reinforcing fibers on a die shoulder or a punch shoulder of a resin mold for sheet metal pressing.
- the present invention relates to a resin die for a sheet metal press, which incorporates a reinforced body which is impregnated and cured to ensure sufficient strength and durability, and a method for producing the same.
- the resin dies for sheet metal presses that have been put into practical use so far have been manufactured by the lamination method or the metal core method.
- the lamination method or the metal core method.
- reference numeral 20 denotes a core-box.
- a model 21 made of wood, synthetic wood, gypsum or the like is fixed in a c- core-box 20.
- a release agent is applied to the inner surface of the core box 20 and the surface of the model 21, and a surface layer resin is applied on the release agent to form a surface resin layer 22.
- the surface layer resin becomes semi-cured, fibers impregnated with resin are adhered on the resin to form a cohesive layer 23.
- various types of resin-impregnated fibers are used properly so as to conform to each local area according to the local shape of the mold. Good.
- a woven fabric is used for a flat surface, and a short fiber is used for a curved surface, or a woven fabric cut into small pieces is used while being stitched. For corners or small curved surfaces, embed roping cut to an appropriate length.
- the inside of the reinforcing layer 23 is filled with sand or short fiber mixed with resin.
- the resin cures, it becomes a sand core.
- a replating resin is applied over the entire surface, covered with a horizontal layer 25, and cured, whereby a leveling layer 26 is formed.
- the metal core method In addition to the lamination method, there is the metal core method.
- the outline of the metal core method will be described with reference to FIG.
- a metal core 27 with an outer shape smaller than the mold size by 10 to 20 orchids is used, but the core 27 is provided with an inlet 28.
- a small piece of the cured resin having a thickness corresponding to the thickness of the casting resin is arranged as a spacer, and a core 27 is placed.
- the resin for casting is injected from the injection port 28, and the space between the core 27 and the core 20 model 21 is filled. ⁇
- the fat hardens and the core 1 2 7 When taken out after being integrated, the resin layer 29 is formed on the outer periphery except the upper surface. When the upper surface is cut and leveled, a resin mold having the desired shape and dimensions can be obtained.
- a resin layer 29 having a thickness of 10 to 20 ram is formed on the outer surface except the upper surface, and a metal core 127 is present inside the resin layer 29.
- the resin layer 29 and the core 27 are adhered to each other by an adhesive force generated when the resin is cured, and are integrally formed.
- the sheet metal press is formed by applying a blank holder pressure to a blank such as a cold rolled barb inserted between the die surface and the blank holder surface, pressing the punch mold into the blank, and plastically deforming the blank. It depends on the molding method. When a punch die is press-fitted, it undergoes tensile deformation and bending deformation between the die-shaped die shoulder and the punch-shaped punch shoulder, and the deforming force causes the base plate to undergo plastic deformation. Therefore, a large local load is applied to these shoulders during molding. For this reason, the die for sheet metal press requires large load-bearing strength and abrasion resistance particularly at the die shoulder and the punch shoulder. It can be said that the durability of the mold is governed by the strength and wear resistance of the shoulder.
- the resin mold manufactured by the metal core method is a method in which a resin containing 20 to 25% by volume of fine metal powder is mixed on the surface of a metal core 17 with a thickness of 10 to 2 O mm.
- the resin layer 29 was formed by pouring.
- the core 17 is a metal and is strong because it is made of metal. However, it has a structure in which the resin layer 29 is bonded to the outer periphery of the metal core 27. Adhesion of different substances called metal and resin Adhesive. Therefore, due to the large difference in thermal expansion coefficient, heat storage, rigidity, etc. between the two substances, the difference in physical property behavior between the two substances as the cycle on which the load acts is repeated The resin layer 29 gradually peels off at the shoulders.
- an object of the present invention is to solve the above-mentioned problems of the conventional resin mold and to improve the strength and durability of the die shoulder and punch shoulder of the resin mold for sheet metal press.
- An object of the present invention is to provide a mold and a manufacturing method thereof.
- a deformable spiral multilayer body formed of reinforcing fibers is impregnated with a thermosetting resin at a die shoulder and a Z or punch shoulder where a local load acts. Incorporate a hardened body that has been hardened.
- the method for producing a resin die for sheet metal pressing is a method of manufacturing a resin die for sheet metal pressing, in which a reinforcing fiber is spirally wound and impregnated with a thermosetting resin, to a position corresponding to a die shoulder or a punch shoulder of a matrix.
- a reinforcing fiber is spirally wound and impregnated with a thermosetting resin, to a position corresponding to a die shoulder or a punch shoulder of a matrix.
- This resin mold for sheet metal press is formed, for example, as follows. First, after a mold release agent is applied to the inner peripheral surface of the matrix, a thermosetting resin in which a hard and pressure-resistant fine powder and a fine powder of a solid lubricant are mixed is applied. The former fine powder is blended for imparting pressure resistance and abrasion resistance, and the latter powder is blended for imparting abrasion resistance. When the thermosetting resin cures, a surface resin layer is formed, but when the surface resin layer is still in a high viscosity state, the surface resin layer is positioned inside and in contact with the die shoulder or punch shoulder as described above. Forms a reinforced body. In the resin mold for gold press manufactured in this manner, the surface resin layer is a surface layer excellent in pressure resistance and abrasion resistance.
- the resin mold for sheet metal press according to still another invention of the present invention is as follows. That is, a reinforced body composed of a thermosetting resin-impregnated cured product of a deformed spiral multilayer body formed of reinforcing fibers is formed on the die shoulder portion ⁇ punch shoulder portion, and on the outside of the reinforced body.
- a knitted fabric layer composed of a thermosetting resin-impregnated cured product of a reinforcing fiber knitted fabric is formed outside the reinforcing body in a shape that conforms to the surface shape of the die.
- the reinforcing fiber knitted fabric is in a state in which the fibers are fully stretched at least at the portion located at the shoulder.
- the reinforcing body and the knitted fabric layer are formed, for example, as follows. First, a woven fabric made of reinforcing fibers, a nonwoven fabric made of reinforcing fibers containing reinforcing fibers aligned in one direction, or a reinforcing fiber filament is spirally wound and impregnated with a thermosetting resin. Is deformed into a deformed spiral shape by pressing it against the side of the mother die where the die or shoulder is located. Furthermore, a thermosetting resin impregnated woven fabric for forming a reinforcing layer or a thermosetting resin impregnated nonwoven fabric containing reinforcing fibers aligned in one direction is adhered to the inside thereof.
- a reinforced layer integrated with the reinforced body It is cured together to form a reinforced layer integrated with the reinforced body, and then removed. At this time, a sand core or the like may be formed inside the reinforcing layer and then taken out.
- a knitted fabric made of reinforcing fibers is impregnated with a thermosetting resin to form a layer along the matrix. While the fiber of the knitted fabric is being stretched, a reinforcing layer integrated with the reinforcing body is inserted into the inside of the layer, and at least the fibers located at the shoulders are fully stretched. Then, the two are cured together, and the knitted fabric layer is To form
- the reinforcing fiber used for the resin-type shoulder according to the present invention has a property that it has a large mechanical strength in the longitudinal direction of the fiber and a property that the elongation is extremely small.
- the fiber reinforced resin which is a composite of the reinforcing fiber and a resin with relatively low mechanical strength, is reinforced so that the longitudinal direction of the fiber is greater than that of the barb, but the reinforcing effect in other directions Is small. The strength depends on the form and content of the fibers in the composite.
- the direction of the load should be parallel to the direction of the fiber.
- the reinforcing fibers for reinforcing the shoulder portion include a woven fabric made of reinforcing fibers. We use in form of. Alternatively, it is used in the form of a reinforcing fiber nonwoven fabric containing reinforcing fibers aligned in one direction. Or, they are used in the form of reinforcing fiber filaments. In such a case, the density of fibers per volume is higher than that of short fibers or mats. Therefore, the content of fibers in the fiber-reinforced resin can be increased.
- the woven fabric is treated with a surface treatment agent that has a high affinity for the thermosetting resin to be impregnated, and the thermosetting resin is impregnated to improve the adhesion between the fiber surface and the resin.
- a surface treatment agent that has a high affinity for the thermosetting resin to be impregnated
- the thermosetting resin is impregnated to improve the adhesion between the fiber surface and the resin.
- the sheet metal press is to form a base plate such as a cold-rolled steel plate by a vertical movement between a die and a punch.
- a local load in the longitudinal section acts on the shoulder of the mold via the element.
- the reinforcing fibers present at the shoulder in the resin mold according to the present invention are fibers or filaments constituting a woven or nonwoven fabric.
- the woven fabric is a plain weave, a twill weave, a satin weave or the like obtained by weaving a long fiber roving or a yarn stretched in a straight line at a crossing of 9 °.
- the nonwoven fabric contains reinforcing fibers aligned in one direction, and is formed by stretching the reinforcing fibers in a straight line.
- the reinforcing fibers are aligned in one direction, and a large number of the reinforcing fibers are aligned.
- Nonwoven fabrics made by crossing and bonding reinforcing fibers can also be used.
- a plurality of nonwoven fabrics in which reinforcing fibers are aligned in one direction may be used in a state where the directions of the reinforcing fibers are crossed.
- These non-woven fabrics can be used in a pre-predator state.
- a reinforcing fiber filament is used, it is wound into a spiral shape by a filament winding method or the like.
- it is possible to cope with the component force of the load by arranging the reinforcing steel of 10 to 2 ⁇ % in the horizontal direction when winding.
- the spiral type material impregnated with the thermosetting resin is pressed strongly against the side of the mother die where it hits the shoulder, and crushed.
- the resin cures, a deformed spiral shaped reinforcing body is formed, and each warp fiber of this reinforcing body is arranged parallel to the direction of the load applied in the longitudinal section direction of the shoulder, Therefore, in a normal woven fabric / nonwoven fabric having the same amount of warp and weft, warp fibers occupying 50% of the total fiber amount take a form parallel to the load direction. In the case of a woven / non-woven fabric having 70% warp and 30% weft, the warp fiber occupying 70% takes a form parallel to the load direction.
- a woven fabric containing a large amount of warp yarn once forming a deformed spiral-shaped multilayer body on the shoulder and curing the resin, a woven fabric containing a lot of weft yarn is attached to the side surface. Is also good.
- a non-woven fabric with the fibers aligned in the vertical direction A cloth may be used to form a deformed spiral multilayered body on the shoulder once to cure the resin, and then a nonwoven fabric with fibers aligned in the lateral direction may be attached to the side surface.
- a filament wound by the filament winding method or the like a deformed spiral multilayer body is formed on the shoulder once, the resin is cured, and a number of The filament may be attached in the horizontal direction. In the above manner, a woven fabric, a nonwoven fabric and a filament may be used in an appropriate combination.
- the warp direction strength is 58kg / response 2 tensile strength and 78kg 2 flexural strength. Therefore, the spiral wound five-strength reinforcement under these conditions has 10 layers at the largest part, and has a thickness of 1.9 mm.
- the tensile strength per plastic part of the shoulder is 110 kg.
- the bending strength is 148 kg.
- the tensile strength of SPCD for drawing is specified to be 28 kg or more according to the JIS standards. Considering that the plastic deformation of this steel plate occurs below the tensile strength, it is considered that a 1mm thick SPCD steel plate can be formed with a load of 28 kg or less per ram of the mold shoulder. Therefore, if a reinforced body formed using a 1.9 mm thick carbon fiber woven fabric is formed on the shoulder, it will be possible to sufficiently cope with the problem. Even if the direction of the fiber varies during the manufacturing of the shoulder or the shape of the shoulder complicates the load direction, it is possible to achieve high strength with a high safety factor by adjusting the number of spiral windings. It is possible.
- the warp of carbon fiber was 82% by weight and the weft of glass fiber was 18% by weight.
- the epoxy resin impregnated and cured product containing the volume had the following tensile strength in the warp direction.
- the tensile strength in the fiber direction of the cured one-way epoxy resin pre-prepared product using a 65% volume ratio of carbon fiber manufactured by Toray Industries, Inc. was as follows.
- the resin mold in which the reinforced body is formed on the shoulder using the above-described mixed woven fabric or one-way nonwoven fabric can sufficiently withstand the load when pressing a steel plate.
- the unidirectional nonwoven fabric has a very high elastic modulus, and when it is used, the buckling strength increases.
- an interlayer shear force is generated, for example, one layer tries to slide between adjacent layers, the same fabric forming the layer to be slipped is folded back to the adjacent layer.
- This layer also forms a layer that generates a pulling force in the direction opposite to the direction in which the other layers try to slide.
- the interlaminar shear force is absorbed by the strong tensile force, and the niche of the interlaminar shear force does not occur.
- a strengthened body is formed It is desirable that the reinforcing fibers be parallel to the direction of the load acting on as many shoulders as possible. It is desirable that at least 50% or more be parallel. It is desirable that the fibers be as long as possible. Further, when a deformed spiral multilayer body is formed by winding a single seamless woven fabric / nonwoven fabric or a filament, the strength can be increased. In addition, the reinforced body has an arch structure, which increases buckling strength. In the case of a shoulder shape that complicates the load direction, it is better to use multiple sheets and to overlap the fibers in different directions. It is.
- the reinforcing fibers forming the reinforcing body include carbon, alumina, boron, silicon carbide, glass, alamide, ultra-high molecular weight polyethylene, vinylon, polyester, and stainless steel.
- Various fibers such as ⁇ can be adopted.
- the fibers may be made of only the same kind of fibers, or may be a mixed fabric, a mixed nonwoven fabric, or a mixed filament made of different kinds of fibers.
- thermosetting resin to be impregnated into the reinforcing fibers forming the reinforcing body examples include epoxy-based, polyimide-based, unsaturated polyester-based, vinylester-based, and polyurethane-based resins. Liquid at room temperature or less than 10 ° It is desirable to use a resin that can be liquefied or desolventized by heating at a high temperature.
- Reinforcement textiles used as the material of the knitted fabric that forms the knitted fabric layer include abrasion-resistant fibers such as carbon, alamide, ultrahigh molecular weight polyethylene, titanic acid, vinylon, polyester, and nylon fibers. It is desirable that the reinforcing fiber is made of a material having a property.
- thermosetting resin to be impregnated into the knitted fabric layer that forms the knitted fabric layer is a liquid at room temperature, such as an epoxy-based, polyimide-based, unsaturated polyester-based, vinyl ester-based, or polyurethane-based resin. It is desirable to use a resin that can be liquefied or desolvated by heating at 1 Q 0 or below.
- the resin mold for sheet metal press according to the present invention and the resin mold for sheet metal press manufactured by the manufacturing method according to the present invention have strength and durability that can be used as a practical type. And sex. And it still retains the advantage of resin molds that it can be manufactured inexpensively and quickly. Also, it does not require advanced technology or special equipment, making it easy to manufacture. Therefore, it will be able to sufficiently respond to the demand for small-lot production and medium-lot production that has occurred with the diversification of the commodity market.
- FIGS. 1, 2, 4 and 5 are longitudinal sectional views showing Example 1 of the present invention
- FIG. 3 is a perspective view of a spiral woven fabric used in Example 1
- FIG. FIGS. 7, 8 and 9 are longitudinal sectional views showing a second embodiment of the present invention, respectively.
- FIGS. 10 and 11 are longitudinal sectional views each showing a modification of the main part of the first embodiment.
- Fig. 12 is a cross-sectional view
- Fig. 12 is a perspective view showing an example of using a non-woven fabric to form a deformed spiral-shaped multilayer body
- Fig. 13 is a spiral view showing the case where a filament is also used.
- FIGS. 14 and 15 are schematic cross-sectional views showing one example of a forming method
- FIGS. 14 and 15 are longitudinal sectional views each showing a conventional example.
- FIG. 1 to FIG. 5 show a first embodiment of the present invention.
- FIG. 1 is a longitudinal sectional view showing the entire die type and the punch type head. The manufacturing method of the die type will be described with reference to FIGS. 2 to 5.
- FIG. 1 is a longitudinal sectional view showing the entire die type and the punch type head. The manufacturing method of the die type will be described with reference to FIGS. 2 to 5.
- FIG. 1 is a longitudinal sectional view showing the entire die type and the punch type head. The manufacturing method of the die type will be described with reference to FIGS. 2 to 5.
- core-box 1 is prepared, and model 2 is fixed in core-box 1.
- model 2 is fixed in core-box 1.
- a mold release agent to the peripheral surface of the space surrounded by the core box 1 and the model 2
- an epoxy resin containing a hard and pressure-resistant fine powder and a fine powder of a solid lubricant is applied.
- the former fine powder is used to provide pressure resistance and wear resistance, and
- the latter fine powder was blended in order to impart abrasion resistance.
- the epoxy resin is cured, the surface resin layer 3 is formed.
- a spiral woven fabric 4 in which the woven fabric is spirally wound as shown in FIG. 3 is prepared.
- the woven fabric is a four-ply satin woven fabric (80% warp, 20% woof) made of arami fiber and spirally wound in the direction of the warp so that the warp overlaps the spiral.
- the spiral woven fabric 4 is impregnated with an epoxy resin mixed with a hard fine powder for imparting pressure resistance. Then, while the surface resin layer 3 is still in a high viscosity state, the spiral woven fabric 4 impregnated with the resin is wound around the outer periphery of the lower end of the model 2 as shown in FIG.
- the die shown in Fig. 1 is obtained.
- This die has the following structure, as is apparent from the manufacturing method described above. That is, the surface resin layer 3 is formed on the outer peripheral surface excluding the upper surface, and the crescent-shaped deformed spiral shaped reinforcing body 5 is formed on the shoulder. Then, a reinforcing layer 6 is formed inside the reinforcing body 5 and the surface resin layer 3, a sand core 17 is formed inside the reinforcing layer 6, and a leveling layer 8 is formed on the upper surface.
- the punch type shown in Fig. 1 is also manufactured by the same manufacturing method, and has the same internal structure.
- a surface resin layer 3 made of an epoxy resin is formed on the surface.
- This epoxy resin contains a fine powder having a hard pressure resistance and abrasion resistance and a fine powder of a solid lubricant. Therefore, it is a surface layer having excellent pressure resistance and wear resistance.
- a reinforcing body 5 having a shape along the shoulder is formed on the shoulder on which the load acts. This reinforcing body 5 is made of warp yarn made of 4 pieces of sash woven cloth made of aramid fiber.
- a local load acts on the shoulder of the mold.
- the warp of the woven fabric constituting the reinforcing member 5 is wound in a crescent-shaped deformed spiral shape in parallel with the direction in which the local load acts.
- the fabric is folded continuously and seamlessly. This creates an interlaminar shear force, for example, when one layer attempts to slip between adjacent layers, but the same fibers that form the slipping layer are folded back into adjacent layers. This layer also forms a layer that generates a pulling force in the direction opposite to the direction in which the other layers try to slide. In other words, the interlaminar shear force is absorbed by the tension9, and the problem of the interlaminar shear force does not occur.
- a reinforcing layer 6 is formed inside the surface resin layer 3 and the reinforcing body 5.
- the reinforced layer 6 is formed by impregnating a woven fabric made of vinylon fiber and polyamide fiber with an epoxy resin and curing the woven fabric. Vinylon fiber reinforced fiber itself has mechanical strength and abrasion resistance, and those impregnated with epoxy resin exhibit greater mechanical strength and abrasion resistance. For this reason, the reinforcement layer 6 is extremely strong.
- the reinforcing layer 6 also serves to protect the surface resin layer 3.
- seat sheets 10 are provided on the outer periphery of the model 2 and the inner surface of the core-box 1. This sheetwax 10 is to be removed at the stage of manufacture, and its thickness is equivalent to the total thickness of the surface resin layer 3 and the knitted fabric layer 1 to be formed later. Then, a reinforcing body 5 is formed inside the seatwork 10. First, a woven cloth made of four-ply satin weaves with a carbon fiber warp of 82% by weight and a glass fiber weft of 18% by weight is spirally wound as shown in FIG. 3, and impregnated with epoxy resin.
- the shape is kept until the resin is cured in this way (Fig. 6). If the weight 13 is weak, place a patch plate on it and tighten it with a shrimp vise. When the resin has hardened, take out the weight 13 and take out the release film 12. Then, the hardened reinforcing layer 6 that is integrated with the reinforcing body 5 is taken out, and the seatwax 10 is also peeled off. The front and back surfaces of the reinforcing layer 6 are roughened with sand blast or the like so that the adhesiveness is improved.
- the empty core 1 box 1 is cleaned and a release agent is applied.
- an epoxy resin for forming the surface resin layer 3 is applied to the inner peripheral surface.
- This resin is blended with a fine powder of hard, pressure resistant and abrasion resistant powder and a solid powder of a solid lubricant to provide pressure resistance and abrasion resistance.
- a knitted fabric made of vinylon fiber impregnated with an epoxy resin is formed to form the knitted fabric layer 11.
- the epoxy resin is mixed with a hard and pressure-resistant fine powder for imparting pressure resistance.
- an epoxy resin was applied to the outer periphery, and then pressed into the knitted fabric.
- an epoxy resin for bonding is applied to the inner surface side of the reinforcing layer 6. Then, in order to form a sand core 17, a mixture of about 9 °% by weight of silica sand, about 0.1% by weight of short glass fiber and about 10% by weight of epoxy resin was kneaded, and the pressure was reduced. Fill the inside of the reinforcing layer 6 while adding. When the filling is completed, an epoxy resin for forming the leveling layer 8 is applied on the upper surface, and the resin is covered with a horizontal plate 9 and pressed firmly to obtain a state shown in FIG.
- the role of the surface resin layer 3 is as described in the first embodiment.
- the surface resin layer 3 made of epoxy resin was woven with a vinylon fiber knitted fabric also impregnated with an epoxy resin, and the fiber was stretched at least at the position to be the shoulder.
- a knitted fabric layer 11 is formed by applying pressure to unite the two.
- the epoxy resin of the surface resin layer 3 is hard and pressure-resistant. Abrasion resistance and abrasion resistance are imparted by combining fine powder with wear and fine powder of solid lubricant.
- the epoxy resin of the other knitted fabric layer 11 is mixed with a hard and pressure-resistant fine powder to impart pressure resistance.
- the vinylon fabric itself has mechanical strength and abrasion resistance
- the knitted fabric layer 11 composed of the knitted fabric and the like is integrated into the surface resin layer 3 so as to be integrated.
- Layer 3 has enhanced mechanical strength and wear resistance.
- the reason why the knitted fabric is used here is that the steel expands and contracts well and can conform to the shape of the shoulder and the like.
- the method of manufacturing the resin mold of Example 2 is more complicated than that of Example 1 because the steps of forming the reinforcing layer 6 in advance and the step of forming the knitted fabric layer 11 while stretching the fiber are increased. I have. However, the addition of these steps increases the mechanical strength of the surface layer, prevents wear deformation due to plastic deformation, and significantly improves the durability of the mold.
- Example 2 while forming the reinforcing layer 6 integral with the reinforcing body 5, a sand core 17 was also formed first inside the reinforcing layer 6, and the core was taken out as soon as possible. Then, the process may be shifted to the step of forming the surface resin layer 3 and the knitted fabric layer 11.
- the deformed spiral multilayer body of the reinforcing body 5 has a crescent shape.
- this is not always a crescent shape, and various conditions such as a structure of a shoulder portion are not always required.
- the shape shown in FIGS. 10 and 11 is obtained.
- the deformed spiral-shaped multilayer body is formed by using a reinforcing fiber woven fabric, but when a reinforcing fiber nonwoven fabric is used, for example, FIG. You may do so.
- a non-woven fabric in which reinforcing fibers are arranged in a horizontal direction is wound into a nonwoven fabric in which reinforcing fibers are arranged in a longitudinal direction, and used.
- a reinforcing fiber filament When a reinforcing fiber filament is used, for example, it may be as shown in FIG. That is, the filament 15 passed through the resin tank 14 is wound around the mandrel 17 while being guided left and right by the guide roller 16. After wefting the mandrel 17 around the outer periphery of the mandrel 17 by hand or the like in the axial direction of the mandrel 17 manually, wind the mandrel 17 in the circumferential direction. After the required number of windings, remove it from mandrel 17 and use it.
- C Industrial availability C Industrial availability
- the resin mold for sheet metal press and the method of manufacturing the same according to the present invention can be applied to various processes such as drawing on a metal plate. Suitable for press working
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
Description
明 細 書 板金プレス用樹脂型およびその製造方法 技 術 分 野
この発明は扳金プレス用樹脂型およびその製造方法に 係り、 特に板金プレス用樹脂型のダイス肩部やポンチ肩 部に強化用織維で形成された変形渦巻形多層体に熱硬化 性樹脂を含浸させて硬化させてなる強化体を組み込んで 十分な強度と耐久性を保証した板金プレス用樹脂型およ びその製造方法に関する。
背 景 技 術
これまでに実用化されている板金プレス用樹脂型は、 積層法や金属コア一法で製作していた。 まず、 積層法の 概要を、 第 1 4図に基づいて説明する。
第 1 4図において 2 0はコア一ボックスを示している c コア一ボックス 2 0内に、 木、 合成木材、 石こうなどで 作ったモデル 2 1を固定する。 コア一ボックス 2 0の内 面やモデル 2 1の表面に離型剤を塗布し、 離型剤の上に 表面層用樹脂を塗布して表面樹脂層 2 2を形成する。 表 面層用樹脂が半硬化状になつたときその上に、 繊維に樹 脂を含浸させたものを張り付けていき、 捕強層 2 3を形 成する。 このとき、 型の局所形状に合わせて各局所にな じむように、 各種の樹脂含浸繊維の種類を使い分けてい
く。 例えば平面部では織布を使用し、 曲面部では短鐵維 を使用したり又は小さく切断した織布を維ぎ合わせなが ら使用.したりする。 角又は小曲面では、 適当な長さに切 つたローピングを埋め込んでいく。
補強層 2 3の内部に、 砂や短繊維を樹脂に混入させた ものを充填する。 その樹脂が硬化すると、 サン ドコア一 2 4になる。 そして、 全体の上にレペリ ング用樹脂を塗 布し、 水平扳 2 5をかぶせて硬化させると、 レべリ ング 層 2 6が形成される。
全部の樹脂が硬化.した後にコアーボックス 2 0内から 取り出すと、 樹脂型の完成品が得られる。 外側に表面樹 脂層 2 2、 その内側に鐵維強化樹脂による補強層 2 3、 捕強層 2 3内にサン ドコア一 2 4がそれぞれ形成され、 上面にレべリ ング層 2 6が形成されたものである。
積層法のほかに金属コ,ァ一法もあるが、 金属コア一法 の概要を第 1 5図に基づいて説明する。 型寸法より 1 0 〜2 0 蘭小さい外形をした金属鍀物製のコア一 2 7を準 傭するが、 コア一 2 7には注入口 2 8をあけておく。 コ ァーボックス 2 0内にモデル 2 1を固定し、 離型剤を塗 布する。 次いで、 注型用樹脂の厚さに相当する厚さをし た同樹脂の硬化物小片をスぺーサ一として配置した上に、 コア一 2 7を設置する。 注型用樹脂-を注入口 2 8より注 入していって、 コア一 2 7 とコア一ボックス 2 0ゃモデ ル 2 1 との間を充填する。 榭脂が硬化してコア一 2 7 と
一体になつた後に取り出すと、 上面を除く外周に樹脂層 2 9が形成ざれている。 上面を切削して水平にすると、 目的とする形状と寸法とを備えた樹脂型が得られる。
この樹脂型は、 上面を除く外烏に 1 0〜 2 0 ram厚の樹 脂層 2 9が形成され、 樹脂層 2 9の内部に金属製のコア 一 2 7が存在するものである。 樹脂層 2 9とコア一 2 7 とは、 樹脂の硬化時に発生する接着力で接着され、 一体 ィ匕している。
板金プレスの成形加工は、 ダイス型面と しわ押さえ面 との間に挿入した冷間圧延鏑扳等の素板に、 しわ押さえ 圧を加えておいてポンチ型を圧入し、 素扳を塑性変形さ せる成形法による。 ポンチ型を圧入する際にダイス型の ダイス肩部とポンチ型のポンチ肩部との間で引張り変形 と曲げ変形とを受け、 それらの変形力により素板が塑性 変形をするのである。 したがって、 成形時にこれらの肩 部に大きな局部荷重が掛かるのである。 このため、 板金 プレス用の型では、 特にダイス肩部とポンチ肩部とに大 きな耐荷重強度と耐摩耗性とを必要とする。 型の耐久性 は、 肩部の強度と耐摩耗性に支配されるといってもよい , 前述の積層法で製作した樹脂型では、 表面樹脂層 2 2 の内側に強度を持たせるための補強層 2 3を形成してい る。 この補強層 2 3の形成には強化用織維と して織布を 使用するが、 自由に伸縮をすることのできない織布を、 立体的に曲面形状となっているダイス肩部やポンチ肩部
の曲面形状に精度よく合致させた形状にすることはでき ない。 このため、 肩部には織布を使用することができず、 代りに短織維を使用したり小さく切新した織布を继ぎ張 り しながら使用したり していた。 又は、 適当な長さに切 断したロービングを埋め込みながら使用していた。
ところで、 短纖維を使用した場合は、 強化材として使 用したはずの繊維が短すぎるために、 十分な強度を得る ことができなかった。 切断した織布を継ぎ張り しながら 積層していった場合も、 繊維が短いことで十分な強度向 上が望めないばかりでなく、 荷重が作用したときに積層 間にせん断力が発生して、 強度低下を招きかねなかった。 また、 ロービングを使用した場合は、 繊維の方向に対し て横方向の強度は全く期待できな力'、つた。 どの場合も、 肩部の強度が小さすぎるために、 プレス成形を籙り返す と肩部が塗性変形をし、 摩耗も増幅されて大き く なり、 使用不能となった。 このため、 試作等の少量成形にしか 使用できなかった。
他方、 金属コア—法で製作した樹脂型は、 2 0〜2 5 %容量の金属微粉末を配合した樹脂を、 金属製のコア一 2 7の表面に 1 0〜 2 O mmの厚さで流し込んで樹脂層 2 9を形成したものである。 捕強体であるコア一 2 7は、 金属製であるので強度がある。 しかし、 金属製のコア一 2 7の外周に樹脂層 2 9を接着させた構造になっている。 金属の固ま り と樹脂の固まり という、 異物質を接着させ
た接着体である。 このため、 両物質間において熱膨張係 数、 蓄熱性、 剛性等が大きく違う点を原因と して、 荷重 の作用するサイ クルの籙り返されるうちに、 両物質間の 物性挙動の違いがだんだん表面化していって、 最後には 肩部で樹脂層 2 9が剥離してしま う。 更に、 肩部が曲面 であるために、 荷重の一部が樹脂層 2 9を剥離する方向 の分力となる。 このこともいよいよ剥離を助長する。 樹 脂層 2 が剥離してしまったら、 塑性変形をして更に摩 耗が加速度的に進行し、 使用不能となる。
したがって、 この発明の目的は、 上述した従来の樹脂 型が有する問題点を解消し、 板金プレス用樹脂型のダイ ス肩部やポンチ肩.部の強度と耐久性を改良した板金プレ ス用樹脂型およびその製造方法を提供することにある。
発 明 の 開 示
すなわち、 この発明による板金プレス用樹脂型は、 局 部荷重の作用するダイス肩部および Zまたはポンチ肩部 には強化用锇維で形成された変形渦巻形多層体に熱硬化 性樹脂を含浸させて硬化させた強化体を組み込んだもの める。
また、 本発明による板金プレス用樹脂型の製造方法は、 強化用繊維を渦巻形に巻いて熱硬化性樹脂を含浸させた ものを、 母型のダイス肩部又はポンチ肩部に当たる位置 の側へ押し付けて変形させ硬化させることにより、 強化 用繊維で形成された変形渦卷多層体の熱硬化性樹脂含浸
硬化物で構成された強化体を、 局部荷重の作用するダイ ス肩部及び Z又はポンチ肩部に形成するようにしたもの である。
この板金プレス用樹脂型は、 例えば次のようにして形 成する。 まず、 母型の内周面に離型剤を塗布した後に、 硬質で耐圧性を持つ微粉末及び固体潤滑剤の微粉末を配 合させた熱硬化性樹脂を塗布する。 前者の微粉末は耐圧 性ゃ耐摩耗性を付与するために、 後者の徵粉末は耐摩耗 性を付与するために、 それぞれ配合させる。 そして、 熱 硬化性樹脂が硬化すると表面樹脂層が形成されるが、 表 面樹脂層がまだ高粘度状態の段階で、 その内側であつて ダイス肩部やポンチ肩部に当たる位置に、 前述のやり方 で強化体を形成する。 このようにして製作された扳金プ レス用樹脂型においては、 表面樹脂層が耐圧性及び耐摩 耗性に優れた表面層となっている。
本発明のうち更に他の発明に係る板金プレス用樹脂型 は次のようなものである。 すなわち、 強化用繊維で形成 された変形渦卷形多層体の熱硬化性樹脂含浸硬化物で構 成された強化体が、 ダイス肩部ゃポンチ肩部に形成され、 しかもその強化体の外側において、 少なく とも肩部に位 置する織維が伸び切った状態にある強化用纖維製編布の 熱硬化性樹脂含浸硬化物で構成された編布層が、 ダイス 型ゃポンチ型の表面形状に沿った形状で形成されたもの であ 0
この板金プレス用樹脂型では、 強化体の外側に強化用 繊維製編布の熱硬化性樹脂含浸硬化物で構成された編布 層が、 型の表面形状に沿った形状で形成されている。 そ して、 強化用織維製編布は、 少なく とも肩部に位置する 部分で繊維が伸び切った状態にある。 鐵維が伸び切った 状態で熱硬化性樹脂が含浸され硬化されているものは、 強度が大きい。
そして、 この強化体や編布層は、 例えば次のようにし て形成する。 まず、. -強化用繊維製織布、 1方向に引きそ ろえた強化用繊維を含む強化用繊維製不織布又は強化用 繊維フィ ラメ ン トを渦巻形に巻いて熱硬化性樹脂を含浸 させ'たものを、 母型のダイス肩部又はポ チ肩部に当た る位置の側へ押し付けて変形渦巻形に変形させる。 更に、 そのものの内側に強化層を形成するための熱硬化性樹脂 含浸織布又は 1方向に引きそろ た強化用繊維を含む熱 硬化性樹脂含浸不織布を張り付ける。 一体に硬化させて 強化体と一体となった強化層を形成し、 取り出す。 なお、 このとき強化層の内部にサン ドコア一等を形成してから 取り出してもよい。 次に、 強化用繊維製の編布に熱硬化 性樹脂を含浸させたもので、 母型に沿わせた層を作る。 その編布の織維を伸ばしながら、 その層の内部に前記強 化体と一体となった強化層を挿入していって、 少なく と も肩部に位置する繊維を伸び切った状態にする。 そして、 両者を一体に硬化させ、 強化体や強化層の外側に編布層
を形成する。
ところで、 本発明に係る樹脂型の肩部に使用されてい る強化用織維は、 織維の長手方向に対して強大な機械的 強度を持ち、 しかも伸度がきわめて小さいという特性を 持った織維である。 その強化用繊維と機械的強度の比較 的小さい樹脂とが複合体となつた繊維強化樹脂は、 纖維 の長手方向は鏑をも上回るほどに強化されているが、 そ の他の方向の強化効果は小さい。 そして、 その強度は、 複合体中の繊維の形態と含有率とに依存する。 すなわち、 強化効果の高い繊維強化樹脂物を作るには、 強化用繊維 の含有率を高く し、 全ての鐵維の全表面を樹脂に強く接 着させるように配慮する必要がある。 更に、 複合体中の 纖維の形態は、 次のようになるように配慮する必要があ 0
① 局部荷重を繊維全長に分散できる長纖維であるこ と
② 荷重の方向と織維の方向が平行になること
③ 荷重が、 強化用織維の強化効果がほとんど寄与し ない層間せん断力として働く ことのない構造になるよう に、 強化用鐵維を積層させること
④ 鐵維のタルミがなく 直線状に張った状態にするこ と
本 ¾明に係る板金プレス用樹脂型においては、 肩部を 強化するための強化用繊維と しては、 強化用繊維製織布
の形にして使用している。 又は、 一方向に引きそろえた 強化用繊維を含む強化用繊維製不織布の形にして使用し ている。 又は、 強化用繊維のフィ ラメ ン 卜の状態で使用 している。 そのようにした場合は、 短繊維やマツ 卜に比 ベて、 容積当たりの繊維の密度が高い。 したがって、 繊 維強化樹脂中の繊維の含有率を高くすることができる。 含浸させる熱硬化性樹脂との親和性に富む表面処理剤で 織布等を処理しておいて、 その熱硬化性樹脂を含浸させ ることによって、 繊維の表面と樹脂との接着性を向上さ せることができる。 更に、 前記した、 好ま しい繊維の形 態についての条件を、 次のようにして満たすことができ o
板金プレスは、 ダイス型とポンチ型との間において縱 方向の運動によって、 冷間圧延鋼板板等の素板を成形加 ェすることである。 型の肩部には、 素扳を介して縦断面 方向の局部荷重が作用する。 本発明に係る樹脂型におい て肩部に存在する強化用繊維は、 織布ゃ不織布を構成す る繊維又はフィ ラメ ン トである。 この織布は、 直線状に 張つた長繊維のロービング又はヤーンを 9 ◦度交錯させ て織った平織、 綾織、 朱子織等である。 また、 この不織 布は、 1方向に引きそろえた強化用繊維を含むものであ つて、 それら強化用繊維を直線状に張ったものである。 そして、 この不織布と しては、 強化用繊維を 1方向に引 きそろえ、 更にそれら引きそろえた強化用繊維に多数の
強化用繊維を交差させ接着させて作った不織布も利用で きる。 又は、 強化用繊維を 1方向に引きそろえた不織布 の複数枚を、 強化用繊維の方向を交差させた状態にして 重ね合わせて使用することもできる。 そして、 これら不 織布はプリプレダの状態にして使用するこもできる。 更 に、 強化用纖維フィ ラメ ン トを使用する場合は、 フイ ラ メ ン トワイ ンディ ング法等で渦巻形に巻いて使用する。 なお、 巻く ときに 1 0〜 2 ◦ %の強化用鐵維を横方向に 配置して巻く と、 荷重の分力に対応できる。
そして、 通常の平面肩部型の場合は、 織布を使用する ときは横糸を基準にして縱糸の方向に渦巻形に巻く。 不 織布を使用するときは、 1方向に引きそろえた強化用纖 維の方向に渦巻形に巻く。 強化用繊維フィ ラメ ジ トを使 用するときは、 フィ ラメ ン ト ワイ ンディ ング法等で渦巻 形に巻き、 芯棒を除いで使用する。 そして、 その渦巻形 に巻く前又は巻いた後に熱硬化性樹脂を含浸させる。 な お、 フィ ラメ ン トワイ ンディ ング法によるときは、 巻く 前のフイ ラメ ン トに熱硬化性樹脂を含浸させてから渦巻 形に巻く のが普通である。 プリプレダの場合も同様であ る。 そして、 熱硬化性樹脂が含浸させられた渦巻形のも のを、 母型の肩部に当たる位置の側に強く押し付けて押 しつぶしていく。 樹脂が硬化すると、 変形渦巻形の強化 体が形成されるが、 この強化体の各縦糸織維は、 肩部の 縦断面方向に掛かる荷重の方向と平行に配列されている,
したがって、 縦糸と横糸とが同量の通常の織布ゃ不織布 では、 総繊維量の 5 0 %を占める縦糸繊維が荷重方向と 平行の形態をとっている。 また、 縦糸 7 0 %、 横糸 3 0 %の織布ゃ不織布の場合は、 7 0 %を占める縦糸織維が 荷重方向と平行の形態をとる。 また、 フ ィ ラメ ン トワイ ンディ ング法で作ったものは、 渦巻フィ ラメ ン 卜のすべ てが荷重の方向とほぼ平行の形態となる。 したがって、 この織布、 不織布及び渦巻フイ ラメ ン トを使用して強化 体を形成した場合は、 型の肩部においてプレス成形荷重 に対する機械的強度がいよいよ向上したものとなる。 そ して、 肩部の強度の調節は、 強化体の渦巻の巻数で行な う ことができる。
次に、 肩部が横断面に対して傾斜した形状の型の場合 は、 織布ゃ不織布の縦糸方向又はフィ ラメ ン 卜の巻き方 向を傾斜角に合わせだ角度になるように渦巻形に巻く こ とで、 荷重の方向と繊維の方向とが平行になるようにす ることができる。 また、 荷重方向が複雑化するる肩部形 状となる場合は、 複数枚のものを使用し、 それぞれの荷 重方向とそれぞれの繊維の方向とが平行になるようにし て重ね合わせ、 一体にして渦巻形に巻けばよい。
なお、 縦糸を多く含む織布を使用して、 肩部にいった ん変形渦巻形多層体を形成して樹脂を硬化させた後に、 その側面に横糸を多く含む織布を張り付けるようにして もよい。 また、 同じく縦方向に繊維を引きそろえた不織
布を使用して、 肩部にいったん変形渦巻形多層体を形成 して樹脂を硬化させた後に、 その側面に横方向に繊維を 引きそろえた不織布を張り付けるようにしてもよい。 更 に、 フィ ラメ ン トをフィ ラメ ン ト ワイ ンディ ング法等に 巻いたものを使用して、 肩部にいったん変形渦巻形多層 体を形成して樹脂を硬化させた後に、 その側面に多数の フィ ラメ ン トを横方向に張り付けるようにしてもよい。 以上のやり方において、 織布、 不織布及びフイ ラメ ント を適当に組み合わせて使用するようにしてもよい。
次に、 荷重の方向と纖維の方向とが平行になるよう し て、 変形渦巻形に形成した強化体を、 肩部に形成した樹 脂型の強度を試算する。 この試算は、 財団法人日本規格 協会編 「非金属材料データブック」 (昭 6 0 - 9 - 1 7 ) 財団法人日本規格協会 P 288 - 28 9に掲載されてい る炭素織維織布樹脂複合物に関するデータを基にして行 なった 0
このデータによると、 炭素織維の平織で、 縦糸、 横糸 の比率が各 5 0 %の 6 34 3番を 6 0 %容量含有した、 1層のエポキシ樹脂含浸硬化物は、 厚さが 0. 1 9IMで、 縦糸方向の強度は引張強度 58kg/應2、 曲げ強度 78kg 臓2である。 したがって、 この条件での渦巻形 5巻の強 化体は、 最大の部分で 1 0積層となり、 厚さ 1. 9 mmと なる。 そして、 単純計算で肩部 1塑当たりの引張強度が 1 1 0 kg. 曲げ強度が 148kgとなる。
^方、 被加工物の冷間圧延鋼板については、 J I s規 格で絞り用の S P C Dの引張強度は 28kg 以上と規 定されている。 この鋼板の塑性変形が引張強度未満で起 こることを考慮すると、 1咖厚の S P C D鋼板は、 型の 肩部 1 ram当たり 28 kg以内の荷重で成形できると考えら れる。 したがって、 1. 9ΜΙ厚の炭素繊維製織布を使用 して形成した強化体を肩部に形成すれば、 十分に対応で きることになる。 肩部製作時に繊維の方向がバラつく場 合や、 荷重方向が複雑化する肩部形状の場合等でも、 渦 巻形の巻数を調節することで、 安全率の高い強度に持つ ていく ことが可能である。
前記データ中の'混織例によると、 炭素纖維の縱糸 82 %重量比とガラス繊維の横糸 18 %重量比で、 4枚朱子 織にしたものの東レ株式会社製 6 1 03番を 6◦ %容量 含有したエポキシ樹脂含浸硬化物は、 縦糸方向-の引張強 度等は次のとおりであった。
引張強度 140kgZ 引張弾性率 1 0. 4 tZ/i 曲げ強度 14 Okg ^ 曲げ弾性率 9. 4 t /id 層間せん断強度 7. Skg/d
また、 東レ株式会社製炭素繊維の 65%容積比を用い た 1方向エポキシ樹脂プリ プレダ硬化物の繊維方向の引 張強度等は次のとおりであった。
引張強度 1 50kgZ應 2 引張弾性率 24 t Z/d 曲げ強度 140kgZ/d 曲げ弾性率 2◦ t /廳 2
層間せん断強度 S kg / fflB
したがって、 前記の混織布又は 1方向不織布を使用し て肩部に強化体を形成した樹脂型は、 鋼板をプレスする 際の荷重に十分に耐えられる。 特に 1方向不織布は弾性 率が非常に高いので、 それを使用した場合は座屈強度が 大となる。
強化用繊維で多層のものを形成し、 樹脂を含浸させ硬 化させたものにおいては、 層間せん断力の問題が起こり やすい。 層間せん断力の問題は、 層と層との間の強度に 関するものである。 強化用繊維は、 層間の強度向上には ほとんど寄与しない。 ところで、 本発明に係る板金プレ ス用樹脂型においては、 肩部にある強化体を構成する織 維の積層体は、 肩部の曲面に沿わせた変形渦巻形をして いるため、 形状的に層間せん断力となる方向の力はきわ めて小さい。 そして、 変形渦巻形の端部においては、 織 維が継目なく連銃して折り返された状態となつている。 このため、 たとえ層間せん断力が発生して、 例えばある —つの層が隣接する他の層との間で滑ろうとしても、 滑 ろうとする層を形成する同じ織維が、 折り返されて隣接 する他の層をも形成していて、 他の層が滑ろうとする方 向とは逆の方向に引っ張る力を発生させる。 すなわち、 層間せん断力は強大な引張力に吸収されてしまうので、 層間せん断力の問龕は起きることはない。
ところで、 以上からも明らかなように、 強化体を形成
する強化用繊維は、 できるだけ多く の肩部に作用する荷 重の方向と平行になつていることが望ま しい。 少なく と も 5 0 %以上が平行になつていることが望ま しい。 そし て、 できるだけ長繊維であることが望ま しい。 更に、 継 目のない 1枚の織布ゃ不織布又はフイ ラメ ン トを巻いた もので変形渦巻形多層体を形成すると、 強度を大きくす ることができる。 更に、 強化体はアーチ構造となるので、 座屈強度も大きく なる。 なお、 荷重方向が複雑化する肩 部形状となる場合は、 複数枚のものを使用し、 繊維の方 . - 向を異ならせて重ね合わせた状態にして使用したほうが よい点は、 前述のとおりである。
また、 強化体を形成する強化用繊維と じては、 炭素、 アルミ ナ、 ボロ ン、 炭化けい素、 ガラス、 ァラ ミ ド、 超 高分子量ポ リ エチレン、 ビニロ ン、 ポ リ エステル、 ステ ンレス鐧等の各種繊維が採用できる。 そして、 それらの 同種繊維だけのものと してもよいし、 異種繊維による混 織布、 混不織布、 混合フィ ラメ ン トと してもよい。 肩部 の座屈強度を高めて耐久性を向上させるためには、 弾性 率の高い炭素、 アルミ ナ、 ボロン、 炭化けい素、 ァラ ミ ド、 ステンレス網の各繊維が望ま しい。
強化体を形成する強化用繊維に含浸させる熱硬化性樹 脂と しては、 エポキシ系、 ポリイ ミ ド系、 不飽和ポリェ ステル系、 ビニルエステル系、 ポ リ ウ レタ ン系の各樹脂 のような、 常温で液状であるか、 あるいは 1 0 ◦ 以下
の加温で液化するか又は脱溶媒が可能である樹脂を使用 することが望ま しい。
編布層を形成する編布の素材となる強化用織維として は、 炭素、 ァラ ミ ド、 超高分子量ポリエチレン、 チタン 酸、 ビニロン、 リエステル、 ナイ ロ ンの各繊維のよう な、 耐摩耗性を持つ材質の強化用繊維であることが望ま しい。
また、 編布層を形成する編布層に含浸させる熱硬化性 樹脂としては、 エポキシ系、 ポリイ ミ ド系、 不飽和ポリ エステル系、 ビニルエステル系、 ポリウレタン系の樹脂 のような、 常温で液状であるかあるいは 1 Q 0て以下の 加温で液化するか又は脱溶媒が可能である樹脂を使用す ることが望ま しい。
このように構成された本発明によれば、 本発明に係る 板金プレス用樹脂型及び本発明に係る製法により製作さ れた板金プレス用樹脂型は、 実用型として使用すること のできる強度と耐久性とを備えている。 そして、 安価に かつ迅速に製作することができるという、 樹脂型が持つ 利点をいぜんとして保持している。 また、 高度な技術も 特殊な設備も必要としないので、 製作は容易にできる。 したがって、 商品市場の多様化に伴って発生してきた、 小口ッ ト生 や中ロッ ト生産の需要に、 十分に対応でき るものとなろう。
図面の簡単な説明
第 1図、 第 2図、 第 4図及び第 5図はそれぞれ本発明 の実施例 1を示す縦断面図、 第 3図は実施例 1に使用す る渦巻織布の斜視図、 第 6図、 第 7図、 第 8図及び第 9 図はそれぞれ本発明の実施例 2を示す縱断面図、 第 1 0 図及び第 1 1図はそれぞれ実施例 1の要部の変形例を示 す縱断面図、 第 1 2図は変形渦巻形多層体を形成するの に不織布を使用する場合の 1使用例を示す斜視図、 第 1 3図は同じく フィ ラメ ン トを使用する場合に渦巻形を 形成する方法の 1例を示す模式図、 第 1 4図及び第 1 5 図はそれぞれ従来例を示す縱断面図である'。
発明を実施するための最良の形態 この発明をより詳細に説明するために以下添付図面に したがって説明する。
第 1図乃至第 5図は、 この発明の第 1の実施例を示し ている。 第 1図は、 ダイス型の全部及びポンチ型の頭部 とを示す縱断面図である。 このうちダイス型のほうの製 造方法を第 2図乃至第 5図に基づいて説明する。
まず、 第 2図に示すように、 コア一ボッ クス 1を準備 し、 コア一ボッ クス 1内にモデル 2を固定する。 コア一 ボックス 1 とモデル 2で囲まれた空間の周面に離型剤を 塗布した後に、 硬質で耐圧性を持つ微粉末及び固体潤滑 剤の微粉末を配合させたエポキシ樹脂を塗布する。 前者 の微粉末は耐圧性ゃ耐摩耗性を付与するために、 そして
後者の微粉末は耐摩耗性を付与するために、 それぞれ配 合させた。 そして、 エポキシ樹脂が硬化すると、 表面樹 脂層 3が形成されることになる。
次に、 第 3図に示すような、 織布を渦巻形に巻いた渦 巻織布 4を準備する。 織布としてァラ ミ 纖維による 4 枚朱子織布 (縦糸 8 0 %、 横糸 2 0 % ) を使用し、 縦糸 が渦巻形に重なり合うように縱糸の方向に渦巻形に巻い たものである。 この渦巻織布 4に、 耐圧性を付与するた めの硬質の微粉末を配合させた、 エポキシ樹脂を含浸さ せる。 そして、 表面樹脂層 3がまだ高粘度状態の段階で、 樹脂を含浸させた渦巻織布 4を、 第 2図に示すように、 モデル 2の下端外周に巻き付ける。 モデル 2とコアーポ ッ クス 1 との接合部付近に渦巻織布 4を強く押し付けて いき、 全周にわたって押しつぶしていく と、 渦巻が三日 月状に押しつぶされた、 三日月状の変形渦巻形になる (第 4図) 。 含浸させた樹脂が硬化すると、 三日月状の 変形渦巻形をした強化体 5が形成されることになるが、 樹脂が硬化する華に、 第 4図に示すように、 強化体 5や 表面樹脂層 3の内面に、 ビニロン織維製の織布にェポキ シ樹脂を含浸させたものを押し付けながら積層させ、 更 にその上にァラ ミ ド鐵維製の織布にエポキシ樹脂を含浸 させたものを押し付けながら積層さ る。 樹脂が硬化す ると、 約 5 mm厚の強化層 6が形成される。
^に、 約 9 0 %重量の硅砂、 約 0 . 1 %重量のァラ ミ
ド短繊維及び 1 弱重量のエポキシ樹脂の 3者を混練 したものを、 強化層 6内へ圧力を加えながら充填してい く。 樹脂が硬化すると、 サン ドコア一 7が形成されるこ とになるが、 最後に上面にレベリ ング層 8を形成するた めのエポキシ樹脂を塗布した後に、 水平板 9をかぶせて 強く押し付けると、 第 5図に示す状態となる。
樹脂が硬化した後に取り出すと、 第 1図に示すダイス 型が得られる。 このダイス型は、 前述の製造方法から明 らかなように、 次のような構造をしている。 すなわち、 上面を除く外周面に表面樹脂層 3が形成され、 肩部に三 日月状の変形渦巻形をした強化体 5が形成されている。 そして、 強化体 5や表面樹脂層 3の内側に強化層 6が形 成され、 強化層 6の内部にサン ドコア一 7が形成され、 上面にはレベリ ング層 8が形成されている。
第 1図に示すポンチ型も、 同じ製造方法で製作したも のであり、 内部構造は同様のものである。
以上のようにして製作されたダイス型ゃポンチ型にお いては、 まず表面にエポキシ樹脂よりなる表面樹脂層 3 が形成されている。 このエポキシ樹脂には、 硬質で耐圧 性ゃ耐摩耗性を持つ微粉末及び固体潤滑剤の微粉末が混 入されている。 このため、 耐圧性及び耐摩耗性に優れた、 表面層となっている。 そして、 特に荷重の作用する肩部 には、 肩部に沿つた形状の強化体 5が形成されている。 この強化体 5は、 ァラ ミ ド繊維製の 4枚朱子織布が縦糸
の方向に渦巻形に巻かれてエポキシ樹脂が含浸されたも のが、 肩部の形状に沿った三日月状の変形渦巻形に押し つぶされ、- 樹脂が硬化したことで形成されたものである このエポキシ樹脂には硬質の微粉末が混入されているの で、 耐圧性が付与されている。
プレス成形時には、 型の肩部に局部荷重が作用する。 この型においては、 局部荷重が作用する方向と平行に、 強化体 5を構成する織布の縦糸が三日月状の変形渦巻形 に巻かれた状態になつている。
レたがって、 局部荷重が層間せん断力になることはほ とんどない。 しかも、 変形渦巻形の端部においては、 織 維が継目なく連続して折り返された状態となつている。 このため、 たとえ層間せん断力が発生して、 例えばある —つの層が隣接する他の層との間で滑ろうとしても、 滑 ろう とする層を形成する同じ繊維が、 折り返されて隣接 する他の層をも形成していて、 他の層が滑ろうとする方 向とは逆の方 に引っ張る力を発生させる。 すなわち、 層間せん断力は引張に吸収されてしまう 9で、 層間せん 断力の問題は起きることはない。
また、 強化体 5を構成する織布の縦糸は、 荷重方向と 平行になっている。 このため、 縦糸による強化効果はき わめて大きいものとなり、 強化体 5をいよいよ強固なも のとしている。、 このことは更に、 表面樹脂層 3の肩部に ある部分の耐摩耗性にも、 好影響を与える。
更に、 表面樹脂層 3や強化体 5の内側に、 強化層 6が 形成されている。 この強化層 6は、 ビニロ ン繊維ゃァラ ミ ド繊維でできた織布にエポキシ樹脂を含浸させ、 硬化 させたもので形成されている。 ビニロ ン纖維ゃァラ ミ ド 繊維そのものが機械的強度ゃ耐摩耗性を持っており、 こ れらにエポキシ樹脂を含浸させたものは更に大きな機械 的強度ゃ耐摩耗性を発揮させる。 このため強化層 6は、 きわめて強固なものとなっている。 この強化層 6は、 表 面樹脂層 3の保護にも役立っている。
第 6図乃至第 9図は、 この発明の第 2の実施例を示し ている。 まず、 モデル 2の外周やコア一ボックス 1 の内 面に、 シー ト ワ ッ クス 1 0を張る。 このシー ト ワ ッ クス 1 0は、 製作途中の.段階で取り除く ものであり、 その厚 さは後に形成する表面樹脂層 3と編布層 1の合計厚さに 相当する ものと している。 そ して、 シー ト ワ ッ クス 1 0 の内側に、 強化体 5を形成する。 まず、 炭素繊維の縦糸 8 2 %重量とガラス繊維の横糸 1 8 %重量の 4枚朱子混 織とした織布を、 第 3図に示すような渦巻形に巻いて、 エポキシ樹脂を含浸させる。 それを、 ダイス肩部に相当 する位置である内側角部に巻き付け、 強く押し付けて三 日月状に押しつぶす。 中心積層部の厚さが約 4 删の変形 渦巻形になる。 樹脂が硬化すると強化体 5になるが、 硬 化前に引き続いて、 エポキシ樹脂を含浸させた炭素織維 の短繊維や織布を強化体 5ゃシー 卜ワッ クス 1 0に圧力
を加えながら押し付けていき、 約 5 mm厚の層を形成する。 樹脂が硬化すると、 これは強化層 6となるが、 樹脂が硬 化する前にその内面にポリエチレンフィルム等の離型膜 1 2を張った後に、 鉛、 活字合金等の高比重の球等を詰 め込んで、 重し 1 3にする。 このようにして樹脂が硬化 するまでの間、 形状を保持しておく (第 6図) 。 重し 1 3が弱い場合には、 上に当て板を当てェビ万力等で強 く締める。 樹脂が硬化したら、 重し 1 3を取り出し、 離 型膜 1 2を取り出す。 そして、 強化体 5と一体になつて 硬化した強化層 6を取り出して、 シー トワ ックス 1 0 も 剥離させる。 強化層 6の表裏両面を、 サン ドブラス ト等 で粗面化し、 接着性がよく なるようにする。
次に、 空になったコア一ボックス 1内を清掃して、 離 型剤を塗布する。 そして、 第 7図に示すように、 表面樹 脂層 3を形成するためのエポキシ樹脂を内周面に塗布す る。 この樹脂には、 硬質で耐圧性ゃ耐摩耗性を持つ微粉 末 び固体潤滑剤の微粉末を配合させ、'耐圧性及び耐摩 耗性を付与しょうとしている。 次に、 編布層 1 1を形成 するための、 エポキシ樹脂を含浸させたビニロン纖維製 の編布を張る。 このエポキシ樹脂には、 耐圧性を付与す るための、 硬質で耐圧性を持つ微粉末を配合させている。 それから、 さきに製作していた、 強化体 5と強化層 6と が一体になつたものの外周にエポキシ樹脂を塗布した後、 編布内に押し込んでいく。 このとき、 できるだけ編布の
繊維を引き伸ばしながら押し込んでいく力 少なく とも 肩部に当たる位置で繊維が伸び切つた状態になるように 調整しながら、 表面樹脂層 3側へ押し付けていく。 強化 層 6の押し込みが終つたら、 第 7図に示す状態となって いる。
次いで、 強化層 6の内面側に、 接着用のエポキシ樹脂 を塗布する。 それから、 サン ドコア一 7を形成するため、 約 9 ◦ %重量の硅砂、 約 0 . 1 %重量のガラス短繊維及 び 1 0 %弱重量のエポキシ樹脂の 3者を混練したものを、 圧力を加えながら強化層 6内に充填していく。 充填が終 つたら、 上面にレべリ ング層 8を形成するためのェポキ シ樹脂を塗布し、 水平扳 9をかぶせて強く押し付けると、 第 8図に示す状態になる。
樹脂が硬化してから取り出すと、 第 9図に示すダイス 型が得られる。 このダイス型と対になる'ポンチ型も、 同 一製法により製作できる。 この型は、 実施例 1の型より も更に耐久性に優れ、 次の うな特徵を持っている。
表面樹脂層 3の役目は、 実施例 1のところで触れたと おりである。 そして、 実施例 2のものにおいては、 ェポ キシ樹脂からなる表面樹脂層 3に、 同じく エポキシ樹脂 を含浸させたビニロン繊維製の編布を、 少なく とも肩部 になる位置において繊維を伸び切った状態にして、 圧力 を加えて両者を一体にし、 編布層 1 1を形成している。 '表面樹脂層 3のエポキシ樹脂には、 硬質で耐圧性ゃ耐摩
耗性を持つ微粉末及び固体潤滑剤の微粉末を配合させて、 耐圧性及び耐摩耗性を付与している。 他方の編布層 1 1 のエポキシ樹脂には、 硬質で耐圧性を持つ微粉末を配合 させて、 耐圧性を付与している。 しかも、 ビニロン織維 自身が機械的強度ゃ耐摩耗性を持っており、 その編布等 で構成された編布層 1 1が表面樹脂層 3に食い込んだ形 で一体化しているので、 表面樹脂層 3の機械的強度と耐 摩耗性を強化している。 なお、 ここで編布を使用したの は、 鐵維がよく伸縮をし、 肩部等の形状によくなじませ ることができるからである。
実施例 2の樹脂型の製法は、 あらかじめ強化層 6を形 成する工程及び纖維を伸ばしながら編布層 1 1を形成す る工程等が増えたことで、 実施例 1よりは複雑になって いる。 しかし、 それらの工程を加えることで、 表面層の 機械的強度が増し、 塑性変形に起因する摩耗変形を防ぐ ことができ、 型の耐久性が大幅に向上する。
なお、 実施例 2において、'強化体 5と一体の強化層 6 を形成しながら、 その内部に先にサン ドコア一 7 も形成 していつたん取り出してから、 第 8図に示す、 それらの 外周に表面樹脂層 3や編布層 1 1を形成する工程に移る ようにしてもよい。
また、 シー トワックス 1 0を使用せずに、 シー トヮッ タス 1 0.の厚さに相当する分だけ内面形状が小さい、 コ ァーボッ クス 1 とモデル 2の組をもう一組用意して、 二
; 組のものを使用して、 同様の工程を踏むようにしてもよ
: い。
なお、 以上に示した実施例においては、 強化体 5の変 形渦巻形多層体は三日月状をしているが、 このものはい つも三日月状になるとは限らず、 肩部の構造等の諸条件 によって、 第 1 0図や第 1 1図に示すような形状になつ たりする。
また、 以上の実施例おいては、 強化用繊維製織布を使 用して変形渦巻形多層体を形成しているが、 強化用繊維 製不織布を使用する場合は、 例えば第 1 2図のようにし てもよい。 すなわち、 強化用繊維を縦方向に引きそろえ た不織布の中に、 強化用繊維を横方向に引きそろえた不 織布を巻き込んで使用するのである。
また、 強化用繊維製フィ ラメ ン トを使用する場合は、 例えば第 1 3図に示すようにしてもよい。 すなわち、 樹 脂槽 1 4を通したフィ ラメ ン ト 1 5を、 ガイ ドローラ 1 6で左右にガイ ドさせながら、 マン ドレル 1 7に巻 て いく 。 マン ドレル 1 7に巻いたものの外周にマン ドレル 1 7の軸線方向に手作業等で横糸 1 8を張った後に、 ま たマン ドレル 1 7の円周方向に巻く。 必要回数巻き終つ たら、 マン ドレル 1 7から取り外して使用するのである c 産業上の利用可能性
以上のように本発明による板金プレス用樹脂型および その製造方法は金属製の板に対して絞り加工等の各種の
プレス加工に適している
Claims
1 . 強化用繊維で形成された変形渦巻形多層体の熱 硬化性樹脂含浸硬化物で構成された強化体 ( 5 ) が、 局 部荷重の 用するダイス肩部及びノ又はポンチ肩部に形
5 成されている板金プレス用樹脂型。
'
2 . 前記変形渦巻形多層体が、 強化用織維製織布で 形成されているものである、 請求の範囲第 1項記載の板 金プレス用樹脂型。
3 . 前記変形渦巻形多層体が、 強化用繊維製不織布 0 で形成されている ものである請求の ϋ囲第 1項記載の板 金プレス用樹脂型。
4 . 前記変形渦巻形多層体が、 強化用繊維のフイ ラ メ ン トで形成されているものである、 請求の範囲第 1項 記載の板金プレス用樹脂型。
,
5 5 . 前記変形渦卷形多層体が、 強化用繊維のうち 5 0 %以上の繊維の方向がダイス肩部及びノ又はポンチ 肩部に掛かる荷重の方向とほぼ平行になつているもので ある、 請求の範囲第 1項乃至第 4項のいずれかに記載の 板金プレス用樹脂型。
0 6 . '、前記変形渦巻形多層体が、 継目のない 1枚の強 化用^維製布で形成されているものである、 請求の範囲 第 1項乃至第 3項のいずれかに記載の板金プレス用樹脂
つ s —
O 89/03731 PCT/JP87/01029
7 . 前記強化用織維が、 長鐵維である、 請求の範囲
第 1項乃至第 6項のいずれかに記載の板金プレス用樹脂
型。 -
8 . 前記変形渦巻形多層体が、 複数枚の強化用纖維
5 製布がそれぞれ鐵維の方向を異にして重ねられたものが
変形渦巻形に巻かれて形成されているものである、 請求
の範囲第 1項乃至第 3項のいずれかに記載の板金プレス
用樹脂型。
9 . 前記強化用織維製織布が、 異種の強化用繊維に 10 よる混織布である、 請求の範囲第 2項記載の板金プレス
用樹脂型。
' 1 0 . 前記強化用繊維製不織布が、 異種の強化用纖
維による混不織布である、 請求の範囲第 3項記載の板金
プレス用樹脂型。
15 1 1 . 前記強化用纖維のフィ ラメ ン トが、 異種の強
化用織維による混合フィ ラメ ン トである、 請求の範囲第
4項記載の板金プレス用樹脂型。
1 2 . 前記強化用繊維が、 炭素、 アルミ ナ、 ボロン、 炭化けい素、 ガラス、 ァラ ミ ド、 超高分子量ポリエチレ
20 ン、 ビニロン、 ポリエステル、 ステンレス銅等の強化用
繊維である、 請求の範囲第 1項乃至第 1 1項のいずれか
に記載の板金プレス用樹脂型。
1 3 . 前記熱硬化性樹脂含浸硬化物の熱硬化性樹脂 力 、 エポキシ系、 ポリイ ミ ド系、 不飽和ポリエステル系、
ビニルエステル系、 ポリ ウレタン系等のような、 常温で 液状であるかあるいは 1 ◦ 0。c以下の加温で液化するか 又は脱溶媒が可能である樹脂である、 請求の範囲第 1項 記載の板金プレス用樹脂型。
1 4 . 強化用繊維で形成された変形渦巻形多層体の 熱硬化性樹脂含浸硬化物で構成された強化体が、 局部荷 重の作用するダイス肩部及び Z又はポンチ肩部に形成さ れ、 強化体の外側に表面樹脂層が形成されている板金プ レス用樹脂型。
1 5 . 強化用繊維で形成された変形渦巻形多層体の 熱硬化性樹脂含浸硬化物で構成された強化体が、 局部荷 重の作用するダイス肩部及び Z又はポンチ肩部に形成さ れ、 しかもその強化体の外側において、 少なく とも肩部 に位置する繊維が伸び切った状態にある強化用繊維製編 布の熱硬化性樹脂含浸硬化物で構成された編布層が、 ダ ィス型及び Z又はポンチ型の表面形状に沿つた形状で形 成されている板金プレス用榭脂型。
1 6 . 前記編布層に使用される強化用繊維が、 炭素、 ァラ ミ ド、 超高分子量ポリエチレン、 チタ ン酸、 ビニロ ン、 ポリエステル、 ナイロンのような、 耐摩耗性を持つ 材質の強化用繊維である、 請求の範囲第 1 5項記載の板 金プレス用樹脂型。 '
1 7 . 前記編布層に使用される熱硬化性樹脂が、 ェ ポキシ系、 ポリ イ ミ ド系、 不飽和ポ リ エステル系、 ビニ
ルエステル系、 ポリ ウレタン系の樹脂のような、 常温で
- 液状であるかあるいは 1 0 0 ec以下の加温で液化するか 又は脱溶媒が可能である樹脂である、 請求の範囲第 1 5 項記載の板金プレス用樹脂型。
1 8 . 強化用繊維の渦巻形に巻いて熱硬化性樹脂を
5 含浸させたものを、 母型のダイス肩部又はポンチ肩部に 当たる位置の側へ押し付けて変形させ硬化させることに より、 強化用鐵維で形成された変形渦巻形多層体の熱硬 化性樹脂含浸硬化物で構成された強化体を、 局部荷重の0 掛かるダイス肩部及び Z又はポンチ肩部に形成する、 板 金プレス用樹脂型の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62266535A JPH07115093B2 (ja) | 1987-10-23 | 1987-10-23 | 板金プレス用樹脂型及びその製法 |
JP62/266535 | 1987-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1989003731A1 true WO1989003731A1 (en) | 1989-05-05 |
Family
ID=17432219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1987/001029 WO1989003731A1 (en) | 1987-10-23 | 1987-12-25 | Sheet metal pressing resin mold and method of manufacturing same |
Country Status (5)
Country | Link |
---|---|
US (1) | US5081861A (ja) |
EP (1) | EP0387349A4 (ja) |
JP (1) | JPH07115093B2 (ja) |
AU (1) | AU1088888A (ja) |
WO (1) | WO1989003731A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000032327A2 (de) * | 1998-12-01 | 2000-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Blechumformungswerkzeug und verfahren zu seiner herstellung |
US9688030B2 (en) | 2013-05-07 | 2017-06-27 | Neuvokas Corporation | Method of manufacturing a composite material |
US10682818B2 (en) | 2015-07-02 | 2020-06-16 | Neuvokas Corporation | Method of manufacturing a composite material |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2641217B1 (fr) * | 1988-12-30 | 1994-04-01 | Isoform | Procede et dispositif d'emboutissage de materiaux en feuille sur une matrice de formage elastique |
US6212934B1 (en) * | 1998-04-15 | 2001-04-10 | Shao-Chien Tseng | Recoverable and reusable cold forging dies |
US7052572B2 (en) * | 2001-08-01 | 2006-05-30 | Fuji Jukogyo Kabushiki Kaisha | Method for manufacturing a structure |
CN103534047B (zh) * | 2011-04-15 | 2016-10-12 | 摩擦纺织品股份有限公司 | 具有保护性非织造物保护层的工具装置 |
EP3736057A1 (en) * | 2019-05-08 | 2020-11-11 | Koninklijke Philips N.V. | Method of forming teeth of a cutting blade or guard |
JP2023500420A (ja) | 2019-11-12 | 2023-01-05 | ニューヴォカス コーポレイション | 複合材料の製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3088174A (en) * | 1959-01-28 | 1963-05-07 | Gen Motors Corp | Method of producing a reinforced plastic die |
JPS54148064A (en) * | 1978-05-13 | 1979-11-19 | Sekisui Koji Kk | Production of fiber reinforced resin formed body |
JPS60240338A (ja) * | 1984-05-14 | 1985-11-29 | Toyota Motor Corp | 複合材よりなる型 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3041131A (en) * | 1957-08-26 | 1962-06-26 | Union Carbide Corp | Composite plastic-metal fiber articles and method for making same |
FR2590518B1 (fr) * | 1985-11-22 | 1988-07-15 | Spml Soc Civ Inventeurs | Nouveau produit composite a base d'armature de fils ou fibres notamment tisses ou tricotes enroulee sur elle-meme |
US4919876A (en) * | 1988-01-11 | 1990-04-24 | General Motors Corporation | Method for making composite tread for track-laying vehicles |
-
1987
- 1987-10-23 JP JP62266535A patent/JPH07115093B2/ja not_active Expired - Lifetime
- 1987-12-25 EP EP19880900581 patent/EP0387349A4/en not_active Withdrawn
- 1987-12-25 US US07/474,097 patent/US5081861A/en not_active Expired - Fee Related
- 1987-12-25 AU AU10888/88A patent/AU1088888A/en not_active Abandoned
- 1987-12-25 WO PCT/JP1987/001029 patent/WO1989003731A1/ja not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3088174A (en) * | 1959-01-28 | 1963-05-07 | Gen Motors Corp | Method of producing a reinforced plastic die |
JPS54148064A (en) * | 1978-05-13 | 1979-11-19 | Sekisui Koji Kk | Production of fiber reinforced resin formed body |
JPS60240338A (ja) * | 1984-05-14 | 1985-11-29 | Toyota Motor Corp | 複合材よりなる型 |
Non-Patent Citations (1)
Title |
---|
See also references of EP0387349A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000032327A2 (de) * | 1998-12-01 | 2000-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Blechumformungswerkzeug und verfahren zu seiner herstellung |
WO2000032327A3 (de) * | 1998-12-01 | 2000-09-08 | Fraunhofer Ges Forschung | Blechumformungswerkzeug und verfahren zu seiner herstellung |
US9688030B2 (en) | 2013-05-07 | 2017-06-27 | Neuvokas Corporation | Method of manufacturing a composite material |
US10682818B2 (en) | 2015-07-02 | 2020-06-16 | Neuvokas Corporation | Method of manufacturing a composite material |
Also Published As
Publication number | Publication date |
---|---|
EP0387349A1 (en) | 1990-09-19 |
JPH01113136A (ja) | 1989-05-01 |
US5081861A (en) | 1992-01-21 |
EP0387349A4 (en) | 1991-05-22 |
AU1088888A (en) | 1989-05-23 |
JPH07115093B2 (ja) | 1995-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8491988B2 (en) | Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin | |
US5741574A (en) | Truss reinforced foam core sandwich | |
EP2113373B1 (en) | Method for manufacturing of a fibre reinforced laminate and of a laterally extended material which has in a first lateral direction a greater stiffness than in a second lateral direction | |
CN100544949C (zh) | 高冲击强度弹性复合纤维金属层压制品 | |
US20070163559A1 (en) | Thermoplastic bow limb | |
JPWO2005068284A1 (ja) | 自転車用クランクおよびその製造方法 | |
JPS60233254A (ja) | 壁要素 | |
KR101172734B1 (ko) | 철도차량 대차프레임용 종축지지대 및 그 제조방법 | |
WO1989003731A1 (en) | Sheet metal pressing resin mold and method of manufacturing same | |
US20050104441A1 (en) | Fiber reinforced composite wheels | |
JP2007001226A (ja) | 金属シートと繊維強化プラスチックの複合部材の成形方法、及び該成形に使用する金属シートと繊維強化プラスチック基材の複合基材 | |
CN111448398A (zh) | 具有由碳纤维强化复合材料构成的螺纹牙的构件 | |
JP5471267B2 (ja) | 異種材複合体 | |
CN101443233A (zh) | 增强的混合结构及其方法 | |
JP4732103B2 (ja) | 繊維強化樹脂製の管状部材の製造方法 | |
US20210370620A1 (en) | Semi-Finished Product And Method For Producing A Structural Component | |
WO2003000543A1 (en) | Method for manufacturing a crank structure for bicycles and similar vehicles as well as crank structure obtained with this method | |
KR101337593B1 (ko) | 탄소섬유와 충진재를 이용한 자전거 프레임 및 이의 제조방법 | |
JP2003200833A (ja) | ステアリングホイールおよびその製造方法 | |
EP1829661B1 (en) | Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin | |
JP4609513B2 (ja) | プリフォームの製造方法 | |
JP2007268941A (ja) | 複合材成形体及びその製造方法 | |
JPS635832A (ja) | 板金プレス用樹脂型及びその製法 | |
JPH0776051A (ja) | Frp製パネル及びその製造方法 | |
JPH03161326A (ja) | 繊維強化複合材料製フランジ付パイプおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1988900581 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1988900581 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1988900581 Country of ref document: EP |