WO1987002069A1 - Filtration of aluminium-lithium alloys - Google Patents
Filtration of aluminium-lithium alloys Download PDFInfo
- Publication number
- WO1987002069A1 WO1987002069A1 PCT/GB1986/000588 GB8600588W WO8702069A1 WO 1987002069 A1 WO1987002069 A1 WO 1987002069A1 GB 8600588 W GB8600588 W GB 8600588W WO 8702069 A1 WO8702069 A1 WO 8702069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminium
- porous ceramic
- ceramic body
- foam
- alloy
- Prior art date
Links
- 229910001148 Al-Li alloy Inorganic materials 0.000 title claims abstract description 10
- FCVHBUFELUXTLR-UHFFFAOYSA-N [Li].[AlH3] Chemical compound [Li].[AlH3] FCVHBUFELUXTLR-UHFFFAOYSA-N 0.000 title claims abstract description 10
- 239000001989 lithium alloy Substances 0.000 title claims abstract description 10
- 238000001914 filtration Methods 0.000 title claims abstract description 9
- 239000006260 foam Substances 0.000 claims abstract description 20
- 239000000919 ceramic Substances 0.000 claims abstract description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 6
- 239000011148 porous material Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 229910000838 Al alloy Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 abstract description 4
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001947 lithium oxide Inorganic materials 0.000 abstract description 2
- -1 lithium oxide Chemical class 0.000 abstract 1
- 239000002002 slurry Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 239000004411 aluminium Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2068—Other inorganic materials, e.g. ceramics
- B01D39/2093—Ceramic foam
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/0615—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B21/00—Obtaining aluminium
- C22B21/06—Obtaining aluminium refining
- C22B21/066—Treatment of circulating aluminium, e.g. by filtration
Definitions
- This invention relates to the filtration of alum nium-lit ium alloys.
- aluminium-lithium alloys are particularly reactive compared with most other aluminium alloys they will attack the materials commonly used for filtering molten aluminium alloys
- a method of filtering a molten aluminium- -lithium alloy which comprises passing the molten alloy through a porous ceramic body comprising silicon carbi de .
- the porous body may be for example a honey ⁇ comb type of structure having pores which extend from one face of the body to another face or a structure having interconnecting pores such as a ceramic foam.
- Foam structures are preferred and such structures may be made using a known method of making ⁇ a ceramic foam in which an organic foam, usually a polyurethane foam, is impregnated with an aqueous slurry of ceramic material containing a binder, the impregnated foam is dried to remove water and the dried impregnated foam is fired to burn off the organic foam to produce a ceramic foam.
- the production of ceramic foams by this method is described in United States Patent 3090094 and in British Patents 923862, 916784, 1004352, 1054421 , 1377691, 1388911, 1388912 and 1388913.
- the porous ceramic body used-as the filter in the present invention is made solely from silicon carbide apart from minor amounts of oxides which are present as residues from binders, for example phosphorous pentoxide from monoal u i ni urn phosphate, and/or from additives which may have been used in the production of the porous body, for example silica from clay which may be added to improve the rheological properties of the slurry when the body is produced by impregnation of an organic foam with a silicon carbide-containing slurry,
- the body may also contain a proportion, usually not exceeding 45% by weight, of a refractory oxide such as alumina.
- a ceramic foam having the following com ⁇ position by weight:-
- the foam was fixed to a refractory tube by means of a high temperature resistant adhesive, the tube was attached to a steel rod, and the foam was then immersed in molten LITAL aluminium-lithium alloy at 760-765°C. The foam was unaffected by the molten alloy after immersion for 60 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Filtering Materials (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Alumina oxide and other non-metallic compounds, such as lithium oxide, are removed from molten aluminium-lithium alloys by filtration through a porous ceramic body comprising silicon carbide. The porous ceramic body may be, for example, a honeycomb type of structure or a foam having interconnecting pores.
Description
*
FILTRATION OF ALUMINIUM-LITHIUM ALLOYS
This invention relates to the filtration of alum nium-lit ium alloys.
It is well known, in order to remove alumini-um oxide from molten aluminium or aluminium 5 alloys to pass the aluminium or aluminium alloy through a filter such as a fibreglass cloth, a bed of refractory particles such as alumina balls or a ceramic foam made from a material such as alumina, an al umi nosi 1 i cate such as mullite, or cordierite.
10 Molten aluminium-lithium alloys which contain 1.0 to 4.5% lithium, usually 1.1 to 2.5%, contain other non-metallic compounds in addition to aluminium oxide, for example lithium oxide, which will produce inclusions if they are not removed before
15 the metal is cast.
However because aluminium-lithium alloys are particularly reactive compared with most other aluminium alloys they will attack the materials commonly used for filtering molten aluminium alloys
20 so that to date no satisfactory method of filtering aluminium-lithium alloys has been found. Instead it is necessary to take special precautions to minimise oxidation of the lithium and thereby minimise the formation of non-metallic compounds, for example by
25 melting the alloy under an inert atmosphere or under a thick layer of flux, and before casting to remove the non-metallic compounds present by a method other than filtration.
According to the present invention there is provided a method of filtering a molten aluminium- -lithium alloy which comprises passing the molten alloy through a porous ceramic body comprising silicon carbi de .
The porous body may be for example a honey¬ comb type of structure having pores which extend from one face of the body to another face or a structure having interconnecting pores such as a ceramic foam.
Foam structures are preferred and such structures may be made using a known method of making ■ a ceramic foam in which an organic foam, usually a polyurethane foam, is impregnated with an aqueous slurry of ceramic material containing a binder, the impregnated foam is dried to remove water and the dried impregnated foam is fired to burn off the organic foam to produce a ceramic foam. The production of ceramic foams by this method is described in United States Patent 3090094 and in British Patents 923862, 916784, 1004352, 1054421 , 1377691, 1388911, 1388912 and 1388913.
It is preferred that the porous ceramic body used-as the filter in the present invention is made solely from silicon carbide apart from minor amounts of oxides which are present as residues from binders, for example phosphorous pentoxide from monoal u i ni urn phosphate, and/or from additives which may have been used in the production of the porous body, for example silica from clay which may be added to improve the rheological properties of the slurry
when the body is produced by impregnation of an organic foam with a silicon carbide-containing slurry,
However the body may also contain a proportion, usually not exceeding 45% by weight, of a refractory oxide such as alumina.
The following example will serve to illustrate the invention:-
A ceramic foam having the following com¬ position by weight:-
silicon carbide 53.0% al umi na 34.2% silica 4.1% phosphorous pentoxide 8.7%
was made by impregnating a reticulated polyurethane foam with an aqueous slurry containing silicon carbide, alumina, clay and aluminium orthophosphate as binder, and drying and then, firing the impregnated foam.
In order to assess the suitability of the foam as a fi 1 er for aluminium-li hium alloys the foam was fixed to a refractory tube by means of a high temperature resistant adhesive, the tube was attached to a steel rod, and the foam was then immersed in molten LITAL aluminium-lithium alloy at 760-765°C.
The foam was unaffected by the molten alloy after immersion for 60 minutes.
Similar tests were also performed on other types of filter materials. Honeycomb type structures of mullite, cordierite and mul 1 i te/cordi eri te and ceramic foams of alumina and al umi nosi 1 i cate were all attacked and severely weakened after 10 minutes immersion in the molten aluminium-lithium alloy, while silica based cloth withstood 60 minutes immersion but was extremely brittle on removal .
Claims
1. A method of filtering a molten aluminium alloy wherein the molten alloy is passed through a porous ceramic body characterised in that the alloy is an aluminium-lithium alloy and the porous ceramic body comprises silicon carbide.
2. A method according to claim 1 characterised in that the porous ceramic body has pores which extend from one face of the body to another face.
3. A method according to clai 1 characterised in that the porous ceramic body is a ceramic foam.
4. " A method according to claim 1 characterised in that the porous ceramic body contains a minor amount of phosphorus pentoxide.
5. A method according to claim 1 characterised in that the porous ceramic body contains a minor amount of silica.
6. A method according to claim 1 characterised in that the porous ceramic body contains alumina.
7. A method according to claim 6 characterised in that al umi na • content is not more than 45% by weight .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB858524400A GB8524400D0 (en) | 1985-10-03 | 1985-10-03 | Filtration of aluminium-lithium alloys |
GB8524400 | 1985-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1987002069A1 true WO1987002069A1 (en) | 1987-04-09 |
Family
ID=10586130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB1986/000588 WO1987002069A1 (en) | 1985-10-03 | 1986-10-01 | Filtration of aluminium-lithium alloys |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0238607A1 (en) |
GB (1) | GB8524400D0 (en) |
WO (1) | WO1987002069A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988007403A1 (en) * | 1987-03-23 | 1988-10-06 | Schweizerische Aluminium Ag | Ceramic foam filter |
GB2269185A (en) * | 1992-07-30 | 1994-02-02 | Rolls Royce Plc | Improvements in or relating to removal of contaminants from molten metal. |
US6111165A (en) * | 1993-01-28 | 2000-08-29 | Cohesion Technologies, Inc. | Production of human recombinant collagen in the milk of transgenic animals |
US8365808B1 (en) | 2012-05-17 | 2013-02-05 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys |
US8479802B1 (en) | 2012-05-17 | 2013-07-09 | Almex USA, Inc. | Apparatus for casting aluminum lithium alloys |
US9616493B2 (en) | 2013-02-04 | 2017-04-11 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys |
US9936541B2 (en) | 2013-11-23 | 2018-04-03 | Almex USA, Inc. | Alloy melting and holding furnace |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3039864A (en) * | 1958-11-21 | 1962-06-19 | Aluminum Co Of America | Treatment of molten light metals |
GB923862A (en) * | 1960-03-09 | 1963-04-18 | Ivor James Holland | Porous refractory materials |
US3408180A (en) * | 1966-09-12 | 1968-10-29 | Gen Foam Corp | Method of producing an inorganic foam and product |
DE2333422A1 (en) * | 1972-07-03 | 1974-01-24 | Gullhoegens Bruk Ab | HARD MATERIAL AND PROCESS FOR ITS MANUFACTURING |
DE2517380A1 (en) * | 1975-04-19 | 1976-10-21 | Rosenthal Ag | Foamed ceramic bodies contg silicon nitride or carbide - produced by nitriding or carburising foamed silicon bodies |
US4067731A (en) * | 1975-07-18 | 1978-01-10 | Southwire Company | Method of treating molten metal |
JPS55154536A (en) * | 1979-05-18 | 1980-12-02 | Nippon Rutsubo Kk | Impurity removing method for molten metal |
EP0087789A1 (en) * | 1982-02-26 | 1983-09-07 | Bridgestone Tire Company Limited | Porous ceramic article |
DE3504393A1 (en) * | 1984-02-10 | 1985-08-14 | Kurosaki Refractories Co., Ltd., Kitakyushu, Fukuoka | METHOD FOR PRODUCING A SINTERED CERAMIC BODY FROM A SI (DOWN ARROW) 3 (DOWN ARROW) N (DOWN ARROW) 4 (DOWN ARROW) -SIC SYSTEM |
-
1985
- 1985-10-03 GB GB858524400A patent/GB8524400D0/en active Pending
-
1986
- 1986-10-01 WO PCT/GB1986/000588 patent/WO1987002069A1/en unknown
- 1986-10-01 EP EP19860905891 patent/EP0238607A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3039864A (en) * | 1958-11-21 | 1962-06-19 | Aluminum Co Of America | Treatment of molten light metals |
GB923862A (en) * | 1960-03-09 | 1963-04-18 | Ivor James Holland | Porous refractory materials |
US3408180A (en) * | 1966-09-12 | 1968-10-29 | Gen Foam Corp | Method of producing an inorganic foam and product |
DE2333422A1 (en) * | 1972-07-03 | 1974-01-24 | Gullhoegens Bruk Ab | HARD MATERIAL AND PROCESS FOR ITS MANUFACTURING |
DE2517380A1 (en) * | 1975-04-19 | 1976-10-21 | Rosenthal Ag | Foamed ceramic bodies contg silicon nitride or carbide - produced by nitriding or carburising foamed silicon bodies |
US4067731A (en) * | 1975-07-18 | 1978-01-10 | Southwire Company | Method of treating molten metal |
JPS55154536A (en) * | 1979-05-18 | 1980-12-02 | Nippon Rutsubo Kk | Impurity removing method for molten metal |
EP0087789A1 (en) * | 1982-02-26 | 1983-09-07 | Bridgestone Tire Company Limited | Porous ceramic article |
DE3504393A1 (en) * | 1984-02-10 | 1985-08-14 | Kurosaki Refractories Co., Ltd., Kitakyushu, Fukuoka | METHOD FOR PRODUCING A SINTERED CERAMIC BODY FROM A SI (DOWN ARROW) 3 (DOWN ARROW) N (DOWN ARROW) 4 (DOWN ARROW) -SIC SYSTEM |
Non-Patent Citations (1)
Title |
---|
PATENTS ABSTRACTS OF JAPAN, Volume 5, No. 28, (C-44) (700) 20 February 1981 & JP, A, 55154536 (Nippon Rutsubo K.K.) 2 December 1980 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988007403A1 (en) * | 1987-03-23 | 1988-10-06 | Schweizerische Aluminium Ag | Ceramic foam filter |
GB2269185A (en) * | 1992-07-30 | 1994-02-02 | Rolls Royce Plc | Improvements in or relating to removal of contaminants from molten metal. |
US5336294A (en) * | 1992-07-30 | 1994-08-09 | Rolls-Royce Plc | Removal of contaminants from molten metals |
US6111165A (en) * | 1993-01-28 | 2000-08-29 | Cohesion Technologies, Inc. | Production of human recombinant collagen in the milk of transgenic animals |
US9849507B2 (en) | 2012-05-17 | 2017-12-26 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys |
US8479802B1 (en) | 2012-05-17 | 2013-07-09 | Almex USA, Inc. | Apparatus for casting aluminum lithium alloys |
US8365808B1 (en) | 2012-05-17 | 2013-02-05 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys |
US9895744B2 (en) | 2012-05-17 | 2018-02-20 | Almex USA, Inc. | Process and apparatus for direct chill casting |
US10646919B2 (en) | 2012-05-17 | 2020-05-12 | Almex USA, Inc. | Process and apparatus for direct chill casting |
US10946440B2 (en) | 2012-05-17 | 2021-03-16 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting aluminum alloys |
US9616493B2 (en) | 2013-02-04 | 2017-04-11 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of aluminum lithium alloys |
US9764380B2 (en) | 2013-02-04 | 2017-09-19 | Almex USA, Inc. | Process and apparatus for direct chill casting |
US9950360B2 (en) | 2013-02-04 | 2018-04-24 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of lithium alloys |
US10864576B2 (en) | 2013-02-04 | 2020-12-15 | Almex USA, Inc. | Process and apparatus for minimizing the potential for explosions in the direct chill casting of lithium alloys |
US9936541B2 (en) | 2013-11-23 | 2018-04-03 | Almex USA, Inc. | Alloy melting and holding furnace |
US10932333B2 (en) | 2013-11-23 | 2021-02-23 | Almex USA, Inc. | Alloy melting and holding furnace |
Also Published As
Publication number | Publication date |
---|---|
GB8524400D0 (en) | 1985-11-06 |
EP0238607A1 (en) | 1987-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3947363A (en) | Ceramic foam filter | |
RU2380136C1 (en) | Corrosion-proof ceramic foam filter with low expansion ratio for filtration of melt aluminium | |
US4885263A (en) | Ceramic foam filter and process for preparing same | |
US5279737A (en) | Process for producing a porous ceramic and porous ceramic composite structure utilizing combustion synthesis | |
US4803025A (en) | Ceramic foam | |
EP0463234B1 (en) | Coated molten metal filters | |
US4921616A (en) | Alveolar ceramic filters for high melting metals | |
PT92254B (en) | PARENT FOR THE MODELING OF COMPOSITE BODIES WITH METAL MATRIX CONTAINING THREE-DIMENSIONAL INTERLIGATED CO-MATRIXES AND PRODUCTS PRODUCED BY THIS PROCESS | |
EP3142987B1 (en) | Boron-free aluminum castshop ceramic foam filter | |
EP0412673B1 (en) | Ceramic foam filters | |
US20010015271A1 (en) | Reinforcement preform and metal matrix composites including the reinforcement preform | |
US5190897A (en) | Ceramic foam filters | |
WO1987002069A1 (en) | Filtration of aluminium-lithium alloys | |
CA2064617A1 (en) | Filters for light metals | |
CA1252292A (en) | Ceramic foam | |
GB1602027A (en) | Method for removing cores | |
US5318279A (en) | Receptacle for molten metals, material for this receptacle and method of producing the material | |
CA2009272A1 (en) | Filters for light metals | |
JPH05138339A (en) | Filter medium for molten aluminum | |
GB2091592A (en) | Refractory heat-insulating material | |
US4601460A (en) | Technique for removing impurities from a copper melt | |
US4533388A (en) | Technique for removing iron-rich components from a copper melt | |
US4537627A (en) | Technique for removing impurities from a copper melt | |
RU2096386C1 (en) | Mixture for manufacturing refractory articles | |
KR960001693B1 (en) | Ceramic foam filter and the process for preparing it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): CH DE FR GB |