WO1984004595A1 - Moisture sensor - Google Patents
Moisture sensor Download PDFInfo
- Publication number
- WO1984004595A1 WO1984004595A1 PCT/CH1984/000076 CH8400076W WO8404595A1 WO 1984004595 A1 WO1984004595 A1 WO 1984004595A1 CH 8400076 W CH8400076 W CH 8400076W WO 8404595 A1 WO8404595 A1 WO 8404595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- moisture
- sensor
- electrodes
- moisture sensor
- humidity sensor
- Prior art date
Links
- 239000007787 solid Substances 0.000 claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000004033 plastic Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 8
- 239000010439 graphite Substances 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 8
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 229910021536 Zeolite Inorganic materials 0.000 claims description 5
- 239000010457 zeolite Substances 0.000 claims description 5
- 239000011521 glass Substances 0.000 claims description 4
- 238000010327 methods by industry Methods 0.000 claims description 4
- 229920002678 cellulose Polymers 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- KKEBXNMGHUCPEZ-UHFFFAOYSA-N 4-phenyl-1-(2-sulfanylethyl)imidazolidin-2-one Chemical compound N1C(=O)N(CCS)CC1C1=CC=CC=C1 KKEBXNMGHUCPEZ-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000002241 glass-ceramic Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 229910001416 lithium ion Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 abstract 1
- 206010000496 acne Diseases 0.000 abstract 1
- 230000002411 adverse Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 abstract 1
- 229920002994 synthetic fiber Polymers 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 8
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000003678 scratch resistant effect Effects 0.000 description 2
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- -1 zeolite or pentasil Chemical compound 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/121—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid
Definitions
- the invention relates to a moisture sensor for an electrical moisture meter according to the preamble of claim 1.
- Such a humidity sensor is e.g. Known from EP-A-0044 806.
- a moisture sensor is described with an electrolyte carrier and two interdigitated electrodes which are conductively connected to one another by an electrolyte layer.
- This electrolyte layer consists of zeolite powder, which was mixed with 5 to 20 percent by weight of cement with the addition of water to form a slurry and was then applied to the electrolyte carrier.
- the electrolyte layer has a porous structure consisting of a multiplicity of water-absorbing channels.
- the described moisture sensor has the disadvantage that capillary condensation can occur at relative humidities above 95%, and the measurement result is thus permanently influenced.
- the electrolyte layer used has the disadvantage that it adheres poorly to the electrolyte carrier and peels off over time.
- detailed measurements have shown that the hysteresis of the described moisture sensor in the moisture resistance characteristic is more than 3% relative humidity, measurements being carried out at a fixed temperature.
- the object of the invention is therefore to improve the known moisture sensor in such a way that the electrolyte layer has excellent adhesion, that the hysteresis in the moisture resistance characteristic is less than 1% relative humidity and that measurements up to the saturation of the air give reliable results.
- the invention has the great advantage that the diffusion in the water vapor-permeable plastic is decisive for the time behavior. It follows from this that the time behavior is purely exponential, which allows the end value of a measurement process to be calculated very quickly by processing the adjustment function in a microprocessor.
- the use of water vapor-permeable plastic significantly improves the hysteresis behavior of the moisture sensor, so that a measured value difference is obtained that is less than 1% relative humidity at a certain temperature.
- Another important advantage of the invention is that it is now influenced by chemical contaminants, e.g. acidic gases, ammonia or polyalcohol, no longer impair the function of the humidity sensor.
- the moisture sensor according to the invention has a moisture-sensitive layer with a scratch-resistant, hard surface, measurements of the water activity of goods of great hardness, e.g. Bulk goods from drying processes no longer pose any problems.
- moisture-inhibiting prefilters can largely be dispensed with, which enables direct measurements in process engineering processes with a very short response time of the moisture sensor.
- FIG. 2 is a plan view in the direction of arrow I in Fig. 1,
- FIG. 3 is a bottom view in the direction of arrow II in FIG. 1,
- Fig. 4 measuring diac, ram of a moisture sensor with a moisture-sensitive layer
- FIG. 5 shows a measurement diagram of a moisture sensor with a moisture-sensitive layer made of zeolitic crystallite, graphite and plastic, and
- Fig. 6 shows a cylindrical body for holding the moisture sensor.
- a moisture sensor 1 which consists of an insulating substrate 2. Electrodes 3 are applied to the upper side of the substrate 2 and are coated with a moisture-sensitive layer 5 of a crystalline electrolytic solid. A temperature sensor 6 is applied to the lower side of the substrate 2. Electrical contact pins 4, 7 and 8 are also provided there.
- Fig. 2 shows the humidity sensor 1 of Fig. 1 in plan view.
- the electrodes 3 each consist of concentric part circles which are connected to one another via a web and have a uniform distance from one another.
- the electrodes 3, here two, are arranged such that the part circles of the two electrodes 3 interlock and there is no direct electrical contact between the electrodes 3.
- a concentric ring electrode 9 for electrical shielding is also provided around the electrodes 3 at the edge of the substrate 2.
- the contact pins 4 are for the electrodes 3, the contact pin 7 for the Ring electrode 9 and the contact pins 8 for the temperature sensor 6 soldered.
- FIG. 3 shows the back of the moisture sensor 1.
- the same reference numbers have been used for the same elements as in FIG. 1.
- On this side of the substrate 2 there is a additional shielding electrode 9 * applied, which is contacted with the ring electrode 9 (Fig. 2).
- the connections for the contact pins are also plated through.
- the temperature sensor 6 is soldered or glued to the shielding electrode 9 ', so that there is excellent thermal contact with the substrate 2.
- the temperature sensor can also be provided on the front of the substrate 2 in an integrated design with the moisture sensor, and a preamplifier on the back of the substrate 2 in order to largely eliminate cable influences.
- the substrate 2 consists of a known, electrically insulating material, such as silicon, glass, glass epoxy or an aluminum or glass ceramic.
- the electrodes 3 consist of copper tracks, which are galvanically coated with a gold layer.
- the moisture-sensitive layer 5 of the electrolytic solid consists of an aluminosilicate, such as zeolite or pentasil, and of a water-vapor-permeable plastic, such as the cellulose derivatives, cellulose acetate, cellulose propionate or cellulose acetobutyrate.
- a zeolite with a faujasite structure is preferably used as the electrolytic solid. In any case, crystalline, electrolytic solids with lithium ions are preferred.
- the admixture of graphite essentially reduces the hysteresis in the moisture-impedance characteristic.
- the described moisture-sensitive layer 5 can be produced very thinly with grains of the electrolytic solid of a uniform size below 1 ⁇ m.
- Layer 5 is very flexible and can be subjected to high mechanical stresses and, depending on the choice of plastic, can be used for measurements up to 150 ° C. or even up to 200 ° C. In addition, it is scratch-resistant and adheres extremely well to the substrate 2. If the layer 5 has been inactivated by ions or polar molecules, the crystallites can easily be regenerated by simply heating. After exposure to vacuum, no irreversible changes were found.
- the abscissa represents the relative humidity (0 of the environment (in% RH), the ordinate the impedance value z of the humidity sensor in logarithmic division.
- the characteristic corresponds to the output signal of a logarithmic amplifier and leads to a linear characteristic curve.
- the characteristic curve A is also recorded a moisture sensor, which has a moisture-sensitive layer 5 made of zeolite and plastic, the characteristic curve B with a layer 5 made of pentasil and plastic.
- FIG. 5 shows a measurement diagram of a moisture sensor with a moisture-sensitive layer 5 made of a zeolitic crystal, graphite and plastic. The impedance is plotted here in a linear division.
- FIG. 6 shows a section through a cylindrical body 10, which serves to hold the moisture sensor 1.
- the contact pins 4, 7 and 8 are inserted into sockets 11, which are enclosed in a plastic disk 12.
- the sockets 11 are connected to a cable 13 which leads to an evaluation electronics.
- This is not shown further, but essentially consists of a logarithmic amplifier and a compensation circuit in order to eliminate the influence of temperature on the output signal. This is made possible by the fact that the temperature drift of the moisture sensor described above, in contrast to many conventional moisture sensors, depends only on the temperature and not on the ambient humidity.
- Holes 14 are provided in the cylindrical body 10 for attachment to walls or other third bodies.
- a rubber ring 15 at the level of the moisture sensor 1 encompasses the cylindrical body 10 and serves to fasten flexible foils which are permeable to water vapor. These are required if there is a risk of an electrical shunt across the item to be measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Moisture sensor (1) for an electric apparatus intended to measure dampness, having at least two electrodes (3) on an electrically insulating substrate (2) which are conductingly interconnected by a moisture sensitive layer (5) of an electrolytic solid body. A synthetic material which is permeable to water vapour is mixed with the electrolytic solid body whereby the moisture sensitive layer (5) has a non-porous structure free of pimples. The moisture sensor (1) is particularly appropriate to consistingly measure relative moistures up to saturation, adverse operating conditions in comparison to the state of the art hardly affecting the utilisation of the moisture sensor. The moisture sensor is designed to carry out measurements up to 200oC. The moisture-sensitive layer (5) resists to abrasion and may be used without any special protection to take continuous measurements in the course of engineering processes.
Description
Feuchtefühler Humidity sensor
Die Erfindung betrifft einen Feuchtefühler für ein elektrisches Feuchtemessgerät nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a moisture sensor for an electrical moisture meter according to the preamble of claim 1.
Ein solcher Feuchtefühler ist z.B. bekannt aus EP-A-0044 806. Dort wird ein Feuchtefühler mit einem Elektrolytträger und zwei kammartig ineinandergreifenden Elektroden beschrieben, die durch eine Elektrolytschicht leitend miteinander verbunden sind. Diese Elektrolytschicht besteht aus Zeolithpulver, welches mit 5 bis 20 Gewichtprozent Zement unter Zugabe von Wasser zu einem Brei vermischt und dann auf den Elektrolytträger aufgetra¬ gen wurde. Die Elektrolytschicht weist eine poröse Struktur be¬ stehend aus einer Vielzahl von wasseraufnehmenden Kanälen auf.Such a humidity sensor is e.g. Known from EP-A-0044 806. There a moisture sensor is described with an electrolyte carrier and two interdigitated electrodes which are conductively connected to one another by an electrolyte layer. This electrolyte layer consists of zeolite powder, which was mixed with 5 to 20 percent by weight of cement with the addition of water to form a slurry and was then applied to the electrolyte carrier. The electrolyte layer has a porous structure consisting of a multiplicity of water-absorbing channels.
Der beschriebene Feuchtefühler hat jedoch den Nachteil, dass bei relativen Feuchten oberhalb 95% eine Kapillarkondensation auf¬ treten kann, und so das Messresultat nachhaltig beeinflusst wird. Zudem hat die verwendete Elektrolytschicht den Nachteil, dass sie schlecht auf dem Elektrolytträger haftet und sich mit der Zeit ablöst. Zusätzlich haben eingehende Messungen erwiesen, dass die Hysterese des beschriebenen Feuchtefühlers in der Feuchte- Widerstandscharakteristik mehr als 3% relative Feuchte beträgt, wobei bei einer festen Temperatur gemessen worden ist.However, the described moisture sensor has the disadvantage that capillary condensation can occur at relative humidities above 95%, and the measurement result is thus permanently influenced. In addition, the electrolyte layer used has the disadvantage that it adheres poorly to the electrolyte carrier and peels off over time. In addition, detailed measurements have shown that the hysteresis of the described moisture sensor in the moisture resistance characteristic is more than 3% relative humidity, measurements being carried out at a fixed temperature.
Die Erfindung stellt sich deshalb die Aufgabe, den bekannten Feuchtefühler derart zu verbessern, dass die Elektrolytschicht eine ausgezeichnete Haftung besitzt, dass die Hysterese in der Feuchte-Widerstandscharakteristik weniger als 1% relative Feuchte beträgt und dass Messungen bis zur Sättigung der Luft zuverlässige Resultate ergeben.The object of the invention is therefore to improve the known moisture sensor in such a way that the electrolyte layer has excellent adhesion, that the hysteresis in the moisture resistance characteristic is less than 1% relative humidity and that measurements up to the saturation of the air give reliable results.
Diese Aufgabe wird bei einem Feuchtefühler der vorbeschriebenen Art durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved in a moisture sensor of the type described above by the characterizing features of claim 1.
OMPI
Die Erfindung hat unter anderem den grossen Vorteil, dass die Diffusion in dem wasserdampfdurchlässigen Kunststoff für das Zeitverhalten bestimmend ist. Hieraus folgt, dass das Zeitver¬ halten rein exponentiell ist, was eine sehr schnelle Berechnung des Endwertes eines Messvorganges durch Verarbeitung der An- gleichsfunktion in einem Mikroprozessor gestattet. Zudem wird durch die Verwendung von wasserdampfdurchlässigem Kunststoff das Hystereseverhalten des Feuchtefühlers wesentlich verbessert, so dass bei einer bestimmten Temperatur ein Messwertunterschied erhalten wird, der geringer als 1% relative Feuchte beträgt.OMPI Among other things, the invention has the great advantage that the diffusion in the water vapor-permeable plastic is decisive for the time behavior. It follows from this that the time behavior is purely exponential, which allows the end value of a measurement process to be calculated very quickly by processing the adjustment function in a microprocessor. In addition, the use of water vapor-permeable plastic significantly improves the hysteresis behavior of the moisture sensor, so that a measured value difference is obtained that is less than 1% relative humidity at a certain temperature.
Ein anderer wichtiger Vorteil der Erfindung ist, dass nunmehr Einflüsse durch chemische Verunreinigungen, wie z.B. saure Gase, Ammoniak oder Polyalkohol, den Feuchtefühler in seiner Funktion nicht mehr beeinträchtigen. Da der erfindungsgemässe Feuchte¬ fühler eine feuchteempfindliche Schicht mit einer kratzfesten, harten Oberfläche aufweist, stellen Messungen der Wasseraktivi¬ tät von Gütern grosser Härte, z.B. Schüttgüter aus Trocknungs¬ prozessen, keine Probleme mehr dar. Demzufolge kann weitgehend auf feuchtehemmende Vorfilter verzichtet werden, was direkte Mes¬ sungen in verfahrenstechnischen Prozessen mit einer sehr gerin¬ gen Ansprechzeit des Feuchtefühlers ermöglicht. Weitere Vorteile der Erfindung folgen aus der nachstehenden Beschreibung. Anhand eines in der Zeichnung dargestellten Beispieles wir die Erfin¬ dung näher erläutert. Dabei zeigt:Another important advantage of the invention is that it is now influenced by chemical contaminants, e.g. acidic gases, ammonia or polyalcohol, no longer impair the function of the humidity sensor. Since the moisture sensor according to the invention has a moisture-sensitive layer with a scratch-resistant, hard surface, measurements of the water activity of goods of great hardness, e.g. Bulk goods from drying processes no longer pose any problems. As a result, moisture-inhibiting prefilters can largely be dispensed with, which enables direct measurements in process engineering processes with a very short response time of the moisture sensor. Further advantages of the invention follow from the description below. The invention is explained in more detail using an example shown in the drawing. It shows:
Fig. 1 einen Querschnitt durch einen Feuchte¬ fühler,1 shows a cross section through a moisture sensor,
Fig. 2 eine Draufsicht in Richtung des Pfeiles I in Fig. 1,2 is a plan view in the direction of arrow I in Fig. 1,
Fig. 3 eine Ansicht von unten in Richtung des Pfeiles II in Fig. 1,3 is a bottom view in the direction of arrow II in FIG. 1,
Fig. 4 Messdiac,-ramme eines Feuchtefühlers mit einer feuchteempfindlichen Schicht ausFig. 4 measuring diac, ram of a moisture sensor with a moisture-sensitive layer
O PI
zeolithischem oder pentasilischem Kristal- lit und Kunststoff,O PI zeolitic or pentasilic crystal and plastic,
Fig. 5 ein Messdiagramm eines Feüchtefühlers mit einer feuchteempfindlichen Schicht aus zeo¬ lithischem Kristallit, Graphit und Kunst¬ stoff, und5 shows a measurement diagram of a moisture sensor with a moisture-sensitive layer made of zeolitic crystallite, graphite and plastic, and
Fig. 6 einen zylindrischen Körper zur Halterung des Feuchtefühlers.Fig. 6 shows a cylindrical body for holding the moisture sensor.
In Fig. 1 ist ein Feuchtefühler 1 dargestellt, der aus einem isolierenden Substrat 2 besteht. Auf der oberen Seite des Sub¬ strates 2 sind Elektroden 3 aufgebracht, die mit einer feuchte¬ empfindlichen Schicht 5 eines kristallischen elektrolytischen Festkörpers überzogen sind. Auf der unteren Seite des Substrates 2 ist ein Temperaturfühler 6 aufgebracht. Ebenfalls sind dort elektrische Kontaktstifte 4, 7 und 8 vorgesehen.In Fig. 1, a moisture sensor 1 is shown, which consists of an insulating substrate 2. Electrodes 3 are applied to the upper side of the substrate 2 and are coated with a moisture-sensitive layer 5 of a crystalline electrolytic solid. A temperature sensor 6 is applied to the lower side of the substrate 2. Electrical contact pins 4, 7 and 8 are also provided there.
Fig. 2 zeigt den Feuchtefühler 1 der Fig. 1 in Draufsicht. Für dieselben Elemente wurden die gleichen Bezugsziffern verwendet. " Wie aus dieser Figur ersichtlich ist, bestehen die Elektroden 3 je aus konzentrischen Teilkreisen, die über einen Steg mitein¬ ander verbunden sind und einen gleichmässigen Abstand zueinander besitzen. Die Elektroden 3, hier zwei, sind so angeordnet, dass die Teilkreise der beiden Elektroden 3 ineinander greifen und kein direkter elektrischer Kontakt zwischen den Elektroden 3 be¬ steht. Am Rand des Substrates 2 ist um die Elektroden 3 noch eine konzentrische Ringelektrode 9 zur elektrischen Abschirmung vorgesehen. Die Kontaktstifte 4 sind für die Elektroden 3, der Kontaktstift 7 für die Ringelektrode 9 und die Kontaktstifte 8 für den Temperaturfühler 6 aufgelötet.Fig. 2 shows the humidity sensor 1 of Fig. 1 in plan view. The same reference numbers have been used for the same elements. "As can be seen from this figure, the electrodes 3 each consist of concentric part circles which are connected to one another via a web and have a uniform distance from one another. The electrodes 3, here two, are arranged such that the part circles of the two electrodes 3 interlock and there is no direct electrical contact between the electrodes 3. A concentric ring electrode 9 for electrical shielding is also provided around the electrodes 3 at the edge of the substrate 2. The contact pins 4 are for the electrodes 3, the contact pin 7 for the Ring electrode 9 and the contact pins 8 for the temperature sensor 6 soldered.
Fig. 3 zeigt die Rückseite des Feuchtefühlers 1. Es wurden wie¬ der die gleichen Bezugsziffern für dieselben Elemente wie in Fig. 1 verwendet. Auf dieser Seite des Substrates 2 ist eine zu-
sätzliche Abschirmungselektrode 9* aufgebracht, die mit der Ringelektrode 9 (Fig. 2) durchkontaktiert ist. Auch die An¬ schlüsse für die Kontaktstifte sind durchkontaktiert. Der Tem¬ peraturfühler 6 ist an der Abschirmungselektrode 9' angelötet oder angeklebt, so dass ein ausgezeichneter thermischer Kontakt mit dem Substrat 2 gegeben ist. Der Temperaturfühler kann jedoch auch auf der Vorderseite des Substrates 2 in integrierter Bau¬ weise mit dem Feuchtefühler vorgesehen sein, und auf der Rück¬ seite des Substrates 2 ein Vorverstärker, um Kabeleinflüsse weit¬ gehend zu eliminieren.FIG. 3 shows the back of the moisture sensor 1. The same reference numbers have been used for the same elements as in FIG. 1. On this side of the substrate 2 there is a additional shielding electrode 9 * applied, which is contacted with the ring electrode 9 (Fig. 2). The connections for the contact pins are also plated through. The temperature sensor 6 is soldered or glued to the shielding electrode 9 ', so that there is excellent thermal contact with the substrate 2. However, the temperature sensor can also be provided on the front of the substrate 2 in an integrated design with the moisture sensor, and a preamplifier on the back of the substrate 2 in order to largely eliminate cable influences.
Das Substrat 2 besteht aus einem bekannten, elektrisch isolie¬ renden Material, wie z.B. Silizium, Glas, Glasepoxy oder einer Aluminium- oder Glaskeramik. Die Elektroden 3 bestehen aus Kupferbahnen, die mit einer Goldschicht galvanisch überzogen sind. Die feuchteempfindliche Schicht 5 des elektrolytischen Festkörpers besteht aus einem AluminoSilikat, wie Zeolith oder Pentasil, und aus einem wasserdampfdurchlässigen Kunststoff, wie die Zellulosederivate, Celluloseacetat, Cellulosepropionat oder Cellulσseacetobutyrat. Vorzugsweise wird als elektrolytischer Festkörper ein Zeolith mit Faujasit-Struktur verwendet. Auf je¬ den Fall sind kristallische, elektrolytische Festkörper mit Lithium-Ionen zu bevorzugen. Da der Kunststoff Hohlräume und Kanäle des Anionengitters des Kristall!ten ausfüllt, wird eine Kapillarkondensation verhindert. Dadurch wird erreicht, dass die Impedanz der feuchteempfindlichen Schicht 5 auch bei hohen Um¬ gebungsfeuchten, z.B. über 95% relative Feuchte, stetig an¬ steigt und so weiterhin ein Mass für die zu messende Feuchte bildet, d.h., dass eine rein exponentielle Abhängigkeit zwi¬ schen der relativen Feuchte und der Impedanz über den ganzen Feuchtebereich bis zur Sättigung gegeben ist. Beimischung eines bestimmten Anteils Graphit zu dem elektrolytischen Festkörper ergibt sogar eine lineare Kennlinie. Der Graphitanteil selbst wird so hoch gewählt, dass zufolge der Behinderung der Konden¬ sation von Wasser an der hydrophoben Graphitoberfläche eine
Kapillarkondensation im Gesamtsystem elektrolytischer Fest¬ körper-Graphit eliminiert wird. Die Beimischung von Graphit ver¬ ringert im wesentlichen die Hysterese in der Feuchte-Impedanz- Charakteristik. Die beschriebene feuchteempfindliche Schicht 5 kann sehr dünn mit Körnern des elektrolytischen Festkörpers von einer gleichmässigen Grosse unter 1 um hergestellt werden. Die Schicht 5 ist sehr biegsam und mechanisch stark beanspruch¬ bar, und kann je nach Wahl des Kunststoffes für Messungen bis 150°C oder sogar bis 200°C eingesetzt werden. Ausserdem ist sie kratzfest und haftet ausserordentlich gut auf dem Substrat 2. Wenn die Schicht 5 durch Ionen oder polare Moleküle inaktiviert worden ist, lassen sich die Kristallite durch blosses Erhitzen leicht regenerieren. Nach einer Vakuumexposition wurden ausser¬ dem keine irreversible Veränderungen festgestellt.The substrate 2 consists of a known, electrically insulating material, such as silicon, glass, glass epoxy or an aluminum or glass ceramic. The electrodes 3 consist of copper tracks, which are galvanically coated with a gold layer. The moisture-sensitive layer 5 of the electrolytic solid consists of an aluminosilicate, such as zeolite or pentasil, and of a water-vapor-permeable plastic, such as the cellulose derivatives, cellulose acetate, cellulose propionate or cellulose acetobutyrate. A zeolite with a faujasite structure is preferably used as the electrolytic solid. In any case, crystalline, electrolytic solids with lithium ions are preferred. As the plastic fills cavities and channels of the anion lattice of the crystal, capillary condensation is prevented. It is thereby achieved that the impedance of the moisture-sensitive layer 5 rises steadily even at high ambient humidities, for example above 95% relative humidity, and thus continues to form a measure of the moisture to be measured, ie that there is a purely exponential dependence between relative humidity and impedance over the entire humidity range up to saturation. Addition of a certain proportion of graphite to the electrolytic solid even gives a linear characteristic. The proportion of graphite itself is chosen so high that due to the impediment to the condensation of water on the hydrophobic graphite surface Capillary condensation in the overall system of electrolytic solid graphite is eliminated. The admixture of graphite essentially reduces the hysteresis in the moisture-impedance characteristic. The described moisture-sensitive layer 5 can be produced very thinly with grains of the electrolytic solid of a uniform size below 1 µm. Layer 5 is very flexible and can be subjected to high mechanical stresses and, depending on the choice of plastic, can be used for measurements up to 150 ° C. or even up to 200 ° C. In addition, it is scratch-resistant and adheres extremely well to the substrate 2. If the layer 5 has been inactivated by ions or polar molecules, the crystallites can easily be regenerated by simply heating. After exposure to vacuum, no irreversible changes were found.
In Fig. 4 sind nun die Messdiagramme dargestellt, die mit den vorbeschriebenen Feuchtefühlern aufgenommen worden sind. Die Abszisse stellt dabei die relative Feuchte (0 der Umgebung (in %rF) dar, die Ordinate der Impedanzwert z des Feuσhtefühlers in logarithmischer Teilung. Die Charakteristik entspricht dem AusgangsSignal eines logarithmischen Verstärkers und führt zu einer linearen Kennlinie. Die Kennlinie A ist aufgenommen mit einem Feuchtefühler, der eine feuchteempfindliche Schicht 5 aus Zeolith und Kunststoff besitzt, die Kennlinie B mit einer Schicht 5 aus Pentasil und Kunststoff.4 shows the measurement diagrams that have been recorded with the above-described moisture sensors. The abscissa represents the relative humidity (0 of the environment (in% RH), the ordinate the impedance value z of the humidity sensor in logarithmic division. The characteristic corresponds to the output signal of a logarithmic amplifier and leads to a linear characteristic curve. The characteristic curve A is also recorded a moisture sensor, which has a moisture-sensitive layer 5 made of zeolite and plastic, the characteristic curve B with a layer 5 made of pentasil and plastic.
Fig. 5 zeigt ein Messdiagramm eines Feuchtefühlers mit einer feuchteempfindliσhen Schicht 5 aus einem zeolithischem Kristal- lit, Graphit und Kunststoff. Die Impedanz ist hier in linearer Teilung aufgetragen.5 shows a measurement diagram of a moisture sensor with a moisture-sensitive layer 5 made of a zeolitic crystal, graphite and plastic. The impedance is plotted here in a linear division.
In Fig. 6 ist ein Schnitt durch einen zylindrischen Körper 10 dargestellt, der zur Halterung des Feuchtefühlers 1 dient. Die Kontaktstifte 4, 7 und 8 sind dazu in Buchsen 11 eingesteckt, die in einer KunststoffScheibe 12 eingefasst sind. Die Buchsen
11 sind mit einem Kabel 13 verbunden, das zu einer Auswerte¬ elektronik führt. Diese ist weiter nicht dargestellt, besteht aber im wesentlichen aus einem logarithmischen Verstärker und einer KompensationsSchaltung, um den Einfluss der Temperatur auf das Ausgangssignal zu eliminieren. Dies wird dadurch ermög¬ licht, dass die Temperaturdrift des oben beschriebenen Feuchte¬ fühlers, im Gegensatz zu vielen herkömmlichen Feuchtefühlern, nur von der Temperatur und nicht von der Umgebungsfeuchte ab¬ hängt. Im zylindrischen Körper 10 sind Löcher 14 vorgesehen für die Befestigung an Wänden oder sonstigen Drittkörpern. Ein Gummiring 15 auf der Höhe des Feuchtefühlers 1 umfasst den zy¬ lindrischen Körper 10 und dient zur Befestigung flexibler was¬ serdampfdurchlässiger Folien. Diese werden benötigt, wenn ein elektrischer Nebenschluss über das zu messende Gut zu befürch¬ ten ist.6 shows a section through a cylindrical body 10, which serves to hold the moisture sensor 1. For this purpose, the contact pins 4, 7 and 8 are inserted into sockets 11, which are enclosed in a plastic disk 12. The sockets 11 are connected to a cable 13 which leads to an evaluation electronics. This is not shown further, but essentially consists of a logarithmic amplifier and a compensation circuit in order to eliminate the influence of temperature on the output signal. This is made possible by the fact that the temperature drift of the moisture sensor described above, in contrast to many conventional moisture sensors, depends only on the temperature and not on the ambient humidity. Holes 14 are provided in the cylindrical body 10 for attachment to walls or other third bodies. A rubber ring 15 at the level of the moisture sensor 1 encompasses the cylindrical body 10 and serves to fasten flexible foils which are permeable to water vapor. These are required if there is a risk of an electrical shunt across the item to be measured.
Es versteht sich, dass auch andere Ausführungsformen der Erfin¬ dung möglich sind und ebenso gute Resultate liefern können.It goes without saying that other embodiments of the invention are also possible and can likewise give good results.
Technische Anwendungen der Erfindung liegen weitgestreut, z.B. in der Nahrungsmittelindustrie, Landwirtschaft, Chemie, kurz in allen Sparten, wo hygroskopische Güter verarbeitet, getrocknet und gelagert werden müssen. Die Anwendung in verfahrenstechni¬ schen Prozessen ist eine wirksame Methode, Energie zu sparen und die Qualität des Produktes zu sichern. Eine weitere Anwen¬ dung der Erfindung liegt in der Regelung von Klimaanlagen, wo heute meist mit wenig zuverlässigen, wartungsintensiven Mess¬ methoden gearbeitet wird. Der vorbeschriebene Feuchtefühler ist deshalb wegen seiner stabilen Eigenschaften ausgezeichnet zur kontinuierlichen und/oder semikontinuierlichen Messung der re¬ lativen Feuchte in verfahrenstechnischen Prozessen geeignet.Technical applications of the invention are widely spread, e.g. in the food industry, agriculture, chemistry, in short in all sectors where hygroscopic goods have to be processed, dried and stored. Use in process engineering processes is an effective method of saving energy and ensuring the quality of the product. Another application of the invention lies in the control of air conditioning systems, where today mostly unreliable, maintenance-intensive measurement methods are used. Because of its stable properties, the above-described moisture sensor is therefore excellently suitable for the continuous and / or semi-continuous measurement of the relative humidity in process engineering processes.
PI
PI
Claims
1. Feuchtefühler (1) für ein elektrisches Feuchte¬ messgerät mit mindestens zwei Elektroden (3) auf einem elek¬ trisch isolierenden Substrat (2) , die über eine feuchteempfind¬ liche Schicht (5) eines kristallischen, porösen elektrolyti¬ schen Festkörpers leitend miteinander verbunden sind, d a ¬ d u r c h g e k e n n z e i c h n e t, dass dem elektrolyti¬ schen Festkörper ein wasserdampfdurchlässiger Kunststoff beige¬ mischt ist, derart, dass der Festkörper eine blasenfreie, nicht¬ poröse Struktur aufweist.1. Humidity sensor (1) for an electrical moisture measuring device with at least two electrodes (3) on an electrically insulating substrate (2), which conduct each other via a moisture-sensitive layer (5) of a crystalline, porous electrolytic solid are connected, characterized in that the electrolytic solid is admixed with a water vapor-permeable plastic, such that the solid has a bubble-free, non-porous structure.
2. Feuchtefühler (1) nach Anspruch 1, d a ¬ d u r c h g e k e n n z e i c h n e t, dass das Substrat (2) aus Silizium, Glas, Glasepoxy oder aus einer isolierenden Alu¬ minium- oder Glaskeramik besteht, und die Elektroden (3) aus einer goldbeschichteten Kupferschicht bestehen.2. Moisture sensor (1) according to claim 1, so that the substrate (2) consists of silicon, glass, glass epoxy or an insulating aluminum or glass ceramic, and the electrodes (3) consist of a gold-coated copper layer.
3. Feuchtefühler (1) nach Anspruch 2, d a ¬ d u r c h g e k e n n z e i c h n e t, dass die Elektroden (3) auf der gleichen Seite des Substrates (2) aufgebracht sind und je aus mehreren konzentrischen Teilkreisen bestehen, derart, dass die Teilkreise sich gegenseitig umfassen und sich nicht be¬ rühren.3. Humidity sensor (1) according to claim 2, since ¬ characterized in that the electrodes (3) on the same side of the substrate (2) are applied and each consist of several concentric circles, such that the circles embrace each other and not touch.
4. Feuchtefühler (1) nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass der elektrolytische Festkörper (5) aus einem Aluminosilikat besteht.4. Humidity sensor (1) according to one of claims 1 to 3, that the electrolytic solid body (5) consists of an aluminosilicate.
5. Feuchtefühler (1) nach Anspruch 4, d a ¬ d u r c h g e k e n n z e i c h n e t, dass der elektrolytische Festkörper (5) aus kristallischem Zeolith besteht.5. Moisture sensor (1) according to claim 4, so that the electrolytic solid (5) consists of crystalline zeolite.
WDI-1/83WDI-1/83
OMPI
6. Feuchtefühler (1) nach Anspruch 4, d a - d u r c h g e k e n n z e i c h n e t, dass der elektrolytische Festkörper (5) aus kristallischem Pentasil besteht.OMPI 6. Humidity sensor (1) according to claim 4, since - characterized in that the electrolytic solid (5) consists of crystalline pentasil.
7. Feuchtefühler (1) nach einem der Ansprüche 4 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass der elektrolytische Festkörper (5) Lithium-Ionen enthält.7. humidity sensor (1) according to one of claims 4 to 6, d a d u r c h g e k e n n z e i c h n e t that the electrolytic solid (5) contains lithium ions.
8. Feuchtefühler (1) nach einem der Ansprüche 4 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass dem elektrolytischen Festkörper (5) Graphit beigemischt ist.8. humidity sensor (1) according to one of claims 4 to 7, d a d u r c h g e k e n z e i c h n e t that graphite is admixed to the electrolytic solid (5).
9. Feuchtefühler (1) nach einem der Ansprüche 4 bis 8, d a d u r c h g e k e n n z e i c h n e t, dass der wasserdampfdurchlässige Kunststoff aus einem Zellulosederivat besteht.9. Moisture sensor (1) according to one of claims 4 to 8, d a d u r c h g e k e n n z e i c h n e t that the water vapor permeable plastic consists of a cellulose derivative.
10. Verwendung des Feuchtefühlers (1) nach einem der Ansprüche 1 bis 9 zur kontinuierlichen und/oder semikonti¬ nuierlichen Messung der relativen Feuchte in verfahrenstechni¬ schen Prozessen.*
10. Use of the moisture sensor (1) according to one of claims 1 to 9 for the continuous and / or semi-continuous measurement of the relative humidity in process engineering processes. *
BezeichnungslisteLabel list
1. Feuchtefühler1. Humidity sensor
2. Substrat2. Substrate
3. Elektroden3. Electrodes
4. Kontaktstifte für die Elektroden4. Contact pins for the electrodes
5. feuchteempfindliche Schicht5. moisture sensitive layer
6. Temperaturfühler6. Temperature sensor
7. Kontaktstift für die Ringelektrode7. Contact pin for the ring electrode
8. Kontaktstifte für den Temperaturfühler8. Contact pins for the temperature sensor
9. Ringelektrode9. Ring electrode
10. zylindrischer Körper10. cylindrical body
11. Buchse11. Socket
12. KunststoffScheibe12. Plastic disc
13. Kabel13. Cable
14. Befestigungslöcher14. Mounting holes
15. Gummiring15. Rubber ring
A,B Kennlinien
A, B characteristics
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH260783 | 1983-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1984004595A1 true WO1984004595A1 (en) | 1984-11-22 |
Family
ID=4237565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CH1984/000076 WO1984004595A1 (en) | 1983-05-15 | 1984-05-14 | Moisture sensor |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0144358A1 (en) |
JP (1) | JPS60501327A (en) |
WO (1) | WO1984004595A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007031769A2 (en) * | 2005-09-15 | 2007-03-22 | Anaxsys Technology Limited | Gas sensor |
WO2010050987A1 (en) | 2008-11-03 | 2010-05-06 | Sikorsky Aircraft Corporation | Corrosion sensor system |
DE102009004393A1 (en) * | 2009-01-08 | 2010-11-11 | Eads Deutschland Gmbh | Accumulating humidity sensor |
US8449473B2 (en) | 2006-10-18 | 2013-05-28 | Anaxsys Technology Limited | Gas sensor |
DE102017202631A1 (en) | 2017-02-17 | 2018-08-23 | Leoni Kabel Gmbh | Monitoring system and cables |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3608660B1 (en) * | 2017-04-05 | 2023-12-20 | Panasonic Holdings Corporation | Gas sensor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1136140A (en) * | 1955-11-21 | 1957-05-09 | Bendix Aviat Corp | Resistance sensitive to humidity |
US3671913A (en) * | 1969-03-19 | 1972-06-20 | Saginomiya Seisakusho Inc | Aging-proof humidity sensing element and method for the production thereof |
US3983527A (en) * | 1973-08-14 | 1976-09-28 | Nippon Sheet Glass Co., Ltd. | Humidity-sensitive sensor |
DE2722410A1 (en) * | 1976-09-01 | 1978-03-02 | Ardco Inc | DEVICE FOR REGULATING AN ELECTRICAL SIGNAL DEPENDING ON ENVIRONMENTAL CONDITIONS |
EP0044806A1 (en) * | 1980-07-23 | 1982-01-27 | Thalmond Anstalt | Humidity sensor |
-
1984
- 1984-05-14 EP EP84901951A patent/EP0144358A1/en not_active Withdrawn
- 1984-05-14 JP JP50187584A patent/JPS60501327A/en active Pending
- 1984-05-14 WO PCT/CH1984/000076 patent/WO1984004595A1/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1136140A (en) * | 1955-11-21 | 1957-05-09 | Bendix Aviat Corp | Resistance sensitive to humidity |
US3671913A (en) * | 1969-03-19 | 1972-06-20 | Saginomiya Seisakusho Inc | Aging-proof humidity sensing element and method for the production thereof |
US3983527A (en) * | 1973-08-14 | 1976-09-28 | Nippon Sheet Glass Co., Ltd. | Humidity-sensitive sensor |
DE2722410A1 (en) * | 1976-09-01 | 1978-03-02 | Ardco Inc | DEVICE FOR REGULATING AN ELECTRICAL SIGNAL DEPENDING ON ENVIRONMENTAL CONDITIONS |
EP0044806A1 (en) * | 1980-07-23 | 1982-01-27 | Thalmond Anstalt | Humidity sensor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007031769A2 (en) * | 2005-09-15 | 2007-03-22 | Anaxsys Technology Limited | Gas sensor |
WO2007031769A3 (en) * | 2005-09-15 | 2007-06-28 | Anaxsys Technology Ltd | Gas sensor |
US8449473B2 (en) | 2006-10-18 | 2013-05-28 | Anaxsys Technology Limited | Gas sensor |
WO2010050987A1 (en) | 2008-11-03 | 2010-05-06 | Sikorsky Aircraft Corporation | Corrosion sensor system |
EP2350610A4 (en) * | 2008-11-03 | 2016-11-02 | Sikorsky Aircraft Corp | Corrosion sensor system |
DE102009004393A1 (en) * | 2009-01-08 | 2010-11-11 | Eads Deutschland Gmbh | Accumulating humidity sensor |
DE102017202631A1 (en) | 2017-02-17 | 2018-08-23 | Leoni Kabel Gmbh | Monitoring system and cables |
Also Published As
Publication number | Publication date |
---|---|
JPS60501327A (en) | 1985-08-15 |
EP0144358A1 (en) | 1985-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1236038A1 (en) | Capacitive sensor | |
DE3818736C2 (en) | ||
DE2558560C3 (en) | Humidity sensor with a negative coefficient of electrical resistance | |
DE2545473B2 (en) | Reducing gas sensor and process for its manufacture | |
EP0806656A2 (en) | Gas sensor and method for manufacturing a gas sensor | |
EP2089696A1 (en) | Sensor arrangement | |
EP0046989A2 (en) | Selective thin-coat gas sensor with high sensitivity and stability to detect and measure gaseous organic pollutants in the air on the basis of tungsten semi-conductor oxide, and method of producing the same | |
DE3504575C2 (en) | ||
EP0464243B1 (en) | Oxygen sensor with semiconducting gallium oxide | |
DE102009026439A1 (en) | Sensor element and method for producing such | |
DE3530447C2 (en) | Resistance change type humidity sensor | |
WO1984004595A1 (en) | Moisture sensor | |
DE3519576A1 (en) | SENSOR | |
EP0987529A1 (en) | Electrical resistance with at least two contact fields on a substrate with at least one recess, and process for manufacturing the same | |
DE3829517A1 (en) | HUMIDITY SENSOR | |
DE19924083C2 (en) | Conductivity sensor for the detection of ozone | |
EP0217884B1 (en) | Relative air humidity measurement device | |
DE3416945A1 (en) | Humidity sensor and method for fabricating it | |
EP1621882B1 (en) | Method for detecting combustible gases, in particular hydrogen | |
DE3442295C2 (en) | Process for determining the oxygen content of gaseous or liquid media and measuring probe for carrying out the process | |
DE102016206445B4 (en) | Coulometric humidity sensor with gel electrolyte and manufacturing process for a coulometric humidity sensor with gel electrolyte | |
DE19828662C2 (en) | Gas sensor with a planar sensor element and a housing | |
DE2240814A1 (en) | GAS POLLUTION ELEMENT | |
EP0488102A2 (en) | Method and apparatus for measuring gas | |
EP3486635B1 (en) | Sensor unit comprising an air flow sensor for a weathering device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Designated state(s): AT BE CH DE FR GB LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1984901951 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1984901951 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1984901951 Country of ref document: EP |