WO1984000082A1 - Trimming of piezoelectric components - Google Patents
Trimming of piezoelectric components Download PDFInfo
- Publication number
- WO1984000082A1 WO1984000082A1 PCT/US1982/000823 US8200823W WO8400082A1 WO 1984000082 A1 WO1984000082 A1 WO 1984000082A1 US 8200823 W US8200823 W US 8200823W WO 8400082 A1 WO8400082 A1 WO 8400082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- housing
- optical energy
- trimming
- window
- Prior art date
Links
- 238000009966 trimming Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000011521 glass Substances 0.000 claims abstract description 33
- 239000010453 quartz Substances 0.000 claims abstract description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 17
- 238000010897 surface acoustic wave method Methods 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 7
- 230000032683 aging Effects 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 4
- 230000008020 evaporation Effects 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000005538 encapsulation Methods 0.000 abstract description 11
- 230000004044 response Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- KKEBXNMGHUCPEZ-UHFFFAOYSA-N 4-phenyl-1-(2-sulfanylethyl)imidazolidin-2-one Chemical compound N1C(=O)N(CCS)CC1C1=CC=CC=C1 KKEBXNMGHUCPEZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000006578 abscission Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical group [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/02—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
- H03H3/04—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
Definitions
- the subject invention relates to the fabrication of piezoelectric components and, more particularly, to the frequency trimming of same.
- piezoelectric materials that is materials characterized by an ability to transform elec ⁇ trical energy to mechanical energy, and vice versa, have widespread application in electronic equipment.
- such materials are extensively used, for example, as resonators and filters and as such are required to exhi ⁇ bit stringent frequency response (accuracy and stability) characteristics.
- both bulk and surface wave filters and resonators typically demand some degree of "trimming" to compensate for finite tolerances attribut ⁇ able to material and production variances.
- quartz filters are typically comprised of two or more resonators arranged in various configurations.
- composite frequency response can be trimmed by adjusting the resonant frequency of the component resonators irrespective of whether the resonator are arranged as discrete blanks, stacked arrays or multi-resonator structures deposited on a single wafer.
- trimming had been effected by vacuum deposition of controlled amounts of a precious metal onto the electrode or by exposure of the electrodes to a reac- tive atmosphere such as iodine (for silver electrodes). More recently a laserbea has been used to evaporate material deposited on the pieozelectric material. The resonant frequency of the resonator increases as the attendant massloading decreases. A plurality of methods for trimming surface wave components have also been disclosed. Here to lasers have been utilized to cut portions of predeposited conductive structures, thereby disconnecting those structures form the piezoelectric substrate.
- Figure 2 depicts a repre- sentative surface acoustic wave (SAW) filter including a number of interdigitated fingers (21), some of which (22), have been disconnected so as to achieve frequency trimming.
- SAW surface acoustic wave
- Such effects are posited to to have their origin in the therminal or mechanical stresses induced by a moisture, changes in air pressure, and stray capacitance introduced by the encapsulation process. Because such phenomena are effectively inamen- able to amelioration once the component has been sealed, it is necessary that they be anticipated and, to the extent predictable, accomodated during the trimming pro ⁇ cedure. That is, the resonant frequency of the device is trimmed to a frequency offset by a predetermined amount from the desired frequency with the expectation that the final frequency, after encapulation, will be accurate.
- a method of trimming frequency-selective devices of the type characterized by a piezoelectric substrate upon which is deposited a conductive material.
- the device is enclosed in a housing at least a portion of which is transparent to optical energy at a predetermined wave ⁇ length, for example, at 1.06 micrometer.
- Optical energy typically derived from a laser, at the predetermined wavelength and appropriate intensity is directed at the device so that it impinges on the conductive material, thereby causing evaporation of that material.
- the rele ⁇ vant frequency-dependent characteristics of the device are monitored and the direction and intensity of the optical energy controlled in a manner that allows thse characteristics to be brought within desired tolerances.
- a storage time is introduced between the encapsulation of the device and subsequent final frequency trimming, thereby obviating the effects of the short-term aging phenomena.
- Figure 1 depicts a typical quartz crystal filter including the quartz blank, frequency plating, and conductive electrodes.
- Figure 2 depicts a representative SAW (Surface Acoustic Wave) filter including a number of interdigi- tated conductive fingers, some of which have been severed so as to achieve frequency trimming.
- Figure 3 illustrates an apparatus for effecting frequency trimming of an encapsualted piezoelectric component, for example, a quartz crystal resonator.
- SAW Surface Acoustic Wave
- a quartz resonator including a quartz blank, con ⁇ ductive electrodes and a glass cover, especially amenable to laser trimming is illustrated in Figure 4.
- FIG. 3 there is illus ⁇ trated in Figure 3 an apparatus for providing a frequency trimming of an encapulated piezoelectric component, be it a quartz crystal resonator, surface acoustic wave filter or similar device.
- the device to be trimmed, 1, is in ⁇ serted in a test circuit 2 in such a manner that it is directed toward an optical beam 3 generatedby Q-switched Nd-YAG laser 4.
- the laser is a pulsed Nd-YAG type cap ⁇ able of delivering a focused beam that will produce suf- ficient heat to evaporate metal from the electrodes of, for example, a quartz resonator.
- the laser beam is appropriately directed by an X-Y deflection system 5 equipped with the necessary optical devices including, by way of illustration, a pair of optical mirrors 6.
- the direction of the beam is controlled by a test system 7 that delivers control signals to the deflection system and to the laser power control 8.
- test system, power control and x-y deflection system operate to control the intensity and direction of the laserbeam so as to si ul- taneously scan the surface of the device to be trimmed and to modulate the trimming rate as the resonant fre ⁇ quency (or some other specified characteristic frequency) approaches its final value.
- a quartz resonator especially amenable to trimming is illustrated in Figure 4.
- the resonator includes a quartz blank 41, electrodes 42 and a glass cover 43.
- a salient feature of the resonator is the glass cover 43.
- the cover is transparent to the optical energy generated by the laser so that the laserbeam is allowed to impinge on the electrodes of the resonator and thereby cause the evaporation of sufficient electrode mass to achieve trim ⁇ ming.
- Such a quartz resonator may be fabricated according to the following technique.
- the quartz crystal is conductively bonded to lead-in wires, that is to say, one electrode is electrically and physically connected to one of the lead-in wires and the other electrode is electri ⁇ cally and physically connected to the other lead-in wire.
- the conductive bond may be.made, for example, by electri- cally conductive bonding material, for example, silver- filled epoxy. Or it may be made by soldering, welding and the like.
- the quartz crystal is then inserted into an open-ended glass tube of suitable diameter and length. The extremities of the lead-in wires protrude outside the glass tube and are secured in a suitable external holder to properly position the quartz crystal within the glass tube.
- the end of the glass tube is then heated to its softening point and pressed together to seal the end by forming a press seal, the lead-in wires being embedded in the press seal.
- the lead-in wires are of a type readily sealable to glass, for example, Du et wire for sealing to soft glass.
- Dumet comprises a nickel-iron core within a copper sheath.
- the press seal solidifies and rigidly holds the lead-in wires and quartz crystal.
- a circumferential section of the glass tube near the other end thereof is heated to its softening point and the end is then drawn apart from the main body of the glass tube to form a necked-down portion in the glass tube.
- the necked-down portion which is of smaller diameter than the glass tube and is suitable as an exhaust tubulation to exhaust, tipoff and seal the glass tube with the quartz crystal therewithin.
- the exhaust tubulation may be tipped off under vacuum, to maintain a vacuum within the glass tube.
- an inert gas for example, dry nitrogen, may be introduced into the glass tube prior to tip-off of the exhaust tube.
- a cooling gas e.g.
- the drawing shows one embodiment of an encapsulated quartz crystal in accordance with this invention.
- the quartz crystal comprises a flat circular disk about 8mm in diameter by 0.5mm thick.
- the metallized portion of each surface is about 6mm in diameter.
- Lead-in wires are made of Dumet, 0.35mm thick, and are fastened to the electrodes.
- a glass tube is 11mm outside diameter by 20mm long (internal length).
- a press seal about 9mm wide by about 7mm long and is about 2.5mm thick. After exhausting and filling with nitrogen, the glass tube is sealed at tip-off.
- the lead-in wires can be embedded in glass bead prior to press sealing in order to bend and hold the wires in the correct position for fast ⁇ ening the crystal.
- the glass tube be flattened into, say a flat sub- stantially rectangular, as opposed to circular shape, in order to reduce the size of the glass tube or in order to accommodate a rectangular quartz crystal.
- the open-ended round glass tube would be heated and flattened prior to mounting of the quartz crystal/lead-in wire assembly therein. After embedment of said assembly in a press seal at one end of the flatened glass tube, the other end could also be sealed by a press seal with ⁇ out the need of an exhaust tubulation.
- nitrogen for example, could be introduced into the interior of the flattened glass tube by means of a small diameter hollow metal needle inserted therein while the glass was heated to its softened point. At the proper time, the needle would be removed and the press seal made immediately, thereby providing the desired nitrogen fill within the glass tube.
- the reso ⁇ nator may be enclosed by a standard metal cover which has been provided with a glass window as shown in Figure 5.
- the window 51 may be comprised of any otherwise suitable material transparent to energy at the laserbeam wave ⁇ length. (In a particular embodiment this wavelength was 1.06 micrometers.)
- the window may be preferrably disc ⁇ shaped and susceptible to attachment to the metal cover 52 by, for example, glue or a glass-to-metal seal. The diameter of the disc-shaped window should be large enough so that the laserbeam is allowed to impinge on substan ⁇ tially the entire electrode surface.
- a SAW structure such as the one illustrated in Figure 6 is amenable to the laser trimming technique described herein.
- the trimming technique and implementing apparatus have been found to offer numerous significant advantages in the area fabrication and trimming of piezoelectric components. To wit: The post-encapsulation trimming of those devices permits less stringent handling procedures resulting in fewer rejected parts. Avoidance of the pre- encapsulation offset trimming technique provides more precise trimming and a closer approach to the desired ultimate frequency characteristics of the device.
- the post-encapsulation trim- ming technique allows the encapsulated device to be stored for a period of time before the final trimming procedure is performed.
- This is decidedly an advantage because of the "aging" effect characteristics of such device. That is to say, a large portion of the total frequency shift of the device is found to occur within a relative short period after fabrication.
- the effects of this "short term" aging can be accordingly circumvented.
- the total long-term frequency drift i.e., the total drift after a period on the order of one year
- the total long-term frequency drift can be expeced to be reduced from approximate 10 ppm (parts per million) when trimmed before encapsulation to about 3 ppm when trimmed subsequent encapsulation.
- the subject invention is useful in the fabrication of frequency selective piezoelectric devices.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19820902310 EP0111483A4 (en) | 1982-06-14 | 1982-06-14 | Trimming of piezoelectric components. |
PCT/US1982/000823 WO1984000082A1 (en) | 1982-06-14 | 1982-06-14 | Trimming of piezoelectric components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1982/000823 WO1984000082A1 (en) | 1982-06-14 | 1982-06-14 | Trimming of piezoelectric components |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1984000082A1 true WO1984000082A1 (en) | 1984-01-05 |
Family
ID=22168045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1982/000823 WO1984000082A1 (en) | 1982-06-14 | 1982-06-14 | Trimming of piezoelectric components |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0111483A4 (en) |
WO (1) | WO1984000082A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2241823A (en) * | 1986-12-22 | 1991-09-11 | Raytheon Co | Surface acoustic wave device |
US5138214A (en) * | 1989-12-27 | 1992-08-11 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric transducer and method of adjusting oscillation frequency thereof |
WO1998024178A1 (en) * | 1996-11-28 | 1998-06-04 | Tele Quarz Gmbh | Crystal resonator |
EP1499018A1 (en) * | 2003-07-17 | 2005-01-19 | Commissariat A L'energie Atomique | Bulk acoustic wave resonator with adjusted resonance frequency and its fabrication method |
US6924582B2 (en) * | 2001-10-31 | 2005-08-02 | Seiko Instruments Inc. | Piezoelectric vibrator and manufacturing method thereof |
RU2308790C2 (en) * | 2005-12-13 | 2007-10-20 | Сергей Сергеевич Пашков | Method for improving temperature and frequency characteristics of glass-packaged crystal resonators |
US7569977B2 (en) * | 2006-08-02 | 2009-08-04 | Cts Corporation | Laser capacitance trimmed piezoelectric element and method of making the same |
US7802356B1 (en) | 2008-02-21 | 2010-09-28 | Hrl Laboratories, Llc | Method of fabricating an ultra thin quartz resonator component |
US7830074B2 (en) * | 2006-08-08 | 2010-11-09 | Hrl Laboratories, Llc | Integrated quartz oscillator on an active electronic substrate |
US7994877B1 (en) | 2008-11-10 | 2011-08-09 | Hrl Laboratories, Llc | MEMS-based quartz hybrid filters and a method of making the same |
US8912711B1 (en) | 2010-06-22 | 2014-12-16 | Hrl Laboratories, Llc | Thermal stress resistant resonator, and a method for fabricating same |
US9046541B1 (en) | 2003-04-30 | 2015-06-02 | Hrl Laboratories, Llc | Method for producing a disk resonator gyroscope |
US9599470B1 (en) | 2013-09-11 | 2017-03-21 | Hrl Laboratories, Llc | Dielectric high Q MEMS shell gyroscope structure |
US9977097B1 (en) | 2014-02-21 | 2018-05-22 | Hrl Laboratories, Llc | Micro-scale piezoelectric resonating magnetometer |
US9991863B1 (en) | 2014-04-08 | 2018-06-05 | Hrl Laboratories, Llc | Rounded and curved integrated tethers for quartz resonators |
US10031191B1 (en) | 2015-01-16 | 2018-07-24 | Hrl Laboratories, Llc | Piezoelectric magnetometer capable of sensing a magnetic field in multiple vectors |
US10175307B1 (en) | 2016-01-15 | 2019-01-08 | Hrl Laboratories, Llc | FM demodulation system for quartz MEMS magnetometer |
US10266398B1 (en) | 2007-07-25 | 2019-04-23 | Hrl Laboratories, Llc | ALD metal coatings for high Q MEMS structures |
US10308505B1 (en) | 2014-08-11 | 2019-06-04 | Hrl Laboratories, Llc | Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ583108A (en) * | 2007-08-09 | 2011-12-22 | Akzo Nobel Coatings Int Bv | High solids silicate-modified epoxy coating composition |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3766616A (en) * | 1972-03-22 | 1973-10-23 | Statek Corp | Microresonator packaging and tuning |
US3827142A (en) * | 1972-12-11 | 1974-08-06 | Gti Corp | Tuning of encapsulated precision resistor |
US3913195A (en) * | 1974-05-28 | 1975-10-21 | William D Beaver | Method of making piezoelectric devices |
US4021898A (en) * | 1976-05-20 | 1977-05-10 | Timex Corporation | Method of adjusting the frequency of vibration of piezoelectric resonators |
US4050126A (en) * | 1975-09-10 | 1977-09-27 | Kabushiki Kaisha Seikosha | Method for adjusting frequency-temperature characteristic of GT cut quartz oscillator |
US4131484A (en) * | 1978-02-13 | 1978-12-26 | Western Electric Company, Inc. | Frequency adjusting a piezoelectric device by lasering |
US4179310A (en) * | 1978-07-03 | 1979-12-18 | National Semiconductor Corporation | Laser trim protection process |
US4217570A (en) * | 1978-05-30 | 1980-08-12 | Tektronix, Inc. | Thin-film microcircuits adapted for laser trimming |
JPH05339596A (en) * | 1992-06-09 | 1993-12-21 | Kawaken Fine Chem Co Ltd | Detergent composition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD140117B1 (en) * | 1978-12-27 | 1981-07-29 | Manfred Poehler | ARRANGEMENT FOR PRECISION MATERIAL PROCESSING BY MEANS OF LASER RADIATION |
-
1982
- 1982-06-14 WO PCT/US1982/000823 patent/WO1984000082A1/en not_active Application Discontinuation
- 1982-06-14 EP EP19820902310 patent/EP0111483A4/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3766616A (en) * | 1972-03-22 | 1973-10-23 | Statek Corp | Microresonator packaging and tuning |
US3827142A (en) * | 1972-12-11 | 1974-08-06 | Gti Corp | Tuning of encapsulated precision resistor |
US3913195A (en) * | 1974-05-28 | 1975-10-21 | William D Beaver | Method of making piezoelectric devices |
US4050126A (en) * | 1975-09-10 | 1977-09-27 | Kabushiki Kaisha Seikosha | Method for adjusting frequency-temperature characteristic of GT cut quartz oscillator |
US4021898A (en) * | 1976-05-20 | 1977-05-10 | Timex Corporation | Method of adjusting the frequency of vibration of piezoelectric resonators |
US4131484A (en) * | 1978-02-13 | 1978-12-26 | Western Electric Company, Inc. | Frequency adjusting a piezoelectric device by lasering |
US4217570A (en) * | 1978-05-30 | 1980-08-12 | Tektronix, Inc. | Thin-film microcircuits adapted for laser trimming |
US4179310A (en) * | 1978-07-03 | 1979-12-18 | National Semiconductor Corporation | Laser trim protection process |
JPH05339596A (en) * | 1992-06-09 | 1993-12-21 | Kawaken Fine Chem Co Ltd | Detergent composition |
Non-Patent Citations (1)
Title |
---|
See also references of EP0111483A4 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2199985B (en) * | 1986-12-22 | 1991-09-11 | Raytheon Co | Surface acoustic wave device |
GB2241823B (en) * | 1986-12-22 | 1991-11-27 | Raytheon Co | Surface acoustic wave device |
GB2241823A (en) * | 1986-12-22 | 1991-09-11 | Raytheon Co | Surface acoustic wave device |
US5138214A (en) * | 1989-12-27 | 1992-08-11 | Matsushita Electric Industrial Co., Ltd. | Piezoelectric transducer and method of adjusting oscillation frequency thereof |
WO1998024178A1 (en) * | 1996-11-28 | 1998-06-04 | Tele Quarz Gmbh | Crystal resonator |
US6087759A (en) * | 1996-11-28 | 2000-07-11 | Tele Quarz Gmbh | Post-assembly processed crystal resonator with conductive layers suitable for surface mounting |
US6924582B2 (en) * | 2001-10-31 | 2005-08-02 | Seiko Instruments Inc. | Piezoelectric vibrator and manufacturing method thereof |
US9046541B1 (en) | 2003-04-30 | 2015-06-02 | Hrl Laboratories, Llc | Method for producing a disk resonator gyroscope |
EP1499018A1 (en) * | 2003-07-17 | 2005-01-19 | Commissariat A L'energie Atomique | Bulk acoustic wave resonator with adjusted resonance frequency and its fabrication method |
US7310029B2 (en) | 2003-07-17 | 2007-12-18 | Commissariat A L'energie Atomique | Bulk acoustic resonator with matched resonance frequency and fabrication process |
FR2857785A1 (en) * | 2003-07-17 | 2005-01-21 | Commissariat Energie Atomique | ACOUSTIC VOLUME RESONATOR WITH ADJUSTED RESONANCE FREQUENCY AND METHOD OF MAKING SAME |
RU2308790C2 (en) * | 2005-12-13 | 2007-10-20 | Сергей Сергеевич Пашков | Method for improving temperature and frequency characteristics of glass-packaged crystal resonators |
US7569977B2 (en) * | 2006-08-02 | 2009-08-04 | Cts Corporation | Laser capacitance trimmed piezoelectric element and method of making the same |
US7830074B2 (en) * | 2006-08-08 | 2010-11-09 | Hrl Laboratories, Llc | Integrated quartz oscillator on an active electronic substrate |
US10266398B1 (en) | 2007-07-25 | 2019-04-23 | Hrl Laboratories, Llc | ALD metal coatings for high Q MEMS structures |
US7802356B1 (en) | 2008-02-21 | 2010-09-28 | Hrl Laboratories, Llc | Method of fabricating an ultra thin quartz resonator component |
US7994877B1 (en) | 2008-11-10 | 2011-08-09 | Hrl Laboratories, Llc | MEMS-based quartz hybrid filters and a method of making the same |
US8912711B1 (en) | 2010-06-22 | 2014-12-16 | Hrl Laboratories, Llc | Thermal stress resistant resonator, and a method for fabricating same |
US9599470B1 (en) | 2013-09-11 | 2017-03-21 | Hrl Laboratories, Llc | Dielectric high Q MEMS shell gyroscope structure |
US9977097B1 (en) | 2014-02-21 | 2018-05-22 | Hrl Laboratories, Llc | Micro-scale piezoelectric resonating magnetometer |
US9991863B1 (en) | 2014-04-08 | 2018-06-05 | Hrl Laboratories, Llc | Rounded and curved integrated tethers for quartz resonators |
US10308505B1 (en) | 2014-08-11 | 2019-06-04 | Hrl Laboratories, Llc | Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite |
US11117800B2 (en) | 2014-08-11 | 2021-09-14 | Hrl Laboratories, Llc | Method and apparatus for the monolithic encapsulation of a micro-scale inertial navigation sensor suite |
US10031191B1 (en) | 2015-01-16 | 2018-07-24 | Hrl Laboratories, Llc | Piezoelectric magnetometer capable of sensing a magnetic field in multiple vectors |
US10175307B1 (en) | 2016-01-15 | 2019-01-08 | Hrl Laboratories, Llc | FM demodulation system for quartz MEMS magnetometer |
Also Published As
Publication number | Publication date |
---|---|
EP0111483A4 (en) | 1985-12-19 |
EP0111483A1 (en) | 1984-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1984000082A1 (en) | Trimming of piezoelectric components | |
US3694677A (en) | Vhf-uhf piezoelectric resonators | |
US3723920A (en) | Crystal filter assembly | |
US3913195A (en) | Method of making piezoelectric devices | |
US4017752A (en) | Piezoelectric ceramic resonator mounting means | |
US5867074A (en) | Surface acoustic wave resonator, surface acoustic wave resonator unit, surface mounting type surface acoustic wave resonator unit | |
JPS60170314A (en) | Method of producing small-sized piezoelectric device using laser machining and device formed by same method | |
JPS58137316A (en) | Voltage crystal assembly and method of producing same | |
WO1984000081A1 (en) | Apparatus for trimming of piezoelectric components | |
US4012648A (en) | Process for manufacturing piezoelectric resonators and resonators resulting from such process | |
US5138214A (en) | Piezoelectric transducer and method of adjusting oscillation frequency thereof | |
CN102684630A (en) | Wafer and method of manufacturing package product | |
EP0069311B1 (en) | Glass encapsulated quartz oscillator | |
JP3309826B2 (en) | Method for manufacturing surface acoustic wave resonator element and surface acoustic wave resonator | |
JPS6150413A (en) | Manufacture of piezoelectric vibrator | |
JPS5913412A (en) | Package structure of oscillator | |
JP3290736B2 (en) | Piezoelectric resonance components | |
JPH09193967A (en) | Sealing method of package and its construction | |
JP2001251162A (en) | Surface acoustic wave resonator and surface mount type surface acoustic wave resonator | |
JP4239422B2 (en) | surge absorber | |
JP3397898B2 (en) | Piezoelectric vibrator, chip type piezoelectric vibrator, and piezoelectric oscillator | |
SU433618A1 (en) | METHOD OF MANUFACTURING QUARTZ RESONATORS | |
WO1995024075A1 (en) | Surface acoustic wave resonator element, surface acoustic wave resonator, surface-mount surface acoustic wave resonator, and method of manufacture thereof | |
JPH03209907A (en) | Piezoelectric vibrator and its frequency adjusting method | |
JPS6143011A (en) | Thickness-shear crystal resonator and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP Designated state(s): JP |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB LU NL SE Designated state(s): AT BE CH DE FR GB LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1982902310 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1982902310 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1982902310 Country of ref document: EP |