[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO1982001289A1 - Generator circuit of a regulation voltage function of a differential frequency or phase and utilization of such circuit - Google Patents

Generator circuit of a regulation voltage function of a differential frequency or phase and utilization of such circuit Download PDF

Info

Publication number
WO1982001289A1
WO1982001289A1 PCT/CH1981/000106 CH8100106W WO8201289A1 WO 1982001289 A1 WO1982001289 A1 WO 1982001289A1 CH 8100106 W CH8100106 W CH 8100106W WO 8201289 A1 WO8201289 A1 WO 8201289A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
blocking
circuit
frequency
trigger
Prior art date
Application number
PCT/CH1981/000106
Other languages
German (de)
French (fr)
Inventor
Ag Hasler
Original Assignee
Steinlin W
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steinlin W filed Critical Steinlin W
Priority to AT81902653T priority Critical patent/ATE10690T1/en
Priority to DE8181902653T priority patent/DE3167638D1/en
Publication of WO1982001289A1 publication Critical patent/WO1982001289A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D13/00Circuits for comparing the phase or frequency of two mutually-independent oscillations
    • H03D13/003Circuits for comparing the phase or frequency of two mutually-independent oscillations in which both oscillations are converted by logic means into pulses which are applied to filtering or integrating means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal

Definitions

  • Circuit arrangement for generating an ice voltage as a function of a frequency or phase difference and use of the circuit arrangement.
  • the invention relates to a circuit arrangement according to the preamble of claim 1.
  • Circuit arrangements of the type mentioned are known as frequency / phase detectors which, in phase locked loops (PLL), serve the frequency or phase comparison between a periodic input signal and an output signal, which is used for comparison, of a voltage-controlled oscillator.
  • PLL phase locked loops
  • the MC 4344 or MC 4044 integrated circuits from Motorola are an example of such frequency / phase detectors.
  • the object of the present invention is to provide a simple circuit arrangement which, regardless of the size of the frequency difference and the phase between two periodic input signals, always emits a clear control voltage. This voltage should be able to influence a control loop in such a way that frequency equality of the signals is formed with a phase difference of it.
  • Claims 2 to 5 show preferred embodiments. Claim 6 finally provides information about the use of the circuit arrangement.
  • the circuit arrangement always emits a clear control voltage, so that a phase-locked loop can regulate itself. This has the further advantage that, in the case of frequency equality, the range within which phase differences do not cause a phase jump is greater than 2 ⁇ .
  • FIG. 1 block diagram of a basic circuit arrangement
  • Fig. 2 first voltage / phase difference diagram
  • FIG. 4 detailed block diagram of the circuit arrangement
  • Fig. 5 another block diagram of the circuit arrangement.
  • Fig. 1 shows a basic block diagram of a circuit arrangement for generating a control voltage as a function of a frequency or phase difference.
  • 9 and 10 are the inputs of the arrangement via which two periodic input signals S 1 and S 2 of any frequency to be compared are input.
  • 11 and 12 are trigger circuits which derive a short trigger signal from the input signals in each period. If the input signals are, for example, square-wave signals, the circuits 11 and 12 can be differentiating circuits which derive trigger pulses from the signal rising edges. If the input signals are sinusoidal signals, the threshold value detectors can be designed as Schmitt triggers, which emit short pulses when they respond.
  • the flip-flop 20 is a flip-flop, the two inputs 18 and 19 of which are connected to the outputs 13 and 14 of the trigger circuits 11 and 12 via a blocking circuit (15).
  • the trigger signals arriving via inputs 18 and 19 serve to set and reset the flip-flop (20). This results in a rectangular sequence at the output 23 of the flip-flop, the relative on and off times (duty cycle) of which depend on the difference in the frequencies of the input signals or on the phase difference Ph of the trigger signals at the flip-flop inputs.
  • 24 is an averaging circuit, for example a low-pass filter, which outputs a control DC voltage U which corresponds to the time-averaged ratio of the on and off times.
  • the circuit arrangement described so far corresponds to a known frequency / phase detector which outputs a regulating voltage U at its output 25, which is linked in a sawtooth shape according to FIG. 2 with the phase difference ⁇ .
  • Periodically repeating linear ranges each extend over a phase difference range of 2 ⁇ .
  • a jump-free phase control is therefore possible within a phase difference range of 2 ⁇ .
  • the control voltage U is equal to an average voltage value U 0 , which corresponds to the same length of on and off times.
  • Circuit arrangement which has such a characteristic always delivers a clear frequency or phase locked voltage U.
  • adding units 15, 30 and 33 to the known frequency / phase detector results in an arrangement which has a characteristic corresponding to FIG. 3.
  • 30 is a blocking interval generator, which generates blocking intervals Q 1 and Q 2 of lengths T 1 and T 2 directly after the trigger signals R 1 and R 2 .
  • 33 is a comparator which indicates whether the control voltage U is greater or less than the mean voltage value U 0 .
  • the aforementioned blocking circuit 15 blocks the trigger pulses R 1 and R 2 based on the signals from the units 30 and 33 mentioned:
  • trigger signals R 1 and R 2 are derived from the periodic input signals S 1 and S 2 by the trigger circuits 11 and 12. These signals trigger blocking signals Q 1 and Q 2 in the blocking interval generator 30 the signals on lines 18 and 19 are blocked for times T 1 and T 2 , provided that the comparator 33 allows this with its current output signal. If the distance between the trigger pulses on lines 13 and 14 is thus smaller than T 1 or T 2 ' , the trigger pulse that occurs later is blocked in this case and the flip-flop 20, which was set by the earlier trigger pulse, is not reset, but remains in its position. This results in a changed square-wave signal at the flip-flop output 23 or at times even a continuous signal with a corresponding change in the control voltage U at the output 25.
  • Fig. 4 shows a detailed block diagram of the circuit arrangement.
  • the blocking interval generator 30 is then formed from two monoflops 31 and 32, which, triggered by the trigger signals R 1 and R 2 , respectively, provide rectangular blocking signals of constant length T 1 and T 2 . These signals are supplied to two combinations of UHD NOT gates 21, 22 and VKD gates 16, 17, which form the blocking circuit 15.
  • a voltage comparator, which is connected to the output 25, serves as the comparator 33. It delivers its output signal not inverted to the gate 21 and via an inverter 23 inverted to the gate 22.
  • s 2 is an auxiliary signal that is present at input 8 and has a frequency that is higher than that of signal S 2 by a fixed factor n.
  • the auxiliary signal s 2 is reduced in a counter 50 by the factor n.
  • 51 is a decoder which, when the counter 50 reaches certain count values, responds for an interval duration 1 / n and in each case emits a signal of corresponding length on a separate line.
  • the blocking signal Q 2 appears on the line 52 at the counter reading n, which is fed to the AND-NOT gate 21 as a blocking interval T 2 and to the AND gate 17 as a trigger signal R 2 .
  • the disable signal Q 1 At count appears 1-n on the line 53, the disable signal Q 1, a flip-flop 55 is in coincidence with a trigger signal R 1 via an AND gate 54th
  • flip-flop 55 At a counter reading n + 1, which corresponds to counter reading 1 of the next counting period, flip-flop 55 is reset via line 56.
  • the flip-flop 60 is a further flip-flop which serves to indicate how the relative duty cycle of the flip-flop 20 is distributed during the respective signal period. It thus replaces the comparator 33.
  • the flip-flop 60 is set or not set by means of a needle pulse emitted on line 61 and via an AND gate 62 in accordance with the position of the flip-flop 20.
  • the flip-flop 60 is reset in each case.
  • the other circuit parts correspond to those of FIGS. 1 and 4.
  • the circuit arrangement for generating a control voltage as a function of a frequency or phase difference can be used as a frequency / phase detector in phase locked loops.
  • the auxiliary signal s 2 can be generated in the simplest way by the voltage-controlled oscillator, which oscillates at a frequency which is higher by a fixed factor n than the desired signal frequency S 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A frequency or phase detector, intended to a phase locked loop (PLL), sup plies for each differential frequency and phase a regulation voltage (U). The detector circuit comprises, in addition to conventional triggers (11, 12) located at the input, a bistable (20) and a device effecting an average (24) at the output of a blocking device (15), a blocking interval generator (30) and a comparator (33). The comparator (33) checks constantly whether the regulation voltage (U) is higher or lower than an average value (Uo). The blocking interval generator (30) generates a blocking signal (1, 2) for each triggering signal (R1, R2) provided from the triggers (11, 12). During the duration of the blocking signals (1, 2) and according to the output value of the comparator (33), the blocking device (15) interrupts the connection between the triggers (11, 12) and the bistable (20) so as to obtain, within given ranges of differential phases, according to the phase shifting direction, different regulation voltages (U) (separation in the form of a hysteresis of the relationship between the regulation voltage (U) and the phase differential (//c)).

Description

Schaltungsanordnung zur Erzeugung einer Eegeispannung in Abhängigkeit von einer Frequenz- oder Phasendifferenz und Verwendung der Schaltungsanordnung. Circuit arrangement for generating an ice voltage as a function of a frequency or phase difference and use of the circuit arrangement.
Die Erfindung betrifft eine Schaltungsanordnung entsprechend dem Oberbegriff von Anspruch 1.The invention relates to a circuit arrangement according to the preamble of claim 1.
Schaltungsanordnung der genannten Art sind bekannt als Frequenz/ Phasen-Detektoren, die in Phasenregelkreisen (phase locked loop, PLL) den Frequenz bzw. Phasenvergleich zwischen einem periodischen Eingangssignal und einein zum Vergleich dienenden Ausgangssignal, eines spannungsgeregelten Oszillators dienen. Als Beispiel für derartige Frequenz/Phasen-Detektoren seien die integrierten Schaltkreise MC 4344 oder MC 4044 der Firma Motorola genannt.Circuit arrangements of the type mentioned are known as frequency / phase detectors which, in phase locked loops (PLL), serve the frequency or phase comparison between a periodic input signal and an output signal, which is used for comparison, of a voltage-controlled oscillator. The MC 4344 or MC 4044 integrated circuits from Motorola are an example of such frequency / phase detectors.
Frequenz/Phasen-Detektoren der einfachsten Art besitzen Spannung/Phasen-Kennlinien entsprechend Fig. 2. Diese Kennlinien sind periodisch mit linearem Anstieg zwischen den Phasendifferenzwerten n-2π (n = 0,±1,±2) . Im eingeregelten Zustand arbeiten solche Phasendetektoren einwandfrei. Schwierigkeiten bereitet jedoch das Erreichen des eingeregelten Zustandes. Veiter besteht stets die Möglichkeit, dass bei zu grossen Phasenabweichungen Phasensprünge um 2π auftreten ( cycle slips). Die Aufgabe der vorliegenden Erfindung besteht darin, eine einfache Schaltungsanordnung anzugeben, die unabhängig von der Grosse des Frequenzunterschiedes und der Phase zwischen zwei periodischen EingangsSignalen stets eine eindeutige Steuerspannung abgibt. Diese Spannung soll einen Regelkreis so beeinflussen können, dass sich Frequenzgleichheit der Signale bei einer Phasendifferenz von it herausbildet. Die Lösung dieser Aufgabe wird durch den kennzeichnenden Teil des ersten Patentanspruchs wiedergegeben. Die Ansprüche 2 bis 5 zeigen bevorzugte Ausführungsformen auf. Anspruch 6 macht schliesslich Angaben über die Verwendung der Schaltungsanordnung.Frequency / phase detectors of the simplest type have voltage / phase characteristic curves in accordance with FIG. 2. These characteristic curves are periodic with a linear increase between the phase difference values n-2π (n = 0, ± 1, ± 2). Such phase detectors work perfectly in the adjusted state. However, it is difficult to achieve the adjusted state. Veiter always has the possibility that phase shifts of 2π occur if the phase deviations are too large (cycle slips). The object of the present invention is to provide a simple circuit arrangement which, regardless of the size of the frequency difference and the phase between two periodic input signals, always emits a clear control voltage. This voltage should be able to influence a control loop in such a way that frequency equality of the signals is formed with a phase difference of it. The solution to this problem is given by the characterizing part of the first claim. Claims 2 to 5 show preferred embodiments. Claim 6 finally provides information about the use of the circuit arrangement.
Die Schaltungsanordnung gibt stets eine eindeutige Regelspannung ab, so dass ein Phasenregelkreis selbständig einregeln kann. Hierbei ergibt sich der weitere Vorteil, dass bei Frequenzgleichheit der Bereich, innerhalb dessen Phasendifferenzen keinen Phasensprung bewirken, grösser als 2πist.The circuit arrangement always emits a clear control voltage, so that a phase-locked loop can regulate itself. This has the further advantage that, in the case of frequency equality, the range within which phase differences do not cause a phase jump is greater than 2π.
Im folgenden wird die Erfindung anhand von fünf Figuren beispielsweise näher beschrieben. Es zeigen:The invention is described in more detail below with reference to five figures. Show it:
Fig. 1 Blockschaltbild einer prinzipiellen SchaltungsanordnungFig. 1 block diagram of a basic circuit arrangement
Fig. 2 erstes Spannung/Phasendifferenz-DiagracmFig. 2 first voltage / phase difference diagram
Fig. 3 zweites Spannung/Phasendifferenz-DiagrammFig. 3 second voltage / phase difference diagram
Fig. 4 detailliertes Blockschaltbild der SchaltungsanordnungFig. 4 detailed block diagram of the circuit arrangement
Fig. 5 weiteres Blockschaltbild der Schaltungsanordnung. Fig. 1 zeigt ein prinzipielles Blockschaltbild einer Schal tungs anordnung zur Erzeugung einer Regelspannung in Abhängigkeit von einer Frequenz- oder Phasendifferenz. 9 und 10 sind die Eingänge der Anordnung, über die zwei zu vergleichende periodische Eingangssignale S1 und S2 beliebiger Frequenz eingegeben werden. 11 und 12 sind Triggerschaltungen, die aus den Eingangssignalen in jeder Periode ein kurzes Triggersignal ableiten. Sind die Eingangssignale beispielsweise Rechtecksignale, so können die Schaltungen 11 und 12 Differenzierschaltungen sein, die aus den Signal-Anstiegsflanken Triggerimpulse ableiten. Sind die Eingangssignale sinusförmige Signale, so können die Schwellwertdetektoren als Schmitt-Trigger ausgebildet sein, die bei ihrem Ansprechen kurze Impulse abgeben.Fig. 5 another block diagram of the circuit arrangement. Fig. 1 shows a basic block diagram of a circuit arrangement for generating a control voltage as a function of a frequency or phase difference. 9 and 10 are the inputs of the arrangement via which two periodic input signals S 1 and S 2 of any frequency to be compared are input. 11 and 12 are trigger circuits which derive a short trigger signal from the input signals in each period. If the input signals are, for example, square-wave signals, the circuits 11 and 12 can be differentiating circuits which derive trigger pulses from the signal rising edges. If the input signals are sinusoidal signals, the threshold value detectors can be designed as Schmitt triggers, which emit short pulses when they respond.
20 ist ein Flipflop, dessen beide Eingänge 18 und 19 über eine Sperrschaltung (15) mit den Ausgängen 13 bzw. 14 der Triggerschaltungen 11 bzw. 12 verbunden sind. Die über die Eingänge 18 bzw. 19 ankommenden Triggersignale dienen zum Setzen bzw. zum Rücksetzen des Flipflops (20). Am Ausgang 23 des Flipflops entsteht hierdurch eine Rechteckfolge, deren relative Ein- und Ausschaltzeiten (duty cycle) von der Differenz der Frequenzen der EingangsSignale bzw. von der Phasendifferenz ψ der Triggersignale an den Flipflop-Eingängen abhängen. 24 ist eine Mittelungsschaltung, beispielsweise ein Tiefpass, die eine Regel- Gleichspannung U abgibt, die dem zeitlich gemittelten Verhältnis der Ein- und Ausschaltzeiten entspricht. Sieht man von der Sperrschaltung 15 ab, so entspricht die bisher beschriebene Schaltungsanordnung einem bekannten Frequenz/Phasen-Detektor, der an seinem Ausgang 25 eine Regelspannung U abgibt, die entsprechend Fig. 2 mit der Phasendifferenz φ sägezahnförmig verknüpft ist. Sich periodisch wiederholende Linearbereiche erstrecken sich über jeweils einen Phasendifferenzbereich von 2 π. Bei jeweils φ = n . 2 π (n = 0,±1,±2,±3...) tritt ein Sprung von Umax nach Umin bzw. umgekehrt auf. Eine sprungfreie Phasenregelung ist damit innerhalb eines Phasendifferenzbereichs von 2π möglich. Bei jeweils φ=(2n-1).π ist die Regelspannung U gleich einem mittleren Spannungswert U0, der gleichlangen Ein- und Ausschaltzeiten entspricht.20 is a flip-flop, the two inputs 18 and 19 of which are connected to the outputs 13 and 14 of the trigger circuits 11 and 12 via a blocking circuit (15). The trigger signals arriving via inputs 18 and 19 serve to set and reset the flip-flop (20). This results in a rectangular sequence at the output 23 of the flip-flop, the relative on and off times (duty cycle) of which depend on the difference in the frequencies of the input signals or on the phase difference Ph of the trigger signals at the flip-flop inputs. 24 is an averaging circuit, for example a low-pass filter, which outputs a control DC voltage U which corresponds to the time-averaged ratio of the on and off times. Apart from the blocking circuit 15, the circuit arrangement described so far corresponds to a known frequency / phase detector which outputs a regulating voltage U at its output 25, which is linked in a sawtooth shape according to FIG. 2 with the phase difference φ. Periodically repeating linear ranges each extend over a phase difference range of 2π. At each φ = n. 2 π (n = 0, ± 1, ± 2, ± 3 ...) there is a jump from U max to U min or vice versa. A jump-free phase control is therefore possible within a phase difference range of 2π. With each φ = (2n-1) .π, the control voltage U is equal to an average voltage value U 0 , which corresponds to the same length of on and off times.
Sind die Frequenzen der Eingangssignale ungleich, so treten innerhalb der Perioden 2 π keine konstanten Zeit- oder Phasendifferenzen zwischen den beteiligten Triggersignalen auf. In diesem Fall bildet sich am Ausgang 25 keine Gleichspannung U heraus, deren Wert eine eindeutige Steuerrichtung signalisiert. Die Spannung U eignet sich damit nicht für Frequenz-Regelzwecke.If the frequencies of the input signals are unequal, there are no constant time or phase differences between the trigger signals involved within the periods 2π. In this case, no DC voltage U develops at the output 25, the value of which signals a clear control direction. The voltage U is therefore not suitable for frequency control purposes.
Fig. 3 zeigt ein erfindungsgemässes Gleichspannung/Phasendifferenz-Diagramm, das diesen Nachteil nicht aufweist. In den Phasen (n=0,±1,±2...) differenz-Bereichen von φ = n.2π±
Figure imgf000006_0001
Ιzeigt das Diagramm eine hysteresisförmige Aufspaltung. Die einzelnen Kurvenzweige können dabei entsprechend den Pfeilrichtungen durchlaufen werden. Eine
3 shows a DC voltage / phase difference diagram according to the invention, which does not have this disadvantage. In the phases (n = 0, ± 1, ± 2 ...) difference ranges of φ = n.2π ±
Figure imgf000006_0001
Ι the diagram shows a hysteresis-like split. The individual curve branches can be traversed according to the arrow directions. A
Schaltungsanordnung, die eine derartige Charakteristik aufweist, liefert stets eine eindeutige Frequenz- oder Phasenregel spannung U.Circuit arrangement which has such a characteristic always delivers a clear frequency or phase locked voltage U.
Erfindungsgemäss ergibt sich durch Hinzufügen von Einheiten 15, 30 und 33 zum bekannten Frequenz/Phasen-Detektor eine Anordnung, die eine Charakteristik entsprechend Fig. 3 aufweist. 30 ist ein Sperrintervall-Erzeuger, der zeitlich direkt anschliessend an die Triggersignale R1 und R2 Sperrintervalle Q1 und Q2 der Längen T1 bzw. T2 erzeugt. 33 ist ein Komparator, der angibt, ob die Regelspannung U grösser oder kleiner als der mittlere Spannungswert U0 ist. Die bereits erwähnte Sperrschaltung 15 schliesslich sperrt aufgrund der Signale der genannten Einheiten 30 und 33 die Triggerimpulse R1 und R2 nach folgenden Regeln:According to the invention, adding units 15, 30 and 33 to the known frequency / phase detector results in an arrangement which has a characteristic corresponding to FIG. 3. 30 is a blocking interval generator, which generates blocking intervals Q 1 and Q 2 of lengths T 1 and T 2 directly after the trigger signals R 1 and R 2 . 33 is a comparator which indicates whether the control voltage U is greater or less than the mean voltage value U 0 . Finally, the aforementioned blocking circuit 15 blocks the trigger pulses R 1 and R 2 based on the signals from the units 30 and 33 mentioned:
- Ist die Regelspannung U kleiner als U0 und fällt ein erster Triggerimpuls R1 in ein auf einen zweiten Triggerimpuls R2 folgendes Sperrintervall T2, so wird dieser Triggerimpuls R2 gesperrt.- If the control voltage U is less than U 0 and a first trigger pulse R 1 falls within a blocking interval T 2 following a second trigger pulse R 2 , this trigger pulse R 2 is blocked.
- Ist die Regelspannung U grösser als U0 und fällt ein zweiter Triggerimpuls R2 in ein auf einen ersten Triggerimpuls R1 folgendes Sperrintervall T1 , so wird dieser Triggerimpuls R2 gesperrt.- If the control voltage U is greater than U 0 and a second trigger pulse R 2 falls within a blocking interval T 1 following a first trigger pulse R 1 , this trigger pulse R 2 is blocked.
Die Anordnung arbeitet wie folgt: Von den periodischen Eingangssignalen S1 und S2 werden durch die Triggerschaltungen 11 und 12 Triggersignale R1 bzw. R2 abgeleitet. Diese Signale lösen im Sperrintervall-Erzeuger 30 Sperrsignale Q1 bzw. Q2 aus, durch die die Signale auf den Leitungen 18 bzw. 19 für Zeiten T1 bzw. T2 gesperrt werden, sofern der Komperator 33 dies durch sein momentanes Ausgangssignal zulässt. Ist somit der Abstand zwischen den Triggerimpulsen auf den Leitungen 13 und 14 kleiner als T1 oderT2' so wird in diesem Fall der zeitlich später auf tretende Triggerimpuls gesperrt und das Flipflop 20, das durch den zeitlich früheren Triggerimpuls gesetzt wurde, wird nicht rückgesetzt, sondern verbleibt in seiner Lage. Hierdurch ergibt sich am Flipflop-Ausgang 23 ein verändertes Rechtecksignal oder zeitweise sogar ein Dauersignal mit einer entsprechenden Veränderung der Regelspannung U am Ausgang 25.The arrangement works as follows: trigger signals R 1 and R 2 are derived from the periodic input signals S 1 and S 2 by the trigger circuits 11 and 12. These signals trigger blocking signals Q 1 and Q 2 in the blocking interval generator 30 the signals on lines 18 and 19 are blocked for times T 1 and T 2 , provided that the comparator 33 allows this with its current output signal. If the distance between the trigger pulses on lines 13 and 14 is thus smaller than T 1 or T 2 ' , the trigger pulse that occurs later is blocked in this case and the flip-flop 20, which was set by the earlier trigger pulse, is not reset, but remains in its position. This results in a changed square-wave signal at the flip-flop output 23 or at times even a continuous signal with a corresponding change in the control voltage U at the output 25.
Fig. 4 zeigt ein detailliertes Blockschaltbild der Schaltungsanordnung. Danach wird der Sperrintervall-Erzeuger 30 aus zwei Monoflops 31 und 32 gebildet, die, getriggert durch die Triggersignale R1 bzw. R2, rechteckförmige Sperrsignale konstanter Länge T1 und T2 liefern. Diese Signale werden zwei Kombinationen von UHD-NICHT-Toren 21, 22 und VKD-Toren 16, 17 zugeführt, die die Sperrschaltung 15 bilden. Als Komparator 33 dient ein Spannungsvergleicher, der an den Ausgang 25 angeschlossen ist. Er liefert sein Ausgangssignal nicht invertiert an das Tor 21 und über einen Inverter 23 invertiert an das Tor 22.Fig. 4 shows a detailed block diagram of the circuit arrangement. The blocking interval generator 30 is then formed from two monoflops 31 and 32, which, triggered by the trigger signals R 1 and R 2 , respectively, provide rectangular blocking signals of constant length T 1 and T 2 . These signals are supplied to two combinations of UHD NOT gates 21, 22 and VKD gates 16, 17, which form the blocking circuit 15. A voltage comparator, which is connected to the output 25, serves as the comparator 33. It delivers its output signal not inverted to the gate 21 and via an inverter 23 inverted to the gate 22.
Fig. 5 zeigt ein weiteres Blockschaltbild mit einem Sperrintervall-Erzeuger 30, bei dem die Länge der Sperrintervalle T1 und T2 unabhängig von der Frequenz des Eingangssignals S2 einen festen Bruchteil der jeweiligen Signalperiode beträgt. s2 ist ein Hilfssignal, das am Eingang 8 anliegt und eine Frequenz aufweist, die um einen festen Faktor n höher ist als die des Signals S2. Das Hilfssignal s2 wird in einem Zähler 50 um den Faktor n untersetzt. 51 ist ein Decoder, der, wenn der Zähler 50 bestimmte Zählwerte erreicht, jeweils für eine Intervalldauer 1/n anspricht und dabei jeweils auf eine separate Leitung ein Signal entsprechender Länge abgibt.5 shows a further block diagram with a blocking interval generator 30, in which the length of the blocking intervals T 1 and T 2 is independent of the frequency of the input signal S 2 is a fixed fraction of the respective signal period. s 2 is an auxiliary signal that is present at input 8 and has a frequency that is higher than that of signal S 2 by a fixed factor n. The auxiliary signal s 2 is reduced in a counter 50 by the factor n. 51 is a decoder which, when the counter 50 reaches certain count values, responds for an interval duration 1 / n and in each case emits a signal of corresponding length on a separate line.
Auf der Leitung 52 erscheint beim Zählerstand n das Sperrsignal Q2, welches dem UND-NICHT-Tor 21 als Sperrintervall T2 und dem UND-Tor 17 als Triggersignal R2 zugeführt wird. Beim Zählerstand n-1 erscheint auf der Leitung 53 das Sperrsignal Q1, welches bei Koinzidenz mit einem Triggersignal R1 über ein UND-Tor 54 ein Flipflop 55 setzt. Bei einem Zählerstand n+1, der dem Zählerstand 1 der nächsten Zählperiode entspricht, wird über die Leitung 56 das Flipflop 55 rückgesetzt.The blocking signal Q 2 appears on the line 52 at the counter reading n, which is fed to the AND-NOT gate 21 as a blocking interval T 2 and to the AND gate 17 as a trigger signal R 2 . At count appears 1-n on the line 53, the disable signal Q 1, a flip-flop 55 is in coincidence with a trigger signal R 1 via an AND gate 54th At a counter reading n + 1, which corresponds to counter reading 1 of the next counting period, flip-flop 55 is reset via line 56.
60 ist ein weiteres Flipflop, welches zur Anzeige dafür dient, wie während der jeweiligen Signal-Periode die relative Ein- und Ausschaltzeit (duty cycle) des Flipflops 20 verteilt ist. Es ersetzt damit den Komparator 33. Das Flipflop 60 wird beim Erreichen des Zählerstandes n/2 mittels eines auf die Leitung 61 abgegebenen Nadelimpulses und über ein UND-Tor 62 entsprechend der Stellung des Flipflops 20 gesetzt bzw. nicht gesetzt. Beim Zählerstand n/2-1 wird das Flipflop 60 jeweils rückgesetzt. Die anderen Schaltungsteile entsprechen denen von Fig. 1 und 4. Die Schaltungsanordnung zur Erzeugung einer Regelspannung in Abhängigkeit von einer Frequenz- oder Phasendifferenz ist als Frequenz/Phasen-Detektor einsetzbar in Phasenregelkreisen (phase locked loops). Im Falle der letztgeschilderten Variante kann dabei das Hilfssignal s2 auf einfachste Weise durch den spannungsgeregelten Oszillator erzeugt werden, der mit einer Frequenz schwingt, die um einen festen Faktor n höher ist als die gewünschte Signalfrequenz S2. Der Phasenregelkreis wird in jedem Fall so gesteuert, dass sich die Frequenz des durch den spannungsgeregelten Oszillator erzeugten Signals (beispielsweise S1) der Frequenz des zweiten Signals S2 annähert und dass sich bei Frequenzgleichheit eine Phasendifferenz von φ = π einstellt. 60 is a further flip-flop which serves to indicate how the relative duty cycle of the flip-flop 20 is distributed during the respective signal period. It thus replaces the comparator 33. When the count n / 2 is reached, the flip-flop 60 is set or not set by means of a needle pulse emitted on line 61 and via an AND gate 62 in accordance with the position of the flip-flop 20. At the count n / 2-1, the flip-flop 60 is reset in each case. The other circuit parts correspond to those of FIGS. 1 and 4. The circuit arrangement for generating a control voltage as a function of a frequency or phase difference can be used as a frequency / phase detector in phase locked loops. In the case of the last-described variant, the auxiliary signal s 2 can be generated in the simplest way by the voltage-controlled oscillator, which oscillates at a frequency which is higher by a fixed factor n than the desired signal frequency S 2 . The phase-locked loop is controlled in each case in such a way that the frequency of the signal generated by the voltage-controlled oscillator (for example S 1 ) approximates the frequency of the second signal S 2 and that a phase difference of φ = π occurs in the case of frequency equality.

Claims

Patentansprüche Claims
1. Schaltungsanordnung zur Erzeugung einer Regelspannung (U) in Abhängigkeit von einer Frequenz- oder Phasendifferenz (φ) zwischen einem ersten (S1) und einem zweiten (S2) periodischen Signal beliebiger Frequenz,1. Circuit arrangement for generating a control voltage (U) as a function of a frequency or phase difference (φ) between a first (S 1 ) and a second (S 2 ) periodic signal of any frequency,
- mit einem Flipflop (20), an dessen einen Eingang (18) das erste Signal (S1) über eine erste Triggerschaltung (11) bei jeder seiner Perioden ein erstes Triggersignal (R1) zum Setzen und an dessen zweiten Eingang (19) das zweite Signal (S2) über eine zweite Triggerschaltung (12) bei jeder seiner Perioden ein zweites Triggersignal (R2) zum Rücksetzen des Flipflops (20) abgibt,- With a flip-flop (20) at whose one input (18) the first signal (S 1 ) via a first trigger circuit (11) at each of its periods a first trigger signal (R 1 ) for setting and at its second input (19) the second signal (S 2 ) emits a second trigger signal (R 2 ) for resetting the flip-flop (20) at each of its periods via a second trigger circuit (12),
- und mit einer dem Flipflop (20) nachgeschalteten Kittelungsschaltung (24) zur Abgabe der Regelspannung (U) , die bei Frequenzgleichheit in jedem Phasendifferenz-Intervall von 0 bis 2π- And with a flip-flop (20) downstream averaging circuit (24) for delivering the control voltage (U), the frequency equality in each phase difference interval from 0 to 2π
(n . 2 π < Φ< (n + 1) .2 π ; n = 0,1,2,3 ) eine stetige, variable Funktion der Phasendifferenz ( φ) mit einem mittleren Wert (U0) bildet, dadurch gekennzeichnet,(n. 2 π <Φ <(n + 1) .2 π; n = 0,1,2,3) forms a continuous, variable function of the phase difference (φ) with an average value (U 0 ), characterized in that
- dass dem Flipflop (20) ein Komparator (33) zugeordnet ist, der an seinem Ausgang (34) Steuersignale abgibt, die angeben, ob die Regelspannung (U) grösser oder kleiner als der mittlere Wert (U0) ist,- that the flip-flop (20) is assigned a comparator (33) which outputs control signals at its output (34) which indicate whether the control voltage (U) is greater or less than the mean value (U 0 ),
- dass den Triggerschaltungen (11, 12) ein Sperrintervall-Erzeuger (30) zugeordnet ist, der zeitlich unmittelbar an die- That the trigger circuits (11, 12) is assigned a blocking interval generator (30), the time immediately to the
Triggersignale (R1, R2) angrenzende erste (T1 ) und zweite (T2) Sperrintervalle erzeugt, undTrigger signals (R 1 , R 2 ) generate adjacent first (T 1 ) and second (T 2 ) blocking intervals, and
- dass zwischen die erste (11) und zweite (12) Triggerschaltung und das Flipflop (20) eine Sperrschaltung (15) eingeschaltet ist, die, sofern die Regelspannung (U) grösser als der mittlere Wert- That between the first (11) and second (12) trigger circuit and the flip-flop (20) has a blocking circuit (15) switched on which, provided the control voltage (U) is greater than the mean value
(U0) ist, jedes zweite Triggersignal (R2) unterdrückt, das innerhalb eines ersten Sperrintervalls ( T1) zeitlich auf ein erstes Triggersignal (R1) nachfolgt, und die, sofern die Regelspannung (U) kleiner als der mittlere Wert (U0) ist, jedes erste Triggersignal (R1) unterdrückt, das innerhalb eines zweiten Sperrintervalls (T2) zeitlich auf ein zweites Triggersignal (R2) nachfolgt.(U 0 ), every second trigger signal (R 2 ) is suppressed, which follows a first trigger signal (R 1 ) in time within a first blocking interval (T 1 ), and which, provided the control voltage (U) is less than the mean value ( U 0 ), suppresses each first trigger signal (R 1 ) that succeeds in time to a second trigger signal (R 2 ) within a second blocking interval (T 2 ).
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet,2. Circuit arrangement according to claim 1, characterized in that
- dass der Sperrintervall-Erzeuger (30) zwei Monoflops (31, 32) umfasst,- That the blocking interval generator (30) comprises two monoflops (31, 32),
- dass die Sperrschaltung (15) aus logischen UϊTD-Toren (16, 17), UND-NICHT-Toren (21, 22) gebildet ist,- That the blocking circuit (15) from logical UϊTD gates (16, 17), AND-NOT gates (21, 22) is formed,
- und dass die Mittelungsschaltung (24) ein Tiefpass ist (Fig. 4).- And that the averaging circuit (24) is a low pass (Fig. 4).
3. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, dass die Monoflops (31, 32) Kippzeiten konstanter Dauer erzeugen. 3. Circuit arrangement according to claim 2, characterized in that the monoflops (31, 32) generate flip times of constant duration.
4. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, dass die Monoflops (31, 32) Kippzeiten aufweisen, deren Dauern stets einem gleichbleibenden Bruchteil der jeweiligen Periodendauern entsprechen.4. Circuit arrangement according to claim 2, characterized in that the monoflops (31, 32) have tilting times, the durations of which always correspond to a constant fraction of the respective period durations.
5. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet,5. Circuit arrangement according to claim 1, characterized in
- dass der Sperrintervall-Erzeuger (30) einen Zähler (50) und einen diesem zugeordneten Decoder (51) umfasst, wobei der Zähler (50) ein gegenüber dem zweiten periodischen Signal (S2) um einen ganzzahligen Faktor n höherfrequentes Hilfssignal (s2) um den Faktor n untersetzt und der Decoder (51) beim jeweiligen Erreichen vorbestimmter Zählerstände diesen Zählerständen zugeordnete Zählsignale abgibt,- That the blocking interval generator (30) comprises a counter (50) and a decoder (51) assigned to it, the counter (50) having an auxiliary signal (s 2 ) that is higher in frequency than the second periodic signal (S 2 ) by an integer factor n ) reduced by the factor n and the decoder (51) emits count signals assigned to these counter readings each time predetermined counter readings are reached,
- dass die Sperrschaltung (15) ausser logischen Toren ein zweites Flipflop (55) umfasst, welches eine zeitliche Koinzidenz zwischen einem ersten Triggersignal (R1) und einem durch ein erstes Zählsignal (n-1) bestimmten ersten Sperrintervall (T1) speichert und damit das zugeordnete, durch das unmittelbar auf das erste Zählsignal folgende zweite Zählsignal (n) bestimmte zweite Triggersignal (R2) sperrt,- That the blocking circuit (15) comprises, in addition to logic gates, a second flip-flop (55) which stores a temporal coincidence between a first trigger signal (R 1 ) and a first blocking interval (T 1 ) determined by a first count signal (n-1) and so that the assigned second trigger signal (R 2 ), determined by the second count signal (s) immediately following the first count signal, blocks,
- und dass der Komperator (33) ein drittes Flipflop (60) umfasst, welches, nachdem es zuvor rückgesetzt ist, jeweils beim Auftreten eines dritten Zählsignals (n/2) den Kippzustand des ersten Flipflops (20), übernimmt (Fig. 5). - And that the comparator (33) comprises a third flip-flop (60) which, after it has been reset, takes over the tilting state of the first flip-flop (20) each time a third count signal (n / 2) occurs (FIG. 5) .
6. Verwendung der Schaltungsanordnung nach den Ansprüchen 1 bis 5 in einem Phasenregelkreis, der sich aus einem Frequenz-Phase-Detektor, einem Filter und einem spannungsabhängigen Oszillator zusammensetzt, dadurch gekennzeichnet, dass die Schaltungsanordnung am Filterausgang (25) eine Regelspannung (U) erzeugt, die den spannungsabhängigen Oszillator so steuert, dass sich die Frequenz des durch den Oszillator erzeugten ersten Signals (S1) der Frequenz des zweiten Signals (S2) annähert und dass bei Frequenzgleichheit eine Phasendifferenz (Φ) von π entsteht. 6. Use of the circuit arrangement according to claims 1 to 5 in a phase-locked loop, which is composed of a frequency-phase detector, a filter and a voltage-dependent oscillator, characterized in that the circuit arrangement at the filter output (25) generates a control voltage (U) which controls the voltage-dependent oscillator in such a way that the frequency of the first signal (S 1 ) generated by the oscillator approximates the frequency of the second signal (S 2 ) and that a phase difference (Φ) of π occurs when the frequencies are equal.
PCT/CH1981/000106 1980-09-29 1981-09-25 Generator circuit of a regulation voltage function of a differential frequency or phase and utilization of such circuit WO1982001289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT81902653T ATE10690T1 (en) 1980-09-29 1981-09-25 CIRCUIT ARRANGEMENT FOR GENERATION OF A CONTROL VOLTAGE DEPENDING ON THE FREQUENCY OR PHASE DIFFERENCE AND USE OF THE CIRCUIT ARRANGEMENT.
DE8181902653T DE3167638D1 (en) 1980-09-29 1981-09-25 Generator circuit of a regulation voltage function of a differential frequency or phase and utilization of such circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH7272/80800929 1980-09-29
CH727280 1980-09-29

Publications (1)

Publication Number Publication Date
WO1982001289A1 true WO1982001289A1 (en) 1982-04-15

Family

ID=4322528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1981/000106 WO1982001289A1 (en) 1980-09-29 1981-09-25 Generator circuit of a regulation voltage function of a differential frequency or phase and utilization of such circuit

Country Status (3)

Country Link
US (1) US4470018A (en)
EP (1) EP0060862B1 (en)
WO (1) WO1982001289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2161660A (en) * 1984-07-10 1986-01-15 Fluke Mfg Co John Digital phase/frequency detector having output latch

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX157636A (en) * 1984-01-03 1988-12-07 Motorola Inc IMPROVEMENTS IN MULTIPLE FREQUENCY DIGITAL PHASE SYNCHRONIZATION CIRCUIT
US4668917A (en) * 1984-01-03 1987-05-26 Motorola, Inc. Phase comparator for use with a digital phase locked loop or other phase sensitive device
US4573017A (en) * 1984-01-03 1986-02-25 Motorola, Inc. Unitary phase and frequency adjust network for a multiple frequency digital phase locked loop
JPS6118220A (en) * 1984-07-04 1986-01-27 Kokusai Denshin Denwa Co Ltd <Kdd> Phase locked loop
DE19733732C2 (en) * 1997-08-04 1999-05-12 Siemens Ag Method to support simple synchronization to the carrier of an energy-blown QPSK signal
US7119583B2 (en) * 2004-03-31 2006-10-10 Micron Technology, Inc. Phase detector and method having hysteresis characteristics
US7423456B2 (en) * 2006-12-01 2008-09-09 Micron Technology, Inc. Fast response time, low power phase detector circuits, devices and systems incorporating the same, and associated methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2022231A1 (en) * 1970-02-05 1971-08-19 Bbc Brown Boveri & Cie Method for the unambiguous determination of the phase shift between two periodic electrical signals that are the same or nearly the same in frequency
DE2260391A1 (en) * 1971-12-10 1973-06-14 Telettra Lab Telefon CIRCUIT AND NETWORK FOR DETERMINING THE FREQUENCY AND PHASE DIFFERENCE OF ELECTRICAL SIGNALS
US3750035A (en) * 1971-05-03 1973-07-31 Cali Inst Of Technology Frequency discriminator and phase detector circuit
US4155045A (en) * 1976-09-15 1979-05-15 Telefonaktiebolaget L M Ericsson Method and apparatus for detection of phase difference between two electrical signals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3441342A (en) * 1965-03-29 1969-04-29 Rca Corp Frequency and phase error detection means for synchronization systems
US3588710A (en) * 1968-08-05 1971-06-28 Westinghouse Electric Corp Digital phase detection circuitry
US4199799A (en) * 1978-03-24 1980-04-22 General Electric Company Supervisory circuit for redundant channel control systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2022231A1 (en) * 1970-02-05 1971-08-19 Bbc Brown Boveri & Cie Method for the unambiguous determination of the phase shift between two periodic electrical signals that are the same or nearly the same in frequency
US3750035A (en) * 1971-05-03 1973-07-31 Cali Inst Of Technology Frequency discriminator and phase detector circuit
DE2260391A1 (en) * 1971-12-10 1973-06-14 Telettra Lab Telefon CIRCUIT AND NETWORK FOR DETERMINING THE FREQUENCY AND PHASE DIFFERENCE OF ELECTRICAL SIGNALS
US4155045A (en) * 1976-09-15 1979-05-15 Telefonaktiebolaget L M Ericsson Method and apparatus for detection of phase difference between two electrical signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2161660A (en) * 1984-07-10 1986-01-15 Fluke Mfg Co John Digital phase/frequency detector having output latch
FR2567698A1 (en) * 1984-07-10 1986-01-17 Fluke Mfg Co John METHOD AND MOUNT FOR DETECTING THE PHASE / FREQUENCY DIFFERENCE BETWEEN TWO DIGITAL INPUT SIGNALS AND APPLICATION

Also Published As

Publication number Publication date
EP0060862B1 (en) 1984-12-05
US4470018A (en) 1984-09-04
EP0060862A1 (en) 1982-09-29

Similar Documents

Publication Publication Date Title
DE69202531T2 (en) Phase locked loop.
DE69325685T2 (en) Phase locked loop system with compensation for changes in the data edge-dependent loop gain
DE69130046T2 (en) Frequency synthesizer with PLL, which enables a frequency change of the output at high speed
DE2925583C2 (en) Circuit arrangement for generating output pulses which determine the speed of a phase-locked, frequency-controlled electric motor
DE69229016T2 (en) System for the recovery of data and NRZ clock signals with a phase locked loop
DE69113091T2 (en) Linearized tri-state phase detector.
DE2720747C3 (en) Clock pulse regenerator
DE3733554A1 (en) PLL DELAY CIRCUIT
DE69406140T2 (en) METHOD FOR IMPROVING THE NOISE-SENSITIVITY OF A PHASE CONTROL CIRCUIT AND DEVICE USING SUCH A METHOD
EP0044493A1 (en) Frequency/phase locked loop and its use as part of a television or colour-television circuit
DE2542954A1 (en) PHASE-LOCKED OSCILLATOR CIRCUIT
DE69300291T2 (en) Frequency control loop.
DE2400394B2 (en) Circuit arrangement for digital frequency division
DE69309617T2 (en) PLL circuit with a stable phase discriminator
DE3586508T2 (en) PHASE DETECTOR.
DE3212453C2 (en)
DE2848881A1 (en) TELEVISION RECEIVER WITH AUTOMATIC PHASE CONTROL
DE2751021B2 (en) Synchronizing circuit for an oscillator circuit
EP0060862B1 (en) Generator circuit of a regulation voltage function of a differential frequency or phase and utilization of such circuit
DE10394282B4 (en) Reset-free delayed control loop
DE69323964T2 (en) Detector for snapping onto a harmonic frequency
DE3587002T2 (en) SIGNAL GENERATOR CIRCUITS.
DE2445256B2 (en) RECEIVER TO RECEIVE WITH THE HELP OF FREQUENCY TOUCH MODULATION OF TRANSMITTED PULSE SIGNALS
WO2000019613A1 (en) Frequency detection method for clock signal adjustment and frequency detection circuit for implementing said method
DE2707130A1 (en) PHASE DETECTOR

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): US

AL Designated countries for regional patents

Designated state(s): AT CH DE FR GB NL SE

WWE Wipo information: entry into national phase

Ref document number: 1981902653

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1981902653

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1981902653

Country of ref document: EP