[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

USRE39919E1 - Heterogeneous surge material for absorbent articles - Google Patents

Heterogeneous surge material for absorbent articles Download PDF

Info

Publication number
USRE39919E1
USRE39919E1 US09/314,492 US31449299A USRE39919E US RE39919 E1 USRE39919 E1 US RE39919E1 US 31449299 A US31449299 A US 31449299A US RE39919 E USRE39919 E US RE39919E
Authority
US
United States
Prior art keywords
surge
layer
fibers
permeability
surge material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/314,492
Inventor
II Richard Norris Dodge
Clifford Jackson Ellis
Connie Lynn Hetzler
Eric Scott Kepner
Sylvia Bandy Little
Lawrence Howell Sawyer
Candace Dyan Krautkramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimberly Clark Worldwide Inc
Original Assignee
Kimberly Clark Worldwide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25034709&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=USRE39919(E1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kimberly Clark Worldwide Inc filed Critical Kimberly Clark Worldwide Inc
Priority to US09/314,492 priority Critical patent/USRE39919E1/en
Application granted granted Critical
Publication of USRE39919E1 publication Critical patent/USRE39919E1/en
Assigned to KIMBERLY-CLARK WORLDWIDE, INC. reassignment KIMBERLY-CLARK WORLDWIDE, INC. NAME CHANGE Assignors: KIMBERLY-CLARK WORLDWIDE, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15203Properties of the article, e.g. stiffness or absorbency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/903Microfiber, less than 100 micron diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/621Including other strand or fiber material in a different layer not specified as having microdimensions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/647Including a foamed layer or component
    • Y10T442/651Plural fabric layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric

Definitions

  • This invention relates to absorbent articles particularly absorbent structures which are useful in personal care products such as disposable diapers, incontinence guards, child care training pants, or sanitary napkins. More particularly, the invention relates to absorbent articles which have a portion designed for rapid intake, temporary liquid control, and subsequent release of repeated liquid surges to the remainder of the article.
  • Personal care products are absorbent articles including diapers, training pants, feminine hygiene products such as sanitary napkins, incontinence devices and the like. These products are designed to absorb and contain body exudates and are generally single-use or disposable items which are discarded after a relatively short period of use—usually a period of hours—and are not intended to be washed and reused. Such products usually are placed against or in proximity to the wearer's body to absorb and contain various exudates discharged from the body. All of these products typically include a liquid permeable bodyside liner or cover, a liquid impermeable outer cover or backsheet, and an absorbent structure disposed between the bodyside liner and outer cover.
  • the absorbent structure may include a surge layer subjacent to and in liquid communicating contact with the bodyside liner, and an absorbent core often formed of a blend or mixture cellulosic pulp fluff fibers and absorbent gelling particles subjacent to and in liquid communicating contact with the surge layer.
  • personal care absorbent articles exhibit low leakage from the product and a dry feel for the wearer. It has been found that urination can occur at rates as high as 15 to 20 milliliters per second and at velocities as high as 280 centimeters per second and that an absorbent garment, such as a diaper, may fail by leaking from the leg or front or back waist areas.
  • the inability of the absorbent product to rapidly uptake liquid can also result in excessive pooling of liquid on the body-facing surface of the bodyside liner before the liquid is taken up by the absorbent structure. Such pooled liquid can wet the wearer's skin and can leak from leg or waist openings of the absorbent article, causing discomfort, potential skin health problems, as well as soiling of the outer clothing or bedding of the wearer.
  • Leakage and pooling can result from a variety of performance deficiencies in the design of the product, or individual materials within the product.
  • One cause of such problems is an insufficient rate of liquid intake into the absorbent core, which functions to absorb and retain body exudates.
  • the liquid intake of a given absorbent product therefore, and particularly the bodyside liner and surge materials used in absorbent product, must attempt to meet or exceed the expected liquid delivery rates into the absorbent product.
  • An insufficient intake rate becomes even more detrimental to product performance on second, third, or fourth liquid surges.
  • leakage may occur due to poor wet product fit that results when multiple insults are stored in the target location and cause sagging and drooping from the wet, heavy retention material structure.
  • Nonwoven materials including bonded carded webs and spunbond webs, have been widely used as bodyside liners. Such nonwoven materials generally are intended to be sufficiently open and/or porous to allow liquid to pass through rapidly, while also functioning to keep the wearer's skin separate from the wetted absorbent underlying the liner.
  • Attempts to improve the liquid intake of liner materials have included, for example, aperturing the liner material, treating the fibers forming the liner material with surfactants to enhance the wettability of the liner, and altering the durability of such surfactants.
  • a surge layer can suitably be formed of thick, lofty nonwoven materials.
  • Surge layers particularly high loft, high bulk, compression resistant fibrous structures, provide a temporary retention or absorption function for liquid not yet absorbed into the absorbent core, which tends to reduce fluid flowback or wetback from the absorbent core to the liner.
  • a surge material for personal care products which is a layered structure of at least one relatively high permeability layer and at least one relatively low permeability layer where the structure has a capillary tension range between about 1 and 5 cm with a differential of at least about 1 cm from top (wearer side) to bottom.
  • Such a layered structure should provide a first insult run-off value of at most 30 ml from a 100 ml insult delivered at 20 ml/second.
  • Such a surge material is useful in personal care products like diapers, training pants, absorbent underpants, adult incontinence products, feminine hygiene products and the like and should have a thickness of less than 3 cm.
  • the surge material of this invention is particularly well suited for use in narrow crotch (7.6 cm width maximum) diapers.
  • the FIGURE is a drawing of a side view of a cradle used for the MIST Evaluation test.
  • Disposable includes being disposed of after usually a single use and not intended to be washed and reused.
  • “Hydrophilic” describes fibers or the surfaces of fibers which are wetted by the aqueous liquids in contact with the fibers. The degree of wetting of the materials can, in turn, be described in terms of the contact angles and the surface tensions of the liquids and materials involved. Equipment and techniques suitable for measuring the wettability of particular fiber materials can be provided by a Caln SFA-222 Surface Force Analyzer System, or a substantially equivalent system. When measured with this system, fibers having contact angles less than 90° are designated “wettable” or hydrophilic, while fibers having contact angles equal to or greater than 90° are designated “nonwettable” or hydrophobic.
  • Inward and “outward” refer to positions relative to the center of an absorbent garment, and particularly transversely and/or longitudinally closer to or away from the longitudinal and transverse center of the absorbent garment.
  • Layer when used in the singular can have the dual meaning of a single element or a plurality of elements.
  • Liquid means a nongaseous substance and/or material that flows and can assume the interior shape of a container into which it is poured or placed.
  • Liquid communication means that liquid such as urine is able to travel from one location to another location.
  • the longitudinal axis lies in the plane of the article when laid flat and fully extended and is generally parallel to a vertical plane that bisects a standing wearer into left and right body halves when the article is worn.
  • the transverse axis lies in the plane of the article generally perpendicular to the longitudinal axis.
  • Particles refers to any geometric form such as, but not limited to, spherical grains, cylindrical fibers or strands, or the like.
  • Spray and variations thereof include forcefully ejecting liquid, either as a stream such as swirl filaments, or atomized particles through an orifice, nozzle, or the like, by means of an applied pressure of air or other gas, by force of gravity, or by centrifugal force.
  • the spray can be continuous or non-continuous.
  • spunbonded fibers refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced as by, for example, in U.S. Pat. No. 4,340,563 to Appel et al., and U.S. Pat. No. 3,692,618 to Dorschner et al., U.S. Pat. No. 3,802,817 to Matsuki et al., U.S. Pat. Nos. 3,338,992 and 3,341,394 to Kinney, U.S. Pat. No. 3,502,763 to Hartman, and U.S. Pat.
  • Spunbond fibers are generally not tacky when they are deposited onto a collecting surface.
  • Spunbond fibers are generally continuous and have average diameters (from a sample of at least 10) larger than 7 microns, more particularly, between about 10 and 20 microns.
  • the fibers may also have shapes such as those described in U.S. Pat. No. 5,277,976 to Hogle et al., U.S. Pat. No. 5,466,410 to Hills and U.S. Pat. Nos. 5,069,970 and 5,057,368 to Largman et al., which describe fibers with unconventional shapes.
  • Meltblown fibers means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot, gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly disbursed meltblown fibers. Such a process is disclosed, for example, in U.S. Pat. No. 3,849,241. Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 microns in average diameter, and are generally tacky when deposited onto a collecting surface.
  • coform means a process in which at least one meltblown diehead is arranged near a chute through which other materials are added to the web while it is forming.
  • Such other materials may be pulp, superabsorbent particles, cellulose or staple fibers, for example.
  • Coform processes are shown in commonly assigned U.S. Pat. Nos. 4,818,464 to Lau and 4,100,324 to Anderson et al. Webs produced by the coform process are generally referred to as coform materials.
  • Conjugate fibers refers to fibers which have been formed from at least two polymer sources extruded from separate extruders but spun together to form one fiber. Conjugate fibers are also sometimes referred to as multicomponent or bicomponent fibers.
  • conjugate fibers may be monocomponent fibers.
  • the polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the conjugate fibers and extend continuously along the length of the conjugate fibers.
  • the configuration of such a conjugate fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side by side arrangement, a pie arrangement or an “islands-in-the-sea” arrangement.
  • Conjugate fibers are taught in U.S. Pat. No. 5,108,820 to Kaneko et al., U.S. Pat. No. 5,336,552 to Strack et al., and U.S. Pat. No.
  • the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios.
  • the fibers may also have shapes such as those described in U.S. Pat. Nos. 5,277,976 to Hogle et al., and 5,069,970 and 5,057,368 to Largman et al., hereby incorporated by reference in their entirety, which describe fibers with unconventional shapes.
  • Biconstituent fibers refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend.
  • blend is defined below. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers. Fibers of this general type are discussed in, for example, U.S. Pat. No. 5,108,827 to Gessner.
  • “Bonded carded web” refers to webs that are made from staple fibers which are sent through a combining or carding unit, which separates or breaks apart and aligns the staple fibers in the machine direction to form a generally machine direction-oriented fibrous nonwoven web. Such fibers are usually purchased in bales which are placed in an opener/blender or picker which separates the fibers prior to the carding unit. Once the web is formed, it then is bonded by one or more of several known bonding methods. One such bonding method is powder bonding, wherein a powdered adhesive is distributed through the web and then activated, usually by heating the web and adhesive with hot air.
  • Another suitable bonding method is pattern bonding, wherein heated calender rolls or ultrasonic bonding equipment are used to bond the fibers together, usually in a localized bond pattern, though the web can be bonded across its entire surface if so desired.
  • Another suitable and well-known bonding method, particularly when using conjugate staple fibers, is through-air bonding.
  • Airlaying is a well known process by which a fibrous nonwoven layer can be formed.
  • bundles of small fibers having typical lengths ranging from about 3 to about 19 millimeters (mm) are separated and entrained in an air supply and then deposited onto a forming screen, usually with the assistance of a vacuum supply.
  • the randomly deposited fibers then are bonded to one another using, for example, hot air or a spray adhesive.
  • Personal care product means diapers, training pants, absorbent underpants, adult incontinence products, and feminine hygiene products.
  • MIST Evaluation In this test a fabric, material or structure composed of two or more materials is placed in an acrylic cradle to simulate body curvature of a user such as an infant. Such a cradle is illustrated in FIG. 2 .
  • the cradle has a width into the page of the drawing as shown of 33 cm and the ends are blocked off, a height of 19 cm, an inner distance between the upper arms of 30.5 cm and an angle between the upper arms of 60 degrees.
  • the cradle has a 6.5 mm wide slot at the lowest point running the length of the cradle into the page.
  • the material to be tested is placed on a piece of polyethylene film the same size as the sample and placed in the cradle.
  • the material to be tested is insulted with 100 ml of a saline solution of 8.5 grams of sodium chloride per liter, at a rate of 20 cc/sec with a nozzle normal to the center of the material and 1 ⁇ 4 inch (6.4 mm) above the material. The amount of runoff is recorded.
  • the material is immediately removed from the cradle, weighed, and placed on a dry 40/60 pulp/superabsorbent pad having a density of 0.2 g/cc in a horizontal position under 0.01 psi pressure and weighed after 5, 15 and 30 minutes to determine fluid desorption from the material into the superabsorbent pad as well as fluid retention in the material.
  • the pulp fluff and superabsorbent used in this test is Kimberly-Clark's (Dallas Tex.) CR-2054 pulp and Stockhausen Company's (of Greensboro, N.C.
  • FAVOR 870 superabsorbent through other comparable pulp and superabsorbents could be used provided they yield a desorption pad of 500 gsm and 0.2 g/cc which after immersion into saline solution under free-swell conditions for 5 minutes, retains at least 20 grams of saline solution per gram of desorption pad after being subjected to an air pressure differential, by vacuum suction for example, of about 0.5 psi (about 3.45 kPa) applied across the thickness of the pad for 5 minutes. If the tested piece is made of other components (e.g.
  • Permeability may be calculated from the Kozeny-Carman equation. This is a widely used method. References include an article by R. W. Hoyland and R. Field in the journal Paper Technology and Industry, December 1976, p. 291-299 and Porous Media Fluid Transport and Pore Structure by F. A. L. Dullien, 1979, Academic Press, Inc. ISBN 0-12-223650-5.
  • the caliper of a material is a measure of thickness and is measured at 0.05 psi with a Starret-type bulk tester, in units of millimeters.
  • the density of the materials is calculated by dividing the weight per unit area of a sample in grams per square meter (gsm) by the bulk of the sample in millimeters (mm) at 68.9 Pascals and multiplying the result by 0.001 to convert the value to grams per cubic centimeter (g/cc). A total of three samples would be evaluated and averaged for the density values.
  • a sample strip of material approximately 2 inches (5 cm) by 15 inches (38 cm) is placed vertically such that when the sample strip is positioned above a liquid reservoir at the beginning of the test, the bottom of the sample strip will just touch the liquid surface.
  • the liquid used was a 8.5 g/l saline solution.
  • the relative humidity should be maintained at about 90 to about 98 percent during the evaluation.
  • the sample strip is placed above the known weight and volume of liquid and a stopwatch started as soon as the bottom edge of the sample strip touches the surface of the solution.
  • the vertical distance of the liquid front traveling up the sample strip and the liquid weight absorbed by the sample strip at various times is recorded.
  • the time versus liquid front height is plotted to determine the Wicking Time at about 5 centimeters and at about 15 centimeters.
  • the weight of the liquid absorbed by the sample strip from the beginning of the evaluation to about 5 centimeters and to about 15 centimeters height is also determined from the data.
  • the Vertical Liquid Flux value of the sample strip at a particular height was calculated by dividing the grams of liquid absorbed by the sample strip by each of: the basis weight (gsm), of the sample strip; the time, in minutes, needed by the liquid to reach the particular height; and the width, in inches, of the sample strip.
  • Capillary tension in materials not containing superabsorbents e.g. surge materials
  • Capillary tension in materials not containing superabsorbents is measured simply by the equilibrium vertical wicking height of a 8.5 g/l saline solution after 30 minutes.
  • Surge control materials the “S” in SC, are provided to quickly accept the incoming insult and either absorb, hold, channel or otherwise manage the liquid so that it does not leak outside the article.
  • the surge layer may also be referred to as an intake layer, transfer layer, transport layer and the like.
  • a surge material must typically be capable of handling an incoming insult of between about 60 and 100 cc at an insult volumetric flow rate of from about 5 to 20 cc/sec, for infants, for example.
  • Containment or retention materials the “C” in SC, must absorb the insult quickly and efficiently. They should be capable of pulling the liquid from the distribution layer and absorbing the liquid without significant “gel blocking” or blocking of penetration of liquid further into the absorbent by the expansion of the outer layers of absorbent.
  • Retention materials are often high rate superabsorbent materials such as blends of polyacrylate superabsorbent and fluff. These materials rapidly absorb and hold liquid.
  • ABSORBENT ARTICLES WITH CONTROLLABLE FILL PATTERNS presents an absorbent system which includes components that have been designed, arranged, and assembled so that within a certain time after each insult, liquid will be located in a pre-specified area of the absorbent system, i.e. remote from the target area.
  • these absorbent systems have a “fill ratio” of grams of fluid located in the center target zone, usually in the crotch, to each of the two end zones which is less than 5:1 after three insults of 100 ml separated by 30 minutes. It is preferred that this fill ratio be less than 3:1, and most preferred to be less than 2.5:1.
  • Many currently available commercial diapers have fill ratios of 20:1, 50:1 or even greater, i.e. they hold most insult liquid in the crotch.
  • Distribution materials the “D” in SDC, must be capable of moving fluid from the point of initial deposition to where storage is desired. Distribution must take place at an acceptable rate such that the target insult area, generally the crotch area, is ready for the next insult.
  • ready for the next insult it is meant that sufficient liquid has been moved out of the target zone so that the next insult results in liquid absorption and runoff within acceptable volumes.
  • the time between insults can range from just a few minutes to hours, generally depending on the age of the wearer.
  • Absorbent products such as, for example, diapers, generally also have a liner which goes against the wearer, a backsheet which is the most exterior layer.
  • An absorbent product may also contain other layers such as the multifunctional materials described in patent application Ser. No. 08/754,414, filed The same day and assigned to the same assignee as this application and entitled MULTIFUNCTIONAL ABSORBENT MATERIALS AND PRODUCTS MADE THEREFROM.
  • the retention materials in an absorbent product may also be zoned to provide specific fill patterns and to move liquids from the target zone to remote storage areas as described in patent application Ser. No.
  • the liner is sometimes referred to as a bodyside liner or topsheet and is adjacent the surge material.
  • the liner material is the layer against the wearer's skin and so the first layer in contact with liquid or other exudate from the wearer.
  • the liner further serves to isolate the wearer's skin from the liquids held in an absorbent structure and should be compliant, soft feeling and non-irritating.
  • Various materials can be used in forming the bodyside liner of the present invention, including apertured plastic films, woven fabrics, nonwoven webs, porous foams, reticulated foams and the like.
  • Nonwoven materials have been found particularly suitable for use in forming the bodyside liner, including spunbond or meltblown webs of polyolefin, polyester, polyamide (or other like fiber forming polymer) filaments, or bonded carded webs of natural polymers (for example, rayon or cotton fibers) and/or synthetic polymers (for example, polypropylene or polyester) fibers.
  • the bodyside liner can be a nonwoven spunbond web of synthetic polypropylene filaments having an average fiber size (from a sample of at least 10) ranging from about 12 to about 48 microns, and more particularly from about 18 to about 43 microns.
  • the nonwoven web can have a basis weight (for example, ranging from about 10.0 grams per square meter (gsm) to about 68.0 gsm, and more particularly from about 14.0 gsm to about 42.0 gsm, a bulk or thickness ranging from about 0.13 millimeter (mm) to about 1.0 mm, and more particularly from about 0.18 mm to about 0.55 mm, and a density between about 0.025 grams per cubic centimeter (g/cc) and about 0.12 g/cc, and more particularly between about 0.068 g/cc and about 0.083 g/cc. Additionally, the permeability of such nonwoven web can be from about 150 Darcy to about 5000 Darcy.
  • the nonwoven web can be surface treated with a selected amount of surfactant, such as about 0.28% Triton X-102 surfactant, or otherwise processed to impart the desired level of wettability and hydrophilicity. If a surfactant is used, it can be an internal additive or applied to the web by any conventional means, such as spraying, printing, dipping, brush coating and the like.
  • the surge layer is most typically interposed between and in intimate, liquid communicating contact with the bodyside liner and another layer such as a distribution or retention layer.
  • the surge layer is generally subjacent the inner (unexposed) surface of bodyside liner.
  • Suitable conventional attachment techniques may be utilized, including without limitation, adhesive bonding (using water-based, solvent-based and thermally activated adhesives), thermal bonding, ultrasonic bonding, needling and pin aperturing, as well as combination of the foregoing or other appropriate attachment methods.
  • the surge layer is adhesively bonded to the bodyside liner
  • the amount of adhesive add-on should be sufficient to provide the desired level(s) of bonding, without excessively restricting the flow of liquid from the liner into the surge layer.
  • the surge material of this invention will be discussed in greater detail below.
  • the multifunctional material has been designed to assist the surge material 1) by accepting a portion of the insult volume during forced flow, i.e. during an actual insult, 2) by desorbing the surge material of liquid during and after insults, 3) by allowing a portion of the insult volume to pass through itself (the multifunctional material) to the distribution material and 4) by permanently absorbing a portion of the liquid insult.
  • the multifunctional material and surge should be designed to function together as described in previously cited, co-owned patent application MULTIFUNCTIONAL ABSORBENT MATERIALS AND PRODUCTS MADE THEREFROM.
  • the basic structure of the multifunctional material is a unique blend of superabsorbent material, high bulk wet resilient pulp, and a structure stabilizing component such as a polyolefin binder fiber.
  • the multifunctional material has a permeability of between about 100 and 10000 Darcys, a capillary tension between about 2 and 15 cm, and a runoff rate of less than 25 ml per 100 ml insult, over its life.
  • the “life” of the multifunctional material is considered to be three insults of 100 ml each where each insult is separated by 30 minutes.
  • the multifunctional material In order to achieve the required capillary tension and permeability, its preferred that the multifunctional material have between 30 and 75 weight percent of slow rate superabsorbent, between 25 and 70 weight percent of pulp and from a positive amount up to about 10 percent of a binder component.
  • the material should have a density between about 0.05 and 0.5 g/cc.
  • the basis weight of the material will vary depending on the product application but should generally be between about 200 and 700 gsm.
  • the multifunctional material is preferably located between the surge and distribution layers.
  • the distribution layer must be capable of moving fluid from the point of initial deposition to where storage is desired. Distribution must take place at an acceptable rate such that the target insult area, generally the crotch area, is ready for the next insult. The time between insults can range from just a few minutes to hours, generally depending on the age of the wearer. In order to achieve this transportation function, a distribution layer must have a high capillary tension value. Capillary tension in distribution materials is measured simply by the equilibrium wicking of a 8.5 g/ml saline solution according to the Vertical Liquid Flux rate test, not by the test method given for materials containing superabsorbents.
  • a successful distribution layer must have a capillary tension greater than the adjacent layer (on the side toward the wearer) and preferably a capillary tension of at least about 15 cm. Because of the generally inverse relationship between capillary tension and permeability, such a high capillary tension indicates that the distribution layer will usually have a low permeability.
  • Another liquid transport property desired of a suitable distribution material is that it exhibit a Vertical Liquid Flux rate, at a height of about 15 centimeters, suitably of at least about 0.002 grams of liquid per minute per square meter (gsm) of distribution material per inch of cross-sectional width of the distribution material g/(min*gsm*inch), up to about 0.1 g/(min*gsm*inch).
  • the Vertical Liquid Flux rate value of a distribution material is meant to represent the amount of liquid transported across a boundary a specified vertical distance away from a centralized liquid insult location per minute per normalized quantity of the distribution material.
  • the Vertical Liquid Flux rate, at a height of about 15 centimeters, of a distribution may be measured according to the test method described herein.
  • Another liquid transport property desired of a distribution material is that it exhibit a Vertical Liquid Flux rate, at a height of about 5 centimeters, suitably of at least about 0.01 g/(min*gsm*inch) up to about 0.5 g/(min*gsm*inch).
  • the Vertical Liquid Flux rate, at a height of about 5 centimeters, of an absorbent structure may be measured according to the test method described herein.
  • the distribution layer may be a nonwoven fabric layer composed of a meltblown or spunbond web of polyolefin, polyester, polyamide (or other web forming polymer) filaments.
  • Such nonwoven fabric layers may include conjugate, biconstituent and homopolymer fibers of staple or other lengths and mixtures of such fibers with other types of fibers.
  • the distribution layer also can be a bonded carded web, an airlaid web or a wetlaid pulp structure composed of natural and/or synthetic fibers, or a combination thereof.
  • Retention materials are typically cellulosic materials or superabsorbents or mixtures thereof. Such materials are usually designed to quickly absorb liquids and hold them without, usually without release. Superabsorbents are commercially available from a number of manufactures including Dow Chemical Company of Midland, Mich. and Stockhausen Corporation of Greensboro, N.C. As described in the previously cited, co-owned patent application entitled ABSORBENT ARTICLES WITH CONTROLLABLE FILL PATTERNS, retention materials may be zoned and their composition chosen to move liquids away from the target zone to more remote storage locations.
  • Such a design more efficiently uses the entire absorbent article, and in the case of a diaper, for example, helps allows for the production of a more narrow crotch item where “narrow crotch” means diapers having a width of at most 7.6 cm.
  • “narrow crotch” means diapers having a width of at most 7.6 cm.
  • the backsheet is sometimes referred to as the outer cover and is the farthest layer from the wearer.
  • the outer cover is typically formed of a thin thermoplastic film, such as polyethylene film, which is substantially impermeable to liquid.
  • the outer cover functions to prevent body exudates contained in an absorbent structure from wetting or soiling the wearer's clothing, bedding, or other materials contacting the diaper.
  • the outer cover may be, for example, a polyethylene film having an initial thickness of from about 0.5 mil (0.012 millimeter) to about 5.0 mil (0.12 millimeter).
  • the polymer film outer cover may be embossed and/or matte finished to provide a more aesthetically pleasing appearance.
  • outer cover examples include woven or nonwoven fibrous webs that have been constructed or treated to impart the desired level of liquid impermeability, or laminates formed of a woven or nonwoven fabric and thermoplastic film.
  • the outer cover may optionally be composed of a vapor or gas permeable, microporous “breathable” material, that is permeable to vapors or gas yet substantially impermeable to liquid. Breathability can be imparted in polymer films by, for example, using fillers in the film polymer formulation, extruding the filler/polymer formulation into a film and then stretching the film sufficiently to create voids around the filler particles, thereby making the film breathable. Generally, the more filler used and the higher the degree of stretching, the greater the degree of breathability. Backings may also serve the function of a mating member for mechanical fasteners, in the case, for example, where a nonwoven fabric is the outer surface.
  • the bonded carded webs can optionally include a mixture or blend of different fibers, and the fiber lengths within a selected web may range from about 3 mm to about 60 mm.
  • Previous surge layers have had have a basis weight of at least about 0.50 ounce per square yard (about 17 grams per square meter), a density of at least about 0.010 gram per cubic centimeter at a pressure of 68.9 Pascals, a bulk of at least about 1.0 mm at a pressure of 68.9 Pascals, a bulk recovery of at least about 75 percent, a permeability of about 500 to about 5000 Darcy, and a surface area per void volume of at least about 20 square centimeters per cubic centimeter. Examples of surge materials may be found in U.S.
  • Surge control materials must take insult liquids in at the rate and volume of delivery to avoid top surface pooling or runoff and keep the liquid within the material structure once it is taken in to prevent runoff.
  • Traditional surge control materials are low density, high permeability structures with low capillary tension that facilitate intake and spreading, especially during an insult.
  • these high permeability, low capillary structures exert a low level of control on the liquid and the spreading liquid can rapidly approach the perimeter of the surge control material and run out. This is a source of leakage in the crotch area of personal care products where the product width is generally less than the product length and is of special concern in narrow crotch, (less than 7.6 cm) personal care products.
  • the thickness of a narrow crotch surge control material must be greater than wider crotch examples or more surge control material must be made available in the length dimension of the product. Additional thickness and/or length will not be beneficial unless this extra void volume is filled with liquid prior to runout.
  • Lower permeabilities are required to cause thicker surge control materials to fill to higher height during an insult and higher capillary tensions are required to control the liquid, keeping it in the structure as well as wicking liquid so that more void volume along the length of the product can be used.
  • the lower permeability acts to increase liquid height and slow the planar spread from reaching the material edges while the higher capillary tension acts to hold the liquid in the material so that it will not come out at the edges during and after filling.
  • the surge material of this invention is designed to address a number of the important aspects of liquid intake and controlled spreading.
  • Liquid intake is important since it has been found that urination can occur at volumetric rates as high as 15 to 20 milliliters per second and at velocities as high as 280 centimeters per second. Failure to rapidly intake this liquid may result in leakage from the leg or front or back waist areas. The inability of an absorbent product to rapidly uptake liquid can also result in excessive pooling of liquid on the body-facing surface of the bodyside liner before the liquid is taken up by the absorbent structure. Such pooled liquid can wet the wearer's skin and can leak from leg or waist openings of the absorbent article, causing discomfort, potential skin health problems, as well as soiling of the outer clothing or bedding of the wearer.
  • Controlled spreading of the liquid from an insult is important, particularly in narrow crotch absorbent articles, since it increases the contact area of the layer subjacent the surge layer with the incoming liquid insult. This larger contact area more efficiently uses all of the mass of the subjacent layers.
  • such a surge material In addition to the permeability requirements of the inventive surge material, such a surge material must also have a capillary tension gradient in the z-direction where the surge has a relatively low capillary tension on the side of the material towards the wearer and a relatively higher capillary tension on the side away from the wearer and towards the subjacent layers. More particularly, the inventive surge has a capillary tension range between about 1 and 5 cm with a differential of at least about 1 cm from top to bottom.
  • the exact permeabilities of a finished surge material will be dependent on the width of the absorbent article as well as the thickness of the surge material's layers. As the thickness of the surge material's high permeability upper layer is reduced, for example, the permeability of the lower layer must be reduced. As the overall width of the surge material is reduced the permeability of the lower surge layer must be reduced also. For example, if the width of the surge material is 7.6 cm and the upper layer has a permeability of 1000 Darcys and a thickness of 1.1 cm, the thickness and permeability of the lower layer should be 1.1 cm and 980 Darcys.
  • the layers of the surge material may also be oriented, as determined by tensile testing, in the machine direction (MD) or cross-machine direction (CD). They may be oriented at least 3:1, MD:CD or more. Such a surge is given in Example 6.
  • the permeability and thickness of the upper and lower surge layers can be controlled by selecting the proper combination of fiber size and web density. Further, the materials from which the surge layers are constructed may be selected to ensure that the targeted permeability levels are maintained through numerous liquid insults. In addition, though for purposes of discussion the surge has been referred to as having two layers, the surge may have any number of layers provided the permeability and capillary tension of the overall layered structure are within the claimed invention.
  • a number of surge layers were tested according to the Mist Evaluation Test to determine run-off.
  • the width of the surge material was 5.1 cm and the length 17.4 cm in Examples 1-6 to result in an available void volume of about 100 cc.
  • the insult was delivered at a rate of 20 ml/sec in a total amount of 100 ml of 8.5 g/l saline solution at room temperature.
  • the data is shown in the Table where the density (Den.) is in grams/cc, the number of layers in the sample is given in the “No.
  • the permeability (Perm.) is given in Darcys
  • the capillary tension (C.T.) is given in centimeters according to equilibrium vertical wicking
  • the overall sample thickness (Thick.) is in centimeters (cm)
  • the runoff after each insult (1 st R, etc.) is given in milliliters (ml)
  • Examples 4 and 5 are multilayer surge materials as indicated in the permeability and cap. Tension columns which give the data for each component layer.
  • Example 1 is a through-air bonded carded web that contains 90 weight percent of a 1.8 denier, 1.5 inch (3.8 cm) conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers and 10 weight percent of a 1.5 denier, 1.5 inch rayon fiber.
  • the PE/PET fibers are available from BASF Fibers, 6805 Morrison Boulevard, Charlotte, N.C. 28211-3577 and were conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers with a polyethylene glycol based C S-2 finish.
  • the rayon fibers were 1.5 denier Merge 18453 fibers from Courtaulds Fibers Incorporated of Axis, Ala.
  • Examples 2 is a through-air bonded carded web that contains 90 weight percent of a 3.0 denier, 1.5 inch conjugate sheath/core PE/PET fibers and 10 weight percent of 1.5 denier, 1.5 inch rayon fiber.
  • the PE/PET fibers are available from BASF Fibers, 6805 Morrison Boulevard, Charlotte, N.C. 28211-3577 and were conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers with a polyethylene glycol based C S-2 finish.
  • Examples 3 is a through-air bonded carded web that contains 90 weight percent of a 10.0 denier, 1.5 inch conjugate sheath/core PE/PET fibers and 10 weight percent of 1.5 denier, 1.5 inch rayon fiber.
  • the PE/PET fibers are available from BASF Fibers, 6805 Morrison Boulevard, Charlotte, N.C. 28211-3577 and were conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers with a polyethylene glycol based C S-2 finish.
  • Examples 5 is a two component gradient structure meeting the criteria of the invention.
  • the top component is as given in Example 2 and the bottom as given in Example 1.
  • Example 6 is a two component gradient structure meeting the criteria of the invention.
  • the top component is a homogeneous blend of 60 weight percent 3.0 denier, 1.5 inch conjugate PE/PET fiber and 40 weight percent 6 denier, 1.5 inch PET fiber. Nine layers of each component were plied together to produce material for testing.
  • the top component fibers were from the Hoechst Celanese Corporation, Charlotte, N.C. under the codes T256 and T295 respectively.
  • the top component had a basis weight of about 1.5 osy (50 gsm) and a density of about 0.014 g/cc.
  • the top component blend was carded using a Master Card with a Web-Master® take off roll from John D. Hollingworth of Wheels, Inc., Greenville, N.C.
  • the top component had about a 3 to 5:1 MD:CD fiber orientation ratio as determined by tensile strength ratios in the MD and CD.
  • the bottom component was 100 weight percent 2.2 denier, 1.5 inch polypropylene fiber available from the Hercules Chemical Co., Wilmington, Del. under the code T186 and had a basis weight of about 1.0 osy (35 gsm). After through air bonding this layer had a density of about 0.067 g/cc. This layer was carded using a Master Card with a Dof-Master® take off roll from John D. Hollingsworth on Wheels, Inc. The bottom component had about a 12 to 15:1 MC:CD fiber orientation ratio as determined by tensile strength ratios.
  • the top component had a capillary tension of about 0.6 and the bottom about 2.7 cm.
  • Example 7 is a two component gradient structure similar to Example 6 meeting the criteria of the invention.
  • the top component is a homogeneous blend of 30 weight percent 3.0 denier, 1.5 inch conjugate PE/PET fiber and 70 weight percent 6 denier, 1.5 inch PET fiber.
  • the bottom component was 100 weight percent 2.2 denier, 1.5 inch polypropylene fiber.
  • the suppliers and basis weights of each layer were the same as in Example 6. Neither layer was carded to increase orientation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Laminated Bodies (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

There is provided a surge material for personal care products comprising a layered structure of at least one relatively high permeability layer on a top side toward a wearer and at least one relatively low permeability layer where the structure has a capillary tension range between about 1 and 5 cm with a differential capillary tension of at least about 1 cm from top to bottom. The surge material should have a high permeability layer with a permeability of at least 1000 Darcys and a low permeability layer with a permeability of less than 1000 Darcys. The surge material should also have a said high permeability layer which has a permeability of at least 250 Darcys greater than the low permeability layer. Such a layered structure should have a first insult run-off value of at most 30 ml from a 100 ml insult delivered at 20 ml/second. Such a surge material is useful in personal care products like diapers, training pants, absorbent underpants, adult incontinence products, feminine hygiene products and the like.

Description

FIELD OF THE INVENTION
This invention relates to absorbent articles particularly absorbent structures which are useful in personal care products such as disposable diapers, incontinence guards, child care training pants, or sanitary napkins. More particularly, the invention relates to absorbent articles which have a portion designed for rapid intake, temporary liquid control, and subsequent release of repeated liquid surges to the remainder of the article.
BACKGROUND OF THE INVENTION
Personal care products are absorbent articles including diapers, training pants, feminine hygiene products such as sanitary napkins, incontinence devices and the like. These products are designed to absorb and contain body exudates and are generally single-use or disposable items which are discarded after a relatively short period of use—usually a period of hours—and are not intended to be washed and reused. Such products usually are placed against or in proximity to the wearer's body to absorb and contain various exudates discharged from the body. All of these products typically include a liquid permeable bodyside liner or cover, a liquid impermeable outer cover or backsheet, and an absorbent structure disposed between the bodyside liner and outer cover. The absorbent structure may include a surge layer subjacent to and in liquid communicating contact with the bodyside liner, and an absorbent core often formed of a blend or mixture cellulosic pulp fluff fibers and absorbent gelling particles subjacent to and in liquid communicating contact with the surge layer.
Desirably, personal care absorbent articles exhibit low leakage from the product and a dry feel for the wearer. It has been found that urination can occur at rates as high as 15 to 20 milliliters per second and at velocities as high as 280 centimeters per second and that an absorbent garment, such as a diaper, may fail by leaking from the leg or front or back waist areas. The inability of the absorbent product to rapidly uptake liquid can also result in excessive pooling of liquid on the body-facing surface of the bodyside liner before the liquid is taken up by the absorbent structure. Such pooled liquid can wet the wearer's skin and can leak from leg or waist openings of the absorbent article, causing discomfort, potential skin health problems, as well as soiling of the outer clothing or bedding of the wearer.
Leakage and pooling can result from a variety of performance deficiencies in the design of the product, or individual materials within the product. One cause of such problems is an insufficient rate of liquid intake into the absorbent core, which functions to absorb and retain body exudates. The liquid intake of a given absorbent product, therefore, and particularly the bodyside liner and surge materials used in absorbent product, must attempt to meet or exceed the expected liquid delivery rates into the absorbent product. An insufficient intake rate becomes even more detrimental to product performance on second, third, or fourth liquid surges. In addition, leakage may occur due to poor wet product fit that results when multiple insults are stored in the target location and cause sagging and drooping from the wet, heavy retention material structure.
Various approaches have been taken to reduce or eliminate leakage from personal care absorbent articles. For example, physical barriers, such as elasticized leg openings and elasticized containment flaps, have been incorporated into such absorbent products. The amount and configuration of absorbent material in the zone of the absorbent structure in which liquid surges typically occur (sometimes referred to as a target zone) also have been modified.
Other approaches to improving overall liquid intake of absorbent articles have focused on the bodyside liner and its capacity to rapidly pass liquid to the absorbent structure of the absorbent article. Nonwoven materials, including bonded carded webs and spunbond webs, have been widely used as bodyside liners. Such nonwoven materials generally are intended to be sufficiently open and/or porous to allow liquid to pass through rapidly, while also functioning to keep the wearer's skin separate from the wetted absorbent underlying the liner. Attempts to improve the liquid intake of liner materials have included, for example, aperturing the liner material, treating the fibers forming the liner material with surfactants to enhance the wettability of the liner, and altering the durability of such surfactants.
Yet another approach has been to introduce one or more additional layers of material, typically between the bodyside liner and absorbent core, to enhance the liquid intake performance of the absorbent product and to provide separation between the absorbent core and the bodyside liner adjacent the wearer's skin. One such additional layer, commonly referred to as a surge layer, can suitably be formed of thick, lofty nonwoven materials. Surge layers, particularly high loft, high bulk, compression resistant fibrous structures, provide a temporary retention or absorption function for liquid not yet absorbed into the absorbent core, which tends to reduce fluid flowback or wetback from the absorbent core to the liner.
Despite these improvements, the need exists for further improvement in the liquid intake performance of liner materials employed in absorbent articles. In particular, there is a need for liner materials that can rapidly intake and then control the spreading of a liquid insult to the underlying layers. This improved handling is critical for narrow crotch absorbent product designs that utilize less retention storage material in the target region and incorporate distribution features that remove fluid for storage in remote locations in order to alleviate fit problems as a means to reduce leakage. The present invention provides a heterogeneous surge material that provides for such improved liquid intake and controlled spreading when used in absorbent articles.
SUMMARY OF THE INVENTION
The objects of this invention are achieved by a surge material for personal care products which is a layered structure of at least one relatively high permeability layer and at least one relatively low permeability layer where the structure has a capillary tension range between about 1 and 5 cm with a differential of at least about 1 cm from top (wearer side) to bottom. Such a layered structure should provide a first insult run-off value of at most 30 ml from a 100 ml insult delivered at 20 ml/second. Such a surge material is useful in personal care products like diapers, training pants, absorbent underpants, adult incontinence products, feminine hygiene products and the like and should have a thickness of less than 3 cm. The surge material of this invention is particularly well suited for use in narrow crotch (7.6 cm width maximum) diapers.
BRIEF DESCRIPTION OF THE DRAWINGS
The FIGURE is a drawing of a side view of a cradle used for the MIST Evaluation test.
DEFINITIONS
“Disposable” includes being disposed of after usually a single use and not intended to be washed and reused.
“Front” and “back” are used throughout this description to designate relationships relative to the garment itself, rather than to suggest any position the garment assumes when it is positioned on a wearer.
“Hydrophilic” describes fibers or the surfaces of fibers which are wetted by the aqueous liquids in contact with the fibers. The degree of wetting of the materials can, in turn, be described in terms of the contact angles and the surface tensions of the liquids and materials involved. Equipment and techniques suitable for measuring the wettability of particular fiber materials can be provided by a Caln SFA-222 Surface Force Analyzer System, or a substantially equivalent system. When measured with this system, fibers having contact angles less than 90° are designated “wettable” or hydrophilic, while fibers having contact angles equal to or greater than 90° are designated “nonwettable” or hydrophobic.
“Inward” and “outward” refer to positions relative to the center of an absorbent garment, and particularly transversely and/or longitudinally closer to or away from the longitudinal and transverse center of the absorbent garment.
“Layer” when used in the singular can have the dual meaning of a single element or a plurality of elements.
“Liquid” means a nongaseous substance and/or material that flows and can assume the interior shape of a container into which it is poured or placed.
“Liquid communication” means that liquid such as urine is able to travel from one location to another location.
“Longitudinal” and “transverse” have their customary meanings. The longitudinal axis lies in the plane of the article when laid flat and fully extended and is generally parallel to a vertical plane that bisects a standing wearer into left and right body halves when the article is worn. The transverse axis lies in the plane of the article generally perpendicular to the longitudinal axis.
“Particles” refers to any geometric form such as, but not limited to, spherical grains, cylindrical fibers or strands, or the like.
“Spray” and variations thereof include forcefully ejecting liquid, either as a stream such as swirl filaments, or atomized particles through an orifice, nozzle, or the like, by means of an applied pressure of air or other gas, by force of gravity, or by centrifugal force. The spray can be continuous or non-continuous.
“Spunbonded fibers” refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine, usually circular capillaries of a spinneret with the diameter of the extruded filaments then being rapidly reduced as by, for example, in U.S. Pat. No. 4,340,563 to Appel et al., and U.S. Pat. No. 3,692,618 to Dorschner et al., U.S. Pat. No. 3,802,817 to Matsuki et al., U.S. Pat. Nos. 3,338,992 and 3,341,394 to Kinney, U.S. Pat. No. 3,502,763 to Hartman, and U.S. Pat. No. 3,542,615 to Dobo et al. Spunbond fibers are generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and have average diameters (from a sample of at least 10) larger than 7 microns, more particularly, between about 10 and 20 microns. The fibers may also have shapes such as those described in U.S. Pat. No. 5,277,976 to Hogle et al., U.S. Pat. No. 5,466,410 to Hills and U.S. Pat. Nos. 5,069,970 and 5,057,368 to Largman et al., which describe fibers with unconventional shapes.
“Meltblown fibers” means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity, usually hot, gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly disbursed meltblown fibers. Such a process is disclosed, for example, in U.S. Pat. No. 3,849,241. Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 microns in average diameter, and are generally tacky when deposited onto a collecting surface.
As used herein, the term “coform” means a process in which at least one meltblown diehead is arranged near a chute through which other materials are added to the web while it is forming. Such other materials may be pulp, superabsorbent particles, cellulose or staple fibers, for example. Coform processes are shown in commonly assigned U.S. Pat. Nos. 4,818,464 to Lau and 4,100,324 to Anderson et al. Webs produced by the coform process are generally referred to as coform materials. “Conjugate fibers” refers to fibers which have been formed from at least two polymer sources extruded from separate extruders but spun together to form one fiber. Conjugate fibers are also sometimes referred to as multicomponent or bicomponent fibers. The polymers are usually different from each other though conjugate fibers may be monocomponent fibers. The polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the conjugate fibers and extend continuously along the length of the conjugate fibers. The configuration of such a conjugate fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side by side arrangement, a pie arrangement or an “islands-in-the-sea” arrangement. Conjugate fibers are taught in U.S. Pat. No. 5,108,820 to Kaneko et al., U.S. Pat. No. 5,336,552 to Strack et al., and U.S. Pat. No. 5,382,400 to Pike et al. For two component fibers, the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios. The fibers may also have shapes such as those described in U.S. Pat. Nos. 5,277,976 to Hogle et al., and 5,069,970 and 5,057,368 to Largman et al., hereby incorporated by reference in their entirety, which describe fibers with unconventional shapes.
“Biconstituent fibers” refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend. The term “blend” is defined below. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross-sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers. Fibers of this general type are discussed in, for example, U.S. Pat. No. 5,108,827 to Gessner. Bicomponent and biconstituent fibers are also discussed in the textbook Polymer Blends and Composites by John A. Manson and Leslie H. Sperling, copyright 1976 by Plenum Press, a division of Plenum Publishing Corporation of New York, IBSN 0-306-30831-2, at pages 273 through 277.
“Bonded carded web” refers to webs that are made from staple fibers which are sent through a combining or carding unit, which separates or breaks apart and aligns the staple fibers in the machine direction to form a generally machine direction-oriented fibrous nonwoven web. Such fibers are usually purchased in bales which are placed in an opener/blender or picker which separates the fibers prior to the carding unit. Once the web is formed, it then is bonded by one or more of several known bonding methods. One such bonding method is powder bonding, wherein a powdered adhesive is distributed through the web and then activated, usually by heating the web and adhesive with hot air. Another suitable bonding method is pattern bonding, wherein heated calender rolls or ultrasonic bonding equipment are used to bond the fibers together, usually in a localized bond pattern, though the web can be bonded across its entire surface if so desired. Another suitable and well-known bonding method, particularly when using conjugate staple fibers, is through-air bonding.
“Airlaying” is a well known process by which a fibrous nonwoven layer can be formed. In the airlaying process, bundles of small fibers having typical lengths ranging from about 3 to about 19 millimeters (mm) are separated and entrained in an air supply and then deposited onto a forming screen, usually with the assistance of a vacuum supply. The randomly deposited fibers then are bonded to one another using, for example, hot air or a spray adhesive.
“Personal care product” means diapers, training pants, absorbent underpants, adult incontinence products, and feminine hygiene products.
TEST METHODS
Multiple Insult Test (MIST Evaluation): In this test a fabric, material or structure composed of two or more materials is placed in an acrylic cradle to simulate body curvature of a user such as an infant. Such a cradle is illustrated in FIG. 2. The cradle has a width into the page of the drawing as shown of 33 cm and the ends are blocked off, a height of 19 cm, an inner distance between the upper arms of 30.5 cm and an angle between the upper arms of 60 degrees. The cradle has a 6.5 mm wide slot at the lowest point running the length of the cradle into the page.
The material to be tested is placed on a piece of polyethylene film the same size as the sample and placed in the cradle. The material to be tested is insulted with 100 ml of a saline solution of 8.5 grams of sodium chloride per liter, at a rate of 20 cc/sec with a nozzle normal to the center of the material and ¼ inch (6.4 mm) above the material. The amount of runoff is recorded. The material is immediately removed from the cradle, weighed, and placed on a dry 40/60 pulp/superabsorbent pad having a density of 0.2 g/cc in a horizontal position under 0.01 psi pressure and weighed after 5, 15 and 30 minutes to determine fluid desorption from the material into the superabsorbent pad as well as fluid retention in the material. The pulp fluff and superabsorbent used in this test is Kimberly-Clark's (Dallas Tex.) CR-2054 pulp and Stockhausen Company's (of Greensboro, N.C. 27406) FAVOR 870 superabsorbent through other comparable pulp and superabsorbents could be used provided they yield a desorption pad of 500 gsm and 0.2 g/cc which after immersion into saline solution under free-swell conditions for 5 minutes, retains at least 20 grams of saline solution per gram of desorption pad after being subjected to an air pressure differential, by vacuum suction for example, of about 0.5 psi (about 3.45 kPa) applied across the thickness of the pad for 5 minutes. If the tested piece is made of other components (e.g. is a laminate) the components or layers are separated and weighed to determine liquid partitioning between them and then reassembled after each weighing and placed back onto the fluff/superabsorbent. This test is repeated using fresh desorption pads on each insult so that a total of three insults are introduced and fluid partitioning measured over 1.5 hours with 30 minutes between insults. Five tests of each sample material are recommended.
Permeability: Permeability (k) may be calculated from the Kozeny-Carman equation. This is a widely used method. References include an article by R. W. Hoyland and R. Field in the journal Paper Technology and Industry, December 1976, p. 291-299 and Porous Media Fluid Transport and Pore Structure by F. A. L. Dullien, 1979, Academic Press, Inc. ISBN 0-12-223650-5.
Calculated
Variable Equation Dimensions
Permeability = k = ε 3 KS 0 2 ( 1 - ε ) 2 1 9.87 × 10 - 9 Darcys
Kozeny = Constant K = 3.5 ε 2 ( 1 - ε ) 0.5 [ 1 + 57 ( 1 - ε ) 3 ] dimension- less
Surface area per = mass of the material Sv = Σ i x i τ i , eff ρ i cm2/g
Mass weighted = average com- ponent density ρavg = ( Σ i x i ρ i ) - 1 g/cm3
Surface area per = solid volume of the material S0 = Svρavg cm−1
Porosity = ε = 1 - Σ i x i ρ web ρ i dimension- less
Effective fiber = radius τi,eff = V i SA i cm
Density of web = ρweb = BW 10 3 · t g/cm3
for long cylinders τi,eff πd i 2 L 4 πd i L = d i 4 × 10 4
for spheres ri,eff 4 3 πd i 3 8 πd i 2 = d i 6 × 10 4
where di = diameter of component i (microns)
ρi = density of component i (g/cm3)
xi = mass fraction of component i in web
BW = weight of sample/area (g/cm2)
t = thickness of sample (mm) under 0.05 psi
(23.9 dyne/cm2) or 2.39 Pascal (N/m2)
load

Permeability Example Calculation
For a structure which contains 57% southern softwood pulp, 40% superabsorbent and 3% binder fiber, and has a basis weight of 617.58 g/m2 and a bulk thickness of 5.97 mm at 0.05 psi the example permeability calculation follows. The component properties are as follows (note shape is approximated):
Diameter di Density ρi Mass
Component Shade (microns) (g/cm3) Fraction xi
Southern softwood Cylinder 13.3 1.55 0.57
Superabsorbent Sphere 1125 1.50 0.40
Binder Cylinder 17.5 0.925 0.03
ρ web ( g / cm 3 ) = BW 10 3 · t
ρ web ( g / cm 3 ) = 617.58 ( 5.97 ) 10 3
ρweb(g/cm3) = 0.1034
ε = 1 - Σ i x i ρ web ρ i
ε = 1 - 0.57 0.1034 1.55 - 0.40 0.1034 1.49 - 0.03 0.1034 0.925
ε = 0.9309
S v ( cm 2 / g ) = Σ i x i τ i , eff ρ i
S v ( cm 2 / g ) = 0.57 ( 13.3 4 × 10 4 ) × 1.55 + 0.40 ( 1125 6 × 10 4 ) × 1.49 + 0.03 ( 17.5 4 × 10 4 ) × 0.925
Sv (cm2/g) = 1194
ρ avg ( g / cm 3 ) = ( Σ i x i ρ i ) - 1
ρ avg ( g / cm 3 ) = ( 0.57 1.55 + 0.40 1.49 + 0.03 0.925 ) - 1
ρavg(g/cm3) = 1.496
S0(cm−1) = Svρavg
S0(cm−1) = 1194 × 1.496
S0(cm−1) = 1786
K = 3.5 ε 3 ( 1 - ε ) 0.5 [ 1 + 57 ( 1 - ε ) 3 ]
K = 3.5 ( 0.9309 ) 3 ( 1 - 0.9309 ) 0.5 [ 1 + 57 ( 1 - 0.9309 ) 3 ]
K = 10.94
k = ε 3 KS 0 2 ( 1 - ε ) 2 1 9.87 × 10 - 9
k = ( 0.9309 ) 3 ( 10.94 ) ( 1786 ) 2 ( 1 - 0.9309 ) 2 1 9.87 × 10 - 9
k = 491 darcys

Material Caliper (Thickness)
The caliper of a material is a measure of thickness and is measured at 0.05 psi with a Starret-type bulk tester, in units of millimeters.
Density
The density of the materials is calculated by dividing the weight per unit area of a sample in grams per square meter (gsm) by the bulk of the sample in millimeters (mm) at 68.9 Pascals and multiplying the result by 0.001 to convert the value to grams per cubic centimeter (g/cc). A total of three samples would be evaluated and averaged for the density values.
Wicking Time and Vertical Liquid Flux of an Absorbent Structure
A sample strip of material approximately 2 inches (5 cm) by 15 inches (38 cm) is placed vertically such that when the sample strip is positioned above a liquid reservoir at the beginning of the test, the bottom of the sample strip will just touch the liquid surface. The liquid used was a 8.5 g/l saline solution. The relative humidity should be maintained at about 90 to about 98 percent during the evaluation. The sample strip is placed above the known weight and volume of liquid and a stopwatch started as soon as the bottom edge of the sample strip touches the surface of the solution.
The vertical distance of the liquid front traveling up the sample strip and the liquid weight absorbed by the sample strip at various times is recorded. The time versus liquid front height is plotted to determine the Wicking Time at about 5 centimeters and at about 15 centimeters. The weight of the liquid absorbed by the sample strip from the beginning of the evaluation to about 5 centimeters and to about 15 centimeters height is also determined from the data. The Vertical Liquid Flux value of the sample strip at a particular height was calculated by dividing the grams of liquid absorbed by the sample strip by each of: the basis weight (gsm), of the sample strip; the time, in minutes, needed by the liquid to reach the particular height; and the width, in inches, of the sample strip. Capillary tension in materials not containing superabsorbents (e.g. surge materials) is measured simply by the equilibrium vertical wicking height of a 8.5 g/l saline solution after 30 minutes.
DETAILED DESCRIPTION
Traditional absorbent systems for personal care products may be generalized as having the functions of surge control and containment (retention) or SC.
Surge control materials, the “S” in SC, are provided to quickly accept the incoming insult and either absorb, hold, channel or otherwise manage the liquid so that it does not leak outside the article. The surge layer may also be referred to as an intake layer, transfer layer, transport layer and the like. A surge material must typically be capable of handling an incoming insult of between about 60 and 100 cc at an insult volumetric flow rate of from about 5 to 20 cc/sec, for infants, for example.
Containment or retention materials, the “C” in SC, must absorb the insult quickly and efficiently. They should be capable of pulling the liquid from the distribution layer and absorbing the liquid without significant “gel blocking” or blocking of penetration of liquid further into the absorbent by the expansion of the outer layers of absorbent. Retention materials are often high rate superabsorbent materials such as blends of polyacrylate superabsorbent and fluff. These materials rapidly absorb and hold liquid.
As mentioned above, traditional absorbent systems having the functions of surge control and containment usually hold the vast majority of any insult in the target area, usually the crotch. This results in personal care products having crotches which are quite wide. Examples of the holding ability and location of containment of various commercial diapers is presented in Table 3 of U.S. patent application Ser. No. 08/755,136, filed The same day and assigned to the same assignee as this application and entitled ABSORBENT ARTICLES WITH CONTROLLABLE FILL PATTERNS.
In contrast with traditional absorbent systems, the patent application ABSORBENT ARTICLES WITH CONTROLLABLE FILL PATTERNS presents an absorbent system which includes components that have been designed, arranged, and assembled so that within a certain time after each insult, liquid will be located in a pre-specified area of the absorbent system, i.e. remote from the target area. Using an absorbent system arbitrarily divided into five zones, these absorbent systems have a “fill ratio” of grams of fluid located in the center target zone, usually in the crotch, to each of the two end zones which is less than 5:1 after three insults of 100 ml separated by 30 minutes. It is preferred that this fill ratio be less than 3:1, and most preferred to be less than 2.5:1. Many currently available commercial diapers have fill ratios of 20:1, 50:1 or even greater, i.e. they hold most insult liquid in the crotch.
In addition to the surge control and containment materials in traditional absorbent systems, recent work has introduced another layer interposed between the S and C layers. This new layer is a distribution layer, producing a system with surge control, distribution and containment or “SDC”.
Distribution materials, the “D” in SDC, must be capable of moving fluid from the point of initial deposition to where storage is desired. Distribution must take place at an acceptable rate such that the target insult area, generally the crotch area, is ready for the next insult. By “ready for the next insult” it is meant that sufficient liquid has been moved out of the target zone so that the next insult results in liquid absorption and runoff within acceptable volumes. The time between insults can range from just a few minutes to hours, generally depending on the age of the wearer.
Absorbent products such as, for example, diapers, generally also have a liner which goes against the wearer, a backsheet which is the most exterior layer. An absorbent product may also contain other layers such as the multifunctional materials described in patent application Ser. No. 08/754,414, filed The same day and assigned to the same assignee as this application and entitled MULTIFUNCTIONAL ABSORBENT MATERIALS AND PRODUCTS MADE THEREFROM. The retention materials in an absorbent product may also be zoned to provide specific fill patterns and to move liquids from the target zone to remote storage areas as described in patent application Ser. No. 08/755,136, filed The same day and assigned to the same assignee as this application and entitled ABSORBENT ARTICLES WITH CONTROLLABLE FILL PATTERNS. While it may appear obvious, it should be noted that in order to function effectively, the materials used in personal care product absorbent systems must have sufficient contact to transfer liquid between them.
The liner is sometimes referred to as a bodyside liner or topsheet and is adjacent the surge material. In the thickness direction of the article, the liner material is the layer against the wearer's skin and so the first layer in contact with liquid or other exudate from the wearer. The liner further serves to isolate the wearer's skin from the liquids held in an absorbent structure and should be compliant, soft feeling and non-irritating.
Various materials can be used in forming the bodyside liner of the present invention, including apertured plastic films, woven fabrics, nonwoven webs, porous foams, reticulated foams and the like. Nonwoven materials have been found particularly suitable for use in forming the bodyside liner, including spunbond or meltblown webs of polyolefin, polyester, polyamide (or other like fiber forming polymer) filaments, or bonded carded webs of natural polymers (for example, rayon or cotton fibers) and/or synthetic polymers (for example, polypropylene or polyester) fibers. For example, the bodyside liner can be a nonwoven spunbond web of synthetic polypropylene filaments having an average fiber size (from a sample of at least 10) ranging from about 12 to about 48 microns, and more particularly from about 18 to about 43 microns. The nonwoven web can have a basis weight (for example, ranging from about 10.0 grams per square meter (gsm) to about 68.0 gsm, and more particularly from about 14.0 gsm to about 42.0 gsm, a bulk or thickness ranging from about 0.13 millimeter (mm) to about 1.0 mm, and more particularly from about 0.18 mm to about 0.55 mm, and a density between about 0.025 grams per cubic centimeter (g/cc) and about 0.12 g/cc, and more particularly between about 0.068 g/cc and about 0.083 g/cc. Additionally, the permeability of such nonwoven web can be from about 150 Darcy to about 5000 Darcy. The nonwoven web can be surface treated with a selected amount of surfactant, such as about 0.28% Triton X-102 surfactant, or otherwise processed to impart the desired level of wettability and hydrophilicity. If a surfactant is used, it can be an internal additive or applied to the web by any conventional means, such as spraying, printing, dipping, brush coating and the like.
The surge layer is most typically interposed between and in intimate, liquid communicating contact with the bodyside liner and another layer such as a distribution or retention layer. The surge layer is generally subjacent the inner (unexposed) surface of bodyside liner. To further enhance liquid transfer, it can be desirable to attach the upper and/or lower surfaces of the surge layer to the liner and the distribution layer, respectively. Suitable conventional attachment techniques may be utilized, including without limitation, adhesive bonding (using water-based, solvent-based and thermally activated adhesives), thermal bonding, ultrasonic bonding, needling and pin aperturing, as well as combination of the foregoing or other appropriate attachment methods. If, for example, the surge layer is adhesively bonded to the bodyside liner, the amount of adhesive add-on should be sufficient to provide the desired level(s) of bonding, without excessively restricting the flow of liquid from the liner into the surge layer. The surge material of this invention will be discussed in greater detail below.
As described in the previously cited, co-owned patent application MULTIFUNCTIONAL ABSORBENT MATERIALS AND PRODUCTS MADE THEREFROM, the multifunctional material has been designed to assist the surge material 1) by accepting a portion of the insult volume during forced flow, i.e. during an actual insult, 2) by desorbing the surge material of liquid during and after insults, 3) by allowing a portion of the insult volume to pass through itself (the multifunctional material) to the distribution material and 4) by permanently absorbing a portion of the liquid insult. If such a multifunctional material is used, the multifunctional material and surge should be designed to function together as described in previously cited, co-owned patent application MULTIFUNCTIONAL ABSORBENT MATERIALS AND PRODUCTS MADE THEREFROM. The basic structure of the multifunctional material is a unique blend of superabsorbent material, high bulk wet resilient pulp, and a structure stabilizing component such as a polyolefin binder fiber. The multifunctional material has a permeability of between about 100 and 10000 Darcys, a capillary tension between about 2 and 15 cm, and a runoff rate of less than 25 ml per 100 ml insult, over its life. The “life” of the multifunctional material is considered to be three insults of 100 ml each where each insult is separated by 30 minutes. In order to achieve the required capillary tension and permeability, its preferred that the multifunctional material have between 30 and 75 weight percent of slow rate superabsorbent, between 25 and 70 weight percent of pulp and from a positive amount up to about 10 percent of a binder component. The material should have a density between about 0.05 and 0.5 g/cc. The basis weight of the material will vary depending on the product application but should generally be between about 200 and 700 gsm. The multifunctional material is preferably located between the surge and distribution layers.
The distribution layer must be capable of moving fluid from the point of initial deposition to where storage is desired. Distribution must take place at an acceptable rate such that the target insult area, generally the crotch area, is ready for the next insult. The time between insults can range from just a few minutes to hours, generally depending on the age of the wearer. In order to achieve this transportation function, a distribution layer must have a high capillary tension value. Capillary tension in distribution materials is measured simply by the equilibrium wicking of a 8.5 g/ml saline solution according to the Vertical Liquid Flux rate test, not by the test method given for materials containing superabsorbents. A successful distribution layer must have a capillary tension greater than the adjacent layer (on the side toward the wearer) and preferably a capillary tension of at least about 15 cm. Because of the generally inverse relationship between capillary tension and permeability, such a high capillary tension indicates that the distribution layer will usually have a low permeability.
Another liquid transport property desired of a suitable distribution material is that it exhibit a Vertical Liquid Flux rate, at a height of about 15 centimeters, suitably of at least about 0.002 grams of liquid per minute per square meter (gsm) of distribution material per inch of cross-sectional width of the distribution material g/(min*gsm*inch), up to about 0.1 g/(min*gsm*inch). As used herein, the Vertical Liquid Flux rate value of a distribution material is meant to represent the amount of liquid transported across a boundary a specified vertical distance away from a centralized liquid insult location per minute per normalized quantity of the distribution material. The Vertical Liquid Flux rate, at a height of about 15 centimeters, of a distribution may be measured according to the test method described herein.
Another liquid transport property desired of a distribution material is that it exhibit a Vertical Liquid Flux rate, at a height of about 5 centimeters, suitably of at least about 0.01 g/(min*gsm*inch) up to about 0.5 g/(min*gsm*inch). The Vertical Liquid Flux rate, at a height of about 5 centimeters, of an absorbent structure may be measured according to the test method described herein.
Materials from which the distribution layer may be made include woven fabrics and nonwoven webs. For example, the distribution layer may be a nonwoven fabric layer composed of a meltblown or spunbond web of polyolefin, polyester, polyamide (or other web forming polymer) filaments. Such nonwoven fabric layers may include conjugate, biconstituent and homopolymer fibers of staple or other lengths and mixtures of such fibers with other types of fibers. The distribution layer also can be a bonded carded web, an airlaid web or a wetlaid pulp structure composed of natural and/or synthetic fibers, or a combination thereof. The distribution layer may have a basis weight of from 35 to 300 gsm, or more preferably from 80 to 200 gsm, a density of between about 0.1 and 0.5 g/cc and a permeability between about 50 and 1000 Darcys.
Retention materials are typically cellulosic materials or superabsorbents or mixtures thereof. Such materials are usually designed to quickly absorb liquids and hold them without, usually without release. Superabsorbents are commercially available from a number of manufactures including Dow Chemical Company of Midland, Mich. and Stockhausen Corporation of Greensboro, N.C. As described in the previously cited, co-owned patent application entitled ABSORBENT ARTICLES WITH CONTROLLABLE FILL PATTERNS, retention materials may be zoned and their composition chosen to move liquids away from the target zone to more remote storage locations. Such a design more efficiently uses the entire absorbent article, and in the case of a diaper, for example, helps allows for the production of a more narrow crotch item where “narrow crotch” means diapers having a width of at most 7.6 cm. The fill patterns and materials taught in ABSORBENT ARTICLES WITH CONTROLLABLE FILL PATTERNS result in liquid by weight in the target zone of less than 5 times that in the remote storage locations, a significant improvement over prior designs.
The backsheet is sometimes referred to as the outer cover and is the farthest layer from the wearer. The outer cover is typically formed of a thin thermoplastic film, such as polyethylene film, which is substantially impermeable to liquid. The outer cover functions to prevent body exudates contained in an absorbent structure from wetting or soiling the wearer's clothing, bedding, or other materials contacting the diaper. The outer cover may be, for example, a polyethylene film having an initial thickness of from about 0.5 mil (0.012 millimeter) to about 5.0 mil (0.12 millimeter). The polymer film outer cover may be embossed and/or matte finished to provide a more aesthetically pleasing appearance. Other alternative constructions for outer cover include woven or nonwoven fibrous webs that have been constructed or treated to impart the desired level of liquid impermeability, or laminates formed of a woven or nonwoven fabric and thermoplastic film. The outer cover may optionally be composed of a vapor or gas permeable, microporous “breathable” material, that is permeable to vapors or gas yet substantially impermeable to liquid. Breathability can be imparted in polymer films by, for example, using fillers in the film polymer formulation, extruding the filler/polymer formulation into a film and then stretching the film sufficiently to create voids around the filler particles, thereby making the film breathable. Generally, the more filler used and the higher the degree of stretching, the greater the degree of breathability. Backings may also serve the function of a mating member for mechanical fasteners, in the case, for example, where a nonwoven fabric is the outer surface.
In regard to surge materials, various woven fabrics and nonwoven webs can be used to construct a surge layer. For example, the surge layer may be a nonwoven fabric layer composed of a meltblown or spunbond web of polyolefin filaments. Such nonwoven fabric layers may include conjugate, biconstituent and homopolymer fibers of staple or other lengths and mixtures of such fibers with other types of fibers. The surge layer also can be a bonded carded web or an airlaid web composed of natural and/or synthetic fibers. The bonded carded web may, for example, be a powder bonded carded web, an infrared bonded carded web, or a through-air bonded carded web. The bonded carded webs can optionally include a mixture or blend of different fibers, and the fiber lengths within a selected web may range from about 3 mm to about 60 mm. Previous surge layers have had have a basis weight of at least about 0.50 ounce per square yard (about 17 grams per square meter), a density of at least about 0.010 gram per cubic centimeter at a pressure of 68.9 Pascals, a bulk of at least about 1.0 mm at a pressure of 68.9 Pascals, a bulk recovery of at least about 75 percent, a permeability of about 500 to about 5000 Darcy, and a surface area per void volume of at least about 20 square centimeters per cubic centimeter. Examples of surge materials may be found in U.S. Pat. No. 5,490,846 to Ellis et al. And in U.S. Pat. No. 5,364,382 to Latimer. A homogeneous surge material is disclosed in patent application Ser. No. 08/755,514, filed The same day and assigned to the same assignee as this application and entitled HIGHLY EFFICIENT SURGE MATERIAL FOR ABSORBENT ARTICLES. Surge layers may be composed of a substantially hydrophobic material, and the hydrophobic material may optionally be treated with a surfactant or otherwise processed to impart a desired level of wettability and hydrophilicity. Surge layers can have a generally uniform thickness and cross-sectional area.
Surge control materials must take insult liquids in at the rate and volume of delivery to avoid top surface pooling or runoff and keep the liquid within the material structure once it is taken in to prevent runoff. Traditional surge control materials are low density, high permeability structures with low capillary tension that facilitate intake and spreading, especially during an insult. However, these high permeability, low capillary structures exert a low level of control on the liquid and the spreading liquid can rapidly approach the perimeter of the surge control material and run out. This is a source of leakage in the crotch area of personal care products where the product width is generally less than the product length and is of special concern in narrow crotch, (less than 7.6 cm) personal care products.
If the void volume of the surge control material is maintained, the thickness of a narrow crotch surge control material must be greater than wider crotch examples or more surge control material must be made available in the length dimension of the product. Additional thickness and/or length will not be beneficial unless this extra void volume is filled with liquid prior to runout. Lower permeabilities are required to cause thicker surge control materials to fill to higher height during an insult and higher capillary tensions are required to control the liquid, keeping it in the structure as well as wicking liquid so that more void volume along the length of the product can be used. The lower permeability acts to increase liquid height and slow the planar spread from reaching the material edges while the higher capillary tension acts to hold the liquid in the material so that it will not come out at the edges during and after filling.
The benefits of lower permeability high capillary tension surge control materials is demonstrated in the patent application entitled HIGHLY EFFICIENT SURGE MATERIAL FOR ABSORBENT ARTICLES. However, as permeability is reduced, the potential for surface pooling or runoff of liquid from the top surface of the material increases, especially at high insult rates or when an insult impinges the surface of the surge control material at an acute angle, limiting liquid penetration of the surge control structure. These effects can be very dependent on user habits and use conditions. It has been found that a surge control material with a decreasing permeability gradient in the z-direction, where a capillary tension gradient can also be imparted, provides improved intake and control performance especially for high rate and volume insult conditions with narrow crotch products over many use conditions.
The surge material of this invention is designed to address a number of the important aspects of liquid intake and controlled spreading.
Liquid intake is important since it has been found that urination can occur at volumetric rates as high as 15 to 20 milliliters per second and at velocities as high as 280 centimeters per second. Failure to rapidly intake this liquid may result in leakage from the leg or front or back waist areas. The inability of an absorbent product to rapidly uptake liquid can also result in excessive pooling of liquid on the body-facing surface of the bodyside liner before the liquid is taken up by the absorbent structure. Such pooled liquid can wet the wearer's skin and can leak from leg or waist openings of the absorbent article, causing discomfort, potential skin health problems, as well as soiling of the outer clothing or bedding of the wearer.
Controlled spreading of the liquid from an insult is important, particularly in narrow crotch absorbent articles, since it increases the contact area of the layer subjacent the surge layer with the incoming liquid insult. This larger contact area more efficiently uses all of the mass of the subjacent layers.
The intake and controlled spreading objectives of this invention are achieved by using a surge material having a permeability gradient in the z direction combined with an increasing level of capillary control in the z-direction. More particularly, the inventive surge has a relatively high permeability on the side of the material towards the wearer and a relatively lower permeability on the side away from the wearer and towards the subjacent layers. Sill more particularly, the inventive surge has a permeability on the side toward the wearer of greater than 1000 Darcys and on the side away from the wearer of less than 1000 Darcys. Even more particularly, the inventive surge should have a permeability differential between the layers of at least about 250 Darcys and more particularly at least 500 Darcys.
In addition to the permeability requirements of the inventive surge material, such a surge material must also have a capillary tension gradient in the z-direction where the surge has a relatively low capillary tension on the side of the material towards the wearer and a relatively higher capillary tension on the side away from the wearer and towards the subjacent layers. More particularly, the inventive surge has a capillary tension range between about 1 and 5 cm with a differential of at least about 1 cm from top to bottom.
The exact permeabilities of a finished surge material will be dependent on the width of the absorbent article as well as the thickness of the surge material's layers. As the thickness of the surge material's high permeability upper layer is reduced, for example, the permeability of the lower layer must be reduced. As the overall width of the surge material is reduced the permeability of the lower surge layer must be reduced also. For example, if the width of the surge material is 7.6 cm and the upper layer has a permeability of 1000 Darcys and a thickness of 1.1 cm, the thickness and permeability of the lower layer should be 1.1 cm and 980 Darcys. If the width of the surge material is reduced to 5.1 cm with the same upper layer permeability and thickness, the thickness and permeability of the bottom layer should be 4 cm and 74 Darcys. If the width of the surge material is 7.6 cm and the upper layer permeability is 2000 Darcys and the thickness 0.77 cm, the thickness and permeability of the lower layer should be 1.4 cm and 590 Darcys.
The layers of the surge material may also be oriented, as determined by tensile testing, in the machine direction (MD) or cross-machine direction (CD). They may be oriented at least 3:1, MD:CD or more. Such a surge is given in Example 6.
The permeability and thickness of the upper and lower surge layers can be controlled by selecting the proper combination of fiber size and web density. Further, the materials from which the surge layers are constructed may be selected to ensure that the targeted permeability levels are maintained through numerous liquid insults. In addition, though for purposes of discussion the surge has been referred to as having two layers, the surge may have any number of layers provided the permeability and capillary tension of the overall layered structure are within the claimed invention.
A number of surge layers were tested according to the Mist Evaluation Test to determine run-off. The width of the surge material was 5.1 cm and the length 17.4 cm in Examples 1-6 to result in an available void volume of about 100 cc. The insult was delivered at a rate of 20 ml/sec in a total amount of 100 ml of 8.5 g/l saline solution at room temperature. The data is shown in the Table where the density (Den.) is in grams/cc, the number of layers in the sample is given in the “No. of Layer” column, the permeability (Perm.) is given in Darcys, the capillary tension (C.T.) is given in centimeters according to equilibrium vertical wicking, the overall sample thickness (Thick.) is in centimeters (cm), the runoff after each insult (1st R, etc.) is given in milliliters (ml) and the fluid retained after each insult (1st F, etc.) in the three right-hand columns in grams. Note that Examples 4 and 5 are multilayer surge materials as indicated in the permeability and cap. Tension columns which give the data for each component layer.
In the examples that follow the component properties used in the calculations herein were as follows:
Approximate Density Diameter
shape Denier (g/cc) (microns)
1.5 denier rayon Cylinder 1.5 1.550 11.70
1.8 denier BASF PE/PET Cylinder 1.8 1.165 14.78
3 denier BASF PE/PET Cylinder 3 1.165 19.09
10 denier BASF PE/PET Cylinder 10 1.165 34.85
Polymer Density (g/cc)
PET 1.38
PE 0.95
Rayon 1.55

Note that the relationship between denier and diameter is as follows: diameter (microns)=(denier/pi×fiber density×9×105)1/2×104.
For the surge material of this invention, the first insult run-off value should be equal to or less than 30 ml from a 100 ml insult delivered at 20 ml/second, with the remaining two insult runoffs being equal to or less than 30 ml each. In the most preferred embodiments, all three insults have run-off values less than or equal to 25 ml.
The materials described in Examples 1-4 are through air bonded carded web structures produced on a dual 40 inch (102 cm) card pilot line. The bonded carded web structures were produced at a basis weight of approximately 100 gsm. The test samples for Examples 1-4 had length and width dimensions of 6 inches (15 cm) by 2 inches (5.1 cm) respectively. Layers of 100 gsm material were plied as indicated in the Table to give the required thickness also indicated in the Table. The resulting test samples contained approximately 150 cc of total volume calculated by multiplying length times width times thickness. The test configuration, however, resulted in less than 10.2 cm of the 15.2 length accessible and usable to the insults resulting in approximately 100 cc of accessible void volume. It has been empirically found that samples in the MIST test cradle use about 2 inches of length on either side of the point of insult, or 4 inches (10.2 cm), not the entire sample length, which results in the calculated 100 cc of void volume.
EXAMPLE 1
Example 1 is a through-air bonded carded web that contains 90 weight percent of a 1.8 denier, 1.5 inch (3.8 cm) conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers and 10 weight percent of a 1.5 denier, 1.5 inch rayon fiber. The PE/PET fibers are available from BASF Fibers, 6805 Morrison Boulevard, Charlotte, N.C. 28211-3577 and were conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers with a polyethylene glycol based C S-2 finish. The rayon fibers were 1.5 denier Merge 18453 fibers from Courtaulds Fibers Incorporated of Axis, Ala.
EXAMPLE 2
Examples 2 is a through-air bonded carded web that contains 90 weight percent of a 3.0 denier, 1.5 inch conjugate sheath/core PE/PET fibers and 10 weight percent of 1.5 denier, 1.5 inch rayon fiber. The PE/PET fibers are available from BASF Fibers, 6805 Morrison Boulevard, Charlotte, N.C. 28211-3577 and were conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers with a polyethylene glycol based C S-2 finish.
EXAMPLE 3
Examples 3 is a through-air bonded carded web that contains 90 weight percent of a 10.0 denier, 1.5 inch conjugate sheath/core PE/PET fibers and 10 weight percent of 1.5 denier, 1.5 inch rayon fiber. The PE/PET fibers are available from BASF Fibers, 6805 Morrison Boulevard, Charlotte, N.C. 28211-3577 and were conjugate sheath/core polyethylene/polyethylene terephthalate (PE/PET) fibers with a polyethylene glycol based C S-2 finish.
EXAMPLE 4
Examples 4 is a two component gradient structure meeting the criteria of the invention. The top component is as given in Example 3 and the bottom as given in Example 1.
EXAMPLE 5
Examples 5 is a two component gradient structure meeting the criteria of the invention. The top component is as given in Example 2 and the bottom as given in Example 1.
EXAMPLE 6
Example 6 is a two component gradient structure meeting the criteria of the invention. The top component is a homogeneous blend of 60 weight percent 3.0 denier, 1.5 inch conjugate PE/PET fiber and 40 weight percent 6 denier, 1.5 inch PET fiber. Nine layers of each component were plied together to produce material for testing.
The top component fibers were from the Hoechst Celanese Corporation, Charlotte, N.C. under the codes T256 and T295 respectively. The top component had a basis weight of about 1.5 osy (50 gsm) and a density of about 0.014 g/cc. The top component blend was carded using a Master Card with a Web-Master® take off roll from John D. Hollingworth of Wheels, Inc., Greenville, N.C. The top component had about a 3 to 5:1 MD:CD fiber orientation ratio as determined by tensile strength ratios in the MD and CD.
The bottom component was 100 weight percent 2.2 denier, 1.5 inch polypropylene fiber available from the Hercules Chemical Co., Wilmington, Del. under the code T186 and had a basis weight of about 1.0 osy (35 gsm). After through air bonding this layer had a density of about 0.067 g/cc. This layer was carded using a Master Card with a Dof-Master® take off roll from John D. Hollingsworth on Wheels, Inc. The bottom component had about a 12 to 15:1 MC:CD fiber orientation ratio as determined by tensile strength ratios.
The top component had a capillary tension of about 0.6 and the bottom about 2.7 cm.
EXAMPLE 7
Example 7 is a two component gradient structure similar to Example 6 meeting the criteria of the invention. The top component is a homogeneous blend of 30 weight percent 3.0 denier, 1.5 inch conjugate PE/PET fiber and 70 weight percent 6 denier, 1.5 inch PET fiber. The bottom component was 100 weight percent 2.2 denier, 1.5 inch polypropylene fiber. The suppliers and basis weights of each layer were the same as in Example 6. Neither layer was carded to increase orientation.
TABLE
Ex. No. of layers Den. Perm. C.T. Thick. 1st R 2nd R 3rd R 1st F 2nd F 3rd F
1 10 0.056  500 3.0 1.93 18 38 28 29.6 23.0 23.2
2 7 0.036 1650 1.7 2.08 37 25 23 7.0 9.5 11.0
3 9 0.047 2500 1.2 2.03 36 34 31 3.1 3.9 4.4
4 4 of 3/5 of 1 0.052 2500/500 1.2/3.0 1.85 25 23 19 4.9 6.0 6.7
5 3 of 2/5 of 1 0.047 1650/500 1.7/3.0 1.85 29 20 20 6.3 7.7 8.5
6 18 0.024 7645/770 0.6/2.6 2.09 29 29 28 N/A N/A N/A
7 2 N/A 3400/770 N/A N/A N/A N/A N/A N/A N/A N/A
!
It is quite striking from examining the data in the Table that a multilayer surge material of about the same thickness as a single layer surge material can have better (lower) runoff results. This may be seen by comparing Example 3 to Examples 4 and 5, which, while slightly thinner overall, have lower runoff values than homogeneous, high permeability Example 3. Such a result is counterintuitive.
Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. In the claims, means plus function claims are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures.

Claims (29)

1. A surge material for personal care products comprising a layered structure of at least one relatively high permeability layer on a top side toward a wearer and at least one relatively low permeability layer, wherein said structure has a capillary tension range between about 1 and 5 cm with a differential of at least about 1 cm from top to bottom.
2. The surge material of claim 1 wherein said high permeability layer has a permeability of at least 1000 Darcys and said low permeability layer has a permeability of less than 1000 Darcys.
3. The surge material of claim 2 wherein said high permeability layer has a permeability of at least 250 Darcys greater than said low permeability layer.
4. The surge material of claim 2 wherein said high permeability layer has a permeability of at least 500 Darcys greater than said low permeability layer.
5. A personal care product selected from the group consisting of diapers, training pants, absorbent underpants, adult incontinence products and feminine hygiene products comprising the material of claim 1.
6. The surge material of claim 1 wherein said high permeability layer is oriented.
7. The surge material of claim 1 wherein said low permeability layer is oriented.
8. The surge material of claim 1 wherein said high and low permeability layers are oriented.
9. The product of claim 3 wherein said personal care product is a feminine hygiene product.
10. The product of claim 3 wherein said personal care product is an adult incontinence product.
11. The product of claim 3 wherein said personal care product is a diaper.
12. The diaper of claim 11 having a crotch width of at most 7.6 cm.
13. The surge material of claim 2 having a thickness of less than 3 cm.
14. The surge material of claim 1 wherein a first insult run-off value is at most 30 ml from a 100 ml insult delivered at 20 ml/second.
15. The surge material of claim 14 wherein two additional insult runoffs are at most 30 ml each.
16. The surge material of claim 15 wherein all three insults have run-off values of at most 25 ml.
17. A surge material for personal care products comprising a layered structure of at least one relatively high permeability layer on a side toward a wearer and at least one relatively low permeability layer, wherein said relatively high permeability layer has a capillary tension range between about 1 and 2.5 cm and said relatively low permeability layer has a capillary tension range between about 2.5 and 5 cm.
18. The surge material of claim 17 wherein said high permeability layer is oriented.
19. The surge material of claim 17 wherein said low permeability layer is oriented.
20. The surge material of claim 17 wherein said high and low permeability layers are oriented.
21. A surge material for personal care products comprising a layered structure of at least one relatively high permeability layer on a side toward a wearer and at least one relatively low permeability layer, wherein said relatively high permeability layer is comprised of conjugate sheath/core microfibers and has a permeability at least 500 Darcys greater than said low permeability layer and a capillary tension range between about 1 and 2 cm, and said relatively low permeability layer comprises homopolymer microfibers and has a capillary tension range between about 2.5 and 5 cm, wherein at least one of said layers has an orientation of at least 3:1 in MD:CD.
22. The surge material of claim 21 wherein said high permeability layer is oriented.
23. The surge material of claim 21 wherein said low permeability layer is oriented.
24. The surge material of claim 21 wherein said high and low permeability layers are oriented.
25. An absorbent article for absorption of liquids, said article comprising:
an absorbent core structure containing liquid retention materials,
an outer porous non-woven bodyside liner over said absorbent core structure,
a nonwoven surge material between said bodyside liner and said absorbent core structure to provide for intake of liquids from said bodyside liner, said surge material comprising a layered structure having at least one first surge layer and at least one second surge layer,
said at least one first surge layer being adjacent said nonwoven bodyside liner and having a first density, and comprising fibers of a first average denier, and
said at least one second surge layer being adjacent said at least one first surge layer, said second surge layer having a second density greater than said first density and comprising fibers of a second average denier which is smaller than said first average denier.
26. The absorbent article of claim 25 wherein said fibers in said at least one first surge layer and said at least one second surge layer differ on average by at least about one denier.
27. The absorbent article of claim 26 wherein the fibers in said at least one first surge layer have an average denier up to about 8 denier and the fibers in the said at least one second surge layer have an average denier of about 2 denier or less.
28. The absorbent article of claim 25 wherein said at least one first surge layer and said at least one second surge layer comprise thermally bondable bicomponent fibers.
29. The absorbent article of claim 25 wherein the denier of the fibers in said at least one first surge layer and said at least one second surge layer on average differ by more than about 2.5 denier.
US09/314,492 1996-11-22 1999-05-18 Heterogeneous surge material for absorbent articles Expired - Lifetime USRE39919E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/314,492 USRE39919E1 (en) 1996-11-22 1999-05-18 Heterogeneous surge material for absorbent articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/754,417 US5820973A (en) 1996-11-22 1996-11-22 Heterogeneous surge material for absorbent articles
US09/314,492 USRE39919E1 (en) 1996-11-22 1999-05-18 Heterogeneous surge material for absorbent articles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US08/754,417 Reissue US5820973A (en) 1996-11-22 1996-11-22 Heterogeneous surge material for absorbent articles

Publications (1)

Publication Number Publication Date
USRE39919E1 true USRE39919E1 (en) 2007-11-13

Family

ID=25034709

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/754,417 Ceased US5820973A (en) 1996-11-22 1996-11-22 Heterogeneous surge material for absorbent articles
US09/314,492 Expired - Lifetime USRE39919E1 (en) 1996-11-22 1999-05-18 Heterogeneous surge material for absorbent articles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/754,417 Ceased US5820973A (en) 1996-11-22 1996-11-22 Heterogeneous surge material for absorbent articles

Country Status (14)

Country Link
US (2) US5820973A (en)
EP (1) EP0952800B1 (en)
KR (1) KR20000069073A (en)
CN (1) CN1170513C (en)
AR (1) AR010629A1 (en)
AU (1) AU723912C (en)
BR (1) BR9713392A (en)
CA (1) CA2269805C (en)
DE (1) DE69738541T2 (en)
ID (1) ID23975A (en)
PL (1) PL186431B1 (en)
RU (1) RU2192834C2 (en)
TR (1) TR199901138T2 (en)
WO (1) WO1998022068A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9029277B2 (en) 2010-08-04 2015-05-12 Polymer Group, Inc. Breathable laminate and method of making same
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9498384B2 (en) 2011-12-01 2016-11-22 Leigh E. Wood Assembled intermediate comprising staple fiber nonwoven web and articles
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9763837B2 (en) 2011-12-01 2017-09-19 Sca Hygiene Products Ab Absorbent article having fluid flow control member
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US9789013B2 (en) 2011-06-23 2017-10-17 Kimberly-Clark Worldwide, Inc Disposable absorbent article with side lying leakage improvement
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US20180092787A1 (en) * 2013-05-03 2018-04-05 Knix Wear Inc. Absorbent garment
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
US10052242B2 (en) 2014-05-27 2018-08-21 The Procter & Gamble Company Absorbent core with absorbent material pattern
US10149788B2 (en) 2011-06-10 2018-12-11 The Procter & Gamble Company Disposable diapers
US10292875B2 (en) 2013-09-16 2019-05-21 The Procter & Gamble Company Absorbent articles with channels and signals
US10441481B2 (en) 2014-05-27 2019-10-15 The Proctre & Gamble Company Absorbent core with absorbent material pattern
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US11154431B1 (en) 2020-11-06 2021-10-26 Mast Industries (Far East) Limited Absorbent garment and method of manufacture thereof
US11273086B2 (en) 2013-06-14 2022-03-15 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US11497263B1 (en) 2021-07-08 2022-11-15 Knix Wear Inc. Garments with moisture capture assemblies and associated methods
US11590034B2 (en) 2021-07-08 2023-02-28 Knix Wear Inc. Reusable absorbent accessories and associated methods
US11701267B2 (en) 2021-10-25 2023-07-18 Knix Wear Inc. Garments with moisture capture assemblies and associated methods
US12048335B2 (en) 2022-07-29 2024-07-30 Knix Wear Inc. Lower body garments with an interior lining and related methods
US12097103B1 (en) 2023-06-01 2024-09-24 Knix Wear Inc. Garments with fluid retention assemblies and related methods

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6152904A (en) * 1996-11-22 2000-11-28 Kimberly-Clark Worldwide, Inc. Absorbent articles with controllable fill patterns
US6734335B1 (en) 1996-12-06 2004-05-11 Weyerhaeuser Company Unitary absorbent system
US20050090789A1 (en) * 1996-12-06 2005-04-28 Graef Peter A. Absorbent composite having improved surface dryness
EP0941157B1 (en) * 1996-12-06 2004-02-04 Weyerhaeuser Company Unitary stratified composite
US6383960B1 (en) * 1997-10-08 2002-05-07 Kimberly-Clark Worldwide, Inc. Layered absorbent structure
US6168849B1 (en) 1997-11-14 2001-01-02 Kimberly-Clark Worldwide, Inc. Multilayer cover system and method for producing same
US6710225B1 (en) 1998-06-15 2004-03-23 Kimberly-Clark Worldwide, Inc. Layered absorbent structure with a zoned basis weight
AU8378298A (en) * 1998-06-29 2000-01-17 Procter & Gamble Company, The Liquid transport member having high permeability bulk regions and high thresholdpressure port regions
US6727403B1 (en) 1998-06-29 2004-04-27 The Procter & Gamble Company Absorbent article exhibiting high sustained acquisition rates
AU8272398A (en) * 1998-06-29 2000-01-17 Procter & Gamble Company, The Liquid transport member for high flux rates between two port regions
AU8271698A (en) * 1998-06-29 2000-01-17 Procter & Gamble Company, The High flux liquid transport members comprising two different permeability regions
US6673057B1 (en) 1998-06-29 2004-01-06 The Procter & Gamble Company High flux liquid transport members comprising two different permeability regions
WO2000000130A1 (en) * 1998-06-29 2000-01-06 The Procter & Gamble Company Liquid transport member for high flux rates against gravity
EP1091887A1 (en) * 1998-06-29 2001-04-18 The Procter & Gamble Company Packaged prodcut and device with dispensing means
US6410823B1 (en) * 1998-06-30 2002-06-25 Kimberly-Clark Worldwide, Inc. Apertured film covers with localized wettability and method for making the same
US6248097B1 (en) 1998-08-06 2001-06-19 Kimberly-Clark Worldwide, Inc. Absorbent article with more conformable elastics
US6652693B2 (en) 1998-08-06 2003-11-25 Kimberly-Clark Worldwide, Inc. Process for applying adhesive in an article having a strand material
US6235137B1 (en) 1998-08-06 2001-05-22 Kimberly-Clark Worldwide, Inc. Process for manufacturing an elastic article
US6582817B2 (en) 1999-11-19 2003-06-24 Wellman, Inc. Nonwoven fabrics formed from polyethylene glycol modified polyester fibers and method for making the same
US6623853B2 (en) 1998-08-28 2003-09-23 Wellman, Inc. Polyethylene glycol modified polyester fibers and method for making the same
US6706945B1 (en) 1998-11-04 2004-03-16 Kimberly-Clark Worldwide, Inc. Absorbent article with improved, wet-formed absorbent
US6323388B1 (en) 1998-11-04 2001-11-27 Kimberly-Clark Worldwide, Inc. Absorbent article with an improved, wet-formed absorbent
US6231557B1 (en) 1999-09-01 2001-05-15 Kimberly-Clark Worldwide, Inc. Absorbent product containing an elastic absorbent component
EP1154744B1 (en) * 1998-12-09 2008-01-16 Kimberly-Clark Worldwide, Inc. Multi-layer liners for personal care products
DE19983835T1 (en) * 1998-12-24 2003-10-09 Kimberly Clark Co Absorbent arrangement and manufacturing process
US6245051B1 (en) 1999-02-03 2001-06-12 Kimberly-Clark Worldwide, Inc. Absorbent article with a liquid distribution, belt component
US6214274B1 (en) 1999-05-14 2001-04-10 Kimberly-Clark Worldwide, Inc. Process for compressing a web which contains superabsorbent material
DE19931192C1 (en) * 1999-07-07 2000-10-19 Sandler C H Gmbh Absorber and distributor element for liquids in absorbent articles comprises fleece layer in which microfiber proportion increases with distance from layer top surface
US6663611B2 (en) * 1999-09-28 2003-12-16 Kimberly-Clark Worldwide, Inc. Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover
US6783837B1 (en) 1999-10-01 2004-08-31 Kimberly-Clark Worldwide, Inc. Fibrous creased fabrics
US6627789B1 (en) 1999-10-14 2003-09-30 Kimberly-Clark Worldwide, Inc. Personal care product with fluid partitioning
US6723892B1 (en) * 1999-10-14 2004-04-20 Kimberly-Clark Worldwide, Inc. Personal care products having reduced leakage
US6509091B2 (en) 1999-11-19 2003-01-21 Wellman, Inc. Polyethylene glycol modified polyester fibers
US20030018313A1 (en) * 1999-12-16 2003-01-23 Tanzer Richard Warren Absorbent structure and method
US6437214B1 (en) 2000-01-06 2002-08-20 Kimberly-Clark Worldwide, Inc. Layered absorbent structure with a zoned basis weight and a heterogeneous layer region
US6361634B1 (en) 2000-04-05 2002-03-26 Kimberly-Clark Worldwide, Inc. Multiple stage coating of elastic strands with adhesive
US6489534B1 (en) 2000-04-28 2002-12-03 Kimberly-Clark Worldwide, Inc. Disposable personal articles which conform and adhere
ZA200209184B (en) * 2000-05-19 2004-02-11 Kimberly Clark Co Topsheet and transfer layer for an absorbent article.
CN1477978A (en) * 2000-12-07 2004-02-25 韦尔豪泽公司 Distribution layer having improved liquid transfer to storage layer
US6664437B2 (en) 2000-12-21 2003-12-16 Kimberly-Clark Worldwide, Inc. Layered composites for personal care products
US6759567B2 (en) 2001-06-27 2004-07-06 Kimberly-Clark Worldwide, Inc. Pulp and synthetic fiber absorbent composites for personal care products
US6838590B2 (en) 2001-06-27 2005-01-04 Kimberly-Clark Worldwide, Inc. Pulp fiber absorbent composites for personal care products
JP3647797B2 (en) * 2001-11-28 2005-05-18 コナミ株式会社 Image display program, image display method, and video game apparatus
US7615040B2 (en) * 2001-12-19 2009-11-10 Kimberly-Clark Worldwide, Inc. Thin, flexible, low capacity absorbent article with leakage protection
US6679104B2 (en) 2001-12-20 2004-01-20 Kimberly-Clark Worldwide, Inc. Matched material combinations for absorbent articles and the like
US20050101929A1 (en) * 2002-01-17 2005-05-12 Andrew Waksmundzki Absorbent core with three-dimensional sub-layer
US20030199219A1 (en) * 2002-04-19 2003-10-23 Hayes Heather J. Patterned nonwoven fabric
US8328780B2 (en) * 2002-11-21 2012-12-11 Kimberly-Clark Worldwide, Inc. Absorbent article with elastomeric bordered material
US7294593B2 (en) * 2002-11-21 2007-11-13 Kimberly-Clark Worldwide, Inc. Absorbent article material with elastomeric borders
US7855316B2 (en) * 2002-12-20 2010-12-21 Kimberly-Clark Worldwide, Inc. Preferentially stretchable laminates with perforated layers
US7727217B2 (en) 2002-12-20 2010-06-01 Kimberly-Clark Worldwide, Inc Absorbent article with unitary elastomeric waistband with multiple extension zones
US20040122408A1 (en) * 2002-12-24 2004-06-24 Potnis Prasad S. Dry-blend elastomer for elastic laminates
US7943813B2 (en) 2002-12-30 2011-05-17 Kimberly-Clark Worldwide, Inc. Absorbent products with enhanced rewet, intake, and stain masking performance
US8216203B2 (en) * 2003-01-01 2012-07-10 Kimberly-Clark Worldwide, Inc. Progressively functional stretch garments
US20050027267A1 (en) * 2003-07-31 2005-02-03 Van Dyke Wendy Lynn Absorbent article with improved fit and free liquid intake
US7160281B2 (en) 2003-10-21 2007-01-09 Kimberly-Clark Worldwide, Inc. Absorbent article having an absorbent structure secured to a stretchable component of the article
US20050119632A1 (en) * 2003-11-03 2005-06-02 Sierra Alisa K. Absorbent structure featuring high density and flexibility
US7073373B2 (en) * 2003-11-24 2006-07-11 Kimberly-Clark Worldwide, Inc. Absorbent structure having enhanced intake performance characteristics and method for evaluating such characteristics
US20050124948A1 (en) * 2003-12-08 2005-06-09 Kimberly-Clark Worldwide, Inc. Absorbent article with elastomeric bordered necked material bodyside liner and method of making
US7662745B2 (en) 2003-12-18 2010-02-16 Kimberly-Clark Corporation Stretchable absorbent composites having high permeability
US20050148975A1 (en) * 2003-12-31 2005-07-07 Kimberly-Clark Worldwide, Inc. Disposable garment having an elastic inner layer with a narrow width in the crotch region
US7658732B2 (en) 2003-12-31 2010-02-09 Kimberly-Clark Worldwide, Inc. Dual-layered disposable garment
US7329794B2 (en) 2003-12-31 2008-02-12 Kimberly-Clark Worldwide, Inc. Disposable absorbent garment with elastic inner layer having multiple fasteners
US7344523B2 (en) 2003-12-31 2008-03-18 Kimberly-Clark Worldwide, Inc. Dual-layered disposable garment having tailored stretch characteristics
US7648771B2 (en) * 2003-12-31 2010-01-19 Kimberly-Clark Worldwide, Inc. Thermal stabilization and processing behavior of block copolymer compositions by blending, applications thereof, and methods of making same
US8167861B2 (en) 2003-12-31 2012-05-01 Kimberly-Clark Worldwide, Inc. Disposable garment with stretchable absorbent assembly
US7297226B2 (en) 2004-02-11 2007-11-20 Georgia-Pacific Consumer Products Lp Apparatus and method for degrading a web in the machine direction while preserving cross-machine direction strength
US8246594B2 (en) 2004-04-30 2012-08-21 Kimberly-Clark Worldwide, Inc. Absorbent article having an absorbent structure configured for improved donning and lateral stretch distribution
US20050256758A1 (en) * 2004-04-30 2005-11-17 Sierra Alisa K Method of manufacturing and method of marketing gender-specific absorbent articles having liquid-handling properties tailored to each gender
US20050256757A1 (en) * 2004-04-30 2005-11-17 Sierra Alisa K Method of manufacturing and method of marketing gender-specific absorbent articles having liquid-handling properties tailored to each gender
US7993319B2 (en) 2004-04-30 2011-08-09 Kimberly-Clark Worldwide, Inc. Absorbent article having an absorbent structure configured for improved donning of the article
US8496638B2 (en) * 2004-06-30 2013-07-30 Kimberly-Clark Worldwide, Inc. Absorbent articles having a waist region and corresponding fasteners that have matching stretch properties
US7718844B2 (en) * 2004-06-30 2010-05-18 Kimberly-Clark Worldwide, Inc. Absorbent article having an interior graphic
US8377023B2 (en) 2004-06-30 2013-02-19 Kimberly-Clark Worldwide, Inc. Absorbent garments with tailored stretch properties in the lateral direction
US7772456B2 (en) 2004-06-30 2010-08-10 Kimberly-Clark Worldwide, Inc. Stretchable absorbent composite with low superaborbent shake-out
US7938813B2 (en) 2004-06-30 2011-05-10 Kimberly-Clark Worldwide, Inc. Absorbent article having shaped absorbent core formed on a substrate
US8066685B2 (en) 2004-06-30 2011-11-29 Kimberly-Clark Worldwide, Inc. Stretchable absorbent article having lateral and longitudinal stretch properties
US20060069360A1 (en) * 2004-09-29 2006-03-30 Kimberly-Clark Worldwide, Inc. Absorbent article with insult indicators
US20060069361A1 (en) * 2004-09-29 2006-03-30 Kimberly-Clark Worldwide, Inc. Absorbent article component having applied graphic, and process for making same
US20060069367A1 (en) * 2004-09-29 2006-03-30 Andrew Waksmundzki Absorbent core having two or more types of superabsorbent
US7704589B2 (en) * 2004-09-30 2010-04-27 Kimberly-Clark Worldwide, Inc. Absorbent garment with color changing fit indicator
US20060135933A1 (en) * 2004-12-21 2006-06-22 Newlin Seth M Stretchable absorbent article featuring a stretchable segmented absorbent
US20060149208A1 (en) * 2004-12-30 2006-07-06 Kimberly-Clark Worldwide, Inc. Absorbent article with elastomeric end regions
US20060144503A1 (en) * 2004-12-30 2006-07-06 Kimberly-Clark Worldwide, Inc. Method of making absorbent articles with elastomeric end regions
US20060173433A1 (en) * 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US20060173431A1 (en) 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US20060173432A1 (en) 2005-02-01 2006-08-03 Laumer Jason M Absorbent articles comprising polyamine-coated superabsorbent polymers
US20060246272A1 (en) * 2005-04-29 2006-11-02 Zhang Xiaomin X Thermoplastic foam composite
US7394391B2 (en) * 2005-04-29 2008-07-01 Kimberly-Clark Worldwide, Inc. Connection mechanisms in absorbent articles for body fluid signaling devices
US7871401B2 (en) * 2005-04-29 2011-01-18 Kimberly-Clark Worldwide, Inc. Absorbent article with improved fit
US8377027B2 (en) 2005-04-29 2013-02-19 Kimberly-Clark Worldwide, Inc. Waist elastic members for use in absorbent articles
US20060247599A1 (en) * 2005-04-29 2006-11-02 Kimberly-Clark Worldwide, Inc. Garment having an outer shell that freely moves in relation to an absorbent assembly therein
US7477156B2 (en) 2005-04-29 2009-01-13 Kimberly-Clark Worldwide, Inc. Connection mechanisms in absorbent articles for body fluid signaling devices
CN101242795B (en) * 2005-08-19 2012-06-20 宝洁公司 Absorbent article
US7649125B2 (en) * 2005-08-31 2010-01-19 Kimberly-Clark Worldwide, Inc. Method of detecting the presence of an insult in an absorbent article and device for detecting the same
US7355090B2 (en) * 2005-08-31 2008-04-08 Kimberly-Clark Worldwide, Inc. Method of detecting the presence of insults in an absorbent article
US7915476B2 (en) * 2005-08-31 2011-03-29 Kimberly-Clark Worldwide, Inc. Absorbent article for interactive toilet training
US7498478B2 (en) * 2005-08-31 2009-03-03 Kimberly-Clark Worldwide, Inc. Method of detecting the presence of an insult in an absorbent article
US8304598B2 (en) * 2005-12-15 2012-11-06 Kimberly-Clark Worldwide, Inc. Garments with easy-to-use signaling device
US7322925B2 (en) * 2005-12-15 2008-01-29 Kimberly-Clark Worldwide, Inc. Apparatus and method for making pre-fastened absorbent undergarments
US7335150B2 (en) 2005-12-15 2008-02-26 Kimberly-Clark Worldwide, Inc. Apparatus for making pre-fastened absorbent undergarments
US20070142797A1 (en) * 2005-12-15 2007-06-21 Kimberly-Clark Worldwide, Inc. Garments with easy-to-use signaling device
US8491556B2 (en) 2005-12-15 2013-07-23 Kimberly-Clark Worldwide, Inc. Absorbent garments with multipart liner having varied stretch properties
US7737322B2 (en) * 2005-12-21 2010-06-15 Kimberly-Clark Worldwide, Inc. Personal care products with microchemical sensors for odor detection
WO2007087674A1 (en) * 2006-02-01 2007-08-09 Commonwealth Scientific And Industrial Research Organisation Moisture monitor system for diapers and alike
US7790640B2 (en) * 2006-03-23 2010-09-07 Kimberly-Clark Worldwide, Inc. Absorbent articles having biodegradable nonwoven webs
US7489252B2 (en) 2006-04-26 2009-02-10 Kimberly-Clark Worldwide, Inc. Wetness monitoring systems with status notification system
US7595734B2 (en) 2006-04-26 2009-09-29 Kimberly-Clark Worldwide, Inc. Wetness monitoring systems with power management
US20070255241A1 (en) * 2006-04-27 2007-11-01 Kimberly-Clark Worldwide, Inc. Absorbent article with integrated themes
US8378167B2 (en) * 2006-04-27 2013-02-19 Kimberly-Clark Worldwide, Inc. Array of wetness-sensing articles
US20070255242A1 (en) * 2006-04-27 2007-11-01 Kimberly-Clark Worldwide, Inc. Wetness-sensing absorbent articles
US8440877B2 (en) * 2006-05-31 2013-05-14 Kimberly-Clark Worldwide, Inc. Alignment aids for a sensing article
US8319004B2 (en) * 2006-08-17 2012-11-27 Kimberly-Clark Worldwide, Inc. Training article for delivering unique sensations
US20080052030A1 (en) * 2006-08-22 2008-02-28 Kimberly-Clark Worldwide, Inc. Method of predicting an incontinent event
US7449614B2 (en) 2006-08-29 2008-11-11 Kimberly-Clark Worldwide, Inc. Absorbent articles including a monitoring system powered by ambient energy
US20080058740A1 (en) * 2006-08-29 2008-03-06 Sullivan Shawn J Sensing article for a home automation network
US20080058747A1 (en) * 2006-08-31 2008-03-06 Arvinder Pal Singh Kainth Absorbent articles comprising superabsorbent polymers having superior properties
US7504550B2 (en) * 2006-08-31 2009-03-17 Kimberly-Clark Worldwide, Inc. Conductive porous materials
US20080057693A1 (en) * 2006-08-31 2008-03-06 Kimberly-Clark Worldwide, Inc. Electrical conductivity bridge in a conductive multilayer article
US20080054408A1 (en) * 2006-08-31 2008-03-06 Kimberly-Clark Worldwide, Inc. Conduction through a flexible substrate in an article
US7834235B2 (en) * 2006-08-31 2010-11-16 Kimberly-Clark Worldwide, Inc. System for interactively training a child and a caregiver to assist the child to overcome bedwetting
US8697933B2 (en) * 2006-09-29 2014-04-15 Kimberly-Clark Worldwide, Inc. Toilet training using sensor and associated articles
US8604268B2 (en) * 2006-09-29 2013-12-10 Kimberly-Clark Worldwide, Inc. Sensor and associated articles for toilet training
US20080082069A1 (en) * 2006-10-02 2008-04-03 Jian Qin Absorbent articles comprising carboxyalkyl cellulose fibers having non-permanent and temporary crosslinks
US20080082068A1 (en) * 2006-10-02 2008-04-03 Jian Qin Absorbent articles comprising carboxyalkyl cellulose fibers having permanent and non-permanent crosslinks
US7875066B2 (en) * 2006-12-11 2011-01-25 Kimberly-Clark Worldwide, Inc. Thermal grill for heating articles
US8053625B2 (en) * 2006-12-14 2011-11-08 Kimberly-Clark Worldwide, Inc. Absorbent articles including a body fluid signaling device
US9078742B2 (en) 2006-12-15 2015-07-14 Kimberly-Clark Worldwide, Inc. Self-activated cooling device
US20080147152A1 (en) 2006-12-15 2008-06-19 Kimberly-Clark Worldwide, Inc. Self-activated warming device
US20080221539A1 (en) * 2007-03-05 2008-09-11 Jean Jianqun Zhao Absorbent core for disposable absorbent article
US7935860B2 (en) * 2007-03-23 2011-05-03 Kimberly-Clark Worldwide, Inc. Absorbent articles comprising high permeability superabsorbent polymer compositions
US8383877B2 (en) 2007-04-28 2013-02-26 Kimberly-Clark Worldwide, Inc. Absorbent composites exhibiting stepped capacity behavior
US20080266122A1 (en) * 2007-04-30 2008-10-30 Kimberly-Clark Worldwide, Inc. Wetness sensor with audible signal for an absorbent article
US8264362B2 (en) * 2007-04-30 2012-09-11 Kimberly-Clark Worldwide, Inc. Embedded antenna for sensing article
US8334425B2 (en) 2007-06-27 2012-12-18 Kimberly-Clark Worldwide, Inc. Interactive garment printing for enhanced functionality of absorbent articles
US8697934B2 (en) 2007-07-31 2014-04-15 Kimberly-Clark Worldwide, Inc. Sensor products using conductive webs
US8058194B2 (en) * 2007-07-31 2011-11-15 Kimberly-Clark Worldwide, Inc. Conductive webs
US8372766B2 (en) * 2007-07-31 2013-02-12 Kimberly-Clark Worldwide, Inc. Conductive webs
US7700821B2 (en) * 2007-08-30 2010-04-20 Kimberly-Clark Worldwide, Inc. Method and device for determining the need to replace an absorbent article
US8383875B2 (en) * 2007-08-30 2013-02-26 Kimberly-Clark Worldwide, Inc. Wetness indicator with hydrophanous element for an absorbent article
US20090062756A1 (en) * 2007-08-31 2009-03-05 Andrew Mark Long Signaling Device For Disposable Products
US8226624B2 (en) * 2007-08-31 2012-07-24 Kimberly-Clark Worldwide, Inc. Elastic member for a garment having improved gasketing
US8039683B2 (en) 2007-10-15 2011-10-18 Kimberly-Clark Worldwide, Inc. Absorbent composites having improved fluid wicking and web integrity
US8497409B2 (en) * 2008-02-29 2013-07-30 Kimberly-Clark Worldwide, Inc. Absorbent article having an olfactory wetness signal
US20090247979A1 (en) * 2008-03-31 2009-10-01 Kimberly-Clark Worldwide, Inc. Absorbent article with graphic elements
RU2496933C2 (en) * 2008-05-29 2013-10-27 Кимберли-Кларк Ворлдвайд, Инк. Conductive fabrics comprising electrical pathways and method of their manufacture
US7760101B2 (en) * 2008-06-20 2010-07-20 Kimberly-Clark Worldwide, Inc. Method of reducing sensor corrosion in absorbent articles
US8628506B2 (en) 2008-06-30 2014-01-14 Kimberly-Clark Worldwide, Inc. Multifunctional monitoring device for absorbent articles
US7924142B2 (en) 2008-06-30 2011-04-12 Kimberly-Clark Worldwide, Inc. Patterned self-warming wipe substrates
US8101813B2 (en) * 2008-10-30 2012-01-24 Kimberly-Clark Worldwide, Inc. Training progress indicator
US8361046B2 (en) * 2008-10-31 2013-01-29 Kimberly-Clark Worldwide, Inc. Absorbent garments with improved fit in the front leg area
US8172982B2 (en) 2008-12-22 2012-05-08 Kimberly-Clark Worldwide, Inc. Conductive webs and process for making same
US20100168694A1 (en) 2008-12-31 2010-07-01 Sudhanshu Gakhar Infrared Wetness Detection System For An Absorbent Article
US8866624B2 (en) 2008-12-31 2014-10-21 Kimberly-Clark Worldwide, Inc. Conductor-less detection system for an absorbent article
US8274393B2 (en) 2008-12-31 2012-09-25 Kimberly-Clark Worldwide, Inc. Remote detection systems for absorbent articles
USD656852S1 (en) 2010-08-06 2012-04-03 Kimberly-Clark Worldwide, Inc. Wetness indicator
US9018434B2 (en) 2010-08-06 2015-04-28 Kimberly-Clark Worldwide, Inc. Absorbent articles with intricate graphics
US8552251B2 (en) 2010-10-08 2013-10-08 Kimberly-Clark Worldwide, Inc. Article with health-benefit agent delivery system
US8698641B2 (en) 2010-11-02 2014-04-15 Kimberly-Clark Worldwide, Inc. Body fluid discriminating sensor
US8642832B2 (en) 2010-11-10 2014-02-04 Kimberly-Clark Worldwide, Inc. Apparatus and method for product and signaling device matching
US8956493B2 (en) 2010-12-17 2015-02-17 Kimberly-Clark Worldwide, Inc. Leg and flap elastic composite for an absorbent article and method of manufacturing same
US9220640B2 (en) 2010-12-30 2015-12-29 Kimberly-Clark Worldwide, Inc. Absorbent article including two dimensional code made from an active graphic
US8764722B2 (en) 2011-04-28 2014-07-01 Kimberly-Clark Worldwide, Inc. Absorbent article with cushioned waistband
US10562281B2 (en) 2011-08-02 2020-02-18 Kimberly-Clark Worldwide, Inc. Cooling signal device for use in an absorbent article
US9138358B2 (en) 2011-08-26 2015-09-22 Jenny K. CATOE Cloth diaper
US8911681B2 (en) 2011-09-12 2014-12-16 Kimberly-Clark Worldwide, Inc. Wetness indicator having varied hues
US8816149B2 (en) 2011-10-28 2014-08-26 Kimberly-Clark Worldwide, Inc. System for detection and monitoring of body exudates using a gas emitting substance for use in interactive toilet training
US9119748B2 (en) 2011-10-28 2015-09-01 Kimberly-Clark Worldwide, Inc. Electronic discriminating device for body exudate detection
US8933292B2 (en) 2011-10-28 2015-01-13 Kimberly-Clark Worldwide, Inc. Absorbent article with sensor array for body exudate detection
US8754005B2 (en) 2012-08-28 2014-06-17 Kimberly-Clark Worldwide, Inc. Color-changing composition and material
WO2014033589A2 (en) 2012-08-31 2014-03-06 Kimberly-Clark Worldwide, Inc. Method of manufacture of article for delivering health-benefit agent
US9301884B2 (en) 2012-12-05 2016-04-05 Kimberly-Clark Worldwide, Inc. Liquid detection system having a signaling device and an absorbent article with graphics
US9339424B2 (en) 2013-10-24 2016-05-17 Kimberly-Clark Worldwide, Inc. Absorbent article having an absorbent assembly with integral containment flaps
US9265669B2 (en) 2013-10-31 2016-02-23 Kimberly-Clark Worldwide, Inc. Absorbent article having fully encircling bodyside and garment-side waistband
US9820889B2 (en) 2013-10-31 2017-11-21 Kimberly-Clark Worldwide, Inc. Method of manufacturing an absorbent article having fully encircling bodyside and garment-side waistband
US9320655B2 (en) 2013-11-27 2016-04-26 Kimberly-Clark Worldwide, Inc. Method of manufacturing an absorbent article having a fin seam
US10327963B2 (en) 2014-01-31 2019-06-25 Kimberly-Clark Worldwide, Inc. Absorbent article having a zoned attachment area for securing an absorbent assembly to a chassis
US9789010B2 (en) 2014-03-31 2017-10-17 Kimberly-Clark Worldwide, Inc. Absorbent article having a tear away section
US9320657B2 (en) 2014-03-31 2016-04-26 Kimberly-Clark Worldwide, Inc. Absorbent article having interconnected waist and leg bands
US11154433B2 (en) 2014-10-31 2021-10-26 Kimberly-Clark Worldwide, Inc. Disposable article with reinforced handle
CN107106383A (en) 2015-01-23 2017-08-29 金伯利-克拉克环球有限公司 The method for manufacturing the absorbing structure of bridge joint
CA2976512A1 (en) 2015-02-27 2016-09-01 Kimberly-Clark Worldwide, Inc. Absorbent article leakage assessment system
AU2015416315B2 (en) 2015-12-02 2022-02-24 Kimberly-Clark Worldwide, Inc. Improved acquisition distribution laminate
AU2016381598B2 (en) 2015-12-30 2021-07-08 Kimberly-Clark Worldwide, Inc. Absorbent article side panel method of fastening
MX2019010970A (en) 2017-04-05 2019-12-16 Kimberly Clark Co Garment for detecting absorbent article leakage and methods of detecting absorbent article leakage utilizing the same.
MX2021014399A (en) 2019-05-30 2022-01-18 Kimberly Clark Co Apparatuses and methods for manufacturing absorbent structures including flexible masking media.

Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338992A (en) 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3341394A (en) 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3502763A (en) 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
US3542615A (en) 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3692618A (en) 1969-10-08 1972-09-19 Metallgesellschaft Ag Continuous filament nonwoven web
US3802817A (en) 1969-10-01 1974-04-09 Asahi Chemical Ind Apparatus for producing non-woven fleeces
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4397644A (en) 1982-02-04 1983-08-09 Kimberly-Clark Corporation Sanitary napkin with improved comfort
US4413032A (en) 1980-11-27 1983-11-01 Carl Freudenberg Non-woven fabric with wick action
US4480000A (en) 1981-06-18 1984-10-30 Lion Corporation Absorbent article
US4500315A (en) 1982-11-08 1985-02-19 Personal Products Company Superthin absorbent product
US4531945A (en) 1983-10-31 1985-07-30 Kimberly-Clark Corporation Multi layer sanitary appliance
US4537590A (en) 1982-11-08 1985-08-27 Personal Products Company Superthin absorbent product
US4540414A (en) 1977-10-21 1985-09-10 Phillips Petroleum Company Method and apparatus for absorbing moisture
US4573988A (en) 1983-06-20 1986-03-04 Personal Products Company Superthin absorbent product
US4578070A (en) 1983-08-15 1986-03-25 Personal Products Company Absorbent structure containing corrugated web layers
US4636209A (en) 1983-03-07 1987-01-13 Kimberly-Clark Corporation Sanitary napkin with fluid transfer layer
US4637819A (en) 1985-05-31 1987-01-20 The Procter & Gamble Company Macroscopically expanded three-dimensional polymeric web for transmitting both dynamically deposited and statically contacted fluids from one surface to the other
US4650479A (en) 1984-09-04 1987-03-17 Minnesota Mining And Manufacturing Company Sorbent sheet product
US4670011A (en) 1983-12-01 1987-06-02 Personal Products Company Disposable diaper with folded absorbent batt
US4673402A (en) 1985-05-15 1987-06-16 The Procter & Gamble Company Absorbent articles with dual-layered cores
US4681577A (en) 1983-09-23 1987-07-21 Personal Products Company Disposable urinary and fecal waste containment product
US4685914A (en) 1983-09-23 1987-08-11 Personal Products Company Disposable urinary pad
US4699619A (en) 1984-08-31 1987-10-13 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US4723953A (en) 1985-01-07 1988-02-09 Rocky Mountain Medical Corporation Absorbent pad
US4755178A (en) 1984-03-29 1988-07-05 Minnesota Mining And Manufacturing Company Sorbent sheet material
US4798603A (en) 1987-10-16 1989-01-17 Kimberly-Clark Corporation Absorbent article having a hydrophobic transport layer
US4818464A (en) 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
US4834735A (en) 1986-07-18 1989-05-30 The Proctor & Gamble Company High density absorbent members having lower density and lower basis weight acquisition zones
US4842594A (en) 1983-08-24 1989-06-27 Chicopee Absorbent article with internal wicking means
US4880419A (en) 1983-08-24 1989-11-14 Chicopee Absorbent article with internal wicking means
US4883707A (en) 1988-04-21 1989-11-28 James River Corporation High loft nonwoven fabric
US4892534A (en) 1988-12-30 1990-01-09 Kimberly-Clark Corporation Nonwoven web useful as a bodyside liner for an absorption article
US4904249A (en) 1988-06-06 1990-02-27 Kimberly-Clark Corporation Absorbent undergarment with fluid transfer layer and elasticized crotch design
US4908026A (en) 1986-12-22 1990-03-13 Kimberly-Clark Corporation Flow distribution system for absorbent pads
US4935022A (en) 1988-02-11 1990-06-19 The Procter & Gamble Company Thin absorbent articles containing gelling agent
US4938756A (en) 1983-08-10 1990-07-03 Chicopee Auxiliary absorbent article
US4950264A (en) 1988-03-31 1990-08-21 The Procter & Gamble Company Thin, flexible sanitary napkin
US4988344A (en) 1988-05-24 1991-01-29 The Procter & Gamble Company Absorbent articles with multiple layer absorbent layers
US4988345A (en) 1988-05-24 1991-01-29 The Procter & Gamble Company Absorbent articles with rapid acquiring absorbent cores
US4994037A (en) 1990-07-09 1991-02-19 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5009653A (en) 1988-03-31 1991-04-23 The Procter & Gamble Company Thin, flexible sanitary napkin
US5030229A (en) 1990-01-12 1991-07-09 Chicopee Disposable urinary pad
US5037409A (en) 1990-07-12 1991-08-06 Kimberly-Clark Corporation Absorbent article having a hydrophilic flow-modulating layer
US5043206A (en) 1985-07-31 1991-08-27 Molnlycke Ab Absorption body intended for disposable articles such as diapers, sanitary napkins and the like
US5047023A (en) 1986-07-18 1991-09-10 The Procter & Gamble Company Absorbent members having low density and basis weight acquisition zones
US5057368A (en) 1989-12-21 1991-10-15 Allied-Signal Filaments having trilobal or quadrilobal cross-sections
US5062839A (en) 1989-09-29 1991-11-05 Dora Anderson Disposable training panty with controlled wetness release
US5069970A (en) 1989-01-23 1991-12-03 Allied-Signal Inc. Fibers and filters containing said fibers
US5108820A (en) 1989-04-25 1992-04-28 Mitsui Petrochemical Industries, Ltd. Soft nonwoven fabric of filaments
US5108827A (en) 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
US5124197A (en) 1989-07-28 1992-06-23 Kimberly-Clark Corporation Inflated cellulose fiber web possessing improved vertical wicking properties
US5134007A (en) 1988-05-24 1992-07-28 The Procter & Gamble Company Multiple layer absorbent cores for absorbent articles
US5147345A (en) 1991-08-12 1992-09-15 The Procter & Gamble Company High efficiency absorbent articles for incontinence management
US5171391A (en) 1991-02-26 1992-12-15 Weyerhaeuser Company Method of making an absorbent product
US5176668A (en) 1984-04-13 1993-01-05 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5188624A (en) 1990-01-16 1993-02-23 Weyerhaeuser Company Absorbent article with superabsorbent particle containing insert pad and liquid dispersion pad
US5192606A (en) 1991-09-11 1993-03-09 Kimberly-Clark Corporation Absorbent article having a liner which exhibits improved softness and dryness, and provides for rapid uptake of liquid
US5200248A (en) 1990-02-20 1993-04-06 The Procter & Gamble Company Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein
US5217445A (en) 1990-01-23 1993-06-08 The Procter & Gamble Company Absorbent structures containing superabsorbent material and web of wetlaid stiffened fibers
US5236427A (en) 1990-08-01 1993-08-17 Kao Corporation Absorbent article
US5242435A (en) 1991-01-04 1993-09-07 Johnson & Johnson Inc. Highly absorbent and flexible cellulosic pulp fluff sheet
US5248309A (en) 1990-07-19 1993-09-28 Kimberly-Clark Corporation Thin sanitary napkin having a central absorbent zone and a method of forming the napkin
US5257982A (en) 1990-12-26 1993-11-02 Hercules Incorporated Fluid absorbing article utilizing a flow control cover sheet
US5277976A (en) 1991-10-07 1994-01-11 Minnesota Mining And Manufacturing Company Oriented profile fibers
US5281208A (en) 1991-07-23 1994-01-25 The Procter & Gamble Company Fluid handling structure for use in absorbent articles
US5281207A (en) 1991-02-26 1994-01-25 Paragon Trade Brands, Inc. Absorbent product
US5294478A (en) 1992-12-18 1994-03-15 Kimberly-Clark Corporation Multi-layer absorbent composite
US5300054A (en) 1991-01-03 1994-04-05 The Procter & Gamble Company Absorbent article having rapid acquiring, wrapped multiple layer absorbent body
US5304161A (en) 1991-01-03 1994-04-19 The Procter & Gamble Company Absorbent article having rapid acquiring, multiple layer absorbent core
US5330457A (en) 1991-09-30 1994-07-19 Hercules Incorporated Enhanced core utilization in absorbent products
US5334176A (en) 1991-07-23 1994-08-02 The Procter & Gamble Company Absorbent core for use in catamenial products
US5336552A (en) 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
US5342334A (en) 1993-04-02 1994-08-30 The Procter & Gamble Company Coextruded three-dimensional fluid-pervious plastic web
US5342336A (en) 1991-12-19 1994-08-30 Kimberly-Clark Corporation Absorbent structure for masking and distributing a liquid
US5348547A (en) 1993-04-05 1994-09-20 The Procter & Gamble Company Absorbent members having improved fluid distribution via low density and basis weight acquisition zones
US5350370A (en) 1993-04-30 1994-09-27 Kimberly-Clark Corporation High wicking liquid absorbent composite
US5356405A (en) 1991-07-23 1994-10-18 The Procter & Gamble Company Absorbent particles, especially catamenials, having improved fluid directionality, comfort and fit
US5360420A (en) 1990-01-23 1994-11-01 The Procter & Gamble Company Absorbent structures containing stiffened fibers and superabsorbent material
USH1377H (en) 1993-02-25 1994-11-01 Perry; Bruce F. Absorbent article with multi-functional topsheet
US5364382A (en) 1989-05-08 1994-11-15 Kimberly-Clark Corporation Absorbent structure having improved fluid surge management and product incorporating same
US5366451A (en) 1991-08-02 1994-11-22 Johnson & Johnson Inc. Disposable absorbent product
US5368926A (en) 1992-09-10 1994-11-29 The Procter & Gamble Company Fluid accepting, transporting, and retaining structure
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5382245A (en) 1991-07-23 1995-01-17 The Procter & Gamble Company Absorbent articles, especially catamenials, having improved fluid directionality
US5401267A (en) 1993-05-12 1995-03-28 Kimberly-Clark Corporation Absorbent article having enhanced wicking capacity
US5423787A (en) 1990-03-26 1995-06-13 Molnlycke Ab Sanitary napkin or incontinence guard
US5456982A (en) 1988-05-05 1995-10-10 Danaklon A/S Bicomponent synthesis fibre and process for producing same
US5460622A (en) 1991-01-03 1995-10-24 The Procter & Gamble Company Absorbent article having blended multi-layer absorbent structure with improved integrity
US5466513A (en) 1992-12-18 1995-11-14 Kimberly-Clark Corporation Multi-layer absorbent composite
US5466410A (en) 1987-10-02 1995-11-14 Basf Corporation Process of making multiple mono-component fiber
USH1511H (en) 1992-09-10 1995-12-05 Chappell; Charles W. Absorbent articles having improved longitudinal fluid movement
US5490846A (en) * 1994-03-04 1996-02-13 Kimberly-Clark Corporation Surge management fibrous nonwoven web for personal care absorbent articles and the like
US5505719A (en) * 1994-06-30 1996-04-09 Mcneil-Ppc, Inc. Multilayered absorbent structures
US5643240A (en) * 1993-12-30 1997-07-01 Kimberly-Clark Corporation Apertured film/nonwoven composite for personal care absorbent articles and the like
US5843852A (en) * 1995-12-21 1998-12-01 Kimberly-Clark Worldwide, Inc. Absorbent structure for liquid distribution
US5843063A (en) * 1996-11-22 1998-12-01 Kimberly-Clark Worldwide, Inc. Multifunctional absorbent material and products made therefrom
US5879343A (en) * 1996-11-22 1999-03-09 Kimberly-Clark Worldwide, Inc. Highly efficient surge material for absorbent articles
US5964743A (en) * 1997-02-27 1999-10-12 Kimberly-Clark Worldwide, Inc. Elastic absorbent material for personal care products

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972505A (en) 1989-04-04 1999-10-26 Eastman Chemical Company Fibers capable of spontaneously transporting fluids
US5486167A (en) * 1991-01-03 1996-01-23 The Procter & Gamble Company Absorbent article having blended multi-layer absorbent structure with improved integrity
ZA92308B (en) 1991-09-11 1992-10-28 Kimberly Clark Co Thin absorbent article having rapid uptake of liquid
DE69217817T3 (en) 1991-09-11 2006-10-05 Kimberly-Clark Worldwide, Inc., Neenah Absorbent article
US5514120A (en) 1991-12-18 1996-05-07 Minnesota Mining And Manufacturing Company Liquid management member for absorbent articles
US5514105A (en) 1992-01-03 1996-05-07 The Procter & Gamble Company Resilient plastic web exhibiting reduced skin contact area and enhanced fluid transfer properties
JP2702852B2 (en) 1992-07-31 1998-01-26 花王株式会社 Absorbent articles
FR2698385B1 (en) 1992-11-20 1995-02-10 Peaudouce Composite nonwoven material and its application to any absorbent hygiene article.
JP3816097B2 (en) 1993-06-28 2006-08-30 ザ プロクター アンド ギャンブル カンパニー Physiological napkins with fluid distribution orientation means
NZ268535A (en) 1993-06-30 1998-05-27 Procter & Gamble Absorbent article comprising layers of superabsorbent material
WO1995010996A1 (en) 1993-10-21 1995-04-27 The Procter & Gamble Company Catamenial absorbent structures
US5536264A (en) 1993-10-22 1996-07-16 The Procter & Gamble Company Absorbent composites comprising a porous macrostructure of absorbent gelling particles and a substrate
BR9408081A (en) 1993-11-17 1997-08-12 Procter & Gamble Absorbent structure female absorbent disposable diaper and air-dried absorbent structure
US5525407A (en) 1994-01-03 1996-06-11 Mcneil-Ppc, Inc. Integrated absorbent structures with density and liquid affinity gradients
US5562650A (en) * 1994-03-04 1996-10-08 Kimberly-Clark Corporation Absorbent article having an improved surge management
US5486166A (en) * 1994-03-04 1996-01-23 Kimberly-Clark Corporation Fibrous nonwoven web surge layer for personal care absorbent articles and the like
US5599335A (en) 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
IN192766B (en) 1994-04-29 2004-05-15 Clemson Niversit Res Foundatio
US5540979A (en) 1994-05-16 1996-07-30 Yahiaoui; Ali Porous non-woven bovine blood-oxalate absorbent structure
US5601545A (en) 1994-06-29 1997-02-11 Kimberly-Clark Corporation Disposable absorbent article with improved waist containment and gasketing
CA2147685A1 (en) 1994-08-10 1996-02-11 Rand Emil Meirowitz Fiber structure for transporting a liquid
AU685986B2 (en) 1994-08-31 1998-01-29 Kimberly-Clark Worldwide, Inc. Thin absorbent article having wicking and crush resistant poperties
US5527300A (en) 1994-08-31 1996-06-18 Kimberly-Clark Corporation Absorbent article with high capacity surge management component
WO1996015748A2 (en) 1994-11-23 1996-05-30 Kimberly-Clark Worldwide, Inc. Absorbent article having a composite absorbent core
MY116007A (en) 1994-12-28 2003-10-31 Kao Corp Absorbent sheet, process for producing the same and absorbent article
US5549589A (en) 1995-02-03 1996-08-27 The Procter & Gamble Company Fluid distribution member for absorbent articles exhibiting high suction and high capacity
US5643238A (en) 1995-09-29 1997-07-01 Paragon Trade Brands, Inc. Absorbent core structure comprised of storage and acquisition cells
US5658268A (en) 1995-10-31 1997-08-19 Kimberly-Clark Worldwide, Inc. Enhanced wet signal response in absorbent articles
US5665082A (en) 1995-11-01 1997-09-09 Johnson & Johnson Inc. Highly absorbent transfer layer structure

Patent Citations (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338992A (en) 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3502763A (en) 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
US3341394A (en) 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3802817A (en) 1969-10-01 1974-04-09 Asahi Chemical Ind Apparatus for producing non-woven fleeces
US3692618A (en) 1969-10-08 1972-09-19 Metallgesellschaft Ag Continuous filament nonwoven web
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US4540414A (en) 1977-10-21 1985-09-10 Phillips Petroleum Company Method and apparatus for absorbing moisture
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4413032A (en) 1980-11-27 1983-11-01 Carl Freudenberg Non-woven fabric with wick action
US4480000A (en) 1981-06-18 1984-10-30 Lion Corporation Absorbent article
US4397644A (en) 1982-02-04 1983-08-09 Kimberly-Clark Corporation Sanitary napkin with improved comfort
US4537590A (en) 1982-11-08 1985-08-27 Personal Products Company Superthin absorbent product
US4500315A (en) 1982-11-08 1985-02-19 Personal Products Company Superthin absorbent product
US4636209A (en) 1983-03-07 1987-01-13 Kimberly-Clark Corporation Sanitary napkin with fluid transfer layer
US4573988A (en) 1983-06-20 1986-03-04 Personal Products Company Superthin absorbent product
US4938756A (en) 1983-08-10 1990-07-03 Chicopee Auxiliary absorbent article
US4578070A (en) 1983-08-15 1986-03-25 Personal Products Company Absorbent structure containing corrugated web layers
US4842594A (en) 1983-08-24 1989-06-27 Chicopee Absorbent article with internal wicking means
US4880419A (en) 1983-08-24 1989-11-14 Chicopee Absorbent article with internal wicking means
US4681577A (en) 1983-09-23 1987-07-21 Personal Products Company Disposable urinary and fecal waste containment product
US4685914A (en) 1983-09-23 1987-08-11 Personal Products Company Disposable urinary pad
US4531945A (en) 1983-10-31 1985-07-30 Kimberly-Clark Corporation Multi layer sanitary appliance
US4670011A (en) 1983-12-01 1987-06-02 Personal Products Company Disposable diaper with folded absorbent batt
US4755178A (en) 1984-03-29 1988-07-05 Minnesota Mining And Manufacturing Company Sorbent sheet material
US5176668A (en) 1984-04-13 1993-01-05 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US4818464A (en) 1984-08-30 1989-04-04 Kimberly-Clark Corporation Extrusion process using a central air jet
US4699619A (en) 1984-08-31 1987-10-13 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US4650479A (en) 1984-09-04 1987-03-17 Minnesota Mining And Manufacturing Company Sorbent sheet product
US4723953A (en) 1985-01-07 1988-02-09 Rocky Mountain Medical Corporation Absorbent pad
US4673402A (en) 1985-05-15 1987-06-16 The Procter & Gamble Company Absorbent articles with dual-layered cores
US4637819A (en) 1985-05-31 1987-01-20 The Procter & Gamble Company Macroscopically expanded three-dimensional polymeric web for transmitting both dynamically deposited and statically contacted fluids from one surface to the other
US5043206A (en) 1985-07-31 1991-08-27 Molnlycke Ab Absorption body intended for disposable articles such as diapers, sanitary napkins and the like
US5047023A (en) 1986-07-18 1991-09-10 The Procter & Gamble Company Absorbent members having low density and basis weight acquisition zones
US4834735A (en) 1986-07-18 1989-05-30 The Proctor & Gamble Company High density absorbent members having lower density and lower basis weight acquisition zones
US4908026A (en) 1986-12-22 1990-03-13 Kimberly-Clark Corporation Flow distribution system for absorbent pads
US5466410A (en) 1987-10-02 1995-11-14 Basf Corporation Process of making multiple mono-component fiber
US4798603A (en) 1987-10-16 1989-01-17 Kimberly-Clark Corporation Absorbent article having a hydrophobic transport layer
US4935022A (en) 1988-02-11 1990-06-19 The Procter & Gamble Company Thin absorbent articles containing gelling agent
US4950264A (en) 1988-03-31 1990-08-21 The Procter & Gamble Company Thin, flexible sanitary napkin
US5009653A (en) 1988-03-31 1991-04-23 The Procter & Gamble Company Thin, flexible sanitary napkin
US4883707A (en) 1988-04-21 1989-11-28 James River Corporation High loft nonwoven fabric
US5456982A (en) 1988-05-05 1995-10-10 Danaklon A/S Bicomponent synthesis fibre and process for producing same
US4988345A (en) 1988-05-24 1991-01-29 The Procter & Gamble Company Absorbent articles with rapid acquiring absorbent cores
US4988344A (en) 1988-05-24 1991-01-29 The Procter & Gamble Company Absorbent articles with multiple layer absorbent layers
US5134007A (en) 1988-05-24 1992-07-28 The Procter & Gamble Company Multiple layer absorbent cores for absorbent articles
US4904249A (en) 1988-06-06 1990-02-27 Kimberly-Clark Corporation Absorbent undergarment with fluid transfer layer and elasticized crotch design
US4892534A (en) 1988-12-30 1990-01-09 Kimberly-Clark Corporation Nonwoven web useful as a bodyside liner for an absorption article
US5069970A (en) 1989-01-23 1991-12-03 Allied-Signal Inc. Fibers and filters containing said fibers
US5108820A (en) 1989-04-25 1992-04-28 Mitsui Petrochemical Industries, Ltd. Soft nonwoven fabric of filaments
US5108827A (en) 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
US5429629A (en) 1989-05-08 1995-07-04 Kimberly-Clark Corporation Absorbent structure having improved fluid surge management and product incorporating same
US5364382A (en) 1989-05-08 1994-11-15 Kimberly-Clark Corporation Absorbent structure having improved fluid surge management and product incorporating same
US5124197A (en) 1989-07-28 1992-06-23 Kimberly-Clark Corporation Inflated cellulose fiber web possessing improved vertical wicking properties
US5062839A (en) 1989-09-29 1991-11-05 Dora Anderson Disposable training panty with controlled wetness release
US5057368A (en) 1989-12-21 1991-10-15 Allied-Signal Filaments having trilobal or quadrilobal cross-sections
US5030229A (en) 1990-01-12 1991-07-09 Chicopee Disposable urinary pad
US5188624A (en) 1990-01-16 1993-02-23 Weyerhaeuser Company Absorbent article with superabsorbent particle containing insert pad and liquid dispersion pad
US5217445A (en) 1990-01-23 1993-06-08 The Procter & Gamble Company Absorbent structures containing superabsorbent material and web of wetlaid stiffened fibers
US5360420A (en) 1990-01-23 1994-11-01 The Procter & Gamble Company Absorbent structures containing stiffened fibers and superabsorbent material
US5200248A (en) 1990-02-20 1993-04-06 The Procter & Gamble Company Open capillary channel structures, improved process for making capillary channel structures, and extrusion die for use therein
US5200248B1 (en) 1990-02-20 1999-02-09 Procter & Gamble Open capillary channel structures improved process for making capillary channel structures and extrusion die for use therein
US5423787A (en) 1990-03-26 1995-06-13 Molnlycke Ab Sanitary napkin or incontinence guard
US4994037A (en) 1990-07-09 1991-02-19 Kimberly-Clark Corporation Absorbent structure designed for absorbing body fluids
US5037409A (en) 1990-07-12 1991-08-06 Kimberly-Clark Corporation Absorbent article having a hydrophilic flow-modulating layer
US5248309A (en) 1990-07-19 1993-09-28 Kimberly-Clark Corporation Thin sanitary napkin having a central absorbent zone and a method of forming the napkin
US5236427A (en) 1990-08-01 1993-08-17 Kao Corporation Absorbent article
US5257982A (en) 1990-12-26 1993-11-02 Hercules Incorporated Fluid absorbing article utilizing a flow control cover sheet
US5300054A (en) 1991-01-03 1994-04-05 The Procter & Gamble Company Absorbent article having rapid acquiring, wrapped multiple layer absorbent body
US5304161A (en) 1991-01-03 1994-04-19 The Procter & Gamble Company Absorbent article having rapid acquiring, multiple layer absorbent core
US5439458A (en) 1991-01-03 1995-08-08 The Procter & Gamble Company Absorbent article having rapid acquiring, multiple layer absorbent core
US5460622A (en) 1991-01-03 1995-10-24 The Procter & Gamble Company Absorbent article having blended multi-layer absorbent structure with improved integrity
US5242435A (en) 1991-01-04 1993-09-07 Johnson & Johnson Inc. Highly absorbent and flexible cellulosic pulp fluff sheet
US5281207A (en) 1991-02-26 1994-01-25 Paragon Trade Brands, Inc. Absorbent product
US5171391A (en) 1991-02-26 1992-12-15 Weyerhaeuser Company Method of making an absorbent product
US5281208A (en) 1991-07-23 1994-01-25 The Procter & Gamble Company Fluid handling structure for use in absorbent articles
US5356405A (en) 1991-07-23 1994-10-18 The Procter & Gamble Company Absorbent particles, especially catamenials, having improved fluid directionality, comfort and fit
US5334176A (en) 1991-07-23 1994-08-02 The Procter & Gamble Company Absorbent core for use in catamenial products
US5382245A (en) 1991-07-23 1995-01-17 The Procter & Gamble Company Absorbent articles, especially catamenials, having improved fluid directionality
US5366451A (en) 1991-08-02 1994-11-22 Johnson & Johnson Inc. Disposable absorbent product
US5147345A (en) 1991-08-12 1992-09-15 The Procter & Gamble Company High efficiency absorbent articles for incontinence management
US5318554A (en) 1991-08-12 1994-06-07 The Procter & Gamble Company High efficiency absorbent articles for incontinence management
US5192606A (en) 1991-09-11 1993-03-09 Kimberly-Clark Corporation Absorbent article having a liner which exhibits improved softness and dryness, and provides for rapid uptake of liquid
US5334177A (en) 1991-09-30 1994-08-02 Hercules Incorporated Enhanced core utilization in absorbent products
US5330457A (en) 1991-09-30 1994-07-19 Hercules Incorporated Enhanced core utilization in absorbent products
US5277976A (en) 1991-10-07 1994-01-11 Minnesota Mining And Manufacturing Company Oriented profile fibers
US5342336A (en) 1991-12-19 1994-08-30 Kimberly-Clark Corporation Absorbent structure for masking and distributing a liquid
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5418045A (en) 1992-08-21 1995-05-23 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric
US5336552A (en) 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
US5368926A (en) 1992-09-10 1994-11-29 The Procter & Gamble Company Fluid accepting, transporting, and retaining structure
USH1511H (en) 1992-09-10 1995-12-05 Chappell; Charles W. Absorbent articles having improved longitudinal fluid movement
US5294478A (en) 1992-12-18 1994-03-15 Kimberly-Clark Corporation Multi-layer absorbent composite
US5466513A (en) 1992-12-18 1995-11-14 Kimberly-Clark Corporation Multi-layer absorbent composite
USH1377H (en) 1993-02-25 1994-11-01 Perry; Bruce F. Absorbent article with multi-functional topsheet
US5342334A (en) 1993-04-02 1994-08-30 The Procter & Gamble Company Coextruded three-dimensional fluid-pervious plastic web
US5348547A (en) 1993-04-05 1994-09-20 The Procter & Gamble Company Absorbent members having improved fluid distribution via low density and basis weight acquisition zones
US5350370A (en) 1993-04-30 1994-09-27 Kimberly-Clark Corporation High wicking liquid absorbent composite
US5401267A (en) 1993-05-12 1995-03-28 Kimberly-Clark Corporation Absorbent article having enhanced wicking capacity
US5643240A (en) * 1993-12-30 1997-07-01 Kimberly-Clark Corporation Apertured film/nonwoven composite for personal care absorbent articles and the like
US5490846A (en) * 1994-03-04 1996-02-13 Kimberly-Clark Corporation Surge management fibrous nonwoven web for personal care absorbent articles and the like
US5505719A (en) * 1994-06-30 1996-04-09 Mcneil-Ppc, Inc. Multilayered absorbent structures
US5843852A (en) * 1995-12-21 1998-12-01 Kimberly-Clark Worldwide, Inc. Absorbent structure for liquid distribution
US5843063A (en) * 1996-11-22 1998-12-01 Kimberly-Clark Worldwide, Inc. Multifunctional absorbent material and products made therefrom
US5879343A (en) * 1996-11-22 1999-03-09 Kimberly-Clark Worldwide, Inc. Highly efficient surge material for absorbent articles
US5994615A (en) * 1996-11-22 1999-11-30 Kimberly-Clark Worldwide, Inc. Highly efficient surge material for absorbent article
US5964743A (en) * 1997-02-27 1999-10-12 Kimberly-Clark Worldwide, Inc. Elastic absorbent material for personal care products

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Article by R.W. Hoyland and R. Field in Paper Technology and Industry, Dec. 1976, pp. 291-299 and Porous Media Fluid Transport and Pore Structure, F.A.L. Dullien, 1979, Academic Press, Inc. ISBN 0-12-223650-5.
Polymer Blends and Composites, John A. Manson and Leslie H. Sperling, copyright 1976, Plenum Press, ISBN-0-306-30831-2, pp. 273-277.
Research Disclosure 37421, "Thermally Bonded Absorbent Structures Having Discrete, Stepped Density Zones in the Z-Dimension," Jun. 1995, Inventor-Anonymous.

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9763835B2 (en) 2003-02-12 2017-09-19 The Procter & Gamble Company Comfortable diaper
US11135096B2 (en) 2003-02-12 2021-10-05 The Procter & Gamble Company Comfortable diaper
US11234868B2 (en) 2003-02-12 2022-02-01 The Procter & Gamble Company Comfortable diaper
US9326896B2 (en) 2008-04-29 2016-05-03 The Procter & Gamble Company Process for making an absorbent core with strain resistant core cover
US9340363B2 (en) 2009-12-02 2016-05-17 The Procter & Gamble Company Apparatus and method for transferring particulate material
US10004647B2 (en) 2009-12-02 2018-06-26 The Procter & Gamble Company Apparatus and method for transferring particulate material
US9029277B2 (en) 2010-08-04 2015-05-12 Polymer Group, Inc. Breathable laminate and method of making same
US9649232B2 (en) 2011-06-10 2017-05-16 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US11110011B2 (en) 2011-06-10 2021-09-07 The Procter & Gamble Company Absorbent structure for absorbent articles
US9492328B2 (en) 2011-06-10 2016-11-15 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US11602467B2 (en) 2011-06-10 2023-03-14 The Procter & Gamble Company Absorbent structure for absorbent articles
US11135105B2 (en) 2011-06-10 2021-10-05 The Procter & Gamble Company Absorbent structure for absorbent articles
US10517777B2 (en) 2011-06-10 2019-12-31 The Procter & Gamble Company Disposable diaper having first and second absorbent structures and channels
US9668926B2 (en) 2011-06-10 2017-06-06 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US11911250B2 (en) 2011-06-10 2024-02-27 The Procter & Gamble Company Absorbent structure for absorbent articles
US9173784B2 (en) 2011-06-10 2015-11-03 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US9468566B2 (en) 2011-06-10 2016-10-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US11000422B2 (en) 2011-06-10 2021-05-11 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US10893987B2 (en) 2011-06-10 2021-01-19 The Procter & Gamble Company Disposable diapers with main channels and secondary channels
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
US10813794B2 (en) 2011-06-10 2020-10-27 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9066838B2 (en) 2011-06-10 2015-06-30 The Procter & Gamble Company Disposable diaper having reduced absorbent core to backsheet gluing
US10561546B2 (en) 2011-06-10 2020-02-18 The Procter & Gamble Company Absorbent structure for absorbent articles
US10130525B2 (en) 2011-06-10 2018-11-20 The Procter & Gamble Company Absorbent structure for absorbent articles
US10149788B2 (en) 2011-06-10 2018-12-11 The Procter & Gamble Company Disposable diapers
US10245188B2 (en) 2011-06-10 2019-04-02 The Procter & Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9789013B2 (en) 2011-06-23 2017-10-17 Kimberly-Clark Worldwide, Inc Disposable absorbent article with side lying leakage improvement
US9763837B2 (en) 2011-12-01 2017-09-19 Sca Hygiene Products Ab Absorbent article having fluid flow control member
US9498384B2 (en) 2011-12-01 2016-11-22 Leigh E. Wood Assembled intermediate comprising staple fiber nonwoven web and articles
US9532910B2 (en) 2012-11-13 2017-01-03 The Procter & Gamble Company Absorbent articles with channels and signals
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
US10441479B2 (en) 2013-05-03 2019-10-15 Knix Wear Inc. Absorbent garment
US20180092787A1 (en) * 2013-05-03 2018-04-05 Knix Wear Inc. Absorbent garment
US11737931B2 (en) 2013-05-03 2023-08-29 Knix Wear Inc. Garments and associated methods
US10441480B2 (en) * 2013-05-03 2019-10-15 Knix Wear Inc. Absorbent garment
US11273086B2 (en) 2013-06-14 2022-03-15 The Procter & Gamble Company Absorbent article and absorbent core forming channels when wet
US10736794B2 (en) 2013-08-27 2020-08-11 The Procter & Gamble Company Absorbent articles with channels
US10765567B2 (en) 2013-08-27 2020-09-08 The Procter & Gamble Company Absorbent articles with channels
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US10335324B2 (en) 2013-08-27 2019-07-02 The Procter & Gamble Company Absorbent articles with channels
US11612523B2 (en) 2013-08-27 2023-03-28 The Procter & Gamble Company Absorbent articles with channels
US11406544B2 (en) 2013-08-27 2022-08-09 The Procter & Gamble Company Absorbent articles with channels
US10292875B2 (en) 2013-09-16 2019-05-21 The Procter & Gamble Company Absorbent articles with channels and signals
US11090199B2 (en) 2014-02-11 2021-08-17 The Procter & Gamble Company Method and apparatus for making an absorbent structure comprising channels
US10441481B2 (en) 2014-05-27 2019-10-15 The Proctre & Gamble Company Absorbent core with absorbent material pattern
US10052242B2 (en) 2014-05-27 2018-08-21 The Procter & Gamble Company Absorbent core with absorbent material pattern
US10736795B2 (en) 2015-05-12 2020-08-11 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US11918445B2 (en) 2015-05-12 2024-03-05 The Procter & Gamble Company Absorbent article with improved core-to-backsheet adhesive
US11497657B2 (en) 2015-05-29 2022-11-15 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
US11154431B1 (en) 2020-11-06 2021-10-26 Mast Industries (Far East) Limited Absorbent garment and method of manufacture thereof
US11957552B2 (en) 2020-11-06 2024-04-16 Mast Industries (Far East) Limited Absorbent garment and method of manufacture thereof
US11590034B2 (en) 2021-07-08 2023-02-28 Knix Wear Inc. Reusable absorbent accessories and associated methods
US11497263B1 (en) 2021-07-08 2022-11-15 Knix Wear Inc. Garments with moisture capture assemblies and associated methods
US11701267B2 (en) 2021-10-25 2023-07-18 Knix Wear Inc. Garments with moisture capture assemblies and associated methods
US12048335B2 (en) 2022-07-29 2024-07-30 Knix Wear Inc. Lower body garments with an interior lining and related methods
US12097103B1 (en) 2023-06-01 2024-09-24 Knix Wear Inc. Garments with fluid retention assemblies and related methods

Also Published As

Publication number Publication date
DE69738541T2 (en) 2009-03-26
DE69738541D1 (en) 2008-04-17
RU2192834C2 (en) 2002-11-20
EP0952800A1 (en) 1999-11-03
AU7297898A (en) 1998-06-10
EP0952800B1 (en) 2008-02-27
CA2269805A1 (en) 1998-05-28
CN1170513C (en) 2004-10-13
US5820973A (en) 1998-10-13
WO1998022068A1 (en) 1998-05-28
AR010629A1 (en) 2000-06-28
AU723912B2 (en) 2000-09-07
CN1251513A (en) 2000-04-26
PL186431B1 (en) 2004-01-30
BR9713392A (en) 2000-03-21
CA2269805C (en) 2005-06-14
TR199901138T2 (en) 1999-07-21
AU723912C (en) 2001-11-15
ID23975A (en) 2000-06-14
KR20000069073A (en) 2000-11-25

Similar Documents

Publication Publication Date Title
USRE39919E1 (en) Heterogeneous surge material for absorbent articles
US5994615A (en) Highly efficient surge material for absorbent article
US6465712B1 (en) Absorbent articles with controllable fill patterns
EP0952802B1 (en) Multifunctional absorbent material and products made therefrom
KR100460477B1 (en) Matched Permeability Liner/Absorbent Structure System for Absorbent Articles and the Like
US6765125B2 (en) Distribution—Retention material for personal care products
WO1999060975A1 (en) Disposable absorbent articles with bm containment
AU716607C (en) Highly efficient surge material for absorbent articles
MXPA99004376A (en) Heterogeneous surge material for absorbent articles
MXPA99004560A (en) Highly efficient surge material for absorbent articles

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: KIMBERLY-CLARK WORLDWIDE, INC., WISCONSIN

Free format text: NAME CHANGE;ASSIGNOR:KIMBERLY-CLARK WORLDWIDE, INC.;REEL/FRAME:034880/0742

Effective date: 20150101