[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

USRE39979E1 - Color wheel including light deflecting means - Google Patents

Color wheel including light deflecting means Download PDF

Info

Publication number
USRE39979E1
USRE39979E1 US11/311,888 US31188805A USRE39979E US RE39979 E1 USRE39979 E1 US RE39979E1 US 31188805 A US31188805 A US 31188805A US RE39979 E USRE39979 E US RE39979E
Authority
US
United States
Prior art keywords
color wheel
light
filter sectors
substrate
lens structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US11/311,888
Inventor
Shinichi Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to US11/311,888 priority Critical patent/USRE39979E1/en
Application granted granted Critical
Publication of USRE39979E1 publication Critical patent/USRE39979E1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels

Definitions

  • the present invention relates to a color wheel suitable for use as a filter element of a time-share light dispersing device, and to a color wheel incorporated in a color wheel assembly making up a projection-type image display apparatus.
  • Color composition in a projection-type image display apparatus has conventionally been accomplished commonly by a method, such as: a single-panel method, in which one light valve element adapted to control light amount per pixel thereby creating an image is used to disperse each pixel into red (R), green (G), and blue (B) lights; and a three-panel method, in which three light valve elements dedicated to R, G and B lights, respectively, are used to produce in parallel R, G and B images, and then the three images thus produced are composed.
  • a light valve element capable of fast switching such as a ferroelectric liquid crystal display element or a digital micro mirror device, is increasingly coming into practical use, a time-sharing single-panel method is widely used.
  • R, G and B lights are caused to sequentially impinge on one light valve element, the light valve element is driven in synchronization with switching-over of the R, G and B lights thereby producing R, G and B images in a time series manner, and the images thus produced are projected onto a screen, or the like.
  • color composition of the images is accomplished by a viewer due to an afterimage effect occurring at a sense of vision.
  • reduction in both dimension and weight of the apparatus which is a feature of a single-panel method, can be achieved by employing a relatively simple optical system, and therefore the time-sharing single-panel method is favorable for realizing inexpensive fabrication of a projection-type image display apparatus.
  • a color wheel is preferably used as a filter element of a time-share light dispersing device to sequentially disperse light emitted from a white light source into R, G and B lights having respective wavelength bands in a time-sharing manner (refer to, for example, Japanese Patent Application Laid-Open No. H06-347639).
  • FIGS. 7A and 7B are respectively front and side views of a typical color wheel assembly incorporating such a color wheel.
  • a color wheel assembly 200 comprises a color wheel 100 , a hub 105 , and a motor 106 .
  • the color wheel 100 is a tricolor color wheel structured such that a disk-like substrate 101 , which is made of a light-transmitting material, for example, optical glass, has three filter sectors 102 , 103 and 104 formed on one surface thereof, and such that, for example, the filter sector 102 transmits R light only, the filter sector 103 transmits G light only, and the filter sector 104 transmits B light only.
  • the color wheel 100 thus structured is fixedly attached to the motor 106 via the hub 105 coaxially therewith.
  • the color wheel assembly 200 operates such that the color wheel 100 is rotated by the motor 106 so that the filter sectors (R, G and B) 102 , 103 and 104 sequentially have white light S falling incident thereon whereby the white light S is sequentially dispersed into R, G and B lights.
  • FIG. 8A is a plan view of the aforementioned color wheel 100
  • FIG. 8B is a schematic cross-sectional view taken along a line A-A′ of FIG. 8 A.
  • the filter sectors 102 , 103 and 104 are usually constituted by optical interference filters of dielectric multi-layer films structured such that a dielectric thin film formed of a material having a high refractive index (e.g., TiO 2 , ZrO 2 , and ZnS), and a dielectric thin film formed of a material having a low refractive index (e.g., SiO 2 , and MgF 2 ) are alternately laminated by an evaporation method, a sputtering method, or the like.
  • a dielectric thin film formed of a material having a high refractive index e.g., TiO 2 , ZrO 2 , and ZnS
  • a dielectric thin film formed of a material having a low refractive index e.g., Si
  • the optical interference filter is superior in durability (heat resistance, light stability, and chemical resistance) to a color filter formed by a staining method, a pigment dispersion method, or the like, has a high transmittance, and readily achieves a sharp spectroscopic characteristic, and therefore endures exposure to intensive light flux and produces a high display quality image.
  • Adjacent filter sectors are required to abut each other precisely and tightly unless achromatic areas which do not constitute any filter sectors are intentionally disposed. This is because if the adjacent filter sectors do not abut each other precisely and tightly, a gap is generated between the adjacent filter sectors, and light passing the gap fails to definitely determine its color thus resulting in not fully contributing to forming an image.
  • a metal mask formed of a metallic thin plate and having openings corresponding to the filter sectors is preferably used for demarcating the filter sectors. The metal mask is first guided mechanically, for example, with a positioning pin, and then finally lined up by viewing, for example, through a microscope, the peripheries of filter sectors of one kind already formed and the openings of the metal mask.
  • the filter sectors thus formed are positioned with respect to one another with a lowered degree of accuracy, and an incomplete filter portion E is inevitably found, for example, between the filter sectors 102 and the filter sectors 104 as shown in FIG. 8 B.
  • the light rays A and D may possibly contribute to forming an image but the light rays B and C definitely fail to do so.
  • Japanese Patent Application Laid-Open No. H11-222664 discloses a metal mask with openings, in which the sidewalls of the openings are inclined with respect to the metal mask surfaces such that the openings have an increased area at one of the surfaces facing an evaporation source so that particles from the evaporation source come into the openings with reduced restriction thereby better achieving uniform film formation within the openings.
  • the aforementioned Japanese Patent Application Laid-Open No. H06-347639 discloses that filter sectors are desired to abut each other unless achromatic areas which do not constitute any filter sectors are intentionally disposed, but does not teach how it can be achieved. Also, the aforementioned Japanese Patent Application Laid-Open No. H11-222664 indicates a method that is anticipated to be good to a certain degree for clearly demarcating a boundary between filter sectors provided that an optimum inclination angle of the sidewalls surely exists and can be obtained somehow which allows a film to be formed uniform in thickness all the way up to the peripheries of filter sectors.
  • the optimum inclination angle of the sidewalls must be obtained theoretically and experimentally based on various considerations, such as a film material method and conditions of film formation, a desired film thickness, a metal mask thickness, and the like, and therefore the method disclosed therein cannot be readily applied to fabrication of a color wheel.
  • the present invention has been made in light of the above problems, and it is an object of the present invention to provide a color wheel, in which light impinging on an area corresponding to a boundary between adjacent filter sectors can be efficiently utilized even if the adjacent filters are not precisely positioned with respect to each other, and which is incorporated in a color wheel assembly for use in an image display apparatus.
  • a color wheel comprises: a disk-like substrate made of a light-transmittable material; plural kinds of filter sectors formed on a surface of the substrate and functioning to selectively transmit lights having respective different wavelength bands; and a plurality of light deflecting means to change an optical path of light impinging on an area corresponding to a boundary between adjacent filter sectors so as to guide the light into one of the adjacent filter sectors. Consequently, light impinging on the area corresponding to the boundary between the adjacent filter sectors can be surely dispersed into a predetermined color, even if the boundary is not provided with a complete dielectric multi-layer film having a specified thickness, or even if the adjacent filter sectors are not precisely positioned with respect to each other.
  • the light deflecting means may be lens structures formed integrally with the substrate. Consequently, the light deflecting means can be formed precisely by using a usual method for fabricating an optical element.
  • substrate may consist of a lower refractive index portion and a higher refractive index portion
  • the light deflecting means may be lens structures constituted by the higher refractive index portion. Consequently, the color wheel has flat surfaces, and therefore does not cause an increased noise wind level due to its high-speed rotation.
  • the color wheel together with a motor to rotate the color wheel, may comprise a color wheel assembly. Consequently, the color wheel assembly can utilize white light efficiently.
  • the color wheel assembly composed of the color wheel may be employed in an image display apparatus. Consequently, the image display apparatus can provide a display image of a high visual quality due to the efficient utilization of white light.
  • FIG. 1A is a plan view of a color wheel according to a first embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view thereof taken along a line A-A′ in FIG. 1A ;
  • FIG. 2 is an explanatory view of optical paths of light rays incident on the color wheel shown in FIGS. 1A and 1B ;
  • FIG. 3A is a plan view of a color wheel according to a second embodiment of the present invention
  • FIG. 2B is a schematic cross-sectional view thereof taken along a line A-A′ in FIG. 3A ;
  • FIG. 4 is an explanatory view of paths of light rays incident on the color wheel shown in FIGS. 3A and 3B ;
  • FIG. 5A is a front view of a color wheel assembly incorporating a color wheel according to the present invention, and FIG. 5B is a side view thereof;
  • FIG. 6A is a construction view of a image display apparatus including a tricolor color wheel according to the present invention
  • FIG. 6B is a construction view of an image display apparatus including a tricolor color wheel according to the present invention
  • FIG. 7A is a front view of a typical color wheel assembly using a color wheel
  • FIG. 7B is a side view thereof
  • FIG. 8A is a plan view of a conventional color wheel
  • FIG. 8B is a schematic cross-sectional view thereof taken along a line A-A′ in FIG. 8A ;
  • FIG. 9 is an explanatory view of optical paths of light rays incident on the conventional color wheel shown in FIGS. 8 A and 8 B.
  • a color wheel 10 is structured such that filter sectors 2 , 3 and 4 are formed on one surface of a disk-like substrate 1 made of a light-transmittable material, such as glass, resin, and the like.
  • the filter sectors 2 , 3 and 4 are well-known optical interference filters which are composed of a dielectric multi-layer film formed by an evaporation method, a sputtering method, and the like.
  • the filter sectors 2 are R transmitting filters to transmit R light only
  • the filter sectors 3 are G transmitting filters to transmit G light only
  • the filter sectors 4 are B transmitting filters to transmit B light only.
  • the light-transmittable material for the substrate 1 may preferably be, for example, optical glass such as borosilicic acid glass, or optical plastic such as polymethyl methacrylate, polycarbonate, and polycyclic olefin.
  • optical glass such as borosilicic acid glass
  • optical plastic such as polymethyl methacrylate, polycarbonate, and polycyclic olefin.
  • lines W in FIG. 1A are ideal demarcation lines in designing.
  • the substrate 1 has lens structures 5 a, 5 b as light deflecting means formed on a surface thereof opposite to a surface on which the filter sectors 2 , 3 and 4 are formed.
  • the lens structures 6 a, 5 b are formed integrally with the substrate 1 by a manufacturing method to be described later so as to be positioned along the ideal demarcation line W supposedly located at the center of an incomplete filter portion E, and have respective curved surfaces 6 a, 6 b formed at their abutting ends and configured to be substantially symmetric about the ideal demarcation line W.
  • FIG. 1B are configured to be convex (see 6 a, 6 b), but may be configured to be concave, or alternatively may be plane with inclination.
  • FIG. 1B shows only the lens structures 5 a, 5 b formed at the ideal demarcation line W between the filter sectors 2 and 4 , but such lens structures ( 5 a, 5 b) are also formed respectively at the ideal demarcation line W between the filter sectors 2 and 3 and at the ideal demarcation line W between the filter sectors 3 and 4 .
  • the lens structures 5 a, 5 b are formed integrally with the substrate 1 by using a glass or resin processing technique with a high accuracy, that is employed for fabricating an optical element, such as a lens or a diffraction grating, or fabricating a substrate of an optical information recording medium, such as a CD or a DVD.
  • the lens structures 5 a, 5 b can be preferably formed, in case of the substrate 1 made of a glass material, by, for example, hot press-molding, and in case of the substrate 1 made of a resin material, by die-forming (e.g., casting, injection-molding, and compression-molding).
  • the lens structures 5 a, 5 b may alternatively be formed separately from the substrate 1 and attached to the substrate 1 by adhesion, or formed such that a grooved is formed on the substrate 1 along the ideal demarcation line W by, for example, etching, and then the groove portion is heated up to a temperature exceeding its fusing or softening point thereby forming light deflecting surfaces.
  • the lens structures 5 a, 5 b in FIG. 1B are raised relative to the surface of the substrate 1 , but may alternatively be flush therewith such that the curved surfaces 6 a, 6 b are recessed relative thereto.
  • a color wheel 20 is structured such that filter sectors 12 , 13 and 14 are formed on one surface of a disk-like substrate 11 made of a light-transmittable material, such as glass, resin, and the like.
  • the filter sectors 12 , 13 and 14 are well-known optical interference filters which are composed of a dielectric multi-layer film formed by an evaporation method, a sputtering method, and the like.
  • the filter sectors 12 are R transmitting filters to transmit R light only
  • the filter sectors 13 are G transmitting filters to transmit G light only
  • the filter sectors 14 are B transmitting filters to transmit B light only.
  • Indicated by lines W in FIG. 3A are ideal demarcation lines in designing.
  • the substrate 11 is composed of a main portion 19 having a lower refractive index, and lens structures 15 a, 15 b having a higher refractive index and working as light deflecting means.
  • the lens structures 15 a, 15 b are disposed at and flush with a surface having the filter sectors 12 , 13 and 14 formed thereon, are positioned along the ideal demarcation line W supposedly located at the center of an incomplete filter portion E, and have respective curved surfaces 16 a, 16 b formed at their abutting ends and configured to be substantially symmetric about the ideal demarcation line W.
  • FIG. 3B are configured to be convex (see 16 a, 16 b), but may be configured to be concave, or alternatively may be plane with inclination.
  • the FIG. 3B shows only the lens structures 15 a, 15 b formed at the ideal demarcation line W between the filter sectors 12 and 14 , but such lens structures ( 15 a, 15 b) are also formed respectively at the ideal demarcation line W between the filter sectors 12 and 13 and at the ideal demarcation line W between the filter sectors 13 and 14 .
  • the substrate 11 may be formed such that a low refractive index material for the main portion 19 and a high refractive index material for the lens structures 15 a, 15 b are appropriately selected out of various optical glass or plastic materials taking design conditions into consideration, and are processed by, for example, insert-molding, which is used for fabricating a composite optical element and the like.
  • a low refractive index material for the main portion 19 and a high refractive index material for the lens structures 15 a, 15 b are appropriately selected out of various optical glass or plastic materials taking design conditions into consideration, and are processed by, for example, insert-molding, which is used for fabricating a composite optical element and the like.
  • BK-type optical glass having a refractive index of about 1.5 may be selected as a low refractive index material
  • LAK-type optical glass having a refractive index of about 1.7 may be selected as a high refractive index material.
  • 3B are disposed at and flush with a surface of the main portion 19 having the filter sectors 12 , 13 and 14 formed thereon, but may alternatively be embraced by the main portion 19 , or penetrate through the thickness of the main portion 19 according to the conditions of the manufacturing method.
  • a color wheel assembly 60 comprises a color wheel 61 , a motor 63 to rotate the color wheel 61 , and a hub 62 for fixedly attaching the color wheel 61 onto the motor 63 such that the inner circumference of the color wheel 61 is fixed to the hub 62 by means of, for example, adhesive, and that the hub 62 and the motor 63 are fixedly attached to each other adhesively, or mechanically, e.g., screwing.
  • the color wheel 61 may alternatively be fixed directly to the motor 61 without the hub 62 for example by sharing a common rotary shaft with the motor 61 .
  • the color wheel 61 is a bicolor or tricolor color wheel according to the present invention, specifically, has lens structures adapted to deflect lights incident on the area corresponding to the boundary between adjacent filter sectors.
  • an image display apparatus 70 comprises: a white light source 71 , such as a metal halide lamp; a color wheel assembly 72 ; a reflection-type light valve element 73 , such as a digital micro mirror device; and a projection lens system 74 .
  • the color wheel assembly 72 incorporates a tricolor color wheel which has lens structures as described in the embodiments of the present invention.
  • White light emitted from the white light source 71 is dispersed by the color wheel assembly 72 sequentially into, for example, R light, G light and B light, impinges on the light valve element 73 and is thereby modulated sequentially into R, G and B images, which are then sequentially projected by the projection lens system 74 to be composed into a full color image.
  • an image display apparatus 80 comprises: a white light source 81 , such as a metal halide lamp; a color wheel assembly 82 ; a mirror 83 ; a total reflection prism 84 ; a dichroic prism 85 ; reflection-type light valve elements 86 , 87 , such as digital micro mirror devices; and a projection lens system 88 .
  • the color wheel assembly 82 incorporates a bicolor color wheel which has lens structures as described in the embodiments of the present invention.
  • White light emitted from the white light source 81 is dispersed by the color wheel assembly 82 sequentially into, for example, yellow (Y) light and magenta (M) light which have their travel direction changed by the mirror 83 and the total reflection prism 84 , and impinge on the dichroic prism 85 which is adapted to transmit, for example, R light only, and to reflect light having other wavelength bands.
  • the Y light impinging on the dichroic prism 85 is dispersed thereby into R and G lights which impinge on the light valve element 86 and then the light valve element 87 while the M light impinging on the dichroic prism 85 is dispersed into R and B lights which impinge on the light valve element 86 and then the light valve element 87 .
  • the light valve element 86 modulates the R light into an R image
  • the light valve element 87 modulates the G and B lights into G and B images, respectively.
  • the R and G images, and the R and B images impinge again on the dichroic prism 85 to be composed thereby into a Y image, and an M image, respectively, and the Y and M images pass through the total reflection prism 84 and are sequentially projected by the projection lens system 88 to be composed into a full color image.
  • respective light valve elements 73 , and 86 and 87 are of reflection type, but may alternatively be of transmission type, such as liquid crystal light valves.
  • any optical systems or control systems can be optionally employed in the image display apparatuses 70 , 80 . Consequently, it is to be understood that the present invention is by no means limited to the specific embodiments described above but encompasses all changes and modifications which will become possible within the scope of the appended claims.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Filters (AREA)

Abstract

A color wheel includes lens structures, which are formed on a surface of a substrate opposite to a surface having filter sectors, and which have curved surfaces formed at their abutting ends and positioned along a boundary between adjacent filter sectors. Light impinging on an area of the substrate corresponding to the boundary is deflected due to one of the curved surfaces so as to be surely guided into one of the adjacent filter sectors and to be duly dispersed into a predetermined color, whereby light can be efficiently utilized.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a color wheel suitable for use as a filter element of a time-share light dispersing device, and to a color wheel incorporated in a color wheel assembly making up a projection-type image display apparatus.
2. Description of the Related Art
Color composition in a projection-type image display apparatus has conventionally been accomplished commonly by a method, such as: a single-panel method, in which one light valve element adapted to control light amount per pixel thereby creating an image is used to disperse each pixel into red (R), green (G), and blue (B) lights; and a three-panel method, in which three light valve elements dedicated to R, G and B lights, respectively, are used to produce in parallel R, G and B images, and then the three images thus produced are composed. Recently, as a light valve element capable of fast switching, such as a ferroelectric liquid crystal display element or a digital micro mirror device, is increasingly coming into practical use, a time-sharing single-panel method is widely used. In the time-sharing single-panel method, R, G and B lights are caused to sequentially impinge on one light valve element, the light valve element is driven in synchronization with switching-over of the R, G and B lights thereby producing R, G and B images in a time series manner, and the images thus produced are projected onto a screen, or the like. Here, color composition of the images is accomplished by a viewer due to an afterimage effect occurring at a sense of vision. In the time-sharing single-panel method, reduction in both dimension and weight of the apparatus, which is a feature of a single-panel method, can be achieved by employing a relatively simple optical system, and therefore the time-sharing single-panel method is favorable for realizing inexpensive fabrication of a projection-type image display apparatus. In such an image display apparatus, a color wheel is preferably used as a filter element of a time-share light dispersing device to sequentially disperse light emitted from a white light source into R, G and B lights having respective wavelength bands in a time-sharing manner (refer to, for example, Japanese Patent Application Laid-Open No. H06-347639).
FIGS. 7A and 7B are respectively front and side views of a typical color wheel assembly incorporating such a color wheel. Referring to FIG. 7B, a color wheel assembly 200 comprises a color wheel 100, a hub 105, and a motor 106. The color wheel 100 is a tricolor color wheel structured such that a disk-like substrate 101, which is made of a light-transmitting material, for example, optical glass, has three filter sectors 102, 103 and 104 formed on one surface thereof, and such that, for example, the filter sector 102 transmits R light only, the filter sector 103 transmits G light only, and the filter sector 104 transmits B light only. The color wheel 100 thus structured is fixedly attached to the motor 106 via the hub 105 coaxially therewith. The color wheel assembly 200 operates such that the color wheel 100 is rotated by the motor 106 so that the filter sectors (R, G and B) 102, 103 and 104 sequentially have white light S falling incident thereon whereby the white light S is sequentially dispersed into R, G and B lights.
FIG. 8A is a plan view of the aforementioned color wheel 100, and FIG. 8B is a schematic cross-sectional view taken along a line A-A′ of FIG. 8A. The filter sectors 102, 103 and 104 are usually constituted by optical interference filters of dielectric multi-layer films structured such that a dielectric thin film formed of a material having a high refractive index (e.g., TiO2, ZrO2, and ZnS), and a dielectric thin film formed of a material having a low refractive index (e.g., SiO2, and MgF2) are alternately laminated by an evaporation method, a sputtering method, or the like. The optical interference filter is superior in durability (heat resistance, light stability, and chemical resistance) to a color filter formed by a staining method, a pigment dispersion method, or the like, has a high transmittance, and readily achieves a sharp spectroscopic characteristic, and therefore endures exposure to intensive light flux and produces a high display quality image.
Adjacent filter sectors are required to abut each other precisely and tightly unless achromatic areas which do not constitute any filter sectors are intentionally disposed. This is because if the adjacent filter sectors do not abut each other precisely and tightly, a gap is generated between the adjacent filter sectors, and light passing the gap fails to definitely determine its color thus resulting in not fully contributing to forming an image. When filters are formed by an evaporation method or a sputtering method, a metal mask formed of a metallic thin plate and having openings corresponding to the filter sectors is preferably used for demarcating the filter sectors. The metal mask is first guided mechanically, for example, with a positioning pin, and then finally lined up by viewing, for example, through a microscope, the peripheries of filter sectors of one kind already formed and the openings of the metal mask.
However, the following problem is found in the positioning technique described above. It occasionally happens at the process of forming the filter sectors due to the thickness of the metal mask that as shown in FIG. 8B, dielectric multi-layer films constituting the filter sectors 102, 103 and 104 (103 not shown in FIG. 8B) fail to achieve a predetermined thickness at regions F which extend along the outlines of the openings of the metal mask, and which measure up to about 100 μm in width. In such a case, it is difficult to clearly determine the demarcation of the filter sectors even by viewing through a microscope, and this hinders precise alignment of the openings to the filter sectors. Consequently, the filter sectors thus formed are positioned with respect to one another with a lowered degree of accuracy, and an incomplete filter portion E is inevitably found, for example, between the filter sectors 102 and the filter sectors 104 as shown in FIG. 8B. Referring to FIG. 9, out of light rays A to D passing the incomplete filter portion E, the light rays A and D may possibly contribute to forming an image but the light rays B and C definitely fail to do so.
In order to overcome the problem, for example, Japanese Patent Application Laid-Open No. H11-222664 discloses a metal mask with openings, in which the sidewalls of the openings are inclined with respect to the metal mask surfaces such that the openings have an increased area at one of the surfaces facing an evaporation source so that particles from the evaporation source come into the openings with reduced restriction thereby better achieving uniform film formation within the openings.
The aforementioned Japanese Patent Application Laid-Open No. H06-347639 discloses that filter sectors are desired to abut each other unless achromatic areas which do not constitute any filter sectors are intentionally disposed, but does not teach how it can be achieved. Also, the aforementioned Japanese Patent Application Laid-Open No. H11-222664 indicates a method that is anticipated to be good to a certain degree for clearly demarcating a boundary between filter sectors provided that an optimum inclination angle of the sidewalls surely exists and can be obtained somehow which allows a film to be formed uniform in thickness all the way up to the peripheries of filter sectors. The optimum inclination angle of the sidewalls, however, must be obtained theoretically and experimentally based on various considerations, such as a film material method and conditions of film formation, a desired film thickness, a metal mask thickness, and the like, and therefore the method disclosed therein cannot be readily applied to fabrication of a color wheel.
SUMMARY OF THE INVENTION
The present invention has been made in light of the above problems, and it is an object of the present invention to provide a color wheel, in which light impinging on an area corresponding to a boundary between adjacent filter sectors can be efficiently utilized even if the adjacent filters are not precisely positioned with respect to each other, and which is incorporated in a color wheel assembly for use in an image display apparatus.
In order to achieve the object, according to a first aspect of the present invention, a color wheel comprises: a disk-like substrate made of a light-transmittable material; plural kinds of filter sectors formed on a surface of the substrate and functioning to selectively transmit lights having respective different wavelength bands; and a plurality of light deflecting means to change an optical path of light impinging on an area corresponding to a boundary between adjacent filter sectors so as to guide the light into one of the adjacent filter sectors. Consequently, light impinging on the area corresponding to the boundary between the adjacent filter sectors can be surely dispersed into a predetermined color, even if the boundary is not provided with a complete dielectric multi-layer film having a specified thickness, or even if the adjacent filter sectors are not precisely positioned with respect to each other.
In the first aspect of the present invention, the light deflecting means may be lens structures formed integrally with the substrate. Consequently, the light deflecting means can be formed precisely by using a usual method for fabricating an optical element.
In the first aspect of the present invention, substrate may consist of a lower refractive index portion and a higher refractive index portion, and the light deflecting means may be lens structures constituted by the higher refractive index portion. Consequently, the color wheel has flat surfaces, and therefore does not cause an increased noise wind level due to its high-speed rotation.
According to a second aspect of the present invention, the color wheel, together with a motor to rotate the color wheel, may comprise a color wheel assembly. Consequently, the color wheel assembly can utilize white light efficiently.
According to a third aspect of the present invention, the color wheel assembly composed of the color wheel may be employed in an image display apparatus. Consequently, the image display apparatus can provide a display image of a high visual quality due to the efficient utilization of white light.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A is a plan view of a color wheel according to a first embodiment of the present invention, and FIG. 1B is a schematic cross-sectional view thereof taken along a line A-A′ in FIG. 1A;
FIG. 2 is an explanatory view of optical paths of light rays incident on the color wheel shown in FIGS. 1A and 1B;
FIG. 3A is a plan view of a color wheel according to a second embodiment of the present invention, and FIG. 2B is a schematic cross-sectional view thereof taken along a line A-A′ in FIG. 3A;
FIG. 4 is an explanatory view of paths of light rays incident on the color wheel shown in FIGS. 3A and 3B;
FIG. 5A is a front view of a color wheel assembly incorporating a color wheel according to the present invention, and FIG. 5B is a side view thereof;
FIG. 6A is a construction view of a image display apparatus including a tricolor color wheel according to the present invention, and FIG. 6B is a construction view of an image display apparatus including a tricolor color wheel according to the present invention;
FIG. 7A is a front view of a typical color wheel assembly using a color wheel, and FIG. 7B is a side view thereof,
FIG. 8A is a plan view of a conventional color wheel, and FIG. 8B is a schematic cross-sectional view thereof taken along a line A-A′ in FIG. 8A; and
FIG. 9 is an explanatory view of optical paths of light rays incident on the conventional color wheel shown in FIGS. 8A and 8B.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention will hereinafter be described with reference to the accompanying drawings.
A first embodiment of the present invention will be described with reference to FIGS. 1A and 1B. Referring to FIG. 1A, a color wheel 10 is structured such that filter sectors 2, 3 and 4 are formed on one surface of a disk-like substrate 1 made of a light-transmittable material, such as glass, resin, and the like. The filter sectors 2, 3 and 4 are well-known optical interference filters which are composed of a dielectric multi-layer film formed by an evaporation method, a sputtering method, and the like. The filter sectors 2 are R transmitting filters to transmit R light only, the filter sectors 3 are G transmitting filters to transmit G light only, and the filter sectors 4 are B transmitting filters to transmit B light only. The light-transmittable material for the substrate 1 may preferably be, for example, optical glass such as borosilicic acid glass, or optical plastic such as polymethyl methacrylate, polycarbonate, and polycyclic olefin. Indicated by lines W in FIG. 1A are ideal demarcation lines in designing.
Referring to FIG. 1B, the substrate 1 has lens structures 5a, 5b as light deflecting means formed on a surface thereof opposite to a surface on which the filter sectors 2, 3 and 4 are formed. The lens structures 6a, 5b are formed integrally with the substrate 1 by a manufacturing method to be described later so as to be positioned along the ideal demarcation line W supposedly located at the center of an incomplete filter portion E, and have respective curved surfaces 6a, 6b formed at their abutting ends and configured to be substantially symmetric about the ideal demarcation line W. The abutting ends of the lens structures 5a, 5b in FIG. 1B are configured to be convex (see 6a, 6b), but may be configured to be concave, or alternatively may be plane with inclination. FIG. 1B shows only the lens structures 5a, 5b formed at the ideal demarcation line W between the filter sectors 2 and 4, but such lens structures (5a, 5b) are also formed respectively at the ideal demarcation line W between the filter sectors 2 and 3 and at the ideal demarcation line W between the filter sectors 3 and 4.
Referring FIG. 2, light rays B and C, which impinge on an area corresponding to the incomplete filter portion E, and conventionally travel straight thus failing to be duly dispersed (refer to FIG. 9), have now their optical paths changed by means of the curved surfaces 6a, 6b of the lens structures 6a, 5b toward the filter sectors 4 and 2, respectively, to be surely dispersed into B and R lights.
The lens structures 5a, 5b are formed integrally with the substrate 1 by using a glass or resin processing technique with a high accuracy, that is employed for fabricating an optical element, such as a lens or a diffraction grating, or fabricating a substrate of an optical information recording medium, such as a CD or a DVD. Specifically, the lens structures 5a, 5b can be preferably formed, in case of the substrate 1 made of a glass material, by, for example, hot press-molding, and in case of the substrate 1 made of a resin material, by die-forming (e.g., casting, injection-molding, and compression-molding). Depending on the required dimension or optical properties such as a refractive index, the lens structures 5a, 5b may alternatively be formed separately from the substrate 1 and attached to the substrate 1 by adhesion, or formed such that a grooved is formed on the substrate 1 along the ideal demarcation line W by, for example, etching, and then the groove portion is heated up to a temperature exceeding its fusing or softening point thereby forming light deflecting surfaces. The lens structures 5a, 5b in FIG. 1B are raised relative to the surface of the substrate 1, but may alternatively be flush therewith such that the curved surfaces 6a, 6b are recessed relative thereto.
A second embodiment of the present invention will be described with reference to FIGS. 3A and 3B. Referring to FIG. 3A, a color wheel 20 is structured such that filter sectors 12, 13 and 14 are formed on one surface of a disk-like substrate 11 made of a light-transmittable material, such as glass, resin, and the like. The filter sectors 12, 13 and 14 are well-known optical interference filters which are composed of a dielectric multi-layer film formed by an evaporation method, a sputtering method, and the like. The filter sectors 12 are R transmitting filters to transmit R light only, the filter sectors 13 are G transmitting filters to transmit G light only, and the filter sectors 14 are B transmitting filters to transmit B light only. Indicated by lines W in FIG. 3A are ideal demarcation lines in designing.
Referring to FIG. 3B, the substrate 11 is composed of a main portion 19 having a lower refractive index, and lens structures 15a, 15b having a higher refractive index and working as light deflecting means. The lens structures 15a, 15b are disposed at and flush with a surface having the filter sectors 12, 13 and 14 formed thereon, are positioned along the ideal demarcation line W supposedly located at the center of an incomplete filter portion E, and have respective curved surfaces 16a, 16b formed at their abutting ends and configured to be substantially symmetric about the ideal demarcation line W. The abutting ends of the lens structures 15a, 15b in FIG. 3B are configured to be convex (see 16a, 16b), but may be configured to be concave, or alternatively may be plane with inclination. The FIG. 3B shows only the lens structures 15a, 15b formed at the ideal demarcation line W between the filter sectors 12 and 14, but such lens structures (15a, 15b) are also formed respectively at the ideal demarcation line W between the filter sectors 12 and 13 and at the ideal demarcation line W between the filter sectors 13 and 14.
Referring FIG. 4, light rays B and C, which impinge on an area corresponding to the incomplete filter portions E, and conventionally travel straight thus failing to be duly dispersed (refer to FIG. 9), have now their optical paths changed by means of the curved surfaces 16a, 16b of the lens structures 16a, 15b toward the filter sectors 14 and 12, respectively, to be surely dispersed into B and R lights.
The substrate 11 may be formed such that a low refractive index material for the main portion 19 and a high refractive index material for the lens structures 15a, 15b are appropriately selected out of various optical glass or plastic materials taking design conditions into consideration, and are processed by, for example, insert-molding, which is used for fabricating a composite optical element and the like. For example, BK-type optical glass having a refractive index of about 1.5 may be selected as a low refractive index material, and LAK-type optical glass having a refractive index of about 1.7 may be selected as a high refractive index material. The lens structures 15a, 15b in FIG. 3B are disposed at and flush with a surface of the main portion 19 having the filter sectors 12, 13 and 14 formed thereon, but may alternatively be embraced by the main portion 19, or penetrate through the thickness of the main portion 19 according to the conditions of the manufacturing method.
Now, a description will be made on a color wheel assembly incorporating a color wheel according to the present invention. Referring to FIGS. 5A and 5B, a color wheel assembly 60 comprises a color wheel 61, a motor 63 to rotate the color wheel 61, and a hub 62 for fixedly attaching the color wheel 61 onto the motor 63 such that the inner circumference of the color wheel 61 is fixed to the hub 62 by means of, for example, adhesive, and that the hub 62 and the motor 63 are fixedly attached to each other adhesively, or mechanically, e.g., screwing. The color wheel 61 may alternatively be fixed directly to the motor 61 without the hub 62 for example by sharing a common rotary shaft with the motor 61. The color wheel 61 is a bicolor or tricolor color wheel according to the present invention, specifically, has lens structures adapted to deflect lights incident on the area corresponding to the boundary between adjacent filter sectors.
Further, a discussion will be made on an image display apparatus which includes a color wheel assembly incorporating a color wheel according to the present invention. Referring first to FIG. 6A, an image display apparatus 70 comprises: a white light source 71, such as a metal halide lamp; a color wheel assembly 72; a reflection-type light valve element 73, such as a digital micro mirror device; and a projection lens system 74. In the image display apparatus 70, the color wheel assembly 72 incorporates a tricolor color wheel which has lens structures as described in the embodiments of the present invention. White light emitted from the white light source 71 is dispersed by the color wheel assembly 72 sequentially into, for example, R light, G light and B light, impinges on the light valve element 73 and is thereby modulated sequentially into R, G and B images, which are then sequentially projected by the projection lens system 74 to be composed into a full color image.
Referring now to FIG. 6B, an image display apparatus 80 comprises: a white light source 81, such as a metal halide lamp; a color wheel assembly 82; a mirror 83; a total reflection prism 84; a dichroic prism 85; reflection-type light valve elements 86, 87, such as digital micro mirror devices; and a projection lens system 88. In the image display apparatus 80, the color wheel assembly 82 incorporates a bicolor color wheel which has lens structures as described in the embodiments of the present invention. White light emitted from the white light source 81 is dispersed by the color wheel assembly 82 sequentially into, for example, yellow (Y) light and magenta (M) light which have their travel direction changed by the mirror 83 and the total reflection prism 84, and impinge on the dichroic prism 85 which is adapted to transmit, for example, R light only, and to reflect light having other wavelength bands. The Y light impinging on the dichroic prism 85 is dispersed thereby into R and G lights which impinge on the light valve element 86 and then the light valve element 87 while the M light impinging on the dichroic prism 85 is dispersed into R and B lights which impinge on the light valve element 86 and then the light valve element 87. The light valve element 86 modulates the R light into an R image, and the light valve element 87 modulates the G and B lights into G and B images, respectively. The R and G images, and the R and B images impinge again on the dichroic prism 85 to be composed thereby into a Y image, and an M image, respectively, and the Y and M images pass through the total reflection prism 84 and are sequentially projected by the projection lens system 88 to be composed into a full color image.
It is evident that those skilled in the art may now make numerous modifications and variations without departing from the inventive concepts. For example, in the aforementioned image display apparatuses 70, and 80, respective light valve elements 73, and 86 and 87 are of reflection type, but may alternatively be of transmission type, such as liquid crystal light valves. Also, it is obvious that any optical systems or control systems can be optionally employed in the image display apparatuses 70, 80. Consequently, it is to be understood that the present invention is by no means limited to the specific embodiments described above but encompasses all changes and modifications which will become possible within the scope of the appended claims.

Claims (9)

1. A color wheel comprising:
a disk-like substrate made of a light-transmittable material;
plural kinds of filter sectors formed on a surface of the substrate and functioning to selectively transmit lights having respective different wavelength bands; and
a plurality of light deflecting means to change an optical path of light impinging on an area corresponding to a boundary between adjacent filter sectors so as to guide the light into one of the adjacent filter sectors, wherein the light deflecting means are lens structures formed integrally with the substrate.
2. A color wheel comprising:
a disk-like substrate made of a light-transmittable material;
plural kinds of filter sectors formed on a surface of the substrate and functioning to selectively transmit lights having respective different wavelength bands; and
a plurality of light deflecting means to change an optical path of light impinging on an area corresponding to a boundary between adjacent filter sectors so as to guide the light into one of the adjacent filter sectors, wherein the substrate consists of a lower refractive index portion and a higher refractive index portion, and wherein the light deflecting means are lens structures constituted by the higher refractive index portion.
3. A color wheel according to claim 1, further comprising a motor arranged to rotate the color wheel.
4. A color wheel according to claim 3, further comprising an image display apparatus including the color wheel and the motor.
5. A color wheel according to claim 2, further comprising a motor arranged to rotate the color wheel.
6. A color wheel according to claim 5, further comprising an image display apparatus including the color wheel and the motor.
7. The color wheel according to claim 1, wherein each of the lens structures includes a curved surface.
8. The color wheel according to claim 1, wherein the lens structures are raised relative to the surface of the substrate.
9. The color wheel according to claim 1, wherein the lens structures are flush with the surface of the substrate such that the at least one curved surface of the lens structures is recessed relative to the surface of the substrate.
US11/311,888 2003-06-06 2005-12-20 Color wheel including light deflecting means Expired - Fee Related USRE39979E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/311,888 USRE39979E1 (en) 2003-06-06 2005-12-20 Color wheel including light deflecting means

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003162474A JP4045579B2 (en) 2003-06-06 2003-06-06 Color wheel, spectroscopic device including the same, and image display device
US10/848,138 US6885512B2 (en) 2003-06-06 2004-05-19 Color wheel including light deflecting means
US11/311,888 USRE39979E1 (en) 2003-06-06 2005-12-20 Color wheel including light deflecting means

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/848,138 Reissue US6885512B2 (en) 2003-06-06 2004-05-19 Color wheel including light deflecting means

Publications (1)

Publication Number Publication Date
USRE39979E1 true USRE39979E1 (en) 2008-01-01

Family

ID=33487540

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/848,138 Ceased US6885512B2 (en) 2003-06-06 2004-05-19 Color wheel including light deflecting means
US11/311,888 Expired - Fee Related USRE39979E1 (en) 2003-06-06 2005-12-20 Color wheel including light deflecting means

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/848,138 Ceased US6885512B2 (en) 2003-06-06 2004-05-19 Color wheel including light deflecting means

Country Status (2)

Country Link
US (2) US6885512B2 (en)
JP (1) JP4045579B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD883579S1 (en) * 2015-07-31 2020-05-05 Purina Animal Nutrition Llc Animal feed tub cover

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691154B1 (en) * 2005-03-16 2007-03-09 삼성전기주식회사 A color wheel for md projection display
TW200639564A (en) * 2005-05-13 2006-11-16 Delta Electronics Inc Optical system and color wheel thereof
TW200837481A (en) * 2007-03-12 2008-09-16 Prodisc Technology Inc Projection system and plastic color wheel assembly thereof
US11099068B2 (en) * 2016-03-04 2021-08-24 Filmetrics, Inc. Optical instrumentation including a spatially variable filter
US10551596B2 (en) 2016-06-29 2020-02-04 Ams Sensors Singapore Pte. Ltd. Optical and optoelectronic assemblies including micro-spacers, and methods of manufacturing the same
CN110032030B (en) * 2018-01-11 2021-10-26 深圳光峰科技股份有限公司 Wavelength conversion device, manufacturing method thereof, light source device and projection equipment

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800474A (en) 1986-05-15 1989-01-24 Vari-Lite, Inc. Color wheel assembly for lighting equipment
JPH0590391A (en) 1991-04-01 1993-04-09 Nippon Telegr & Teleph Corp <Ntt> Vapor deposition apparatus and method for formation of metal pattern
US5257332A (en) 1992-09-04 1993-10-26 At&T Bell Laboratories Optical fiber expanded beam coupler
WO1994025796A1 (en) 1993-05-03 1994-11-10 Light And Sound Design Inc. Colour cross-fading system for a luminaire
JPH06347639A (en) 1993-03-03 1994-12-22 Texas Instr Inc <Ti> Monolithic color wheel
JPH1048542A (en) 1996-04-30 1998-02-20 Balzers Ag Color wheel and image forming device provided with the color wheel
US5868482A (en) 1996-04-30 1999-02-09 Balzers Aktiegesellschaft Color wheel and picture generation unit with a color wheel
JPH11115711A (en) 1997-10-14 1999-04-27 Denso Corp Solenoid valve and brake control device equipped therewith
JPH11222664A (en) 1998-02-04 1999-08-17 Matsushita Electric Ind Co Ltd Metal mask, formation of resistor by using this metal mask and production of resistor using this metal mask
US6011662A (en) 1998-07-01 2000-01-04 Light & Sound Design, Ltd. Custom color wheel
US6024453A (en) 1997-04-29 2000-02-15 Balzers Aktiengesellshaft Method of rapidly producing color changes in an optical light path
JP2000239830A (en) 1999-02-17 2000-09-05 Agency Of Ind Science & Technol Formation of oxide optical thin film and forming device of oxide optical thin film
JP2001073136A (en) 1999-09-08 2001-03-21 Showa Shinku:Kk Optical thin film producing system
US20020005914A1 (en) 1999-12-30 2002-01-17 Tew Claude E. Color wheel for a falling raster scan
US20020105729A1 (en) 2001-02-06 2002-08-08 Reflectivity, Inc., A California Corporation Projection display with full color saturation and variable luminosity
JP2003050309A (en) 2001-08-07 2003-02-21 Fuji Photo Optical Co Ltd Rotary optical filter device
JP2003057424A (en) 2001-08-17 2003-02-26 Seiko Epson Corp Spectroscope, method for manufacturing the same, method for using the same and color display device provided with the same
US6574046B1 (en) * 1999-09-24 2003-06-03 Nec Viewtechnology Ltd. Reflective time-division image projector
US20030142241A1 (en) * 2002-01-31 2003-07-31 Allen William J. Display device with cooperative color filters
US6702446B2 (en) 2001-05-22 2004-03-09 Koninklijke Philips Electronics N.V. Projection display device
JP2004101827A (en) 2002-09-09 2004-04-02 Nidec Copal Electronics Corp Color wheel and motor having the same
US6715887B2 (en) 2002-09-11 2004-04-06 Delta Electronics, Inc. Color wheel module for image display device
US20040095767A1 (en) 2000-05-25 2004-05-20 Hideki Ohmae Color wheel assembly and color sequential display device using the same
US6813087B2 (en) 2001-12-31 2004-11-02 Texas Instruments Incorporated Multi-mode color filter
US20050018145A1 (en) 2003-07-23 2005-01-27 Lg Electronics Inc. Image projector

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800474A (en) 1986-05-15 1989-01-24 Vari-Lite, Inc. Color wheel assembly for lighting equipment
JPH03122903A (en) 1986-05-15 1991-05-24 Barry Wright Inc Color wheel and filter
JPH0590391A (en) 1991-04-01 1993-04-09 Nippon Telegr & Teleph Corp <Ntt> Vapor deposition apparatus and method for formation of metal pattern
US5257332A (en) 1992-09-04 1993-10-26 At&T Bell Laboratories Optical fiber expanded beam coupler
JPH06347639A (en) 1993-03-03 1994-12-22 Texas Instr Inc <Ti> Monolithic color wheel
WO1994025796A1 (en) 1993-05-03 1994-11-10 Light And Sound Design Inc. Colour cross-fading system for a luminaire
JPH1048542A (en) 1996-04-30 1998-02-20 Balzers Ag Color wheel and image forming device provided with the color wheel
US5868482A (en) 1996-04-30 1999-02-09 Balzers Aktiegesellschaft Color wheel and picture generation unit with a color wheel
US6024453A (en) 1997-04-29 2000-02-15 Balzers Aktiengesellshaft Method of rapidly producing color changes in an optical light path
JPH11115711A (en) 1997-10-14 1999-04-27 Denso Corp Solenoid valve and brake control device equipped therewith
JPH11222664A (en) 1998-02-04 1999-08-17 Matsushita Electric Ind Co Ltd Metal mask, formation of resistor by using this metal mask and production of resistor using this metal mask
US6011662A (en) 1998-07-01 2000-01-04 Light & Sound Design, Ltd. Custom color wheel
JP2000239830A (en) 1999-02-17 2000-09-05 Agency Of Ind Science & Technol Formation of oxide optical thin film and forming device of oxide optical thin film
JP2001073136A (en) 1999-09-08 2001-03-21 Showa Shinku:Kk Optical thin film producing system
US6574046B1 (en) * 1999-09-24 2003-06-03 Nec Viewtechnology Ltd. Reflective time-division image projector
US20020005914A1 (en) 1999-12-30 2002-01-17 Tew Claude E. Color wheel for a falling raster scan
US20040095767A1 (en) 2000-05-25 2004-05-20 Hideki Ohmae Color wheel assembly and color sequential display device using the same
US20020105729A1 (en) 2001-02-06 2002-08-08 Reflectivity, Inc., A California Corporation Projection display with full color saturation and variable luminosity
US6702446B2 (en) 2001-05-22 2004-03-09 Koninklijke Philips Electronics N.V. Projection display device
JP2003050309A (en) 2001-08-07 2003-02-21 Fuji Photo Optical Co Ltd Rotary optical filter device
JP2003057424A (en) 2001-08-17 2003-02-26 Seiko Epson Corp Spectroscope, method for manufacturing the same, method for using the same and color display device provided with the same
US6813087B2 (en) 2001-12-31 2004-11-02 Texas Instruments Incorporated Multi-mode color filter
US20030142241A1 (en) * 2002-01-31 2003-07-31 Allen William J. Display device with cooperative color filters
JP2004101827A (en) 2002-09-09 2004-04-02 Nidec Copal Electronics Corp Color wheel and motor having the same
US6715887B2 (en) 2002-09-11 2004-04-06 Delta Electronics, Inc. Color wheel module for image display device
US20050018145A1 (en) 2003-07-23 2005-01-27 Lg Electronics Inc. Image projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD883579S1 (en) * 2015-07-31 2020-05-05 Purina Animal Nutrition Llc Animal feed tub cover

Also Published As

Publication number Publication date
JP2004361834A (en) 2004-12-24
US6885512B2 (en) 2005-04-26
US20040246612A1 (en) 2004-12-09
JP4045579B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US6876505B2 (en) Manufacturing method of color wheel, and color wheel fabricated thereby and incorporated in color wheel assembly and image display apparatus
US5798805A (en) Projection type display apparatus
US5990992A (en) Image display device with plural planar microlens arrays
US7190516B2 (en) Screen, optical film, and method of manufacturing an optical film
JP3199313B2 (en) Reflection type liquid crystal display device and projection type liquid crystal display device using the same
EP0465171A2 (en) A colour liquid crystal display device
US7121669B2 (en) Color-filter array and manufacturing method therefor, display device, and projection display device
US20060203349A1 (en) Spatial light modulator and projector
US6685322B2 (en) Optical system and projection-type image display device
US20060172453A1 (en) Image sensor and manufacturing method of image sensor
US20050030659A1 (en) Color wheel, manufacturing method of same, and color wheel assembly and image display apparatus incorporating same
EP0814618B1 (en) Projection-type color liquid crystal display device
USRE39979E1 (en) Color wheel including light deflecting means
US6040881A (en) Projection type display apparatus with color optimized anti-reflection films
US20060066775A1 (en) Liquid crystal display projector, liquid crystal display panel, and manufacturing method thereof
US6144427A (en) Polymer dispersed liquid crystal panel
US6256120B1 (en) Spatial light modulation device and color display apparatus
JP2000019326A (en) Color decomposing element and projector
JP2001091894A (en) Display optical device
JP2005519328A (en) Projector with improved efficiency
JP3071947B2 (en) Projection type color image display device
EP1577706A1 (en) Screen and method for manufacturing the same
JPH116999A (en) Manufacture of liquid crystal substrate, liquid crystal display element and projection type liquid crystal display device
JPH1164846A (en) Liquid crystal projection display device
JP3344167B2 (en) Transmissive display

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees