USRE39438E1 - Thromboresistant coated medical device - Google Patents
Thromboresistant coated medical device Download PDFInfo
- Publication number
- USRE39438E1 USRE39438E1 US10/679,965 US67996503A USRE39438E US RE39438 E1 USRE39438 E1 US RE39438E1 US 67996503 A US67996503 A US 67996503A US RE39438 E USRE39438 E US RE39438E
- Authority
- US
- United States
- Prior art keywords
- heparin
- medical device
- silane
- coating
- biopolymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/0005—Use of materials characterised by their function or physical properties
- A61L33/0011—Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate
- A61L33/0029—Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate using an intermediate layer of polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/08—Materials for coatings
- A61L29/085—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/131—Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
- Y10T428/1317—Multilayer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/131—Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
- Y10T428/1317—Multilayer [continuous layer]
- Y10T428/1321—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1334—Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/139—Open-ended, self-supporting conduit, cylinder, or tube-type article
- Y10T428/1393—Multilayer [continuous layer]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31598—Next to silicon-containing [silicone, cement, etc.] layer
- Y10T428/31601—Quartz or glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31605—Next to free metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31645—Next to addition polymer from unsaturated monomers
- Y10T428/31649—Ester, halide or nitrile of addition polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31663—As siloxane, silicone or silane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31667—Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31681—Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
- Y10T428/31699—Ester, halide or nitrile of addition polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31935—Ester, halide or nitrile of addition polymer
Definitions
- This application relates to the field of medical devices and more particularly to the field of coatings for medical devices.
- Arteriosclerosis is a condition that detrimentally affects many individuals. Untreated, arteriosclerosis may lead to sever consequences, including heart damage, heart attack and death. Known treatments for arteriosclerosis have had limited success.
- Transluminal balloon angioplasty wherein a balloon is inserted via a catheter into the artery of the patient and expanded, thereby simultaneously expanding the partially closed artery to a more open state, is a well-known treatment for arteriosclerosis, but long-term benefits of balloon angioplasty are limited by the problems of occlusion and restenosis, which result in re-closure of the artery.
- intravascular stents and prostheses have been developed to support diseases arteries and thereby inhibit arterial closure after angioplasty.
- expandable intraluminal stents have been developed in which a catheter is used to implant a stent into the artery of the patient in a minimally invasive manner.
- stents can result in coagulation of thrombosis in the intravascular environment. Thrombosis can inhibit blood flow through the stent, diminishing its effectiveness, or can cause clotting, which can threaten the life of the patient. Accordingly, methods of reducing thrombotic activity have been sought to reduce the negative side effects caused by certain stents.
- a number of coatings have been developed for medical devices that are intended to promote compatibility between a particular medical device and the environment in which the medical device resides. Some of these coatings, known as thromboresistant coatings, are intended to reduce the thrombosis often associated with insertion of a foreign object, such as a medical device, into the interior of the body.
- Heparin or heparinic acid, arteven, or leparan, is a glycosaminoglycan with well-known anticoagulant activity. Heparin is biosynthesized and stored in mast cells of various animal tissues, particularly the liver, lung and gut. Heparin is known to have antithrombotic activity as a result of its ability to bind and activate antithrobmin III; a plasma protein which inhibits several enzymes in the coagulation cascade. It has been hoped that heparin coatings, by inhibiting thrombogenesis, can improve the therapeutic outcomes derived from intra-vascular medical devices, such as stents.
- heparin coatings are subject to a number of defects, including incompabitility with the organism and/or microscopic features of the surface to be coated, excessive thickness, difficulty in application, and insufficient durability.
- several known coatings are based upon simultaneous coulombic interactions between heparin and tri(dodecyl)methylammonium chloride, which is also referred to herein as heparin-TDMAC, and hydrophobic interactions between the quaternary ammonium ion of heparin-TDMAC and the surface of the device. Due to the relative weaknesses of hydrophobic interactions, such coatings typically leach away from the substrate to which they are applied within a few hours; coatings of this type, therefore, are not generally durable enough to provide beneficial therapeutic results.
- silanes having a pendent amino or vinyl functionality comprise silanes having a pendent amino or vinyl functionality.
- a base layer of silane is applied initially to the surface, followed by the application to the base layer of a second layer comprising antithrombogenic biomolecules, such as heparin. It is necessary that the pendent groups of the base layer of silane be both complementary and accessible to groups on heparin.
- a silane with terminal amino functionality is applied to a substrate to form a first layer, followed by application of heparin in solution to form the second layer.
- the amino functionality of the silane base layer reacts with an aldehyde-containing heparin derivative to form a Schiff base and thereby covalently attach the biomolecule to the base layer.
- a base layer comprising a silane with a vinyl functional group is applied to a surface, followed by covalent attachment, via free radical chemistry, of a heparin-containing derivative to the base layer.
- Thick coatings present a number of difficulties.
- thick coatings increase the profile of the medical device in the intravascular environment.
- a stent with a thick profile can reduce blood flow, thereby undermining the therapeutic benefit of the stent.
- a thick coating may also render the coating itself more vulnerable to pitting, chipping, cracking, or peeling when the stent is flexed, crimped, expanded, or subjected to intravascular forces.
- any of the foregoing results of excessively thick coatings may reduce the antithrombogenic characteristics of the stent. Moreover, the likelihood of pitting is hypothesized to be greater in thick coatings, and pits in a coating may increase the susceptibility to galvanic corrosion of the underlying surface. Because their fabrication requires additional steps, coatings comprising multiple layers may also be more difficult and expensive to manufacture.
- Coatings are provided herein in which biopolymers may be covalently linked to a substrate.
- biopolymers include those that impart thromboresistance and/or biocompatibility to the substrate, which may be a medical device.
- Coatings disclosed herein include those that permit coating of a medical device in a single layer, including coatings that permit applying the single layer without a primer. It should be understood that it may be advantageous in some circumstances to apply double layers of the coatings, such as to cover an area of a medical device that is used to hold the device while a first layer is applied. Thus, single, double and multiple layers of coatings are encompassed by the coatings disclosed herein.
- the coatings disclosed herein include those that use an adduct of heparin molecules to provide thromboresistance.
- the heparin molecules may comprise heparin-tri(dodecyl) methylammonium chloride complex.
- Uses of these term “heparin” herein should be understood to include heparin, as well as any other heparin complex, including heparin-tri (dodecyl)methylammonium chloride complex.
- the coatings described herein further include those that use a silane to covalently link a biopolymer to a substrate.
- the coatings include those derived from silanes comprising isocyanate functionality.
- the disclosed coatings include those that can be applied without a base or primer layer.
- Coatings are also included that provide a thin and durable coating wherein the thickness of said coating can be controlled by application of single or multiple layers.
- Coatings are provided wherein thromboresistance activity can be modified by choice of appropriate amounts of heparin-TDMAC complex and silane.
- Thin, durable coatings are provided having controllable bioactivity.
- Single of multi-layer, coatings disclosed herein are designed to impart thromboresistance and/or biocompatibility to a medical device.
- the coating provides for covalent linking of heparin to the surface of the medical device.
- One coating formulation of the present invention initially consists of heparin-TDMAC complex, organic solvent and silane. Wetting agents may be added to this formulation.
- a silane is chosen that has an organic chain between isocyanate and silane functionalities. The isocyanate functionality reacts with an amino or hydroxyl group on the heparin molecule.
- the formulation contains covalent adducts of heparin and silane, in addition to organic solvent and other additives. Unreacted silane or heparin-TDMAC complex may be present in the formulation, depending on the relative amounts of the reagents utilized.
- the silane end group of the adduct mentioned above adheres to the substrate surface, and a network, or film, containing heparin-TDMAC complexes is related on the surface of a substrate.
- Heparin molecules is the heparin-TDMAC complex are known to have anticoagulant properties. When exposed to blood, heparin molecules inactivate certain coagulation factors, thus preventing thrombus formation.
- the direct adherence of the silane end group to the substrate means that the coating may be applied to a wide range of medical device materials without the use of a base/primer layer.
- the covalent bond between the surface and the solution of the silane comprising the heparin-TDMAC complex provides superior durability compared to known coatings.
- the coating can be applied by dip coating, spray coating, painting or wiping. Dip coating is a preferred mode.
- the coating can be thin and durable.
- the coating thickness can be controlled in a number of ways, e.g., by the application of single or multiple layers. Since the coating process described herein may be a one-step process, coating thickness is not increased as a result of the need to apply multiple layers, as in certain known coating methods.
- the bioeffectiveness of the coatings can be controlled by selecting appropriate amounts of reactants.
- the thromboresistance activity of the coating can be controlled by modifying the amount of heparin-TDMAC complex in the coating.
- Single or multi-layer coatings are provided herein that are designed to impart thromboresistance and/or biocompatibility to a medical device.
- the coating provides for the covalent linking of heparin molecules to a substrate.
- a heparin molecule is understood to contain a specific art-recognized pentasaccharide unit that displays antithrombogenic qualities.
- Covalent linkage of a heparin molecule to a surface is understood to affect at least one, but not all, of the hydroxyl and amino moieties comprised by that molecule; the covalently linked heparin, therefore, presents a thromboresistant surface to the environment surrounding the coated substrate.
- Different methods and formulations for covalently linking heparin to the surface may affect different sites on the heparin molecules, so that different formulations will provide different levels of anti-thrombogenicity.
- One coating formulation of the present invention initially consists of heparin-TDMAC complex, organic solvent and a silane.
- Other biopolymers may be used in place of or in addition to heparin-TDMAC complex, and such biopolymers may be covalently linked to a substrate according to the present invention.
- Such biopolymers may be those that provide thromboresistance, or those that have other desired bioactivity.
- the silane provided may have functionality capable of reacting with a nucleophilic group, e.g., a hydroxyl or amino group.
- the silane may comprise isocyanate, isothiocyanate, ester, anhydride, acyl halide, alkyl halide, epoxide, or aziridine functionality.
- the silane comprises isocyanate functionality.
- the silane comprising isocyanate functionality may be linked covalently to any biopolymer that provides anti-thrombogenicity.
- the selected biopolymer may be selected from a group of heparin complexes, including heparin-tridodecylmethylammonium chloride, heparin-benzalkonium chloride, heparin-steralkonium chloride, heparin-poly-N-vinyl-pyrrolidone, heparin-lecithin, heparin-didodecyldimethyl ammonium bromide, heparin-pyridinium chloride, and heparin-synthetic glycolipid complexes.
- the selected biopolymer may also be another biopolymer that has hydroxyl or amine functional groups that can react with the isocyanate functionality of the silane.
- the selected biopolymer is preferably capable of dissolving in an organic solvent, as opposed to biopolymers that dissolve only in water. Solubility in organic solvents confers a number of advantages, e.g., elimination of water-mediated decomposition of the isocyanate-containing silane.
- the selected biopolymer is heparin-tri(dodecyl)methylammonium chloride complex.
- Wetting agents and other additives may be added to the coatings described herein, to improve the adherence to the substrate, to improve the ease of adding the coatings to a substrate, or for other purposes.
- organic solvents including tetrahydrofuran (THF).
- Additives may include surface active agents, such as Triton.
- the selected silanes may have an organic chain between the isocyanate functionality, which covalently links to the heparin molecule, and an end group that is capable of linking to a substrate surface.
- the end group may link to pendant oxide groups on the substrate surface; in some cases, the pendant oxide groups may be obtained by oxidation of the substrate.
- the bioactivity, including thromboresistance, of the disclosed coatings may be selectively modified by controlling the amounts of heparin-indodecylmethylammonium chloride complex, silane comprising isocyanate functionality, and organic solvent, as well as other constituents, to provide the desired thromboresistance.
- the concentration of the silane in the formulation is between about one-half percent and about four percent.
- the concentration of heparin-tridodecylmethylammonium chloride in the formulation is between about one-tenth percent and about four percent.
- One preferred coating is a solution with a formulation of silane of about five-tenths percent and a formulation of the heparin-tridodecylmethyl-ammonium chloride complex of about two-tenths percent.
- the organic solvent is tetrahydrofuran.
- Heparin molecules including those in heparin-TDMAC, complex are known to have anticoagulant properties. When exposed to blood, structural elements of heparin molecules inactive certain coagulation factors, thus preventing thrombus formation.
- the coatings described herein may be applied in a single layer.
- the layer can be formed by reacting silane having isocyanate functionality within a heparin in an organic solvent to form a silane-heparin complex, which can be applied directly to a substrate, such as a metal substrate, in a single-layer coating that can be applied without a primer.
- the single layer can thus be made sufficiently thin to minimize the problems of peeling, cracking, and other problems that characterize some thicker coatings that require multiple layers, primers, or polymeric matrices for binding to the solution.
- the layers may perform better under the mechanical crimping or expansion of a medical device, such as a stent, to which they are applied, and may perform better in the intravascular environment.
- the silane end groups of the monomer that yield the coatings react with oxides or hydroxyl groups on the surface of stainless steel.
- the stainless steel surface may be oxidized or cleaned and pre-treated, such as with sodium hydroxide, to increase the number of appropriate sites for linking the silane end groups.
- non-functional silanes can be added to the formulations disclosed herein.
- Other silanes may be used to link to substrates, such as trihalosilanes, and silanes having methoxy and ethoxy groups. Silanes having triethoxy, trialkoxy, trichloro, and other groups may be provided to yield the covalent linkages present in the coatings disclosed herein.
- the non-functional silanes may be selected from the group consisting of chain alkyltrialkoxysilanes and phenyltrialkoxysilanes.
- the amount of functional silane is preferably selected to provide substantially complex coverage of the substrate surface; that is, it may be desirable to have the single layer cover all of the surface that would otherwise be exposed to the environment in which the substrate will be placed.
- the adherence of the silane end group to the substrate means that the coating may be applied to a wide range of medical device materials without the use of base primer layer.
- the covalent bond between the heparin-TDMAC complex and the substrate provides a thin and durable coating.
- the coating's thickness can be controlled, e.g. by choice of the length of the chain connecting the silane and isocyanate functionalities.
- the bioeffectiveness and/or bioactivity of the thromboresistant coating can be controlled by selecting appropriate amounts of reactants.
- the thromboresistance activity of the coating can be modified by modifying the amounts of heparin-TDMAC complex and silane in the coating.
- Single layers have further advantages in that problems may arise in the extra steps required for the deposition of multiple layers. For example, dust or other particulates may appear between coatings in two-step processes. Also, application of a second layer may tend to reduce reactivity of the first layer in an unpredictable way.
- Coatings of the present invention may be applied to medical devices that are placed in the body of a human, or that remain outside the body.
- Coated medical devices that are placed in the human body may include stents, catheters, prostheses and other devices.
- Coated medical devices that remain outside the human body may include tubing for the transport of blood and vessels for the storage of blood.
- Substrates of medical devices on which the coatings described herein may be applied can include a wide variety of materials, including stainless steel, nitinol, tantalum, glass, ceramics, nickel, titanium, aluminum and other materials suitable for manufacturer of a medical device.
- the coatings disclosed herein may further include a film-forming agent for the coating.
- the film-forming agents could slow any leaching of the biopolymers from the coating.
- the film forming-agent could be added in a second layer, or dissolved simultaneously with the silane and the biopolymer.
- Appropriate film-forming agents could include cellulose esters, polydialkyl siloxanes, polyurethanes, acrylic polymers or elastomers, as well as biodegradable polymers such as polylactic acid (PLA), polyglycolic acid (PGA), copolymers of PLA and PGA, known as PLGA, poly(e-caprolactone), and the like.
- the silanes and heparin complexes are dissolved in a solvent, which may be an organic solvent.
- the solution preferably should be substantially anhydrous, because water tends to react with isocyanate groups of the silane molecule.
- the water may be added after mixing the silane-isocyanate with heparin.
- the silane and heparin are combined in solution, the resulting solution is aged for about one day, the pH is adjusted with a weak acid, and then water is added to hydrolyze silane.
- the pH of the solution may be adjusted with aqueous acetic acid. Instead of adding water, it is possible to hydrolyze the silane groups by exposure to moist atmosphere conditions.
- silane and heparin complex it is desirable to mix the silane and heparin complex in a manner so as to include a slight excess of heparin molecules, so that all of the isocyanate is reacted, preventing adverse reactions between the isocyanate and any water. Moreover, it is desirable to have a single heparin react with each silane isocyanate functional group; this goal is most easily accomplished by starting with an excess of heparin.
- solution of about two-lengths percent heparin complex and about five-tenths percent silane provided effective coatings.
- coatings in a fairly wide range may be effective.
- coatings are likely to have some effectiveness in cases in which heparin complex is present in concentrations ranging from about one-length of a percent to about twenty percent.
- Coatings with heparin in concentrations of less than ten percent may be preferable in some formulations.
- Coatings with heparin in concentrations of less than five percent may be preferable in other formulations.
- Coatings may be expected to be effective in formulations in which silane is present in a wider range of concentrations as well, including concentrations ranging from about one-tenth of a percent silane to about twenty percent silane.
- thromboresistant characteristics of heparin coatings can be assessed qualitatively and quantitatively, so that methods can be developed that provide uniform coating with a desired amount of bioactivity.
- Successfully heparinized surfaces give a purple stain when exposed to toluidine blue. After coating, the surface is exposed to a saline solution for a number of days or weeks, and thromboresistance activity is measured as a function of time.
- Stents and coupons coated as disclosed herein were shown experimentally to display long-lived thromboresistant properties; bioactivity persisted for periods on the order of months, and it will probably endure much longer.
- the heparin activity of a sample may be quantified based on its ability to inactive thrombin.
- heparin may be first mixed with human antithrombin III, which binds to create a complex.
- the heparin-antithrombin III complex can then be mixed with thrombin to produce a ternary complex comprising heparin, thrombin, and antithrombin.
- the heparin then departs this complex and is free to react again with available antithrombin and thrombin to create additional thrombin-antithrombin complexes.
- heparin acts as a catalyst for the antithrombin-mediated deactivation of thrombin.
- an assay may be conducted for a spectrophotometric analysis of color, to determine the amount of thrombin left in solution.
- the more thrombin left in solution, the lower the bioactivity of the heparin A low level of thrombin in solution indicates a high degree of catalysis of the thrombin-antithrombin reaction; which indicates a high level of thromboresistance provided by the heparin.
- a baseline comparison for the assay is the very slow reaction of thrombin-antithrombin in the absence of heparin.
- the result of the assay can be quantified using spectrophotometry.
- the assay mimics the reaction that occur in the human bloodstream, where thrombin and antithrombin circulate at all times.
- the reaction between antithrombin and thrombin in the body, which is catalyzed by the heparin of the coatings of the present invention helps suppress the coagulation that results from thrombogenesis on a medical device.
- Coatings can be applied in a wide variety of conventional ways, including painting, spraying, dipping vapor deposition, epitaxial growth and other methods known to those of ordinary skill in the art.
- Isocyanatosiliane was formulated with different components, including heparin-tridodecylmethylammonium chloride complex (Heparin-TDMAC complex), tetrahydrofuran (“THF”) and Triton (as optional, surface active agent) in solution to determine whether the intensity of the isocyanate peak changed over time.
- Heparin-TDMAC complex heparin-tridodecylmethylammonium chloride complex
- THF tetrahydrofuran
- Triton as optional, surface active agent
- the coating formulations contains the following constituents, which may vary in concentrations in different embodiments: Heparin-TDMAC complex, an organic solvent, such as THF, a silane, such as 3-isocyanatopropyl triethoxysilane (OCN—(CH 2 ) 3 Si(OEt) 3 ), and Triton (x-100).
- Heparin-TDMAC complex an organic solvent, such as THF
- silane such as 3-isocyanatopropyl triethoxysilane (OCN—(CH 2 ) 3 Si(OEt) 3
- Triton Triton
- a solution of these constituents was mixed and allowed to sit in order to permit a reaction to occur. Allowing the solution to sit for one day allowed the reaction to occur, but shorter reaction times may well be effective.
- the pH was adjusted. Solutions of the above constituents were adjusted to a pH between 4.5 and 5.5 using a solution of acetic acid and water.
- the coating was dried in air and cured in an oven.
- coatings of the above constituents were dried in air for about twenty minutes and then cured in an oven at eight-five degree Celsius for about one hour.
- Coatings derived from the above-described solutions, on coupons and stents were tested in various ways.
- coated coupons and stents were dipped in toluidine blue solution and then were screened for the presence of a purple stain.
- the presence of a purple stain in this assay indicates the presence of heparin in the sample being assayed.
- the intensity of the purple stain observed in this assay is proportional to the amount of heparin in the sample. Therefore, a comparison of the intensities of the purple stains produced in this assay by a set of samples allows an assignment of the relative amounts of heparin comprised by the coatings of those samples.
- heparin activity assay was conducted according to a conventional thrombin inhibition assay techniques.
- the heparin assay permitted determination of the ability of the heparin coating to deactivate thrombin and thus to provide thromboresistance.
- the purpose of the protocol was to assay for heparin activity based on thrombin inhibition. A number of different reactions are understood to take place in order to determine heparin activity. In the first reaction: Heparin+ATIII (excess) ⁇ [Heparin*ATIII] Heparin reacts with Human Antithrombin III (“ATIII”) to yield a Heparin-Antithrobmin III complex.
- ATIII Human Antithrombin III
- heparin activity on coated coupons or stents was measured after exposing the coated object to a continuous flow of saline at thirty-seven degrees Celsius for a selected time period.
- Stainless steel coupons and stents were cleaned before coating.
- the coupons or stents were cleaned with several organic solvents, such as hexane and isopropanol, followed by rinsing with distilled water.
- the cleaning procedure was carried out in an ultrasonic bath for fifteen minutes. After this procedure, the coupons or stents were placed in sodium hydroxide solution (1.0 N) for fifteen minutes and then washed thoroughly with distilled water. Samples were air dried before coating.
- thrombin inhibition assay techniques are notoriously subject to significant sample error; accordingly, it is not unusual to obtain variable experimental results for a given sample.
- the examples below identify results for multiple samples under a variety of conditions and thus indicate in the aggregate that the coatings described herein are likely to provide therapeutic levels of thromboresistance.
- results from any single formulation were found to vary somewhat depending on particular sample conditions. In cases where more than one set of data is provided for a given sample, the individual data sets reflect measurements taken at distinct positions on that sample; the data sets in these cases, therefore, do not necessarily reflect a lack of precision in the measurements.
- Stainless steel coupons were coated with a formulation of 1% heparin-TDMAC complex, 2% silane and 97% THF. The coupons were dipped once in the formulation with a dwell time of five seconds at a coating speed of 10 in/min, to give a single layer of coating. Results are set forth in Table 2.
- Stainless steel coupons were dipped once, at coating speeds of 10 in/min and 42 in/min and for a dwell time of five seconds, and resulting in single layer coatings of different thickness, in the following formulations: 1) 7% heparin-TDMAC complex, 2% silane and 91% THF and a small amount of Triton; and 2) 2% heparin-TDMAC complex, 2% silane and 96% THF and a small amount of Triton. Sample pieces were cut from coupons and were either washed or not washed before being measured under the indicated conditions after the indicated amounts of time. Results are set forth in Table 3:
- Stainless steel coupons were dipped once, at speeds of 10 in/min and 42 in/min, and for dwell times of five seconds, two minutes and fifteen minutes, and resulting in coatings of different thickness, in the following formulations: 1) 7% heparin-TDMAC complex, 2% silane and 91% THF and a small amount of Triton; and 2) 2% heparin-TDMAC complex, 2% silane and 96% THF and a small amount of Triton. Results are shown in Table 4.
- Stainless steel coupons were dipped once, at speeds of 10 in/min for dwell times of one-half, one, two, five, ten and fifteen minutes, in the following formulation: 2% heparin-TDMAC complex, 2% silane. 96% THF and a small amount of Triton. Certain coupons were dipped into toluidine blue solution and rubbed under water. The coupons were then redipped in toluidine blue and checked for the presence of a stain. Results are shown in Table 5.
- coating thickness may be dependent on dwell time, that rubbing does not remove the coating as indicated by stains after rubbing, that washing with various solvents has a different effect on coating durability, and that heparin activity was present after washing.
- the example provided further evidence that heparin activity can be varied using different coating processes.
- Stainless steel coupons were dipped once, at speeds of 10 in/min, and for dwell times of two and fifteen minutes, in the following formulations: 1) 2% heparin-TDMAC complex, 4% silane and 94% THF and a small amount of Triton; 2) 2% heparin-TDMAC complex, 8% silane and 90% THF and a small amount of Triton; 3) 4% heparin-TDMAC complex, 4% silane and 92% THF and a small amount of Triton; and 4) Diluted 4% heparin-TDMAC complex, 4% silane and 92% THF and a small amount of Triton.
- Stainless steel coupons were dipped once, at speeds of 10 in/min and for a dwell time of two minutes, in the following formulation: 2% heparin-TDMAC complex, 2% silane and 96% THF and a small amount of Triton. The coupons were then either left unsterilized, or sterilized with ethylene oxide or gamma radiation,
- Stainless steel coupons were dipped once, dipped twice, or dipped, washed, and then dipped again, at coating speeds of 10 in/min and for dwell times of two minutes, in the following formulations: 1) 0.5% heparin-TDMAC complex, 0.5% silane, 99% THF & small amounts of Triton, 2) 0.5% heparin-TDMAC complex, 2.0% silane, 97.5% THF & small amount of Triton; 3) 2.0% heparin-TDMAC complex, 0.5% silane, 97.5% THF & small amount of Triton; and 4) 2.0% heparin-TDMAC complex, 2.0% silane, 96% THF & small amount of Triton.
- Heparin activity is shown in Table 13.
- the resulting thin coatings demonstrated heparin activity, including light strains before and after rubbing.
- the long term durability of the coatings were evident through heparin activity results.
- Coating properties were variable according to different coating methods.
- Stainless steel coupons were dipped twice, or were dipped, washed then dipped again, at speeds of 10 in/min and for dwell times of two minutes, in the following formulations; 1) 0.5% heparin-TDMAC complex, 0.,5% silane, 99% THF; and 2) 0.5% heparin-TDMAC complex, 2.0% silane, 97.5% THF.
- the pH of the coatings was adjusted using acetic acid.
- Heparin activity is shown in Table 14.
- Stainless steel coupons and stainless steel stents were dipped twice, or were dipped, washed with saline and distilled water, and dipped again, at coating speeds of 10 in/min and for dwell times of two minutes. Coating pH was adjusted formulations were prepared: 1) 0.5% heparin-TDMAC complex, 0.5% silane, 99% THF; and 2) 0.5% heparin-TDMAC complex, 2.0% silane, 97.5% THF.
- Heparin activity is shown in Table 15.
- the resulting thin coatings showed light stains before and after rubbing.
- the coatings were durable as evident from heparin activity results. Coating properties were variable depending on different coating methods.
- Stainless steel coupons and stainless steel stents were dipped, washed with IPA and dipped again, at coating speeds of 10 in/min and for a dwell time of two minutes, in the following formulations: 1) 0.1% heparin-TDMAC complex, 0.5% silane, 99.4% THF; and 2) 0.2% heparin-TDMAC complex, 0.5% silane, 99.3% THF.
- the resulting thin coatings showed light stains before and after rubbing.
- the coatings were durable as evident from heparin activity resins. Coating properties were variable depending on different coating methods.
- Stainless steel stents were dipped once, at coating speeds of 10 in/min for dwell times of five seconds and two minutes, in the following formulations: 1) 4.0% heparin-TDMAC complex, 8.0% silane, 88% THF, small amount of Triton; 2) 4.0% heparin-TDMAC complex, 4.0% silane, 92% THF; small amount of Triton; and 3) 2.0% heparin-TDMAC complex, 2.0% silane, 96% THF, small amount of Triton.
- Heparin activity is shown in Table 19.
- Stainless steel stents were dipped twice, at coating speeds of 10 in/min and at a dwell time of two minutes in the following formulations: 1) 0.2% heparin-TDMAC complex, 0.5Silane; 2) 0.5% heparin-TDMAC complex, 0.5% silane; 3) 0.5% heparin-TDMAC complex, 1.0% silane; 4) 1.0% heparin-TDMAC complex, 1.0% silane; and 5) 1.0% heparin-TDMAC complex, 2.0% silane. Stents were either left unsterilized or were sterilized with gamma radiation.
- Table 20 shows results for non-sterile stents.
- Table 21 shows activity for sterile stents.
- heparin might be covalently linked to a substrate with a silane identified as capable of being soaked into a stainless steel surface.
- the silane compound could have amino or epoxy terminal groups.
- the silane could thus be used to link heparin molecules to the substrate in a manner similar to the silane if isocyanate functionality disclosed herein.
- Heparin could then be prepared with an aldehyde positive group that mixed with an NH2 group to provide an end linkable to heparin without affecting its activity.
- the procedure to make degraded heparin is well known to those of ordinary skill in the art.
- a coating system may also be provided in which heparin can be covalently linked or can be incorporated into a matrix to obtain variable rate of elution.
- a silicon fluid such as Dow Corning MDS 4-4159 is used, with the active silicon being an amino functional polydimethyl siloxane copolymer.
- the coating may be used to coat stainless steel guide wires. This working can be utilized for heparin covalent-bonding as described below.
- a solution of heparin (deaminated) in water or other solvent may be provided.
- a wire coated with a silicon fluid in a solvent may be placed in the solution for some time, for example two hours.
- the heparin has an aldehyde group that can link to the amino functionality in the silicon copolymer.
- Other amino functionalized silicon polymers, or copolymers, can be used to achieve covalent bonding of heparin to the substrate.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
Coatings are provided in which biopolymers may be covalently linked to a substrate. Such biopolymers include those that impart thromboresistance and/or biocompatibility to the substrate, which may be a medical device. Coatings disclosed herein include those that permit coating of a medical device in a single layer, including coatings that permit applying the single layer without a primer. Suitable biopolymers include heparin complexes, and linkage may be provided by a silane having isocyanate functionality.
Description
1. Field of the Invention
This application relates to the field of medical devices and more particularly to the field of coatings for medical devices.
2. Description of Related Art
Arteriosclerosis is a condition that detrimentally affects many individuals. Untreated, arteriosclerosis may lead to sever consequences, including heart damage, heart attack and death. Known treatments for arteriosclerosis have had limited success.
Transluminal balloon angioplasty, wherein a balloon is inserted via a catheter into the artery of the patient and expanded, thereby simultaneously expanding the partially closed artery to a more open state, is a well-known treatment for arteriosclerosis, but long-term benefits of balloon angioplasty are limited by the problems of occlusion and restenosis, which result in re-closure of the artery.
A variety of intravascular stents and prostheses have been developed to support diseases arteries and thereby inhibit arterial closure after angioplasty. In particular, expandable intraluminal stents have been developed in which a catheter is used to implant a stent into the artery of the patient in a minimally invasive manner.
Like other foreign bodies placed into arteries, stents can result in coagulation of thrombosis in the intravascular environment. Thrombosis can inhibit blood flow through the stent, diminishing its effectiveness, or can cause clotting, which can threaten the life of the patient. Accordingly, methods of reducing thrombotic activity have been sought to reduce the negative side effects caused by certain stents.
A number of coatings have been developed for medical devices that are intended to promote compatibility between a particular medical device and the environment in which the medical device resides. Some of these coatings, known as thromboresistant coatings, are intended to reduce the thrombosis often associated with insertion of a foreign object, such as a medical device, into the interior of the body.
Heparin, or heparinic acid, arteven, or leparan, is a glycosaminoglycan with well-known anticoagulant activity. Heparin is biosynthesized and stored in mast cells of various animal tissues, particularly the liver, lung and gut. Heparin is known to have antithrombotic activity as a result of its ability to bind and activate antithrobmin III; a plasma protein which inhibits several enzymes in the coagulation cascade. It has been hoped that heparin coatings, by inhibiting thrombogenesis, can improve the therapeutic outcomes derived from intra-vascular medical devices, such as stents.
However, known heparin coatings are subject to a number of defects, including incompabitility with the organism and/or microscopic features of the surface to be coated, excessive thickness, difficulty in application, and insufficient durability. For example, several known coatings are based upon simultaneous coulombic interactions between heparin and tri(dodecyl)methylammonium chloride, which is also referred to herein as heparin-TDMAC, and hydrophobic interactions between the quaternary ammonium ion of heparin-TDMAC and the surface of the device. Due to the relative weaknesses of hydrophobic interactions, such coatings typically leach away from the substrate to which they are applied within a few hours; coatings of this type, therefore, are not generally durable enough to provide beneficial therapeutic results.
Other known coatings comprise silanes having a pendent amino or vinyl functionality. In the fabrication of these coatings, a base layer of silane is applied initially to the surface, followed by the application to the base layer of a second layer comprising antithrombogenic biomolecules, such as heparin. It is necessary that the pendent groups of the base layer of silane be both complementary and accessible to groups on heparin. In some such coatings, a silane with terminal amino functionality is applied to a substrate to form a first layer, followed by application of heparin in solution to form the second layer. In certain examples of this strategy, the amino functionality of the silane base layer reacts with an aldehyde-containing heparin derivative to form a Schiff base and thereby covalently attach the biomolecule to the base layer. In another group of coatings of this general class, a base layer comprising a silane with a vinyl functional group is applied to a surface, followed by covalent attachment, via free radical chemistry, of a heparin-containing derivative to the base layer.
Some of the known coatings have been found lacking in bioeffectiveness and stability. Modifications made in these coatings utilize additional coatings of the polymeric matrices comprising reactive functionalities. The multi-step process required to fabricate the polymeric matrices necessary in these approaches increases the thickness of the resulting coatings. Thick coatings present a number of difficulties. First, thick coatings increase the profile of the medical device in the intravascular environment. A stent with a thick profile, for example, can reduce blood flow, thereby undermining the therapeutic benefit of the stent. A thick coating may also render the coating itself more vulnerable to pitting, chipping, cracking, or peeling when the stent is flexed, crimped, expanded, or subjected to intravascular forces. Any of the foregoing results of excessively thick coatings may reduce the antithrombogenic characteristics of the stent. Moreover, the likelihood of pitting is hypothesized to be greater in thick coatings, and pits in a coating may increase the susceptibility to galvanic corrosion of the underlying surface. Because their fabrication requires additional steps, coatings comprising multiple layers may also be more difficult and expensive to manufacture.
Accordingly, a need exists for a thromboresistant coating that is thin, durable, and biocompatible, and that may be applied in a single coating.
Coatings are provided herein in which biopolymers may be covalently linked to a substrate. Such biopolymers include those that impart thromboresistance and/or biocompatibility to the substrate, which may be a medical device. Coatings disclosed herein include those that permit coating of a medical device in a single layer, including coatings that permit applying the single layer without a primer. It should be understood that it may be advantageous in some circumstances to apply double layers of the coatings, such as to cover an area of a medical device that is used to hold the device while a first layer is applied. Thus, single, double and multiple layers of coatings are encompassed by the coatings disclosed herein.
The coatings disclosed herein include those that use an adduct of heparin molecules to provide thromboresistance. The heparin molecules may comprise heparin-tri(dodecyl) methylammonium chloride complex. Uses of these term “heparin” herein should be understood to include heparin, as well as any other heparin complex, including heparin-tri (dodecyl)methylammonium chloride complex.
The coatings described herein further include those that use a silane to covalently link a biopolymer to a substrate. The coatings include those derived from silanes comprising isocyanate functionality.
The disclosed coatings include those that can be applied without a base or primer layer.
Coatings are also included that provide a thin and durable coating wherein the thickness of said coating can be controlled by application of single or multiple layers.
Coatings are provided wherein thromboresistance activity can be modified by choice of appropriate amounts of heparin-TDMAC complex and silane.
Thin, durable coatings are provided having controllable bioactivity.
Single of multi-layer, coatings disclosed herein are designed to impart thromboresistance and/or biocompatibility to a medical device. In one embodiment, the coating provides for covalent linking of heparin to the surface of the medical device.
One coating formulation of the present invention initially consists of heparin-TDMAC complex, organic solvent and silane. Wetting agents may be added to this formulation. A silane is chosen that has an organic chain between isocyanate and silane functionalities. The isocyanate functionality reacts with an amino or hydroxyl group on the heparin molecule. After the reaction, the formulation contains covalent adducts of heparin and silane, in addition to organic solvent and other additives. Unreacted silane or heparin-TDMAC complex may be present in the formulation, depending on the relative amounts of the reagents utilized.
Once the coating formulation is applied to a device, the silane end group of the adduct mentioned above adheres to the substrate surface, and a network, or film, containing heparin-TDMAC complexes is related on the surface of a substrate. Heparin molecules is the heparin-TDMAC complex are known to have anticoagulant properties. When exposed to blood, heparin molecules inactivate certain coagulation factors, thus preventing thrombus formation.
The direct adherence of the silane end group to the substrate means that the coating may be applied to a wide range of medical device materials without the use of a base/primer layer. The covalent bond between the surface and the solution of the silane comprising the heparin-TDMAC complex provides superior durability compared to known coatings.
The coating can be applied by dip coating, spray coating, painting or wiping. Dip coating is a preferred mode.
The coating can be thin and durable. The coating thickness can be controlled in a number of ways, e.g., by the application of single or multiple layers. Since the coating process described herein may be a one-step process, coating thickness is not increased as a result of the need to apply multiple layers, as in certain known coating methods.
The bioeffectiveness of the coatings can be controlled by selecting appropriate amounts of reactants. In particular, the thromboresistance activity of the coating can be controlled by modifying the amount of heparin-TDMAC complex in the coating.
Single or multi-layer coatings are provided herein that are designed to impart thromboresistance and/or biocompatibility to a medical device. In an embodiment of the invention, the coating provides for the covalent linking of heparin molecules to a substrate.
A heparin molecule is understood to contain a specific art-recognized pentasaccharide unit that displays antithrombogenic qualities. Covalent linkage of a heparin molecule to a surface is understood to affect at least one, but not all, of the hydroxyl and amino moieties comprised by that molecule; the covalently linked heparin, therefore, presents a thromboresistant surface to the environment surrounding the coated substrate. Different methods and formulations for covalently linking heparin to the surface may affect different sites on the heparin molecules, so that different formulations will provide different levels of anti-thrombogenicity.
One coating formulation of the present invention initially consists of heparin-TDMAC complex, organic solvent and a silane. Other biopolymers may be used in place of or in addition to heparin-TDMAC complex, and such biopolymers may be covalently linked to a substrate according to the present invention. Such biopolymers may be those that provide thromboresistance, or those that have other desired bioactivity.
The silane provided may have functionality capable of reacting with a nucleophilic group, e.g., a hydroxyl or amino group. In particular, the silane may comprise isocyanate, isothiocyanate, ester, anhydride, acyl halide, alkyl halide, epoxide, or aziridine functionality. In certain embodiments described herein, the silane comprises isocyanate functionality.
The silane comprising isocyanate functionality may be linked covalently to any biopolymer that provides anti-thrombogenicity. The selected biopolymer may be selected from a group of heparin complexes, including heparin-tridodecylmethylammonium chloride, heparin-benzalkonium chloride, heparin-steralkonium chloride, heparin-poly-N-vinyl-pyrrolidone, heparin-lecithin, heparin-didodecyldimethyl ammonium bromide, heparin-pyridinium chloride, and heparin-synthetic glycolipid complexes. The selected biopolymer may also be another biopolymer that has hydroxyl or amine functional groups that can react with the isocyanate functionality of the silane.
The selected biopolymer is preferably capable of dissolving in an organic solvent, as opposed to biopolymers that dissolve only in water. Solubility in organic solvents confers a number of advantages, e.g., elimination of water-mediated decomposition of the isocyanate-containing silane. In one preferred embodiment, the selected biopolymer is heparin-tri(dodecyl)methylammonium chloride complex.
Wetting agents and other additives may be added to the coatings described herein, to improve the adherence to the substrate, to improve the ease of adding the coatings to a substrate, or for other purposes. A variety of organic solvents may be used, including tetrahydrofuran (THF). Additives may include surface active agents, such as Triton.
The selected silanes may have an organic chain between the isocyanate functionality, which covalently links to the heparin molecule, and an end group that is capable of linking to a substrate surface. The end group may link to pendant oxide groups on the substrate surface; in some cases, the pendant oxide groups may be obtained by oxidation of the substrate.
The bioactivity, including thromboresistance, of the disclosed coatings may be selectively modified by controlling the amounts of heparin-indodecylmethylammonium chloride complex, silane comprising isocyanate functionality, and organic solvent, as well as other constituents, to provide the desired thromboresistance. In an embodiment of the coatings, the concentration of the silane in the formulation is between about one-half percent and about four percent. In an embodiment, the concentration of heparin-tridodecylmethylammonium chloride in the formulation is between about one-tenth percent and about four percent. One preferred coating is a solution with a formulation of silane of about five-tenths percent and a formulation of the heparin-tridodecylmethyl-ammonium chloride complex of about two-tenths percent. In one such preferred solution, the organic solvent is tetrahydrofuran.
Heparin molecules, including those in heparin-TDMAC, complex are known to have anticoagulant properties. When exposed to blood, structural elements of heparin molecules inactive certain coagulation factors, thus preventing thrombus formation.
The coatings described herein may be applied in a single layer. The layer can be formed by reacting silane having isocyanate functionality within a heparin in an organic solvent to form a silane-heparin complex, which can be applied directly to a substrate, such as a metal substrate, in a single-layer coating that can be applied without a primer. The single layer can thus be made sufficiently thin to minimize the problems of peeling, cracking, and other problems that characterize some thicker coatings that require multiple layers, primers, or polymeric matrices for binding to the solution. Thus, the layers may perform better under the mechanical crimping or expansion of a medical device, such as a stent, to which they are applied, and may perform better in the intravascular environment.
The silane end groups of the monomer that yield the coatings react with oxides or hydroxyl groups on the surface of stainless steel. The stainless steel surface may be oxidized or cleaned and pre-treated, such as with sodium hydroxide, to increase the number of appropriate sites for linking the silane end groups.
To improve hydrolytic stability, non-functional silanes can be added to the formulations disclosed herein. Other silanes may be used to link to substrates, such as trihalosilanes, and silanes having methoxy and ethoxy groups. Silanes having triethoxy, trialkoxy, trichloro, and other groups may be provided to yield the covalent linkages present in the coatings disclosed herein. The non-functional silanes may be selected from the group consisting of chain alkyltrialkoxysilanes and phenyltrialkoxysilanes.
In an embodiment, the amount of functional silane is preferably selected to provide substantially complex coverage of the substrate surface; that is, it may be desirable to have the single layer cover all of the surface that would otherwise be exposed to the environment in which the substrate will be placed.
The adherence of the silane end group to the substrate means that the coating may be applied to a wide range of medical device materials without the use of base primer layer. The covalent bond between the heparin-TDMAC complex and the substrate provides a thin and durable coating. The coating's thickness can be controlled, e.g. by choice of the length of the chain connecting the silane and isocyanate functionalities.
The bioeffectiveness and/or bioactivity of the thromboresistant coating can be controlled by selecting appropriate amounts of reactants. In particular, the thromboresistance activity of the coating can be modified by modifying the amounts of heparin-TDMAC complex and silane in the coating.
Single layers have further advantages in that problems may arise in the extra steps required for the deposition of multiple layers. For example, dust or other particulates may appear between coatings in two-step processes. Also, application of a second layer may tend to reduce reactivity of the first layer in an unpredictable way.
Coatings of the present invention may be applied to medical devices that are placed in the body of a human, or that remain outside the body. Coated medical devices that are placed in the human body may include stents, catheters, prostheses and other devices. Coated medical devices that remain outside the human body may include tubing for the transport of blood and vessels for the storage of blood. Substrates of medical devices on which the coatings described herein may be applied can include a wide variety of materials, including stainless steel, nitinol, tantalum, glass, ceramics, nickel, titanium, aluminum and other materials suitable for manufacturer of a medical device.
The coatings disclosed herein may further include a film-forming agent for the coating. The film-forming agents could slow any leaching of the biopolymers from the coating. The film forming-agent could be added in a second layer, or dissolved simultaneously with the silane and the biopolymer. Appropriate film-forming agents could include cellulose esters, polydialkyl siloxanes, polyurethanes, acrylic polymers or elastomers, as well as biodegradable polymers such as polylactic acid (PLA), polyglycolic acid (PGA), copolymers of PLA and PGA, known as PLGA, poly(e-caprolactone), and the like.
To create coatings of the present invention, the silanes and heparin complexes are dissolved in a solvent, which may be an organic solvent. The solution preferably should be substantially anhydrous, because water tends to react with isocyanate groups of the silane molecule. The water may be added after mixing the silane-isocyanate with heparin. In certain embodiments, the silane and heparin are combined in solution, the resulting solution is aged for about one day, the pH is adjusted with a weak acid, and then water is added to hydrolyze silane. The pH of the solution may be adjusted with aqueous acetic acid. Instead of adding water, it is possible to hydrolyze the silane groups by exposure to moist atmosphere conditions. It is desirable to mix the silane and heparin complex in a manner so as to include a slight excess of heparin molecules, so that all of the isocyanate is reacted, preventing adverse reactions between the isocyanate and any water. Moreover, it is desirable to have a single heparin react with each silane isocyanate functional group; this goal is most easily accomplished by starting with an excess of heparin.
Based on experimental results, it was found that, in certain embodiments, solution of about two-lengths percent heparin complex and about five-tenths percent silane provided effective coatings. However, coatings in a fairly wide range may be effective. Thus, coatings are likely to have some effectiveness in cases in which heparin complex is present in concentrations ranging from about one-length of a percent to about twenty percent. Coatings with heparin in concentrations of less than ten percent may be preferable in some formulations. Coatings with heparin in concentrations of less than five percent may be preferable in other formulations. Coatings may be expected to be effective in formulations in which silane is present in a wider range of concentrations as well, including concentrations ranging from about one-tenth of a percent silane to about twenty percent silane.
The thromboresistant characteristics of heparin coatings can be assessed qualitatively and quantitatively, so that methods can be developed that provide uniform coating with a desired amount of bioactivity. Successfully heparinized surfaces give a purple stain when exposed to toluidine blue. After coating, the surface is exposed to a saline solution for a number of days or weeks, and thromboresistance activity is measured as a function of time. Stents and coupons coated as disclosed herein were shown experimentally to display long-lived thromboresistant properties; bioactivity persisted for periods on the order of months, and it will probably endure much longer.
The heparin activity of a sample may be quantified based on its ability to inactive thrombin. To quantify heparin activity in experimental assays, heparin may be first mixed with human antithrombin III, which binds to create a complex. The heparin-antithrombin III complex can then be mixed with thrombin to produce a ternary complex comprising heparin, thrombin, and antithrombin. The heparin then departs this complex and is free to react again with available antithrombin and thrombin to create additional thrombin-antithrombin complexes. Thus, heparin acts as a catalyst for the antithrombin-mediated deactivation of thrombin. The reaction of the active thrombin still left in the solution with a substrate produces a proportional amount of p-nitro aniline exhibiting color. Thus, an assay may be conducted for a spectrophotometric analysis of color, to determine the amount of thrombin left in solution. The more thrombin left in solution, the lower the bioactivity of the heparin A low level of thrombin in solution indicates a high degree of catalysis of the thrombin-antithrombin reaction; which indicates a high level of thromboresistance provided by the heparin. A baseline comparison for the assay is the very slow reaction of thrombin-antithrombin in the absence of heparin. The result of the assay can be quantified using spectrophotometry. The assay mimics the reaction that occur in the human bloodstream, where thrombin and antithrombin circulate at all times. The reaction between antithrombin and thrombin in the body, which is catalyzed by the heparin of the coatings of the present invention helps suppress the coagulation that results from thrombogenesis on a medical device.
Various methods of making coatings of the present invention are possible, and examples of such methods and certain resulting coatings are as follows. Such methods and coatings are disclosed by way of example, and are not intended to be limiting, as other examples may be readily envisioned by one or ordinary skill in the art. The following examples include methods of providing coatings of the present invention in a single layer, without the need for a primer layer as well as methods of controlling the bioactivity of the resulting coating. In some instances, experimental results are provided showing sustained bioactivity for the particular coating.
Coatings can be applied in a wide variety of conventional ways, including painting, spraying, dipping vapor deposition, epitaxial growth and other methods known to those of ordinary skill in the art.
To test coatings disclosed herein, infrared scans were performed to demonstrate changes in the isocyanate functionality, through observation of the isocyanate peak (NCO, 2260 or 2270 cm−1) over time. Isocyanatosiliane was formulated with different components, including heparin-tridodecylmethylammonium chloride complex (Heparin-TDMAC complex), tetrahydrofuran (“THF”) and Triton (as optional, surface active agent) in solution to determine whether the intensity of the isocyanate peak changed over time. Table 1 shows the observation of the isocyanate functionality for different solution constituents:
TABLE 1 | |
Solution | Observation |
1) | Silane + THF | No change in peak with time |
2) | Silane + THF + TDMAC | No change in peak with time |
3) | Silane + THF + Triton | No change in peak with time |
4) | Silane + THF + Heparin-TDMAC | Peak disappears with time |
complex | depending on the | |
concentration of silane and | ||
heparin-TDMAC complex | ||
The observation that the isocyanate peak disappears with time in the solution that includes silane, THF and Heparin-TDMAC complex suggests that a reaction occurs between functional groups on heparin and the isocyanate group of silane.
In embodiments of the present invention, the coating formulations contains the following constituents, which may vary in concentrations in different embodiments: Heparin-TDMAC complex, an organic solvent, such as THF, a silane, such as 3-isocyanatopropyl triethoxysilane (OCN—(CH2)3Si(OEt)3), and Triton (x-100). In a first embodiment, a solution of these constituents was mixed and allowed to sit in order to permit a reaction to occur. Allowing the solution to sit for one day allowed the reaction to occur, but shorter reaction times may well be effective. Before coating the substrate with the solution, the pH was adjusted. Solutions of the above constituents were adjusted to a pH between 4.5 and 5.5 using a solution of acetic acid and water. After adjusting, pH, it is desirable to wait for a period of time, such as fifteen minutes, before applying the coating. Once the coating was applied, it was dried in air and cured in an oven. In particular, coatings of the above constituents were dried in air for about twenty minutes and then cured in an oven at eight-five degree Celsius for about one hour.
Coatings, derived from the above-described solutions, on coupons and stents were tested in various ways. First, as a qualitative test, coated coupons and stents were dipped in toluidine blue solution and then were screened for the presence of a purple stain. As mentioned above, the presence of a purple stain in this assay indicates the presence of heparin in the sample being assayed. Additionally, the intensity of the purple stain observed in this assay is proportional to the amount of heparin in the sample. Therefore, a comparison of the intensities of the purple stains produced in this assay by a set of samples allows an assignment of the relative amounts of heparin comprised by the coatings of those samples.
As a quantitative test for heparin activity, a heparin activity assay was conducted according to a conventional thrombin inhibition assay techniques. The heparin assay permitted determination of the ability of the heparin coating to deactivate thrombin and thus to provide thromboresistance. The purpose of the protocol was to assay for heparin activity based on thrombin inhibition. A number of different reactions are understood to take place in order to determine heparin activity. In the first reaction:
Heparin+ATIII (excess)−[Heparin*ATIII]
Heparin reacts with Human Antithrombin III (“ATIII”) to yield a Heparin-Antithrobmin III complex. In the second reaction:
[Heparin*ATIII]+Thrombin (excess)−[Heparin*ATIH*Thrombin]+Thrombin
the Heparin-Antithrombin complex reacts with Thrombin to yield a Heparin-Antithrombin-Thrombin complex. In the third reaction:
S2238+Thrombin—peptide—nitroaniline (measured at 405 nm)
the amount of the thrombin was measured. As a result, the size of the p-nitroaniline peak measured at 405 nm is inversely proportional to the amount of heparin present Exemplification
Heparin+ATIII (excess)−[Heparin*ATIII]
Heparin reacts with Human Antithrombin III (“ATIII”) to yield a Heparin-Antithrobmin III complex. In the second reaction:
[Heparin*ATIII]+Thrombin (excess)−[Heparin*ATIH*Thrombin]+Thrombin
the Heparin-Antithrombin complex reacts with Thrombin to yield a Heparin-Antithrombin-Thrombin complex. In the third reaction:
S2238+Thrombin—peptide—nitroaniline (measured at 405 nm)
the amount of the thrombin was measured. As a result, the size of the p-nitroaniline peak measured at 405 nm is inversely proportional to the amount of heparin present Exemplification
The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
General Procedures
In the following examples, heparin activity on coated coupons or stents was measured after exposing the coated object to a continuous flow of saline at thirty-seven degrees Celsius for a selected time period. Stainless steel coupons and stents were cleaned before coating. The coupons or stents were cleaned with several organic solvents, such as hexane and isopropanol, followed by rinsing with distilled water. The cleaning procedure was carried out in an ultrasonic bath for fifteen minutes. After this procedure, the coupons or stents were placed in sodium hydroxide solution (1.0 N) for fifteen minutes and then washed thoroughly with distilled water. Samples were air dried before coating.
It should be noted that thrombin inhibition assay techniques are notoriously subject to significant sample error; accordingly, it is not unusual to obtain variable experimental results for a given sample. The examples below identify results for multiple samples under a variety of conditions and thus indicate in the aggregate that the coatings described herein are likely to provide therapeutic levels of thromboresistance. However, results from any single formulation were found to vary somewhat depending on particular sample conditions. In cases where more than one set of data is provided for a given sample, the individual data sets reflect measurements taken at distinct positions on that sample; the data sets in these cases, therefore, do not necessarily reflect a lack of precision in the measurements.
Stainless steel coupons were coated with a formulation of 1% heparin-TDMAC complex, 2% silane and 97% THF. The coupons were dipped once in the formulation with a dwell time of five seconds at a coating speed of 10 in/min, to give a single layer of coating. Results are set forth in Table 2.
TABLE 2 | |||
Activity, mU/cm2 |
Sample | Unwashed | 7 days wash | ||
97-080-90C | <10 | <10 | ||
97-080-90C | <15 | <10 | ||
97-080-90D | <15 | <5 | ||
97-080-90D | <15 | <5 | ||
The coating showed toluidine blue stain before and after washing with water. The coating showed heparin activity after one week of exposure to saline.
Stainless steel coupons were dipped once, at coating speeds of 10 in/min and 42 in/min and for a dwell time of five seconds, and resulting in single layer coatings of different thickness, in the following formulations: 1) 7% heparin-TDMAC complex, 2% silane and 91% THF and a small amount of Triton; and 2) 2% heparin-TDMAC complex, 2% silane and 96% THF and a small amount of Triton. Sample pieces were cut from coupons and were either washed or not washed before being measured under the indicated conditions after the indicated amounts of time. Results are set forth in Table 3:
TABLE 3 | ||
Activity, mU/cm2 |
1 day | 2 days | 1 day | 2 days | 7 days | |
Sample | unwashed | unwashed | wash | wash | wash |
97-100-9A | <50 | <75 | <15 | <25 | <25 |
97-100-9A | <50 | <75 | <15 | <25 | <25 |
97-100-9B | <50 | <75 | <25 | <50 | <50 |
97-100-9B | <75 | <75 | <15 | <50 | <10 |
A toludine blue stain was present before and after washing, and the coupons showed heparin activity after seven days of washing. Combined with Example 1, the results showed that heparin activity can be varied using different coating formulations and coating processes.
Stainless steel coupons were dipped once, at speeds of 10 in/min and 42 in/min, and for dwell times of five seconds, two minutes and fifteen minutes, and resulting in coatings of different thickness, in the following formulations: 1) 7% heparin-TDMAC complex, 2% silane and 91% THF and a small amount of Triton; and 2) 2% heparin-TDMAC complex, 2% silane and 96% THF and a small amount of Triton. Results are shown in Table 4.
TABLE 4 | ||
Activity, mU/cm2 |
Sample | 1 day unwashed | 1 day wash | 7 days wash |
97-100-15A | <150 | <10 | <5 |
97-100-15A | <100 | <10 | <10 |
97-100-15B | <50 | <10 | <25 |
97-100-15B | <25 | <1 | <25 |
97-100-15C | <75 | <25 | |
97-100-15C | <100 | <50 | |
97-100-15D | <150 | <50 | |
97-100-15D | <150 | <50 | |
97-100-15E | <150 | <10 | <10 |
97-100-15E | <150 | <25 | <25 |
97-100-15F | <150 | <10 | <25 |
97-100-15F | <200 | <25 | <25 |
97-100-15G | <150 | <25 | |
97-100-15G | <150 | <25 | |
97-100-15H | <150 | <50 | |
97-100-15H | <150 | <50 | |
97-100-15I | <200 | <100 | <50 |
97-100-15I | <200 | <75 | <75 |
97-100-15J | <200 | <100 | |
97-100-15J | <250 | <100 | |
Seven day results were for certain pieces measured at the one day point and then placed back into a flusher for additional days of washing. Toluidine blue stains were present before and after wash, with shades differing with thickness. Heparin activity was present after seven days of washing. In combinations with Examples 1 and 2, this example demonstrated that heparin activity can be varied using different coating formulation and coating processes.
Stainless steel coupons were dipped once, at speeds of 10 in/min for dwell times of one-half, one, two, five, ten and fifteen minutes, in the following formulation: 2% heparin-TDMAC complex, 2% silane. 96% THF and a small amount of Triton. Certain coupons were dipped into toluidine blue solution and rubbed under water. The coupons were then redipped in toluidine blue and checked for the presence of a stain. Results are shown in Table 5.
TABLE 5 | |||
Toluidine blue | Toluidine blue | ||
stain before rub | stain after | ||
Sample | Appearance | test | rub test |
97-100-30A | Good coating, thin | Uniform, light | Uniform, light |
97-100-30B | Good coating, thin | Uniform, light | Uniform, light |
97-100-30C | Good coating, thin | Uniform, light | Uniform, light |
97-100-30D | Good coating, thin | Uniform, light | Uniform, light |
97-100-30E | Good coating, thin | Uniform, light | Uniform, light |
97-100-30F | Good coating, thin | Dark gritty stain | Uniform, light, |
some peeling | |||
A qualitative assessment of the effect of different solvents on coating was also performed, by dipping a coated sample in solvent for 60 seconds and then washing it with water and staining it with toluidine blue. Results are shown in Table 6.
TABLE 6 | ||
Solvent |
Hot water | Hot water | ||||
(high | (high | ||||
pressure | pressure | ||||
Sample | IPA | Toluene | flow) | flow) | Acetone |
97-100-30G | Good purple | No stain | Light stain | Light stain | Good stain |
stain | |||||
Heparin activity is displayed in Table 7.
TABLE 7 | |||
Activity, mU/cm2 |
Sample | 1 day unwashed | 1 days wash | ||
97-100-30A | <150 | <25 | ||
97-100-30A | <150 | <25 | ||
97-100-30B | <75 | — | ||
97-100-30B | <75 | — | ||
97-100-30C | <50 | — | ||
97-100-30C | <50 | — | ||
97-100-30D | <50 | — | ||
97-100-30D | <50 | — | ||
97-100-30E | <10 | — | ||
97-100-30E | <25 | — | ||
97-100-30F | <10 | — | ||
97-100-30F | <25 | — | ||
97-100-30G | <25 | <25 | ||
97-100-30G | <25 | <25 | ||
This example indicated that coating thickness may be dependent on dwell time, that rubbing does not remove the coating as indicated by stains after rubbing, that washing with various solvents has a different effect on coating durability, and that heparin activity was present after washing. The example provided further evidence that heparin activity can be varied using different coating processes.
Stainless steel coupons were dipped once, at speeds of 10 in/min, and for dwell times of two and fifteen minutes, in the following formulations: 1) 2% heparin-TDMAC complex, 4% silane and 94% THF and a small amount of Triton; 2) 2% heparin-TDMAC complex, 8% silane and 90% THF and a small amount of Triton; 3) 4% heparin-TDMAC complex, 4% silane and 92% THF and a small amount of Triton; and 4) Diluted 4% heparin-TDMAC complex, 4% silane and 92% THF and a small amount of Triton.
Coated coupons were dipped in toluidine blue solution and rubbed with fingers under water, then redipped in toluidine blue and checked for stains. Results are displayed in Table
TABLE 8 | |||
Toluidine blue | Toluidine blue | ||
stain before | stain after | ||
Sample | Appearance | rub test | rub test |
97-100-36A (2 min) | Good coating | Uniform stain | Uniform |
97-100-36A (15 min) | Good coating | Uniform stain | Uniform |
97-100-36B (2 min) | Good coating | Uniform stain | Uniform |
97-100-36B (15 min) | Good coating | Uniform stain | Uniform |
97-100-36C (2 min) | Good coating | Very thick, | Uniform, |
gritty | some peeling | ||
97-100-36C (15 min) | Good coating | Very thick, | Uniform, |
gritty | some peeling | ||
97-100-36D (2 min) | Good coating | Uniform stain | Uniform |
97-100-36D (15 min) | Good coating | Uniform stain | Uniform, |
some peeling | |||
Heparin activity for this example is displayed in Table 9.
TABLE 9 | |||
Coating | Activity, mU/cm2 |
(%/% | 30 | 87 | ||||
heptdmac/ | 1 day | 30 days | 1 day | days | days | |
Sample | silane) | unwashed | unwashed | wash | wash | wash |
97-100-36A | 2.0/4.0 | <150, | <50 | <25, | <5 | <1, |
(2 min dwell) | <125 | <25 | <1 | |||
97-100-36B | 4.0/8.0 | <25, | <25 | <25, | <5 | <1, |
(2 min) | <25 | <25 | <1 | |||
97-100-36C | 4.0/4.0 | <175, | <150 | <50, | <5 | <1, |
(2 min) | <150 | <25 | <1 | |||
97-100-36C | Diluted, | <50, | <150 | <25, | <5 | 0, |
(2 min) | 4.0/4.0 | <100 | <25 | <1 | ||
This example demonstrated that for thin coatings thickness is not strongly dependent on dwell time. Also, rubbing does not remove the coating, as indicated by stains after rubbing. Long term durability of the coating is evident from heparin activity results. Again, heparin activity can be varied using different coating formulation and processes.
Stainless steel coupons were dipped once, at speeds of 10 in/min and for a dwell time of two minutes, in the following formulation: 2% heparin-TDMAC complex, 2% silane and 96% THF and a small amount of Triton. The coupons were then either left unsterilized, or sterilized with ethylene oxide or gamma radiation,
Results for non-sterile coupons are in Table 10.
TABLE 10 | |||
Coating | Activity, mU/cm2 |
(%/% | 7 | 28 | ||||
heptdmac/ | unwashed | Unwashed | days | days | ||
Sample | silane) | Dip | 7 days | 28 days | wash | wash |
97-100-66A | 2.0/2.0 | Single | <125, | >10, | <10, | <2, |
<100 | >12 | <10 | <1 | |||
97-100-66E | 2.0/2.0 | Single | <100, | >10, | <10, | <1, |
<125 | >16 | <10 | 0 | |||
Results for ethylene oxide sterile coupons are in Table 11.
TABLE 11 | |||
Coating | |||
(%/% | Activity, mU/cm2 |
heptdmac/ | 3 day | 14 days | 14 | |||
Sample | silane) | Dip | unwashed | unwashed | 1 day | days |
97-100-66A | 2.0/2.0 | Single | >12 | >16, >16 | <15 | <2, |
<2 | ||||||
97-100-66E | 2.0/2.0 | Single | >12 | >16, >16 | <10 | <3, |
<2 | ||||||
Results for gamma radiation sterilized coupons are in Table 12.
TABLE 12 | |||
Coating | |||
(%/% | Activity, mU/cm2 |
heptdmac/ | 1 day | 14 days | 20 days | 1 day | 14 days | 20 | ||
Sample | silane) | Dip | unwashed | unwashed | unwashed | wash | wash | days |
97-100-66A | 2.0/2.0 | Single | <200, | >16 | >16 | <20, | <1, | <1, |
<200 | <20 | <1 | <2 | |||||
97-100-66E | 2.0/2.0 | Single | <200, | >16 | >16 | 0, | <2, | <2, |
<200 | 0 | <2 | <2 | |||||
The resulting coatings were thin, with long term durability as evident by heparin activity results. Sterilization did not appear to affect coating properties, regardless of the sterilization mode.
Stainless steel coupons were dipped once, dipped twice, or dipped, washed, and then dipped again, at coating speeds of 10 in/min and for dwell times of two minutes, in the following formulations: 1) 0.5% heparin-TDMAC complex, 0.5% silane, 99% THF & small amounts of Triton, 2) 0.5% heparin-TDMAC complex, 2.0% silane, 97.5% THF & small amount of Triton; 3) 2.0% heparin-TDMAC complex, 0.5% silane, 97.5% THF & small amount of Triton; and 4) 2.0% heparin-TDMAC complex, 2.0% silane, 96% THF & small amount of Triton.
Heparin activity is shown in Table 13.
TABLE 13 | ||
Activity, mU/cm2 |
Coating (%/% | 12 days | 18 days | 12 day | 18 day | 26 day | 72 day | ||
Sample | heptdmac/silane) | Dip | unwashed | unwashed | wash | wash | wash | wash |
97-100-69A | 0.5/0.5 | Single | >10 | <175 | 0 | <5 | — | 0 |
97-100-69B | 0.5/0.5 | Double | >10 | <150 | <2 | <2 | — | <1 |
97-100-69C | 0.5/0.5 | Dip/wash/Dip | >10 | <125 | <2 | <2 | <1 | <1 |
97-100-69D | 0.5/2.0 | Single | <10 | <25 | <1 | <5 | — | <1 |
97-100-69E | 0.5/2.0 | Double | <5 | <5 | <1 | <5 | — | <1 |
97-100-69F | 0.5/2.0 | Dip/wash/Dip | <2 | <5 | <2 | <5 | <2 | <1 |
97-100-69G | 2.0/0.5 | Single | — | <15 | — | <5 | — | <1, |
<1 | ||||||||
97-100-69H | 2.0/0.5 | Double | — | <5 | — | <5 | — | <1, |
<1 | ||||||||
97-100-69I | 2.0/0.5 | Dip/wash/Dip | — | <2 | — | <5 | <2, <2 | 0, |
<1 | ||||||||
97-100-69J | 2.0/2.0 | Single | — | <150 | — | <5 | — | <1, |
<1 | ||||||||
97-100-69K | 2.0/2.0 | Double | — | <200 | — | <5 | — | <1, |
<1 | ||||||||
97-100-69K | 2.0/2.0 | Dip/wash/Dip | — | <250 | — | <5 | <3, <2 | <1, |
<1 | ||||||||
The resulting thin coatings demonstrated heparin activity, including light strains before and after rubbing. The long term durability of the coatings were evident through heparin activity results. Coating properties were variable according to different coating methods.
Stainless steel coupons were dipped twice, or were dipped, washed then dipped again, at speeds of 10 in/min and for dwell times of two minutes, in the following formulations; 1) 0.5% heparin-TDMAC complex, 0.,5% silane, 99% THF; and 2) 0.5% heparin-TDMAC complex, 2.0% silane, 97.5% THF. The pH of the coatings was adjusted using acetic acid.
Heparin activity is shown in Table 14.
TABLE 14 | |||
Coating | |||
(%/% | Activity, mU/cm2 |
heptdmac/ | 1 day | ||||
Sample | silane) | Dip | unwashed | 1 day | 43 days |
97-100-93A | 0.5/0.5 | Double | <75 | <2 | <2, <1 |
97-100-93B | 0.5/0.5 | Dip/wash/Dip | <50 | <3 | <1, <1 |
97-100-93C | 0.5/2.0 | Double | <50 | <2 | <2, <2 |
97-100-93D | 0.5/2.0 | Dip/wash/Dip | <1 | <1 | <2, <2 |
The resulting thin coatings demonstrated heparin activity including light stains before and after rubbing. The long term durability of the coatings were evident through heparin activity results. Coating properties were variable according to different coating methods.
Stainless steel coupons and stainless steel stents were dipped twice, or were dipped, washed with saline and distilled water, and dipped again, at coating speeds of 10 in/min and for dwell times of two minutes. Coating pH was adjusted formulations were prepared: 1) 0.5% heparin-TDMAC complex, 0.5% silane, 99% THF; and 2) 0.5% heparin-TDMAC complex, 2.0% silane, 97.5% THF.
Heparin activity is shown in Table 15.
TABLE 15 | ||
Activity, mU/cm2 |
1 | 11 | 1 | 11 | 25 | 43 | |||
Coating (%/% | day | days | day | days | days | days | ||
Sample | heptdmac/silane) | Dip | unwashed | unwashed | washed | wash | wash | wash |
97-100-92A | 0.5/0.5 | Double | <25 | <25, <25 | <2 | <1, <1 | <1, <1, | — |
<5, <2, | ||||||||
<2, <2 | ||||||||
97-100-92B | 0.5/0.5 | Dip/wash/ | <25 | <10, <25 | <2 | <1, <1 | <2, <2, | — |
Dip | <2, <2, | |||||||
<1, <2 | ||||||||
97-100-92D | 0.5/2.0 | Double | <10 | <5 | — | <5, <2 | <1, | |
<2 | ||||||||
97-100-92E | 0.5/2.0 | Dip/wash/ | <25 | <2 | — | <2, <2 | <1, | |
Dip | <1 | |||||||
Persistence of heparin activity after an increasing number of days suggests that most unattached heparin washes away immediately, but that attached heparin does not easily wash away even after prolonged exposure.
Activity on stents is disclosed in Table 16.
TABLE 16 | ||
Activity, mU/cm2 |
Coating (%/% | 1 day | |||
Sample | heptdmac/silane) | Dip | unwashed | 1 day |
97-100-92C | 0.5/0.5 | Dip/wash/Dip | <125 | <50 |
97-100-92F | 0.5/2.0 | Dip/wash/Dip | <50 | <10 |
The resulting thin coatings showed light stains before and after rubbing. The coatings were durable as evident from heparin activity results. Coating properties were variable depending on different coating methods.
Stainless steel coupons and stainless steel stents were dipped, washed with IPA and dipped again, at coating speeds of 10 in/min and for a dwell time of two minutes, in the following formulations: 1) 0.1% heparin-TDMAC complex, 0.5% silane, 99.4% THF; and 2) 0.2% heparin-TDMAC complex, 0.5% silane, 99.3% THF.
Heparin activity on coupons is shown in Table 17.
TABLE 17 | |||
Coating | |||
(%/% | Activity, mU/cm2 |
heptadmac/ | 2 days | 2 days | 34 days | ||
Sample | silane) | Dip | unwashed | wash | wash |
97-101-25A, | 0.1/0.5 | Double | <25 | <1 | <2 |
Red | |||||
97-101-25A, | 0.1/0.5 | Double | <25 | <1 | <2 |
Red | |||||
97-101-25B, | 0.1/0.5 | Dip/wash/dip | <75 | 0 | <2 |
green | |||||
97-101-25B, | 0.1/0.5 | Dip/wash/dip | <50 | 0 | <2 |
green | |||||
97-101-25A, | 0.2/0.5 | Double | <50 | <1 | <5 |
yellow | |||||
97-101-25A, | 0.2/0.5 | Double | <25 | <1 | <5 |
yellow | |||||
97-101-25B, | 0.2/0.5 | Dip/wash/dip | <50 | <1 | <2 |
brown | |||||
97-101-25B, | 0.2/0.5 | Dip/wash/dip | <25 | <1 | <2 |
brown | |||||
Heparin activity on stents is shown in Table 18
TABLE 18 | |||
Coating | |||
(%/% | Activity, mU/cm2 |
heptdmac/ | 2 days | 2 days | 16 days | ||
Sample | silane) | Dip | unwashed | wash | wash |
97-101-25A, | 0.1/0.5 | Double | <225 | <5 | <2 |
Red | |||||
97-101-25A, | 0.1/0.5 | Double | <225 | 0 | <3 |
Red | |||||
97-101-25B, | 0.1/0.5 | Dip/wash/dip | <125 | <1 | <2 |
green | |||||
97-101-25B, | 0.1/0.5 | Dip/wash/dip | <100 | 0 | <5 |
green | |||||
97-101-25C, | 0.2/0.5 | Double | <200 | <15 | <3 |
yellow | |||||
97-101-25C, | 0.2/0.5 | Double | <100 | <5 | <10 |
yellow | |||||
97-101-25D, | 0.2/0.5 | Dip/wash/dip | <200 | <5 | <10 |
brown | |||||
97-101-25D, | 0.2/0.5 | Dip/wash/dip | <225 | <10 | <5 |
brown | |||||
The resulting thin coatings showed light stains before and after rubbing. The coatings were durable as evident from heparin activity resins. Coating properties were variable depending on different coating methods.
Stainless steel stents were dipped once, at coating speeds of 10 in/min for dwell times of five seconds and two minutes, in the following formulations: 1) 4.0% heparin-TDMAC complex, 8.0% silane, 88% THF, small amount of Triton; 2) 4.0% heparin-TDMAC complex, 4.0% silane, 92% THF; small amount of Triton; and 3) 2.0% heparin-TDMAC complex, 2.0% silane, 96% THF, small amount of Triton.
Heparin activity is shown in Table 19.
TABLE 19 | ||||
Coating (%/% | Activity, mU/cm2 |
Sample | heptdmac/silane) | Dip | Unwashed | 3/4 days |
97-100-50A | 4/8 | Single | <175 | <50 |
97-101-50B | 4/4 | Single | <150 | <125 |
97-100-54B | 2/2 | Single | <225 | <25 |
(4 days) | ||||
Again, coating properties varied using different coating methods.
Stainless steel stents were dipped twice, at coating speeds of 10 in/min and at a dwell time of two minutes in the following formulations: 1) 0.2% heparin-TDMAC complex, 0.5Silane; 2) 0.5% heparin-TDMAC complex, 0.5% silane; 3) 0.5% heparin-TDMAC complex, 1.0% silane; 4) 1.0% heparin-TDMAC complex, 1.0% silane; and 5) 1.0% heparin-TDMAC complex, 2.0% silane. Stents were either left unsterilized or were sterilized with gamma radiation.
Table 20 shows results for non-sterile stents.
TABLE 20 | |||
Coating %/% | Activity, mU/cm2 |
Sample | heptdmac/silane | Dip | 4 days unwashed | 4 days |
97-101-86A | 0.2/0.5 | Double | <100 | <1 |
97-101-86A | 0.2/0.5 | Double | <125 | <1 |
97-101-86B | 1.0/2.0 | Double | <200 | <10 |
97-101-86B | 1.0/2.0 | Double | <225 | <5 |
97-101-86C | 1.0/1.0 | Double | <225 | <5 |
97-101-86C | 1.0/1.0 | Double | <225 | <5 |
97-101-86D | 0.5/1.0 | Double | <200 | <5 |
97-101-86D | 0.5/1.0 | Double | <225 | <5 |
97-101-86E | 0.5/0.5 | Double | <225 | <5 |
97-101-86E | 0.5/0.5 | Double | <200 | <5 |
97-101-86F | 0.5/1.0 Sutton | Double | <125 | <1 |
97-101-86F | 0.5/1.0 Sutton | Double | <125 | <5 |
Table 21 shows activity for sterile stents.
TABLE 21 | |||
Coating %/% | Activity, mU/cm2 |
Sample | heptdmac/silane | Dip | 4 days unwashed | 4 days |
97-101-86A | 0.2/0.5 | Double | >200 | <1 |
97-101-86A | 0.2/0.5 | Double | >200 | <5 |
97-101-86B | 1.0/2.0 | Double | >200 | <10 |
97-101-86B | 1.0/2.0 | Double | >200 | <5 |
97-101-86C | 1.0/1.0 | Double | >200 | <10 |
97-101-86C | 1.0/1.0 | Double | >200 | <10 |
97-101-86D | 0.5/1.0 | Double | >200 | <5 |
97-101-86D | 0.5/1.0 | Double | >200 | <5 |
97-101-86E | 0.5/0.5 | Double | >200 | <5 |
97-101-86E | 0.5/0.5 | Double | >200 | <5 |
97-101-86F | 0.5/1.0 Sutton | Double | >200 | <5 |
97-101-86F | 0.5/1.0 Sutton | Double | >200 | <5 |
Sterilization showed no effect on coating properties. The coatings were durable on stents, as evident by heparin activity after several days of washing.
Several coupons and stents were coated with 0.2% heparin-TDMAC complex, 0.5% silane and 99.3% THF. These pieces were sterilized by gamma radiation and sent to NAMSA for biocompatibility testing. Three tests, Hemolysis, Cytotoxicity and Thromboresistance, were conducted. The coating pass all three tests.
In addition to the foregoing examples, various other methods and coatings may be envisioned in the spirit of the present disclosure. For example, heparin might be covalently linked to a substrate with a silane identified as capable of being soaked into a stainless steel surface. The silane compound could have amino or epoxy terminal groups. The silane could thus be used to link heparin molecules to the substrate in a manner similar to the silane if isocyanate functionality disclosed herein. Heparin could then be prepared with an aldehyde positive group that mixed with an NH2 group to provide an end linkable to heparin without affecting its activity. The procedure to make degraded heparin is well known to those of ordinary skill in the art.
A coating system may also be provided in which heparin can be covalently linked or can be incorporated into a matrix to obtain variable rate of elution. A silicon fluid, such as Dow Corning MDS 4-4159 is used, with the active silicon being an amino functional polydimethyl siloxane copolymer. The coating may be used to coat stainless steel guide wires. This working can be utilized for heparin covalent-bonding as described below.
First, a solution of heparin (deaminated) in water or other solvent may be provided. A wire coated with a silicon fluid in a solvent may be placed in the solution for some time, for example two hours. The heparin has an aldehyde group that can link to the amino functionality in the silicon copolymer. Other amino functionalized silicon polymers, or copolymers, can be used to achieve covalent bonding of heparin to the substrate.
Equivalents
While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is to be limited only by the following claims.
Claims (26)
1. A medical device having a coating comprising the product of the reaction of:
a silane having at least one functional group selected from the group consisting of an isocyanate, an isothiocvanate isothiocyanate, an ester, an anhydride, an acyl halide, an alkyl halide, an epoxide and an aziridine an anhydride, an acyl halide and an aziridine, and
a biopolymer,
wherein the coating adheres to a surface of the medical device by covalent attachment of said silane to said surface.
2. The medical device of claim 1 , wherein the weight ratio of said silane to said biopolymer is from about 1:4 to about 2:1.
3. The medical device of claim 2 , wherein said weight ratio is 1:4, 1:1 or 2:1.
4. The medical device of claim 2 , wherein said biopolymer is heparin or a complex thereof.
5. The medical device of claim 4 , wherein said biopolymer is selected from the group consisting of heparin-tridodecylmethylammonium chloride, heparin-benzalkonium chloride, heparin stearalkonium chloride, heparin-poly-N-vinyl-pyrrolidone, heparin lecithin, heparin-didodecyldimethyl ammonium bromide, heparin-pyridinium chloride and heparin-synthetic glycolipid.
6. The medical device of claim 2 , further comprising at least one additive selected from the group consisting of wetting agents, surface active agents and film forming agents.
7. The medical device of claim 6 , wherein said film-forming agent is selected from the group consisting of cellulose esters, polydialkyl siloxanes, polyurethanes, acrylic polymers, elastomers, biodegradable polymers, polylactic acid, polyglycolic acid, copolymers of polylactic acids, copolymers of polyglycolic acid and poly(e-caprolactone).
8. The medical device of claim 1 , wherein said device is selected from the group consisting of stents, catheters, prostheses, tubing and blood storage vessels.
9. The medical device of claim 8 , wherein said device is made of at least one material selected from stainless steel, nitinol, tantalum, glass, ceramic, nickel, titanium or aluminum.
10. The medical device according to claim 1 , wherein said at least one functional group is an isocyanate.
11. The medical device according to claim 10 , wherein said biopolymer is heparin or a complex thereof.
12. The medical device according to claim 11 , wherein said biopolymer is selected from the group consisting of heparin-tridodecylmethylammonium chloride, heparin-benzalkonium chloride, heparin stearalkonium chloride, heparin-poly-N-vinyl-pyrrolidone, heparin lecithin, heparin-didodecyldimethyl ammonium bromide, heparin-pyridinium chloride and heparin-synthetic glycolipid.
13. The method device according to claim 12 , wherein said biopolymer is heparin-tridodecylmethylammonium chloride.
14. A medical device having a coating consisting essentially of the product of the reaction of:
a silane having at least one functional group selected from the group consisting of an isocyanate, an isothiocyanate, an anhydride, an acyl halide and an aziridine; and
a biopolymer.
15. The medical device of claim 14 , wherein the weight ratio of said silane to said biopolymer is from about 1:4 to about 2:1.
16. The medical device of claim 15 , wherein said weight ratio is 1:4, 1:1 or 2:1.
17. The medical device of claim 15 , wherein said biopolymer is heparin or a complex thereof.
18. The medical device of claim 17 , wherein said biopolymer is selected from the group consisting of heparin-tridodecylmethylammonium chloride, heparin-benzalkonium chloride, heparin stearalkonium chloride, heparin-poly-N-vinyl-pyrrolidone, heparin lecithin, heparin-didodecyldimethyl ammonium bromide, heparin-pyridinium chloride and heparin-synthetic glycolipid.
19. The medical device of claim 15 , further comprising at least one additive selected from the group consisting of wetting agents, surface active agents and film forming agents.
20. The medical device of claim 14 , wherein said device is selected from the group consisting of stents, catheters, prostheses, tubing and blood storage vessels.
21. The medical device of claim 20 , wherein said device is made of at least one material selected from stainless steel, nitinol, tantalum, glass, ceramic, nickel, titanium or aluminum.
22. The medical device of claim 19 , wherein said film-forming agent is selected from the group consisting of cellulose esters, polydialkyl siloxanes, polyurethanes, acrylic polymers, elastomers, biodegradable polymers, polylactic acid, polyglycolic acid, copolymers of polylactic acid, copolymers of polyglycolic acid and poly(e-caprolactone).
23. The medical device according to claim 14 , wherein said at least one functional group is an isocyanate.
24. The medical device according to claim 23 , wherein said biopolymer is heparin or a complex thereof.
25. The medical device according to claim 24 , wherein said biopolymer is selected from the group consisting of heparin-tridodecylmethylammonium chloride, heparin-benzalkonium chloride, heparin stearalkonium chloride, heparin-poly-N-vinyl-pyrrolidone, heparin lecithin, heparin-didodecyldimethyl ammonium bromide, heparin-pyridinum chloride and heparin-synthetic glycolipid.
26. The medical device according to claim 25 , wherein said biopolymer is heparin-tridodecylmethylammonium chloride.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/679,965 USRE39438E1 (en) | 1998-08-21 | 2003-10-07 | Thromboresistant coated medical device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/138,464 US6248127B1 (en) | 1998-08-21 | 1998-08-21 | Thromboresistant coated medical device |
US10/679,965 USRE39438E1 (en) | 1998-08-21 | 2003-10-07 | Thromboresistant coated medical device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/138,464 Reissue US6248127B1 (en) | 1998-08-21 | 1998-08-21 | Thromboresistant coated medical device |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE39438E1 true USRE39438E1 (en) | 2006-12-19 |
Family
ID=22482124
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/138,464 Ceased US6248127B1 (en) | 1998-08-21 | 1998-08-21 | Thromboresistant coated medical device |
US09/377,699 Expired - Fee Related US6361819B1 (en) | 1998-08-21 | 1999-08-20 | Thromboresistant coating method |
US09/862,710 Expired - Fee Related US6830583B2 (en) | 1998-08-21 | 2001-05-23 | Thromboresistant coating composition |
US10/679,965 Expired - Lifetime USRE39438E1 (en) | 1998-08-21 | 2003-10-07 | Thromboresistant coated medical device |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/138,464 Ceased US6248127B1 (en) | 1998-08-21 | 1998-08-21 | Thromboresistant coated medical device |
US09/377,699 Expired - Fee Related US6361819B1 (en) | 1998-08-21 | 1999-08-20 | Thromboresistant coating method |
US09/862,710 Expired - Fee Related US6830583B2 (en) | 1998-08-21 | 2001-05-23 | Thromboresistant coating composition |
Country Status (2)
Country | Link |
---|---|
US (4) | US6248127B1 (en) |
EP (1) | EP0982041A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080241349A1 (en) * | 2007-04-02 | 2008-10-02 | Ension, Inc. | Process for preparing a substrate coated with a biomolecule |
US8049061B2 (en) | 2008-09-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery |
US8076529B2 (en) | 2008-09-26 | 2011-12-13 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix for intraluminal drug delivery |
US8226603B2 (en) | 2008-09-25 | 2012-07-24 | Abbott Cardiovascular Systems Inc. | Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery |
US8498682B2 (en) | 2007-02-06 | 2013-07-30 | Glumetrics, Inc. | Optical determination of pH and glucose |
US8500687B2 (en) | 2008-09-25 | 2013-08-06 | Abbott Cardiovascular Systems Inc. | Stent delivery system having a fibrous matrix covering with improved stent retention |
US8535262B2 (en) | 2007-11-21 | 2013-09-17 | Glumetrics, Inc. | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US8700115B2 (en) | 2009-11-04 | 2014-04-15 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of glucose measurement |
US8715589B2 (en) | 2009-09-30 | 2014-05-06 | Medtronic Minimed, Inc. | Sensors with thromboresistant coating |
US8738107B2 (en) | 2007-05-10 | 2014-05-27 | Medtronic Minimed, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US9693841B2 (en) | 2007-04-02 | 2017-07-04 | Ension, Inc. | Surface treated staples, sutures and dental floss and methods of manufacturing the same |
Families Citing this family (249)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6562781B1 (en) | 1995-11-30 | 2003-05-13 | Hamilton Civic Hospitals Research Development Inc. | Glycosaminoglycan-antithrombin III/heparin cofactor II conjugates |
US6491965B1 (en) * | 1995-11-30 | 2002-12-10 | Hamilton Civic Hospitals Research Development, Inc. | Medical device comprising glycosaminoglycan-antithrombin III/heparin cofactor II conjugates |
US7045585B2 (en) | 1995-11-30 | 2006-05-16 | Hamilton Civic Hospital Research Development Inc. | Methods of coating a device using anti-thrombin heparin |
US6777217B1 (en) * | 1996-03-26 | 2004-08-17 | President And Fellows Of Harvard College | Histone deacetylases, and uses related thereto |
ES2353840T3 (en) * | 1997-04-21 | 2011-03-07 | California Institute Of Technology | MULTIFUNCTIONAL POLYMER TISSULAR COATINGS. |
US6096726A (en) | 1998-03-11 | 2000-08-01 | Surface Solutions Laboratories Incorporated | Multicomponent complex for use with substrate |
US7713297B2 (en) | 1998-04-11 | 2010-05-11 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US6248127B1 (en) * | 1998-08-21 | 2001-06-19 | Medtronic Ave, Inc. | Thromboresistant coated medical device |
FR2785812B1 (en) * | 1998-11-16 | 2002-11-29 | Commissariat Energie Atomique | BIOACTIVE PROSTHESES, IN PARTICULAR WITH IMMUNOSUPPRESSIVE PROPERTIES, ANTISTENOSIS AND ANTITHROMBOSIS, AND THEIR MANUFACTURE |
EP1190252B1 (en) * | 1999-04-28 | 2008-12-31 | Eidgenössische Technische Hochschule Zürich | Polyionic coatings in analytic and sensor devices |
US7807211B2 (en) | 1999-09-03 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of an implantable medical device |
US6790228B2 (en) | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US7682647B2 (en) | 1999-09-03 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Thermal treatment of a drug eluting implantable medical device |
US20070032853A1 (en) | 2002-03-27 | 2007-02-08 | Hossainy Syed F | 40-O-(2-hydroxy)ethyl-rapamycin coated stent |
US20030129724A1 (en) | 2000-03-03 | 2003-07-10 | Grozinger Christina M. | Class II human histone deacetylases, and uses related thereto |
US6520952B1 (en) * | 2000-03-23 | 2003-02-18 | Neich Medical Co., Ltd. | Ceramic reinforced catheter |
AU2001261300A1 (en) * | 2000-05-09 | 2001-11-20 | Pearl Technology Holdings, Llc | Biodegradable fiber optic |
DE10026852A1 (en) * | 2000-05-31 | 2001-12-13 | 3M Espe Ag | N-alkyl azirdino block copolymers and their use |
DE10026857C2 (en) * | 2000-05-31 | 2002-06-27 | 3M Espe Ag | Aziridino silicones and their use |
US7682648B1 (en) | 2000-05-31 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Methods for forming polymeric coatings on stents |
AU2001279288A1 (en) * | 2000-07-06 | 2002-01-21 | Biosurface Engineering Technologies, Inc. | Drug diffusion coatings, applications and methods |
US20020032478A1 (en) * | 2000-08-07 | 2002-03-14 | Percardia, Inc. | Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel |
US6852353B2 (en) * | 2000-08-24 | 2005-02-08 | Novartis Ag | Process for surface modifying substrates and modified substrates resulting therefrom |
US6953560B1 (en) | 2000-09-28 | 2005-10-11 | Advanced Cardiovascular Systems, Inc. | Barriers for polymer-coated implantable medical devices and methods for making the same |
US20020111590A1 (en) * | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon |
US20050226993A1 (en) * | 2000-10-03 | 2005-10-13 | Nawrocki Jesse G | Medical devices having durable and lubricious polymeric coating |
US7807210B1 (en) | 2000-10-31 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Hemocompatible polymers on hydrophobic porous polymers |
DE10061573A1 (en) * | 2000-12-11 | 2002-09-26 | Max Planck Gesellschaft | Biocompatible colloids with low cell adhesion and active stabilization of blood proteins |
US6824559B2 (en) | 2000-12-22 | 2004-11-30 | Advanced Cardiovascular Systems, Inc. | Ethylene-carboxyl copolymers as drug delivery matrices |
US20020087123A1 (en) * | 2001-01-02 | 2002-07-04 | Hossainy Syed F.A. | Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices |
DE20220502U1 (en) * | 2001-03-23 | 2003-10-02 | AlCove Surfaces GmbH, 45966 Gladbeck | implant |
US6712845B2 (en) | 2001-04-24 | 2004-03-30 | Advanced Cardiovascular Systems, Inc. | Coating for a stent and a method of forming the same |
US6540745B1 (en) | 2001-05-01 | 2003-04-01 | Aeromet Technologies, Inc. | Coated medical devices |
US6656506B1 (en) | 2001-05-09 | 2003-12-02 | Advanced Cardiovascular Systems, Inc. | Microparticle coated medical device |
US7244853B2 (en) | 2001-05-09 | 2007-07-17 | President And Fellows Of Harvard College | Dioxanes and uses thereof |
US8101196B2 (en) * | 2001-06-26 | 2012-01-24 | Biointeractions, Ltd. | Polysaccharide biomaterials and methods of use thereof |
US8741378B1 (en) | 2001-06-27 | 2014-06-03 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device |
US6695920B1 (en) | 2001-06-27 | 2004-02-24 | Advanced Cardiovascular Systems, Inc. | Mandrel for supporting a stent and a method of using the mandrel to coat a stent |
US20040058056A1 (en) * | 2001-07-06 | 2004-03-25 | Shigemasa Osaki | Drug diffusion coatings, applications and methods |
US7687437B2 (en) | 2001-07-13 | 2010-03-30 | Nanosphere, Inc. | Method for immobilizing molecules onto surfaces |
US7297553B2 (en) * | 2002-05-28 | 2007-11-20 | Nanosphere, Inc. | Method for attachment of silylated molecules to glass surfaces |
EP1759210B1 (en) * | 2001-07-13 | 2008-12-31 | Nanosphere, Inc. | Method for preparing substrates having immobilized molecules and substrates |
GB0117879D0 (en) * | 2001-07-21 | 2001-09-12 | Common Services Agency | Storage of liquid compositions |
US7682669B1 (en) | 2001-07-30 | 2010-03-23 | Advanced Cardiovascular Systems, Inc. | Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device |
US6641611B2 (en) | 2001-11-26 | 2003-11-04 | Swaminathan Jayaraman | Therapeutic coating for an intravascular implant |
US8303651B1 (en) | 2001-09-07 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Polymeric coating for reducing the rate of release of a therapeutic substance from a stent |
US7285304B1 (en) | 2003-06-25 | 2007-10-23 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
GB0122393D0 (en) * | 2001-09-17 | 2001-11-07 | Polybiomed Ltd | Treating metal surfaces to enhance bio-compatibility |
US7989018B2 (en) | 2001-09-17 | 2011-08-02 | Advanced Cardiovascular Systems, Inc. | Fluid treatment of a polymeric coating on an implantable medical device |
US6517889B1 (en) * | 2001-11-26 | 2003-02-11 | Swaminathan Jayaraman | Process for coating a surface of a stent |
US20060093771A1 (en) * | 2002-02-15 | 2006-05-04 | Frantisek Rypacek | Polymer coating for medical devices |
CN1279984C (en) * | 2002-02-15 | 2006-10-18 | Cv医药有限公司 | Polymer coating for medical devices |
US20030161938A1 (en) * | 2002-02-22 | 2003-08-28 | Bo Johnson | Composition and method for coating medical devices |
US20030161937A1 (en) * | 2002-02-25 | 2003-08-28 | Leiby Mark W. | Process for coating three-dimensional substrates with thin organic films and products |
AU2003224672B2 (en) | 2002-03-08 | 2010-02-04 | Eisai R&D Management Co., Ltd. | Macrocyclic compounds useful as pharmaceuticals |
US7919075B1 (en) | 2002-03-20 | 2011-04-05 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices |
NZ555951A (en) | 2002-03-22 | 2009-01-31 | Eisai Co Ltd | Hemiasterlin derivatives and uses thereof |
US7387836B2 (en) * | 2002-04-17 | 2008-06-17 | Genzyme Corporation | Aziridine compounds and their use in medical devices |
DE10223310A1 (en) | 2002-05-24 | 2003-12-11 | Biotronik Mess & Therapieg | Process for coating implants with a polysaccharide layer |
US20040234703A1 (en) * | 2002-06-04 | 2004-11-25 | Frautschi Jack R. | Method of forming a polymer layer on a metal surface |
US8506617B1 (en) | 2002-06-21 | 2013-08-13 | Advanced Cardiovascular Systems, Inc. | Micronized peptide coated stent |
US7056523B1 (en) | 2002-06-21 | 2006-06-06 | Advanced Cardiovascular Systems, Inc. | Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine |
US7033602B1 (en) | 2002-06-21 | 2006-04-25 | Advanced Cardiovascular Systems, Inc. | Polycationic peptide coatings and methods of coating implantable medical devices |
US7217426B1 (en) | 2002-06-21 | 2007-05-15 | Advanced Cardiovascular Systems, Inc. | Coatings containing polycationic peptides for cardiovascular therapy |
US7794743B2 (en) | 2002-06-21 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Polycationic peptide coatings and methods of making the same |
US6702850B1 (en) * | 2002-09-30 | 2004-03-09 | Mediplex Corporation Korea | Multi-coated drug-eluting stent for antithrombosis and antirestenosis |
US7041088B2 (en) * | 2002-10-11 | 2006-05-09 | Ethicon, Inc. | Medical devices having durable and lubricious polymeric coating |
WO2004043507A1 (en) * | 2002-11-07 | 2004-05-27 | Carbon Medical Technologies, Inc. | Biocompatible medical device coatings |
US7758880B2 (en) | 2002-12-11 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Biocompatible polyacrylate compositions for medical applications |
US7776926B1 (en) | 2002-12-11 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Biocompatible coating for implantable medical devices |
US7074276B1 (en) | 2002-12-12 | 2006-07-11 | Advanced Cardiovascular Systems, Inc. | Clamp mandrel fixture and a method of using the same to minimize coating defects |
US8435550B2 (en) | 2002-12-16 | 2013-05-07 | Abbot Cardiovascular Systems Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
US20060002968A1 (en) | 2004-06-30 | 2006-01-05 | Gordon Stewart | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders |
US7758881B2 (en) | 2004-06-30 | 2010-07-20 | Advanced Cardiovascular Systems, Inc. | Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device |
FR2850026B1 (en) * | 2003-01-17 | 2007-08-31 | L A R S Laboratoire D Applic E | BIOMIMETIC PROTHETIC LIGAMENT AND PROCESS FOR OBTAINING |
DE10307205A1 (en) * | 2003-02-20 | 2004-09-09 | Jostra Ag | Blood compatible coating of plastic surfaces |
US20040236399A1 (en) * | 2003-04-22 | 2004-11-25 | Medtronic Vascular, Inc. | Stent with improved surface adhesion |
US7279174B2 (en) | 2003-05-08 | 2007-10-09 | Advanced Cardiovascular Systems, Inc. | Stent coatings comprising hydrophilic additives |
WO2004100926A2 (en) * | 2003-05-13 | 2004-11-25 | Medtronic, Inc. | Delivery of agents using hydrolyzable leaving groups |
US20050118344A1 (en) | 2003-12-01 | 2005-06-02 | Pacetti Stephen D. | Temperature controlled crimping |
US7431959B1 (en) | 2003-07-31 | 2008-10-07 | Advanced Cardiovascular Systems Inc. | Method and system for irradiation of a drug eluting implantable medical device |
US20050033417A1 (en) * | 2003-07-31 | 2005-02-10 | John Borges | Coating for controlled release of a therapeutic agent |
US7785512B1 (en) | 2003-07-31 | 2010-08-31 | Advanced Cardiovascular Systems, Inc. | Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices |
US7645474B1 (en) | 2003-07-31 | 2010-01-12 | Advanced Cardiovascular Systems, Inc. | Method and system of purifying polymers for use with implantable medical devices |
US20050055080A1 (en) * | 2003-09-05 | 2005-03-10 | Naim Istephanous | Modulated stents and methods of making the stents |
US7198675B2 (en) | 2003-09-30 | 2007-04-03 | Advanced Cardiovascular Systems | Stent mandrel fixture and method for selectively coating surfaces of a stent |
US7704544B2 (en) | 2003-10-07 | 2010-04-27 | Advanced Cardiovascular Systems, Inc. | System and method for coating a tubular implantable medical device |
US7329413B1 (en) | 2003-11-06 | 2008-02-12 | Advanced Cardiovascular Systems, Inc. | Coatings for drug delivery devices having gradient of hydration and methods for fabricating thereof |
US9114198B2 (en) | 2003-11-19 | 2015-08-25 | Advanced Cardiovascular Systems, Inc. | Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same |
US8192752B2 (en) | 2003-11-21 | 2012-06-05 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same |
US7560492B1 (en) | 2003-11-25 | 2009-07-14 | Advanced Cardiovascular Systems, Inc. | Polysulfone block copolymers as drug-eluting coating material |
US7807722B2 (en) | 2003-11-26 | 2010-10-05 | Advanced Cardiovascular Systems, Inc. | Biobeneficial coating compositions and methods of making and using thereof |
US7435788B2 (en) | 2003-12-19 | 2008-10-14 | Advanced Cardiovascular Systems, Inc. | Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents |
US8309112B2 (en) | 2003-12-24 | 2012-11-13 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices comprising hydrophilic substances and methods for fabricating the same |
US8685431B2 (en) | 2004-03-16 | 2014-04-01 | Advanced Cardiovascular Systems, Inc. | Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same |
US8551512B2 (en) | 2004-03-22 | 2013-10-08 | Advanced Cardiovascular Systems, Inc. | Polyethylene glycol/poly(butylene terephthalate) copolymer coated devices including EVEROLIMUS |
US8778014B1 (en) | 2004-03-31 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Coatings for preventing balloon damage to polymer coated stents |
US20060062825A1 (en) * | 2004-04-19 | 2006-03-23 | Maria Maccecchini | Method of implanting a sterile, active agent-coated material and composition made according to same |
US7820732B2 (en) | 2004-04-30 | 2010-10-26 | Advanced Cardiovascular Systems, Inc. | Methods for modulating thermal and mechanical properties of coatings on implantable devices |
US8293890B2 (en) | 2004-04-30 | 2012-10-23 | Advanced Cardiovascular Systems, Inc. | Hyaluronic acid based copolymers |
US9561309B2 (en) | 2004-05-27 | 2017-02-07 | Advanced Cardiovascular Systems, Inc. | Antifouling heparin coatings |
US7563780B1 (en) | 2004-06-18 | 2009-07-21 | Advanced Cardiovascular Systems, Inc. | Heparin prodrugs and drug delivery stents formed therefrom |
US20050287184A1 (en) | 2004-06-29 | 2005-12-29 | Hossainy Syed F A | Drug-delivery stent formulations for restenosis and vulnerable plaque |
US8357391B2 (en) | 2004-07-30 | 2013-01-22 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages |
US7494665B1 (en) | 2004-07-30 | 2009-02-24 | Advanced Cardiovascular Systems, Inc. | Polymers containing siloxane monomers |
US7648727B2 (en) | 2004-08-26 | 2010-01-19 | Advanced Cardiovascular Systems, Inc. | Methods for manufacturing a coated stent-balloon assembly |
US7244443B2 (en) | 2004-08-31 | 2007-07-17 | Advanced Cardiovascular Systems, Inc. | Polymers of fluorinated monomers and hydrophilic monomers |
US8110211B2 (en) | 2004-09-22 | 2012-02-07 | Advanced Cardiovascular Systems, Inc. | Medicated coatings for implantable medical devices including polyacrylates |
US8603634B2 (en) | 2004-10-27 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | End-capped poly(ester amide) copolymers |
US20060093647A1 (en) * | 2004-10-29 | 2006-05-04 | Villafana Manuel A | Multiple layer coating composition |
US7390497B2 (en) | 2004-10-29 | 2008-06-24 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide) filler blends for modulation of coating properties |
US8609123B2 (en) | 2004-11-29 | 2013-12-17 | Advanced Cardiovascular Systems, Inc. | Derivatized poly(ester amide) as a biobeneficial coating |
US7892592B1 (en) | 2004-11-30 | 2011-02-22 | Advanced Cardiovascular Systems, Inc. | Coating abluminal surfaces of stents and other implantable medical devices |
US7604818B2 (en) | 2004-12-22 | 2009-10-20 | Advanced Cardiovascular Systems, Inc. | Polymers of fluorinated monomers and hydrocarbon monomers |
US7419504B2 (en) | 2004-12-27 | 2008-09-02 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide) block copolymers |
US8007775B2 (en) | 2004-12-30 | 2011-08-30 | Advanced Cardiovascular Systems, Inc. | Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same |
US20080069814A1 (en) * | 2005-01-05 | 2008-03-20 | Novacea, Inc. | Prevention of Thrombotic Disorders with Active Vitamin D Compounds or Mimics Thereof |
EP3354265A1 (en) | 2005-03-22 | 2018-08-01 | President and Fellows of Harvard College | Treatment of solid tumors |
MX2007013029A (en) * | 2005-04-22 | 2008-01-11 | Novacea Inc | Treatment, prevention and amelioration of pulmonary disorders associated with chemotherapy or radiotherapy with active vitamin d compounds or mimics thereof. |
US7795467B1 (en) | 2005-04-26 | 2010-09-14 | Advanced Cardiovascular Systems, Inc. | Bioabsorbable, biobeneficial polyurethanes for use in medical devices |
US8778375B2 (en) | 2005-04-29 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Amorphous poly(D,L-lactide) coating |
US20070009564A1 (en) * | 2005-06-22 | 2007-01-11 | Mcclain James B | Drug/polymer composite materials and methods of making the same |
US7823533B2 (en) | 2005-06-30 | 2010-11-02 | Advanced Cardiovascular Systems, Inc. | Stent fixture and method for reducing coating defects |
US8021676B2 (en) | 2005-07-08 | 2011-09-20 | Advanced Cardiovascular Systems, Inc. | Functionalized chemically inert polymers for coatings |
WO2007011707A2 (en) | 2005-07-15 | 2007-01-25 | Micell Technologies, Inc. | Polymer coatings containing drug powder of controlled morphology |
US20090062909A1 (en) | 2005-07-15 | 2009-03-05 | Micell Technologies, Inc. | Stent with polymer coating containing amorphous rapamycin |
US7785647B2 (en) | 2005-07-25 | 2010-08-31 | Advanced Cardiovascular Systems, Inc. | Methods of providing antioxidants to a drug containing product |
US7735449B1 (en) | 2005-07-28 | 2010-06-15 | Advanced Cardiovascular Systems, Inc. | Stent fixture having rounded support structures and method for use thereof |
US20070173787A1 (en) * | 2005-11-01 | 2007-07-26 | Huang Mark C T | Thin-film nitinol based drug eluting stent |
US9173989B2 (en) | 2005-12-13 | 2015-11-03 | Exthera Medical Corporation | Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood |
US7976891B1 (en) | 2005-12-16 | 2011-07-12 | Advanced Cardiovascular Systems, Inc. | Abluminal stent coating apparatus and method of using focused acoustic energy |
US7867547B2 (en) | 2005-12-19 | 2011-01-11 | Advanced Cardiovascular Systems, Inc. | Selectively coating luminal surfaces of stents |
JP5441416B2 (en) | 2006-02-14 | 2014-03-12 | プレジデント アンド フェロウズ オブ ハーバード カレッジ | Bifunctional histone deacetylase inhibitor |
WO2007095584A2 (en) | 2006-02-14 | 2007-08-23 | The President And Fellows Of Harvard College | Histone Deacetylase Inhibitors |
US20070196428A1 (en) | 2006-02-17 | 2007-08-23 | Thierry Glauser | Nitric oxide generating medical devices |
US7713637B2 (en) | 2006-03-03 | 2010-05-11 | Advanced Cardiovascular Systems, Inc. | Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer |
US20070224235A1 (en) | 2006-03-24 | 2007-09-27 | Barron Tenney | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
CA2996768C (en) | 2006-04-26 | 2020-12-08 | Micell Technologies, Inc. | Coatings containing multiple drugs |
JP5497431B2 (en) * | 2006-05-03 | 2014-05-21 | プレジデント アンド フェローズ オブ ハーバード カレッジ | Histone deacetylase and tubulin deacetylase inhibitors |
US8304012B2 (en) | 2006-05-04 | 2012-11-06 | Advanced Cardiovascular Systems, Inc. | Method for drying a stent |
US7985441B1 (en) | 2006-05-04 | 2011-07-26 | Yiwen Tang | Purification of polymers for coating applications |
US8069814B2 (en) | 2006-05-04 | 2011-12-06 | Advanced Cardiovascular Systems, Inc. | Stent support devices |
US9114194B2 (en) * | 2006-05-12 | 2015-08-25 | W. L. Gore & Associates, Inc. | Immobilized biologically active entities having high biological activity following mechanical manipulation |
US8021677B2 (en) | 2006-05-12 | 2011-09-20 | Gore Enterprise Holdings, Inc. | Immobilized biologically active entities having a high degree of biological activity |
US20080279909A1 (en) * | 2006-05-12 | 2008-11-13 | Cleek Robert L | Immobilized Biologically Active Entities Having A High Degree of Biological Activity Following Sterilization |
US8986713B2 (en) | 2006-05-12 | 2015-03-24 | W. L. Gore & Associates, Inc. | Medical device capable of being compacted and expanded having anti-thrombin III binding activity |
US7775178B2 (en) | 2006-05-26 | 2010-08-17 | Advanced Cardiovascular Systems, Inc. | Stent coating apparatus and method |
US8568764B2 (en) | 2006-05-31 | 2013-10-29 | Advanced Cardiovascular Systems, Inc. | Methods of forming coating layers for medical devices utilizing flash vaporization |
US9561351B2 (en) | 2006-05-31 | 2017-02-07 | Advanced Cardiovascular Systems, Inc. | Drug delivery spiral coil construct |
US8703167B2 (en) | 2006-06-05 | 2014-04-22 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug |
US8778376B2 (en) | 2006-06-09 | 2014-07-15 | Advanced Cardiovascular Systems, Inc. | Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating |
US8603530B2 (en) | 2006-06-14 | 2013-12-10 | Abbott Cardiovascular Systems Inc. | Nanoshell therapy |
US8114150B2 (en) | 2006-06-14 | 2012-02-14 | Advanced Cardiovascular Systems, Inc. | RGD peptide attached to bioabsorbable stents |
US7972617B1 (en) | 2006-06-15 | 2011-07-05 | Topaz Stephen R | Anti-thrombogenic device and method of manufacturing the same |
US8048448B2 (en) | 2006-06-15 | 2011-11-01 | Abbott Cardiovascular Systems Inc. | Nanoshells for drug delivery |
US8017237B2 (en) | 2006-06-23 | 2011-09-13 | Abbott Cardiovascular Systems, Inc. | Nanoshells on polymers |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
WO2008002778A2 (en) | 2006-06-29 | 2008-01-03 | Boston Scientific Limited | Medical devices with selective coating |
US9028859B2 (en) | 2006-07-07 | 2015-05-12 | Advanced Cardiovascular Systems, Inc. | Phase-separated block copolymer coatings for implantable medical devices |
US8685430B1 (en) | 2006-07-14 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Tailored aliphatic polyesters for stent coatings |
US8703169B1 (en) | 2006-08-15 | 2014-04-22 | Abbott Cardiovascular Systems Inc. | Implantable device having a coating comprising carrageenan and a biostable polymer |
EP2068757B1 (en) | 2006-09-14 | 2011-05-11 | Boston Scientific Limited | Medical devices with drug-eluting coating |
WO2008052000A2 (en) | 2006-10-23 | 2008-05-02 | Micell Technologies, Inc. | Holder for electrically charging a substrate during coating |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US8597673B2 (en) | 2006-12-13 | 2013-12-03 | Advanced Cardiovascular Systems, Inc. | Coating of fast absorption or dissolution |
US11426494B2 (en) | 2007-01-08 | 2022-08-30 | MT Acquisition Holdings LLC | Stents having biodegradable layers |
WO2008086369A1 (en) | 2007-01-08 | 2008-07-17 | Micell Technologies, Inc. | Stents having biodegradable layers |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
AU2008242844A1 (en) * | 2007-04-17 | 2008-10-30 | Micell Technologies, Inc. | Stents having biodegradable layers |
US9433516B2 (en) | 2007-04-17 | 2016-09-06 | Micell Technologies, Inc. | Stents having controlled elution |
US8147769B1 (en) | 2007-05-16 | 2012-04-03 | Abbott Cardiovascular Systems Inc. | Stent and delivery system with reduced chemical degradation |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
WO2008148013A1 (en) | 2007-05-25 | 2008-12-04 | Micell Technologies, Inc. | Polymer films for medical device coating |
US9056155B1 (en) | 2007-05-29 | 2015-06-16 | Abbott Cardiovascular Systems Inc. | Coatings having an elastic primer layer |
US20100070020A1 (en) * | 2008-06-11 | 2010-03-18 | Nanovasc, Inc. | Implantable Medical Device |
US20100331957A1 (en) * | 2007-06-11 | 2010-12-30 | Nanovasc, Inc. | Implantable medical device |
US8048441B2 (en) | 2007-06-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Nanobead releasing medical devices |
US8109904B1 (en) | 2007-06-25 | 2012-02-07 | Abbott Cardiovascular Systems Inc. | Drug delivery medical devices |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7942926B2 (en) * | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
EP2187988B1 (en) | 2007-07-19 | 2013-08-21 | Boston Scientific Limited | Endoprosthesis having a non-fouling surface |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8221822B2 (en) | 2007-07-31 | 2012-07-17 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
JP2010535541A (en) | 2007-08-03 | 2010-11-25 | ボストン サイエンティフィック リミテッド | Coating for medical devices with large surface area |
US20100298928A1 (en) * | 2007-10-19 | 2010-11-25 | Micell Technologies, Inc. | Drug Coated Stents |
ES2543735T3 (en) | 2007-10-22 | 2015-08-21 | Becton Dickinson And Company | Medical articles coated with organopolysiloxane containing a protein solution and a non-ionic surfactant |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US20100021538A1 (en) * | 2008-02-29 | 2010-01-28 | Youngro Byun | Pharmaceutical compositions containing heparin derivatives |
MX2010011485A (en) | 2008-04-17 | 2011-03-01 | Micell Technologies Inc | Stents having bioabsorbable layers. |
ES2423504T3 (en) | 2008-04-22 | 2013-09-20 | Boston Scientific Scimed, Inc. | Medical devices that have a coating of inorganic material |
WO2009132176A2 (en) | 2008-04-24 | 2009-10-29 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
WO2009155328A2 (en) | 2008-06-18 | 2009-12-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
JP2011528275A (en) | 2008-07-17 | 2011-11-17 | ミセル テクノロジーズ,インク. | Drug delivery medical device |
RU2515611C2 (en) * | 2008-07-23 | 2014-05-20 | Президент Энд Феллоуз Оф Гарвард Колледж | Deacetylase inhibitors and their application |
EP2151253A1 (en) | 2008-07-31 | 2010-02-10 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Biocompatibility coating and coated objects |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
CA2748273C (en) * | 2008-12-26 | 2018-01-09 | Battelle Memorial Institute | Medical implants and methods of making medical implants |
US8834913B2 (en) * | 2008-12-26 | 2014-09-16 | Battelle Memorial Institute | Medical implants and methods of making medical implants |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
CA2756307C (en) * | 2009-03-23 | 2017-08-08 | Micell Technologies, Inc. | Peripheral stents having layers and reinforcement fibers |
CN102481195B (en) | 2009-04-01 | 2015-03-25 | 米歇尔技术公司 | Drug delivery medical device |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
EP2444448A1 (en) | 2009-06-15 | 2012-04-25 | DSM IP Assets B.V. | Phosphorylcholine-based amphiphilic silicones for medical applications |
EP2453834A4 (en) | 2009-07-16 | 2014-04-16 | Micell Technologies Inc | Drug delivery medical device |
US8788062B2 (en) * | 2009-08-04 | 2014-07-22 | Cardiac Pacemakers, Inc. | Polymer compression joining in implantable lead |
US8716344B2 (en) | 2009-08-11 | 2014-05-06 | President And Fellows Of Harvard College | Class- and isoform-specific HDAC inhibitors and uses thereof |
US8591932B2 (en) * | 2009-09-17 | 2013-11-26 | W. L. Gore & Associates, Inc. | Heparin entities and methods of use |
KR101107223B1 (en) * | 2009-11-10 | 2012-01-25 | 한국과학기술연구원 | Nanocoupling for improvement of coating adhesion of polymer on metal substrates |
WO2011068897A1 (en) | 2009-12-01 | 2011-06-09 | Exthera Medical, Llc | Method for removing cytokines from blood with surface immobilized polysaccharides |
EP3091004B1 (en) | 2010-01-22 | 2017-12-13 | Acetylon Pharmaceuticals, Inc. | Reverse amide compounds as protein deacetylase inhibitors and methods of use thereof |
WO2011097103A1 (en) | 2010-02-02 | 2011-08-11 | Micell Technologies, Inc. | Stent and stent delivery system with improved deliverability |
US8795762B2 (en) | 2010-03-26 | 2014-08-05 | Battelle Memorial Institute | System and method for enhanced electrostatic deposition and surface coatings |
US8685433B2 (en) | 2010-03-31 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Absorbable coating for implantable device |
EP2560576B1 (en) | 2010-04-22 | 2018-07-18 | Micell Technologies, Inc. | Stents and other devices having extracellular matrix coating |
EP2593039B1 (en) | 2010-07-16 | 2022-11-30 | Micell Technologies, Inc. | Drug delivery medical device |
US9662677B2 (en) * | 2010-09-15 | 2017-05-30 | Abbott Laboratories | Drug-coated balloon with location-specific plasma treatment |
KR20130115300A (en) | 2010-11-16 | 2013-10-21 | 에이스틸론 파마수티컬스 인코포레이티드 | Pyrimidine hydroxy amide compounds as protein deacetylase inhibitors and methods of use thereof |
WO2012112724A1 (en) * | 2011-02-15 | 2012-08-23 | Exthera Medical, Llc | Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines |
EP3375462B1 (en) | 2011-03-11 | 2023-06-07 | W. L. Gore & Associates, Inc. | Improvements to immobilised biological entities |
US10464100B2 (en) | 2011-05-31 | 2019-11-05 | Micell Technologies, Inc. | System and process for formation of a time-released, drug-eluting transferable coating |
US10117972B2 (en) | 2011-07-15 | 2018-11-06 | Micell Technologies, Inc. | Drug delivery medical device |
US20130046375A1 (en) * | 2011-08-17 | 2013-02-21 | Meng Chen | Plasma modified medical devices and methods |
JP6017572B2 (en) | 2011-10-12 | 2016-11-02 | ノバルティス アーゲー | Method for producing UV-absorbing ophthalmic lens by coating |
US10188772B2 (en) | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
ES2647577T3 (en) | 2012-06-13 | 2017-12-22 | Exthera Medical Corporation | Use of heparin and carbohydrates to treat cancer |
WO2014047328A2 (en) | 2012-09-19 | 2014-03-27 | Faller Douglas V | Pkc delta inhibitors for use as therapeutics |
CN104871036B (en) | 2012-12-17 | 2019-12-10 | 诺华股份有限公司 | Method for making improved UV-absorbing ophthalmic lenses |
JP6330024B2 (en) | 2013-03-12 | 2018-05-23 | マイセル・テクノロジーズ,インコーポレイテッド | Bioabsorbable biomedical implant |
US10272606B2 (en) | 2013-05-15 | 2019-04-30 | Micell Technologies, Inc. | Bioabsorbable biomedical implants |
AU2014302884B2 (en) | 2013-06-24 | 2018-03-29 | Exthera Medical Corporation | Blood filtration system containing mannose coated substrate |
WO2015041695A1 (en) * | 2013-09-23 | 2015-03-26 | Creighton University | Prosthetic device and coating |
AU2014346668C1 (en) | 2013-11-08 | 2018-04-26 | Exthera Medical Corporation | Methods for diagnosing infectious diseases using adsorption media |
US9339770B2 (en) | 2013-11-19 | 2016-05-17 | Applied Membrane Technologies, Inc. | Organosiloxane films for gas separations |
KR20170020749A (en) | 2014-04-24 | 2017-02-24 | 엑스테라 메디컬 코퍼레이션 | Method for removing bacteria from blood using high flow rate |
MX2017003723A (en) | 2014-09-22 | 2017-06-30 | Exthera Medical Corp | Wearable hemoperfusion device. |
WO2016105518A1 (en) | 2014-12-23 | 2016-06-30 | Dana-Farber Cancer Institute, Inc. | Methods to induce targeted protein degradation through bifunctional molecules |
WO2017024317A2 (en) | 2015-08-06 | 2017-02-09 | Dana-Farber Cancer Institute, Inc. | Methods to induce targeted protein degradation through bifunctional molecules |
TWI638668B (en) * | 2015-09-09 | 2018-10-21 | 國立中興大學 | Surface modification method and surface modification structure for improving blood compatibility of biomedical metal substrate |
RU2732109C2 (en) | 2016-02-10 | 2020-09-11 | Бектон Дикинсон Франс | Method for assessing stability of a protein-based composition |
US11911551B2 (en) | 2016-03-02 | 2024-02-27 | Exthera Medical Corporation | Method for treating drug intoxication |
US10786615B2 (en) | 2016-03-02 | 2020-09-29 | Exthera Medical Corporation | Method for treating drug intoxication |
US10941270B2 (en) | 2018-03-09 | 2021-03-09 | John Nguyen Ta | Biodegradation of polymer using surface chemistry |
MX2021013515A (en) | 2019-05-16 | 2022-01-04 | Exthera Medical Corp | Method for modulating endothelial glycocalyx structure. |
CN111494725A (en) * | 2020-07-02 | 2020-08-07 | 北京米道斯医疗器械股份有限公司 | Preparation method and application of anticoagulant layer on metal surface |
Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3549409A (en) * | 1969-04-28 | 1970-12-22 | Cordis Corp | Production of nonthrombogenic plastics |
US3639141A (en) * | 1968-09-16 | 1972-02-01 | Cordis Corp | Heparinization of plastic |
US4082727A (en) | 1975-10-21 | 1978-04-04 | Agency Of Industrial Science & Technology | Method for manufacture of non-coagulative organosilicone polymer |
US4096239A (en) * | 1975-04-28 | 1978-06-20 | Syntex Corporation | Inert core implant pellet |
US4329383A (en) * | 1979-07-24 | 1982-05-11 | Nippon Zeon Co., Ltd. | Non-thrombogenic material comprising substrate which has been reacted with heparin |
US4373009A (en) * | 1981-05-18 | 1983-02-08 | International Silicone Corporation | Method of forming a hydrophilic coating on a substrate |
US4529614A (en) * | 1981-12-02 | 1985-07-16 | Becton, Dickinson And Company | One step anticoagulant coating |
US4604412A (en) * | 1982-03-17 | 1986-08-05 | Nippon Zeon Co., Ltd | Stable polymer emulsion composition capable of giving a thromboresistant surface, and process for production thereof |
US4632842A (en) * | 1985-06-20 | 1986-12-30 | Atrium Medical Corporation | Glow discharge process for producing implantable devices |
US4678660A (en) * | 1984-12-07 | 1987-07-07 | Deseret Medical, Inc. | Thermoplastic polyurethane anticoagulant alloy coating |
US4718907A (en) * | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US4720512A (en) * | 1986-03-24 | 1988-01-19 | Becton, Dickinson And Company | Polymeric articles having enhanced antithrombogenic activity |
US4836646A (en) * | 1988-02-29 | 1989-06-06 | The Dow Chemical Company | Plastic optical fiber for in vivo use having a bio-compatible polyureasiloxane copolymer, polyurethane-siloxane copolymer, or polyurethaneureasiloxane copolymer cladding |
US4844986A (en) | 1988-02-16 | 1989-07-04 | Becton, Dickinson And Company | Method for preparing lubricated surfaces and product |
EP0338418A1 (en) * | 1988-04-18 | 1989-10-25 | Becton, Dickinson and Company | A blood compatible, lubricious article and composition and method therefor |
EP0350161A2 (en) * | 1988-07-07 | 1990-01-10 | Becton, Dickinson and Company | Method for rendering a substrate surface antithrombogenic |
US4973680A (en) | 1989-03-03 | 1990-11-27 | National Starch And Chemical Investment Holding Corporation | Organosiloxane-containing polysaccharides |
US4979959A (en) * | 1986-10-17 | 1990-12-25 | Bio-Metric Systems, Inc. | Biocompatible coating for solid surfaces |
US5010141A (en) * | 1989-10-25 | 1991-04-23 | Ciba-Geigy Corporation | Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof |
US5026607A (en) * | 1989-06-23 | 1991-06-25 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
US5053048A (en) * | 1988-09-22 | 1991-10-01 | Cordis Corporation | Thromboresistant coating |
US5077372A (en) * | 1989-06-19 | 1991-12-31 | Becton, Dickinson And Company | Amine rich fluorinated polyurethaneureas and their use in a method to immobilize an antithrombogenic agent on a device surface |
US5081031A (en) * | 1989-12-14 | 1992-01-14 | Regents Of The University Of Minnesota | Synthetic polypeptide with type iv collagen activity |
US5084151A (en) * | 1985-11-26 | 1992-01-28 | Sorin Biomedica S.P.A. | Method and apparatus for forming prosthetic device having a biocompatible carbon film thereon |
US5084315A (en) * | 1990-02-01 | 1992-01-28 | Becton, Dickinson And Company | Lubricious coatings, medical articles containing same and method for their preparation |
US5134192A (en) * | 1990-02-15 | 1992-07-28 | Cordis Corporation | Process for activating a polymer surface for covalent bonding for subsequent coating with heparin or the like |
US5133845A (en) * | 1986-12-12 | 1992-07-28 | Sorin Biomedica, S.P.A. | Method for making prosthesis of polymeric material coated with biocompatible carbon |
US5135516A (en) * | 1989-12-15 | 1992-08-04 | Boston Scientific Corporation | Lubricious antithrombogenic catheters, guidewires and coatings |
US5160790A (en) * | 1990-11-01 | 1992-11-03 | C. R. Bard, Inc. | Lubricious hydrogel coatings |
US5229172A (en) * | 1993-01-19 | 1993-07-20 | Medtronic, Inc. | Modification of polymeric surface by graft polymerization |
US5262451A (en) * | 1988-06-08 | 1993-11-16 | Cardiopulmonics, Inc. | Multifunctional thrombo-resistant coatings and methods of manufacture |
EP0581576A1 (en) | 1992-07-30 | 1994-02-02 | Mizu Systems, Inc. | Reaction products of organic polymers with inorganic alkoxides or halosilanes |
EP0592870A1 (en) * | 1992-09-30 | 1994-04-20 | C.R. Bard, Inc. | Process for preparing functionally coated expanded products from expandable tubing and the expanded products produced thereby |
US5308641A (en) * | 1993-01-19 | 1994-05-03 | Medtronic, Inc. | Biocompatibility of solid surfaces |
US5336518A (en) * | 1992-12-11 | 1994-08-09 | Cordis Corporation | Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents |
US5342693A (en) * | 1988-06-08 | 1994-08-30 | Cardiopulmonics, Inc. | Multifunctional thrombo-resistant coating and methods of manufacture |
US5350800A (en) * | 1993-01-19 | 1994-09-27 | Medtronic, Inc. | Method for improving the biocompatibility of solid surfaces |
US5356433A (en) * | 1991-08-13 | 1994-10-18 | Cordis Corporation | Biocompatible metal surfaces |
EP0357242B1 (en) * | 1988-08-03 | 1995-01-18 | New England Deaconess Hospital Corporation | A biocompatible, thromboresistant substance comprising hirudin, analogs or fragments thereof, and methods of producing the same |
EP0351314B1 (en) * | 1988-07-11 | 1995-02-01 | Terumo Kabushiki Kaisha | Medical material and medical implement |
US5417969A (en) * | 1991-09-20 | 1995-05-23 | Baxter International Inc. | Process for reducing the thrombogenicity of biomaterials |
US5441759A (en) * | 1992-09-03 | 1995-08-15 | Sherwood Medical Company | Method to stabilize TDMAC heparin coating |
EP0379156B1 (en) * | 1989-01-17 | 1996-04-10 | UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (a New York corporation) | Improved hydrophilic lubricious coatings |
EP0407390B1 (en) * | 1987-12-24 | 1996-04-24 | BSI Corporation | Biocompatible coatings |
US5541167A (en) * | 1991-05-31 | 1996-07-30 | Baxter International Inc. | Thromboresistant coating for defoaming applications |
US5543019A (en) * | 1993-04-23 | 1996-08-06 | Etex Corporation | Method of coating medical devices and device coated thereby |
WO1996024392A1 (en) | 1995-02-07 | 1996-08-15 | Fidia Advanced Biopolymers, S.R.L. | Process for the coating of objects with hyaluronic acid, derivatives thereof, and semisynthetic polymers |
US5558900A (en) * | 1994-09-22 | 1996-09-24 | Fan; You-Ling | One-step thromboresistant, lubricious coating |
US5576072A (en) * | 1995-02-01 | 1996-11-19 | Schneider (Usa), Inc. | Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel |
EP0747069A2 (en) * | 1995-06-07 | 1996-12-11 | Cook Incorporated | Implantable medical device |
US5607475A (en) * | 1995-08-22 | 1997-03-04 | Medtronic, Inc. | Biocompatible medical article and method |
EP0517890B1 (en) * | 1990-12-28 | 1997-04-02 | Union Carbide Chemicals & Plastics Technology Corporation | Biocompatible abrasion resistant coated substrates |
US5643681A (en) * | 1994-04-15 | 1997-07-01 | Cobe Laboratories, Inc. | Biocompatible coated article |
US5643580A (en) * | 1994-10-17 | 1997-07-01 | Surface Genesis, Inc. | Biocompatible coating, medical device using the same and methods |
US5650234A (en) | 1994-09-09 | 1997-07-22 | Surface Engineering Technologies, Division Of Innerdyne, Inc. | Electrophilic polyethylene oxides for the modification of polysaccharides, polypeptides (proteins) and surfaces |
US5662960A (en) * | 1995-02-01 | 1997-09-02 | Schneider (Usa) Inc. | Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly (n-vinylpyrrolidone) polymer hydrogel |
EP0595805B1 (en) * | 1990-06-19 | 1997-09-17 | Holland Biomaterials Group B.V. | Method of modifying the properties of a substrate surface by covalent bonding of a compound to the surface, and membrane modified according to this method |
US5672638A (en) * | 1995-08-22 | 1997-09-30 | Medtronic, Inc. | Biocompatability for solid surfaces |
US5679659A (en) * | 1995-08-22 | 1997-10-21 | Medtronic, Inc. | Method for making heparinized biomaterials |
EP0809999A2 (en) * | 1996-05-29 | 1997-12-03 | Ethicon, Inc. | Method of varying amounts of heparin coated on a medical device to control treatment thereon |
US5702808A (en) * | 1994-11-15 | 1997-12-30 | Sandvik Ab | Al2 O2 -coated cutting tool preferably for near net shape machining |
WO1998002197A1 (en) * | 1996-07-13 | 1998-01-22 | Robin Peter Cooper | Thromboresistant coating made of acrylic polymer |
WO1998008551A1 (en) * | 1996-08-29 | 1998-03-05 | Medtronic, Inc. | Biocompatible medical article and method |
WO1998008553A1 (en) * | 1996-08-29 | 1998-03-05 | Medtronic, Inc. | Biocompatibility for solid surfaces |
EP0832655A2 (en) * | 1996-06-13 | 1998-04-01 | Schneider (Usa) Inc. | Drug release stent coating and process |
US5767108A (en) * | 1995-08-22 | 1998-06-16 | Medtronic, Inc. | Method for making improved heparinized biomaterials |
EP0861858A2 (en) * | 1991-08-08 | 1998-09-02 | Biocompatibles Limited | Polymeric surface coatings |
US5804318A (en) * | 1995-10-26 | 1998-09-08 | Corvita Corporation | Lubricious hydrogel surface modification |
US5811151A (en) * | 1996-05-31 | 1998-09-22 | Medtronic, Inc. | Method of modifying the surface of a medical device |
US5877263A (en) * | 1996-11-25 | 1999-03-02 | Meadox Medicals, Inc. | Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents |
US5928279A (en) * | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
US5955588A (en) * | 1997-12-22 | 1999-09-21 | Innerdyne, Inc. | Non-thrombogenic coating composition and methods for using same |
US5962138A (en) | 1995-12-19 | 1999-10-05 | Talison Research, Inc. | Plasma deposited substrate structure |
US6048695A (en) | 1998-05-04 | 2000-04-11 | Baylor College Of Medicine | Chemically modified nucleic acids and methods for coupling nucleic acids to solid support |
US6248127B1 (en) | 1998-08-21 | 2001-06-19 | Medtronic Ave, Inc. | Thromboresistant coated medical device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR009439A1 (en) * | 1996-12-23 | 2000-04-12 | Novartis Ag | AN ARTICLE THAT INCLUDES A SUBSTRATE WITH A PRIMARY POLYMERIC COATING THAT CARRIES REACTIVE GROUPS PREDOMINANTLY ON ITS SURFACE, A METHOD FOR PREPARING SUCH AN ARTICLE, AN ARTICLE THAT HAS A HYBRID-TYPE COATING AND A CONTACT LENS |
-
1998
- 1998-08-21 US US09/138,464 patent/US6248127B1/en not_active Ceased
-
1999
- 1999-08-20 US US09/377,699 patent/US6361819B1/en not_active Expired - Fee Related
- 1999-08-20 EP EP99116428A patent/EP0982041A1/en not_active Withdrawn
-
2001
- 2001-05-23 US US09/862,710 patent/US6830583B2/en not_active Expired - Fee Related
-
2003
- 2003-10-07 US US10/679,965 patent/USRE39438E1/en not_active Expired - Lifetime
Patent Citations (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3639141A (en) * | 1968-09-16 | 1972-02-01 | Cordis Corp | Heparinization of plastic |
US3549409A (en) * | 1969-04-28 | 1970-12-22 | Cordis Corp | Production of nonthrombogenic plastics |
US4096239A (en) * | 1975-04-28 | 1978-06-20 | Syntex Corporation | Inert core implant pellet |
US4082727A (en) | 1975-10-21 | 1978-04-04 | Agency Of Industrial Science & Technology | Method for manufacture of non-coagulative organosilicone polymer |
US4329383A (en) * | 1979-07-24 | 1982-05-11 | Nippon Zeon Co., Ltd. | Non-thrombogenic material comprising substrate which has been reacted with heparin |
US4373009A (en) * | 1981-05-18 | 1983-02-08 | International Silicone Corporation | Method of forming a hydrophilic coating on a substrate |
US4529614A (en) * | 1981-12-02 | 1985-07-16 | Becton, Dickinson And Company | One step anticoagulant coating |
US4604412A (en) * | 1982-03-17 | 1986-08-05 | Nippon Zeon Co., Ltd | Stable polymer emulsion composition capable of giving a thromboresistant surface, and process for production thereof |
US4678660A (en) * | 1984-12-07 | 1987-07-07 | Deseret Medical, Inc. | Thermoplastic polyurethane anticoagulant alloy coating |
US4632842A (en) * | 1985-06-20 | 1986-12-30 | Atrium Medical Corporation | Glow discharge process for producing implantable devices |
US4718907A (en) * | 1985-06-20 | 1988-01-12 | Atrium Medical Corporation | Vascular prosthesis having fluorinated coating with varying F/C ratio |
US5084151A (en) * | 1985-11-26 | 1992-01-28 | Sorin Biomedica S.P.A. | Method and apparatus for forming prosthetic device having a biocompatible carbon film thereon |
US4720512A (en) * | 1986-03-24 | 1988-01-19 | Becton, Dickinson And Company | Polymeric articles having enhanced antithrombogenic activity |
US4979959A (en) * | 1986-10-17 | 1990-12-25 | Bio-Metric Systems, Inc. | Biocompatible coating for solid surfaces |
US5133845A (en) * | 1986-12-12 | 1992-07-28 | Sorin Biomedica, S.P.A. | Method for making prosthesis of polymeric material coated with biocompatible carbon |
EP0407390B1 (en) * | 1987-12-24 | 1996-04-24 | BSI Corporation | Biocompatible coatings |
US4844986A (en) | 1988-02-16 | 1989-07-04 | Becton, Dickinson And Company | Method for preparing lubricated surfaces and product |
US4836646A (en) * | 1988-02-29 | 1989-06-06 | The Dow Chemical Company | Plastic optical fiber for in vivo use having a bio-compatible polyureasiloxane copolymer, polyurethane-siloxane copolymer, or polyurethaneureasiloxane copolymer cladding |
US5013717A (en) * | 1988-04-18 | 1991-05-07 | Becton, Dickinson And Company | Blood compatible, lubricious article and composition and method therefor |
EP0338418A1 (en) * | 1988-04-18 | 1989-10-25 | Becton, Dickinson and Company | A blood compatible, lubricious article and composition and method therefor |
US5342693A (en) * | 1988-06-08 | 1994-08-30 | Cardiopulmonics, Inc. | Multifunctional thrombo-resistant coating and methods of manufacture |
US5262451A (en) * | 1988-06-08 | 1993-11-16 | Cardiopulmonics, Inc. | Multifunctional thrombo-resistant coatings and methods of manufacture |
EP0350161A2 (en) * | 1988-07-07 | 1990-01-10 | Becton, Dickinson and Company | Method for rendering a substrate surface antithrombogenic |
EP0351314B1 (en) * | 1988-07-11 | 1995-02-01 | Terumo Kabushiki Kaisha | Medical material and medical implement |
EP0357242B1 (en) * | 1988-08-03 | 1995-01-18 | New England Deaconess Hospital Corporation | A biocompatible, thromboresistant substance comprising hirudin, analogs or fragments thereof, and methods of producing the same |
US5053048A (en) * | 1988-09-22 | 1991-10-01 | Cordis Corporation | Thromboresistant coating |
EP0379156B1 (en) * | 1989-01-17 | 1996-04-10 | UNION CARBIDE CHEMICALS AND PLASTICS COMPANY INC. (a New York corporation) | Improved hydrophilic lubricious coatings |
US4973680A (en) | 1989-03-03 | 1990-11-27 | National Starch And Chemical Investment Holding Corporation | Organosiloxane-containing polysaccharides |
US5077372A (en) * | 1989-06-19 | 1991-12-31 | Becton, Dickinson And Company | Amine rich fluorinated polyurethaneureas and their use in a method to immobilize an antithrombogenic agent on a device surface |
US5026607A (en) * | 1989-06-23 | 1991-06-25 | C. R. Bard, Inc. | Medical apparatus having protective, lubricious coating |
US5010141A (en) * | 1989-10-25 | 1991-04-23 | Ciba-Geigy Corporation | Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof |
US5081031A (en) * | 1989-12-14 | 1992-01-14 | Regents Of The University Of Minnesota | Synthetic polypeptide with type iv collagen activity |
US5135516A (en) * | 1989-12-15 | 1992-08-04 | Boston Scientific Corporation | Lubricious antithrombogenic catheters, guidewires and coatings |
US5084315A (en) * | 1990-02-01 | 1992-01-28 | Becton, Dickinson And Company | Lubricious coatings, medical articles containing same and method for their preparation |
US5134192A (en) * | 1990-02-15 | 1992-07-28 | Cordis Corporation | Process for activating a polymer surface for covalent bonding for subsequent coating with heparin or the like |
EP0595805B1 (en) * | 1990-06-19 | 1997-09-17 | Holland Biomaterials Group B.V. | Method of modifying the properties of a substrate surface by covalent bonding of a compound to the surface, and membrane modified according to this method |
US5160790A (en) * | 1990-11-01 | 1992-11-03 | C. R. Bard, Inc. | Lubricious hydrogel coatings |
EP0517890B1 (en) * | 1990-12-28 | 1997-04-02 | Union Carbide Chemicals & Plastics Technology Corporation | Biocompatible abrasion resistant coated substrates |
US5541167A (en) * | 1991-05-31 | 1996-07-30 | Baxter International Inc. | Thromboresistant coating for defoaming applications |
EP0861858A2 (en) * | 1991-08-08 | 1998-09-02 | Biocompatibles Limited | Polymeric surface coatings |
US5356433A (en) * | 1991-08-13 | 1994-10-18 | Cordis Corporation | Biocompatible metal surfaces |
US5417969A (en) * | 1991-09-20 | 1995-05-23 | Baxter International Inc. | Process for reducing the thrombogenicity of biomaterials |
EP0581576A1 (en) | 1992-07-30 | 1994-02-02 | Mizu Systems, Inc. | Reaction products of organic polymers with inorganic alkoxides or halosilanes |
US5441759A (en) * | 1992-09-03 | 1995-08-15 | Sherwood Medical Company | Method to stabilize TDMAC heparin coating |
EP0592870A1 (en) * | 1992-09-30 | 1994-04-20 | C.R. Bard, Inc. | Process for preparing functionally coated expanded products from expandable tubing and the expanded products produced thereby |
US5336518A (en) * | 1992-12-11 | 1994-08-09 | Cordis Corporation | Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents |
US5350800A (en) * | 1993-01-19 | 1994-09-27 | Medtronic, Inc. | Method for improving the biocompatibility of solid surfaces |
US5308641A (en) * | 1993-01-19 | 1994-05-03 | Medtronic, Inc. | Biocompatibility of solid surfaces |
US5229172A (en) * | 1993-01-19 | 1993-07-20 | Medtronic, Inc. | Modification of polymeric surface by graft polymerization |
US5543019A (en) * | 1993-04-23 | 1996-08-06 | Etex Corporation | Method of coating medical devices and device coated thereby |
US5643681A (en) * | 1994-04-15 | 1997-07-01 | Cobe Laboratories, Inc. | Biocompatible coated article |
US5650234A (en) | 1994-09-09 | 1997-07-22 | Surface Engineering Technologies, Division Of Innerdyne, Inc. | Electrophilic polyethylene oxides for the modification of polysaccharides, polypeptides (proteins) and surfaces |
US5645931A (en) * | 1994-09-22 | 1997-07-08 | Union Carbide Chemicals & Plastics Technology Corporation | One step thromboresistant lubricious coating |
US5558900A (en) * | 1994-09-22 | 1996-09-24 | Fan; You-Ling | One-step thromboresistant, lubricious coating |
US5643580A (en) * | 1994-10-17 | 1997-07-01 | Surface Genesis, Inc. | Biocompatible coating, medical device using the same and methods |
US5702808A (en) * | 1994-11-15 | 1997-12-30 | Sandvik Ab | Al2 O2 -coated cutting tool preferably for near net shape machining |
US5576072A (en) * | 1995-02-01 | 1996-11-19 | Schneider (Usa), Inc. | Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with at least one other, dissimilar polymer hydrogel |
US5662960A (en) * | 1995-02-01 | 1997-09-02 | Schneider (Usa) Inc. | Process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-urea polymer hydrogel commingled with a poly (n-vinylpyrrolidone) polymer hydrogel |
WO1996024392A1 (en) | 1995-02-07 | 1996-08-15 | Fidia Advanced Biopolymers, S.R.L. | Process for the coating of objects with hyaluronic acid, derivatives thereof, and semisynthetic polymers |
US5609629A (en) * | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
EP0747069A2 (en) * | 1995-06-07 | 1996-12-11 | Cook Incorporated | Implantable medical device |
US5679659A (en) * | 1995-08-22 | 1997-10-21 | Medtronic, Inc. | Method for making heparinized biomaterials |
US5607475A (en) * | 1995-08-22 | 1997-03-04 | Medtronic, Inc. | Biocompatible medical article and method |
US5767108A (en) * | 1995-08-22 | 1998-06-16 | Medtronic, Inc. | Method for making improved heparinized biomaterials |
US5672638A (en) * | 1995-08-22 | 1997-09-30 | Medtronic, Inc. | Biocompatability for solid surfaces |
US5804318A (en) * | 1995-10-26 | 1998-09-08 | Corvita Corporation | Lubricious hydrogel surface modification |
US5962138A (en) | 1995-12-19 | 1999-10-05 | Talison Research, Inc. | Plasma deposited substrate structure |
EP0809999A2 (en) * | 1996-05-29 | 1997-12-03 | Ethicon, Inc. | Method of varying amounts of heparin coated on a medical device to control treatment thereon |
US5811151A (en) * | 1996-05-31 | 1998-09-22 | Medtronic, Inc. | Method of modifying the surface of a medical device |
EP0832655A2 (en) * | 1996-06-13 | 1998-04-01 | Schneider (Usa) Inc. | Drug release stent coating and process |
US5928279A (en) * | 1996-07-03 | 1999-07-27 | Baxter International Inc. | Stented, radially expandable, tubular PTFE grafts |
WO1998002197A1 (en) * | 1996-07-13 | 1998-01-22 | Robin Peter Cooper | Thromboresistant coating made of acrylic polymer |
WO1998008551A1 (en) * | 1996-08-29 | 1998-03-05 | Medtronic, Inc. | Biocompatible medical article and method |
WO1998008553A1 (en) * | 1996-08-29 | 1998-03-05 | Medtronic, Inc. | Biocompatibility for solid surfaces |
US5877263A (en) * | 1996-11-25 | 1999-03-02 | Meadox Medicals, Inc. | Process for preparing polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents |
US6107416A (en) | 1996-11-25 | 2000-08-22 | Scimed Life Systems, Inc. | Polymer coatings grafted with polyethylene oxide chains containing covalently bonded bio-active agents |
US5955588A (en) * | 1997-12-22 | 1999-09-21 | Innerdyne, Inc. | Non-thrombogenic coating composition and methods for using same |
US6048695A (en) | 1998-05-04 | 2000-04-11 | Baylor College Of Medicine | Chemically modified nucleic acids and methods for coupling nucleic acids to solid support |
US6248127B1 (en) | 1998-08-21 | 2001-06-19 | Medtronic Ave, Inc. | Thromboresistant coated medical device |
US20010034336A1 (en) | 1998-08-21 | 2001-10-25 | Shah Chirag B. | Thromboresistant coating composition |
US6361819B1 (en) | 1998-08-21 | 2002-03-26 | Medtronic Ave, Inc. | Thromboresistant coating method |
US6830583B2 (en) * | 1998-08-21 | 2004-12-14 | Medtronic Ave, Inc. | Thromboresistant coating composition |
Non-Patent Citations (1)
Title |
---|
Scott et al, Concise Encyclopedia Biochemistry and Molecular Biology, Waler de Gruyter Berlin. New York 1997, Third Edition, p. 287. * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8983565B2 (en) | 2007-02-06 | 2015-03-17 | Medtronic Minimed, Inc. | Optical determination of pH and glucose |
US8498682B2 (en) | 2007-02-06 | 2013-07-30 | Glumetrics, Inc. | Optical determination of pH and glucose |
US10456227B2 (en) | 2007-04-02 | 2019-10-29 | Ension Inc. | Methods of surface treating tubular medical products |
US9693841B2 (en) | 2007-04-02 | 2017-07-04 | Ension, Inc. | Surface treated staples, sutures and dental floss and methods of manufacturing the same |
US8114465B2 (en) | 2007-04-02 | 2012-02-14 | Ension, Inc. | Process for preparing a substrate coated with a biomolecule |
US8343567B2 (en) | 2007-04-02 | 2013-01-01 | Ension, Inc. | Method of treating the surface of a medical device with a biomolecule |
US20080241349A1 (en) * | 2007-04-02 | 2008-10-02 | Ension, Inc. | Process for preparing a substrate coated with a biomolecule |
US8738107B2 (en) | 2007-05-10 | 2014-05-27 | Medtronic Minimed, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US8979790B2 (en) | 2007-11-21 | 2015-03-17 | Medtronic Minimed, Inc. | Use of an equilibrium sensor to monitor glucose concentration |
US8535262B2 (en) | 2007-11-21 | 2013-09-17 | Glumetrics, Inc. | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US8500687B2 (en) | 2008-09-25 | 2013-08-06 | Abbott Cardiovascular Systems Inc. | Stent delivery system having a fibrous matrix covering with improved stent retention |
US8226603B2 (en) | 2008-09-25 | 2012-07-24 | Abbott Cardiovascular Systems Inc. | Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery |
US9730820B2 (en) | 2008-09-25 | 2017-08-15 | Abbott Cardiovascular Systems Inc. | Stent delivery system having a fibrous matrix covering with improved stent retention |
US8049061B2 (en) | 2008-09-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery |
US8076529B2 (en) | 2008-09-26 | 2011-12-13 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix for intraluminal drug delivery |
US8715589B2 (en) | 2009-09-30 | 2014-05-06 | Medtronic Minimed, Inc. | Sensors with thromboresistant coating |
US8700115B2 (en) | 2009-11-04 | 2014-04-15 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of glucose measurement |
Also Published As
Publication number | Publication date |
---|---|
US20010034336A1 (en) | 2001-10-25 |
EP0982041A1 (en) | 2000-03-01 |
US6361819B1 (en) | 2002-03-26 |
US6830583B2 (en) | 2004-12-14 |
US6248127B1 (en) | 2001-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39438E1 (en) | Thromboresistant coated medical device | |
US20100247931A1 (en) | Treating surfaces to enhance bio-compatibility | |
US6254634B1 (en) | Coating compositions | |
US20180326118A1 (en) | Immobilised biological entities | |
US6099563A (en) | Substrates, particularly medical devices, provided with bio-active/biocompatible coatings | |
EP0988071B1 (en) | Treating metal surfaces to enhance bio-compatibility and/or physical characteristics | |
US5728751A (en) | Bonding bio-active materials to substrate surfaces | |
EP2519270B1 (en) | Silyl ether-modified hydrophilic polymers and uses for medical articles | |
US20020087123A1 (en) | Adhesion of heparin-containing coatings to blood-contacting surfaces of medical devices | |
US6146771A (en) | Process for modifying surfaces using the reaction product of a water-insoluble polymer and a polyalkylene imine | |
WO2002060505A2 (en) | Method for coating medical device surfaces | |
CZ293637B6 (en) | Process for coating surface of an object with hyaluronic acid or derivative thereof | |
US8048437B2 (en) | Medical device with surface coating comprising bioactive compound | |
AU2002329402A1 (en) | Treating surfaces to enhance bio-compatibility | |
CN112843343A (en) | Blood contact type functional material, preparation method and application thereof | |
US20060159650A1 (en) | Composition and method for covalently coupling an antithrombotic substance and a hydrophilic polymer | |
JP4143883B2 (en) | Medical device and manufacturing method thereof | |
MXPA00011677A (en) | Biocompatible crack resistant coating compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDTRONIC VASCULAR, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:MEDTRONIC AVE, INC.;REEL/FRAME:018036/0271 Effective date: 20030908 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |