USRE38240E1 - DNA encoding human endothelial cell growth factors and plasmids comprising said DNA - Google Patents
DNA encoding human endothelial cell growth factors and plasmids comprising said DNA Download PDFInfo
- Publication number
- USRE38240E1 USRE38240E1 US09/538,305 US53830500A USRE38240E US RE38240 E1 USRE38240 E1 US RE38240E1 US 53830500 A US53830500 A US 53830500A US RE38240 E USRE38240 E US RE38240E
- Authority
- US
- United States
- Prior art keywords
- growth factor
- cell growth
- endothelial cell
- human
- ecgf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000010261 cell growth Effects 0.000 title claims abstract description 41
- 239000003102 growth factor Substances 0.000 title claims abstract description 36
- 239000013612 plasmid Substances 0.000 title claims abstract description 24
- 210000002889 endothelial cell Anatomy 0.000 title abstract description 16
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 claims abstract description 121
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 claims abstract description 119
- 108010076504 Protein Sorting Signals Proteins 0.000 claims abstract description 18
- 210000004027 cell Anatomy 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 52
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 16
- 241000588724 Escherichia coli Species 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 230000001131 transforming effect Effects 0.000 claims description 8
- 238000012258 culturing Methods 0.000 claims description 7
- 210000001236 prokaryotic cell Anatomy 0.000 claims description 7
- 108090000623 proteins and genes Proteins 0.000 description 51
- 239000002299 complementary DNA Substances 0.000 description 36
- 108020004635 Complementary DNA Proteins 0.000 description 35
- 238000010804 cDNA synthesis Methods 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 32
- 102000004169 proteins and genes Human genes 0.000 description 32
- 241000283690 Bos taurus Species 0.000 description 29
- 108091034117 Oligonucleotide Proteins 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 21
- 239000013604 expression vector Substances 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 108020004999 messenger RNA Proteins 0.000 description 20
- 101000846393 Bos taurus Fibroblast growth factor 1 Proteins 0.000 description 19
- 239000013598 vector Substances 0.000 description 18
- 101000846416 Homo sapiens Fibroblast growth factor 1 Proteins 0.000 description 15
- 235000001014 amino acid Nutrition 0.000 description 15
- 229920002684 Sepharose Polymers 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000000523 sample Substances 0.000 description 13
- 108020004511 Recombinant DNA Proteins 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 12
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 12
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 108090000765 processed proteins & peptides Proteins 0.000 description 11
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 10
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 10
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 10
- 229960002897 heparin Drugs 0.000 description 10
- 239000002751 oligonucleotide probe Substances 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 229920000669 heparin Polymers 0.000 description 9
- 229920001184 polypeptide Polymers 0.000 description 9
- 102000004196 processed proteins & peptides Human genes 0.000 description 9
- 108091034057 RNA (poly(A)) Proteins 0.000 description 8
- 230000027455 binding Effects 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010367 cloning Methods 0.000 description 8
- 239000012634 fragment Substances 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 125000003729 nucleotide group Chemical group 0.000 description 8
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 108020004705 Codon Proteins 0.000 description 7
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 102100031780 Endonuclease Human genes 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 229920002683 Glycosaminoglycan Polymers 0.000 description 6
- 108700026244 Open Reading Frames Proteins 0.000 description 6
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 6
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 230000010076 replication Effects 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 241001529936 Murinae Species 0.000 description 5
- 229920005654 Sephadex Polymers 0.000 description 5
- 239000012507 Sephadex™ Substances 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 229940098773 bovine serum albumin Drugs 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 4
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 210000002744 extracellular matrix Anatomy 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 4
- 229930182817 methionine Natural products 0.000 description 4
- 230000002297 mitogenic effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 102000004594 DNA Polymerase I Human genes 0.000 description 3
- 108010017826 DNA Polymerase I Proteins 0.000 description 3
- 230000006820 DNA synthesis Effects 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 108010067306 Fibronectins Proteins 0.000 description 3
- 102000016359 Fibronectins Human genes 0.000 description 3
- 229920002971 Heparan sulfate Polymers 0.000 description 3
- 101001033280 Homo sapiens Cytokine receptor common subunit beta Proteins 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 3
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 102000005936 beta-Galactosidase Human genes 0.000 description 3
- 108010005774 beta-Galactosidase Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000000133 brain stem Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000006911 enzymatic reaction Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000012091 fetal bovine serum Substances 0.000 description 3
- 150000004676 glycans Polymers 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 229960000789 guanidine hydrochloride Drugs 0.000 description 3
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 3
- 102000055647 human CSF2RB Human genes 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 150000007523 nucleic acids Chemical group 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 101100238763 Bacillus subtilis hsdRM gene Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000012410 DNA Ligases Human genes 0.000 description 2
- 108010061982 DNA Ligases Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 102000007547 Laminin Human genes 0.000 description 2
- 108010085895 Laminin Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- MECSIDWUTYRHRJ-KKUMJFAQSA-N Phe-Asn-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(O)=O MECSIDWUTYRHRJ-KKUMJFAQSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 108091036407 Polyadenylation Proteins 0.000 description 2
- 102000016611 Proteoglycans Human genes 0.000 description 2
- 108010067787 Proteoglycans Proteins 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000003277 amino acid sequence analysis Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 2
- CTMZLDSMFCVUNX-VMIOUTBZSA-N cytidylyl-(3'->5')-guanosine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=C(C(N=C(N)N3)=O)N=C2)O)[C@@H](CO)O1 CTMZLDSMFCVUNX-VMIOUTBZSA-N 0.000 description 2
- -1 deoxyribonucleotide triphosphates Chemical class 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 101150102883 hsdM gene Proteins 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229940127215 low-molecular weight heparin Drugs 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000003226 mitogen Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 150000004804 polysaccharides Polymers 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 239000001226 triphosphate Substances 0.000 description 2
- 101150006320 trpR gene Proteins 0.000 description 2
- 210000003606 umbilical vein Anatomy 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- DUCFFTCHGBLPHY-QIGTTXANSA-N 1-[(2r,4s,5r)-5-(hydroxymethyl)-4-oxidanyl-oxolan-2-yl]-5-methyl-pyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1.O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 DUCFFTCHGBLPHY-QIGTTXANSA-N 0.000 description 1
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- WEEMDRWIKYCTQM-UHFFFAOYSA-N 2,6-dimethoxybenzenecarbothioamide Chemical compound COC1=CC=CC(OC)=C1C(N)=S WEEMDRWIKYCTQM-UHFFFAOYSA-N 0.000 description 1
- 108020005096 28S Ribosomal RNA Proteins 0.000 description 1
- 108020005065 3' Flanking Region Proteins 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- QNNBHTFDFFFHGC-KKUMJFAQSA-N Asn-Tyr-Lys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(=O)N)N)O QNNBHTFDFFFHGC-KKUMJFAQSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101100290837 Bacillus subtilis (strain 168) metAA gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical group [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920001287 Chondroitin sulfate Polymers 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 108010066072 DNA modification methylase EcoRI Proteins 0.000 description 1
- 108010054576 Deoxyribonuclease EcoRI Proteins 0.000 description 1
- 229920000045 Dermatan sulfate Polymers 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 101001027128 Homo sapiens Fibronectin Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229920000288 Keratan sulfate Polymers 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 239000012741 Laemmli sample buffer Substances 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 101710149086 Nuclease S1 Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 101150010882 S gene Proteins 0.000 description 1
- GBFLZEXEOZUWRN-VKHMYHEASA-N S-carboxymethyl-L-cysteine Chemical compound OC(=O)[C@@H](N)CSCC(O)=O GBFLZEXEOZUWRN-VKHMYHEASA-N 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000002491 angiogenic effect Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 238000011091 antibody purification Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229940094517 chondroitin 4-sulfate Drugs 0.000 description 1
- KXKPYJOVDUMHGS-OSRGNVMNSA-N chondroitin sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](OS(O)(=O)=O)[C@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(O)=O)O1 KXKPYJOVDUMHGS-OSRGNVMNSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- AVJBPWGFOQAPRH-FWMKGIEWSA-L dermatan sulfate Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@H](OS([O-])(=O)=O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](C([O-])=O)O1 AVJBPWGFOQAPRH-FWMKGIEWSA-L 0.000 description 1
- 229940051593 dermatan sulfate Drugs 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 150000002016 disaccharides Chemical group 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000002270 exclusion chromatography Methods 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 102000034240 fibrous proteins Human genes 0.000 description 1
- 108091005899 fibrous proteins Proteins 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000023597 hemostasis Effects 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 101150085823 hsdR gene Proteins 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012966 insertion method Methods 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- KXCLCNHUUKTANI-RBIYJLQWSA-N keratan Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@H](COS(O)(=O)=O)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@H](O[C@@H](O[C@H]3[C@H]([C@@H](COS(O)(=O)=O)O[C@@H](O)[C@@H]3O)O)[C@H](NC(C)=O)[C@H]2O)COS(O)(=O)=O)O[C@H](COS(O)(=O)=O)[C@@H]1O KXCLCNHUUKTANI-RBIYJLQWSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 101150109249 lacI gene Proteins 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002597 lactoses Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 101150003180 metB gene Proteins 0.000 description 1
- 150000002742 methionines Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001453 nonthrombogenic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000003359 percent control normalization Methods 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 229960002385 streptomycin sulfate Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000002885 thrombogenetic effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/475—Growth factors; Growth regulators
- C07K14/50—Fibroblast growth factor [FGF]
- C07K14/501—Fibroblast growth factor [FGF] acidic FGF [aFGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S930/00—Peptide or protein sequence
- Y10S930/01—Peptide or protein sequence
- Y10S930/12—Growth hormone, growth factor other than t-cell or b-cell growth factor, and growth hormone releasing factor; related peptides
Definitions
- This invention relates to recombinant DNA-directed synthesis of certain proteins. More particularly, this invention relates to endothelial cell growth factor (ECGF), its recombinant DNA-directed synthesis, and ECGF's use in the treatment of endothelial cell damage and/or regeneration.
- ECGF endothelial cell growth factor
- Endothelial cell growth factor referred to herein as “ECGF” is a mitogen for endothelial cells in vitro. Growth of endothelial cells is a necessary step during the process of angiogenesis [Maciag, Prog. Hemostasis and Thromb., 7:167-182 (1984); Maciag, T., Hoover, G. A., and Weinstein, R., J. Biol. Chem., 257: 5333-5336 (1982)].
- angiogenesis Maciag, Prog. Hemostasis and Thromb., 7:167-182 (1984); Maciag, T., Hoover, G. A., and Weinstein, R., J. Biol. Chem., 257: 5333-5336 (1982)].
- Bovine ECGF has been isolated by Maciag, et al., [Science 225:932-935 ( 1984)] using streptomycin sulfate precipitation, gel exclusion chromatography, ammonium sulfate precipitation and heparin-Sepharose SEPHAROSE affinity chromatography. Bovine ECGF purified in this manner yields a single-chain polypeptide which possesses an anionic iso-electric point and an apparent molecular weight of 20,000 [Maciag, supra; Schreiber, et al., J. Cell Biol., 101:1623-1626 (1985); and Schreiber, et al., Proc. Natl. Acad.
- bovine ECGF More recently, multiple forms of bovine ECGF have been isolated by Burgess, et al., [J. Biol. Chem. 260:11389-11392 ( 1985)] by sodium chloride gradient elution of bovine ECGF from the heparin-Sepharose SEPHAROSE column or by reversed-phase high pressure liquid chromatography (HPLC).
- the two isolated polypeptides, designated alpha-and beta-ECGF have apparent molecular weights of 17,000 and 20,000, respectively.
- bovine ECGF contained in 8,500 ml of bovine brain extract ( 6.25 ⁇ 107 (6.25 ⁇ 10 7 total units) is concentrated into a total of 6 ml of alpha-ECGF (3.0 ⁇ 106 ( 3 . 0 ⁇ 10 6 units) and 3 ml of beta-ECGF (5.2 ⁇ 105 ( 5 . 2 ⁇ 10 5 units).
- alpha-ECGF 3.0 ⁇ 106 ( 3 . 0 ⁇ 10 6 units)
- beta-ECGF 5.2 ⁇ 105 ( 5 . 2 ⁇ 10 5 units).
- Genes coding for various polypeptides may be cloned by incorporating a DNA fragment coding for the polypeptide in a recombinant DNA vehicle, e.g., bacterial or viral vectors, and transforming a suitable host.
- a recombinant DNA vehicle e.g., bacterial or viral vectors
- This host is typically an Escherichia coli (E. coli) strain, however, depending upon the desired product, eukaryotic hosts may be utilized.
- Clones incorporating the recombinant vectors are isolated and may be grown and used to produce the desired polypeptide on a large scale.
- mRNA messenger RNA
- ss-cDNA singlestranded complementary DNA
- Reverse transcriptase synthesizes DNA in the 5′-3′ direction, utilizes deoxyribonucleoside 5′-triphosphates as precursors, and requires both a template and a primer strand, the latter of which must have a free 3′-hydroxyl terminus.
- Reverse transcriptase products whether partial or complete copies of the mRNA template, often possess short, partially double-stranded hairpins (“loops”) at their 3′ termini.
- these “hairpin loops” can be exploited as primers for DNA polymerases.
- Preformed DNA is required both as a template and as a primer in the action of DNA polymerase.
- the DNA polymerase requires the presence of a DNA strand having a free 3′-hydroxyl group, to which new nucleotides are added to extend the chain in the 5′-3′ direction.
- the products of such sequential reverse transcriptase and DNA polymerase reactions still possess a loop at one end.
- this single-strand segment is cleaved with the single-strand specific nuclease S1 to generate a “blunt-end” duplex DNA segment.
- This general method is applicable to any mRNA mixture, and is described by Buell, et al., J. Biol. Chem., 253:2483 (1978).
- ds-cDNA double-stranded cDNA mixture
- the cloning vehicle is used to transform a suitable host.
- These cloning vehicles usually impart an antibiotic resistance trait on to the host.
- Such hosts are generally prokaryotic cells.
- only a few of the transformed or transfected hosts contain the desired cDNA
- the sum of all transformed or transfected hosts constitutes a gene “library”.
- the overall ds-cDNA library created by this method provides a representative sample of the coding information present in the mRNA mixture used as the starting material.
- an appropriate oligonucleotide sequence it can be used to identify clones of interest in the following manner. Individual transformed or transfected cells are grown as colonies on a nitrocellulose filter paper. These colonies are lysed; the DNA released is bound tightly to the filter paper by heating. The filter paper is then incubated with a labeled oligonucleotide probe which is complementary to the structural gene of interest. The probe hybridizes with the cDNA for which it is complementary, and is identified by autoradiography. The corresponding clones are characterized in order to identify one or a combination of clones which contain all of the structural information for the desired protein. The nucleic acid sequence coding for the protein of interest is isolated and reinserted into an expression vector.
- the expression vector brings the cloned gene under the regulatory control of specific prokaryotic of eukaryotic control elements which allow the efficient expression (transcription and translation) of the ds-cDNA.
- this general technique is only applicable to those proteins for which at least a portion of their amino acid or DNA sequence is known for which an oligonucleotide probe is available. See, generally, Maniatis, et al., supra.
- the present invention has made it possible to provide readily available, large quantities of ECGF or ECGF fragments. This has been achieved with oligonucleotides whose design was based upon knowledge of the amino acid sequence of bovine ECGF and which react specifically with the ECGF cDNA. Production of ECGF is achieved through the application or recombinant DNA technology to prepare cloning vehicles encoding the ECGF protein and procedures for recovering ECGF protein essentially free of other proteins of human origin.
- the present invention provides ECGF or its fragments essentially free of other proteins of human origin.
- ECGF is produced by recombinant DNA techniques in host cells or other self-replicating systems and is provided in essentially pure form.
- the invention further provides replicable expression vectors incorporating a DNA sequence encoding ECGF and a self-replicating host cell system transformed or transfected thereby.
- the host system is usually of prokaryotic, e.g., E. coli or B. subtilis, or eukaryotic cells.
- the ECGF is produced by a process which comprises (a) preparing a replicable expression vector capable of expressing the DNA sequence encoding ECGF in a suitable host cell system; (b) transforming said host system to obtain a recombinant host system; (c) maintaining said recombinant host system under conditions permitting expression of said ECGF-encoding DNA sequence to produce ECGF protein; and (d) recovering said ECGF protein.
- the ECGF-encoding replicable expression vector is made by preparing a ds-cDNA preparation representative of ECGF mRNA and incorporating the ds-cDNA into replicable expression vectors.
- the preferred mode of recovering ECGF comprises reacting the proteins expressed by the recombinant host system with a reagent composition comprising at least one binding step site specific for ECGF.
- ECGF may be used as a therapeutic agent in the treatment of damaged or in regenerating blood vessels and other endothelial cell-lined structures.
- FIG. 1 illustrates a general procedure for enzymatic reactions to produce cDNA clones.
- FIG. 2 illustrates the production of a library containing DNA fragments inserted into lambda gt 11 gt 11 .
- FIG. 3 illustrates a partial amino acid sequence of bovine alpha and beta ECGF.
- Line a Amino-terminal amino acid sequence of bovine alpha ECGF.
- Line b Amino-terminal amino acid sequence of bovine beta ECGF. The portion in parenthesis corresponds to NH2-terminal segment for which sequence could not be determined; amino acid composition is shown instead. The sequence beginning with PheAsnLeu . . . was determined from trypsin-cleaved bovine beta ECGF.
- Line c Amino acid sequence of cyanogen bromide-cleaved bovine alpha ECGF.
- Line d Amino acid sequence of cyanogen bromide-cleaved bovine beta ECGF.
- FIG. 4 illustrates hydrogen-bonded base pairs.
- FIG. 5 illustrates the design of an oligonucleotide probe for human Endothelial Cell Growth Factor.
- FIG. 6 illustrates a schematic diagram of human ECGF cDNA clones 1 and 29.
- the open reading box represents the open reading frame encoding human beta ECGF.
- the EcoRI sites correspond to synthetic oligonucleotide linkers used in the construction of the cDNA library.
- the poly (A) tail at the 3′ end of clone 1 is shown by A17.
- FIG. 7 illustrates homology between human ECGF cDNA sequence and oligonucleotide probes.
- Line a Bovine trypsin- or cyanogen bromide-cleaved beta
- Line b Unique oligonucleotide probe.
- Line c Human ECGF cDNA sequence (determined from lambda ECGF clones 1 and 29).
- Line d Human ECGF amino acid sequence, deduced from cDNA sequence analysis.
- FIG. 8 illustrates the complete cDNA sequence of human ECGF.
- the cDNA inserts from ECGF clones 1 and 29 were subcloned into M13mp18 and the ECGF-encoding open reading frame and flanking regions sequenced by the chain termination method. In frame stop codons at the 5′ and 3′ ends of the ECGF-encoding open reading frame are indicated by the underlined sequence and trm, respectively.
- the single-letter notation for amino acids is used: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R. Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
- FIG. 9 illustrates Northern blot analysis of ECGF mRNA.
- RNA was denatured in 2.2M formaldehyde and 50% formamide and fractionated by electrophoresis in a 1.25% agarose gel containing 2.2M formaldehyde. This was transferred to GeneScreen Plus GENESCREEN PLUS (New England Nuclear) by blotting with 10X SSPE. Blots were hybridized to 32 p-labeled 32 P-labeled nick-translated probes of ECGF clone 1 at 65° C. for 16 hours in a mixture containing 2X SSPE, 20X Denhardt's solution, yeast transfer RNA (200 ⁇ g/ml), and 0.2% SDS.
- the membrane was subsequently washed at 65° C., twice with 2X SSPE and 0.2% SDS, then twice with 0.2 X SSPE and 0.2% SDS, air-dried, and exposed overnight to Kodak XAR film with an intensifying screen.
- the migration of 28S and 18S RNA is noted.
- FIG. 10 illustrates expressional cloning of human recombinant ⁇ -ECGF.
- the expression vector pMJ26 was constructed as indicated.
- the translation initiation codon provided by the synthetic oligonucleotide is indicated by “ATG”.
- the hybrid tac promoter and the Shine-Dalgarno sequence provided by the vector pKK223-3, are indicated by “Ptac” and S.D.”, respectively.
- Transcription terminators are indicated by “rrnBT 1 T 2 ” and “5S”.
- the open arrow shows the direction of transcription from the tac promoter.
- FIG. 11 illustrates SDS-PAGE analysis of recombinant human ⁇ -ECGF expression and purification.
- Cultures of pMJ26 in E. coli JM103 were grown and induced with I mM IPTG. Lanes a and b, samples lysed in Laemmli sample buffer. Lane a, uninduced pMJ26. Lane b, induced pMJ26. Lanes c-f, purification of ECGF from induced pMJ26.
- Lane c supernatant, after removal of cell debris
- Lane d material unabsorbed to heparin-Sepharose heparin-SEPHAROSE in 250 mM NaCl
- Lane e entire cell debris pellet of lane c
- Lane f molecular weight standards. Samples in lanes a-d contained 100 ⁇ g protein.
- FIG. 12 illustrates a comparison of human recombinant and bovine brain-derived ⁇ -ECGF.
- FIG. 12 A LE-II receptor binding competition assay. Receptor competition assays were performed. Confluent cultures of LE-II cells were incubated for 1.5 h at 4° C. in the present presence of approximately 5 ng/ml of 25 I-bovine ⁇ -ECGF and the indicated amounts of unlabelled HPLC-purified ⁇ -ECGF. Protein concentrations were determined by amino acid analysis. Monolayers were washed three times with DMEM containing 1 mg/ml BSA, lysed with 0.1 N NaOH, and the cell-associated radioactivity determined. Binding observed in the absence of competitor is defined as 100% control.
- Reduced and alkylated recombinant ⁇ -ECGF was prepared as follows: HPLC-purified ECGF in Tris-HCl pH 8.3, 6 M guanidine hydrochloride, 100 mM DTT was incubated for 60 minutes at 37° C. under nitrogen. lodacetic Iodacetic acid was added to 22 mM, and incubation continued in the dark for 60 minutes at 37° C. The protein was isolated by reversed-phase HPLC. Amino acid composition analysis indicated the presence of 2.9 mol s-carboxymethyl cystein, mol ⁇ -ECGF S-carboxymethyl cysteine/mol ⁇ ECGF.
- FIG. 12 B Stimulation of [ 3 H]-thymidine incorporation in LE-II cells.
- Confluent, murine LE-II cells in DMEM containing 0.1% fetal bovine serum were incubated with the indicated quantities of bovine or recombinant human ⁇ -ECGF for 18 hours. Cells were labelled labeled for 4 hours in the presence of 2.4 uCi ⁇ Ci [ 3 H]-thymidine.
- Wells containing 20% fetal calf serum (X) and 1 mg/ml bovine serum albumin (BSA) served as controls.
- FIG. 12 C Human umbilical vein endothelial cell (HUVEC) growth assay.
- Costar 24 well tissue culture dishes (2 cm 2 /well) were precoated with human fibronectin (10 ⁇ g/cm 2 ) in PBS for 0.5-2 hours prior to seeding with 2 ⁇ 10 3 HUVEC in Medium 199 containing 10% fetal bovine serum Cells were allowed to attach for 2-4 hours at 37° C., at which time the media was aspirated and replaced with 0.75 ml Medium 199 containing 10% fetal bovine serum and, unless otherwise indicated, 5 U/ml heparin.
- human fibronectin 10 ⁇ g/cm 2
- ECGF denotes endothelial cell growth factor or its fragments produced by cell or cell-free culture systems, in bioactive forms having the capacity to influence cellular growth, differentiation, and migration in vitro as does ECGF native to the human angiogenic process.
- ECGF Different alleles of ECGF may exist in nature. These variations may be characterized by differences in the nucleotide sequence of the structural gene coding for proteins of identical biological function. It is possible to produce analogs having single or multiple amino acid substitutions, deletions, additions, or replacements. All such allelic variations, modifications, and analogs resulting in derivatives of ECGF which retain the biologically active properties of native ECGF are included within the scope of this invention.
- glycosaminoglycan heparin potentiates the mitogenic effect of both bovine and recombinant human ECGF.
- Heparin naturally exists as a heterogeneous mixture of polysaccharide chains ranging from about 6,000 to about 25,000 Da (Alberts et al. in “Molecular Biology of the Cell” Garland Publishing, Inc. (1983) pp. 692-715).
- Low molecular weight heparins (LMWH) having a variety of advantages over natural heparin have been prepared (see U.S. Pat. No. 4,401,662; 4,446,314; 4,826,827; 5,032,679 and Mestre et al. Thrombosis Research 38, 389-399 (1985)) and are also useful in the practice of the present invention.
- “Expression vectors” refer to vectors which are capable of transcribing and translating DNA sequences contained therein, where such sequences are linked to other regulatory sequences capable of affecting their expression. These expression vectors must be replicable in the host organisms or systems either as episomes, bacteriophage, or as an integral part of the chromosomal DNA.
- One form of expression vector which is particularly suitable for use in the invention is the bacteriophage, viruses which normally inhabit and replicate in bacteria. Particularly desirable phage for this purpose are the lambda gt 10 and gt 11 phage described by Young and Davis, supra. Lambda gt 11 gt 11 is a general recombinant DNA expression vector capable of producing polypeptides specified by the inserted DNA.
- foreign proteins or portions thereof are synthesized fused to the prokaryotic protein B-galactosidase ⁇ -galactosidase.
- IPTG lactose
- the use of host cells defective in protein degradation pathways may also increase the lifetime of novel proteins produced from the induced lambda gt 11 clones. Proper expression of foreign DNA in lambda gt 11 clones will depend upon the proper orientation and reading frame of the inserted DNA with respect to the B-galactosidase ⁇ -galactosidase promoter and translation initiating codon.
- plasmid a circular unintegrated (extra-chromosomal), double-stranded DNAloop .
- Any other form of expression vector which serves an equivalent function is suitable for use in the process of this invention.
- Recombinant vectors and methodology disclosed herein are suitable for use in host cells covering a wide range of prokaryotic and eukaryotic organisms.
- Prokaryotic cells are preferred for the cloning of DNA sequences and in the construction of vectors.
- E. coli K12 strain HB101 ATCC No. 33694.
- Other microbial strains may be used.
- Vectors containing replication and control sequences which are derived from species compatible with the host cell or system are used in connection with these hosts.
- the vector ordinarily carries an origin of replication, as well as characteristics capable of providing phenotypic selection in transformed cells.
- E. coli can be transformed using the vector pBR322, which contains genes for ampicillin and tetracycline resistance [Bolivar, et al., Gene, 2:95 (1977)].
- the expression vector may also contain control elements which can be used for the expression of the gene of interest.
- Common prokaryotic control elements used for expression of foreign DNA sequences in E. coli include the promoters and regulatory sequences derived from the ⁇ -galactosidase and tryptophan (trp) operons of E. coli, as well as the pR and pL promoters of bacteriophage lambda. Combinations of these elements have also been used (e.g., TAC, which is a fusion of the trp promoter with the lactose operator).
- Other promoters have also been discovered and utilized, and details concerning their nucleotide sequences have been published enabling a skilled worker to combine and exploit them functionally.
- eukaryotic microbes such as yeast cultures
- Saccharomyces cerevisiae or common baker's yeast
- yeast promoters suitable for the expression of foreign DNA sequences in yeast include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes.
- Suitable expression vectors may contain termination signals which provide for the polyadenylation and termination of the mRNA transcript of the cloned gene. Any vector containing a yeast-compatible promoter, origin or replication, and appropriate termination sequence is suitable for expression of ECGF.
- Cell lines derived from multicellular organisms may also be used as hosts.
- any such cell culture is workable, whether from a vertebrate or invertebrate source.
- interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years.
- useful hosts are the VERO, HeLa, mouse C127, Chinese hamster ovary (CHO), WI138, BHK, COS-7, and MDCK cell lines.
- Expression vectors for such cells ordinarily include an origin of replication, a promoter located in front of the gene to be expressed, RNA splice sites (if necessary), and transcriptional termination sequences.
- control functions on the expression vectors are often provided by viral material.
- promoters are derived from polyoma. Adenovirus 2, and most frequently, Simian Virus 40 (SV40).
- Eukaryotic promoters such as the promoter of the murine metallothionein gene [Paulakis and Hamer, Proc. Natl. Acad. Sci. 80:397-401 (1983)], may also be used.
- eukaryotic enhancer sequences can also be added to the construction. These sequences can be obtained from a variety of animal cells or oncogenic retroviruses such as the mouse sarcoma virus.
- An origin of replication may be provided either by construction of the vector to include an exogenous origin, such as that provided by SV40 or other viral sources, or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.
- Host cells can prepare ECGF which can be of a variety of chemical compositions.
- the protein is produced having methionine as its first amino acid. This methionine is present by virtue of the ATG start codon naturally existing at the origin of the structural gene or by being engineered before a segment of the structural gene.
- the protein may also be intracellularly or extracellularly cleaved, giving rises to the amino acid which is found naturally at the amino terminus of the protein.
- the protein may be produced together with either its own or a heterologous signal peptide, the signal polypeptide being specifically cleavable in an intra- or extracellular environment.
- ECGF may be produced by direct expression in mature form without the necessity of cleaving away any extraneous polypeptide.
- Recombinant host cells refer to cells which have been transformed with vectors constructed using recombinant DNA techniques. As defined herein, ECGF is produced as a consequence of this transformation. ECGF or its fragments produced by such cells are referred to as “recombinant ECGF”.
- the procedures below are but some of a wide variety of well established procedures to produce specific reagents useful in the process of this invention.
- the general procedure for obtaining an mRNA mixture is to obtain a tissue sample or to culture cells producing the desired protein, and to extract the RNA by a process such as that disclosed by Chirgwin, et al., Biochemistry, 18:5294 (1979).
- the mRNA is enriched by poly(A)mRNA containing for poly(A) mRNA-containing material by chromatography on oligo (dT) cellulose or poly(U) Sepharose SEPHAROSE, followed by elution of the poly(A) containing mRNA fraction.
- the above fraction enriched for poly(A) containing mRNA-enriched fraction mRNA is used to synthesize a single-strand complementary cDNA (ss-cDNA) using reverse transcriptase.
- ss-cDNA single-strand complementary cDNA
- reverse transcriptase reverse transcriptase
- the resultant ds-cDNA is inserted into the expression vector by any one of many known techniques. In general, methods can be found in Maniatis, et al., supra, and Methods In Enzymology, Volumes 65 and 68 (1980); and 100 and 101 (1983). In general, the vector is linearized by at least one restriction endonuclease, which will produce at least two blunt or cohesive ends. The ds-cDNA is ligated with or joined into the vector insertion site.
- prokaryotic cells or other cells which contain substantial cell wall material are employed, the most common method of transformation with the expression vector is calcium chloride pretreatment as described by Cohen, R. N., et al., Proc. Nat'l. Acad. Sci. USA, 69:2110 (1972). If Cells without cell wall barriers are used as host cells, transfection is carried out by the calcium phosphate precipitation method described by Graham and Van der Eb, Virology, 52:456 (1973). Other methods for introducing DNA into cells such as nuclear injection, viral infection or protoplast fusion may be successfully used. The cells are then cultured on selective media, and proteins for which the expression vector encodes are produced.
- Clones containing part or the entire cDNA for ECGF are identified with specific oligonucleotide probes deduced from a partial amino acid sequence determination of ECGF. This method of identification requires that the non-degenerate oligonucleotide probe be designed such that it specifically hybridizes to ECGF ds-cDNA.
- Clones containing ECGF cDNA sequences are isolated by radioactively labeling the oligonucleotide probe with 32P-ATP 32 P-ATP , hybridizing the radioactive oligonucleotide probe to the DNA of individual clones of a cDNA library containing ECGF-cDNA, and detection and isolation of the clones which hybridize by autoradiography.
- Clones containing the entire sequence of ECGF are identified using as probe the cDNA insert of the ECGF recombinants isolated during the initial screening of the recombinant lambda gt 11 gt 11 cDNA library with ECGF-specific oligonucleotides. Nucleotide sequencing techniques are used to determine the sequence of amino acids encoded by the cDNA fragments.
- This information may be used to determine the identity of the putative ECGF cDNA clones by comparison to the known amino acid sequence of the amino-terminus of bovine ECGF and of a peptide derived by cyanogen bromide cleavage of ECGF.
- RNA messenger, ribosomal and transfer
- Cell pellets were homogenized in 5 volumes of a solution containing 4 M guanidine thiocyanate, and 25 mM Antifoam A (Sigma Chemical Co., St. Louis, Mo.). The homogenate was centrifuged at 6,000 rpm in a Sorvall SORVALL GSA rotor for 15 minutes at 10° C. The supernatant fluid was adjusted to pH 5.0 by addition of acetic acid and the RNA precipitated by 0.75 volumes of ethanol at ⁇ 20° C. for two hours.
- RNA precipitate prepared as described above, was dissolved in 20 mM Hepes buffer (pH 7.2) containing 10 mM EDTA and 1% SDS, heated at 65° C. for 10 minutes, then quickly cooled to 25° C. The RNA solution was then diluted with an equal volume of water, and NaCl was added to bring the final concentration to 300 mM NaCl. Samples containing up to 240 A 260 A 260 units of RNA were chromotagraphed on poly(U)-Sepharose poly(U)-SEPHAROSE using standard procedures. Poly(A)-containing RNA was eluted with 70% formamide containing 1 mM Hepes buffer (pH 7.2), and 2 mM EDTA. The eluate was adjusted to 0.24M NaCl and the RNA was precipitated by 2.5 volumes of ethanol at ⁇ 20° C.
- FIG. 1 The procedure followed for the enzymatic reaction is shown in FIG. 1 .
- the mRNA (20 ⁇ g) was copied into ds-cDNA with reverse transcriptase and DNA polymerase I exactly as described by Buell, et al., supra. and Wilkensen, et al., J. Biol. Chem., 253:2483 (1978).
- the ds-cDNA was desalted on Sephadex SEPHADEX G-50 and the void-volume fractions further purified on an Elutip-D ELUTIP-D column'(Schleicher & Schuell, Keene, NH) following the manufacturer's directions.
- the ds-cDNA was made blunt-ended by incubation with S1 nuclease [Ricca, et al., J. Biol. Chem., 256:10362 (1981)].
- the reaction mixture consisted of 0.2M sodium acetate (pH 4.5), 0.4M sodium chloride, 2.5 mM zinc acetate and 0.1 unit of S1 nuclease per mg of ds-cDNA, made to a final reaction volume of 100 ⁇ l.
- the ds-cDNA was incubated to at 37° C. for one hour, extracted with phenol:chloroform, and then desalted on a Sephadex SEPHADEX G-50 column as described above.
- the ds-cDNA was then treated with EcoRI EcoRI methylase and Klenow fragment of DNA polymerase I using reaction conditions described in Maniatis, et al., Molecular Cloning, supra.
- the cDNA was again desalted on Sepnadex SEPHADEX G-50 as described above and then ligated to 0.5 ⁇ g of phosphorylated EcoRI EcoRI linkers using T4 DNA ligase (Maniatis, et al., supra).
- the mixture was cleaved with EcoRI EcoRI and fractionated on an 8% acrylamide gel in Tris-borate buffer (Maniatis, et al., supra). DNA with a size greater than 1 kilobase was eluted from the gel and recovered by binding to an Elutip-D ELUTIP-D column, eluted with 1M NaCl and then collected by ethanol precipitation.
- the DNA fragments were then inserted into EcoRI EcoRI cleaved and phosphatase-treated lambda gt 11 gt 11 , using T4 DNA ligase.
- a library of 5.7 ⁇ 106 5.7 ⁇ 10 6 phage was produced, of which approximately 65% were recombinant phage.
- the library was amplified by producing plate stocks at 42° C. on E.
- the filter was removed after one minute and left to dry at room temperature. From each plate, a duplicate filter was prepared exactly as described, except that the filter was left in contact with the plate for 5 minutes. All filters were then prepared for hybridization, as described in Maniatis, et al., supra. This involved DNA denaturation in 0.5M NaOH, 1.5M NaCl, neutralization in 1M Tris-HCl, pH 7.5, 1.5M NaCl, and heating of the filters for 2 hours at 80° C. in vacuo.
- a specific oligonucleotide was designed. This oligonucleotide was based upon a partial amino acid sequence analysis of the amino terminus of ECGF. As shown in FIG. 3, lines a & b, bovine ECGF is isolated as two species, designated alpha and beta ECGF, which differ only in the amino acids found at the respective amino termini. As shown in FIG. 3, lines a & b, beta-ECGF is a slightly larger species than alpha-ECGF.
- alpha-ECGF The amino terminus of alpha-ECGF is AsnTyrLys . . . (FIG. 3, line a) and is the equivalent of beta-ECGF minus an amino terminal extension.
- lines c and d set forth for comparison the amino acid sequence of cyanogen bromide-cleaved bovine alpha and beta ECGF, respectively.
- oligonucleotide design the amino acid sequence IleLeuProAspGlyThrValAspGlyThrLys, corresponding to alpha-ECGF amino acids 19-29 inclusive, was chosen. Rather then than design a mixture of oligonucleotides covering all of the possible coding sequences (owing to the degeneracy of the genetic code), a long unique oligonucleotide was designed. Such oligonucleotide probes have been previously shown to be successful probes in screening complex cDNA [Jaye, et al., Nucleic Acids Research 11:2325-2335, (1983) and genomic [Gitschier, et al., Nature, 312:326-330 (1984)libraries.
- the dinucleotide CG was avoided. This strategy was based upon the observed underrepresentation under representation of the CG dinucleotide in eukaryotic DNA Josse, et al., J. Biol. Chem. 236:864-875, (1961); (2) preferred codon utilization data was used wherever possible. A recent and comprehensive analysis of human codon utilization was found in Lathe, J. Biol. 183:1-12 (1985); and (3) wherever the strategies of CG dinucleotide and preferred codon utilization were uninformative, unusual base pairing was allowed.
- oligonucleotide shown in FIG. 5 were radioactively labeled by incubation with 32P-gamma-ATP 32 P- ⁇ -ATP and T4 polynucleotide kinase, essentially as described by Maniatis, et al. Maniatis, et al., supra.
- Clones 1 and 29 were analyzed in further detail as follows: An additional two oligonucleotides were designed, based upon the amino acid sequence of bovine ECGF. These oligonucleotides were designed based upon the same consideration as those used in the design of the oligonucleotide used to isolate clones 1 and 29. These oligonucleotides (ECGF oligonucleotides II and III) are shown in FIG. 7 . These two oligonucleotides as well as oligo(dT)18 were radioactively labeled in a kination reaction as described above and used as hybridization probes in Southern blotting experiments.
- Hybridization of clone 1 to ECGF oligonucleotide III which is based on a cyanogen bromide cleavage product of bovine ECGF, as well as to oligo (dT)18, strongly suggested that this clone contains the rest of the coding sequence for both alpha and beta ECGFs as well as a large (greater than 1 Kb) 3′ flanking sequence.
- the cDNA inserts from clones 1 and 29 were isolated, subcloned into M13mp18, and the ECGF-encoding open reading frame and flanking regions sequenced by the chain termination method [Sanger et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977)].
- the nucleotide sequence of these clones and the amino acid sequence deduced from the nucleic acid sequence is shown in FIG. 8 . Examination of the nucleotide sequence reveals an open reading frame of 465 nucleotides encoding human ECGF. The 155 amino acids of human ECGF were found to be flanked by translation stop codons.
- cDNA inserts from Clone 1 and Clone 29 were excised by digestion with EcoRI EcoRI and subcloned in pUC8 at the EcoRI EcoRI site.
- the plasmid formed from Clone 1 was designated pDH15 and the plasmid formed from Clone 29 was designated pDH14.
- Clone I was improved by inserting it into a vector allowing more efficient expression of ⁇ -ECGF.
- This vector is pMJ26 and places this gene under a high-efficiency tac promoter as described in FIG. 10 and as done as follows.
- the ⁇ -ECGF-encoding open reading frame was excised from pMJ25 by digestion with EcoRI EcoRI and Hinc II HincII and cloned between the Eco RI EcoRI and Sma I SmaI sites of pKK223-3 (PL Biochemicals).
- the recombinant plasmid, pMJ26 was introduced into the lac-i-Q laciq bearing E. coli strain, JMTO3, to evaluate expression of ⁇ -ECGF.
- lane b a prominant band at approximately 16 kd Kd is observed in induced cultrues cultures of pMJ26.
- the band is observed at low levels when pMJ26 is not induced, lane a, (this reflects the leakiness of the tac promoter) and, as expected, is absent in either induced or control cultures of bacterial which do not contain the ⁇ -ECGF gene.
- the protein was purified by a two-step procedure involving heparin-Sepharose heparin-SEPHAROSE column chromatography followed by reversed phase HPLC analysis. (Burgess, W. H., Mehlman, T., Friesel, R., Johnson, W. V., and Maciag, T. (1985) J. Biol. Chem. J. Biol. Chem.
- Protein evaluated by this method is essentially pure and amino terminal and amino acid sequence analyses demonstrate the predicted amino acid sequence of ⁇ -ECGF of MNYKKPKLLYCSNG. Data suggests suggest (FIG. 11) pMJ26 can express ⁇ -ECGF to approximately 10% of the total protein of E. coli and remain soluble in this bacteria allowing his this rapid two-step purification. To establish that this protein is biologically active, it was compared to bovine ECGF in several established assays.
- the mitogenic activities of native and recombinant ⁇ -ECGR ⁇ -ECGF were in two separate assays.
- DNA synthesis was monitored by incorporation of [ 3 H]-thymidine ( 3 H)-thymidine into TCA-precipitable material as a function of increasing quantities of ⁇ -ECGF (FIG. 12 B).
- the second assay compared the stimulation of both preparations of ECGF upon the proliferation of HUVEC (FIG. 12 C).
- [ 3 H]-thymidine incorporation assay FIG.
- this example describes experimental procedures which provide human endothelial cell growth factor essentially free of other proteins of human origin.
- ECGF has utility in the growth and amplification of endothelial cells in culture.
- ECGF for cell culture use is extracted from bovine brain by the protocol of Maciag, et al., [Proc. Natl. Acad. Sci., 76:11, 5674-5678 (1978)] Proc. Natl. Acad. Sci. U.S.A., 76 : 11 , 5674 - 5678 ( 1978 ).
- This crude bovine ECGF is mitogenic for human umbilical vein endothelial cells [Maciag, et al., J. Biol. Chem. 257:5333-5336 (1982)] and endothelial cells from other species.
- heparin with ECGF and fibronectin matrix permits the establishment of stable endothelial cell clones.
- the recommended concentration of this crude bovine ECGF for use as a mitogen in vitro is 150 micrograms per milliliter of growth medium.
- Recombinant DNA-derived human ECGF has utility, therefore, as an improved substitute for crude bovine ECGF in the in vitro culturing of human endothelial cells and other mesenchymal cells for research use.
- the activity of human ECGF is expected to be the same as or better than bovine ECGF in the potentiation of endothelial cell growth due to the high degree of homology in the amino acid sequences of both proteins.
- the expected effective dose range for potentiating cell division and growth in vitro is 5-10 ng of purified ECGF per milliliter of culture medium.
- Production of the ECGF via recombinant-DNA technologies as outlined in this patent application and subsequent purification as described by Burgess, et al., [J. Biol. Chem. 260:11389-11392 (1985)] will provide large quantities of a pure product of human origin (heretofore unavailable in any quantity or purity) with which to develop models of human homeostatis and angiogenesis.
- Recombinant DNA-derived human ECGF also has utility in the potentiation of cell growth on a prosthetic device, rather than a tissue culture flask or bottle.
- This device may or may not be coated with other molecules which would facilitate the attachment of endothelial cells to the device.
- These facilitating molecules may include extracellular matrix components, human serum albumin, or inert organic molecules.
- the extracellular matrix is comprised of several fibrous proteins imbedded in a gel comprised of glycosaminoglycan polysaccharides.
- the glycosaminoglycans are usually linked to a protein core to form proteoglycans (Alberts et al. in “Molecular Biology of the Cell” Garland Publishing, Inc. (1983) pp. 692-715; the contents of which are incorporated herein by reference).
- proteoglycans Among the protein components of the extracellular matrix are collagen, elastin, laminin and fibronectin.
- Collagen has a stiff, triple-stranded helical structure and exists in at least 5 major forms (Types 1-V).
- Types I-III are predominent in connective tissue, while Type IV is found in the basal lamina.
- Type V is widespread in different tissues, although in relatively small amounts.
- Fibronectin is a glycoprotein that promotes cell adhesion and exists as large aggregates in the extracellular space.
- Laminin is a component of the basal lamina.
- Glycosaminoglycans are long, unbranched polysaccharide chains composed of repeating disaccharide units. They are highly negatively charged and capable of attracting large amounts of water, thereby forming hydrated gels even at low concentrations.
- the glycosaminoglycans include hyaluronic acid, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, heparan heparin sulfate, heparin and keratan sulfate.
- Hyaluronic acid is the only glycosaminoglycan that does not form a proteoglycan structure.
- endothelial cells For potentiation of cell growth, such as on the surface of a prosthetic device, endothelial cells would be cultured in the presence of effective doses of ECGF, and optionally one or more extracellular matrix components. This device would then provide a non-thrombogenic surface on the prosthetic device, thus reducing the risk of potentially life-threatening thrombogenic events subsequent to implantation of the prosthetic device.
- ECGF has utility in diagnostic applications.
- 96-well polyvinyl chloride plates were coated with rabbit anti-ECGF and the remaining binding sites subsequently blocked with 10% normal rabbit serum.
- Samples of ECGF were then added to the wells and incubated. After washing, murine monoclonal anti-ECGF was added. After incubation and several washes, rabbit anti-mouse IgG coupled with peroxidase was added.
- reaction product was quantitated spectrophotometrically after conversion of O-phenylenediamine in the presence of hydrogen peroxide.
- a similarly constructed immunoassay may be useful for monitoring human ECGF levels in disease states affecting endothelial cell growth.
- Purified recombinant-DNA derived ECGF would be useful as a standard reagent in quantifying unknown ECGF samples.
- ECGF also may have potential in the treatment of damaged or in the regeneration of blood vessels and other endothelial cell-lined structures.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The present invention is directed to DNA encoding human endothelial cell growth factors, and to plasmids comprising said DNA. In particular, the invention relates to DNA encoding a cleavable signal peptide and an endothelial cell growth factor, wherein removal of said signal peptide yields a mature form of the growth factor.
Description
This is a continuation of application Ser. No. 08/743,261 filed on Nov. 4, 1996, now U.S. Pat. No. 5,827,826 which is a continuation-in-part of application Ser. No. 08/472,964, filed Jun. 7, 1995, now U.S. Pat. No. 5,571,790, which is a continuation of application Ser. No. 08/334,884, filed Nov. 3, 1994, now U.S. Pat. No. 5,552,628 5,552,528, which is a continuation of application Ser. No. 07/799,859, filed Nov. 27, 1991, now abandoned, which is a continuation of application Ser. No. 07/693,079, filed Apr. 29, 1991, now abandoned, which is a continuation of application Ser. No. 07/134,499, filed Dec. 18, 1987, now abandoned, which is a continuation-in-part of application Ser. No. 06/835,594, filed Mar. 3, 1986, now U.S. Pat. No. 4,868,113.
(1) Field of the Invention
This invention relates to recombinant DNA-directed synthesis of certain proteins. More particularly, this invention relates to endothelial cell growth factor (ECGF), its recombinant DNA-directed synthesis, and ECGF's use in the treatment of endothelial cell damage and/or regeneration.
(2) The Prior Art
Endothelial cell growth factor, referred to herein as “ECGF”, is a mitogen for endothelial cells in vitro. Growth of endothelial cells is a necessary step during the process of angiogenesis [Maciag, Prog. Hemostasis and Thromb., 7:167-182 (1984); Maciag, T., Hoover, G. A., and Weinstein, R., J. Biol. Chem., 257: 5333-5336 (1982)]. Bovine ECGF has been isolated by Maciag, et al., [Science 225:932-935 (1984)] using streptomycin sulfate precipitation, gel exclusion chromatography, ammonium sulfate precipitation and heparin-Sepharose SEPHAROSE affinity chromatography. Bovine ECGF purified in this manner yields a single-chain polypeptide which possesses an anionic iso-electric point and an apparent molecular weight of 20,000 [Maciag, supra; Schreiber, et al., J. Cell Biol., 101:1623-1626 (1985); and Schreiber, et al., Proc. Natl. Acad. Sci., 82:6138-6142 (1985)]. More recently, multiple forms of bovine ECGF have been isolated by Burgess, et al., [J. Biol. Chem. 260:11389-11392 (1985)] by sodium chloride gradient elution of bovine ECGF from the heparin-Sepharose SEPHAROSE column or by reversed-phase high pressure liquid chromatography (HPLC). The two isolated polypeptides, designated alpha-and beta-ECGF have apparent molecular weights of 17,000 and 20,000, respectively. Using this procedure, the bovine ECGF contained in 8,500 ml of bovine brain extract (6.25×107 (6.25×10 7 total units) is concentrated into a total of 6 ml of alpha-ECGF (3.0×106 (3.0×10 6 units) and 3 ml of beta-ECGF (5.2×105 (5.2×10 5 units). This is a 9,300-fold purification of alpha-ECGF and 16,300-fold purification of beta-ECGF (Burgess, supra.). Recently, murine monoclonal antibodies against bovine ECGF have been produced (Maciag, et al., supra.) which may be useful in purifying bovine ECGF in a manner similar to the monoclonal antibody purification of Factor VIIIC described by Zimmerman and Fulcher in U.S. Pat. No. 4,361,509.
In general, recombinant DNA techniques are known. See Methods In Enzymology, (Academic Press, New York) volumes 65 and 68 (1979); 100 and 101 (1983) and the references cited therein, all of which are incorporated herein by reference. An extensive technical discussion embodying most commonly used recombinant DNA methodologies can be found in Maniatis, et al., Molecular Cloning, Cold Spring Harbor Laboratory (1982). Genes coding for various polypeptides may be cloned by incorporating a DNA fragment coding for the polypeptide in a recombinant DNA vehicle, e.g., bacterial or viral vectors, and transforming a suitable host. This host is typically an Escherichia coli (E. coli) strain, however, depending upon the desired product, eukaryotic hosts may be utilized. Clones incorporating the recombinant vectors are isolated and may be grown and used to produce the desired polypeptide on a large scale.
Several groups of workers have isolated mixtures of messenger RNA (mRNA) from eukaryotic cells and employed a series of enzymatic reactions to synthesize doublestranded double-stranded DNA copies which are complementary to this mRNA mixture. In the first reaction, mRNA is transcribed into a singlestranded complementary DNA (cDNA) (ss-cDNA) by an RNA-directed DNA polymerase, also called reverse transcriptase. Reverse transcriptase synthesizes DNA in the 5′-3′ direction, utilizes deoxyribonucleoside 5′-triphosphates as precursors, and requires both a template and a primer strand, the latter of which must have a free 3′-hydroxyl terminus. Reverse transcriptase products, whether partial or complete copies of the mRNA template, often possess short, partially double-stranded hairpins (“loops”) at their 3′ termini. In the second reaction, these “hairpin loops” can be exploited as primers for DNA polymerases. Preformed DNA is required both as a template and as a primer in the action of DNA polymerase. The DNA polymerase requires the presence of a DNA strand having a free 3′-hydroxyl group, to which new nucleotides are added to extend the chain in the 5′-3′ direction. The products of such sequential reverse transcriptase and DNA polymerase reactions still possess a loop at one end. The apex of the loop or “fold-point” of the double-stranded DNA, which has thus been created, is substantially a single-strand segment. In the third reaction, this single-strand segment is cleaved with the single-strand specific nuclease S1 to generate a “blunt-end” duplex DNA segment. This general method is applicable to any mRNA mixture, and is described by Buell, et al., J. Biol. Chem., 253:2483 (1978).
The resulting double-stranded cDNA mixture (ds-cDNA) is inserted into cloning vehicles by any one of many known techniques, depending at least in part on the particular vehicle used. Various insertion methods are discussed in considerable detail; in Methods In Enzymology, 68:16-18 (1980), and the references cited therein.
Once the DNA segments are inserted, the cloning vehicle is used to transform a suitable host. These cloning vehicles usually impart an antibiotic resistance trait on to the host. Such hosts are generally prokaryotic cells. At this point, only a few of the transformed or transfected hosts contain the desired cDNA The sum of all transformed or transfected hosts constitutes a gene “library”. The overall ds-cDNA library created by this method provides a representative sample of the coding information present in the mRNA mixture used as the starting material.
If an appropriate oligonucleotide sequence is available, it can be used to identify clones of interest in the following manner. Individual transformed or transfected cells are grown as colonies on a nitrocellulose filter paper. These colonies are lysed; the DNA released is bound tightly to the filter paper by heating. The filter paper is then incubated with a labeled oligonucleotide probe which is complementary to the structural gene of interest. The probe hybridizes with the cDNA for which it is complementary, and is identified by autoradiography. The corresponding clones are characterized in order to identify one or a combination of clones which contain all of the structural information for the desired protein. The nucleic acid sequence coding for the protein of interest is isolated and reinserted into an expression vector. The expression vector brings the cloned gene under the regulatory control of specific prokaryotic of eukaryotic control elements which allow the efficient expression (transcription and translation) of the ds-cDNA. Thus, this general technique is only applicable to those proteins for which at least a portion of their amino acid or DNA sequence is known for which an oligonucleotide probe is available. See, generally, Maniatis, et al., supra.
More recently, methods have been developed to identify specific clones by probing bacterial colonies or phage plaques with antibodies specific for the encoded protein of interest. This method can only be used with “expression vector” cloning vehicles since elaboration of the protein product is required. The structural gene is inserted into the vector adjacent to regulatory gene sequences that control expression of the protein. The cells are lysed, either by chemical methods or by a function supplied by the host cell or vector, and the protein is detected by a specific antibody and a detection system such as enzyme immunoassay. An example of this is the lambda gt11 gt 11 system described by Young and Davis, Proc. Nat'l. Acad. Sci. USA, 80:1194-1198 (1983) and Young and Davis, Science 222:778 (1983).
The present invention has made it possible to provide readily available, large quantities of ECGF or ECGF fragments. This has been achieved with oligonucleotides whose design was based upon knowledge of the amino acid sequence of bovine ECGF and which react specifically with the ECGF cDNA. Production of ECGF is achieved through the application or recombinant DNA technology to prepare cloning vehicles encoding the ECGF protein and procedures for recovering ECGF protein essentially free of other proteins of human origin.
Accordingly, the present invention provides ECGF or its fragments essentially free of other proteins of human origin. ECGF is produced by recombinant DNA techniques in host cells or other self-replicating systems and is provided in essentially pure form. The invention further provides replicable expression vectors incorporating a DNA sequence encoding ECGF and a self-replicating host cell system transformed or transfected thereby. The host system is usually of prokaryotic, e.g., E. coli or B. subtilis, or eukaryotic cells.
The ECGF is produced by a process which comprises (a) preparing a replicable expression vector capable of expressing the DNA sequence encoding ECGF in a suitable host cell system; (b) transforming said host system to obtain a recombinant host system; (c) maintaining said recombinant host system under conditions permitting expression of said ECGF-encoding DNA sequence to produce ECGF protein; and (d) recovering said ECGF protein. Preferably, the ECGF-encoding replicable expression vector is made by preparing a ds-cDNA preparation representative of ECGF mRNA and incorporating the ds-cDNA into replicable expression vectors. The preferred mode of recovering ECGF comprises reacting the proteins expressed by the recombinant host system with a reagent composition comprising at least one binding step site specific for ECGF. ECGF may be used as a therapeutic agent in the treatment of damaged or in regenerating blood vessels and other endothelial cell-lined structures.
FIG. 1 illustrates a general procedure for enzymatic reactions to produce cDNA clones.
FIG. 2 illustrates the production of a library containing DNA fragments inserted into lambda gt11 gt 11.
FIG. 3 illustrates a partial amino acid sequence of bovine alpha and beta ECGF.
Line a: Amino-terminal amino acid sequence of bovine alpha ECGF.
Line b: Amino-terminal amino acid sequence of bovine beta ECGF. The portion in parenthesis corresponds to NH2-terminal segment for which sequence could not be determined; amino acid composition is shown instead. The sequence beginning with PheAsnLeu . . . was determined from trypsin-cleaved bovine beta ECGF.
Line c: Amino acid sequence of cyanogen bromide-cleaved bovine alpha ECGF.
Line d: Amino acid sequence of cyanogen bromide-cleaved bovine beta ECGF.
FIG. 4 illustrates hydrogen-bonded base pairs.
FIG. 5 illustrates the design of an oligonucleotide probe for human Endothelial Cell Growth Factor.
FIG. 6 illustrates a schematic diagram of human ECGF cDNA clones 1 and 29. The open reading box represents the open reading frame encoding human beta ECGF. The EcoRI sites correspond to synthetic oligonucleotide linkers used in the construction of the cDNA library. The poly (A) tail at the 3′ end of clone 1 is shown by A17.
FIG. 7 illustrates homology between human ECGF cDNA sequence and oligonucleotide probes. Line a: Bovine trypsin- or cyanogen bromide-cleaved beta
ECGF amino acid sequence.
Line b: Unique oligonucleotide probe.
Line c: Human ECGF cDNA sequence (determined from lambda ECGF clones 1 and 29).
Line d: Human ECGF amino acid sequence, deduced from cDNA sequence analysis.
FIG. 8 illustrates the complete cDNA sequence of human ECGF. The cDNA inserts from ECGF clones 1 and 29 were subcloned into M13mp18 and the ECGF-encoding open reading frame and flanking regions sequenced by the chain termination method. In frame stop codons at the 5′ and 3′ ends of the ECGF-encoding open reading frame are indicated by the underlined sequence and trm, respectively. The single-letter notation for amino acids is used: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R. Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
FIG. 9 illustrates Northern blot analysis of ECGF mRNA. RNA was denatured in 2.2M formaldehyde and 50% formamide and fractionated by electrophoresis in a 1.25% agarose gel containing 2.2M formaldehyde. This was transferred to GeneScreen Plus GENESCREEN PLUS (New England Nuclear) by blotting with 10X SSPE. Blots were hybridized to 32p-labeled 32 P-labeled nick-translated probes of ECGF clone 1 at 65° C. for 16 hours in a mixture containing 2X SSPE, 20X Denhardt's solution, yeast transfer RNA (200 μg/ml), and 0.2% SDS. The membrane was subsequently washed at 65° C., twice with 2X SSPE and 0.2% SDS, then twice with 0.2 X SSPE and 0.2% SDS, air-dried, and exposed overnight to Kodak XAR film with an intensifying screen. The migration of 28S and 18S RNA is noted. Lane 1:10 μg human brain poly(A)-containing RNA. Lane 2:10 μg human adult liver poly(A)-containing RNA.
FIG. 10 illustrates expressional cloning of human recombinant α-ECGF. The expression vector pMJ26 was constructed as indicated. The translation initiation codon provided by the synthetic oligonucleotide is indicated by “ATG”. The hybrid tac promoter and the Shine-Dalgarno sequence provided by the vector pKK223-3, are indicated by “Ptac” and S.D.”, respectively. Transcription terminators are indicated by “rrnBT1T2” and “5S”. The open arrow shows the direction of transcription from the tac promoter.
FIG. 11 illustrates SDS-PAGE analysis of recombinant human α-ECGF expression and purification. Cultures of pMJ26 in E. coli JM103 were grown and induced with I mM IPTG. Lanes a and b, samples lysed in Laemmli sample buffer. Lane a, uninduced pMJ26. Lane b, induced pMJ26. Lanes c-f, purification of ECGF from induced pMJ26. Lane c, supernatant, after removal of cell debris; Lane d, material unabsorbed to heparin-Sepharose heparin-SEPHAROSE in 250 mM NaCl; lane e, entire cell debris pellet of lane c; Lane f, molecular weight standards. Samples in lanes a-d contained 100 μg protein.
FIG. 12 illustrates a comparison of human recombinant and bovine brain-derived α-ECGF. --∘--∘-- ∘-- bovine α-ECGF; -------- recombinant human α-ECGF; --□--□--□-- reduced and alkylated recombinant human α-ECGF; ▪ recombinant human α-ECGF, no heparin; □ bovine α-ECGF, no heparin.
FIG. 12A. LE-II receptor binding competition assay. Receptor competition assays were performed. Confluent cultures of LE-II cells were incubated for 1.5 h at 4° C. in the present presence of approximately 5 ng/ml of 25I-bovine α-ECGF and the indicated amounts of unlabelled HPLC-purified α-ECGF. Protein concentrations were determined by amino acid analysis. Monolayers were washed three times with DMEM containing 1 mg/ml BSA, lysed with 0.1 N NaOH, and the cell-associated radioactivity determined. Binding observed in the absence of competitor is defined as 100% control. Reduced and alkylated recombinant α-ECGF was prepared as follows: HPLC-purified ECGF in Tris-HCl pH 8.3, 6 M guanidine hydrochloride, 100 mM DTT was incubated for 60 minutes at 37° C. under nitrogen. lodacetic Iodacetic acid was added to 22 mM, and incubation continued in the dark for 60 minutes at 37° C. The protein was isolated by reversed-phase HPLC. Amino acid composition analysis indicated the presence of 2.9 mol s-carboxymethyl cystein, mol α-ECGF S-carboxymethyl cysteine/mol αECGF.
FIG. 12B. Stimulation of [3H]-thymidine incorporation in LE-II cells. Confluent, murine LE-II cells in DMEM containing 0.1% fetal bovine serum were incubated with the indicated quantities of bovine or recombinant human α-ECGF for 18 hours. Cells were labelled labeled for 4 hours in the presence of 2.4 uCi μCi [3H]-thymidine. Wells containing 20% fetal calf serum (X) and 1 mg/ml bovine serum albumin (BSA) served as controls.
FIG. 12C. Human umbilical vein endothelial cell (HUVEC) growth assay. Costar 24 well tissue culture dishes (2 cm2/well) were precoated with human fibronectin (10 μg/cm2) in PBS for 0.5-2 hours prior to seeding with 2×103 HUVEC in Medium 199 containing 10% fetal bovine serum Cells were allowed to attach for 2-4 hours at 37° C., at which time the media was aspirated and replaced with 0.75 ml Medium 199 containing 10% fetal bovine serum and, unless otherwise indicated, 5 U/ml heparin. Dilutions of HPLC-purified recombinant human α-ECGF and bovine brain-derived α-ECGF in 1-50 μl were added to duplicate wells as indicated. Media were changed on days 2 and 4, and on day 7 cells were harvested by trypsinization and cell number was determined with a Coulter counter. Wells containing 20% fetal calf serum (X) and 1 ng/ml BSA served as controls.
A. Introduction
As used herein, “ECGF” denotes endothelial cell growth factor or its fragments produced by cell or cell-free culture systems, in bioactive forms having the capacity to influence cellular growth, differentiation, and migration in vitro as does ECGF native to the human angiogenic process.
Different alleles of ECGF may exist in nature. These variations may be characterized by differences in the nucleotide sequence of the structural gene coding for proteins of identical biological function. It is possible to produce analogs having single or multiple amino acid substitutions, deletions, additions, or replacements. All such allelic variations, modifications, and analogs resulting in derivatives of ECGF which retain the biologically active properties of native ECGF are included within the scope of this invention.
The glycosaminoglycan heparin potentiates the mitogenic effect of both bovine and recombinant human ECGF. Heparin naturally exists as a heterogeneous mixture of polysaccharide chains ranging from about 6,000 to about 25,000 Da (Alberts et al. in “Molecular Biology of the Cell” Garland Publishing, Inc. (1983) pp. 692-715). Low molecular weight heparins (LMWH) having a variety of advantages over natural heparin have been prepared (see U.S. Pat. No. 4,401,662; 4,446,314; 4,826,827; 5,032,679 and Mestre et al. Thrombosis Research 38, 389-399 (1985)) and are also useful in the practice of the present invention.
“Expression vectors” refer to vectors which are capable of transcribing and translating DNA sequences contained therein, where such sequences are linked to other regulatory sequences capable of affecting their expression. These expression vectors must be replicable in the host organisms or systems either as episomes, bacteriophage, or as an integral part of the chromosomal DNA. One form of expression vector which is particularly suitable for use in the invention is the bacteriophage, viruses which normally inhabit and replicate in bacteria. Particularly desirable phage for this purpose are the lambda gt10 and gt11 phage described by Young and Davis, supra. Lambda gt11 gt 11 is a general recombinant DNA expression vector capable of producing polypeptides specified by the inserted DNA.
To minimize degradation, upon induction with a synthetic analogue of lactose (IPTG), foreign proteins or portions thereof are synthesized fused to the prokaryotic protein B-galactosidase β-galactosidase. The use of host cells defective in protein degradation pathways may also increase the lifetime of novel proteins produced from the induced lambda gt11 clones. Proper expression of foreign DNA in lambda gt11 clones will depend upon the proper orientation and reading frame of the inserted DNA with respect to the B-galactosidase β-galactosidase promoter and translation initiating codon.
Another form of expression vector useful in recombinant DNA techniques is the plasmid—a circular unintegrated (extra-chromosomal), double-stranded DNAloop . Any other form of expression vector which serves an equivalent function is suitable for use in the process of this invention.
Recombinant vectors and methodology disclosed herein are suitable for use in host cells covering a wide range of prokaryotic and eukaryotic organisms. Prokaryotic cells are preferred for the cloning of DNA sequences and in the construction of vectors. For example, E. coli K12 strain HB101 (ATCC No. 33694), is particularly useful. Of course, other microbial strains may be used. Vectors containing replication and control sequences which are derived from species compatible with the host cell or system are used in connection with these hosts. The vector ordinarily carries an origin of replication, as well as characteristics capable of providing phenotypic selection in transformed cells. For example, E. coli can be transformed using the vector pBR322, which contains genes for ampicillin and tetracycline resistance [Bolivar, et al., Gene, 2:95 (1977)].
These antibiotic resistance genes provide a means of identifying transformed cells. The expression vector may also contain control elements which can be used for the expression of the gene of interest. Common prokaryotic control elements used for expression of foreign DNA sequences in E. coli include the promoters and regulatory sequences derived from the β-galactosidase and tryptophan (trp) operons of E. coli, as well as the pR and pL promoters of bacteriophage lambda. Combinations of these elements have also been used (e.g., TAC, which is a fusion of the trp promoter with the lactose operator). Other promoters have also been discovered and utilized, and details concerning their nucleotide sequences have been published enabling a skilled worker to combine and exploit them functionally.
In addition to prokaryotes, eukaryotic microbes, such as yeast cultures, may also be used. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among eukaryotic microorganisms, although a number of other strains are commonly available. Yeast promoters suitable for the expression of foreign DNA sequences in yeast include the promoters for 3-phosphoglycerate kinase or other glycolytic enzymes. Suitable expression vectors may contain termination signals which provide for the polyadenylation and termination of the mRNA transcript of the cloned gene. Any vector containing a yeast-compatible promoter, origin or replication, and appropriate termination sequence is suitable for expression of ECGF.
Cell lines derived from multicellular organisms may also be used as hosts. In principle, any such cell culture is workable, whether from a vertebrate or invertebrate source. However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years. Examples of such useful hosts are the VERO, HeLa, mouse C127, Chinese hamster ovary (CHO), WI138, BHK, COS-7, and MDCK cell lines. Expression vectors for such cells ordinarily include an origin of replication, a promoter located in front of the gene to be expressed, RNA splice sites (if necessary), and transcriptional termination sequences.
For use in mammalian cells, the control functions (promoters and enhancers) on the expression vectors are often provided by viral material. For example, commonly used promoters are derived from polyoma. Adenovirus 2, and most frequently, Simian Virus 40 (SV40). Eukaryotic promoters, such as the promoter of the murine metallothionein gene [Paulakis and Hamer, Proc. Natl. Acad. Sci. 80:397-401 (1983)], may also be used. Further, it is also possible, and often desirable, to utilize the promoter or control sequences which are naturally associated with the desired gene sequence, provided such control sequences are compatible with the host system. To increase the rate of transcription, eukaryotic enhancer sequences can also be added to the construction. These sequences can be obtained from a variety of animal cells or oncogenic retroviruses such as the mouse sarcoma virus.
An origin of replication may be provided either by construction of the vector to include an exogenous origin, such as that provided by SV40 or other viral sources, or may be provided by the host cell chromosomal replication mechanism. If the vector is integrated into the host cell chromosome, the latter is often sufficient.
Host cells can prepare ECGF which can be of a variety of chemical compositions. The protein is produced having methionine as its first amino acid. This methionine is present by virtue of the ATG start codon naturally existing at the origin of the structural gene or by being engineered before a segment of the structural gene. The protein may also be intracellularly or extracellularly cleaved, giving rises to the amino acid which is found naturally at the amino terminus of the protein. The protein may be produced together with either its own or a heterologous signal peptide, the signal polypeptide being specifically cleavable in an intra- or extracellular environment. Finally, ECGF may be produced by direct expression in mature form without the necessity of cleaving away any extraneous polypeptide.
Recombinant host cells refer to cells which have been transformed with vectors constructed using recombinant DNA techniques. As defined herein, ECGF is produced as a consequence of this transformation. ECGF or its fragments produced by such cells are referred to as “recombinant ECGF”.
B. Recombinant and Screening Methodology
The procedures below are but some of a wide variety of well established procedures to produce specific reagents useful in the process of this invention. The general procedure for obtaining an mRNA mixture is to obtain a tissue sample or to culture cells producing the desired protein, and to extract the RNA by a process such as that disclosed by Chirgwin, et al., Biochemistry, 18:5294 (1979). The mRNA is enriched by poly(A)mRNA containing for poly(A) mRNA-containing material by chromatography on oligo (dT) cellulose or poly(U) Sepharose SEPHAROSE, followed by elution of the poly(A) containing mRNA fraction.
The above fraction enriched for poly(A) containing mRNA-enriched fraction mRNA is used to synthesize a single-strand complementary cDNA (ss-cDNA) using reverse transcriptase. As a consequence of DNA synthesis, a hairpin loop is formed at the 3′ end of the DNA which will initiate, second-strand DNA synthesis. Under appropriate conditions, this hairpin loop is used to effect synthesis of the ds-cDNA in the presence of DNA polymerase and deoxyribonucleotide triphosphates.
The resultant ds-cDNA is inserted into the expression vector by any one of many known techniques. In general, methods can be found in Maniatis, et al., supra, and Methods In Enzymology, Volumes 65 and 68 (1980); and 100 and 101 (1983). In general, the vector is linearized by at least one restriction endonuclease, which will produce at least two blunt or cohesive ends. The ds-cDNA is ligated with or joined into the vector insertion site.
If prokaryotic cells or other cells which contain substantial cell wall material are employed, the most common method of transformation with the expression vector is calcium chloride pretreatment as described by Cohen, R. N., et al., Proc. Nat'l. Acad. Sci. USA, 69:2110 (1972). If Cells without cell wall barriers are used as host cells, transfection is carried out by the calcium phosphate precipitation method described by Graham and Van der Eb, Virology, 52:456 (1973). Other methods for introducing DNA into cells such as nuclear injection, viral infection or protoplast fusion may be successfully used. The cells are then cultured on selective media, and proteins for which the expression vector encodes are produced.
Clones containing part or the entire cDNA for ECGF are identified with specific oligonucleotide probes deduced from a partial amino acid sequence determination of ECGF. This method of identification requires that the non-degenerate oligonucleotide probe be designed such that it specifically hybridizes to ECGF ds-cDNA. Clones containing ECGF cDNA sequences are isolated by radioactively labeling the oligonucleotide probe with 32P-ATP 32 P-ATP, hybridizing the radioactive oligonucleotide probe to the DNA of individual clones of a cDNA library containing ECGF-cDNA, and detection and isolation of the clones which hybridize by autoradiography. Such a cloning system is applicable to the lambda gt11 gt 11 system described by Young and Davis, supra. Clones containing the entire sequence of ECGF are identified using as probe the cDNA insert of the ECGF recombinants isolated during the initial screening of the recombinant lambda gt11 gt 11 cDNA library with ECGF-specific oligonucleotides. Nucleotide sequencing techniques are used to determine the sequence of amino acids encoded by the cDNA fragments. This information may be used to determine the identity of the putative ECGF cDNA clones by comparison to the known amino acid sequence of the amino-terminus of bovine ECGF and of a peptide derived by cyanogen bromide cleavage of ECGF.
A. Preparation of Total RNA
Total RNA (messenger, ribosomal and transfer) was extracted from fresh two-day old human brain stem essentially as described by Chirgwin, supra. (1979). Cell pellets were homogenized in 5 volumes of a solution containing 4 M guanidine thiocyanate, and 25 mM Antifoam A (Sigma Chemical Co., St. Louis, Mo.). The homogenate was centrifuged at 6,000 rpm in a Sorvall SORVALL GSA rotor for 15 minutes at 10° C. The supernatant fluid was adjusted to pH 5.0 by addition of acetic acid and the RNA precipitated by 0.75 volumes of ethanol at −20° C. for two hours. RNA was collected by centrifugation and dissolved in 7.5 M guanidine hydrochloride containing 2 mM sodium citrate and 5 mM dithiothreitol. Following two additional precipitations using 0.5 volumes of ethanol, the residual guanidine hydrochloride was extracted from the precipitate with absolute ethanol. RNA was dissolved in sterile water, insoluble material removed by centrifugation, and the pellets were re-extracted with water. The RNA was adjusted to 0.2M potassium acetate and precipitated by addition of 2.5 volumes of ethanol at −20° C. overnight.
B. Preparation of Poly(A)-containing RNA
The total RNA precipitate, prepared as described above, was dissolved in 20 mM Hepes buffer (pH 7.2) containing 10 mM EDTA and 1% SDS, heated at 65° C. for 10 minutes, then quickly cooled to 25° C. The RNA solution was then diluted with an equal volume of water, and NaCl was added to bring the final concentration to 300 mM NaCl. Samples containing up to 240 A 260 A 260 units of RNA were chromotagraphed on poly(U)-Sepharose poly(U)-SEPHAROSE using standard procedures. Poly(A)-containing RNA was eluted with 70% formamide containing 1 mM Hepes buffer (pH 7.2), and 2 mM EDTA. The eluate was adjusted to 0.24M NaCl and the RNA was precipitated by 2.5 volumes of ethanol at −20° C.
C. Construction of cDNA Clones in Lambda gt11 gt11
The procedure followed for the enzymatic reaction is shown in FIG. 1. The mRNA (20 μg) was copied into ds-cDNA with reverse transcriptase and DNA polymerase I exactly as described by Buell, et al., supra. and Wilkensen, et al., J. Biol. Chem., 253:2483 (1978). The ds-cDNA was desalted on Sephadex SEPHADEX G-50 and the void-volume fractions further purified on an Elutip-D ELUTIP-D column'(Schleicher & Schuell, Keene, NH) following the manufacturer's directions. The ds-cDNA was made blunt-ended by incubation with S1 nuclease [Ricca, et al., J. Biol. Chem., 256:10362 (1981)]. The reaction mixture consisted of 0.2M sodium acetate (pH 4.5), 0.4M sodium chloride, 2.5 mM zinc acetate and 0.1 unit of S1 nuclease per mg of ds-cDNA, made to a final reaction volume of 100 μl. The ds-cDNA was incubated to at 37° C. for one hour, extracted with phenol:chloroform, and then desalted on a Sephadex SEPHADEX G-50 column as described above. The ds-cDNA was then treated with EcoRI EcoRI methylase and Klenow fragment of DNA polymerase I using reaction conditions described in Maniatis, et al., Molecular Cloning, supra. The cDNA was again desalted on Sepnadex SEPHADEX G-50 as described above and then ligated to 0.5 μg of phosphorylated EcoRI EcoRI linkers using T4 DNA ligase (Maniatis, et al., supra). The mixture was cleaved with EcoRI EcoRI and fractionated on an 8% acrylamide gel in Tris-borate buffer (Maniatis, et al., supra). DNA with a size greater than 1 kilobase was eluted from the gel and recovered by binding to an Elutip-D ELUTIP-D column, eluted with 1M NaCl and then collected by ethanol precipitation.
As shown in FIG. 2, the DNA fragments were then inserted into EcoRI EcoRI cleaved and phosphatase-treated lambda gt11 gt 11, using T4 DNA ligase. A library of 5.7×106 5.7×106 phage was produced, of which approximately 65% were recombinant phage. The library was amplified by producing plate stocks at 42° C. on E. coli Y1088 [supE supF met: B trpR hsdR−hsdM+tonA21 scrA lacU169 (proC::Tn5) (pMC9)] (supE supF metB trpR hsdR31 hsdM + tonA21 strA lacU169 (proC::Tn5) (pMC9)). Amplification procedures are described in Maniatis, et al., supra. Important features of this strain, described by Young and Davis, supra, include (1) supF supF (required suppression of the phage amber mutation in the S gene), (2) hsdR−hsdM+ hsdR− hsdM + (necessary to prevent restriction of foreign DNA prior to host modification), and (3) lacU169 (proC::Tn5) lacU169 (proC::Tn5), and (4) (pMC9) (a lac I-bearing (a lacI-bearing pBR322 derivative which represses, in the absence of an inducer, the expression of foreign genes that may be detrimental to phage and/or cell growth)
D. Identification of Clones Containing ECGF Sequence
To screen the library for recombinant phage containing ECGF cDNA, 1.5×106 1.5×106 phage were plated on a lawn of E. coli Y1090 [delta lacU169 proA delta Ion araD139 strA supF (trpC22::TnIO) (pMC9)] (ΔlacU169 proA Δlon araD139 strA supF (trpC22::TnIO) (pMC9)) and incubated at 42° C. for 6 hours. After the plates were refrigerated overnight, a nitrocellulose filter was overlaid on the plates. The position of the filter was marked with a needle. The filter was removed after one minute and left to dry at room temperature. From each plate, a duplicate filter was prepared exactly as described, except that the filter was left in contact with the plate for 5 minutes. All filters were then prepared for hybridization, as described in Maniatis, et al., supra. This involved DNA denaturation in 0.5M NaOH, 1.5M NaCl, neutralization in 1M Tris-HCl, pH 7.5, 1.5M NaCl, and heating of the filters for 2 hours at 80° C. in vacuo.
To screen the human brain stem cDNA library for clones containing ECGF inserts, a specific oligonucleotide was designed. This oligonucleotide was based upon a partial amino acid sequence analysis of the amino terminus of ECGF. As shown in FIG. 3, lines a & b, bovine ECGF is isolated as two species, designated alpha and beta ECGF, which differ only in the amino acids found at the respective amino termini. As shown in FIG. 3, lines a & b, beta-ECGF is a slightly larger species than alpha-ECGF. The exact amino acid sequence at the amino terminus of beta-ECGF is undetermined, however, a sequence derived from fast atom bombardment mass spectral analysis and the amino acid composition of the amino terminal tryptic peptide of bovine beta-ECGF is shown. The amino terminal blocking group appears to be acetyl. If intact beta-ECGF is cleaved by trypsin, a second amino amino acid sequence found in beta but not alpha ACGF starting with PheAsnLeu . . . is determined. This sequence is also found at the amino terminus of acidic fibroblast growth factor [Thomas, K. A. et al., Prac. Natl. Acad. Sci., 82:6409-6413 (1985)]. The amino terminus of alpha-ECGF is AsnTyrLys . . . (FIG. 3, line a) and is the equivalent of beta-ECGF minus an amino terminal extension. In FIG. 3, lines c and d set forth for comparison the amino acid sequence of cyanogen bromide-cleaved bovine alpha and beta ECGF, respectively.
For oligonucleotide design, the amino acid sequence IleLeuProAspGlyThrValAspGlyThrLys, corresponding to alpha-ECGF amino acids 19-29 inclusive, was chosen. Rather then than design a mixture of oligonucleotides covering all of the possible coding sequences (owing to the degeneracy of the genetic code), a long unique oligonucleotide was designed. Such oligonucleotide probes have been previously shown to be successful probes in screening complex cDNA [Jaye, et al., Nucleic Acids Research 11:2325-2335, (1983) and genomic [Gitschier, et al., Nature, 312:326-330 (1984)libraries. Three criteria were used in designing the ECGF probe: (1) The dinucleotide CG was avoided. This strategy was based upon the observed underrepresentation under representation of the CG dinucleotide in eukaryotic DNA Josse, et al., J. Biol. Chem. 236:864-875, (1961); (2) preferred codon utilization data was used wherever possible. A recent and comprehensive analysis of human codon utilization was found in Lathe, J. Biol. 183:1-12 (1985); and (3) wherever the strategies of CG dinucleotide and preferred codon utilization were uninformative, unusual base pairing was allowed. This strategy was based upon the natural occurrence of G:T, I:T, I:A and I:C base pairs which occur in the interaction between tRNA anticodons and mRNA codons Crick, J. Mol. Biol. 19:548-555, (1966). A diagram of usual and unusual base pairs is shown in FIG. 4. Use of I (Inosine) in a hybridization probe was first demonstrated, in a model experiment, by Ohtsuka, et al., J. Biol. Chem. 260:2605-2608 1985). The overall strategy and choice made in the design of the oligonucleotide used to screen the human brain stem cDNA library for ECGE ECGF is shown in FIG. 5. In addition, two other oligonucleotides, designed with the same strategy, were constructed.
Approximately 30 pmole of the oligonucleotide shown in FIG. 5 were radioactively labeled by incubation with 32P-gamma-ATP 32 P-γ-ATP and T4 polynucleotide kinase, essentially as described by Maniatis, et al. Maniatis, et al., supra. Nitrocellulose filters, prepared as described above, were prehybridized at 42° C. in 6×SSPE (1×SSPE=0.18M NaCl, 0.01M NaHP04 NaHP0 4 pH 7.2, 0.001M EDTA), 2× Denhardt's (1× Denhardt's−0.02% each Ficoll FICCOLL, polyvinylpyrrolidone, bovine serum albumin), 5% dextran sulfate, and 100 mu g/ml μg/ml denatured salmon sperm DNA. The 32P-labeled 32 P-labeled oligonucleotide was added following four hours of prehybridization, and dehybridization continued overnight at 42° C. Unhybridized probe was removed by sequential washing at 37° C. in 2× SSPE, 0.1% SDS.
From 1.5×106 1.5×10 6 plaques screened, 2 plaques gave positive autoradiographic signals after overnight exposure. These clones were purified to homogeneity by repeated cycles of purification using the above oligonucleotide as hybridization probe.
The two clones that were isolated, ECGF clones 1 and 29, were analyzed in further detail. Upon digestion with EcoRI EcoRI, Clone 1 and 29 revealed cDNA inserts of 2.2 and 0.3 Kb, respectively. Nick translation of cloned cDNA and its subsequent use as a radiolabeled probe in Southern blot analysis (Maniatis, et al., supra) revealed that clones 1 and 29 were related and overlapping clones. The overlapping nature of these two clones is shown in FIG. 6.
The cDNA inserts from clones 1 and 29 were isolated, subcloned into M13mp18, and the ECGF-encoding open reading frame and flanking regions sequenced by the chain termination method [Sanger et al., Proc. Natl. Acad. Sci. USA 74:5463-5467 (1977)]. The nucleotide sequence of these clones and the amino acid sequence deduced from the nucleic acid sequence is shown in FIG. 8. Examination of the nucleotide sequence reveals an open reading frame of 465 nucleotides encoding human ECGF. The 155 amino acids of human ECGF were found to be flanked by translation stop codons. The NH2-terminal amino acid of human beta ECGF deduced from the cDNA sequence is methionine, which most likely serves as the translation initiation residue. These data, together with the relatively non-hydrophobic nature of the first 15-20 amino terminal residues, strongly suggest that human beta ECGF is synthesized without a NH2-terminal NH2 -terminal signal peptide. A comparison of FIGS. 3 and 8 shows that the amino terminal amino acid sequence of trypsin-cleaved bovine beta ECGF as well as that of bovine alpha ECGF are nearly identical to the amino acid sequence predicted from the nucleotide sequence of lambda ECGF clones 1 and 29. An overall homology between the two species of over 95% is observed.
Northern blot analysis (Maniatis, et al, supra) reveals that ECGF mRNA is a single molecular species which comigrates with 28S rRNA (FIG. 9). Considering the variation in the estimated size of 28 S rRNA, the approximate size of ECGF mRNA is 4.8±1.4 Kb. All of the sequence encoding the mature forms of both alpha and beta ECGF is encoded within ECGF Clones 1 and 29, which together encompasses approximately 2.3 Kb. Thus, these data demonstrate that the region 5′ and flanking the ECGF-encoding sequences, is very large (approximately 2.5±1.4 Kb).
cDNA inserts from Clone 1 and Clone 29 were excised by digestion with EcoRI EcoRI and subcloned in pUC8 at the EcoRI EcoRI site. The plasmid formed from Clone 1 was designated pDH15 and the plasmid formed from Clone 29 was designated pDH14.
Clone I was improved by inserting it into a vector allowing more efficient expression of α-ECGF. This vector is pMJ26 and places this gene under a high-efficiency tac promoter as described in FIG. 10 and as done as follows. A double-stranded Bam HI BamHI cohesive 66-mer oligonucleotide encoding residues I19 of α-ECGF, preceded by initiator methionine, was synthesized by the phosphoramoridite method and purified. The oligonucleotide was ligated between the Bam HI BamHI sites of pDH15 creating pMJ25. In order to introduce appropriate regulatory sequences, the α-ECGF-encoding open reading frame was excised from pMJ25 by digestion with EcoRI EcoRI and Hinc II HincII and cloned between the Eco RI EcoRI and Sma I SmaI sites of pKK223-3 (PL Biochemicals). The recombinant plasmid, pMJ26, was introduced into the lac-i-Q laciq bearing E. coli strain, JMTO3, to evaluate expression of α-ECGF.
In pMJ26, expression of α-ECGF, under control of the hybrid tac promoter, is inducible with IPTG. To measure α-ECGF production, logarithmically grown bacterial cultures containing pMJ26 at A550 of 0.2 were induced with 1 mM IPTG and grown for 2-4 hours at 37° C. prior to harvesting, lysis and growth factor isolation. Control extracts were prepared from uninduced cultures of pMJ26 and from induced and uninduced bacterial cultures not containing the ECGF gene. All extracts were fractionated by SDS-PAGE, and the protein visualized by staining with Coomassie brilliant blue. As shown in FIG. 11, lane b, a prominant band at approximately 16 kd Kd is observed in induced cultrues cultures of pMJ26. The band is observed at low levels when pMJ26 is not induced, lane a, (this reflects the leakiness of the tac promoter) and, as expected, is absent in either induced or control cultures of bacterial which do not contain the α-ECGF gene.
The ability to induce a polypeptide of the expected size, specifically, in bacteria containing the α-ECGF gene, suggests the successful expression of the human α-ECGF. The protein was purified by a two-step procedure involving heparin-Sepharose heparin-SEPHAROSE column chromatography followed by reversed phase HPLC analysis. (Burgess, W. H., Mehlman, T., Friesel, R., Johnson, W. V., and Maciag, T. (1985) J. Biol. Chem. J. Biol. Chem. 260, 11389-11392.) Protein evaluated by this method is essentially pure and amino terminal and amino acid sequence analyses demonstrate the predicted amino acid sequence of α-ECGF of MNYKKPKLLYCSNG. Data suggests suggest (FIG. 11) pMJ26 can express α-ECGF to approximately 10% of the total protein of E. coli and remain soluble in this bacteria allowing his this rapid two-step purification. To establish that this protein is biologically active, it was compared to bovine ECGF in several established assays.
In these assays, the functional activities of recombinant human α-ECGF were examined. The success of the heparin-Sepharose heparin-SEPHAROSE affinity based purification demonstrates that recombinant α-ECGF (FIG. 12B). Together these data indicate that the heparin binding properties of the recombinant material are similar to those of bovine brain-derived ECGF.
The results of cellular receptor assays (Friesel, R., Burgess, W. H., Mehlman, T., and Maciag, T. (1986) J. Biol. Chem. J. Biol. Chem. 261, 7581-7584: Schreiber, A. B., Kenney, J., Kawalski, J., Firesel, R., Mehlman, T., and Maciag, T. (1985) Proc. Natl. Acad. Sci. U.S.A. Proc. Natl. Acad. Sci. U.S.A. 82, 6138-6143) indicate that the receptor binding activity of recombinant human α-ECGF also is similar to bovine brain-derived ECGF. Radioiodinated bovine α-ECGF was incubated with murine endothelial cells at 4° C. in the presence of increasing quantities of either bovine or recombinant human α-ECGF. After 30 minutes, the cell monolayer was washed and the cell-associated radioactivity determined. As shown in FIG. 12a, the displacement curves for both bovine and human recombinant α-ECGF are very similar. The receptor-binding activity of the recombinant protein was abolished after reduction and alkylation (FIG. 12A).
The mitogenic activities of native and recombinant α-ECGR α-ECGF were in two separate assays. In the first assay DNA synthesis was monitored by incorporation of [3H]-thymidine (3 H)-thymidine into TCA-precipitable material as a function of increasing quantities of α-ECGF (FIG. 12B). The second assay compared the stimulation of both preparations of ECGF upon the proliferation of HUVEC (FIG. 12C). In the [3H]-thymidine incorporation assay (FIG. 12B), the maximal response observed with bovine brain-derived ECGF, while the dose for each which gave half-maximal stimulation was similar (EC50 of bovine α-ECGF=1.75 ng/ml; EC50 of recombinant human α-ECGF=0.5 ng/ml). In the HUVEC assay (FIG. 12C), the maximal stimulation observed with bovine and recombinant human ECGF were similar, as were the concentrations giving half-maximal stimulation (EC50 of bovine α-ECGF=0.6 ng/ml; EC50 EC50 of recombinant human α-ECGF=0.45 ng/ml). Heparin (5 U/ml) was found to potentiate the mitogenic effect of both bovine and recombinant human α-ECGF 5-10 fold. These data demonstrate that human recombinant α-ECGF has biological properties similar to bovine ECGF.
Thus, this example describes experimental procedures which provide human endothelial cell growth factor essentially free of other proteins of human origin.
ECGF has utility in the growth and amplification of endothelial cells in culture. Currently, ECGF for cell culture use is extracted from bovine brain by the protocol of Maciag, et al., [Proc. Natl. Acad. Sci., 76:11, 5674-5678 (1978)] Proc. Natl. Acad. Sci. U.S.A., 76:11, 5674-5678 (1978). This crude bovine ECGF is mitogenic for human umbilical vein endothelial cells [Maciag, et al., J. Biol. Chem. 257:5333-5336 (1982)] and endothelial cells from other species. Utilization of heparin with ECGF and fibronectin matrix permits the establishment of stable endothelial cell clones. The recommended concentration of this crude bovine ECGF for use as a mitogen in vitro is 150 micrograms per milliliter of growth medium.
Recombinant DNA-derived human ECGF has utility, therefore, as an improved substitute for crude bovine ECGF in the in vitro culturing of human endothelial cells and other mesenchymal cells for research use. The activity of human ECGF is expected to be the same as or better than bovine ECGF in the potentiation of endothelial cell growth due to the high degree of homology in the amino acid sequences of both proteins. The expected effective dose range for potentiating cell division and growth in vitro is 5-10 ng of purified ECGF per milliliter of culture medium. Production of the ECGF via recombinant-DNA technologies as outlined in this patent application and subsequent purification as described by Burgess, et al., [J. Biol. Chem. 260:11389-11392 (1985)] will provide large quantities of a pure product of human origin (heretofore unavailable in any quantity or purity) with which to develop models of human homeostatis and angiogenesis.
Recombinant DNA-derived human ECGF also has utility in the potentiation of cell growth on a prosthetic device, rather than a tissue culture flask or bottle. This device may or may not be coated with other molecules which would facilitate the attachment of endothelial cells to the device. These facilitating molecules may include extracellular matrix components, human serum albumin, or inert organic molecules.
The extracellular matrix is comprised of several fibrous proteins imbedded in a gel comprised of glycosaminoglycan polysaccharides. The glycosaminoglycans are usually linked to a protein core to form proteoglycans (Alberts et al. in “Molecular Biology of the Cell” Garland Publishing, Inc. (1983) pp. 692-715; the contents of which are incorporated herein by reference). Among the protein components of the extracellular matrix are collagen, elastin, laminin and fibronectin. Collagen has a stiff, triple-stranded helical structure and exists in at least 5 major forms (Types 1-V). Types I-III are predominent in connective tissue, while Type IV is found in the basal lamina. Type V is widespread in different tissues, although in relatively small amounts. Fibronectin is a glycoprotein that promotes cell adhesion and exists as large aggregates in the extracellular space. Laminin is a component of the basal lamina.
Glycosaminoglycans are long, unbranched polysaccharide chains composed of repeating disaccharide units. They are highly negatively charged and capable of attracting large amounts of water, thereby forming hydrated gels even at low concentrations. The glycosaminoglycans include hyaluronic acid, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, heparan heparin sulfate, heparin and keratan sulfate. Hyaluronic acid is the only glycosaminoglycan that does not form a proteoglycan structure.
For potentiation of cell growth, such as on the surface of a prosthetic device, endothelial cells would be cultured in the presence of effective doses of ECGF, and optionally one or more extracellular matrix components. This device would then provide a non-thrombogenic surface on the prosthetic device, thus reducing the risk of potentially life-threatening thrombogenic events subsequent to implantation of the prosthetic device.
ECGF has utility in diagnostic applications. Schreiber, et al., [Proc. Natl. Acad. Sci. 82:6138 (1985)] developed a double antibody immunoassay for bovine ECGF. In this assay, 96-well polyvinyl chloride plates were coated with rabbit anti-ECGF and the remaining binding sites subsequently blocked with 10% normal rabbit serum. Samples of ECGF were then added to the wells and incubated. After washing, murine monoclonal anti-ECGF was added. After incubation and several washes, rabbit anti-mouse IgG coupled with peroxidase was added. The reaction product was quantitated spectrophotometrically after conversion of O-phenylenediamine in the presence of hydrogen peroxide. A similarly constructed immunoassay may be useful for monitoring human ECGF levels in disease states affecting endothelial cell growth. Purified recombinant-DNA derived ECGF would be useful as a standard reagent in quantifying unknown ECGF samples.
ECGF also may have potential in the treatment of damaged or in the regeneration of blood vessels and other endothelial cell-lined structures.
It should be appreciated that the present invention is not to be construed as being limited by the illustrative embodiment. It is possible to produce still other embodiment. It is possible to produce still other embodiments without departing from the inventive concepts herein disclosed. Such embodiments are within the ability of those skilled in the art. Deposit of Strains Useful in Practicing the Invention
Biologically pure cultures of strains for practicing this invention are available at the offices of Rorer Biotechnology Inc.
Access to said cultures will be available during pendency of the patent application to one determined by the Commissioner to be entitled thereto under 37 C.F.R. Section 1.14 and 35 U.S.C. Section 122.
At a date prior to issuance a deposit of biologically pure cultures of the strains within the allowed claims will be made with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md., the accession number assigned after successful viability testing will be indicated by amendment below, and the requisite fees will be paid.
All restriction on availability of said culture to the public will be irrevocably removed upon the granting of a patent based upon the application and said culture will remain permanently available for a term of at least five years after the most recent request for the furnishing of a sample and in any case for a period of at least 30 years after the date of the deposit. Should the culture become nonviable or be inadvertently destroyed, it will be replaced with a viable culture (s) of the same taxonomic description.
Strain/Plasmid | ATCC No. | | ||
pDH | ||||
15 | 5336653336 | Nov. 25, 1985 | ||
|
5336553335 | Nov. 25, 1985 | ||
pMJ 26 | 67857 | Nov. 23, 1988. | ||
Claims (29)
1. An isolated DNA encoding a cleavable signal peptide and an endothelial cell growth factor, wherein removal of said signal peptide yields a mature form of said endothelial cell growth factor, and said endothelial cell growth factor either has the amino acid sequence of α-endothelial cell growth factor
(NYKKPKLLYCSNGGHFLRILPDGTVDGTRDRSDQHI QLQLSAESVGEVYIKSTETGQYLAMDTDGLLYGSQ TPNEECLFLERLEENHYNTYI S K K H A E K N W F V G L K KNGSCKRGPRTHYGQKAILFLPLPVSSD) or comprises the amino acid sequence of α-endothelial β-βendothelial cell growth factor
(AEGEITTFTALTEKFNLPPGNYKKPKLLYCSNGGHFLR ILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKSTETG QYLAMDTDGLYYGSQTPNEECLFLERLEENHYNTYIS KKHAEKNWFVGLKKNGSCKRGPRTHYGQKAILFLPL PVSSD).
2. An isolated DNA according to claim 1 , wherein said endothelial cell growth factor is human α-endothelial cell growth factor having the amino acid sequence
N Y K K P K L L Y C S N G G H F L R I L P DGTVDGTRDRSDQHI QLQLSAESVGEVYIKSTETGQYLAMNTDGLLYGSQ TPNEECLFLERLEENHYNTYISKKHAEKNWFVGLK KNGSCKRGPRTHYGQKAILFLPLPVSSD.
3. An isolated DNA according to claim 1 , wherein said endothelial cell growth factor is human β-endothelial cell growth factor having the amino acid sequence
A E G E I T T F T A L T E K F N L P P G N Y K K P K L LYCSNGGHFLR ILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKSTETG QYLAMDTDGLLYGSQT P N E E C L F L E R L E E N H Y N T Y I S KKHAEKNWFVGLKKNGSCKRGPRTHYGQKAILFLPL PVSSD.
4. An isolated DNA according to claim 1 , wherein said signal peptide is a heterologous signal peptide.
5. A DNA encoding a cleavable heterologous signal peptide and an endothelial cell growth factor, wherein removal of said signal peptide yields a mature form of said endothelial cell growth factor, and said endothelial cell growth factor either has the amino acid sequence of α-endothelial cell growth factor
(NYKKPKLLYCSNGGHFLRILPDGTVDGTRDRSDQHI QLQLSAEVSVGEVYIKSTETGQYLAMDTDGLLYGSQ TPNEECLFLERLEENHYNTY I S K K H A E K N W F V G L K KNGSCKRGPRTHYCQKAILFLPLPVSSD) or comprises the amino acid sequence of β-endothelial cell growth factor
(AEGEITTFTALTAKFNLPPGNYKKPKLLYCSNGGHFLR ILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKSTETG QYLAMDTDGLLYGSQTPNEECLFLERLEENHYNTYIS KKHAEKNWFVGLKKNGSCKRGPRTHYGQKAILFLPL PVSSD).
6. A DNA according to claim 5 , wherein said endothelial cell growth factor is human α-endothelial cell growth factor having the amino acid sequence
N Y K K P K L L Y C S N G G H F L R I L P DGTVDGTRDRSDQHI QLQLSAESVGEVYIKSTETGQYLAMDTFDGLLYGSQ TPNEECLFLERLEENHYNTYISKKHAEKNWFVGLK KNGSCKRGPRTHYGQKAILFLPLPVSSD.
7. A DNA according to claim 5 , wherein said endothelial cell growth factor is human β-endothelial cell growth factor having the amino acid sequence
AEGEITTFTALTEKFNLPPGNYKKPKLLYCSNGGHFLR ILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKSTETG QYLAMDTDGLLYGSQT P N E E C L F L E R L E E N H Y N T Y I S KKHAEKNWFVGLKKNGSCKRGPRRTHYGQKAILFLPL PVSSD.
8. A plasmid comprising a DNA encoding a cleavable signal peptide and an endothelial cell growth factor, wherein removal of said signal peptide yields a mature form of said endothelial cell growth factor, and said endothelial cell growth factor either has the amino acid sequence of α-endothelial cell growth factor
(NYKKPKLLYCSNGGHFLRILPDGTVDGTRDRSDQHI QLQLSAESVGEVYIKSTETGQYLAMDTDGLLYGSQ TPNEECLFLERLEENHYNTY I S K K H A E K N W F V G L K KNGSCKRGPRTHYGQKAILFLPLPVSSD)
or comprises the amino acid sequence of β-endothelial cell growth factor
(AEGEITTFTALTEKFNLPPGNYKKPKLLYCSNGGHFLR ILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKSTETG QYLAMDTDGLLYGSQTPNEECLFLERLEENHYNTYIS KKHAQEKNWFVGLKKNGSCKRGPRTHYGQKAILFLPL PVSSD).
9. A plasmid according to claim 8 , wherein said endothelial cell growth factor is human α-endothelial cell growth factor having the amino acid sequence
N Y K K P K L L Y C S N G G H F L R I L P DGTVDGTRDRSDQHI QLQLSAESVGEVYIKSTETGQYLAMDTDGLYYGSQ TPNEECLFLERLEENHYNTYISKKHAEKNWFVGLK KNGSCKRGPRTHYGQKAILFLPLPVSSD.
10. A plasmid according to claim 8 , wherein said endothelial cell growth factor is human β-endothelial cell growth factor having the amino acid sequence
A E G E I T T F T A L T E K F N L P P G N Y K K P K LLLYCSNGGHFLR ILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKSTETG QYLAMDTDGLLYGSQT P N E E C L F L E R L E E N H Y N T Y I S KKHAEKNWFVGLKKNGSCKRGPRTHYGQKAILFLPL PVSSD.
11. A plasmid according to claim 8 , wherein said signal peptide is a heterologous signal peptide.
12. A plasmid comprising a DNA encoding a cleavable heterologous signal peptide and human α-endothelial cell growth factor comprising having the amino acid sequence
N Y K K K L L Y C S N G G H F L R I L P DGTVDGTRDRSDQHI QLQLSAESVGEVYIKSTETGQYLAMDTDGLLYGSQ TPNEECLFLERLEENHYNTYISKKHAEKNWFVGLK KNGSCKRGRRTHYGQKAILFLPLPVSSD,
wherein removal of said signal peptide yields a mature form of said human α-endothelial cell growth factor.
13. A plasmid comprising a DNA encoding a cleavable heterologous signal peptide and human β-endothelial cell growth factor comprising the amino acid sequence
AEGEITTFTALTEKFNLPPGNYKKPKLLYCSNGGHFLR ILPDGTVDGTRDRSDQHIQLQLSAESVGEVYIKSTETG QYLAMDTDGLLYGSQTPNEECLFLERLEENHYNTYIS KKHAEKNWFVGLKKNGSCKRGPRTHYGQKAILFLPL PVSSD,
wherein removal of said signal peptide yields a mature form of said human β-endothelial cell growth factor.
14. A process for expressing an endothelial cell growth factor in a host cell, comprising introducing the plasmid according to claim 8 into the host cell.
15. A process for expressing a human α-endothelial cell growth factor in a host cell, comprising introducing the plasmid according to claim 9 into the host cell.
16. A process for expressing a human β-endothelial cell growth factor in a host cell, comprising introducing the plasmid according to claim 10 into the host cell.
17. A process for expressing an endothelial cell growth factor in a host cell, comprising introducing the plasmid according to claim 11 into the host cell.
18. A process for expressing a human α-endothelial cell growth factor in a host cell, comprising introducing the plasmid according to claim 12 into the host cell.
19. A process for expressing a human β-endothelial cell growth factor in a host cell, comprising introducing the plasmid according to claim 13 into the host cell.
20. The process according to claim 14 , wherein the host cell is a prokaryotic cell.
21. The process according to claim 20 , wherein the prokaryotic cell is E. coli.
22. A process for preparing an endothelial cell growth factor, comprising transforming a host cell with a plasmid according to claim 8 , culturing the host cell under conditions permitting expression of the endothelial cell growth factor, and recovering the endothelial cell growth factor.
23. A process for preparing a human α-endothelial cell growth factor, comprising transforming a host cell with a plasmid according to claim 9 , culturing the host cell under conditions permitting expression of the human α-endothelial cell growth factor, and recovering the human α-endothelial cell growth factor.
24. A process for preparing a human β-endothelial cell growth factor, comprising transforming a host cell with a plasmid according to claim 10 , culturing the host cell under conditions permitting expression of the human β-endothelial cell growth factor, and recovering the human β-endothelial cell growth factor.
25. A process for preparing an endothelial cell growth factor, comprising transforming a host cell with a plasmid according to claim 11 , culturing the host cell under conditions permitting expression of the endothelial cell growth factor, and recovering the endothelial cell growth factor.
26. A process for preparing a human α-endothelial cell growth factor, comprising transforming a host cell with a plasmid according to claim 12 , culturing the host cell under conditions permitting expression of the human α-endothelial cell growth factor, and recovering the human α-endothelial cell growth factor.
27. A process for preparing a human β-endothelial cell growth factor, comprising transforming a host cell with a plasmid according to claim 13 , culturing the host cell under conditions permitting expression of the human β-endothelial cell growth factor, and recovering the human β-endothelial cell growth factor.
28. The process according to claim 23 , wherein the host cell is a prokaryotic cell.
29. The process according to claim 28 , wherein the prokaryotic cell is E. coli.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/538,305 USRE38240E1 (en) | 1986-03-03 | 2000-03-28 | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/835,594 US4868113A (en) | 1986-03-03 | 1986-03-03 | Recombinant DNA vector encoding human endothelial cell growth factor |
US13449987A | 1987-12-18 | 1987-12-18 | |
US69307991A | 1991-04-29 | 1991-04-29 | |
US79985991A | 1991-11-27 | 1991-11-27 | |
US08/334,884 US5552528A (en) | 1986-03-03 | 1994-11-03 | Bovine b-endothelial cell growth factor |
US08/472,964 US5571790A (en) | 1986-03-03 | 1995-06-07 | Recombinant human endothelial cell growth factor |
US08/743,261 US5827826A (en) | 1986-03-03 | 1996-11-04 | Compositions of human endothelial cell growth factor |
US08/840,088 US5849538A (en) | 1986-03-03 | 1997-04-11 | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA |
US09/538,305 USRE38240E1 (en) | 1986-03-03 | 2000-03-28 | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/840,088 Reissue US5849538A (en) | 1986-03-03 | 1997-04-11 | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE38240E1 true USRE38240E1 (en) | 2003-08-26 |
Family
ID=46252314
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/743,261 Expired - Fee Related US5827826A (en) | 1986-03-03 | 1996-11-04 | Compositions of human endothelial cell growth factor |
US08/840,088 Ceased US5849538A (en) | 1986-03-03 | 1997-04-11 | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA |
US09/538,305 Expired - Fee Related USRE38240E1 (en) | 1986-03-03 | 2000-03-28 | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/743,261 Expired - Fee Related US5827826A (en) | 1986-03-03 | 1996-11-04 | Compositions of human endothelial cell growth factor |
US08/840,088 Ceased US5849538A (en) | 1986-03-03 | 1997-04-11 | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA |
Country Status (1)
Country | Link |
---|---|
US (3) | US5827826A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528483B2 (en) | 1995-06-07 | 2003-03-04 | André Beaulieu | Method of producing concentrated non-buffered solutions of fibronectin |
US7252818B2 (en) * | 1998-07-24 | 2007-08-07 | Cardiovascular Biotherapeutics, Inc. | Method of producing biologically active human acidic fibroblast growth factor and its use in promoting angiogenesis |
US6982170B1 (en) | 2001-12-17 | 2006-01-03 | Maine Medical Center Research Institute | Compositions, methods and kits relating to thrombin degradation resistant fibroblast growth factor-1 |
US7325872B2 (en) * | 2002-10-15 | 2008-02-05 | Mattel, Inc. | Rocker and method of using the same |
EA200501846A1 (en) * | 2003-06-05 | 2007-12-28 | Сентельон | PLASMIDA, CODIFYING FACTOR OF GROWTH OF FIBROBLASTES, FOR THE TREATMENT OF ANGIOGENIC DEFECTS ASSOCIATED WITH HYPROCHOLESTEREMIA OR DIABETES |
US20140343129A1 (en) * | 2011-12-14 | 2014-11-20 | Moderna Therapeutics, Inc. | Modified nucleic acids, and acute care uses thereof |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4394443A (en) | 1980-12-18 | 1983-07-19 | Yale University | Method for cloning genes |
US4401662A (en) | 1979-10-05 | 1983-08-30 | Choay, S.A. | Oligosaccharides having anti-Xa activity and pharmaceutical compositions containing them |
US4443546A (en) | 1980-07-07 | 1984-04-17 | The Beth Israel Hospital Association | Process and composition for propagating mammalian cells |
US4444760A (en) | 1983-06-17 | 1984-04-24 | Merck & Co., Inc. | Purification and characterization of a protein fibroblast growth factor |
US4446314A (en) | 1980-09-30 | 1984-05-01 | Cutter Laboratories, Inc. | Fractionation of heparin |
US4468464A (en) | 1974-11-04 | 1984-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Biologically functional molecular chimeras |
US4612367A (en) | 1985-04-08 | 1986-09-16 | Eli Lilly And Company | Process for purifying growth hormone-like materials |
WO1987001728A1 (en) | 1985-09-12 | 1987-03-26 | Biotechnology Research Partners, Ltd. | Recombinant fibroblast growth factors |
US4658021A (en) | 1979-07-05 | 1987-04-14 | Genentech, Inc. | Methionyl human growth hormone |
US4668476A (en) | 1984-03-23 | 1987-05-26 | Applied Biosystems, Inc. | Automated polypeptide synthesis apparatus |
US4675285A (en) | 1984-09-19 | 1987-06-23 | Genetics Institute, Inc. | Method for identification and isolation of DNA encoding a desired protein |
US4696917A (en) | 1985-08-01 | 1987-09-29 | Lindstrom Richard L | Irrigation solution |
US4788135A (en) | 1983-03-07 | 1988-11-29 | The Board Of Trustees Of The Leland Stanford, Jr. University | System for efficient isolation of genes using probes |
US4826827A (en) | 1979-10-05 | 1989-05-02 | Choay S.A. | Short chained oligosaccharides having biological properties, a process for making the same and the use thereof as drugs |
US4868113A (en) | 1986-03-03 | 1989-09-19 | Rorer Biotechnology, Inc. | Recombinant DNA vector encoding human endothelial cell growth factor |
US4882275A (en) | 1984-02-29 | 1989-11-21 | The Children's Medical Center Corporation | Method of purifying endothelial cell growth factors using immobilized heparin |
US5032679A (en) | 1988-12-15 | 1991-07-16 | Glycomed, Inc. | Heparin fragments as inhibitors of smooth muscle cell proliferation |
EP0437281A1 (en) | 1984-12-24 | 1991-07-17 | Merck & Co. Inc. | Composition comprising acidic fibroblast growth factor (aFGF) |
US5348941A (en) | 1992-04-01 | 1994-09-20 | Merck & Co., Inc. | Stabilizers for fibroblast growth factors |
US5401832A (en) | 1984-12-24 | 1995-03-28 | Merck & Co., Inc. | Brain derived and recombinant acidic fibroblast growth factor |
US5439818A (en) | 1985-09-12 | 1995-08-08 | Scios Nova Inc. | DNA encoding human recombinant basic fibroblast growth factor |
-
1996
- 1996-11-04 US US08/743,261 patent/US5827826A/en not_active Expired - Fee Related
-
1997
- 1997-04-11 US US08/840,088 patent/US5849538A/en not_active Ceased
-
2000
- 2000-03-28 US US09/538,305 patent/USRE38240E1/en not_active Expired - Fee Related
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4468464A (en) | 1974-11-04 | 1984-08-28 | The Board Of Trustees Of The Leland Stanford Junior University | Biologically functional molecular chimeras |
US4658021A (en) | 1979-07-05 | 1987-04-14 | Genentech, Inc. | Methionyl human growth hormone |
US4401662A (en) | 1979-10-05 | 1983-08-30 | Choay, S.A. | Oligosaccharides having anti-Xa activity and pharmaceutical compositions containing them |
US4826827A (en) | 1979-10-05 | 1989-05-02 | Choay S.A. | Short chained oligosaccharides having biological properties, a process for making the same and the use thereof as drugs |
US4443546A (en) | 1980-07-07 | 1984-04-17 | The Beth Israel Hospital Association | Process and composition for propagating mammalian cells |
US4446314A (en) | 1980-09-30 | 1984-05-01 | Cutter Laboratories, Inc. | Fractionation of heparin |
US4394443A (en) | 1980-12-18 | 1983-07-19 | Yale University | Method for cloning genes |
US4788135A (en) | 1983-03-07 | 1988-11-29 | The Board Of Trustees Of The Leland Stanford, Jr. University | System for efficient isolation of genes using probes |
US4444760A (en) | 1983-06-17 | 1984-04-24 | Merck & Co., Inc. | Purification and characterization of a protein fibroblast growth factor |
US4882275A (en) | 1984-02-29 | 1989-11-21 | The Children's Medical Center Corporation | Method of purifying endothelial cell growth factors using immobilized heparin |
US4668476A (en) | 1984-03-23 | 1987-05-26 | Applied Biosystems, Inc. | Automated polypeptide synthesis apparatus |
US4675285A (en) | 1984-09-19 | 1987-06-23 | Genetics Institute, Inc. | Method for identification and isolation of DNA encoding a desired protein |
EP0437281A1 (en) | 1984-12-24 | 1991-07-17 | Merck & Co. Inc. | Composition comprising acidic fibroblast growth factor (aFGF) |
US5401832A (en) | 1984-12-24 | 1995-03-28 | Merck & Co., Inc. | Brain derived and recombinant acidic fibroblast growth factor |
US4612367A (en) | 1985-04-08 | 1986-09-16 | Eli Lilly And Company | Process for purifying growth hormone-like materials |
US4696917A (en) | 1985-08-01 | 1987-09-29 | Lindstrom Richard L | Irrigation solution |
WO1987001728A1 (en) | 1985-09-12 | 1987-03-26 | Biotechnology Research Partners, Ltd. | Recombinant fibroblast growth factors |
US5439818A (en) | 1985-09-12 | 1995-08-08 | Scios Nova Inc. | DNA encoding human recombinant basic fibroblast growth factor |
US4868113A (en) | 1986-03-03 | 1989-09-19 | Rorer Biotechnology, Inc. | Recombinant DNA vector encoding human endothelial cell growth factor |
US5032679A (en) | 1988-12-15 | 1991-07-16 | Glycomed, Inc. | Heparin fragments as inhibitors of smooth muscle cell proliferation |
US5348941A (en) | 1992-04-01 | 1994-09-20 | Merck & Co., Inc. | Stabilizers for fibroblast growth factors |
Non-Patent Citations (34)
Also Published As
Publication number | Publication date |
---|---|
US5849538A (en) | 1998-12-15 |
US5827826A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4868113A (en) | Recombinant DNA vector encoding human endothelial cell growth factor | |
US6569434B1 (en) | Vascular endothelial cell growth factor C subunit | |
EP0476983B1 (en) | Vascular endothelial cell growth factor II | |
US6391311B1 (en) | Polypeptides having homology to vascular endothelial cell growth factor and bone morphogenetic protein 1 | |
JP3205578B2 (en) | Chimeric fibroblast growth factor | |
US5726152A (en) | Vascular endothelial cell growth factor II | |
JP2553829B2 (en) | Recombinant colony stimulating factor-1 | |
WO1995000633A2 (en) | Construction and use of synthetic constructs encoding syndecan | |
SK112996A3 (en) | Firoblast growth factor-10 | |
US5599708A (en) | Osteoclast growth regulating factors and antibodies | |
US5552528A (en) | Bovine b-endothelial cell growth factor | |
USRE38240E1 (en) | DNA encoding human endothelial cell growth factors and plasmids comprising said DNA | |
JPH07138295A (en) | New human protein and gene coding for the same | |
EP0204302A2 (en) | Laminin and the production thereof | |
US6103880A (en) | HARP family growth factors | |
NO874552L (en) | RECOMBINANT HUMAN ENDOTELIAL CELL GROWTH FACTOR. | |
US20020128440A1 (en) | Endoderm, cardiac and neural inducing factors - oligonucleotides for expressing human frazzled (frzb-1) protein | |
AU656453B2 (en) | Thrombin-binding substance and process for preparing the same | |
JPH05213771A (en) | Growth promoter factor of heparin bonding neurite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENCELL, INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVENTIS PHARMACEUTICALS PRODUCTS INC.;REEL/FRAME:012280/0901 Effective date: 20011130 |
|
AS | Assignment |
Owner name: GENCELL, S.A., FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENCELL INC.;REEL/FRAME:013942/0355 Effective date: 20020521 |
|
LAPS | Lapse for failure to pay maintenance fees |