USRE37366E1 - Method of making rotary cutting dies - Google Patents
Method of making rotary cutting dies Download PDFInfo
- Publication number
- USRE37366E1 USRE37366E1 US09/197,308 US19730898A USRE37366E US RE37366 E1 USRE37366 E1 US RE37366E1 US 19730898 A US19730898 A US 19730898A US RE37366 E USRE37366 E US RE37366E
- Authority
- US
- United States
- Prior art keywords
- land
- outer face
- workpiece
- cutting
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D35/00—Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
- B23D35/008—Means for changing the cutting members
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D7/00—Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D7/26—Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
- B26D7/2614—Means for mounting the cutting member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2203/00—Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
- B21B2203/02—Backlash elimination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2203/00—Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
- B21B2203/34—Rotational position or alignment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2203/00—Auxiliary arrangements, devices or methods in combination with rolling mills or rolling methods
- B21B2203/36—Spacers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
- B21B27/02—Shape or construction of rolls
- B21B27/03—Sleeved rolls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B31/00—Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
- B21B31/08—Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts
- B21B31/12—Interchanging rolls, roll mountings, or stand frames, e.g. using C-hooks; Replacing roll chocks on roll shafts by vertically displacing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B31/00—Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
- B21B31/16—Adjusting or positioning rolls
- B21B31/18—Adjusting or positioning rolls by moving rolls axially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26D—CUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
- B26D7/00—Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
- B26D7/26—Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member
- B26D2007/2607—Means for mounting or adjusting the cutting member; Means for adjusting the stroke of the cutting member for mounting die cutters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/202—With product handling means
- Y10T83/2092—Means to move, guide, or permit free fall or flight of product
- Y10T83/2096—Means to move product out of contact with tool
- Y10T83/21—Out of contact with a rotary tool
- Y10T83/2105—Mover mounted on rotary tool
- Y10T83/2107—For radial movement of product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/465—Cutting motion of tool has component in direction of moving work
- Y10T83/4766—Orbital motion of cutting blade
- Y10T83/4795—Rotary tool
- Y10T83/483—With cooperating rotary cutter or backup
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/465—Cutting motion of tool has component in direction of moving work
- Y10T83/4766—Orbital motion of cutting blade
- Y10T83/4795—Rotary tool
- Y10T83/483—With cooperating rotary cutter or backup
- Y10T83/4836—With radial overlap of the cutting members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9372—Rotatable type
- Y10T83/9396—Shear type
- Y10T83/9399—Cutting edge wholly parallel to axis of rotation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9457—Joint or connection
- Y10T83/9464—For rotary tool
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/929—Tool or tool with support
- Y10T83/9457—Joint or connection
- Y10T83/9464—For rotary tool
- Y10T83/9469—Adjustable
- Y10T83/9471—Rectilinearly
Definitions
- This invention relates to rotary die cutting of blanks from thin sheets or webs of material, and more particularly to improved rotary cutting dies and a method of making them.
- the thin web is of a material such as paper, paper board, cardboard, plastic film, metal foil, thin sheet metal and the like.
- U.S. Pat. No. 4,608,895 discloses a pair of rotary die cylinders with integral complementary cutting blades thereon which coact to sever a web of material passing through their nip.
- Each severing blade has an elongate land projecting generally radially outwardly from its cylinder and having in cross section an outer face and spaced apart depending side faces inclined towards each other at an acute included angle, and each inclined to its associated outer face at an obtuse included angle.
- the cutting edge transfers from one side edge to the other of the coacting lands at a pair of cross over sections each having an outer face which is substantially narrower than the outer face of the adjacent portion of the land.
- the pair of die cylinders can be relatively shifted both axially and in rotational phase with respect to each other.
- the die is made from a cylindrical blank of tool steel which is hardened and ground to produce a cylindrical surface before it is electrical discharge machined (EDM) to produce the lands with the desired geometry thereon.
- EDM electrical discharge machined
- a perpendicular side face and the outer face intersect to define a cutting edge on the land, and preferably the other edge is chamfered.
- each coacting pair of cutting lands has an associated elongate ejector land located adjacent to them and within the perimeter of the line of severance of the cut blank.
- the ejector land is integral with the die cylinder having the cutting land disposed outside the cut plank and cooperates with the other cutting land (inside the cut blank) to flex the blank.
- the rotary die cylinder is made by machining in the opposed ends of a tool steel workpiece, which is preferably generally cylindrical, a pair of recesses each having a bore with a frusto conical locator surface tapering inwardly with both the of the bores lying essentially on the same common axis of rotation.
- the tapered bores are used to accurately locate the workpiece while machining a peripheral cylindrical surface on it which is concentric with the common axis of rotation. Utilizing the recesses and frusto conical surfaces, the workpiece is located and oriented relative to a cutting tool to machine away material from the periphery of the workpiece to form the cutting blade lands and any ejector lands.
- the machined cutting lands are hardened by heat treating utilizing the tapered bores to locate and orient the machined workpiece relative to a laser to direct its beam of electromagnetic energy onto the cutting blade lands to heat them to an elevated temperature from which they are cooled to harden them without substantially hardening the main body of the cylinder.
- Objects, features and advantages of this invention are to provide a pair of rotary die cylinders with coacting cutting blades thereon which have a substantially longer useful life in service, require a substantially lower cutting force requiring less power to drive the cylinders and produce less load thereon, substantially reduce the likelihood of cut blanks being caught, trapped or hung up in the die cylinders, having cutting blades which are easier, faster and more economical to resharpen after becoming dull in use, a substantially longer in service useful life, and rotary die cylinders and a method of making them which are significantly less expensive, may be made by machining with conventional cutting tools, enable the cutting blades to be hardened after being formed, and are relatively quick, easy, inexpensive and requires less capital investment to make them.
- FIG. 1 is a perspective view of a pair of cutting die cylinders embodying this invention for cutting blanks from a web passing through their nip;
- FIG. 2 is a fragmentary sectional view taken generally on line 2 — 2 of FIG. 1 of a cutting blade land of the upper die;
- FIG. 3 is a fragmentary sectional view of a modified form of a cutting blade land of the die cylinders
- FIG. 4 is a semi-schematic sectional view taken in the place of the axes of the die cylinders and illustrating flexing of the cut blank by ejector lands of the die cylinders;
- FIG. 5 is a fragmentary sectional view similar to FIG. 4 illustrating ejector lands and the cutting blade lands after they have been resharpened;
- FIG. 6 is a semi-schematic side view illustrating the cutting off and machining of the ends of a piece of tool steel bar stock to form a generally cylindrical workpiece from which a die cylinder is made in accordance with the process of this invention
- FIG. 7 is a semi-schematic side view illustrating the machining of recesses with tapered bores having frusto conical locator surfaces in the opposed ends of the workpiece;
- FIG. 8 is a semi-schematic side view illustrating the machining of keyways in the recesses of the workpiece
- FIG. 9 is a semi-schematic side view illustrating the machining of a cylindrical peripheral surface on the workpiece concentric with the common axis of the tapered bore conical locator surfaces;
- FIG. 10 is a semi-schematic side view illustrating machining of a portion of the periphery of the workpiece to form a cutting blade land thereon;
- FIG. 11 is an semi-schematic and enlarged sectional view of the workpiece illustrating the orientation of cutting tools for removing material from the workpiece to form an axially extending land portion of the cutting blade thereon;
- FIG. 12 is an enlarged and fragmentary cross sectional view of the axially extending land portion of the cutting blade of FIG. 11;
- FIG. 13 is a semi-schematic side view of a laser directing electromagnetic energy onto a machined cutting blade of the steel workpiece to heat it to an elevated temperature for hardening or heat treating the cutting blade without hardening the core or main body of the workpiece.
- FIG. 1 illustrates a pair of cutting die cylinders 20 and 22 embodying this invention with coacting cutting blades 24 and 26 thereon which when the cylinders are co-rotating cut generally rectangular blanks 30 from a web 32 of thin material, such as paper board, passing through the nip 34 of the die cylinders.
- a web 32 of thin material such as paper board
- FIG. 1 illustrates a pair of cutting die cylinders 20 and 22 embodying this invention with coacting cutting blades 24 and 26 thereon which when the cylinders are co-rotating cut generally rectangular blanks 30 from a web 32 of thin material, such as paper board, passing through the nip 34 of the die cylinders.
- a web 32 of thin material such as paper board
- each die cylinder is journalled for rotation by a pair of arbor assemblies having coaxial spindles with opposed noses (not shown), received in complementary recesses 44 in the opposed ends 46 and 48 of each die cylinder.
- Each recess is a bore with a frusto conical sidewall 50 tapered inwardly from its associated cylinder end which provides a locator surface engagable with a complementary tapered surface on the nose of an associated spindle.
- the frusto conical surfaces of both of its recesses are on the same or common axis of rotation 52 or 54 of the cylinder.
- each cylinder is driven through one or both spindles of its arbor assembly to co-rotate in opposite directions of rotation (counterclockwise and clockwise as indicated by the arrows in FIG. 1) with essentially the same peripheral surface speed of its cutting blades.
- One or both spindles are also coupled to their associated cylinder for rotation therewith by a key received in a keyway 56 in the recess of the cylinder.
- the construction and arrangement of the recesses, keyways and frusto conical surfaces for journalling, locating and driving the die cylinders 20 & 22 is disclosed in greater detail in pending U.S. patent application Ser. No. 08/002,660 filed on Jan. 11, 1993, the disclosure of which is incorporated herein by reference and hence will not be described in further detail.
- the dies are constructed so that the position of the cutting edges of the coacting blades 24 and 26 can be varied and adjusted by moving the dies axially and/or in rotary phase relationship with respect to each other. This is accomplished by locating various portions of the cutting edge of the blade and its cutting edge of each die so that relative movement of the dies in one axial direction and/or one rotary phase direction causes all the cutting edges of the blades of both dies to move toward and even overlap each other and movement in the opposite direction causes all the cutting edges of all the blades of both dies to move away from and even be spaced from each other.
- the blade 24 of the upper die has circumferentially and axially extending land portions 58 and 60 with inner cutting edges 62 and 64 and circumferential and axial land portions 66 and 68 with outer cutting edges 70 and 72 which respectively coact with the lower cylinder blade 28 circumferential and axial lands 74 and 76 with outer cutting edges 78 and 80 , and circumferential and axial lands 82 and 84 with inner cutting edges 86 and 88 .
- crossover sections 94 and 96 are formed in each blade at the points of transition which have very narrow land sections 98 and 100 , which in registration, preferably cross generally at right angles to each other.
- This narrow section is formed by relieving each land opposite its cutting edge which forms a very narrow outer face portion 98 and 100 . This relief both prevents the web material from being crushed between the lands where they cross and provides a clearance or space to receive the severed portion of the web when it is cut in a crossover area.
- the width of the outer faces 98 and 100 of each land crossover section is in the range of about 0.0002 to 0.008 of an inch, desirably about 0.0005 to 0.005 of an inch, and preferably about 0.001 to 0.002 of an inch.
- the longitudinal length of this narrow outer face is usually in the range of about 0.010 to 0.150 of an inch, desirably about 0.015 to 0.080 of an inch, frequently about 0.015 to 0.040 of an inch, and preferably about 0.015 to 0.025 of an inch.
- the blade lands have a specific geometry and construction.
- the axially extending land portion of each blade has an arcuate outer face 102 and a depending side wall 104 adjacent its cutting edge which, as shown in FIG. 12, is essentially perpendicular or at a right angle to the chord 106 of the arcuate outer face 102 .
- the other land sidewall 108 is substantially parallel to the sidewall 104 .
- the intersection of the sidewall 104 and the outer face 102 forms the cutting edge 72 of this blade land portion and preferably, but not necessarily, the other edge is relieved by a chamfer or bevel 110 to facilitate ejection of the cut blank.
- the chord is also essentially perpendicular to a radius 113 of the cylinder passing through its axis of rotation 52 or 54 and bisecting the chord 106 or being equally spaced between the parallel sidewalls 104 and 108 .
- each blade has an outer face 114 which in cross section is a straight line, and a depending sidewall 116 essentially perpendicular to the outer face 114 . Since in cross section outer face 114 is a straight line it can be considered to either have no chord or its outer face and chord are one and the same thing.
- the other sidewall 118 is substantially parallel to the sidewall 116 .
- the intersection of the sidewall 116 and the outer face 114 forms the cutting edge of the blade and preferably the other edge has a chamfer or bevel 120 providing relief which facilitates ejection of the cut blank. In some applications the relief may be omitted and the sidewall and outer face will form a substantially right angular edge.
- the outer faces 102 & 114 of all of the lands are all concentric with the axis 52 or 54 of their associated cylinder 20 or 22 , are all disposed essentially the same radical distance from its axis of rotation and are preferably all formed at substantially the same time by machining a cylindrical peripheral surface on the cylinder coincident with its axis.
- This specific construction and arrangement of the lands of the cutting blades has the substantial advantages of significantly increasing the useful life of the die cylinders, substantially reducing the cutting force required to sever or cut a web of material and thereby increasing the useful life of the die cylinders and reducing the power required to rotate the die cylinders, substantially decreasing the likelihood that a cut blank will become caught or hung up in the die cylinder, providing blades which can be easily, quickly and inexpensively sharpened by simply grinding and slightly reducing the radius of the outer faces 102 & 114 of the lands, can be resharpened essentially without changing the size and configuration of the blanks cut by the dies cylinders, eliminates most, if not all, manual or hand grinding and machining to resharpen the blades, enables the cutting blades to be formed by utilizing conventional cutting tools and grinding techniques and eliminates the necessity of electrical discharge machining of the blades on the die cylinders.
- each die may have a pair of spaced apart cylindrical bearer surfaces 122 which, when they bear on the complementary die cylinder, prevent the cutting blades from radially overlapping and interfering with each other.
- the radius of the cylinder bearer surfaces 122 must be no less than the radius of the outer faces 102 & 114 of the cutting blades and preferably are formed simultaneously with the outer faces and may have the same or a slightly larger radius.
- each ejector land 36 , 38 , 40 & 42 is associated with a pair of coacting blade lands and extends generally parallel to and is disposed inwardly thereof.
- the lands flex or bend the somewhat resilient blank 30 adjacent its edges as it is being cut so that as it emerges from the nip of the die cylinders it tends to spring back to its unflexed generally flat condition thereby disengaging from the sidewall 104 or 116 of the associated cutting land with which the cut edge of the blank is radially overlapped in the nip.
- the ejector land is disposed on the same die cylinder as the cutting land with which the cut edge of the blank radially overlaps in the nip and is spaced therefrom so that the other cutting land on which the blank bears is disposed between them.
- the ejector land 36 associated with cutting lands 58 & 74 is on cylinder 20 and the ejector land 38 associated with cutting lands 66 & 82 is on the cylinder 22 .
- the outer face 124 of the axially extending ejector lands 40 & 42 is preferably arcuate and in cross section the outer face 126 of the circumferentially extending lands 36 & 38 is preferably a straight line.
- the outer faces of all of the ejector lands have the same radius as the outer faces of the cutting blade lands of the same cylinder on which the ejector lands are disposed and may be formed at the same time by machining a cylindrical surface coincident with the axis of the die cylinder.
- the cutting blade and ejector lands have a radial height of about 0.010 to 0.125 of an inch, and desirably about 0.020 to 0.090 of an inch, and preferably about 0.060 to 0.080 of an inch, and a transverse width of about 0.040 to 0.150 of an inch, desirably 0.075 to 0.140 of an inch, and preferably 0.100 to 0.125 of an inch.
- the ejector lands may be interrupted or discontinuous and in their plan view have other shapes such as arcuate, circular, oval, square, a series of discrete segments, etc.
- the shape of the sidewalls of the ejector lands is not critical and in cross section they may be other than straight, such as arcuate.
- the cutting blades when after use the cutting blades are resharpened, such as by grinding the outer faces of the lands of the blades and the ejectors, even though the extent of their radial projection is reduced, they still maintain the proper relationship and registration for both cutting the blank and flexing or bending it to facilitate ejection of the cut blank from the the die cylinders. Indeed, even when sharpened the ejector lands flex or bend the cut blank to the same extent as they did before resharpening so long as in use the same radial gap or clearance is maintained between the cutting blades of the die cylinders. As shown in FIG.
- the rotary dies 20 & 22 may be journalled for rotation in superimposed relation by a die stand having for each die cylinder a pair of spaced apart arbors with opposed spindles having noses complementary to and received in the recesses 44 in the opposed ends 46 & 48 of each cylinder.
- the spindles are driven in timed relationship through a gear train by a suitable prime mover, such as an electric motor.
- the gear train includes a mechanism permitting the angular or rotary phase relationship of the die cylinders to be adjusted for registration of the coacting and generally axially extending land portions of the cutting blades.
- the arbor assembly also contains a suitable mechanism for relatively axially shifting one of the pair of die cylinders to provide proper registration for the coacting cutting edges of the generally circumferentially extending land portions of the cutting blades. Since a suitable die stand with arbors for journalling and driving the die cylinders and mechanism for adjusting their axial and rotary phase relationship is disclosed and claimed in U.S. patent application Ser. No. 08/002,660 filed on Jan. 11, 1993, the disclosure of which is incorporated herein by reference, it will be not be described in further detail.
- the pair of die cylinders 20 & 22 are corotated in opposite directions of rotation with the same peripheral surface speed of the outer faces of their cutting blades with the web 32 of material passing through their nip 34 at the same lineal surface speed.
- the blade lands coact to cut a blank 30 from the web.
- the ejector lands 36 , 38 , 40 & 42 greatly reduce the likelihood of the cut blank becoming caught or hung up in the blades.
- the ejector lands reduce the tendency of the cut blank to hang up because (1) they bend or flex the blank which tends to foreshorten both its axial or lateral width and its longitudinal or circumferential length thereby providing increased clearance between its edges and the cutting blades, and (2) due to the resiliency of the cut blank as it emerges from the nip of the die its leading edge tends to move radially away from and out of radial overlapping engagement with the immediately adjacent cutting blade land 60 . Furthermore, the right angular sidewall 104 , 116 of the cutting blades decrease the tendency of the edge of the blank to hang up thereon compared to the inclined or raked sidewalls of prior art cutting blades. Regardless of any theoretical explanation, the ejector lands significantly reduce the tendency or likelihood of the cut blanks to hang up or jam in the die cylinders.
- the die cylinders can be made by machining with conventional cutting tools and grinding a workpiece of unhardened tool steel to completely form the lands of the ejector and cutting blades and thereafter hardened by heat treating the cutting blades for increased useful life without hardening the core or body of the cylinder.
- This avoids distortion of the cutting blades which would adversely affect their geometry and performance.
- a generally cylindrical workpiece 130 for making a die cylinder 20 or 22 can be cut off from a piece of round bar stock 132 of tool steel by a rotating milling cutter 134 received in a drive spindle 136 of a suitable machine tool.
- the milling cutter also machines one end face of the workpiece and the other end face can be simultaneously machined by a rotating end mill cutting tool 138 received in a drive spindle 140 to provide the workpiece 130 with end faces 46 & 48 substantially perpendicular to its longitudinal axis and of the desired length of the die cylinder.
- the recesses 44 are machined in the workpiece with the frusto conical locator surfaces 50 on a common axis, preferably simultaneously, by two opposed rotating boring tools 142 in drive spindles 144 of a suitable machine tool.
- the keyway 56 can be machined in one or both recesses of the workpiece by rotating milling tools 146 received in the drive spindles 148 of a machine tool.
- all of the machining operations of FIGS. 6, 7 and 8 can be formed with the same machine tool, such as a computerized numerical control (CNC) machining center having drive spindles movable along three orthogonal axes.
- CNC computerized numerical control
- the workpiece 130 is accurately located and rotated in a machine tool 150 by arbors 152 with spindles 154 having complementary noses 156 engaging the recesses 44 in the ends of the workpiece.
- a cylindrical surface 158 concentric with the common axis 52 or 54 of the recesses is machined on the workpiece by a suitable tool, such as an end mill 160 , rotated and axially reciprocated by a drive spindle 162 of the machine tool while the workpiece 130 is rotated by the machine tool.
- the lands of the cutting blades and ejectors are formed in the workpiece by machining away portions of the periphery of the workpiece.
- peripheral portions are machined away in rough and finish cuts by a milling tool 164 rotated and moved along various axes by the spindle 162 in coordination with angular or arcuate movement of the workpiece 130 about its axis by the arbor spindles 154 .
- the coordinated movement of the spindle 162 and the workpiece 130 is performed by a computerized numerical control machines tool 150 having at least three orthogonal axes of movement of the spindles relative to the workpiece and one arcuate or rotary axis of movement of the workpiece relative to the spindle.
- this machining is performed on a so-called five axis or six axis computerized numerical control machine tool 150 .
- the axis 166 of rotation of the cutting tool 164 is oriented so that it is essentially perpendicular to the chord 106 of the arcuate outer face 102 and hence is not parallel with and is skewed to a radius 168 of the workpiece which intersects the plane of the side face of the blade being machined by the cutting tool.
- the side faces of all of the land portions of the cutting blades so they are essentially perpendicular to the chord of the corresponding outer face regardless of whether such land portion of the cutting blade extends axially, circumferentially or obliquely on the cylindrical workpiece, and hence the finished die cylinder.
- the bevelled edge 110 can be machined with an end milling tool received in the spindle 162 of the CNC machine tool.
- the sidewalls of the ejector lands 36 , 38 , 40 & 42 can be machined by the rotating milling tool 164 in the drive spindle 162 of the CNC machine tool.
- the sidewall 170 of each bearer 122 can also be machined with the milling tool 164 by the CNC machine tool 150 .
- the cutting blade lands can be hardened by heating them to an elevated temperature typically about 1000° F. to 1200° F. with a laser 172 and quenching them without substantially hardening the core or body of the workpiece 130 and hence without distorting it by heat treating it.
- the emitter 174 of the laser 172 can be received in the spindle 162 of the CNC machine tool for orienting and manipulating it to direct its beam 176 of coherent electromagnetic radiation onto each cutting blade land of the workpiece 130 while it is received and located by its recesses 44 on the arbors 152 of the machine tool and arcuately moved by them as needed to direct the laser beam onto the cutting lands.
- the heated lands are quenched to cool and harden them by air cooling or if needed to control the rate at which they are cooled by contacting the blades with a suitable quenching liquid, such as by spraying, pouring or directing a stream of the liquid onto the blades or immersing the blades in the liquid.
- a suitable quenching liquid such as by spraying, pouring or directing a stream of the liquid onto the blades or immersing the blades in the liquid.
- the cutting blades of the die cylinder When the cutting blades of the die cylinder becomes dull from use, they can be resharpened such as by grinding the outer faces of the cutting lands while the workpiece 130 is located by its recesses 44 to produce outer faces of the cutting blade lands which are essentially concentric with the axis of rotation of the workpiece.
- This method of making the die cylinders has the substantial advantages of utilizing conventional cutting tools and CNC machine tools, machining the workpiece before the cutting blades are hardened, producing highly accurate and precise die cylinders, eliminating the need for electric discharge machining, and being relatively quick, easy, economical and requiring significantly less capital investment to produce rotary dies.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Forests & Forestry (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Details Of Cutting Devices (AREA)
Abstract
Description
Claims (25)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/197,308 USRE37366E1 (en) | 1993-01-19 | 1998-11-19 | Method of making rotary cutting dies |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US266093A | 1993-01-19 | 1993-01-19 | |
US08/078,679 US5417132A (en) | 1993-01-19 | 1993-06-16 | Rotary cutting dies |
US08/437,658 US5575185A (en) | 1993-01-19 | 1995-05-09 | Method of making rotary cutting dies |
US09/197,308 USRE37366E1 (en) | 1993-01-19 | 1998-11-19 | Method of making rotary cutting dies |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/437,658 Reissue US5575185A (en) | 1993-01-19 | 1995-05-09 | Method of making rotary cutting dies |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE37366E1 true USRE37366E1 (en) | 2001-09-18 |
Family
ID=21701858
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/078,679 Expired - Fee Related US5417132A (en) | 1993-01-19 | 1993-06-16 | Rotary cutting dies |
US08/192,067 Expired - Fee Related US5842399A (en) | 1993-01-19 | 1994-02-03 | Journal-less rotary dies and stand |
US08/437,658 Ceased US5575185A (en) | 1993-01-19 | 1995-05-09 | Method of making rotary cutting dies |
US09/197,308 Expired - Fee Related USRE37366E1 (en) | 1993-01-19 | 1998-11-19 | Method of making rotary cutting dies |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/078,679 Expired - Fee Related US5417132A (en) | 1993-01-19 | 1993-06-16 | Rotary cutting dies |
US08/192,067 Expired - Fee Related US5842399A (en) | 1993-01-19 | 1994-02-03 | Journal-less rotary dies and stand |
US08/437,658 Ceased US5575185A (en) | 1993-01-19 | 1995-05-09 | Method of making rotary cutting dies |
Country Status (5)
Country | Link |
---|---|
US (4) | US5417132A (en) |
EP (1) | EP0610650B1 (en) |
DE (1) | DE69411964T2 (en) |
DK (1) | DK0610650T3 (en) |
HK (1) | HK1018161A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030191021A1 (en) * | 2002-04-03 | 2003-10-09 | 3M Innovative Properties Company | Lamination apparatus and methods |
US20030188615A1 (en) * | 2002-04-03 | 2003-10-09 | 3M Innovative Properties Company | Angled product transfer conveyor |
US6681666B2 (en) | 2000-12-28 | 2004-01-27 | Alan R. Pfaff, Jr. | Method and apparatus for scrap removal from rotary dies |
US20040241525A1 (en) * | 2003-05-28 | 2004-12-02 | 3M Innovative Properties Company | Roll-good fuel cell fabrication processes, equipment, and articles produced from same |
US20050039851A1 (en) * | 2002-04-03 | 2005-02-24 | 3M Innovative Properties Company | Method and apparatus for peeling a thin film from a liner |
US20050194102A1 (en) * | 2002-04-03 | 2005-09-08 | 3M Innovative Properties Company | Apparatus and method for singulating porous fuel cell layers using adhesive tape pick head |
US20050274247A1 (en) * | 2004-06-14 | 2005-12-15 | Sean Talkington | Stripper apparatus and methods for rotary dies |
US20060040162A1 (en) * | 2004-08-17 | 2006-02-23 | Jurica Joseph J | Fuel cell and method for its manufacture |
US7569081B2 (en) | 2002-04-03 | 2009-08-04 | 3M Innovative Properties Company | Method for converting a fuel cell membrane web to precisely positioned membrane sheets |
Families Citing this family (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5417132A (en) | 1993-01-19 | 1995-05-23 | Alan R. Pfaff | Rotary cutting dies |
DE4439224A1 (en) * | 1994-11-03 | 1996-05-09 | Bosch Gmbh Robert | Device for processing a film strand having cups |
US5704264A (en) * | 1995-08-31 | 1998-01-06 | Kimberly-Clark Worldwide, Inc. | Cutting die with elevated stripping land |
US6189414B1 (en) * | 1995-12-19 | 2001-02-20 | Yoshizawa Industry Inc. | Counter plate and cutting die for die cutting machine |
FR2743523B1 (en) * | 1996-01-15 | 1998-03-06 | Komori Chambon | SOLID CYLINDER FOR A ROTARY SHAPING MACHINE |
AU2051797A (en) * | 1996-02-15 | 1997-09-02 | Stevens International Inc. | Cutting die and method of forming |
AU6109696A (en) * | 1996-02-15 | 1997-09-02 | Stevens International Inc. | Cutting die and method of making |
US5879278A (en) * | 1996-09-16 | 1999-03-09 | Atlantic Commerce Properties | Method and machine for cutting liners and inserting cut liners into closures |
US5855149A (en) * | 1996-11-18 | 1999-01-05 | National Research Council Of Canada | Process for producing a cutting die |
US5906053A (en) * | 1997-03-14 | 1999-05-25 | Fisher Barton, Inc. | Rotary cutting blade having a laser hardened cutting edge and a method for making the same with a laser |
US6011475A (en) * | 1997-11-12 | 2000-01-04 | Vacuumschmelze Gmbh | Method of annealing amorphous ribbons and marker for electronic article surveillance |
DE69819476T2 (en) * | 1997-12-26 | 2004-05-13 | Nippon Tungsten Co., Ltd. | ROTATION PUNCH TOOL |
US6966245B1 (en) * | 1998-04-03 | 2005-11-22 | Container Graphics Corporation | Trim edge stripper for a corrugated board rotary cutting die |
US6253819B1 (en) | 1998-04-28 | 2001-07-03 | Denovus Llc | Method and apparatus for die cutting and making laminate articles |
US6178852B1 (en) | 1998-11-25 | 2001-01-30 | Atlantic Commerce Properties | Rotary die laser machining and hardening apparatus and method |
US6085626A (en) * | 1999-01-15 | 2000-07-11 | Atlantic Commerce Properties | Rapid adjustment rotary dies |
IT1313808B1 (en) * | 1999-11-02 | 2002-09-23 | Giovanni Gambini | PERFORATOR DEVICE FOR PAPER TAPES IN REWINDING MACHINES |
US6135682A (en) * | 2000-01-14 | 2000-10-24 | Unova Ip Corporation | Multi-spindle phase controlled machining |
US6644153B1 (en) * | 2000-02-02 | 2003-11-11 | Jonco Die Company, Inc. | Ejector configuration and method and apparatus for mounting the same |
FR2806026B1 (en) * | 2000-03-10 | 2002-08-02 | Machines Pour Les Arts Graphiq | RECOVERABLE TYPE ROTARY CUTTING CASSETTE FOR PAPER AND CARDBOARD PROCESSING MACHINES |
DE10050348C2 (en) * | 2000-10-11 | 2002-12-12 | Friese Gmbh & Co Kg | Roller arrangement, in particular corrugated roller arrangement |
CA2358370A1 (en) * | 2000-11-03 | 2002-05-03 | Pavel Karez | Dual hardness die |
DE60140315D1 (en) * | 2000-12-28 | 2009-12-10 | Tsukatani Hamono Mfg Co Ltd | FLEXIBLE MATRIZE AND MANUFACTURING METHOD THEREFOR |
US6701627B2 (en) * | 2001-07-26 | 2004-03-09 | American Saw & Mfg. Company, Inc. | Composite utility knife blade |
CH694985A5 (en) * | 2002-01-24 | 2005-10-31 | Bobst Sa | Device for mounting a cassette, comprising cylindrical tools, in a rotary working machine of a web or sheet material. |
US6857255B1 (en) | 2002-05-16 | 2005-02-22 | Fisher-Barton Llc | Reciprocating cutting blade having laser-hardened cutting edges and a method for making the same with a laser |
ES2232258B1 (en) * | 2002-11-28 | 2006-07-16 | Cimco, S.L. | ROTARY TROQUELADORA. |
NL1024915C2 (en) * | 2003-12-01 | 2005-06-06 | Jean Henry Robert Madern | Device for making a cut, groove and the like, comprising a plate-shaped system. |
JPWO2005021224A1 (en) * | 2003-08-27 | 2006-11-09 | 三菱マテリアル株式会社 | Rotary die equipment |
US7175578B2 (en) * | 2003-11-14 | 2007-02-13 | Marquipwardunited, Inc. | Rotary die cutter with rectilinear split die cylinder translation |
NL1024914C2 (en) * | 2003-12-01 | 2005-06-02 | Jean Henry Robert Madern | Rotary device for die plate cutting, has rolls mounted on bearing heads which can be moved parallel to roll length axis |
US7001477B2 (en) * | 2003-12-02 | 2006-02-21 | Kimberly-Clark Worldwide, Inc. | Cutting method and apparatus having an affixed knife |
US7000522B2 (en) | 2003-12-08 | 2006-02-21 | Eagle Rotary Systems, Inc. | Rotary cutting tool with die plate position adjustment |
US20050235796A1 (en) * | 2004-04-26 | 2005-10-27 | Willits Steven F | Apparatus and method for making articles from flat stock material |
US20070095463A1 (en) * | 2004-08-27 | 2007-05-03 | Denovus Llc | Method and apparatus for die cutting and making laminate articles |
SE529998C2 (en) * | 2005-04-07 | 2008-02-05 | Sandvik Intellectual Property | A support roll drum and a support roll unit for a rotatable cutting device |
ES2373394T3 (en) * | 2005-06-10 | 2012-02-03 | Bobst S.A. | TRANSFORMATION STATION FOR A PACKAGING PRODUCTION MACHINE. |
US7565856B2 (en) * | 2005-07-01 | 2009-07-28 | Eagle Rotary Systems, Inc. | Rotary cutting tool |
US20070227008A1 (en) * | 2006-03-29 | 2007-10-04 | Andrew Zhuk | Razors |
US7448135B2 (en) * | 2006-03-29 | 2008-11-11 | The Gillette Company | Multi-blade razors |
US7882640B2 (en) * | 2006-03-29 | 2011-02-08 | The Gillette Company | Razor blades and razors |
US8011104B2 (en) | 2006-04-10 | 2011-09-06 | The Gillette Company | Cutting members for shaving razors |
US8499462B2 (en) | 2006-04-10 | 2013-08-06 | The Gillette Company | Cutting members for shaving razors |
SE530194C2 (en) * | 2006-07-10 | 2008-03-25 | Sandvik Intellectual Property | An edge of a knife means for a knife roller |
DE102006044610B4 (en) * | 2006-09-19 | 2008-11-20 | WINKLER+DüNNEBIER AG | Device for cutting and / or embossing a blank or a material web |
CN100999139B (en) * | 2006-12-22 | 2010-09-22 | 谢兆琪 | Manufacturing method of high speed rolling mould cutter block |
US9944487B2 (en) | 2007-02-21 | 2018-04-17 | Curt G. Joa, Inc. | Single transfer insert placement method and apparatus |
US9550306B2 (en) | 2007-02-21 | 2017-01-24 | Curt G. Joa, Inc. | Single transfer insert placement and apparatus with cross-direction insert placement control |
US9248579B2 (en) * | 2008-07-16 | 2016-02-02 | The Gillette Company | Razors and razor cartridges |
US8090468B2 (en) * | 2008-09-05 | 2012-01-03 | Mag Ias, Llc | Multi-spindle phase controlled machining |
DE102009033576A1 (en) * | 2009-07-16 | 2011-01-20 | WINKLER+DüNNEBIER AG | rotary die |
US9089453B2 (en) | 2009-12-30 | 2015-07-28 | Curt G. Joa, Inc. | Method for producing absorbent article with stretch film side panel and application of intermittent discrete components of an absorbent article |
EP2487014A1 (en) * | 2011-02-10 | 2012-08-15 | Hunkeler AG | Method and device for punching or perforating moving sheets of material |
US8656817B2 (en) * | 2011-03-09 | 2014-02-25 | Curt G. Joa | Multi-profile die cutting assembly |
US8863627B2 (en) | 2011-03-18 | 2014-10-21 | The Procter & Gamble Company | Anvil roll system and method |
CA2807809C (en) | 2012-02-20 | 2019-07-23 | Curt G. Joa, Inc. | Method of forming bonds between discrete components of disposable articles |
US9908739B2 (en) | 2012-04-24 | 2018-03-06 | Curt G. Joa, Inc. | Apparatus and method for applying parallel flared elastics to disposable products and disposable products containing parallel flared elastics |
US9283683B2 (en) | 2013-07-24 | 2016-03-15 | Curt G. Joa, Inc. | Ventilated vacuum commutation structures |
USD703712S1 (en) | 2013-08-23 | 2014-04-29 | Curt G. Joa, Inc. | Ventilated vacuum commutation structure |
USD703711S1 (en) | 2013-08-23 | 2014-04-29 | Curt G. Joa, Inc. | Ventilated vacuum communication structure |
USD703248S1 (en) | 2013-08-23 | 2014-04-22 | Curt G. Joa, Inc. | Ventilated vacuum commutation structure |
USD703247S1 (en) | 2013-08-23 | 2014-04-22 | Curt G. Joa, Inc. | Ventilated vacuum commutation structure |
USD704237S1 (en) | 2013-08-23 | 2014-05-06 | Curt G. Joa, Inc. | Ventilated vacuum commutation structure |
US9289329B1 (en) | 2013-12-05 | 2016-03-22 | Curt G. Joa, Inc. | Method for producing pant type diapers |
CA2991328C (en) | 2015-07-24 | 2021-10-26 | Curt G. Joa, Inc. | Vacuum commutation apparatus and methods |
CN107413856B (en) * | 2017-07-18 | 2019-02-01 | 燕山大学 | It is a kind of that roller method is removed based on the change online roll change of specification of ESP mm finishing mill unit |
CN108500579B (en) * | 2018-04-02 | 2021-03-02 | 苏州市三赫兴模具科技有限公司 | Forming method of round-pressing round cutter die |
US11737930B2 (en) | 2020-02-27 | 2023-08-29 | Curt G. Joa, Inc. | Configurable single transfer insert placement method and apparatus |
Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1110238A (en) | 1914-04-14 | 1914-09-08 | Alexander S Spiegel | Machine for making ornamental roofing-strips. |
US1321391A (en) * | 1919-11-11 | Saw-blade | ||
US2275021A (en) * | 1938-07-01 | 1942-03-03 | Budd Induction Heating Inc | Process of making tools |
US3322012A (en) | 1964-10-23 | 1967-05-30 | Heppenstall Co | Rotary crop shear knives and the like |
US3485146A (en) | 1968-01-25 | 1969-12-23 | Harris Intertype Corp | Cutting and scoring dies |
US3512431A (en) | 1965-03-13 | 1970-05-19 | Olivetti & Co Spa | Automatic machining process for blanking dies |
US3550479A (en) | 1968-08-14 | 1970-12-29 | Bernal Inc | Method for making cylindrical dies |
US3578761A (en) | 1968-09-12 | 1971-05-18 | Harris Intertype Corp | Severing apparatus |
DE2013674A1 (en) | 1970-03-21 | 1971-10-14 | Steigerwald K | Localised electron beam steel hardening |
US3895947A (en) | 1971-07-06 | 1975-07-22 | Harris Intertype Corp | Method of making die plates |
US3905283A (en) | 1974-05-08 | 1975-09-16 | Rockwell International Corp | Improved rotary cutting die |
US3952179A (en) | 1974-05-08 | 1976-04-20 | Rockwell International Corporation | Rotary cutting die and method for its production |
US4179316A (en) * | 1977-10-17 | 1979-12-18 | Sciaky Bros., Inc. | Method and apparatus for heat treating |
DE2907325A1 (en) | 1979-02-24 | 1980-09-04 | Winkler Duennebier Kg Masch | CUTTING ROLLER FOR PRODUCING PROFILED INTERIOR AND EXTERIOR CUTS |
US4224851A (en) | 1978-06-26 | 1980-09-30 | Mitsubishi Jukogyo Kabushiki Kaisha | Knockout for punch scrap |
US4323756A (en) | 1979-10-29 | 1982-04-06 | United Technologies Corporation | Method for fabricating articles by sequential layer deposition |
JPS5763632A (en) | 1980-10-03 | 1982-04-17 | Toshiba Corp | Production of die |
US4459458A (en) * | 1982-08-30 | 1984-07-10 | The Warner & Swasey Company | Machine tool with laser heat treating |
EP0119714A2 (en) * | 1983-02-15 | 1984-09-26 | MICRA Limited | Cutting and piercing devices |
US4507538A (en) * | 1982-10-22 | 1985-03-26 | Mostek Corporation | Laser hardening with selective shielding |
US4533400A (en) * | 1983-06-29 | 1985-08-06 | The Garrett Corporation | Method and apparatus for laser hardening of steel |
US4539461A (en) * | 1983-12-21 | 1985-09-03 | The Garrett Corporation | Method and apparatus for laser gear hardening |
US4561334A (en) | 1984-06-19 | 1985-12-31 | Bernal Rotary Systems, Inc. | Rotary stripper |
US4597317A (en) | 1983-12-27 | 1986-07-01 | Winkler & Dunnebier Maschinenfabrik Und Eisengiesserei Gmbh & Co. Kg | Quick change cutting cylinder arrangement |
EP0191203A2 (en) * | 1985-01-16 | 1986-08-20 | Jerome Hal Lemelson | Cutting tool structures, apparatus and method for making same |
US4608895A (en) | 1984-03-14 | 1986-09-02 | Bernal Rotary Systems, Inc. | Rotary die cutting |
EP0225662A2 (en) | 1985-12-11 | 1987-06-16 | L.M. LAMINATI METALLICI S.p.A. | Tape slitter |
US4686349A (en) | 1984-06-22 | 1987-08-11 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for improving surface quality of rotary machine parts |
EP0234559A2 (en) | 1986-02-26 | 1987-09-02 | IBSM Mehltretter GmbH | Frame construction for slitting rollers |
US4759247A (en) | 1987-10-22 | 1988-07-26 | Bernal Rotary Systems, Inc. | Rotary dies with adjustable cutter force |
US4770078A (en) | 1986-03-13 | 1988-09-13 | Jean Gautier | Roll-type cutting/scoring apparatus |
US4773229A (en) | 1985-03-22 | 1988-09-27 | Svenska Rotor Maskiner Ab | Method for refrigeration systems |
JPH01184218A (en) | 1988-01-14 | 1989-07-21 | Mazda Motor Corp | Hardening method with laser |
US4927992A (en) | 1987-03-04 | 1990-05-22 | Westinghouse Electric Corp. | Energy beam casting of metal articles |
WO1991001386A1 (en) | 1989-07-25 | 1991-02-07 | Albert Schuler | Process for hardening the cutting edges of saws, knives and cutting tools |
US5001750A (en) | 1989-03-07 | 1991-03-19 | Aisin Seiki Kabushiki Kaisha | Secret communication control apparatus |
US5027509A (en) * | 1989-04-14 | 1991-07-02 | Bobst S. A. | Method for manufacturing a tool cylinder |
US5058472A (en) | 1989-03-30 | 1991-10-22 | Usinage Montage Et Assistance Technique (U.M.A.T.) | Rotary cutting apparatus |
US5067380A (en) | 1989-03-11 | 1991-11-26 | Bielomatik Leuze Gmbh & Co. | Cutting mechanism for materials in web or layer form |
US5083488A (en) | 1991-04-12 | 1992-01-28 | Melvin Stanley | Radially adjustable anvil roll assembly for a rotary die cutting press |
US5180448A (en) | 1990-08-22 | 1993-01-19 | United Container Machinery Group, Inc. | Method of laser hardening corrugating rolls |
JPH06136431A (en) | 1992-10-28 | 1994-05-17 | Honda Motor Co Ltd | Sub-zero treatment of die |
US5360495A (en) * | 1989-07-25 | 1994-11-01 | Albert Schuler | Process for hardening cutting edges with an oval shaped plasma beam |
EP0640693A1 (en) * | 1993-08-27 | 1995-03-01 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Paper knife and method of manufacturing |
US5417132A (en) | 1993-01-19 | 1995-05-23 | Alan R. Pfaff | Rotary cutting dies |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH326931A (en) * | 1954-05-12 | 1958-01-15 | Textilmaschinenbau Zittau Veb | Multi-color fabric printing machine |
US4793229A (en) * | 1986-12-24 | 1988-12-27 | Western Printing Machinery Company | Multifunctional web rotary module |
US5001950A (en) * | 1988-10-14 | 1991-03-26 | Sequa Corporation | Rotary die cutter |
-
1993
- 1993-06-16 US US08/078,679 patent/US5417132A/en not_active Expired - Fee Related
-
1994
- 1994-01-05 DE DE69411964T patent/DE69411964T2/en not_active Expired - Fee Related
- 1994-01-05 EP EP94100091A patent/EP0610650B1/en not_active Expired - Lifetime
- 1994-01-05 DK DK94100091T patent/DK0610650T3/en active
- 1994-02-03 US US08/192,067 patent/US5842399A/en not_active Expired - Fee Related
-
1995
- 1995-05-09 US US08/437,658 patent/US5575185A/en not_active Ceased
-
1998
- 1998-11-19 US US09/197,308 patent/USRE37366E1/en not_active Expired - Fee Related
- 1998-12-22 HK HK98114800A patent/HK1018161A1/en not_active IP Right Cessation
Patent Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1321391A (en) * | 1919-11-11 | Saw-blade | ||
US1110238A (en) | 1914-04-14 | 1914-09-08 | Alexander S Spiegel | Machine for making ornamental roofing-strips. |
US2275021A (en) * | 1938-07-01 | 1942-03-03 | Budd Induction Heating Inc | Process of making tools |
US3322012A (en) | 1964-10-23 | 1967-05-30 | Heppenstall Co | Rotary crop shear knives and the like |
US3512431A (en) | 1965-03-13 | 1970-05-19 | Olivetti & Co Spa | Automatic machining process for blanking dies |
US3485146A (en) | 1968-01-25 | 1969-12-23 | Harris Intertype Corp | Cutting and scoring dies |
US3550479A (en) | 1968-08-14 | 1970-12-29 | Bernal Inc | Method for making cylindrical dies |
US3578761A (en) | 1968-09-12 | 1971-05-18 | Harris Intertype Corp | Severing apparatus |
DE2013674A1 (en) | 1970-03-21 | 1971-10-14 | Steigerwald K | Localised electron beam steel hardening |
US3895947A (en) | 1971-07-06 | 1975-07-22 | Harris Intertype Corp | Method of making die plates |
US3905283A (en) | 1974-05-08 | 1975-09-16 | Rockwell International Corp | Improved rotary cutting die |
US3952179A (en) | 1974-05-08 | 1976-04-20 | Rockwell International Corporation | Rotary cutting die and method for its production |
US4179316A (en) * | 1977-10-17 | 1979-12-18 | Sciaky Bros., Inc. | Method and apparatus for heat treating |
US4224851A (en) | 1978-06-26 | 1980-09-30 | Mitsubishi Jukogyo Kabushiki Kaisha | Knockout for punch scrap |
DE2907325A1 (en) | 1979-02-24 | 1980-09-04 | Winkler Duennebier Kg Masch | CUTTING ROLLER FOR PRODUCING PROFILED INTERIOR AND EXTERIOR CUTS |
US4393738A (en) | 1979-02-24 | 1983-07-19 | Winkler & Dunnebier Maschinenfabrik Und Eisengiesserei Gmbh & Co. Kg | Cutting roll for producing shaped inner and outer cuts and a method for making same |
US4323756A (en) | 1979-10-29 | 1982-04-06 | United Technologies Corporation | Method for fabricating articles by sequential layer deposition |
JPS5763632A (en) | 1980-10-03 | 1982-04-17 | Toshiba Corp | Production of die |
US4459458A (en) * | 1982-08-30 | 1984-07-10 | The Warner & Swasey Company | Machine tool with laser heat treating |
US4507538A (en) * | 1982-10-22 | 1985-03-26 | Mostek Corporation | Laser hardening with selective shielding |
EP0119714A2 (en) * | 1983-02-15 | 1984-09-26 | MICRA Limited | Cutting and piercing devices |
US4533400A (en) * | 1983-06-29 | 1985-08-06 | The Garrett Corporation | Method and apparatus for laser hardening of steel |
US4539461A (en) * | 1983-12-21 | 1985-09-03 | The Garrett Corporation | Method and apparatus for laser gear hardening |
US4597317A (en) | 1983-12-27 | 1986-07-01 | Winkler & Dunnebier Maschinenfabrik Und Eisengiesserei Gmbh & Co. Kg | Quick change cutting cylinder arrangement |
US4608895A (en) | 1984-03-14 | 1986-09-02 | Bernal Rotary Systems, Inc. | Rotary die cutting |
US4561334A (en) | 1984-06-19 | 1985-12-31 | Bernal Rotary Systems, Inc. | Rotary stripper |
US4686349A (en) | 1984-06-22 | 1987-08-11 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for improving surface quality of rotary machine parts |
EP0191203A2 (en) * | 1985-01-16 | 1986-08-20 | Jerome Hal Lemelson | Cutting tool structures, apparatus and method for making same |
US4773229A (en) | 1985-03-22 | 1988-09-27 | Svenska Rotor Maskiner Ab | Method for refrigeration systems |
EP0225662A2 (en) | 1985-12-11 | 1987-06-16 | L.M. LAMINATI METALLICI S.p.A. | Tape slitter |
EP0234559A2 (en) | 1986-02-26 | 1987-09-02 | IBSM Mehltretter GmbH | Frame construction for slitting rollers |
US4770078A (en) | 1986-03-13 | 1988-09-13 | Jean Gautier | Roll-type cutting/scoring apparatus |
US4927992A (en) | 1987-03-04 | 1990-05-22 | Westinghouse Electric Corp. | Energy beam casting of metal articles |
US4759247A (en) | 1987-10-22 | 1988-07-26 | Bernal Rotary Systems, Inc. | Rotary dies with adjustable cutter force |
JPH01184218A (en) | 1988-01-14 | 1989-07-21 | Mazda Motor Corp | Hardening method with laser |
US5001750A (en) | 1989-03-07 | 1991-03-19 | Aisin Seiki Kabushiki Kaisha | Secret communication control apparatus |
US5067380A (en) | 1989-03-11 | 1991-11-26 | Bielomatik Leuze Gmbh & Co. | Cutting mechanism for materials in web or layer form |
US5058472A (en) | 1989-03-30 | 1991-10-22 | Usinage Montage Et Assistance Technique (U.M.A.T.) | Rotary cutting apparatus |
US5027509A (en) * | 1989-04-14 | 1991-07-02 | Bobst S. A. | Method for manufacturing a tool cylinder |
WO1991001386A1 (en) | 1989-07-25 | 1991-02-07 | Albert Schuler | Process for hardening the cutting edges of saws, knives and cutting tools |
US5360495A (en) * | 1989-07-25 | 1994-11-01 | Albert Schuler | Process for hardening cutting edges with an oval shaped plasma beam |
US5180448A (en) | 1990-08-22 | 1993-01-19 | United Container Machinery Group, Inc. | Method of laser hardening corrugating rolls |
US5083488A (en) | 1991-04-12 | 1992-01-28 | Melvin Stanley | Radially adjustable anvil roll assembly for a rotary die cutting press |
JPH06136431A (en) | 1992-10-28 | 1994-05-17 | Honda Motor Co Ltd | Sub-zero treatment of die |
US5417132A (en) | 1993-01-19 | 1995-05-23 | Alan R. Pfaff | Rotary cutting dies |
US5575185A (en) * | 1993-01-19 | 1996-11-19 | Atlantic Eagle, Inc. | Method of making rotary cutting dies |
EP0640693A1 (en) * | 1993-08-27 | 1995-03-01 | Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. | Paper knife and method of manufacturing |
Non-Patent Citations (1)
Title |
---|
M. L. Murphy et al., "The Rapid Manufacture of Metallic Components by Laser Surface Cladding", Laser Assisted Net Shape Engineering Proceedings of the LANE'94, vol. II, Meisenbach Bamberg 1994, pp. 803-814. |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6681666B2 (en) | 2000-12-28 | 2004-01-27 | Alan R. Pfaff, Jr. | Method and apparatus for scrap removal from rotary dies |
US20050188809A1 (en) * | 2000-12-28 | 2005-09-01 | Pfaff Alan R.Jr. | Method and apparatus for scrap removal from rotary dies |
US20060102281A1 (en) * | 2002-04-03 | 2006-05-18 | 3M Innovative Properties Company | Method and apparatus for peeling a thin film from a liner |
US7569081B2 (en) | 2002-04-03 | 2009-08-04 | 3M Innovative Properties Company | Method for converting a fuel cell membrane web to precisely positioned membrane sheets |
US7171881B2 (en) | 2002-04-03 | 2007-02-06 | 3M Innovative Properties Company | Angled product transfer conveyor |
US20030188615A1 (en) * | 2002-04-03 | 2003-10-09 | 3M Innovative Properties Company | Angled product transfer conveyor |
US20050194102A1 (en) * | 2002-04-03 | 2005-09-08 | 3M Innovative Properties Company | Apparatus and method for singulating porous fuel cell layers using adhesive tape pick head |
US20050217980A1 (en) * | 2002-04-03 | 2005-10-06 | 3M Innovative Properties Company | Angled product transfer conveyor |
US20030191021A1 (en) * | 2002-04-03 | 2003-10-09 | 3M Innovative Properties Company | Lamination apparatus and methods |
US8480838B2 (en) | 2002-04-03 | 2013-07-09 | 3M Innovative Properties Company | Lamination apparatus and methods |
US8309218B2 (en) | 2002-04-03 | 2012-11-13 | 3M Innovative Properties Company | Lamination apparatus and methods |
US7022207B2 (en) | 2002-04-03 | 2006-04-04 | 3M Innovative Properties Company | Method and apparatus for peeling a thin film from a liner |
US20080311403A1 (en) * | 2002-04-03 | 2008-12-18 | 3M Innovative Properties Company | Lamination apparatus and methods |
US20050039851A1 (en) * | 2002-04-03 | 2005-02-24 | 3M Innovative Properties Company | Method and apparatus for peeling a thin film from a liner |
US7018500B2 (en) | 2002-04-03 | 2006-03-28 | 3M Innovative Properties Company | Apparatus and method for singulating porous fuel cell layers using adhesive tape pick head |
US7432009B2 (en) | 2002-04-03 | 2008-10-07 | 3M Innovative Properties Company | Lamination apparatus and methods |
US20070141436A1 (en) * | 2003-05-28 | 2007-06-21 | 3M Innovative Properties Company | Roll-good fuel cell fabrication processes, equipment, and articles produced from same |
US8828620B2 (en) | 2003-05-28 | 2014-09-09 | 3M Innovative Properties Company | Roll-good fuel cell fabrication processes, equipment, and articles produced from same |
US20040241525A1 (en) * | 2003-05-28 | 2004-12-02 | 3M Innovative Properties Company | Roll-good fuel cell fabrication processes, equipment, and articles produced from same |
US7722684B2 (en) | 2003-05-28 | 2010-05-25 | 3M Innovative Properties Company | Roll-good fuel cell fabrication processes, equipment, and articles produced from same |
US8268511B2 (en) | 2003-05-28 | 2012-09-18 | 3M Innovative Properties Company | Roll-good fuel cell fabrication processes, equipment, and articles produced from same |
US7195690B2 (en) | 2003-05-28 | 2007-03-27 | 3M Innovative Properties Company | Roll-good fuel cell fabrication processes, equipment, and articles produced from same |
US20050274247A1 (en) * | 2004-06-14 | 2005-12-15 | Sean Talkington | Stripper apparatus and methods for rotary dies |
US20060040162A1 (en) * | 2004-08-17 | 2006-02-23 | Jurica Joseph J | Fuel cell and method for its manufacture |
Also Published As
Publication number | Publication date |
---|---|
DK0610650T3 (en) | 1999-04-26 |
EP0610650B1 (en) | 1998-07-29 |
HK1018161A1 (en) | 1999-12-10 |
EP0610650A1 (en) | 1994-08-17 |
US5417132A (en) | 1995-05-23 |
DE69411964D1 (en) | 1998-09-03 |
US5575185A (en) | 1996-11-19 |
US5842399A (en) | 1998-12-01 |
DE69411964T2 (en) | 1999-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37366E1 (en) | Method of making rotary cutting dies | |
US4608895A (en) | Rotary die cutting | |
US6178852B1 (en) | Rotary die laser machining and hardening apparatus and method | |
US4074594A (en) | Rotary cutter for agglomerated foam plastic | |
CA1097899A (en) | Cutting tool | |
US3799020A (en) | Scrap chopper | |
US3736634A (en) | Rotary cutting tool | |
CN1163809A (en) | Method and apparatus for producing undercut grooves | |
US4625093A (en) | Stock removal by laser cutting | |
US6893195B2 (en) | Method and apparatus for producing forked roots of turbine blades | |
US5373631A (en) | Method for machining a radially symmetrical workpiece surface and a tool for performing the method | |
US3952179A (en) | Rotary cutting die and method for its production | |
EP0566984A1 (en) | Milling cutter insert | |
US5349888A (en) | Method for machining surfaces or revolution at workpieces and disk-shaped tool for performing same | |
EP1330339B1 (en) | Method and apparatus for making a cutting tool having a plurality of margins | |
US6431962B1 (en) | Method and apparatus for making a cutting tool having a flute | |
CN113770670B (en) | PCD end mill and processing method thereof | |
US4604011A (en) | Method and apparatus for edge-planing sheet metal | |
US5093975A (en) | Method of making new side trimmer and side trimmer blade | |
US3691898A (en) | Edge burr removal apparatus | |
JPH0618737Y2 (en) | End mill | |
CN108500579A (en) | Rotary cutting die forming method | |
US6035753A (en) | Perforation assemblies having variable cut to tie ratios for multi-ply forms | |
JPH09323211A (en) | Cutting method of cylindrical face or tapered face by milling cutter | |
RU2170171C2 (en) | Device for turning workpiece of insulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BERNAL INTERNATIONAL, INC., MICHIGAN Free format text: MERGER;ASSIGNOR:ATLANTIC EAGLE, INC.;REEL/FRAME:009526/0920 Effective date: 19970722 Owner name: BERNAL INTERNATIONAL, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COX, WILLIAM A.;REEL/FRAME:009606/0685 Effective date: 19981118 |
|
AS | Assignment |
Owner name: COMERICA BANK, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:BERMAXX, LLC;REEL/FRAME:010589/0827 Effective date: 19990215 Owner name: BERMAXX, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERNAL INTERNATIONAL, INC;REEL/FRAME:010589/0896 Effective date: 19991222 Owner name: COMERICA BANK, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:BERMAXX, LLC;REEL/FRAME:010589/0904 Effective date: 19991215 Owner name: BERMAXX, LLC, MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERNAL INTERNATIONAL, INC.;REEL/FRAME:010628/0129 Effective date: 19991222 |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: BERMAXX LLC, MICHIGAN Free format text: RELEASE OF SECURITY AGREEMENT;ASSIGNOR:COMERICA BANK;REEL/FRAME:013067/0857 Effective date: 20020703 |
|
AS | Assignment |
Owner name: BERNAL, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERMAXX, LLC;REEL/FRAME:013081/0398 Effective date: 20020703 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |