USRE36892E - Orthogonal ion sampling for electrospray .[.LC/MS.]. mass spectrometry - Google Patents
Orthogonal ion sampling for electrospray .[.LC/MS.]. mass spectrometry Download PDFInfo
- Publication number
- USRE36892E USRE36892E US08/792,303 US79230397A USRE36892E US RE36892 E USRE36892 E US RE36892E US 79230397 A US79230397 A US 79230397A US RE36892 E USRE36892 E US RE36892E
- Authority
- US
- United States
- Prior art keywords
- passageway
- iadd
- iaddend
- voltage source
- exit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/16—Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
- H01J49/165—Electrospray ionisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/72—Mass spectrometers
- G01N30/7233—Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
- G01N30/724—Nebulising, aerosol formation or ionisation
- G01N30/7253—Nebulising, aerosol formation or ionisation by thermal means, e.g. thermospray
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
Definitions
- the invention relates to a method and apparatus for obtaining improved .Iadd.signal relative to noise without loss of .Iaddend.ion collection efficiency in electrospray .[.on.]. .Iadd.mass spectrometry, including liquid chromatography/mass spectrometry (LC/MS.Iadd.).Iaddend..
- Newer electrospray systems generate a charged .[.spray.]. .Iadd.or ionized aerosol .Iaddend.through the combination of electrostatic forces and .[.an.]. assisted nebulization.
- the assisted nebulization .Iadd. generally .Iaddend.generates an aerosol from the HPLC .Iadd.column .Iaddend.effluent, while the electric field induces a charge on the droplets, which ultimately results in the generation of desolvated analyte ions via an ion evaporation process.
- the assisted nebulization can be done with pneumatic, ultrasonic, or thermal nebulization or by some other nebulization technique.
- the electrosprayed aerosol exiting from the nebulizer is sprayed directly towards the sampling orifice or other entry into the vacuum system such as a capillary. That is, the electrosprayed aerosol exiting from the nebulizer and the entry into the vacuum system are located along a common central axis, with the nebulizer effluent pointing directly at the entry into the vacuum system and with the nebulizer being considered to be located at an angle of zero (0) degrees relative to the common central axis..Iaddend.
- an aerosol is generated pneumatically and aimed directly at the entrance of a heated capillary tube .Iadd.providing a passageway .Iaddend.into the vacuum system.
- desolvated ions instead of desolvated ions entering the capillary, large charged droplets are drawn into the capillary and the droplets are desolvated while in transit. The evaporation process takes place in the capillary as well. A supersonic jet of vapor exits the capillary and the analyte ions are subsequently focused, mass analyzed and detected.
- the desolvated ions and vapor may recondense.Iadd., .Iaddend.resulting in solvent clusters and background signals. While these clusters may be re-dissociated by collisionally induced processes, this may interfere in identification of structural characteristics of the analyte samples which are intentionally subjected to collisionally induced dissociation.
- the large amount of solvent vapor, ions and droplets exiting the capillary require that the detector be arranged substantially .[.off axis.]. .Iadd.off-axis .Iaddend.with respect to the capillary to avoid noise due to neutral droplets striking the .Iadd.mass analyzer and .Iaddend.detector.
- the .[.spray.]. .Iadd.electrosprayed aerosol .Iaddend. is generated ultrasonically.
- the system is used in conjunction with a counter current drying gas and is usually operated with the .[.spray.]. .Iadd.aerosol .Iaddend.directed at the sampling capillary.
- the main disadvantages of this system are that optimal performance is effectively limited to less than 500 microliters per minute and .[.that.]. there are serious problems with aqueous mobile phases.
- the apparatus is complex and prone to mechanical and electronic failures.
- a pneumatic nebulizer is used at substantially higher inlet pressures (as compared with other systems). This results in a highly collimated and directed .[.droplet beam.]. .Iadd.electrosprayed aerosol.Iaddend.. This .Iadd.aerosol .Iaddend.is aimed off-axis to the side of the orifice .[.in.]. .Iadd.and at .Iaddend.the nozzle cap. Although this works competitively, there is still some noise which is probably due to stray droplets. The .Iadd.aerosol exiting the .Iaddend.nebulizer .[.jet.]. has to be aimed carefully to minimize noise while maintaining signal intensity.
- the invention relates to an apparatus for converting a liquid solute sample into ionized molecules, comprising:
- a first passageway having a center axis, an orifice for accepting a liquid solute sample and an exit for discharging the liquid solute sample from the first passageway in the form of an electrosprayed aerosol containing ionized molecules;
- an electrically conductive housing connected to a first voltage source and having an opening arranged adjacent to the first passageway exit;
- a second passageway arranged within the housing adjacent to the opening in the housing and connected to a second voltage source, the second passageway having a center axis, an orifice for receiving ionized molecules attracted from the electrosprayed aerosol and an exit, wherein the center axis of the second passageway is arranged in transverse relation to the center axis of the first passageway such that ionized molecules in the electrosprayed aerosol move laterally through the opening in the housing and thereafter pass into the second passageway under the influence of electrostatic attraction forces generated by the first and second voltage sources.
- the invention provides the capability of conducting atmospheric pressure ionization.[.,.]. .Iadd.(.Iaddend.API.Iadd.).Iaddend., whether electrospray or atmospheric pressure chemical ionization (APCI), with conventional .[.High Performance Liquid Chromatography.]. .Iadd.high performance liquid chromatography .Iaddend.at flow rates of greater than 1 ml/minute without flow splitting.
- the invention allows desolvated ions to be separated from comparatively large volumes of .[.vaporized.].
- the invention provides the capability of separating desolvated ions of interest from the large volumes of vapor.[.,.]. and directing the desolvated ions from the electrospray (ES) chamber (which .Iadd.typically .Iaddend.operates at atmospheric pressure) to the mass spectrometer (which operates at 10 -6 to 10 -4 .[.Torr.]. .Iadd.torr.Iaddend.).
- ES electrospray
- Orthogonal ion sampling allows more efficient enrichment of the analyte by spraying the charged droplets .Iadd.in the electrosprayed aerosol .Iaddend.past a sampling orifice.Iadd., .Iaddend.while directing the solvent vapor and solvated droplets .Iadd.in the electrosprayed aerosol .Iaddend.away .[.in a direction such.]. .Iadd.from the sampling orifice so .Iaddend.that they do not enter the vacuum system.
- the noise level in .[.an.]. .Iadd.a mass spectrometry .Iaddend.apparatus configured according to the present invention is reduced by as much as five fold over current systems, resulting in increased signal relative to noise.Iadd., and .Iaddend.hence.[.,.]. .Iadd.acheiving .Iaddend.greater sensitivity. Performance is simplified and the system .Iadd.is .Iaddend.more robust because optimization of .[.needle.]. .Iadd.the .Iaddend.position .Iadd.of the first passageway.Iaddend., gas flow and voltages show less sensitivity to small changes.
- the simplified performance and reduced need for optimization also result in a system less dependent .[.of.]. .Iadd.on .Iaddend.flow rate and mobile phase conditions.
- the reduced need for optimization extends to changing mobile phase flow rates and proportions. This means that the .Iadd.mass spectrometry .Iaddend.system can be run under a variety of conditions without adjustment.
- Another benefit of the invention taught herein is simplified waste removal owing to the fact that the .[.spray.]. .Iadd.electrosprayed aerosol .Iaddend.can be aimed directly at a waste line and be easily removed from the system. Furthermore, the present invention provides the option of eliminating high voltage elements with no loss of sensitivity.
- FIG. 1 is a representation of an apparatus according to the present invention.
- FIG. 2 is a representation of an alternate embodiment of an apparatus according to the present invention.
- FIG. 3 is a representation of an alternate embodiment of an apparatus according to the present invention.
- FIG. 4 is a representation of an alternate embodiment of an apparatus according to the present invention.
- FIG. 1 depicts an apparatus 10 configured according to the current invention.
- a liquid sample is conducted through .[.the.]. .Iadd.a .Iaddend.nebulizer .[.with.]. .Iadd.having .Iaddend.a first passageway 14, .Iadd.the liquid sample .Iaddend.exiting a second orifice or exit .Iadd.15 .Iaddend.of the first passageway .[.15.]. .Iadd.14 .Iaddend.under conditions which create a vapor of charged .Iadd.or ionized .Iaddend.droplets or .[.”electrospray".].
- FIG. 1 depicts the transport of the .[.electrospray.]. droplets .Iadd.in the electrosprayed aerosol 11 .Iaddend.from the second orifice exit .Iadd.15 .Iaddend.of the first passageway .[.15.]. .Iadd.14.Iaddend., through the distance to the entrance .Iadd.or opening 17 .Iaddend.of the second passageway .[.17.].
- the orientation angle ⁇ of the .Iadd.center .Iaddend.axis of the exiting .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.11 and .Iadd.the center axis of .Iaddend.the second passageway 22 is between 75 degrees and 105 degrees relative to each other. The angle may be greater than 105, in principle as great as 180; best results have been obtained at settings at or near 90 degrees. .Iadd.(As shown in FIG.
- the angle ⁇ defines the location of the first passageway 14, that is, the nebulizer or other source of electrosprayed aerosol 11, relative to the second passageway 22, that is, the entry into the vacuum system.
- the angle ⁇ is considered to be zero (0) degrees when the exit 15 for the electrosprayed aerosol 11 and the center axis of the first passageway 14 are pointing directly at the entrance 17 and the center axis of the second passageway 22.
- the angle ⁇ is considered to be 180 degrees when the exit 15 for the electrosprayed aerosol 11 and the center axis of the first passageway 14 are pointing directly away from the entrance 17 and the center axis of the second passageway 22).
- the electrostatic attraction is generated by attaching voltage sources to components of the apparatus.
- a first voltage source .[.16.]. .Iadd.V1 .Iaddend. is connected to a housing 19 which houses the second passageway 22.
- the housing .Iadd.19 .Iaddend. is not necessarily an enclosure but may be .[.in.]. any shape that can act as a guide for the ions and can support fluid dynamics of a drying gas (see below discussion).
- a second voltage source .[.18.]. .Iadd.V2 .Iaddend. is connected to the second passageway 22.
- the first passageway 14 is generally kept at ground .Iadd.potential.Iaddend..
- .Iadd.ions .Iaddend. are amenable to analysis by operation of an analytic instrument capable of detecting and measuring mass and charge of particles such as a mass spectrometer (not shown).
- a mass spectrometer not shown.
- a standard electrospray .Iadd.MS .Iaddend.system (HP 5989) with a pneumatic nebulizer provides the base structure.
- the nebulizer .Iadd.containing the first passageway .Iaddend.14 may be arranged in a variety of configurations.Iadd., .Iaddend.so long as the .[.distance.]. .Iadd.distances .Iaddend.between the separate high voltage .[.points is.]. .Iadd.sources are .Iaddend.sufficient to prevent discharges.
- the system includes a .[.drying.]. gas 20 to aid desolvation and prevent .[.spray.]. droplets .Iadd.in the electrosprayed aerosol .Iaddend.11 from entering the .[.orifice.]. .Iadd.opening 17 .Iaddend.of the second passageway .[.17.]. .Iadd.22 .Iaddend.and the vacuum system (not shown).
- An alternate embodiment could include a heated capillary as the second passageway 22 in an internal source off-axis geometry, such that the capillary is off-axis with respect to .[.quadropole.]. .Iadd.the analyzer (such as a quadrupole) .Iaddend.and detector components.
- passageway means "ion guide” in any form .[.whatever.]. .Iadd.whatsoever.Iaddend.. It is possible that the passageway .[.be.]. .Iadd.is .Iaddend.of such short length relative to .Iadd.the .Iaddend.opening diameter that it may be called an orifice.
- the configurations herein are not meant to be restrictive, and those skilled in the art will see possible configurations not specifically mentioned here but which are included in the teaching and claims of this invention.
- FIG. 2 shows a configuration of the invention in which a third voltage source, .[.a plate 29.]. .Iadd.V3, .Iaddend.is positioned beside the exit .Iadd.15 .Iaddend.of the first passageway .[.15.]. .Iadd.14 .Iaddend.and distal to the side near to which the first voltage source .[.16.]. .Iadd.V1 .Iaddend.and opening .Iadd.17 .Iaddend.to the second passageway .[.cavity 17.]. .Iadd.22 .Iaddend.are positioned.
- the .[.plate 29 runs.].
- .Iadd.third voltage source V3 provides .Iaddend.a positive voltage relative to the first voltage source .[.16.]. .Iadd.V1.Iaddend..
- Experiments show .Iadd.that .Iaddend.the .[.charged droplet electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.”sees” a mean voltage between the plate .[.29.]. .Iadd.24 .Iaddend.and the charged housing 19. Results suggest that the repeller effect may be captured and ion collection yield increased by careful sculpting of both the electric field and the gas flow patterns.
- FIG. 3 shows a two voltage source system as in FIG. 2 .[.with the addition of a grounded spray chamber 26.]. .Iadd.wherein V3 is at ground potential.Iaddend..
- the spray chamber 26 operates to contain the .Iadd.electrosprayed .Iaddend.aerosol and route condensed vapor to waste.
- FIG. 4 shows the addition of a ring-shaped electrode .[.28.]. .Iadd.or fourth voltage source V4 .Iaddend.encircling the .[.flow.]. .Iadd.electrosprayed aerosol .Iaddend.exiting from the needle or first passageway 14 at ground, with all of the elements configured as in FIG. 3.
- the ring-shaped electrode .[.28.]. .Iadd.or fourth voltage source V4 .Iaddend. induces a charge in the droplets by virtue of the potential difference in charge between the droplets and the ring-shaped electrode .[.28.]. .Iadd.or fourth voltage source V4.Iaddend..
- Other potentials in the system can be used to direct the sampling of ions.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
.[.The invention teaches the uses of a plurality of electric fields and of orthogonal spray configurations of vaporized analyte which combine so as to operate to enhance the efficiency of analyte detection and mass analysis with a mass spectrometer by reducing vapor in the vacuum system and concomitant noise. Several embodiments of the invention are described for purposes of illustration..]. .Iadd.The invention relates to a method and apparatus for improving signal relative to noise without loss of ion collection efficiency in electrospray mass spectrometry, including liquid chromatography/mass spectrometry..Iaddend.
Description
The invention relates to a method and apparatus for obtaining improved .Iadd.signal relative to noise without loss of .Iaddend.ion collection efficiency in electrospray .[.on.]. .Iadd.mass spectrometry, including liquid chromatography/mass spectrometry (LC/MS.Iadd.).Iaddend..
Initial systems for electrospray LC/MS utilized flow splitters that divided the HPLC .Iadd.(high performance liquid chromatography) .Iaddend.column effluent in such a way that a small portion, typically 5-50 micro liters per minute, was introduced into the "spray chamber".Iadd., .Iaddend.while the major portion was directed to a waste or fraction collector. Because .Iadd.these .Iaddend.low flow rates were introduced into electrospray .Iadd.(ES) mass spectrometry (MS) .Iaddend.systems, it became possible to generate .[.spray.]. .Iadd.electrosprayed aerosol .Iaddend.solely through the use of electrostatic forces. Since ES/MS .[.is.]. .Iadd.generally provides .Iaddend.a concentration sensitive detector, this does not result in loss of sensitivity when compared with introduction of all the flow .Iadd.from the HPLC column effluent .Iaddend.into the spray chamber (assuming equal charging and sampling efficiencies). However, the use of flow splitters has gained a bad reputation due to potential plugging problems and poor reproducibility.
Newer electrospray systems generate a charged .[.spray.]. .Iadd.or ionized aerosol .Iaddend.through the combination of electrostatic forces and .[.an.]. assisted nebulization. The assisted nebulization .Iadd.generally .Iaddend.generates an aerosol from the HPLC .Iadd.column .Iaddend.effluent, while the electric field induces a charge on the droplets, which ultimately results in the generation of desolvated analyte ions via an ion evaporation process. The assisted nebulization can be done with pneumatic, ultrasonic, or thermal nebulization or by some other nebulization technique.
In each of these newer assisted nebulizer systems, it has been necessary to design the system so that the solvated droplets present in the .Iadd.electrosprayed .Iaddend.aerosol do not enter the vacuum system. This has been accomplished in several ways.
.Iadd.In conventional electrospray/nebulization mass spectrometry systems, the electrosprayed aerosol exiting from the nebulizer is sprayed directly towards the sampling orifice or other entry into the vacuum system such as a capillary. That is, the electrosprayed aerosol exiting from the nebulizer and the entry into the vacuum system are located along a common central axis, with the nebulizer effluent pointing directly at the entry into the vacuum system and with the nebulizer being considered to be located at an angle of zero (0) degrees relative to the common central axis..Iaddend.
.[.In one currently available system,.]. .Iadd.One previous approach directed at improving performance adjusts the aerosol to spray "off-axis". That is, .Iaddend.the aerosol is sprayed .[."off axis".]. .Iadd."off-axis".Iaddend. at an angle of as much as 45 degrees with respect to the .Iadd.central .Iaddend.axis of the sampling orifice. In addition, a counter current .[.drying.]. gas is .[.sprayed.]. .Iadd.passed .Iaddend.around the sampling orifice to blow the solvated droplets away from the orifice. The gas .[.pressures.]. .Iadd.velocities .Iaddend.typically used .[.generates.]. .Iadd.generate .Iaddend.a plume of small droplets and optimal performance appears to be limited to a flow rate of 200 microliters per minute or lower.
In another currently available system, an aerosol is generated pneumatically and aimed directly at the entrance of a heated capillary tube .Iadd.providing a passageway .Iaddend.into the vacuum system. Instead of desolvated ions entering the capillary, large charged droplets are drawn into the capillary and the droplets are desolvated while in transit. The evaporation process takes place in the capillary as well. A supersonic jet of vapor exits the capillary and the analyte ions are subsequently focused, mass analyzed and detected. There are several disadvantages to this system. The use of the high temperature capillary may result in thermal degradation of thermally labile samples. In the supersonic jet expansion, the desolvated ions and vapor may recondense.Iadd., .Iaddend.resulting in solvent clusters and background signals. While these clusters may be re-dissociated by collisionally induced processes, this may interfere in identification of structural characteristics of the analyte samples which are intentionally subjected to collisionally induced dissociation. The large amount of solvent vapor, ions and droplets exiting the capillary require that the detector be arranged substantially .[.off axis.]. .Iadd.off-axis .Iaddend.with respect to the capillary to avoid noise due to neutral droplets striking the .Iadd.mass analyzer and .Iaddend.detector. The additional solvent entering the vacuum .Iadd.system .Iaddend.requires larger .Iadd.capacity .Iaddend.pumps.
In another currently available system, the .[.spray.]. .Iadd.electrosprayed aerosol .Iaddend.is generated ultrasonically. The system is used in conjunction with a counter current drying gas and is usually operated with the .[.spray.]. .Iadd.aerosol .Iaddend.directed at the sampling capillary. The main disadvantages of this system, from the practitioner's point of view, are that optimal performance is effectively limited to less than 500 microliters per minute and .[.that.]. there are serious problems with aqueous mobile phases. Furthermore, the apparatus is complex and prone to mechanical and electronic failures.
In another commonly used system, a pneumatic nebulizer is used at substantially higher inlet pressures (as compared with other systems). This results in a highly collimated and directed .[.droplet beam.]. .Iadd.electrosprayed aerosol.Iaddend.. This .Iadd.aerosol .Iaddend.is aimed off-axis to the side of the orifice .[.in.]. .Iadd.and at .Iaddend.the nozzle cap. Although this works competitively, there is still some noise which is probably due to stray droplets. The .Iadd.aerosol exiting the .Iaddend.nebulizer .[.jet.]. has to be aimed carefully to minimize noise while maintaining signal intensity.
.Iadd.The invention relates to an apparatus for converting a liquid solute sample into ionized molecules, comprising:
a first passageway having a center axis, an orifice for accepting a liquid solute sample and an exit for discharging the liquid solute sample from the first passageway in the form of an electrosprayed aerosol containing ionized molecules;
an electrically conductive housing connected to a first voltage source and having an opening arranged adjacent to the first passageway exit; and
a second passageway arranged within the housing adjacent to the opening in the housing and connected to a second voltage source, the second passageway having a center axis, an orifice for receiving ionized molecules attracted from the electrosprayed aerosol and an exit, wherein the center axis of the second passageway is arranged in transverse relation to the center axis of the first passageway such that ionized molecules in the electrosprayed aerosol move laterally through the opening in the housing and thereafter pass into the second passageway under the influence of electrostatic attraction forces generated by the first and second voltage sources..Iaddend.
The invention provides the capability of conducting atmospheric pressure ionization.[.,.]. .Iadd.(.Iaddend.API.Iadd.).Iaddend., whether electrospray or atmospheric pressure chemical ionization (APCI), with conventional .[.High Performance Liquid Chromatography.]. .Iadd.high performance liquid chromatography .Iaddend.at flow rates of greater than 1 ml/minute without flow splitting. The invention allows desolvated ions to be separated from comparatively large volumes of .[.vaporized.]. .Iadd.electrosprayed .Iaddend.column effluent, and then, while keeping out as much of the solvent as possible, introducing the desolvated ions into the vacuum system for mass detection and analysis .[.while introducing as little of the solvent as possible.].. The invention provides the capability of separating desolvated ions of interest from the large volumes of vapor.[.,.]. and directing the desolvated ions from the electrospray (ES) chamber (which .Iadd.typically .Iaddend.operates at atmospheric pressure) to the mass spectrometer (which operates at 10-6 to 10-4 .[.Torr.]. .Iadd.torr.Iaddend.). The .Iadd.orthogonal .Iaddend.selection .Iadd.process .Iaddend.allows the introduction of ions without overwhelming the vacuum system and without sacrificing the sensitivity of the system, .[.because.]. .Iadd.since .Iaddend.the maximum amount of analyte is introduced into the vacuum system for mass analysis and detection.
Orthogonal ion sampling according to the present invention allows more efficient enrichment of the analyte by spraying the charged droplets .Iadd.in the electrosprayed aerosol .Iaddend.past a sampling orifice.Iadd., .Iaddend.while directing the solvent vapor and solvated droplets .Iadd.in the electrosprayed aerosol .Iaddend.away .[.in a direction such.]. .Iadd.from the sampling orifice so .Iaddend.that they do not enter the vacuum system.
The noise level in .[.an.]. .Iadd.a mass spectrometry .Iaddend.apparatus configured according to the present invention is reduced by as much as five fold over current systems, resulting in increased signal relative to noise.Iadd., and .Iaddend.hence.[.,.]. .Iadd.acheiving .Iaddend.greater sensitivity. Performance is simplified and the system .Iadd.is .Iaddend.more robust because optimization of .[.needle.]. .Iadd.the .Iaddend.position .Iadd.of the first passageway.Iaddend., gas flow and voltages show less sensitivity to small changes. The simplified performance and reduced need for optimization also result in a system less dependent .[.of.]. .Iadd.on .Iaddend.flow rate and mobile phase conditions. The reduced need for optimization extends to changing mobile phase flow rates and proportions. This means that the .Iadd.mass spectrometry .Iaddend.system can be run under a variety of conditions without adjustment.
Another benefit of the invention taught herein is simplified waste removal owing to the fact that the .[.spray.]. .Iadd.electrosprayed aerosol .Iaddend.can be aimed directly at a waste line and be easily removed from the system. Furthermore, the present invention provides the option of eliminating high voltage elements with no loss of sensitivity.
FIG. 1 is a representation of an apparatus according to the present invention.
FIG. 2 is a representation of an alternate embodiment of an apparatus according to the present invention.
FIG. 3 is a representation of an alternate embodiment of an apparatus according to the present invention.
FIG. 4 is a representation of an alternate embodiment of an apparatus according to the present invention.
FIG. 1 depicts an apparatus 10 configured according to the current invention. As in conventional sample introduction, a liquid sample is conducted through .[.the.]. .Iadd.a .Iaddend.nebulizer .[.with.]. .Iadd.having .Iaddend.a first passageway 14, .Iadd.the liquid sample .Iaddend.exiting a second orifice or exit .Iadd.15 .Iaddend.of the first passageway .[.15.]. .Iadd.14 .Iaddend.under conditions which create a vapor of charged .Iadd.or ionized .Iaddend.droplets or .[."electrospray".]. .Iadd.electrosprayed aerosol .Iaddend.11. The invention provides a rather different electrospray particle transport as compared with conventional electrospray .Iadd.processes.Iaddend.. FIG. 1 depicts the transport of the .[.electrospray.]. droplets .Iadd.in the electrosprayed aerosol 11 .Iaddend.from the second orifice exit .Iadd.15 .Iaddend.of the first passageway .[.15.]. .Iadd.14.Iaddend., through the distance to the entrance .Iadd.or opening 17 .Iaddend.of the second passageway .[.17.]. .Iadd.22.Iaddend., and entering the second passageway .[.18.]. .Iadd.22 .Iaddend.where the orientation angle θ of the .Iadd.center .Iaddend.axis of the exiting .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.11 and .Iadd.the center axis of .Iaddend.the second passageway 22 is between 75 degrees and 105 degrees relative to each other. The angle may be greater than 105, in principle as great as 180; best results have been obtained at settings at or near 90 degrees. .Iadd.(As shown in FIG. 1, the angle θ defines the location of the first passageway 14, that is, the nebulizer or other source of electrosprayed aerosol 11, relative to the second passageway 22, that is, the entry into the vacuum system. The angle θ is considered to be zero (0) degrees when the exit 15 for the electrosprayed aerosol 11 and the center axis of the first passageway 14 are pointing directly at the entrance 17 and the center axis of the second passageway 22. The angle θ is considered to be 180 degrees when the exit 15 for the electrosprayed aerosol 11 and the center axis of the first passageway 14 are pointing directly away from the entrance 17 and the center axis of the second passageway 22). .Iaddend.The charged droplets .Iadd.forming the electrosprayed aersol 11 .Iaddend.are electrostatically attracted laterally across the gap between the exit .Iadd.15 .Iaddend.of the first passageway .[.15.]. .Iadd.14 .Iaddend.into the opening .Iadd.17 .Iaddend.of the second passageway .[.17.]. .Iadd.22.Iaddend.. The electrostatic attraction is generated by attaching voltage sources to components of the apparatus. A first voltage source .[.16.]. .Iadd.V1 .Iaddend.is connected to a housing 19 which houses the second passageway 22. The housing .Iadd.19 .Iaddend.is not necessarily an enclosure but may be .[.in.]. any shape that can act as a guide for the ions and can support fluid dynamics of a drying gas (see below discussion). A second voltage source .[.18.]. .Iadd.V2 .Iaddend.is connected to the second passageway 22. The first passageway 14 is generally kept at ground .Iadd.potential.Iaddend..
In the course of crossing the gap and approaching the entrance .Iadd.17 .Iaddend.to the second passageway 22, especially after passing through an opening 21 in the housing 19 containing the second passageway 22, the .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.is subjected to the cross flow of a gas 20--a condition that operates to remove solvent from the droplets, thereby leaving .[.small.]. charged .[.droplets.]. .Iadd.particles or ions.Iaddend.. The .[.small droplets.]. .Iadd.ions .Iaddend.are amenable to analysis by operation of an analytic instrument capable of detecting and measuring mass and charge of particles such as a mass spectrometer (not shown). The second passageway .Iadd.22 .Iaddend.exits into the mass spectrometer or equivalent instrument.
A standard electrospray .Iadd.MS .Iaddend.system (HP 5989) with a pneumatic nebulizer provides the base structure. A spray box 12 of plexiglass or some other suitable material for preventing shock and containing noxious vapors replaces the standard spray chamber. Within the spray box 12, the nebulizer .Iadd.containing the first passageway .Iaddend.14 may be arranged in a variety of configurations.Iadd., .Iaddend.so long as the .[.distance.]. .Iadd.distances .Iaddend.between the separate high voltage .[.points is.]. .Iadd.sources are .Iaddend.sufficient to prevent discharges. Additional surfaces at high voltage may be used to shape the electrical fields experienced by the .[.spray.]. .Iadd.electrosprayed aerosol.Iaddend.. In the embodiment depicted in FIG. 1, the system includes a .[.drying.]. gas 20 to aid desolvation and prevent .[.spray.]. droplets .Iadd.in the electrosprayed aerosol .Iaddend.11 from entering the .[.orifice.]. .Iadd.opening 17 .Iaddend.of the second passageway .[.17.]. .Iadd.22 .Iaddend.and the vacuum system (not shown). An alternate embodiment could include a heated capillary as the second passageway 22 in an internal source off-axis geometry, such that the capillary is off-axis with respect to .[.quadropole.]. .Iadd.the analyzer (such as a quadrupole) .Iaddend.and detector components.
The .Iadd.positive ion .Iaddend.configuration shown in FIG. 1 .[.generally.]. .Iadd.typically .Iaddend.has the second voltage source .[.18.]. .Iadd.V2 .Iaddend.set .[.typically.]. at -4.5 kV, .[.and.]. the first voltage source .[.16.]. .Iadd.V1 set .Iaddend.at -4 kV, and the first passageway 14 generally comprising a needle .Iadd.set .Iaddend.at ground .Iadd.potential.Iaddend.. Gas, usually nitrogen at nominally 200 degree to 400 .[°]. .Iadd.degrees .Iaddend.Centigrade and approximately 10 standard .[.liter.]. .Iadd.liters .Iaddend.per minute, is typically used as a cross flow .[.drying.]. gas .Iadd.20.Iaddend., although other gases can be used. The .[.drying.]. gas 20 flows across the aperture at approximately 90 degrees to the axis of the .[.incoming.]. charged molecules .Iadd.in the electrosprayed aerosol.Iaddend..
The term "passageway", as used .[.in this application.]. .Iadd.herein with respect to the second passageway.Iaddend., means "ion guide" in any form .[.whatever.]. .Iadd.whatsoever.Iaddend.. It is possible that the passageway .[.be.]. .Iadd.is .Iaddend.of such short length relative to .Iadd.the .Iaddend.opening diameter that it may be called an orifice. Other ion guides, including capillaries, which are or may come to be used.Iadd., .Iaddend.can operate in the invention. The configurations herein are not meant to be restrictive, and those skilled in the art will see possible configurations not specifically mentioned here but which are included in the teaching and claims of this invention.
A number of different configurations have .[.proved.]. .Iadd.been proven .Iaddend.possible. Examples of certain tested configurations follow.
FIG. 2 shows a configuration of the invention in which a third voltage source, .[.a plate 29.]. .Iadd.V3, .Iaddend.is positioned beside the exit .Iadd.15 .Iaddend.of the first passageway .[.15.]. .Iadd.14 .Iaddend.and distal to the side near to which the first voltage source .[.16.]. .Iadd.V1 .Iaddend.and opening .Iadd.17 .Iaddend.to the second passageway .[.cavity 17.]. .Iadd.22 .Iaddend.are positioned. The .[.plate 29 runs.]. .Iadd.third voltage source V3 provides .Iaddend.a positive voltage relative to the first voltage source .[.16.]. .Iadd.V1.Iaddend.. Experiments show .Iadd.that .Iaddend.the .[.charged droplet electrospray.]. .Iadd.electrosprayed aerosol .Iaddend."sees" a mean voltage between the plate .[.29.]. .Iadd.24 .Iaddend.and the charged housing 19. Results suggest that the repeller effect may be captured and ion collection yield increased by careful sculpting of both the electric field and the gas flow patterns.
FIG. 3 shows a two voltage source system as in FIG. 2 .[.with the addition of a grounded spray chamber 26.]. .Iadd.wherein V3 is at ground potential.Iaddend.. The spray chamber 26 operates to contain the .Iadd.electrosprayed .Iaddend.aerosol and route condensed vapor to waste.
FIG. 4 shows the addition of a ring-shaped electrode .[.28.]. .Iadd.or fourth voltage source V4 .Iaddend.encircling the .[.flow.]. .Iadd.electrosprayed aerosol .Iaddend.exiting from the needle or first passageway 14 at ground, with all of the elements configured as in FIG. 3. The ring-shaped electrode .[.28.]. .Iadd.or fourth voltage source V4 .Iaddend.induces a charge in the droplets by virtue of the potential difference in charge between the droplets and the ring-shaped electrode .[.28.]. .Iadd.or fourth voltage source V4.Iaddend.. Other potentials in the system can be used to direct the sampling of ions.
Claims (26)
1. An apparatus for converting a .Iadd.liquid .Iaddend.solute .[.sampled.]. .Iadd.sample .Iaddend.into ionized molecules, comprising:
a first passageway having a center axis, an orifice for accepting a .Iadd.liquid .Iaddend.solute sample and an exit for discharging the .Iadd.liquid solute .Iaddend.sample from the .Iadd.first .Iaddend.passageway in the form of an .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.containing .[.charged.]. .Iadd.ionized .Iaddend.molecules;
an electrically conductive housing connected to a first voltage source and having an opening arranged adjacent to the first passageway exit; and
a second passageway arranged within the housing adjacent to the opening .Iadd.in the housing .Iaddend.and connected to a second voltage source, the second passageway having a center axis, an orifice for receiving .[.charged.]. .Iadd.ionized .Iaddend.molecules attracted from the .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.and an exit, wherein the center axis of the second passageway is arranged in transverse relation to the center axis of the first passageway such that .[.charged.]. .Iadd.ionized .Iaddend.molecules in the .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.move laterally through the opening in the housing and thereafter pass into the second passageway under the influence of electrostatic attraction forces generated by the first and second voltage sources.Iadd.; wherein an angle formed between the center axis of the first passageway and the center axis of the second passageway is between about 75 degrees and 105 degrees.Iaddend..
2. The apparatus of claim 1 wherein .[.an.]. .Iadd.the .Iaddend.angle formed between the center axis of the first passageway and the center axis of the second passageway is .[.greater than 75 degrees and less than or equal to 180.]. .Iadd.about 90 .Iaddend.degrees.
3. The apparatus of claim .[.2.]. .Iadd.1 .Iaddend.further comprising means for directing a stream of a drying gas in front of the orifice of the second passageway such that .Iadd.ionized .Iaddend.molecules passing though the opening in the housing encounter the stream of drying gas before entering the second passageway.
4. The apparatus of claim 3 wherein the first and second voltage sources provide a voltage difference, whereby the difference urges the .[.charged.]. .Iadd.ionized .Iaddend.molecules through the opening in the housing, across the stream of drying gas, and into the second passageway orifice.
5. The apparatus of claim 4 further comprising a third voltage source arranged adjacent to the exit of the first passageway, wherein the .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.discharged from the first passageway is interposed between the third voltage source and the housing.
6. The apparatus of claim 3 wherein the first passageway comprises a needle and the second passageway comprises a capillary.
7. The apparatus of claim 6 wherein the .[.second passageway.]. .Iadd.capillary .Iaddend.is heated.
8. The apparatus of claim 3 wherein the second passageway comprises an orifice.
9. The apparatus of claim 1 further comprising an analytical apparatus in fluid communication with the second passageway exit, wherein the housing is interposed between the first passageway and the analytical apparatus.
10. The apparatus of claim 9 wherein the analytical apparatus is capable of detecting and measuring the mass .[.and.]..Iadd.-to-.Iaddend.charge of .Iadd.ionized .Iaddend.molecules which have been communicated from the second passageway exit into the analytical apparatus.
11. The apparatus of claim 10 wherein the analytical apparatus comprises a mass spectrometer.
12. The apparatus of claim 11 further comprising means for directing a stream of a drying gas in front of the second passageway orifice such that .Iadd.ionized .Iaddend.molecules passing through the opening in the housing encounter the stream of drying gas before entering the second passageway.
13. The apparatus of claim 12 wherein the first and second voltage sources provide a voltage difference, whereby the difference urges the .[.charged.]. .Iadd.ionized .Iaddend.molecules through the opening in the housing, across the stream of drying gas, and into the second passageway orifice.
14. The apparatus of claim 13 further comprising a third voltage source arranged adjacent to the exit of the first passageway, wherein the .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.discharged from the first passageway is interposed.[.,.]. between the third voltage source and the housing.
15. The apparatus of claim 12 wherein the first passageway comprises a needle and the second passageway comprises a capillary.
16. The apparatus of claim 15 wherein the .[.second passageway.]. .Iadd.capillary .Iaddend.is heated.
17. The apparatus of claim 12 wherein the second passageway comprises an orifice.
18. The apparatus of claim 4 further comprising a third voltage source arranged adjacent to the exit of the first passageway, wherein the third voltage source has an annular configuration and is positioned.[.,.]. such that the .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.discharged from the first passageway is encircled by the third voltage source.
19. The apparatus of claim 13 further comprising a third voltage source arranged adjacent to the exit of the first passageway, wherein the third voltage source has an annular configuration and is positioned such that the .[.electrospray.]. .Iadd.electrosprayed aerosol .Iaddend.discharged from the first passageway is encircled by the third voltage source. .Iadd.20. An apparatus for converting a liquid solute sample into charged molecules, comprising:
a first passageway having an exit for discharging an aerosol containing charged molecules, wherein said aerosol containing charged molecules has a center axis;
a second passageway for receiving said charged molecules from said first passageway, said second passageway having an entrance having a center axis, and arranged a distance from said exit of said first passageway, wherein an angle formed between said center axis of said aerosol containing charged molecules exiting said first passageway and said center axis of said entrance of said second passageway is about 75 degrees to about 105 degrees; and
a housing adjacent to said second passageway wherein a voltage source is connected to said housing..Iaddend..Iadd.21. The apparatus of claim 20 wherein a voltage source is connected to a passageway..Iaddend..Iadd.22. The apparatus of claim 20 wherein said angle is about 90
degrees..Iaddend..Iadd.23. The apparatus of claim 20 further comprising a gas source..Iaddend..Iadd.24. The apparatus of claim 20 wherein said second passageway for receiving said charged molecules from said first passageway is arranged so that said aerosol exiting from said first passageway substantially passes by said entrance of said second passageway..Iaddend..Iadd.25. The apparatus of claim 20 wherein said second passageway is arranged so that said charged molecules entering said entrance of said second passageway are substantially separated from said liquid solute of said sample..Iaddend..Iadd.26. The apparatus of claim 20 wherein said second passageway is arranged so that portions of said sample entering said entrance of said second passageway are substantially enriched in said charged molecules relative to said liquid solute of said sample..Iaddend..Iadd.27. The apparatus of claim 20 wherein said housing adjacent to said second passageway provides for directing a stream of a gas in front of said entrance of said second passageway and toward said
aerosol..Iaddend..Iadd.28. The apparatus of claim 20 wherein a voltage source is connected to said first passageway, and said second passageway is at about ground potential..Iaddend..Iadd.29. The apparatus of claim 20 wherein a voltage source is connected to said second passageway, and said first passageway is at about ground potential..Iaddend..Iadd.30. The apparatus of claim 20 further comprising a second voltage source connected to an electrically conductive element for establishing a second electric field for creating an electrostatic force that influences said charged molecules in said aerosol to move in the direction of said entrance of said second passageway..Iaddend..Iadd.31. The apparatus of claim 20 wherein said first passageway comprises a needle..Iaddend..Iadd.32. The apparatus of claim 20 wherein said first passageway comprises a capillary..Iaddend..Iadd.33. The apparatus of claim 20 wherein said second passageway comprises a capillary..Iaddend..Iadd.34. The apparatus of claim 33 wherein said capillary is heated..Iaddend..Iadd.35. The apparatus of claim 20 wherein said second passageway comprises an orifice..Iaddend..Iadd.36. The apparatus of claim 20 further comprising an annular electrically conductive element encircling a portion of said first passageway and a second voltage source connected thereto for creating an electrostatic force that influences said charged molecules in said aerosol to move in the direction of said entrance of said second passageway..Iaddend..Iadd.37. An apparatus for converting a liquid solute sample into charged molecules, comprising:
a first passageway having an exit for discharging an aerosol containing charged molecules, wherein said aerosol containing charged molecules has a center axis;
a second passageway for receiving said charged molecules from said first passageway, said second passageway having an entrance having a center axis, and arranged a distance from said exit of said first passageway, wherein an angle formed between said center axis of said aerosol containing charged molecules exiting said first passageway and said center axis of said entrance of said second passageway is about 75 degrees to about 105 degrees; and
an electrically conductive element connected to a voltage source, wherein said element is arranged adjacent to said exit of said first passageway, wherein said aerosol exiting said first passageway is interposed between said element and said entrance of said second passageway..Iaddend..Iadd.38. The apparatus of claim 37 wherein said
element is a plate..Iaddend..Iadd.39. The apparatus of claim 20 and further comprising an analytical instrument in fluid communication with an exit of said second passageway..Iaddend..Iadd.40. The apparatus of claim 39 wherein said analytical instrument is capable of detecting and measuring the mass-to-charge ratio of said charged molecules..Iaddend..Iadd.41. The apparatus of claim 40 wherein said analytical instrument comprises a mass spectrometer..Iaddend..Iadd.42. The apparatus of claim 20 wherein a voltage source is connected to said first passageway, and wherein said voltage sources are at different potentials..Iaddend..Iadd.43. The apparatus of claim 20 wherein a voltage source is connected to said second passageway, and wherein said voltage sources are at different potentials..Iaddend..Iadd.44. An apparatus for converting a liquid solute sample into charged molecules, comprising:
a first passageway having an exit for discharging an aerosol containing charged molecules, wherein said exit of said first passageway has a center axis;
a second passageway for receiving said charged molecules attracted from said first passageway, said second passageway having an entrance having a center axis, and arranged a distance from said exit of said first passageway, wherein an angle formed between said center axis of said exit of said first passageway and said center axis of said entrance of said second passageway is about 75 degrees to about 105 degrees; and
a housing adjacent to said second passageway wherein a voltage source is connected to said housing..Iaddend..Iadd.45. The apparatus of claim 44 wherein a voltage source is connected to a passageway..Iaddend..Iadd.46. The apparatus of claim 44 wherein said angle is about 90 degrees..Iaddend..Iadd.47. The apparatus of claim 44 further comprising a gas source..Iaddend..Iadd.48. The apparatus of claim 44 wherein said second passageway for receiving said charged molecules from said first passageway is arranged so that said aerosol exiting from said first passageway substantially passes by said entrance of said second passageway..Iaddend..Iadd.49. The apparatus of claim 44 wherein said second passageway is arranged so that said charged molecules entering said entrance of said second passageway are substantially separated from said
liquid solute of said sample..Iaddend..Iadd.50. The apparatus of claim 44 wherein said second passageway is arranged so that portions of said sample entering said entrance of said second passageway are substantially enriched in said charged molecules relative to said liquid solute of said sample..Iaddend..Iadd.51. The apparatus of claim 44 further comprising a housing wherein said housing adjacent to said second passageway provides for directing a stream of a gas in front of said entrance of said second passageway and toward said aerosol..Iaddend..Iadd.52. The apparatus of claim 44 wherein a voltage source is connected to said first passageway and said second passageway is at about ground potential..Iaddend..Iadd.53. The apparatus of claim 44 wherein a voltage source is connected to said second passageway and said first passageway is at about ground potential..Iaddend..Iadd.54. The apparatus of claim 44 further comprising a second voltage source connected to an electrically conductive element for establishing a second electric field for creating an electrostatic force that influences said charged molecules in said aerosol to move in the direction of said entrance of said second
passageway..Iaddend..Iadd. The apparatus of claim 44 wherein said first passageway comprises a needle..Iaddend..Iadd.56. The apparatus of claim 44 wherein said first passageway comprises a capillary..Iaddend..Iadd.57. The apparatus of claim 44 wherein said second passageway comprises a capillary..Iaddend..Iadd.58. The apparatus of claim 57 wherein said capillary is heated..Iaddend..Iadd.59. The apparatus of claim 44 wherein said second passageway comprises an orifice..Iaddend..Iadd.60. The apparatus of claim 44 further comprising an annular electrically conductive element encircling a portion of said first passageway and a second voltage source connected thereto for creating an electrostatic force that influences said charged molecules in said aerosol to move in the direction of said entrance of said second passageway..Iaddend..Iadd.61. The apparatus of claim 44 further comprising an analytical instrument in fluid communication with an exit of said
second passageway..Iaddend..Iadd.62. The apparatus of claim 61 wherein said analytical instrument is capable of detecting and measuring the mass-to-charge ratio of said charged molecules..Iaddend..Iadd.63. The apparatus of claim 62 wherein said analytical instrument comprises a mass spectrometer..Iaddend..Iadd.64. The apparatus of claim 44 wherein a voltage source is connected to said first passageway, and wherein said voltage sources are at different potentials..Iaddend..Iadd.65. The apparatus of claim 44 wherein a voltage source is connected to said second passageway, and wherein said voltage sources are at different
potentials..Iaddend..Iadd.66. An apparatus for converting a liquid solute sample into charged molecules, comprising:
a first passageway having an exit for discharging an aerosol containing charged molecules, wherein said exit of said first passageway has a center axis;
a second passageway for receiving said charged molecules attracted from said first passageway, said second passageway having an entrance having a center axis, and arranged a distance from said exit of said first passageway, wherein an angle formed between said center axis of said exit of said first passageway and said center axis of said entrance of said second passageway is about 75 degrees to about 105 degrees; and
an electrically conductive element connected to a voltage source, wherein said element is arranged adjacent to said exit of said first passageway, wherein said aerosol exiting said first passageway is interposed between said element and said entrance of said second passageway..Iaddend..Iadd.67. The apparatus of claim 66 wherein said element is a plate..Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/792,303 USRE36892E (en) | 1994-07-11 | 1997-01-31 | Orthogonal ion sampling for electrospray .[.LC/MS.]. mass spectrometry |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/273,250 US5495108A (en) | 1994-07-11 | 1994-07-11 | Orthogonal ion sampling for electrospray LC/MS |
US08/792,303 USRE36892E (en) | 1994-07-11 | 1997-01-31 | Orthogonal ion sampling for electrospray .[.LC/MS.]. mass spectrometry |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/273,250 Reissue US5495108A (en) | 1994-07-11 | 1994-07-11 | Orthogonal ion sampling for electrospray LC/MS |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE36892E true USRE36892E (en) | 2000-10-03 |
Family
ID=23043172
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/273,250 Ceased US5495108A (en) | 1994-07-11 | 1994-07-11 | Orthogonal ion sampling for electrospray LC/MS |
US08/792,303 Expired - Fee Related USRE36892E (en) | 1994-07-11 | 1997-01-31 | Orthogonal ion sampling for electrospray .[.LC/MS.]. mass spectrometry |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/273,250 Ceased US5495108A (en) | 1994-07-11 | 1994-07-11 | Orthogonal ion sampling for electrospray LC/MS |
Country Status (3)
Country | Link |
---|---|
US (2) | US5495108A (en) |
EP (1) | EP0692713A1 (en) |
JP (1) | JPH0854372A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002075279A1 (en) * | 2001-03-15 | 2002-09-26 | Tsi Incorporated | Evaporative electrical detector |
US20030017611A1 (en) * | 2001-07-13 | 2003-01-23 | Vanatta Lynn E. | Method for the determination of low-concentration anions in the presence of an excess of another anion |
US6593568B1 (en) * | 1996-09-10 | 2003-07-15 | Craig M. Whitehouse | Atmospheric pressure ion sources |
US6653626B2 (en) | 1994-07-11 | 2003-11-25 | Agilent Technologies, Inc. | Ion sampling for APPI mass spectrometry |
US20040011953A1 (en) * | 2000-05-22 | 2004-01-22 | Chen David D.Y. | Atmospheric pressure ion lens for generating a larger and more stable ion flux |
US20040206901A1 (en) * | 2001-04-20 | 2004-10-21 | Chen David D.Y. | High throughput ion source with multiple ion sprayers and ion lenses |
US20050029442A1 (en) * | 2003-07-24 | 2005-02-10 | Zoltan Takats | Electrosonic spray ionization method and device for the atmospheric ionization of molecules |
US20060057556A1 (en) * | 2002-10-21 | 2006-03-16 | The Government Of The United States Of America Department Of Health And Human Services | Contiguous capillary electrospray sources and analytical devices |
US20070023677A1 (en) * | 2005-06-29 | 2007-02-01 | Perkins Patrick D | Multimode ionization source and method for screening molecules |
US20080067355A1 (en) * | 2006-05-25 | 2008-03-20 | Gangqiang Li | Mass spectrometer interface for atmospheric ionization ion sources |
US20090114218A1 (en) * | 2006-04-13 | 2009-05-07 | Ada Technologies, Inc. | Electrotherapeutic treatment device and method |
US20100238444A1 (en) * | 2007-12-05 | 2010-09-23 | Anderson Jr James M | Methods and apparatus for analyzing samples and collecting sample fractions |
US8305582B2 (en) | 2009-09-01 | 2012-11-06 | Alltech Associates, Inc. | Methods and apparatus for analyzing samples and collecting sample fractions |
US9086422B2 (en) | 2008-12-10 | 2015-07-21 | Alltech Associates, Inc. | Chromatography systems and system components |
US9133833B2 (en) | 2008-12-04 | 2015-09-15 | Alltech Associates, Inc. | Methods and apparatus for moving aliquot samples of fluid |
US10734214B2 (en) | 2016-09-21 | 2020-08-04 | Human Metabolome Technologies, Inc. | Ion source adapter |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5750988A (en) * | 1994-07-11 | 1998-05-12 | Hewlett-Packard Company | Orthogonal ion sampling for APCI mass spectrometry |
US6294779B1 (en) * | 1994-07-11 | 2001-09-25 | Agilent Technologies, Inc. | Orthogonal ion sampling for APCI mass spectrometry |
JP3274302B2 (en) | 1994-11-28 | 2002-04-15 | 株式会社日立製作所 | Mass spectrometer |
GB9525507D0 (en) * | 1995-12-14 | 1996-02-14 | Fisons Plc | Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source |
US5868322A (en) * | 1996-01-31 | 1999-02-09 | Hewlett-Packard Company | Apparatus for forming liquid droplets having a mechanically fixed inner microtube |
US5672868A (en) * | 1996-02-16 | 1997-09-30 | Varian Associates, Inc. | Mass spectrometer system and method for transporting and analyzing ions |
US5753910A (en) * | 1996-07-12 | 1998-05-19 | Hewlett-Packard Company | Angled chamber seal for atmospheric pressure ionization mass spectrometry |
US5726448A (en) * | 1996-08-09 | 1998-03-10 | California Institute Of Technology | Rotating field mass and velocity analyzer |
US5838003A (en) * | 1996-09-27 | 1998-11-17 | Hewlett-Packard Company | Ionization chamber and mass spectrometry system containing an asymmetric electrode |
GB2324906B (en) * | 1997-04-29 | 2002-01-09 | Masslab Ltd | Ion source for a mass analyser and method of providing a source of ions for analysis |
US6207954B1 (en) * | 1997-09-12 | 2001-03-27 | Analytica Of Branford, Inc. | Multiple sample introduction mass spectrometry |
WO1999019899A1 (en) * | 1997-10-15 | 1999-04-22 | Analytica Of Branford, Inc. | Curved introduction for mass spectrometry |
US6139734A (en) * | 1997-10-20 | 2000-10-31 | University Of Virginia Patent Foundation | Apparatus for structural characterization of biological moieties through HPLC separation |
CN100435900C (en) * | 1998-09-17 | 2008-11-26 | 阿德文生物科学公司 | Liquid chromatography system, chemical separating arrangement and apparatus and method for mass spectrometric analysis |
US6633031B1 (en) * | 1999-03-02 | 2003-10-14 | Advion Biosciences, Inc. | Integrated monolithic microfabricated dispensing nozzle and liquid chromatography-electrospray system and method |
US6410914B1 (en) | 1999-03-05 | 2002-06-25 | Bruker Daltonics Inc. | Ionization chamber for atmospheric pressure ionization mass spectrometry |
US6911650B1 (en) | 1999-08-13 | 2005-06-28 | Bruker Daltonics, Inc. | Method and apparatus for multiple frequency multipole |
CA2395694C (en) | 1999-12-30 | 2006-11-21 | Advion Biosciences, Inc. | Multiple electrospray device, systems and methods |
AU2001229633A1 (en) * | 2000-01-18 | 2001-07-31 | Advion Biosciences, Inc. | Separation media, multiple electrospray nozzle system and method |
US6627880B2 (en) | 2000-02-17 | 2003-09-30 | Agilent Technologies, Inc. | Micro matrix ion generator for analyzers |
US6967324B2 (en) * | 2000-02-17 | 2005-11-22 | Agilent Technologies, Inc. | Micro matrix ion generator for analyzers |
US6794644B2 (en) * | 2000-02-18 | 2004-09-21 | Melvin A. Park | Method and apparatus for automating an atmospheric pressure ionization (API) source for mass spectrometry |
US6777672B1 (en) * | 2000-02-18 | 2004-08-17 | Bruker Daltonics, Inc. | Method and apparatus for a multiple part capillary device for use in mass spectrometry |
US6787764B2 (en) | 2000-02-18 | 2004-09-07 | Bruker Daltonics, Inc. | Method and apparatus for automating a matrix-assisted laser desorption/ionization (MALDI) mass spectrometer |
US6809312B1 (en) | 2000-05-12 | 2004-10-26 | Bruker Daltonics, Inc. | Ionization source chamber and ion beam delivery system for mass spectrometry |
GB0021902D0 (en) | 2000-09-06 | 2000-10-25 | Kratos Analytical Ltd | Ion optics system for TOF mass spectrometer |
US6627883B2 (en) * | 2001-03-02 | 2003-09-30 | Bruker Daltonics Inc. | Apparatus and method for analyzing samples in a dual ion trap mass spectrometer |
US6642526B2 (en) * | 2001-06-25 | 2003-11-04 | Ionfinity Llc | Field ionizing elements and applications thereof |
US6649908B2 (en) | 2001-09-20 | 2003-11-18 | Agilent Technologies, Inc. | Multiplexing capillary array for atmospheric pressure ionization-mass spectrometry |
WO2003038086A1 (en) * | 2001-10-31 | 2003-05-08 | Ionfinity Llc | Soft ionization device and applications thereof |
JP2003331776A (en) * | 2002-05-10 | 2003-11-21 | Hitachi Ltd | Ion source, mass spectroscope and mass spectrometry |
KR100890579B1 (en) * | 2002-08-19 | 2009-04-27 | 프로테온 주식회사 | Method for preparation of recombinant protein using RNA binding protein as fusion partner |
US6794647B2 (en) | 2003-02-25 | 2004-09-21 | Beckman Coulter, Inc. | Mass analyzer having improved mass filter and ion detection arrangement |
US6997031B2 (en) | 2003-05-01 | 2006-02-14 | Waters Corporation | Fraction collector for composition analysis |
US7186972B2 (en) * | 2003-10-23 | 2007-03-06 | Beckman Coulter, Inc. | Time of flight mass analyzer having improved mass resolution and method of operating same |
WO2006041487A2 (en) | 2004-10-07 | 2006-04-20 | Waters Investments Limited | Hplc capillary column device |
US20060255261A1 (en) * | 2005-04-04 | 2006-11-16 | Craig Whitehouse | Atmospheric pressure ion source for mass spectrometry |
WO2009124298A2 (en) | 2008-04-04 | 2009-10-08 | Agilent Technologies, Inc. | Ion sources for improved ionization |
RU2451364C1 (en) * | 2010-11-10 | 2012-05-20 | Учреждение Российской академии наук Институт аналитического приборостроения Российской академии наук (ИАП РАН) | Apparatus for orthogonal input of ions into ion-drift or mass-spectrometer |
GB2499681B (en) * | 2011-04-20 | 2016-02-10 | Micromass Ltd | Atmospheric pressure ion source by interacting high velocity spray with a target |
US8698075B2 (en) * | 2011-05-24 | 2014-04-15 | Battelle Memorial Institute | Orthogonal ion injection apparatus and process |
RU2530783C2 (en) * | 2012-04-27 | 2014-10-10 | Федеральное государственное бюджетное учреждение науки Институт аналитического приборостроения Российской академии наук (ИАП РАН) | Apparatus for electrospraying chromatographic streams of test solutions of substances for ion sources |
US9851333B2 (en) | 2013-05-29 | 2017-12-26 | Dionex Corporation | Nebulizer for charged aerosol detection (CAD) system |
RU2612324C2 (en) * | 2014-10-20 | 2017-03-07 | Общество с ограниченной ответственностью "Альфа" (ООО "Альфа") | Method of continuous stable electric spraying of solutions in source of ions at atmospheric pressure |
RU2587679C2 (en) * | 2014-11-14 | 2016-06-20 | Федеральное государственное унитарное предприятие Научно-технический центр радиационно-химической безопасности и гигиены ФМБА России | Device for continuous stable electric spraying of solutions in source of ions at atmospheric pressure |
RU2608361C2 (en) * | 2015-06-04 | 2017-01-18 | Общество с ограниченной ответственностью "Альфа" (ООО "Альфа") | Device for formation of drop-free ion flow at electrospraying of analyzed solutions in ion sources with atmospheric pressure |
RU2733530C1 (en) * | 2019-06-27 | 2020-10-05 | Федеральное государственное бюджетное учреждение науки Институт аналитического приборостроения Российской академии наук | Apparatus for depositing nanoparticles of metal oxides on a metal surface under normal conditions |
US11340200B2 (en) * | 2020-03-08 | 2022-05-24 | The Board Of Regents Of The University Of Oklahoma | Electrospray assisted capillary device for processing ultra low-volume samples |
Citations (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34757A (en) * | 1862-03-25 | Improved composition for manufacture of moldings and other purposes | ||
US3867631A (en) * | 1972-09-28 | 1975-02-18 | Varian Associates | Leak detection apparatus and inlet interface |
JPS5266488A (en) * | 1975-11-28 | 1977-06-01 | Hitachi Ltd | Mass spectrometer directly connected with gas chromatography |
US4137750A (en) * | 1975-03-03 | 1979-02-06 | The Governing Council Of The University Of Toronto | Method and apparatus for analyzing trace components using a gas curtain |
US4209696A (en) * | 1977-09-21 | 1980-06-24 | Fite Wade L | Methods and apparatus for mass spectrometric analysis of constituents in liquids |
US4300044A (en) * | 1980-05-07 | 1981-11-10 | Iribarne Julio V | Method and apparatus for the analysis of chemical compounds in aqueous solution by mass spectroscopy of evaporating ions |
JPS59845A (en) * | 1982-06-28 | 1984-01-06 | Toshiba Corp | Sample introducing device of mass spectrometer |
WO1985002490A1 (en) * | 1983-11-22 | 1985-06-06 | Prutec Limited | Introduction of samples into a mass spectrometer |
US4531056A (en) * | 1983-04-20 | 1985-07-23 | Yale University | Method and apparatus for the mass spectrometric analysis of solutions |
US4542293A (en) * | 1983-04-20 | 1985-09-17 | Yale University | Process and apparatus for changing the energy of charged particles contained in a gaseous medium |
US4546253A (en) * | 1982-08-20 | 1985-10-08 | Masahiko Tsuchiya | Apparatus for producing sample ions |
US4641541A (en) * | 1986-02-11 | 1987-02-10 | Daryl Sharp | Internal mass spectrometer interface to a gas chromatograph |
US4667100A (en) * | 1985-04-17 | 1987-05-19 | Lagna William M | Methods and apparatus for mass spectrometric analysis of fluids |
US4746068A (en) * | 1986-10-29 | 1988-05-24 | Hewlett-Packard Company | Micro-nebulizer for analytical instruments |
JPH01146242A (en) * | 1987-12-02 | 1989-06-08 | Hitachi Ltd | Mass spectrometer |
US4842701A (en) * | 1987-04-06 | 1989-06-27 | Battelle Memorial Institute | Combined electrophoretic-separation and electrospray method and system |
US4851700A (en) * | 1988-05-16 | 1989-07-25 | Goodley Paul C | On-axis electron acceleration electrode for liquid chromatography/mass spectrometry |
US4861988A (en) * | 1987-09-30 | 1989-08-29 | Cornell Research Foundation, Inc. | Ion spray apparatus and method |
US4885076A (en) * | 1987-04-06 | 1989-12-05 | Battelle Memorial Institute | Combined electrophoresis-electrospray interface and method |
US4935624A (en) * | 1987-09-30 | 1990-06-19 | Cornell Research Foundation, Inc. | Thermal-assisted electrospray interface (TAESI) for LC/MS |
US4960991A (en) * | 1989-10-17 | 1990-10-02 | Hewlett-Packard Company | Multimode ionization source |
US4977320A (en) * | 1990-01-22 | 1990-12-11 | The Rockefeller University | Electrospray ionization mass spectrometer with new features |
US4977785A (en) * | 1988-02-19 | 1990-12-18 | Extrel Corporation | Method and apparatus for introduction of fluid streams into mass spectrometers and other gas phase detectors |
US4982097A (en) * | 1989-05-19 | 1991-01-01 | Battelle Memorial Institute | Vaporization device for continuous introduction of liquids into a mass spectrometer |
US4994165A (en) * | 1989-02-16 | 1991-02-19 | Cornell Research Foundation, Inc. | Liquid junction coupling for capillary zone electrophoresis/ion spray spectrometry |
US4999493A (en) * | 1990-04-24 | 1991-03-12 | Vestec Corporation | Electrospray ionization interface and method for mass spectrometry |
US5015845A (en) * | 1990-06-01 | 1991-05-14 | Vestec Corporation | Electrospray method for mass spectrometry |
US5030826A (en) * | 1990-03-01 | 1991-07-09 | Hewlett-Packard Company | Single port thermospray ion source with coaxial vapor flow |
US5051583A (en) * | 1989-09-29 | 1991-09-24 | Hitachi, Ltd. | Atmospheric pressure ionization type mass spectrometer |
JPH04132153A (en) * | 1990-09-21 | 1992-05-06 | Hitachi Ltd | Atmospheric pressure ionization mass spectrometer |
US5115131A (en) * | 1991-05-15 | 1992-05-19 | The University Of North Carolina At Chapel Hill | Microelectrospray method and apparatus |
US5122670A (en) * | 1991-05-17 | 1992-06-16 | Finnigan Corporation | Multilayer flow electrospray ion source using improved sheath liquid |
US5157260A (en) * | 1991-05-17 | 1992-10-20 | Finnian Corporation | Method and apparatus for focusing ions in viscous flow jet expansion region of an electrospray apparatus |
US5162651A (en) * | 1990-10-26 | 1992-11-10 | Hitachi, Ltd. | Mass spectrometer |
US5162650A (en) * | 1991-01-25 | 1992-11-10 | Finnigan Corporation | Method and apparatus for multi-stage particle separation with gas addition for a mass spectrometer |
US5170053A (en) * | 1990-08-30 | 1992-12-08 | Finnigan Corporation | Electrospray ion source and interface apparatus and method |
US5171990A (en) * | 1991-05-17 | 1992-12-15 | Finnigan Corporation | Electrospray ion source with reduced neutral noise and method |
US5223226A (en) * | 1992-04-14 | 1993-06-29 | Millipore Corporation | Insulated needle for forming an electrospray |
US5235186A (en) * | 1992-01-24 | 1993-08-10 | Finnigan Mat, Inc. | Probe-based electrospray adapter for thermospray equipped quadrupole based LC/MS systems |
US5245186A (en) * | 1991-11-18 | 1993-09-14 | The Rockefeller University | Electrospray ion source for mass spectrometry |
US5247842A (en) * | 1991-09-30 | 1993-09-28 | Tsi Incorporated | Electrospray apparatus for producing uniform submicrometer droplets |
US5285064A (en) * | 1987-03-06 | 1994-02-08 | Extrel Corporation | Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors |
US5289003A (en) * | 1992-05-29 | 1994-02-22 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Probe for thermospray mass spectrometry |
JPH0660847A (en) * | 1992-08-13 | 1994-03-04 | Hitachi Ltd | Ion source for atmospheric pressure ionization mass spectrometer and its discharge needle positioning device |
US5304798A (en) * | 1992-04-10 | 1994-04-19 | Millipore Corporation | Housing for converting an electrospray to an ion stream |
US5306412A (en) * | 1991-05-21 | 1994-04-26 | Analytica Of Branford, Inc. | Method and apparatus for improving electrospray ionization of solute species |
US5331160A (en) * | 1993-03-31 | 1994-07-19 | Hewlett-Packard Company | Particle-beam generator for LC/MS interface |
US5349186A (en) * | 1993-06-25 | 1994-09-20 | The Governors Of The University Of Alberta | Electrospray interface for mass spectrometer and method of supplying analyte to a mass spectrometer |
USRE34757E (en) | 1988-04-05 | 1994-10-18 | Battelle Memorial Institute | Combined electrophoresis-electrospray interface and method |
US5376789A (en) * | 1991-04-24 | 1994-12-27 | Carlo Erba Strumentazione S.P.A. | Method and device for LC-SFC/MS interfacing |
US5406079A (en) * | 1992-10-20 | 1995-04-11 | Hitachi, Ltd. | Ionization device for ionizing liquid sample |
US5412208A (en) * | 1994-01-13 | 1995-05-02 | Mds Health Group Limited | Ion spray with intersecting flow |
US5416322A (en) * | 1994-04-21 | 1995-05-16 | International Business Machines Corporation | Interface for linking an atmospheric pressure thermogravimetric analyzer to a low pressure mass spectrometer |
US5423964A (en) * | 1993-08-02 | 1995-06-13 | Battelle Memorial Institute | Combined electrophoresis-electrospray interface and method |
US5436446A (en) * | 1992-04-10 | 1995-07-25 | Waters Investments Limited | Analyzing time modulated electrospray |
WO1995024259A1 (en) * | 1994-03-08 | 1995-09-14 | Analytica Of Branford, Inc. | Improvements to electrospray and atmospheric pressure chemical ionization sources |
US5481107A (en) * | 1993-09-20 | 1996-01-02 | Hitachi, Ltd. | Mass spectrometer |
US5505832A (en) * | 1994-05-02 | 1996-04-09 | Bruker Franzen Analytik Gmbh | Device and method for mass spectrometric analysis of substance mixtures by coupling capillary electrophoretic separation (CE) with electrospray ionization (ESI) |
US5559326A (en) * | 1995-07-28 | 1996-09-24 | Hewlett-Packard Company | Self generating ion device for mass spectrometry of liquids |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0655769A1 (en) * | 1993-11-17 | 1995-05-31 | Hewlett-Packard Company | Method and apparatus for preparing an electrospray ion source sample |
-
1994
- 1994-07-11 US US08/273,250 patent/US5495108A/en not_active Ceased
-
1995
- 1995-06-27 EP EP95304502A patent/EP0692713A1/en not_active Withdrawn
- 1995-07-10 JP JP7197083A patent/JPH0854372A/en active Pending
-
1997
- 1997-01-31 US US08/792,303 patent/USRE36892E/en not_active Expired - Fee Related
Patent Citations (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34757A (en) * | 1862-03-25 | Improved composition for manufacture of moldings and other purposes | ||
US3867631A (en) * | 1972-09-28 | 1975-02-18 | Varian Associates | Leak detection apparatus and inlet interface |
US4137750A (en) * | 1975-03-03 | 1979-02-06 | The Governing Council Of The University Of Toronto | Method and apparatus for analyzing trace components using a gas curtain |
JPS5266488A (en) * | 1975-11-28 | 1977-06-01 | Hitachi Ltd | Mass spectrometer directly connected with gas chromatography |
US4209696A (en) * | 1977-09-21 | 1980-06-24 | Fite Wade L | Methods and apparatus for mass spectrometric analysis of constituents in liquids |
US4300044A (en) * | 1980-05-07 | 1981-11-10 | Iribarne Julio V | Method and apparatus for the analysis of chemical compounds in aqueous solution by mass spectroscopy of evaporating ions |
JPS59845A (en) * | 1982-06-28 | 1984-01-06 | Toshiba Corp | Sample introducing device of mass spectrometer |
US4546253A (en) * | 1982-08-20 | 1985-10-08 | Masahiko Tsuchiya | Apparatus for producing sample ions |
US4531056A (en) * | 1983-04-20 | 1985-07-23 | Yale University | Method and apparatus for the mass spectrometric analysis of solutions |
US4542293A (en) * | 1983-04-20 | 1985-09-17 | Yale University | Process and apparatus for changing the energy of charged particles contained in a gaseous medium |
WO1985002490A1 (en) * | 1983-11-22 | 1985-06-06 | Prutec Limited | Introduction of samples into a mass spectrometer |
US4667100A (en) * | 1985-04-17 | 1987-05-19 | Lagna William M | Methods and apparatus for mass spectrometric analysis of fluids |
US4641541A (en) * | 1986-02-11 | 1987-02-10 | Daryl Sharp | Internal mass spectrometer interface to a gas chromatograph |
US4746068A (en) * | 1986-10-29 | 1988-05-24 | Hewlett-Packard Company | Micro-nebulizer for analytical instruments |
US5285064A (en) * | 1987-03-06 | 1994-02-08 | Extrel Corporation | Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors |
US4885076A (en) * | 1987-04-06 | 1989-12-05 | Battelle Memorial Institute | Combined electrophoresis-electrospray interface and method |
US4842701A (en) * | 1987-04-06 | 1989-06-27 | Battelle Memorial Institute | Combined electrophoretic-separation and electrospray method and system |
US4861988A (en) * | 1987-09-30 | 1989-08-29 | Cornell Research Foundation, Inc. | Ion spray apparatus and method |
US4935624A (en) * | 1987-09-30 | 1990-06-19 | Cornell Research Foundation, Inc. | Thermal-assisted electrospray interface (TAESI) for LC/MS |
JPH01146242A (en) * | 1987-12-02 | 1989-06-08 | Hitachi Ltd | Mass spectrometer |
US4977785A (en) * | 1988-02-19 | 1990-12-18 | Extrel Corporation | Method and apparatus for introduction of fluid streams into mass spectrometers and other gas phase detectors |
USRE34757E (en) | 1988-04-05 | 1994-10-18 | Battelle Memorial Institute | Combined electrophoresis-electrospray interface and method |
US4851700A (en) * | 1988-05-16 | 1989-07-25 | Goodley Paul C | On-axis electron acceleration electrode for liquid chromatography/mass spectrometry |
US4994165A (en) * | 1989-02-16 | 1991-02-19 | Cornell Research Foundation, Inc. | Liquid junction coupling for capillary zone electrophoresis/ion spray spectrometry |
US4982097A (en) * | 1989-05-19 | 1991-01-01 | Battelle Memorial Institute | Vaporization device for continuous introduction of liquids into a mass spectrometer |
US5051583A (en) * | 1989-09-29 | 1991-09-24 | Hitachi, Ltd. | Atmospheric pressure ionization type mass spectrometer |
US4960991A (en) * | 1989-10-17 | 1990-10-02 | Hewlett-Packard Company | Multimode ionization source |
US4977320A (en) * | 1990-01-22 | 1990-12-11 | The Rockefeller University | Electrospray ionization mass spectrometer with new features |
US5030826A (en) * | 1990-03-01 | 1991-07-09 | Hewlett-Packard Company | Single port thermospray ion source with coaxial vapor flow |
US4999493A (en) * | 1990-04-24 | 1991-03-12 | Vestec Corporation | Electrospray ionization interface and method for mass spectrometry |
US5015845A (en) * | 1990-06-01 | 1991-05-14 | Vestec Corporation | Electrospray method for mass spectrometry |
US5393975A (en) * | 1990-08-30 | 1995-02-28 | Finnigan Corporation | Electrospray ion source and interface apparatus and method |
US5170053A (en) * | 1990-08-30 | 1992-12-08 | Finnigan Corporation | Electrospray ion source and interface apparatus and method |
JPH04132153A (en) * | 1990-09-21 | 1992-05-06 | Hitachi Ltd | Atmospheric pressure ionization mass spectrometer |
US5162651A (en) * | 1990-10-26 | 1992-11-10 | Hitachi, Ltd. | Mass spectrometer |
US5162650A (en) * | 1991-01-25 | 1992-11-10 | Finnigan Corporation | Method and apparatus for multi-stage particle separation with gas addition for a mass spectrometer |
US5376789A (en) * | 1991-04-24 | 1994-12-27 | Carlo Erba Strumentazione S.P.A. | Method and device for LC-SFC/MS interfacing |
US5115131A (en) * | 1991-05-15 | 1992-05-19 | The University Of North Carolina At Chapel Hill | Microelectrospray method and apparatus |
US5157260A (en) * | 1991-05-17 | 1992-10-20 | Finnian Corporation | Method and apparatus for focusing ions in viscous flow jet expansion region of an electrospray apparatus |
US5122670A (en) * | 1991-05-17 | 1992-06-16 | Finnigan Corporation | Multilayer flow electrospray ion source using improved sheath liquid |
US5171990A (en) * | 1991-05-17 | 1992-12-15 | Finnigan Corporation | Electrospray ion source with reduced neutral noise and method |
US5306412A (en) * | 1991-05-21 | 1994-04-26 | Analytica Of Branford, Inc. | Method and apparatus for improving electrospray ionization of solute species |
US5247842A (en) * | 1991-09-30 | 1993-09-28 | Tsi Incorporated | Electrospray apparatus for producing uniform submicrometer droplets |
US5245186A (en) * | 1991-11-18 | 1993-09-14 | The Rockefeller University | Electrospray ion source for mass spectrometry |
US5235186A (en) * | 1992-01-24 | 1993-08-10 | Finnigan Mat, Inc. | Probe-based electrospray adapter for thermospray equipped quadrupole based LC/MS systems |
US5304798A (en) * | 1992-04-10 | 1994-04-19 | Millipore Corporation | Housing for converting an electrospray to an ion stream |
US5436446A (en) * | 1992-04-10 | 1995-07-25 | Waters Investments Limited | Analyzing time modulated electrospray |
US5223226A (en) * | 1992-04-14 | 1993-06-29 | Millipore Corporation | Insulated needle for forming an electrospray |
US5289003A (en) * | 1992-05-29 | 1994-02-22 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Probe for thermospray mass spectrometry |
JPH0660847A (en) * | 1992-08-13 | 1994-03-04 | Hitachi Ltd | Ion source for atmospheric pressure ionization mass spectrometer and its discharge needle positioning device |
US5406079A (en) * | 1992-10-20 | 1995-04-11 | Hitachi, Ltd. | Ionization device for ionizing liquid sample |
US5331160A (en) * | 1993-03-31 | 1994-07-19 | Hewlett-Packard Company | Particle-beam generator for LC/MS interface |
US5349186A (en) * | 1993-06-25 | 1994-09-20 | The Governors Of The University Of Alberta | Electrospray interface for mass spectrometer and method of supplying analyte to a mass spectrometer |
US5423964A (en) * | 1993-08-02 | 1995-06-13 | Battelle Memorial Institute | Combined electrophoresis-electrospray interface and method |
US5481107A (en) * | 1993-09-20 | 1996-01-02 | Hitachi, Ltd. | Mass spectrometer |
US5412208A (en) * | 1994-01-13 | 1995-05-02 | Mds Health Group Limited | Ion spray with intersecting flow |
WO1995024259A1 (en) * | 1994-03-08 | 1995-09-14 | Analytica Of Branford, Inc. | Improvements to electrospray and atmospheric pressure chemical ionization sources |
US5416322A (en) * | 1994-04-21 | 1995-05-16 | International Business Machines Corporation | Interface for linking an atmospheric pressure thermogravimetric analyzer to a low pressure mass spectrometer |
US5505832A (en) * | 1994-05-02 | 1996-04-09 | Bruker Franzen Analytik Gmbh | Device and method for mass spectrometric analysis of substance mixtures by coupling capillary electrophoretic separation (CE) with electrospray ionization (ESI) |
US5559326A (en) * | 1995-07-28 | 1996-09-24 | Hewlett-Packard Company | Self generating ion device for mass spectrometry of liquids |
Non-Patent Citations (22)
Title |
---|
Apffel et al., "Gas-Nebulized Direct Liquid Introduction Interface for Liquid Chromatography/Mass Spectrometry", Anal. Chem., 1983, vol. 55, p. 2280-2284 No Month. |
Apffel et al., Gas Nebulized Direct Liquid Introduction Interface for Liquid Chromatography/Mass Spectrometry , Anal. Chem. , 1983, vol. 55, p. 2280 2284 No Month. * |
Bruins et al., "Ion Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry", Anal. Chem., 1987, vol. 59, p. 2642-2646 No Month. |
Bruins et al., Ion Spray Interface for Combined Liquid Chromatography/Atmospheric Pressure Ionization Mass Spectrometry , Anal. Chem. , 1987, vol. 59, p. 2642 2646 No Month. * |
Doerge et al., "Multiresidue Analysis of Sulfonamides Using Liquid Chromatography with Atmospheric Pressure Chemical Ionization Mass Spectrometry", Rapid Communications in Mass Spectrom., Dec. 1993, vol. 7, No. 12, p. 1126-1130. |
Doerge et al., Multiresidue Analysis of Sulfonamides Using Liquid Chromatography with Atmospheric Pressure Chemical Ionization Mass Spectrometry , Rapid Communications in Mass Spectrom ., Dec. 1993, vol. 7, No. 12, p. 1126 1130. * |
Garcia et al., "Optimization of the Atmospheric Pressure Chemical Ionization Liquid Chromatography Mass Spectrometry Interface",J. Am. Soc. Mass. Spectrom.,1996, vol. 7, No. 1, p. 59-65. No Month. |
Garcia et al., Optimization of the Atmospheric Pressure Chemical Ionization Liquid Chromatography Mass Spectrometry Interface , J. Am. Soc. Mass. Spectrom .,1996, vol. 7, No. 1, p. 59 65. No Month. * |
Hagiwara et al., "Optimum Needle Materials of the Corona Discharge Electrode for Quantitative Analysis by Liquid Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry", J. Mass. Spectrom. Soc. Jpn., 1995, vol. 43, No. 6, p. 365-371. No Month. |
Hagiwara et al., Optimum Needle Materials of the Corona Discharge Electrode for Quantitative Analysis by Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry , J. Mass. Spectrom. Soc. Jpn ., 1995, vol. 43, No. 6, p. 365 371. No Month. * |
Kambara et al., "Ionization Charateristics of Atmospheric Pressure Ionization by Corona Discharge", Mass Spectroscopy, Sep. 1976, vol. 24, No. 3, p. 229-236. |
Kambara et al., Ionization Charateristics of Atmospheric Pressure Ionization by Corona Discharge , Mass Spectroscopy , Sep. 1976, vol. 24, No. 3, p. 229 236. * |
Lee et al., "Real-Time Reaction Monitoring by Continuous-Introduction Ion-Spray Tandem Mass Spectrometry", J. Am. Chem. Soc., 1989, vol. III, No. 13, p. 4600-4604. |
Lee et al., Real Time Reaction Monitoring by Continuous Introduction Ion Spray Tandem Mass Spectrometry , J. Am. Chem. Soc., 1989, vol. III, No. 13, p. 4600 4604. * |
Takada et al., "Atmospheric Pressure Chemical Ionization Interface for Capillary Electrophoresis/Mass Spectrometry", Anal. Chem., Apr. 15, 1995, vol. 67, No. 8, p. 1474-1476. |
Takada et al., Atmospheric Pressure Chemical Ionization Interface for Capillary Electrophoresis/Mass Spectrometry , Anal. Chem. , Apr. 15, 1995, vol. 67, No. 8, p. 1474 1476. * |
Whitehouse et al., "Electrospray Interface for Liquid Chromatographs and Mass Spectrometers", Anal. Chem., 1985, vol. 57, No. 3, p. 675-679 No Month. |
Whitehouse et al., Electrospray Interface for Liquid Chromatographs and Mass Spectrometers , Anal. Chem. , 1985, vol. 57, No. 3, p. 675 679 No Month. * |
Willoughby et al., "Monodisperse Aerosol Generation Interface for Combining Liquid Chromatography with Mass Spectroscopy", Anal. Chem., 1984, vol. 56, p. 2626-2631 No Month. |
Willoughby et al., Monodisperse Aerosol Generation Interface for Combining Liquid Chromatography with Mass Spectroscopy , Anal. Chem. , 1984, vol. 56, p. 2626 2631 No Month. * |
Yamashita et al., "Electrospray Ion Source. Another Variation on the Free-Jet Theme", J. Phys. Chem., 1984, vol. 88, p. 4451-4459. |
Yamashita et al., Electrospray Ion Source. Another Variation on the Free Jet Theme , J. Phys. Chem. , 1984, vol. 88, p. 4451 4459. * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6653626B2 (en) | 1994-07-11 | 2003-11-25 | Agilent Technologies, Inc. | Ion sampling for APPI mass spectrometry |
US6593568B1 (en) * | 1996-09-10 | 2003-07-15 | Craig M. Whitehouse | Atmospheric pressure ion sources |
US7067804B2 (en) | 2000-05-22 | 2006-06-27 | The University Of British Columbia | Atmospheric pressure ion lens for generating a larger and more stable ion flux |
US20040011953A1 (en) * | 2000-05-22 | 2004-01-22 | Chen David D.Y. | Atmospheric pressure ion lens for generating a larger and more stable ion flux |
WO2002075279A1 (en) * | 2001-03-15 | 2002-09-26 | Tsi Incorporated | Evaporative electrical detector |
US6568245B2 (en) | 2001-03-15 | 2003-05-27 | Tsi Incorporated | Evaporative electrical detector |
US20040206901A1 (en) * | 2001-04-20 | 2004-10-21 | Chen David D.Y. | High throughput ion source with multiple ion sprayers and ion lenses |
US7399961B2 (en) | 2001-04-20 | 2008-07-15 | The University Of British Columbia | High throughput ion source with multiple ion sprayers and ion lenses |
US6902937B2 (en) | 2001-07-13 | 2005-06-07 | Air Liquide America, L.P. | Method for the determination of low-concentration anions in the presence of an excess of another anion |
US20030017611A1 (en) * | 2001-07-13 | 2003-01-23 | Vanatta Lynn E. | Method for the determination of low-concentration anions in the presence of an excess of another anion |
US20060057556A1 (en) * | 2002-10-21 | 2006-03-16 | The Government Of The United States Of America Department Of Health And Human Services | Contiguous capillary electrospray sources and analytical devices |
US7544932B2 (en) | 2002-10-21 | 2009-06-09 | The United States Of America, As Represented By The Secretary, Of The Department Of Health And Human Services | Contiguous capillary electrospray sources and analytical devices |
US20050029442A1 (en) * | 2003-07-24 | 2005-02-10 | Zoltan Takats | Electrosonic spray ionization method and device for the atmospheric ionization of molecules |
US7015466B2 (en) | 2003-07-24 | 2006-03-21 | Purdue Research Foundation | Electrosonic spray ionization method and device for the atmospheric ionization of molecules |
US20070023677A1 (en) * | 2005-06-29 | 2007-02-01 | Perkins Patrick D | Multimode ionization source and method for screening molecules |
US20090114218A1 (en) * | 2006-04-13 | 2009-05-07 | Ada Technologies, Inc. | Electrotherapeutic treatment device and method |
US7534997B2 (en) | 2006-05-25 | 2009-05-19 | Agilent Technologies, Inc. | Mass spectrometer interface for atmospheric ionization ion sources |
US20080067355A1 (en) * | 2006-05-25 | 2008-03-20 | Gangqiang Li | Mass spectrometer interface for atmospheric ionization ion sources |
US20100238444A1 (en) * | 2007-12-05 | 2010-09-23 | Anderson Jr James M | Methods and apparatus for analyzing samples and collecting sample fractions |
US8115930B2 (en) | 2007-12-05 | 2012-02-14 | Alltech Associates, Inc. | Methods and apparatus for analyzing samples and collecting sample fractions |
US8305581B2 (en) | 2007-12-05 | 2012-11-06 | Alltech Associates, Inc. | Methods and apparatus for analyzing samples and collecting sample fractions |
US9133833B2 (en) | 2008-12-04 | 2015-09-15 | Alltech Associates, Inc. | Methods and apparatus for moving aliquot samples of fluid |
US9086422B2 (en) | 2008-12-10 | 2015-07-21 | Alltech Associates, Inc. | Chromatography systems and system components |
US8305582B2 (en) | 2009-09-01 | 2012-11-06 | Alltech Associates, Inc. | Methods and apparatus for analyzing samples and collecting sample fractions |
US8314934B2 (en) | 2009-09-01 | 2012-11-20 | Alltech Associates, Inc. | Methods and apparatus for analyzing samples and collecting sample fractions |
US9322813B2 (en) | 2009-09-01 | 2016-04-26 | Alltech Associates, Inc. | Methods and apparatus for analyzing samples and collecting sample fractions |
US10734214B2 (en) | 2016-09-21 | 2020-08-04 | Human Metabolome Technologies, Inc. | Ion source adapter |
Also Published As
Publication number | Publication date |
---|---|
US5495108A (en) | 1996-02-27 |
EP0692713A1 (en) | 1996-01-17 |
JPH0854372A (en) | 1996-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE36892E (en) | Orthogonal ion sampling for electrospray .[.LC/MS.]. mass spectrometry | |
US5750988A (en) | Orthogonal ion sampling for APCI mass spectrometry | |
US6294779B1 (en) | Orthogonal ion sampling for APCI mass spectrometry | |
US7002146B2 (en) | Ion sampling for APPI mass spectrometry | |
US5756994A (en) | Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source | |
JP3993895B2 (en) | Mass spectrometer and ion transport analysis method | |
US5753910A (en) | Angled chamber seal for atmospheric pressure ionization mass spectrometry | |
EP0644796B1 (en) | Atmospheric pressure ion interface for a mass analyzer | |
US5432343A (en) | Ion focusing lensing system for a mass spectrometer interfaced to an atmospheric pressure ion source | |
US6278111B1 (en) | Electrospray for chemical analysis | |
US6462336B1 (en) | Ion source for a mass analyzer and method of providing a source of ions for analysis | |
US10546740B2 (en) | Mass spectrometry device and ion detection device | |
US5331159A (en) | Combined electrospray/particle beam liquid chromatography/mass spectrometer | |
US7145136B2 (en) | Atmospheric pressure ionization with optimized drying gas flow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HEWLETT-PACKARD COMPANY, COLORADO Free format text: MERGER;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010759/0049 Effective date: 19980520 |
|
AS | Assignment |
Owner name: AGILENT TECHNOLOGIES INC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HEWLETT-PACKARD COMPANY;REEL/FRAME:010977/0540 Effective date: 19991101 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees |