[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

USRE33949E - Vertical magnetic recording arrangement - Google Patents

Vertical magnetic recording arrangement Download PDF

Info

Publication number
USRE33949E
USRE33949E US07/613,469 US61346990A USRE33949E US RE33949 E USRE33949 E US RE33949E US 61346990 A US61346990 A US 61346990A US RE33949 E USRE33949 E US RE33949E
Authority
US
United States
Prior art keywords
magnetic
section
downstream
write pole
write
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/613,469
Inventor
Michael L. Mallary
Shyam C. Das
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quantum Corp
Original Assignee
Digital Equipment Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US07/613,469 priority Critical patent/USRE33949E/en
Application filed by Digital Equipment Corp filed Critical Digital Equipment Corp
Application granted granted Critical
Publication of USRE33949E publication Critical patent/USRE33949E/en
Assigned to QUANTUM CORPORATION reassignment QUANTUM CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIGITAL EQUIPMENT CORPORATION
Assigned to CANADIAN IMPERIAL BANK OF COMMERCE, AS ADMINISTRATIVE AGENT reassignment CANADIAN IMPERIAL BANK OF COMMERCE, AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QUANTUM CORPORATION
Assigned to QUANTUM CORPORATION reassignment QUANTUM CORPORATION RELEASE OF PATENT SECURITY INTEREST AND REASSIGNMENT OF PATENTS AND PATENT APPLICATIONS Assignors: CANADIAN IMPERIAL BANK OF COMMERCE
Anticipated expiration legal-status Critical
Assigned to KEYBANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT reassignment KEYBANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN) Assignors: QUANTUM CORPORATION
Assigned to KEYBANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT reassignment KEYBANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN) Assignors: QUANTUM CORPORATION
Assigned to QUANTUM CORPORATION reassignment QUANTUM CORPORATION TERMINATION OF SECURITY INTEREST IN PATENTS REEL 018269 FRAME 0005 AND REEL 018268 FRAME 0475 Assignors: KEY BANK, NATIONAL ASSOCIATION
Assigned to QUANTUM CORPORATION reassignment QUANTUM CORPORATION RELEASE OF INTELLECTUAL PROPERTY SECURITY AGREEMENT AT REEL 018303 FRAME 0228 Assignors: KEYBANK NATIONAL ASSOCIATION
Assigned to CREDIT SUISSE reassignment CREDIT SUISSE SECURITY AGREEMENT Assignors: ADVANCED DIGITAL INFORMATION CORPORATION, CERTANCE (US) HOLDINGS, INC., CERTANCE HOLDINGS CORPORATION, CERTANCE LLC, QUANTUM CORPORATION, QUANTUM INTERNATIONAL, INC.
Assigned to ADVANCED DIGITAL INFORMATION CORPORATION, CERTANCE (US) HOLDINGS, INC., CERTANCE HOLDINGS CORPORATION, CERTANCE, LLC, QUANTUM INTERNATIONAL, INC., QUANTUM CORPORATION reassignment ADVANCED DIGITAL INFORMATION CORPORATION RELEASE BY SECURED PARTY Assignors: CREDIT SUISSE, CAYMAN ISLANDS BRANCH (FORMERLY KNOWN AS CREDIT SUISSE), AS COLLATERAL AGENT
Assigned to HERCULES TECHNOLOGY GROWTH CAPITAL, INC. reassignment HERCULES TECHNOLOGY GROWTH CAPITAL, INC. SECURITY AGREEMENT Assignors: ADVANCED MICROSENSORS CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • G11B5/3146Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
    • G11B5/315Shield layers on both sides of the main pole, e.g. in perpendicular magnetic heads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20576Elements
    • Y10T74/20732Handles
    • Y10T74/2078Handle bars
    • Y10T74/20822Attachments and accessories

Definitions

  • Magnetic recording techniques have turned to considering vertical recording as compared to longitudinal recording as a means for vastly improving the linear density of recorded information.
  • Vertical magnetic recording has been accomplished by having the recording medium pass between two mirror image recording heads.
  • the magnetic flux from a first recording head passes vertically from a first write tip through the magnetic recording medium to a second write tip (the write tip of a second recording head).
  • the shape of the tips concentrate the flux and hence effect a magnetic polarization within the recording medium to provide recorded information.
  • the magnetic flux having passed through the second tip is routed upstream to a flux return path of the second write head.
  • the flux return head is designed to have a face which is many times larger than the write tip so that the flux passing into the flux return head is disbursed therealong and hence the flux density is low.
  • the low density flux passes through the recording medium, upstream, to the flux return path of the first magnetic write head and therealong to complete a magnetic flux circuit. Because the density of the flux passing through the recording medium upstream is low, there is very little effect by way of reversing or weakening any patterns in the recording medium upstream.
  • the present device employs a two layered recording medium, places the flux return section downstream and by specifically locating the write tip close to the flux return path, uses the flux return path as a magnetic shield to intercept downstream fringing flux and thus prevent reversal or weakening, of the magnetic polarity at the trailing edge of a recorded bit of information.
  • the prior art is exemplified by the structure described in U.S. Pat. No. 4,317,148.
  • the present device includes a two layered recording medium.
  • the upper layer is comprised of a material having perpendicular uniaxial anisotropy, such as cobalt chromium, while the underlayer is comprised of material having a low magnetic reluctance such as nickel iron.
  • the present device includes a write pole section of a single write head (no mirror image write head is included) which is formed in a partial loop configuration, away from the downstream flux return section, so that there is no leakage along the height dimension of the write pole section.
  • the partial loop configuration is designed to place the write tip X micro inches away from the flux section. Where X is in the range from G/2 to 2G and where G is the distance from the write tip face to the beginning of the low reluctance layer.
  • the gap X is a small gap and hence most of the downstream fringing flux is intercepted by the flux return section so that the flux return section acts as a magnetic shield.
  • the interception of the downstream fringing flux by the magnetic shield reduces the undesirable effect of reversing, or weakening, a previously recorded bit of information.
  • the present device further provides magnetic shielding means which lie parallel to the tracks on the recording medium so that tracks which lie adjacent to the track being presently written do not suffer from magnetic polarity reversals or weakening of dipole identification by flux fringing in a side direction or orthogonally to the track presently written.
  • FIG. 1 is a side view of the write head depicting the write pole section formed in a partial loop and with the coils in sectional view form;
  • FIG. 2 is a view of the write head as seen looking at the excursion direction of the recording medium.
  • FIG. 3 is an underside view of FIG. 2.
  • FIG. 1 there is shown a section of the magnetic recording medium 11 which is made up of an upper layer 13 and a lower layer 15.
  • the upper layer 13 in a preferred embodiment is cobalt chromium but it should be understood that any material which has perpendicular uniaxial anisotropy could be employed.
  • the lower layer 15 in a preferred embodiment is nickel iron but it should be understood that any material which has a low magnetic reluctance could be employed. While it is not shown in FIG. 1, it should be understood that there is means to move the magnetic recording medium in a downstream direction, i.e. a disk drive or the like. As can be seen in FIG. 1, located in close proximity but with an air space in between, there is shown the write head 17.
  • the write head 17 is made up of a write pole section 19 and downstream shield 21.
  • the write pole section 19 is formed integrally with the shield 21 and is formed to extend upstream into a partial loop as can be gleaned from FIG. 1.
  • a bay or open section 23 By forming the write pole section 19 into a partial loop there is provided a bay or open section 23.
  • FIG. 1 there is a coil 25 shown with four sections in FIG. 1 and its configuration can be better understood by examining FIG. 2. While it is not shown in FIG. 1 it should be understood that the coil 25 is connected to a source of electrical power so that when the coil 25 is energized there is a magnetic flux generated in the write pole section 19. It should be further understood that by forming write pole section 19 into a partial loop, the pole tip portion 27 comes into close proximity to the downstream shield section 21. Accordingly there is a gap 30 which is labeled in the drawing as the shield gap located between the pole tip 27 and the lower portion of the downstream shield section 21. The selection of the width (X) of the gap 30 is important.
  • the width (X) of the shield gap 30 should not be any smaller than G/2.
  • This concept is set forth in the drawing wherein the drawing depicts the width of the shield gap as being equal to or greater than G/2.
  • the shield gap is equal to G/2 because at that dimension virtually all of the fringing flux passes directly into the downstream shield 21 while there is still a sufficient amount of flux emanating from the pole tip 27 to effect a vertical magnetization in the layer 13.
  • the magnetic recording medium is moving from a left to right in FIG. 1 and that the data bit recorded in the section 29 of the layer 13 has been recorded and the user wants that data bit to remain recorded on the magnetic recording medium 11. Accordingly the system does not want fringing flux to disturb or weaken or even reverse the dipole identification of the data recorded in section 29.
  • the flux passes from the pole tip 27, through the hard layer 13 and through the soft layer 15 and is concentrated, or sufficiently dense, to align the dipoles of the layer 13 so as to effect a vertical recording of information in sections along the layer 13, such as sections 29 and section 31. It should also be noted in FIG.
  • fringing flux 33 emanating from the left hand side from the pole tip 27.
  • fringing flux indeed may disturb the dipole identification of a section of the magnetic recording medium entering under the write head but since that section is going to be rewritten it makes no difference that it is being disturbed.
  • the arrow 37 is somewhat shorter than the rest of the arrows in section 29 indicating that there has been a slight weakening of that dipole identification because of the fringing flux 39 overlapping segment 29 before section 29 passes from under the fringing flux 39.
  • the arrow 42 is shown as being a bit diminished even though it has not been under the pole tip at the point in time shown in FIG. 1 but has been diminished because of the conditions under which it was recorded at some previous time.
  • FIG. 1 there is a side shield 43 whose role is to intercept fringing flux that would pass over adjacent tracks, i.e. which are adjacent to the track on the magnetic recording medium which is passing under the pole tip at the time depicted in FIG. 1.
  • the arrangement and the utility of the side shield 43 will be better understood by an examination of FIG. 2.
  • FIG. 2 the various pieces of structure described in FIG. 1 are identified by the same numbers.
  • the pole tip 27 provides fringing flux in the direction of the side tracks 45 and 47. That fringing flux is depicted in FIG. 2 as the fringing flux 49 and fringing flux 51.
  • the fringing flux 49 is intercepted by the side shield 43 while the fringing flux 51 is intercepted by the side shield 53.
  • the tracks 45 and 47 which lie adjacent to the track 55, that is the track that is being presently written upon in accordance with the arrangement depicted in FIG. 2, are not adversely affected by fringing flux.
  • the gap between the pole tip 27 and the side shield 43 as well as the gap between the pole 27 and the side shield 53 can be larger than the downstream shield gap 30 so as to reduce the loss of flux to the shields.
  • FIG. 3 depicts the underside of the device shown in FIG. 2.
  • the identification numbers of the structure in FIG. 3 are the same as the identification numbers in FIGS. 1 and 2 and no further explanation thereof appears to be necessary.
  • the arrangement of the device shown in FIG. 3 does enable a clear understanding of the overall device particularly how the side shields are formed with respect to the downstream shield and with respect to the winged arrangements of the write pole section 19.
  • the present structure By arranging to have the shield extension of the write head located downstream of the write tip and by arranging to have the gap there between be relatively small, but not so small as to permit all of the flux to be intercepted by the shield, the present structure creates less of a diminishing effect on data information which has been previously written into the magnetic recording medium.
  • the write pole section formed into a partial loop, the amount of fringing flux which jumps the separation between the write pole section and the flux return section is minimized and the bay portion of the partial loop configuration provides a location for the magnetic flux generating coils.
  • the gap dimension in the preferred embodiment is related to the distance between the bottom of the pole tip and the beginning of the soft layer or the layer having the low magnetic reluctance.
  • the gap can be increased because there will be a greater incentive for the flux to pass through the layer 13 as a result of the reduced air bearing.
  • the vast majority of the flux passes through the layer 13 in a vertical direction and hence there is a vertical recording of the data in the layer 13.
  • the face of the downstream shield 21 is many times larger than the face of the pole tip. In point of fact the pole tip 27 could have an even narrower face than shown in FIG. 1.
  • the flux is dispersed along that face and hence is relatively low in density. Because of the low density aspect of the flux passing on the return path into the downstream shield 21 there is very little effect on the magnetization condition in the layer 13 which lies under the shield. By not disturbing the magnetization pattern under the shield face one of the major objectives of the present system is accomplished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Heads (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

The present device provides a downstream magnetic shield which is integrally formed with a write pole section having a tip to make up a magnetic recording head. The shield and the write pole tip are located with small gap therebetween, so that magnetic flux which fringes from the magnetic write pole tip is intercepted by the shield. Accordingly such fringing flux does not pass through the recording medium, and hence if a data bit has been written into the recording medium its dipole identity will not be weakened by the fringing flux of a subsequent data bit being written into the magnetic recording medium. In addition, the magnetic recording medium is made up of a first layer of material having perpendicular uniaxial anisotropy and an underlying layer made of a material which has a low magnetic flux reluctance characteristic. Accordingly, the magnetic flux passes vertically through the first layer, along the second layer and finally passes vertically from the second layer through the first layer into the shield. The face of the shield is designed to be many times as large as the face of the write pole section so that the density of the flux from the tip is sufficient to effect a vertical recording while the density of the flux passing into the downstream magnetic shield is low and hence a previously recorded pattern is not reversed.

Description

.Iadd.This is a continuation of copending application Ser. No. 07/334,936 filed on Apr. 7, 1989, now abandoned. .Iaddend.
BACKGROUND
While magnetic recording of information is enormously successful, it has been found that in the prior art there is a limitation with respect to recording density. In the present state of the art the popular method of magnetic recording has been longitudinal recording. Magnetic recording systems to date generally recognize recorded bits of information by detecting pulse peaks within certain timing windows. Unfortunately systems often inadvertently shift pulse patterns, in time, with respect to the timing of the windows and this of course results in errors. It follows that when linear density is increased, the time windows in which the peak must be detected necessarily narrows and the systems become more sensitive to noise and there are resulting errors.
Magnetic recording techniques have turned to considering vertical recording as compared to longitudinal recording as a means for vastly improving the linear density of recorded information. Vertical magnetic recording has been accomplished by having the recording medium pass between two mirror image recording heads. The magnetic flux from a first recording head passes vertically from a first write tip through the magnetic recording medium to a second write tip (the write tip of a second recording head). The shape of the tips concentrate the flux and hence effect a magnetic polarization within the recording medium to provide recorded information. The magnetic flux having passed through the second tip is routed upstream to a flux return path of the second write head. The flux return head is designed to have a face which is many times larger than the write tip so that the flux passing into the flux return head is disbursed therealong and hence the flux density is low. The low density flux passes through the recording medium, upstream, to the flux return path of the first magnetic write head and therealong to complete a magnetic flux circuit. Because the density of the flux passing through the recording medium upstream is low, there is very little effect by way of reversing or weakening any patterns in the recording medium upstream.
In the prior art vertical recording technique there has been a prerequisite in that there has been required a relatively large distance between the write tip and the flux return path to prevent leakage flux cross-over. In other words in such techniques the full strength of the write flux is desired to effect a desired recording. However in such arrangements, as the described in U.S. Pat. No. 4,317,148 the downstream fringing flux, which is ignored, acts to reverse or weaken, the magnetic polarity of information having been previously recorded and to compensate therefor, the packing density has had to be reduced.
The present device employs a two layered recording medium, places the flux return section downstream and by specifically locating the write tip close to the flux return path, uses the flux return path as a magnetic shield to intercept downstream fringing flux and thus prevent reversal or weakening, of the magnetic polarity at the trailing edge of a recorded bit of information. As mentioned above the prior art is exemplified by the structure described in U.S. Pat. No. 4,317,148.
SUMMARY
The present device includes a two layered recording medium. The upper layer is comprised of a material having perpendicular uniaxial anisotropy, such as cobalt chromium, while the underlayer is comprised of material having a low magnetic reluctance such as nickel iron. In addition the present device includes a write pole section of a single write head (no mirror image write head is included) which is formed in a partial loop configuration, away from the downstream flux return section, so that there is no leakage along the height dimension of the write pole section. However, the partial loop configuration is designed to place the write tip X micro inches away from the flux section. Where X is in the range from G/2 to 2G and where G is the distance from the write tip face to the beginning of the low reluctance layer. The gap X is a small gap and hence most of the downstream fringing flux is intercepted by the flux return section so that the flux return section acts as a magnetic shield. The interception of the downstream fringing flux by the magnetic shield reduces the undesirable effect of reversing, or weakening, a previously recorded bit of information. The present device further provides magnetic shielding means which lie parallel to the tracks on the recording medium so that tracks which lie adjacent to the track being presently written do not suffer from magnetic polarity reversals or weakening of dipole identification by flux fringing in a side direction or orthogonally to the track presently written.
The objects and features of the present invention will be better understood by considering the following description taken in conjunction with the drawings wherein:
FIG. 1 is a side view of the write head depicting the write pole section formed in a partial loop and with the coils in sectional view form;
FIG. 2 is a view of the write head as seen looking at the excursion direction of the recording medium; and
FIG. 3 is an underside view of FIG. 2.
Consider FIG. 1. In FIG. 1 there is shown a section of the magnetic recording medium 11 which is made up of an upper layer 13 and a lower layer 15. The upper layer 13 in a preferred embodiment is cobalt chromium but it should be understood that any material which has perpendicular uniaxial anisotropy could be employed. The lower layer 15 in a preferred embodiment is nickel iron but it should be understood that any material which has a low magnetic reluctance could be employed. While it is not shown in FIG. 1, it should be understood that there is means to move the magnetic recording medium in a downstream direction, i.e. a disk drive or the like. As can be seen in FIG. 1, located in close proximity but with an air space in between, there is shown the write head 17. The write head 17 is made up of a write pole section 19 and downstream shield 21. The write pole section 19 is formed integrally with the shield 21 and is formed to extend upstream into a partial loop as can be gleaned from FIG. 1. By forming the write pole section 19 into a partial loop there is provided a bay or open section 23. By having the write pole section separated from the shield section 21 by the bay 23 there is little fringing magnetic flux passing from the write pole section 19 to the shield 21 through the bay 23, i.e. along the height dimension of the write head.
As can be readily understood from the examination of FIG. 1 there is a coil 25 shown with four sections in FIG. 1 and its configuration can be better understood by examining FIG. 2. While it is not shown in FIG. 1 it should be understood that the coil 25 is connected to a source of electrical power so that when the coil 25 is energized there is a magnetic flux generated in the write pole section 19. It should be further understood that by forming write pole section 19 into a partial loop, the pole tip portion 27 comes into close proximity to the downstream shield section 21. Accordingly there is a gap 30 which is labeled in the drawing as the shield gap located between the pole tip 27 and the lower portion of the downstream shield section 21. The selection of the width (X) of the gap 30 is important. It has been determined that if the distance between the bottom of the face of the pole tip 27 and the start of the lower layer 15 of the magnetic recording medium has a dimension of G then the width (X) of the shield gap 30 should not be any smaller than G/2. This concept is set forth in the drawing wherein the drawing depicts the width of the shield gap as being equal to or greater than G/2. In the preferred embodiment the shield gap is equal to G/2 because at that dimension virtually all of the fringing flux passes directly into the downstream shield 21 while there is still a sufficient amount of flux emanating from the pole tip 27 to effect a vertical magnetization in the layer 13. However, in order to obtain sufficient write field it may be necessary to increase the gap from G/2 to as much as 2G.
It should be borne in mind that the magnetic recording medium is moving from a left to right in FIG. 1 and that the data bit recorded in the section 29 of the layer 13 has been recorded and the user wants that data bit to remain recorded on the magnetic recording medium 11. Accordingly the system does not want fringing flux to disturb or weaken or even reverse the dipole identification of the data recorded in section 29. As depicted for purposes of illustration (and not with any scientific exactness) the flux passes from the pole tip 27, through the hard layer 13 and through the soft layer 15 and is concentrated, or sufficiently dense, to align the dipoles of the layer 13 so as to effect a vertical recording of information in sections along the layer 13, such as sections 29 and section 31. It should also be noted in FIG. 1 that fringing flux 33 is shown emanating from the left hand side from the pole tip 27. Such fringing flux indeed may disturb the dipole identification of a section of the magnetic recording medium entering under the write head but since that section is going to be rewritten it makes no difference that it is being disturbed. It is the downstream fringing flux that is the underside fringing flux and in accordance with the present device such fringing flux on the write end of the pole tip is intercepted by the shield section 21.
In order to have the magnetic flux emanate from the pole tip 27 and cause the write pattern to be developed, as shown in section 35, electrical current must be passing through the electrical coil as shown. In other words in the two upper legs 25a and 25b the current is passing into the figure while in the two segments 25c and 25d the current is passing out of the figure. In this way the flux will pass from the top of the figure through the write pole section and through the pole tip 27 as shown. As depicted in FIG. 1 the relative strength of the magnetized areas is shown by the arrows. It will be noted that the arrow 37 is somewhat shorter than the rest of the arrows in section 29 indicating that there has been a slight weakening of that dipole identification because of the fringing flux 39 overlapping segment 29 before section 29 passes from under the fringing flux 39. The reduction of this adverse effect (downstream demagnetization) in one of the salient features of the present invention. By way of comparison the arrow 42 is shown as being a bit diminished even though it has not been under the pole tip at the point in time shown in FIG. 1 but has been diminished because of the conditions under which it was recorded at some previous time.
As can be seen further in FIG. 1 there is a side shield 43 whose role is to intercept fringing flux that would pass over adjacent tracks, i.e. which are adjacent to the track on the magnetic recording medium which is passing under the pole tip at the time depicted in FIG. 1. The arrangement and the utility of the side shield 43 will be better understood by an examination of FIG. 2.
In FIG. 2 the various pieces of structure described in FIG. 1 are identified by the same numbers. As can be seen in FIG. 2 the pole tip 27 provides fringing flux in the direction of the side tracks 45 and 47. That fringing flux is depicted in FIG. 2 as the fringing flux 49 and fringing flux 51. The fringing flux 49 is intercepted by the side shield 43 while the fringing flux 51 is intercepted by the side shield 53. Accordingly the tracks 45 and 47 which lie adjacent to the track 55, that is the track that is being presently written upon in accordance with the arrangement depicted in FIG. 2, are not adversely affected by fringing flux. The gap between the pole tip 27 and the side shield 43 as well as the gap between the pole 27 and the side shield 53 can be larger than the downstream shield gap 30 so as to reduce the loss of flux to the shields.
FIG. 3 depicts the underside of the device shown in FIG. 2. The identification numbers of the structure in FIG. 3 are the same as the identification numbers in FIGS. 1 and 2 and no further explanation thereof appears to be necessary. The arrangement of the device shown in FIG. 3 however does enable a clear understanding of the overall device particularly how the side shields are formed with respect to the downstream shield and with respect to the winged arrangements of the write pole section 19.
By arranging to have the shield extension of the write head located downstream of the write tip and by arranging to have the gap there between be relatively small, but not so small as to permit all of the flux to be intercepted by the shield, the present structure creates less of a diminishing effect on data information which has been previously written into the magnetic recording medium. In addition by having the write pole section formed into a partial loop, the amount of fringing flux which jumps the separation between the write pole section and the flux return section is minimized and the bay portion of the partial loop configuration provides a location for the magnetic flux generating coils. It is important to note that the gap dimension in the preferred embodiment is related to the distance between the bottom of the pole tip and the beginning of the soft layer or the layer having the low magnetic reluctance. If the air bearing, that is the distance between the pole tip and the upper surface of the hard layer 13, is decreased then the gap can be increased because there will be a greater incentive for the flux to pass through the layer 13 as a result of the reduced air bearing. As can be readily seen in FIG. 1 the vast majority of the flux passes through the layer 13 in a vertical direction and hence there is a vertical recording of the data in the layer 13. It should be further noted from the description and by examination of FIG. 1 that the face of the downstream shield 21 is many times larger than the face of the pole tip. In point of fact the pole tip 27 could have an even narrower face than shown in FIG. 1. By providing a rather large downstream shield face, the flux is dispersed along that face and hence is relatively low in density. Because of the low density aspect of the flux passing on the return path into the downstream shield 21 there is very little effect on the magnetization condition in the layer 13 which lies under the shield. By not disturbing the magnetization pattern under the shield face one of the major objectives of the present system is accomplished.

Claims (21)

I claim:
1. An arrangement for effecting vertical magnetic recording of information comprising in combination: movable magnetizable recording means formed to have first and second layers which lie substantially parallel to the movement of said magnetizable recording means, said first layer comprised of magnetizable material which is characterized by perpendicular uniaxial anisotropy and said second layer comprised of material characterized by low magnetic reluctance, said magnetizable recording means arranged to be moved in a downstream direction; magnetic recording head means including magnetic flux generating means, formed to have a write pole section and a downstream magnetic shield section which is integrally connected to said write pole section so that magnetic flux can readily pass, bi-directionally, through said write pole section and said downstream magnetic shield section; said downstream magnetic shield section formed and disposed to have a relatively large face lying in close proximity to said first layer; said write pole section fashioned, while extending in an upstream direction from said downstream magnetic shield section, to form a partial loop configuration defining an opening and ending in a pole tip which is disposed to lie in close proximity to said first layer so that the magnetic flux passing into and alternatively out of said write pole section will pass from said first layer through said pole tip and alternatively from said pole tip into said first layer, said write pole section being further formed and disposed such that a small gap having a sufficiently small width is formed between said pole tip and said downstream magnetic shield section so that, when said pole tip has magnetic flux passing therethrough, fringing flux in the downstream direction will substantially pass across said small gap into said downstream magnetic shield face without passing through said first layer, and whereby the remainder of said magnetic flux passing through said pole tip passes substantially vertically through said first layer into said second layer, substantially parallel to and through said second layer, and substantially vertically from said second layer through said first layer into said downstream magnetic shield face, thereby effecting vertical magnetic recording of information in said first layer.
2. An arrangement for effecting vertical magnetic recording according to claim 1 wherein there is a distance from where said magnetic flux leaves said pole tip and enters said second layer and wherein said distance is G and wherein the width of said small gap is between G/2 and 2G.
3. An arrangement for effecting vertical magnetic recording according to claim 1 wherein said magnetic flux generating means is a wire coil which in part passes through the opening in said partial loop configuration of said write pole section.
4. An arrangement for effecting vertical magnetic recording according to claim 1 wherein said write pole tip defines a track on said magnetic recording means and wherein there is further included side magnetic shield means which are disposed to lie in close proximity to said write pole section along at least one adjacent track position to form at least one side gap therebetween to enable said side shield means to intercept magnetic flux which is fringing from said magnetic write pole tip in the direction of tracks adjacent to said track defined by the passage of said magnetic recording means relative to said write pole tip.
5. An arrangement for effecting magnetic recording according to claim 4 wherein said side magnetic shield means includes first and second side magnetic shield means each of which is disposed to lie on opposite sides of, and in close proximity to, said write pole section to respectively form first and second gaps between said first and second side magnetic shield means and said write pole section to enable said first and second side shield means to intercept magnetic flux .[.while.]. .Iadd.which .Iaddend.is fringing from said magnetic write pole tip in the direction of tracks adjacent to said track defined by the extension of said write pole tip onto said magnetic recording means. .Iadd.
6. A magnetic transducing head device, operable in conjunction with and from a preferred side of a layered vertical recording medium arranged to be moved in a downstream direction for effecting vertical recording of bits of information in tracks thereon, the device comprising
magnetic flux generating means including
a write pole section, and
a downstream magnetic shield section which is integrally connected to said write pole section so that magnetic flux can readily pass through said write pole section and said downstream magnetic shield section,
said downstream magnetic shield section formed and disposed to have a relatively large face defining an air bearing surface which can be operated in close proximity to said preferred side of said medium,
said write pole section and said downstream magnetic shield section being constructed so that said write pole section is disposed in an upstream direction with respect to said downstream magnetic shield section so that said write pole section and said downstream magnetic shield section form a partial loop configuration that defines an opening between said write pole section and said downstream magnetic shield section, said write pole section ending in a pole tip which is disposed to be operated in close proximity to said medium so that the magnetic flux passing through said write pole section will pass from said pole tip into said medium,
said opening defining a gap at a midsection of said write pole section and said downstream magnetic shield section and a relatively smaller gap between said pole tip and said downstream magnetic shield section, said smaller gap having a sufficiently small width so that, when said pole tip has magnetic flux passing therethrough, fringing flux in the downstream direction will be substantially directed to pass from said pole tip across said smaller gap into said downstream magnetic shield, such that substantially all of the remainder of said magnetic flux is presented for passing through said pole tip substantially vertically into said medium and then to said downstream magnetic shield face, and
whereby sharply defined bits of information may be vertically recorded at said pole tip in tracks on said medium. .Iaddend. .Iadd.
7. The device of claim 6 wherein said magnetic flux generating means is a wire coil which in part passes through the opening in said partial loop configuration. .Iaddend. .Iadd.
8. The head device of claim 6 further including side magnetic shield means disposed to lie in close proximity to said write pole section along at least one track adjacent to a track to be written on said medium at said pole tip to form at least one side gap between said side shield means and said write pole section to enable said side shield means to intercept magnetic flux which is fringing from said pole tip in the direction of said at least one adjacent track. .Iaddend. .Iadd.
9. The head device of claim 8 wherein said side shield means includes first and second side magnetic shield means each of which is disposed to lie on opposite side of, and in close proximity to, said write pole section to respectively form first and second gaps between said first and second side magnetic shield means and said write pole section to enable said first and second side shield means to intercept magnetic flux from said magnetic write pole tip in the direction of tracks adjacent to a track to be written at said pole tip on said medium. .Iaddend. .Iadd.
10. The device of claim 6 wherein said write pole section is constructed with a bowed region to define said partial loop configuration. .Iaddend. .Iadd.
11. A magnetic transducing head device having at least one pole for effecting vertical recording of magnetic transitions on and from a preferred side of a layered vertical magnetic recording medium arranged to be moved in a downstream direction, the device comprising
a write pole terminating in a write pole tip,
a downstream shield integrally connected to the write pole and having a large shield tip area relative to the area of the write pole tip,
the write pole cooperating with the downstream shield to engage flux from a write flux source,
the write pole tip configured to present write flux from the write flux source to the medium for recording information on the medium, and
the write pole and said downstream shield being constructed to define a gap between them, said gap being smaller in the area of the write pole tip and the downstream shield tip than it is in an area closer to where the downstream shield is integrally connected to said write pole,
said gap between the write pole tip and the downstream shield tip being sufficiently small to substantially transfer to the downstream shield downstream fringing flux emanating from the write pole tip to minimize presentation of downstream fringing flux to the medium when presenting write flux from the pole tip to the medium for recording information on the medium, whereby a write field gradient generated by the write flux in the recording medium is increased and recorded transitions are sharper, as a result of such minimization. .Iaddend. .Iadd.
12. The device of claim 11 wherein the write flux source is a wire coil, that passes through at least a portion of said gap. .Iaddend. .Iadd.
13. The head device of claim 11 further including side magnetic shield means disposed to lie in close proximity to the write pole section along at least one track adjacent to a track to be written on the medium at the pole tip to form at least one side gap therebetween to enable the side shield means to intercept magnetic flux fringing from the pole tip in the direction of the at least one adjacent track. .Iaddend. .Iadd.
14. The head device of claim 13 wherein the side shield means includes first and second side magnetic shield means each of which is disposed to lie on opposite sides of, and in close proximity to, the write pole section to respectively form first and second gaps between the first and second side magnetic shield means and the write pole section to enable the first and second side shield means to intercept magnetic flux from the magnetic write pole tip in the direction of tracks adjacent to a track to be written at the pole tip on the medium. .Iaddend. .Iadd.
15. The device of claim 11 wherein said write pole is constructed with a bowed region to define said gap and said smaller gap. .Iaddend. .Iadd.
16. A magnetic transducing head device, operable in conjunction with and from a preferred side of a layered vertical recording medium arranged to be moved in a downstream direction for effecting vertical recording of bits of information in tracks thereon, comprising
magnetic flux generating means, including
a write pole section, and
a downstream magnetic shield section which is integrally connected to said write pole section so that magnetic flux can readily pass through said write pole section and said downstream magnetic shield section,
said downstream magnetic shield section formed and disposed to have a relatively large face defining an air bearing surface which can be operated in close proximity to said preferred side of said medium, said write pole section fashioned, while extending in an upstream direction from said downstream magnetic shield section, to form a partial loop configuration defining an opening and ending in a pole tip which is disposed to be operated in close proximity to said medium so that the magnetic flux passing through said write pole section will pass from said pole tip into said medium,
said write pole section being further formed and disposed with a bowed out midsection with a small gap having a sufficiently small width formed between said pole tip and said downstream magnetic shield section so that, when said pole tip has magnetic flux passing therethrough, fringing flux in the downstream direction will be substantially directed to pass from the side of said pole tip across said small gap into said downstream magnetic shield, such that substantially all of the remainder of said magnetic flux is presented for passing through said pole tip substantially vertically into said medium and then to said downstream magnetic shield face,
whereby sharply defined bits of information may be vertically recorded at said pole tip in tracks on said medium, and further including side magnetic shield means disposed to lie in close proximity to said write pole section along at least one track adjacent to a track to be written on said medium at said pole tip to form at least one side gap between said side shield means and said write pole section to enable said side shield means to intercept magnetic flux which is fringing from said pole tip in the direction of said at least one adjacent track. .Iaddend. .Iadd.17. The device of claim 16 wherein said side shield means includes first and second side magnetic shield means each of which is disposed to lie on opposite sides of, and in close proximity to, said write pole section to respectively form first and second gaps between said first and second side magnetic shield means and said write pole section to enable said first and second side shield means to intercept magnetic flux from said magnetic write pole tip in the direction of tracks adjacent to a track to be written at said pole tip on said medium. .Iaddend. .Iadd.18. A magnetic head having at least one pole for effecting downstream vertical recording of magnetic transitions on a layered vertical magnetic recording medium via a write field gradient comprising
a write pole terminating in a write pole tip,
a downstream shield integrally connected to the write pole and having a large shield tip area relative to the area of the write pole tip,
the write pole cooperating with the downstream shield to engage flux from a write flux source,
the write pole tip configured to present write flux from the write flux source to the medium for recording information on the medium,
the write pole proximally coupled to the downstream shield to substantially capture downstream fringing flux emanating from the write pole to minimize presentation of downstream fringing flux to the medium when presenting write flux from the pole tip to the medium for recording information on the medium, whereby the write field gradient at the pole tip is increased and recorded transitions are sharper, as a result of such minimization, and
further including side magnetic shield means disposed to lie in close proximity to the write pole section along at least one track adjacent to a track to be written on the medium at the pole tip to form at least one side gap therebetween to enable the side shield means to intercept magnetic flux fringing from the pole tip in the direction of the at least
one adjacent track. .Iaddend. .Iadd.19. The head of claim 18 wherein the side shield means includes first and second side magnetic shield means each of which is disposed to lie on opposite sides of, and in close proximity to, the write pole section to respectively form first and second gaps between the first and second side magnetic shield means and the write pole section to enable the first and second side shield means to intercept magnetic flux from the magnetic write pole tip in the direction of tracks adjacent to a track to be written at the pole tip on the medium. .Iaddend.
.Iadd.20. An arrangement for effecting vertical magnetic recording of information comprising in combination:
movable magnetizable recording means formed to have first and second layers which lie substantially parallel to the movement of said magnetizable recording means, said first layer comprised of magnetizable material which is characterized by perpendicular uniaxial anisotropy and said second layer comprised of material characterized by low magnetic reluctance, said magnetizable recording means arranged to be moved in a downstream direction;
magnetic recording head means including magnetic flux generating means, formed to have a write pole section and a downstream magnetic shield section which is integrally connected to said write pole section so that magnetic flux can readily pass, bidirectionally, through said write pole section and said downstream magnetic shield section;
said downstream magnetic shield section formed and disposed to have a relatively large face lying in close proximity to said first layer;
said write pole section and said downstream magnetic shield section being constructed so that said write pole section is disposed in an upstream direction with respect to said downstream magnetic shield section so that said write pole section and said downstream magnetic shield section form a partial loop configuration that defines an opening between said write pole section and said downstream magnetic shield section, said write pole section ending in a pole tip which is disposed to lie in close proximity to said first layer so that the magnetic flux passing into and alternatively out of said write pole section will pass from said first layer through said pole tip and alternatively from said pole tip into said first layer,
said opening defining a small gap between said pole tip and said downstream magnetic shield section that has a sufficiently small width so that, when said pole tip has magnetic flux passing therethrough, fringing flux in the downstream direction will substantially pass across said small gap into said downstream magnetic shield section without passing through said first layer, and whereby the remainder of said magnetic flux passing through said pole tip passes substantially vertically through said first layer into said second layer, substantially parallel to and through said second layer, and substantially vertically from said second layer through said first layer into said downstream magnetic shield face, thereby effecting vertical magnetic recording of information in said first layer. .Iaddend.
.Iadd.21. The device of claim 20 wherein said write pole section is constructed with a bowed region to define said partial loop configuration.
.Iaddend. .Iadd.22. An arrangement for effecting vertical magnetic recording of information comprising in combination:
movable magnetizable recording means formed to have first and second layers which lie substantially parallel to the movement of said magnetizable recording means, said first layer comprised of magnetizable material which is characterized by perpendicular uniaxial anisotropy and said second layer comprised of material characterized by low magnetic reluctance, said magnetizable recording means arranged to be moved in a downstream direction;
magnetic recording head means including magnetic flux generating means, formed to have a write pole section and a downstream magnetic shield section which is integrally connected to said write pole section so that magnetic flux can readily pass, bidirectionally, through said write pole section and said downstream magnetic shield section;
said downstream magnetic shield section formed and disposed to have a relatively large face lying in close proximity to said first layer;
said write pole section and said downstream magnetic shield section being constructed so that said write pole section is disposed in an upstream direction with respect to said downstream magnetic shield section so that said write pole section and said downstream magnetic shield section form a partial loop configuration that defines a first gap between said write pole section and said downstream magnetic shield section, said write pole section ending in a pole tip which is disposed to lie in close proximity to said first layer so that the magnetic flux passing into and alternatively out of said write pole section will pass from said first layer through said pole tip and alternatively from said pole tip into said first layer,
said partial loop configuration defining a second gap of narrower width than said first gap between said pole tip and said downstream magnetic shield section, said width of said second gap being sufficiently small such that when said pole tip has magnetic flux passing therethrough, fringing flux in the downstream direction will substantially pass across said small gap into said downstream magnetic shield without passing through said first layer, and whereby the remainder of said magnetic flux passing through said pole tip passes substantially vertically through said first layer into said second layer, substantially parallel to and through said second layer, and substantially vertically from said second layer through said first layer into said downstream magnetic shield face, thereby effecting vertical magnetic recording of information in said first
layer. .Iaddend. .Iadd.23. The device of claim 22 wherein said write pole section is constructed with a bowed region to define said partial loop configuration. .Iaddend.
US07/613,469 1985-01-22 1990-11-07 Vertical magnetic recording arrangement Expired - Lifetime USRE33949E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/613,469 USRE33949E (en) 1985-01-22 1990-11-07 Vertical magnetic recording arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/693,522 US4656546A (en) 1985-01-22 1985-01-22 Vertical magnetic recording arrangement
US07/613,469 USRE33949E (en) 1985-01-22 1990-11-07 Vertical magnetic recording arrangement

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US06/693,522 Reissue US4656546A (en) 1985-01-22 1985-01-22 Vertical magnetic recording arrangement
US07334936 Continuation 1989-04-07

Publications (1)

Publication Number Publication Date
USRE33949E true USRE33949E (en) 1992-06-02

Family

ID=24785015

Family Applications (2)

Application Number Title Priority Date Filing Date
US06/693,522 Ceased US4656546A (en) 1985-01-22 1985-01-22 Vertical magnetic recording arrangement
US07/613,469 Expired - Lifetime USRE33949E (en) 1985-01-22 1990-11-07 Vertical magnetic recording arrangement

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US06/693,522 Ceased US4656546A (en) 1985-01-22 1985-01-22 Vertical magnetic recording arrangement

Country Status (8)

Country Link
US (2) US4656546A (en)
EP (1) EP0214175B1 (en)
KR (1) KR880700390A (en)
AT (1) ATE89427T1 (en)
BR (1) BR8604738A (en)
CA (1) CA1243776A (en)
DE (1) DE3688413T2 (en)
WO (1) WO1986004445A1 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750270A (en) * 1995-02-07 1998-05-12 Conner Peripherals, Inc. Multi-layer magnetic recording media
US20020015253A1 (en) * 2000-07-27 2002-02-07 Dmitri Litvinov Magnetic recording system which eliminates skew angle effect
US6504675B1 (en) 2000-01-12 2003-01-07 Seagate Technology Llc Perpendicular magnetic recording heads with write pole shaped to reduce skew effects during writing
US6574072B1 (en) 2000-01-12 2003-06-03 Seagate Technology Llc Perpendicular magnetic recording head with radial magnetic field generator which reduces noise from soft magnetic underlayer of recording disk
US6646827B1 (en) 2000-01-10 2003-11-11 Seagate Technology Llc Perpendicular magnetic recording head with write pole which reduces flux antenna effect
US20030210494A1 (en) * 2002-05-13 2003-11-13 Campbell Robert Owen Magnetic recording head
US20030227714A1 (en) * 2002-06-06 2003-12-11 Seagate Technology Llc Perpendicular magnetic recording head having a reduced field under the return pole and minimal eddy current losses
US6667848B1 (en) 2000-01-10 2003-12-23 Seagate Technology Llc Perpendicular magnetic recording head with means for suppressing noise from soft magnetic underlayer of recording media
US6703099B2 (en) 2000-07-27 2004-03-09 Seagate Technology Llc Perpendicular magnetic recording media with patterned soft magnetic underlayer
US6717770B1 (en) 2000-03-24 2004-04-06 Seagate Technology Llc Recording head for applying a magnetic field perpendicular to the magnetizations within magnetic storage media
US20040080847A1 (en) * 2002-10-29 2004-04-29 Imation Corp. Perpendicular patterned magnetic media
US6771462B1 (en) 1999-09-20 2004-08-03 Seagate Technology Llc Perpendicular recording head including concave tip
US6816339B1 (en) 2000-01-10 2004-11-09 Seagate Technology Llc Perpendicular magnetic recording head with longitudinal magnetic field generator to facilitate magnetization switching
US6842313B1 (en) 2002-04-08 2005-01-11 Maxtor Corporation Floating down stream perpendicular write head shield
US20050024771A1 (en) * 2003-07-30 2005-02-03 Quang Le Perpendicular recording magnetic head with a write shield magnetically coupled to a first pole piece
US20050068678A1 (en) * 2003-09-30 2005-03-31 Yimin Hsu Head for perpendicular magnetic recording with a shield structure connected to the return pole piece
US20050068669A1 (en) * 2003-09-26 2005-03-31 Yimin Hsu Head for perpendicular recording with a floating trailing shield
US6876519B1 (en) 1999-09-20 2005-04-05 Seagate Technology Llc Magnetic recording head including background magnetic field generator
US6888700B2 (en) 2001-07-20 2005-05-03 Seagate Technology Llc Perpendicular magnetic recording apparatus for improved playback resolution having flux generating elements proximate the read element
US6894878B1 (en) 2002-07-10 2005-05-17 Maxtor Corporation Differential GMR head using anti-parallel pinned layers
US6950277B1 (en) 2002-10-25 2005-09-27 Maxtor Corporation Concave trailing edge write pole for perpendicular recording
US20050243463A1 (en) * 2004-04-30 2005-11-03 Fontana Robert E Jr Planar perpendicular recording head
US20050264944A1 (en) * 2004-05-28 2005-12-01 Fontana Robert E Jr Planar magnetic thin film head
US20050280935A1 (en) * 2004-06-16 2005-12-22 Seagate Technology Llc Ampere wire write head with confined magnetic fields
US20060000794A1 (en) * 2004-06-30 2006-01-05 Quang Le Methods of fabricating magnetic write heads with side and trailing shield structures
US7009812B2 (en) 2003-09-29 2006-03-07 Hitachi Global Storage Technologies Netherlands B.V. Magnetic transducer for perpendicular magnetic recording with single pole write head with trailing shield
US20060092562A1 (en) * 2004-10-29 2006-05-04 Ho Kuok S Winged design for reducing corner stray magnetic fields
US20060098334A1 (en) * 2004-10-27 2006-05-11 Jayasekara Wipul P Laminated side shield for perpendicular write head for improved performance
US7075756B1 (en) 2002-11-07 2006-07-11 Maxtor Corporation Shielded pole writer
US20060158780A1 (en) * 2005-01-11 2006-07-20 Samsung Electronics Co., Ltd. Magnetic recording head and method of manufacturing the same
US7126788B1 (en) 2003-11-26 2006-10-24 Western Digital (Fremont), Inc. Trailing edge recording magnetic head with reversed double bias coil and deflection pole for perpendicular recording with a non-perpendicular write field
US7126790B1 (en) 2003-11-26 2006-10-24 Western Digital (Fremont), Inc. Magnetic head for perpendicular recording with magnetic loop providing non-perpendicular write field
US20060245108A1 (en) * 2005-04-27 2006-11-02 Hitachi Global Storage Technologies Flux shunt structure for reducing return pole corner fields in a perpendicular magnetic recording head
US20060256473A1 (en) * 2005-04-28 2006-11-16 Samsung Electronics Co., Ltd. Perpendicular magnetic recording head
US7248431B1 (en) 2004-04-30 2007-07-24 Yinshi Liu Method of fabricating a perpendicular recording write head having a gap with two portions
US7296337B2 (en) 2004-05-25 2007-11-20 Hitachi Global Storage Technologies Netherlands B.V. Notched trailing shield for perpendicular write head
US7324304B1 (en) 2003-11-20 2008-01-29 Maxtor Corporation Tapered write pole for reduced skew effect
US20080024912A1 (en) * 2003-12-04 2008-01-31 Maxtor Corporation Techniques to reduce adjacent track erasure
US7377024B2 (en) 2005-03-25 2008-05-27 Hitachi Global Storage Technologies Netherlands B.V. Method of making a magnetic write head with trailing shield throat pad
US20080276448A1 (en) * 2007-05-10 2008-11-13 Hitachi Global Storage Technologies Netherlands B.V. Method for defining the trailing shield throat height in a perpendicular magnetic recording write head
US7508624B1 (en) 2003-08-01 2009-03-24 Lauer Mark A Transducers for perpendicular recording with write pole tip angled toward media
US20090154012A1 (en) * 2007-12-14 2009-06-18 Masafumi Mochizuki Perpendicular magnetic recording head, magnetic head, and magnetic disk device mounted with these heads
US20090168240A1 (en) * 2007-12-28 2009-07-02 Wen-Chien David Hsiao Perpendicular write head having a modified wrap-around shield to improve overwrite, adjacent track interference and magnetic core width dependence on skew angle
US20090262636A1 (en) * 2008-04-18 2009-10-22 Seagate Technology Llc Wire-assisted magnetic write device including multiple wire assist conductors
US7729092B1 (en) 2002-11-07 2010-06-01 Seagate Technology Llc Shielded pole writer under reader
US7732069B1 (en) 2004-06-10 2010-06-08 Seagate Technology Llc Thin SUL media with shielded pole head
US20100246061A1 (en) * 2009-03-25 2010-09-30 Sri International Shielded Perpendicular Magnetic Recording Head
US7869160B1 (en) * 2005-04-27 2011-01-11 Western Digital (Fremont), Llc Perpendicular recording head with shaped pole surfaces for higher linear data densities
US7876529B1 (en) 2005-11-03 2011-01-25 Seagate Technology Llc Recording disk with antiferromagnetically coupled multilayer ferromagnetic island disposed in trench between discrete tracks
US7894159B2 (en) 2007-04-19 2011-02-22 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular write head with independent trailing shield designs
US8542462B2 (en) 2009-07-03 2013-09-24 HGST Netherlands B.V. Perpendicular magnetic recording head having a non-magnetic film recessed from the air bearing surface for improved high-density magnetic recording
US8687318B2 (en) * 2012-03-13 2014-04-01 Seagate Technology Llc Recording head coil structure

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748525A (en) * 1986-02-14 1988-05-31 Magnetic Peripherals Inc. Probe head for vertical recording
US4935832A (en) * 1987-04-01 1990-06-19 Digital Equipment Corporation Recording heads with side shields
US5159511A (en) * 1987-04-01 1992-10-27 Digital Equipment Corporation Biasing conductor for MR head
US4907113A (en) * 1987-07-29 1990-03-06 Digital Equipment Corporation Three-pole magnetic recording head
US5103553A (en) * 1987-07-29 1992-04-14 Digital Equipment Corporation Method of making a magnetic recording head
US5176965A (en) * 1987-10-05 1993-01-05 Digital Equipment Corporation Magnetic medium for longitudinal recording
US5075956A (en) * 1988-03-16 1991-12-31 Digital Equipment Corporation Method of making recording heads with side shields
US5068959A (en) * 1988-07-11 1991-12-03 Digital Equipment Corporation Method of manufacturing a thin film head
US5085935A (en) * 1988-08-03 1992-02-04 Digital Equipment Corporation Flux spreading thin film magnetic devices
US5089334A (en) * 1988-08-03 1992-02-18 Digital Equipment Corporation Flux spreading thin film magnetic devices
CA1334447C (en) * 1988-08-03 1995-02-14 Digital Equipment Corporation Perpendicular anisotropy in thin film devices
US5428893A (en) * 1989-06-02 1995-07-04 Quantum Corporation Method of making a transducer with improved inductive coupling
US5311386A (en) * 1989-06-02 1994-05-10 Digital Equipment Corporation Transducer with improved inductive coupling
US5195005A (en) * 1989-06-02 1993-03-16 Digital Equipment Corporation Tranducer with improved inductive coupling
US5184267A (en) * 1989-06-02 1993-02-02 Digital Equipment Corporation Transducer with improved inductive coupling
US5452166A (en) * 1993-10-01 1995-09-19 Applied Magnetics Corporation Thin film magnetic recording head for minimizing undershoots and a method for manufacturing the same
KR19990057734A (en) * 1997-12-30 1999-07-15 윤종용 Magnetic head with shielding plate
US7179551B2 (en) 1999-02-12 2007-02-20 General Electric Company Poly(arylene ether) data storage media
BR0008208A (en) 1999-02-12 2002-02-19 Gen Electric Data storage media
US6430010B1 (en) 1999-05-03 2002-08-06 Seagate Technology, Llc. Disc drive reader with reduced off-track pickup
US6359744B1 (en) * 1999-09-13 2002-03-19 Maxtor Corporation Reducing thermal decay of data signals recorded on magnetic media
US7041394B2 (en) 2001-03-15 2006-05-09 Seagate Technology Llc Magnetic recording media having self organized magnetic arrays
US7153597B2 (en) * 2001-03-15 2006-12-26 Seagate Technology Llc Magnetic recording media having chemically modified patterned substrate to assemble self organized magnetic arrays
US6954340B2 (en) * 2001-05-23 2005-10-11 Seagate Technology Llc Perpendicular magnetic recording head with nonmagnetic write gap greater than twice side shield gap distance
US7292414B1 (en) 2001-11-09 2007-11-06 Maxtor Corporation External coil bias for giant magneto-resistive sensor
US20030117749A1 (en) * 2001-12-20 2003-06-26 Shukh Alexander M. Perpendicular read/write head for use in a disc drive storage system
US7301727B2 (en) * 2001-12-20 2007-11-27 Seagate Technology Llc Return pole of a transducer having low thermal induced protrusion
US7161755B1 (en) * 2002-04-08 2007-01-09 Maxtor Corporation Increasing areal density in magnetic recording media
JP4160784B2 (en) * 2002-05-31 2008-10-08 株式会社日立グローバルストレージテクノロジーズ Perpendicular magnetic head and perpendicular magnetic recording / reproducing apparatus
JP2004022004A (en) * 2002-06-12 2004-01-22 Tdk Corp Thin film magnetic head
JP3865308B2 (en) * 2002-10-02 2007-01-10 Tdk株式会社 Thin film magnetic head, magnetic head device, and magnetic recording / reproducing device
US7149045B1 (en) 2002-11-07 2006-12-12 Maxtor Corporation Longitudinal media with soft underlayer and perpendicular write head
JP4033795B2 (en) * 2002-11-28 2008-01-16 株式会社日立グローバルストレージテクノロジーズ Magnetic recording medium and magnetic recording apparatus equipped with the same
US7241516B1 (en) 2003-03-03 2007-07-10 Maxtor Corporation Soft magnetic underlayer with exchange coupling induced anisotropy for perpendicular magnetic recording media
JP4116913B2 (en) * 2003-03-26 2008-07-09 Tdk株式会社 Perpendicular magnetic recording head and magnetic recording apparatus
JP4060224B2 (en) * 2003-03-31 2008-03-12 新科實業有限公司 Manufacturing method of thin film magnetic head
US7106554B2 (en) * 2003-04-10 2006-09-12 Headway Technologies, Inc. Perpendicular magnetic writer with magnetic potential control shield
JP4215198B2 (en) * 2003-05-13 2009-01-28 株式会社日立グローバルストレージテクノロジーズ Magnetic head and magnetic disk drive having the same
JP2005018851A (en) * 2003-06-24 2005-01-20 Tdk Corp Thin film magnetic head and magnetic recording device
US7132221B2 (en) * 2003-09-12 2006-11-07 Headway Technologies, Inc. Method to print photoresist lines with negative sidewalls
US7042682B2 (en) * 2003-10-17 2006-05-09 Headway Technologies, Inc. Fully shielded perpendicular recoding writer
US7239478B1 (en) 2004-01-31 2007-07-03 Western Digital (Fremont), Inc. Write element for perpendicular recording in a data storage system
US7441325B2 (en) * 2004-04-30 2008-10-28 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular head with trailing shield and rhodium gap process
US7268974B2 (en) * 2004-04-30 2007-09-11 Hitachi Global Storage Technologies Netherlands B.V. Magnetic write head having a notched yoke structure with a trailing shield and method of making the same
US7440229B2 (en) * 2004-06-18 2008-10-21 Headway Technologies, Inc. Thin-film magnetic head having a write shield layer
US7580222B2 (en) * 2004-06-18 2009-08-25 Headway Technologies, Inc. Thin-film magnetic head, a head gimbal assembly and hard disk drive
US7227720B2 (en) * 2004-06-21 2007-06-05 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording and method of manufacturing same
US7193816B2 (en) * 2004-06-21 2007-03-20 Headway Technologies Magnetic head for perpendicular magnetic recording and method of manufacturing same
US7394621B2 (en) * 2004-06-30 2008-07-01 Headway Technologies, Inc. Using bilayer lithography process to define neck height for PMR
US7468864B2 (en) * 2004-07-01 2008-12-23 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording and method of manufacturing same
US7672079B2 (en) 2004-07-07 2010-03-02 Headway Technologies, Inc. Pole width control on plated bevel main pole design of a perpendicular magnetic recording head
US7588842B1 (en) 2004-09-02 2009-09-15 Maxtor Corporation Perpendicular magnetic recording medium with a pinned soft underlayer
US7516538B2 (en) * 2004-09-20 2009-04-14 Headway Technologies, Inc. Method of manufacturing a magnetic head for perpendicular magnetic recording
US7333296B2 (en) * 2004-10-07 2008-02-19 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording including pole-layer-encasing layer that opens in the top surface thereof and nonmagnetic conductive layer disposed on the top surface of the pole-layer-encasing layer
JP4390677B2 (en) * 2004-10-15 2009-12-24 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Magnetic head and magnetic recording / reproducing apparatus equipped with the same
US7558020B2 (en) * 2004-11-12 2009-07-07 Headway Technologies, Inc. Thin-film magnetic head structure having a magnetic pole tip with an even width portion method of manufacturing thereof, and thin-film magnetic head having a magnetic pole tip with an even width portion
US7417825B2 (en) 2004-11-12 2008-08-26 Headway Technologies, Inc. Thin film magnetic head structure, adapted to manufacture a thin film magnetic head
JP2006164356A (en) * 2004-12-03 2006-06-22 Hitachi Global Storage Technologies Netherlands Bv Magnetic head and magnetic recording and reproducing apparatus
JP4007513B2 (en) * 2004-12-27 2007-11-14 Tdk株式会社 Magnetic head for perpendicular magnetic recording, head gimbal assembly, head arm assembly, and magnetic disk drive
US7736765B2 (en) * 2004-12-28 2010-06-15 Seagate Technology Llc Granular perpendicular magnetic recording media with dual recording layer and method of fabricating same
US7433151B2 (en) * 2004-12-28 2008-10-07 Headway Technologies, Inc. Method of manufacturing magnetic head using magnetic head sub-structure with indicators for indicating the location of the ABS
JP4113879B2 (en) * 2005-02-04 2008-07-09 Tdk株式会社 Perpendicular magnetic recording head and magnetic recording apparatus
US7369361B2 (en) * 2005-02-07 2008-05-06 Headway Technologies, Inc. Magnetic head and magnetic head substructure including resistor element whose resistance corresponds to the length of the track width defining portion of the pole layer
US7440213B2 (en) * 2005-02-09 2008-10-21 Seagate Technology Llc Apparatus and method for controlling remnant magnetization in a magnetic recording head
US8110298B1 (en) 2005-03-04 2012-02-07 Seagate Technology Llc Media for high density perpendicular magnetic recording
US7518824B2 (en) * 2005-03-07 2009-04-14 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording that has a pole layer having a shape for easy forming, reducing track width and improved writing characteristics
JP2006252620A (en) * 2005-03-09 2006-09-21 Hitachi Global Storage Technologies Netherlands Bv Magnetic head and its manufacturing method
JP2006252697A (en) * 2005-03-11 2006-09-21 Tdk Corp Perpendicular magnetic recording element, thin film magnetic head, magnetic head device, and magnetic recording/reproducing device
KR100682940B1 (en) * 2005-03-18 2007-02-15 삼성전자주식회사 Perpendicular magnetic recording head and recording media for recording data using the same
US7551396B2 (en) * 2005-04-27 2009-06-23 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic write head having a studded trailing shield compatible with read/write offset
US20060245113A1 (en) * 2005-04-28 2006-11-02 Headway Technologies, Inc. Method to reduce sensitivity of a perpendicular recording head to external fields
US7599152B2 (en) * 2005-04-28 2009-10-06 Headway Technologies, Inc. Magnetic read-write head shield that prevents flux concentration at edges close to the ABS
US7663839B2 (en) * 2005-05-16 2010-02-16 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording with encasing layer
US7463450B2 (en) * 2005-05-23 2008-12-09 Headweay Technologies, Inc. Thin film magnetic head
US7375925B2 (en) * 2005-05-27 2008-05-20 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording and method of manufacturing same
US7313863B2 (en) * 2005-06-07 2008-01-01 Headway Technologies, Inc. Method to form a cavity having inner walls of varying slope
US7365942B2 (en) * 2005-06-22 2008-04-29 Headway Technologies, Inc. Thin-film magnetic head
US7468863B2 (en) * 2005-07-05 2008-12-23 Headway Technologies, Inc. Thin-film magnetic head structure adapted to manufacture a thin-film head having a base magnetic pole part, a yoke magnetic pole part, and an intervening insulative film
US7492555B2 (en) * 2005-07-13 2009-02-17 Headway Technologies, Inc. Thin-film magnetic head structure, method of manufacturing the same, and thin-film magnetic head
US7336442B2 (en) * 2005-08-22 2008-02-26 Headway Technologies, Inc. Magnetic head and method of manufacturing same, and magnetic head substructure
US8119263B2 (en) * 2005-09-22 2012-02-21 Seagate Technology Llc Tuning exchange coupling in magnetic recording media
US7508629B2 (en) * 2005-11-30 2009-03-24 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording that has a structure to suppress protrusion of an end portion of a shield layer resulting from heat generated by a coil, and method of manufacturing same
US7367112B2 (en) * 2006-02-14 2008-05-06 Hitachi Global Storage Technologies Netherlands B.V. Method of fabricating a head for perpendicular magnetic recording with a self-aligning side shield structure
JP2007257815A (en) * 2006-02-22 2007-10-04 Tdk Corp Magnetic device, perpendicular magnetic recording head, magnetic recording device, method of forming magnetic layer pattern , and method of manufacturing perpendicular magnetic recording head
US7609479B2 (en) * 2006-03-10 2009-10-27 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording and method of manufacturing same
US7721415B2 (en) * 2006-04-19 2010-05-25 Headway Technologies, Inc Method of manufacturing a thin-film magnetic head
US7538976B2 (en) * 2006-04-25 2009-05-26 Hitachi Global Storage Technologies B.V. Trailing shield design for reducing wide area track erasure (water) in a perpendicular recording system
US7656612B2 (en) * 2006-05-31 2010-02-02 Headway Technologies, Inc. Magnetic head having a patterned pole layer
US7468862B2 (en) 2006-06-20 2008-12-23 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording
US7551394B2 (en) * 2006-07-12 2009-06-23 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording having a multilayer shield structure and method of manufacturing same
US7633714B2 (en) 2006-07-26 2009-12-15 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording and method of manufacturing same
US7843665B2 (en) * 2006-09-11 2010-11-30 Headway Technologies, Inc. Perpendicular magnetic recording head with nonmagnetic metal layer even with top face of pole layer
US7940495B2 (en) * 2006-10-13 2011-05-10 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording
US8467147B2 (en) * 2006-10-13 2013-06-18 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording and method of manufacturing same
JP2008123600A (en) * 2006-11-10 2008-05-29 Shinka Jitsugyo Kk Perpendicular magnetic recording head, manufacturing method thereof, and magnetic recording device
US7889458B2 (en) * 2006-11-13 2011-02-15 Hitachi Global Storage Technologies Netherlands B.V. Write head with self-cross biased pole for high speed magnetic recording
US7876531B2 (en) * 2007-01-09 2011-01-25 Seagate Technology Llc Virtual front shield writer
US8051552B2 (en) * 2007-05-11 2011-11-08 Hitachi Global Storage Technologies Netherlands, B.V. Stitched wrap around shield fabrication for perpendicular magnetic recording write heads
US8102623B2 (en) * 2007-08-31 2012-01-24 Tdk Corporation Thin-film magnetic head with a magnetic pole having an inclined step at its top end section surface, magnetic head assembly with the thin-film magnetic head, magnetic disk drive apparatus with the magnetic head assembly, and manufacturing method of thin-film magnetic head
US8035930B2 (en) * 2007-10-03 2011-10-11 Headway Technologies, Inc. Perpendicular magnetic recording write head with a side shield
US7933094B2 (en) * 2007-11-27 2011-04-26 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording having a shield that includes a part recessed from medium facing surface
US7933095B2 (en) * 2007-12-04 2011-04-26 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording including a stopper layer for suppressing protrusion of the front end face of a shield
US8000064B2 (en) 2007-12-13 2011-08-16 Tdk Corporation Thin-film magnetic head for perpendicular magnetic recording and method of making the same
US20090168241A1 (en) * 2007-12-26 2009-07-02 Masafumi Mochizuki Magnetic disk drive
US8922948B2 (en) * 2008-05-09 2014-12-30 Headway Technologies, Inc. Thin-film magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive
US8077433B2 (en) * 2008-06-03 2011-12-13 Headway Technologies, Inc. Thin-film magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive
US8697260B2 (en) * 2008-07-25 2014-04-15 Seagate Technology Llc Method and manufacture process for exchange decoupled first magnetic layer
US8305709B2 (en) * 2008-08-08 2012-11-06 Tdk Corporation Perpendicular magnetic head and magnetic recording system having non-magnetic region in shield layer
US20100110585A1 (en) * 2008-11-03 2010-05-06 Headway Technologies, Inc. Perpendicular magnetic recording write head with a trailing shield
US8842389B2 (en) * 2009-10-26 2014-09-23 Headway Technologies, Inc. Wrap-around shielded writer with highly homogeneous shield material
US9142240B2 (en) 2010-07-30 2015-09-22 Seagate Technology Llc Apparatus including a perpendicular magnetic recording layer having a convex magnetic anisotropy profile
US8358487B2 (en) 2011-01-05 2013-01-22 Headway Technologies, Inc. Thin-film magnetic head having coil of varying thinknesses in spaces adjacent the main magnetic pole
US8724242B2 (en) 2011-02-02 2014-05-13 Seagate Technology Llc Compensation for cross-track deviation
US8508880B2 (en) 2011-02-16 2013-08-13 Seagate Technology Llc Transducer head with multiple read sensors
US9355654B1 (en) 2012-12-21 2016-05-31 Western Digital Technologies, Inc. Spin torque oscillator for microwave assisted magnetic recording with increased damping
US8908330B1 (en) 2012-12-21 2014-12-09 Western Digital Technologies, Inc. Spin torque oscillator for microwave assisted magnetic recording with optimal geometries
US20140177102A1 (en) * 2012-12-21 2014-06-26 Seagate Technology Llc Multi-reader method and apparatus
US9373355B1 (en) 2015-01-30 2016-06-21 Seagate Technology Llc Compensating for interference via a multi-reader system
US9263066B1 (en) 2015-05-01 2016-02-16 Seagate Technology Llc Data writer with magnetically hard front shield
US9837107B2 (en) 2016-02-12 2017-12-05 International Business Machines Corporation Tape head with electrically conducting surface to reduce triboelectric charging
GB201615693D0 (en) * 2016-09-15 2016-11-02 Combinatorx Infection Ltd Combinations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156919A (en) * 1960-12-30 1964-11-10 Ibm Electromagnetic transducer head
JPS5888812A (en) * 1981-11-19 1983-05-27 Matsushita Electric Ind Co Ltd Magnetic head
US4575777A (en) * 1981-12-08 1986-03-11 Kabushiki Kaisha Suwa Seikosha Magnetic recording and reproducing head

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360625A (en) * 1941-06-27 1944-10-17 Joseph B Walker Magnetic recording apparatus
US2750579A (en) * 1952-01-07 1956-06-12 North American Aviation Inc Magnetic disc data storage device
US2951912A (en) * 1955-03-14 1960-09-06 Dictaphone Corp Shielded magnetic translating apparatus
JPS57205811A (en) * 1981-06-15 1982-12-17 Matsushita Electric Ind Co Ltd Vertical magnetization type magnetic head
JPS58111114A (en) * 1981-12-23 1983-07-02 Fujitsu Ltd Thin film magnetic head
JPS58150121A (en) * 1982-03-01 1983-09-06 Ricoh Co Ltd Vertical magnetic recording head
JPS5945601A (en) * 1982-09-07 1984-03-14 Hitachi Ltd Vertical magnetic recorder
JPS59119522A (en) * 1982-12-27 1984-07-10 Seiko Epson Corp Magnetic recorder
JPS59218616A (en) * 1983-05-26 1984-12-08 Fujitsu Ltd Thin film magnetic head
JP2571755B2 (en) * 1983-08-24 1997-01-16 株式会社日立製作所 Magnetic recording / reproducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3156919A (en) * 1960-12-30 1964-11-10 Ibm Electromagnetic transducer head
JPS5888812A (en) * 1981-11-19 1983-05-27 Matsushita Electric Ind Co Ltd Magnetic head
US4575777A (en) * 1981-12-08 1986-03-11 Kabushiki Kaisha Suwa Seikosha Magnetic recording and reproducing head

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Hanazono, et al., "Fabrication Of A Thin Film Head Using Polyimide Resin And Sputtered Ni-Fe Filmsa) ", J. Appl. Phys. 53(3), Mar. 1982, pp. 2608-2610.
Hanazono, et al., Fabrication Of A Thin Film Head Using Polyimide Resin And Sputtered Ni Fe Films a) , J. Appl. Phys. 53(3), Mar. 1982, pp. 2608 2610. *
Iwasaki, et al., "An Analysis For The Magnetization Mode For High Density Magnetic Recording", IEEE Trans. on Magnetics, V MAG-13, No. 5, Sep. 1977 pp. 1272-1277.
Iwasaki, et al., An Analysis For The Magnetization Mode For High Density Magnetic Recording , IEEE Trans. on Magnetics, V MAG 13, No. 5, Sep. 1977 pp. 1272 1277. *
Lazzari, et al., "Thin-Film Head Study For Perpendicular Recording", IEEE Trans. on Magnetics, vol. MAG-17, No. 6, Nov. 1981, pp. 3120-3121.
Lazzari, et al., Thin Film Head Study For Perpendicular Recording , IEEE Trans. on Magnetics, vol. MAG 17, No. 6, Nov. 1981, pp. 3120 3121. *
Oshiki, et al., "A Thin Film Head For Perpendicular Magnetic Recording", J. Appl. Phys. 53(3), Mar. 1982, pp. 2593-2595.
Oshiki, et al., A Thin Film Head For Perpendicular Magnetic Recording , J. Appl. Phys. 53(3), Mar. 1982, pp. 2593 2595. *
Potter, et al., "Self-Consistent Computer Calculations For Perpendicular Magnetic Recording", IEEE Trans. on Magnetics, vol. MAG-16, No. 5, Sep. 1980, pp. 967-972.
Potter, et al., Self Consistent Computer Calculations For Perpendicular Magnetic Recording , IEEE Trans. on Magnetics, vol. MAG 16, No. 5, Sep. 1980, pp. 967 972. *
Shinagawa, et al., "Simulation Of Perpendicular Recording On Co-Cr Media With A Thin Permalloy Film-Ferrite Composite Head", J. Appl. Phys. 53(3), Mar. 1982, pp. 2585-2587.
Shinagawa, et al., Simulation Of Perpendicular Recording On Co Cr Media With A Thin Permalloy Film Ferrite Composite Head , J. Appl. Phys. 53(3), Mar. 1982, pp. 2585 2587. *

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750270A (en) * 1995-02-07 1998-05-12 Conner Peripherals, Inc. Multi-layer magnetic recording media
US6876519B1 (en) 1999-09-20 2005-04-05 Seagate Technology Llc Magnetic recording head including background magnetic field generator
US6771462B1 (en) 1999-09-20 2004-08-03 Seagate Technology Llc Perpendicular recording head including concave tip
US6816339B1 (en) 2000-01-10 2004-11-09 Seagate Technology Llc Perpendicular magnetic recording head with longitudinal magnetic field generator to facilitate magnetization switching
US6646827B1 (en) 2000-01-10 2003-11-11 Seagate Technology Llc Perpendicular magnetic recording head with write pole which reduces flux antenna effect
US6667848B1 (en) 2000-01-10 2003-12-23 Seagate Technology Llc Perpendicular magnetic recording head with means for suppressing noise from soft magnetic underlayer of recording media
US6504675B1 (en) 2000-01-12 2003-01-07 Seagate Technology Llc Perpendicular magnetic recording heads with write pole shaped to reduce skew effects during writing
US6574072B1 (en) 2000-01-12 2003-06-03 Seagate Technology Llc Perpendicular magnetic recording head with radial magnetic field generator which reduces noise from soft magnetic underlayer of recording disk
US6717770B1 (en) 2000-03-24 2004-04-06 Seagate Technology Llc Recording head for applying a magnetic field perpendicular to the magnetizations within magnetic storage media
US20020015253A1 (en) * 2000-07-27 2002-02-07 Dmitri Litvinov Magnetic recording system which eliminates skew angle effect
US6703099B2 (en) 2000-07-27 2004-03-09 Seagate Technology Llc Perpendicular magnetic recording media with patterned soft magnetic underlayer
US6987637B2 (en) 2000-07-27 2006-01-17 Seagate Technology Llc Magnetic recording system which eliminates skew angle effect
US6888700B2 (en) 2001-07-20 2005-05-03 Seagate Technology Llc Perpendicular magnetic recording apparatus for improved playback resolution having flux generating elements proximate the read element
US6842313B1 (en) 2002-04-08 2005-01-11 Maxtor Corporation Floating down stream perpendicular write head shield
US6965494B2 (en) 2002-05-13 2005-11-15 Robert Owen Campbell Magnetic recording head having a first pole for generating an easy axis field and an auxiliary pole for generating a first auxiliary hard axis field that opposes an initial hard axis field
US20030210494A1 (en) * 2002-05-13 2003-11-13 Campbell Robert Owen Magnetic recording head
US20030227714A1 (en) * 2002-06-06 2003-12-11 Seagate Technology Llc Perpendicular magnetic recording head having a reduced field under the return pole and minimal eddy current losses
US7099121B2 (en) * 2002-06-06 2006-08-29 Seagate Technology Llc Perpendicular magnetic recording head having a reduced field under the return pole and minimal eddy current losses
US6894878B1 (en) 2002-07-10 2005-05-17 Maxtor Corporation Differential GMR head using anti-parallel pinned layers
US6950277B1 (en) 2002-10-25 2005-09-27 Maxtor Corporation Concave trailing edge write pole for perpendicular recording
US6999279B2 (en) * 2002-10-29 2006-02-14 Imation Corp. Perpendicular patterned magnetic media
US20040080847A1 (en) * 2002-10-29 2004-04-29 Imation Corp. Perpendicular patterned magnetic media
US7729092B1 (en) 2002-11-07 2010-06-01 Seagate Technology Llc Shielded pole writer under reader
US7075756B1 (en) 2002-11-07 2006-07-11 Maxtor Corporation Shielded pole writer
US20050024771A1 (en) * 2003-07-30 2005-02-03 Quang Le Perpendicular recording magnetic head with a write shield magnetically coupled to a first pole piece
US7388732B2 (en) 2003-07-30 2008-06-17 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular recording magnetic head with a write shield megnetically coupled to a first pole piece
US7031121B2 (en) 2003-07-30 2006-04-18 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular recording magnetic head with a write shield magnetically coupled to a first pole piece
US7508624B1 (en) 2003-08-01 2009-03-24 Lauer Mark A Transducers for perpendicular recording with write pole tip angled toward media
US20070146930A1 (en) * 2003-09-26 2007-06-28 Yimin Hsu Head for perpendicular recording with a floating-trailing shield
US7196871B2 (en) 2003-09-26 2007-03-27 Hitachi Global Storage Technologies Netherlands B.V. Head for perpendicular recording with a floating trailing shield
US20050068669A1 (en) * 2003-09-26 2005-03-31 Yimin Hsu Head for perpendicular recording with a floating trailing shield
US7440230B2 (en) 2003-09-26 2008-10-21 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular recording head with floating-trailing shield extending around first and second sides of main pole piece
US7009812B2 (en) 2003-09-29 2006-03-07 Hitachi Global Storage Technologies Netherlands B.V. Magnetic transducer for perpendicular magnetic recording with single pole write head with trailing shield
US7002775B2 (en) 2003-09-30 2006-02-21 Hitachi Global Storage Technologies Netherlands B.V. Head for perpendicular magnetic recording with a shield structure connected to the return pole piece
US20050068678A1 (en) * 2003-09-30 2005-03-31 Yimin Hsu Head for perpendicular magnetic recording with a shield structure connected to the return pole piece
US7324304B1 (en) 2003-11-20 2008-01-29 Maxtor Corporation Tapered write pole for reduced skew effect
US7430095B2 (en) 2003-11-20 2008-09-30 Maxtor Corporation Tapered write pole for reduced skew effect
US7126788B1 (en) 2003-11-26 2006-10-24 Western Digital (Fremont), Inc. Trailing edge recording magnetic head with reversed double bias coil and deflection pole for perpendicular recording with a non-perpendicular write field
US7126790B1 (en) 2003-11-26 2006-10-24 Western Digital (Fremont), Inc. Magnetic head for perpendicular recording with magnetic loop providing non-perpendicular write field
US7372664B1 (en) 2003-12-04 2008-05-13 Maxtor Corporation Techniques to reduce adjacent track erasure including a write pole with a tip having faces at angles
US20080024912A1 (en) * 2003-12-04 2008-01-31 Maxtor Corporation Techniques to reduce adjacent track erasure
US7511921B2 (en) 2003-12-04 2009-03-31 Seagate Technology Llc Read and write heads with at least a portion of the coil positioned about the write pole opposite the read transducer to reduce adjacent track erasure
US20050243463A1 (en) * 2004-04-30 2005-11-03 Fontana Robert E Jr Planar perpendicular recording head
US7248431B1 (en) 2004-04-30 2007-07-24 Yinshi Liu Method of fabricating a perpendicular recording write head having a gap with two portions
US7253991B2 (en) 2004-04-30 2007-08-07 Hitachi Global Storage Technologies Netherlands B.V. Planar perpendicular recording head
US7726009B1 (en) 2004-04-30 2010-06-01 Western Digital (Fremont), Llc Method of fabricating a perpendicular recording write head having a gap with two portions
US7296337B2 (en) 2004-05-25 2007-11-20 Hitachi Global Storage Technologies Netherlands B.V. Notched trailing shield for perpendicular write head
US20050264944A1 (en) * 2004-05-28 2005-12-01 Fontana Robert E Jr Planar magnetic thin film head
US7414816B2 (en) 2004-05-28 2008-08-19 Hitachi Global Storage Technologies Netherlands B.V. Planar magnetic thin film head
US7732069B1 (en) 2004-06-10 2010-06-08 Seagate Technology Llc Thin SUL media with shielded pole head
US7212367B2 (en) 2004-06-16 2007-05-01 Seagate Technology Llc Ampere wire write head with confined magnetic fields
US20050280935A1 (en) * 2004-06-16 2005-12-22 Seagate Technology Llc Ampere wire write head with confined magnetic fields
US20060000794A1 (en) * 2004-06-30 2006-01-05 Quang Le Methods of fabricating magnetic write heads with side and trailing shield structures
US7070698B2 (en) 2004-06-30 2006-07-04 Hitachi Global Storage Technologies Netherlands B.V. Methods of fabricating magnetic write heads with side and trailing shield structures
US20060098334A1 (en) * 2004-10-27 2006-05-11 Jayasekara Wipul P Laminated side shield for perpendicular write head for improved performance
US7295401B2 (en) 2004-10-27 2007-11-13 Hitachi Global Storage Technologies Netherlands B.V. Laminated side shield for perpendicular write head for improved performance
US20060092562A1 (en) * 2004-10-29 2006-05-04 Ho Kuok S Winged design for reducing corner stray magnetic fields
US7616403B2 (en) 2004-10-29 2009-11-10 Hitachi Global Storage Technologies Netherlands B.V. Winged design for reducing corner stray magnetic fields
US8042259B2 (en) 2005-01-11 2011-10-25 Samsung Electronics Co., Ltd. Method of manufacturing a magnetic recording head
US7903372B2 (en) * 2005-01-11 2011-03-08 Samsung Electronics Co., Ltd. Magnetic recording head and method of manufacturing the same
US20060158780A1 (en) * 2005-01-11 2006-07-20 Samsung Electronics Co., Ltd. Magnetic recording head and method of manufacturing the same
US20100147792A1 (en) * 2005-01-11 2010-06-17 Samsung Electronics Co., Ltd. Magnetic recording head and method of manufacturing the same
US7377024B2 (en) 2005-03-25 2008-05-27 Hitachi Global Storage Technologies Netherlands B.V. Method of making a magnetic write head with trailing shield throat pad
US7869160B1 (en) * 2005-04-27 2011-01-11 Western Digital (Fremont), Llc Perpendicular recording head with shaped pole surfaces for higher linear data densities
US20060245108A1 (en) * 2005-04-27 2006-11-02 Hitachi Global Storage Technologies Flux shunt structure for reducing return pole corner fields in a perpendicular magnetic recording head
US7639450B2 (en) * 2005-04-27 2009-12-29 Hitachi Global Storage Technologies Netherlands B.V. Flux shunt structure for reducing return pole corner fields in a perpendicular magnetic recording head
US8098456B2 (en) * 2005-04-28 2012-01-17 Samsung Electronics Co., Ltd. Perpendicular magnetic recording head having a tapered main pole
US20060256473A1 (en) * 2005-04-28 2006-11-16 Samsung Electronics Co., Ltd. Perpendicular magnetic recording head
US7876529B1 (en) 2005-11-03 2011-01-25 Seagate Technology Llc Recording disk with antiferromagnetically coupled multilayer ferromagnetic island disposed in trench between discrete tracks
US8830631B2 (en) 2005-11-03 2014-09-09 Seagate Technology Llc Features for write fringing reduction
US8462463B2 (en) 2005-11-03 2013-06-11 Seagate Technology Llc Write fringing reduction for recording media
US20110085267A1 (en) * 2005-11-03 2011-04-14 Seagate Technology Llc Media Design for High TPI for Write Fringing Reduction
US8243389B2 (en) 2005-11-03 2012-08-14 Seagate Technology Llc Write fringing reduction for recording media
US7894159B2 (en) 2007-04-19 2011-02-22 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular write head with independent trailing shield designs
US7770281B2 (en) * 2007-05-10 2010-08-10 Hitachi Global Storage Technologies Netherlands B.V. Method for redefining the trailing shield throat height in a perpendicular magnetic recording write head
US20080276448A1 (en) * 2007-05-10 2008-11-13 Hitachi Global Storage Technologies Netherlands B.V. Method for defining the trailing shield throat height in a perpendicular magnetic recording write head
US20090154012A1 (en) * 2007-12-14 2009-06-18 Masafumi Mochizuki Perpendicular magnetic recording head, magnetic head, and magnetic disk device mounted with these heads
US8339749B2 (en) 2007-12-14 2012-12-25 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording head, magnetic head, and magnetic disk device mounted with these heads
US20090168240A1 (en) * 2007-12-28 2009-07-02 Wen-Chien David Hsiao Perpendicular write head having a modified wrap-around shield to improve overwrite, adjacent track interference and magnetic core width dependence on skew angle
US8120874B2 (en) 2007-12-28 2012-02-21 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular write head having a modified wrap-around shield to improve overwrite, adjacent track interference and magnetic core width dependence on skew angle
US20090262636A1 (en) * 2008-04-18 2009-10-22 Seagate Technology Llc Wire-assisted magnetic write device including multiple wire assist conductors
US8432638B2 (en) 2009-03-25 2013-04-30 Sri International Shielded perpendicular magnetic recording head
US20100246061A1 (en) * 2009-03-25 2010-09-30 Sri International Shielded Perpendicular Magnetic Recording Head
US8542462B2 (en) 2009-07-03 2013-09-24 HGST Netherlands B.V. Perpendicular magnetic recording head having a non-magnetic film recessed from the air bearing surface for improved high-density magnetic recording
US8687318B2 (en) * 2012-03-13 2014-04-01 Seagate Technology Llc Recording head coil structure
US8873199B2 (en) 2012-03-13 2014-10-28 Seagate Technology Llc Recording head coil structure

Also Published As

Publication number Publication date
ATE89427T1 (en) 1993-05-15
CA1243776A (en) 1988-10-25
EP0214175A4 (en) 1989-12-19
EP0214175B1 (en) 1993-05-12
KR880700390A (en) 1988-03-15
BR8604738A (en) 1987-08-04
DE3688413D1 (en) 1993-06-17
WO1986004445A1 (en) 1986-07-31
US4656546A (en) 1987-04-07
DE3688413T2 (en) 1994-02-24
EP0214175A1 (en) 1987-03-18

Similar Documents

Publication Publication Date Title
USRE33949E (en) Vertical magnetic recording arrangement
US4317148A (en) Transducer for perpendicular magnetic recording
US5311387A (en) Three-pole magnetic recording head with high readback resolution
US5111352A (en) Three-pole magnetic head with reduced flux leakage
US5164869A (en) Magnetic recording head with integrated magnetoresistive element and open yoke
JPS62501806A (en) perpendicular magnetic recording construct
US7532434B1 (en) Recessed write pole for perpendicular recording
US7106554B2 (en) Perpendicular magnetic writer with magnetic potential control shield
US20030117749A1 (en) Perpendicular read/write head for use in a disc drive storage system
US6456460B1 (en) Track width definition by patterning of shared pole for integrated thin film/magnetoresistive head
US5483402A (en) Magneto resistive head having symmetric off-track performance profile
US8619390B2 (en) Transducing head writer having write pole bridge feature, and devices thereof
US5495379A (en) Erase bands for vertical recording
US5986856A (en) Magnetoresistive sensor with improved stability
US4547824A (en) Dual biasing for integrated inductive MR head
CA1301315C (en) Magneto-resistive thin film head for digital magnetic storage device
EP0573155B1 (en) Magnetoresistive transducer conductor configuration
US5555482A (en) Etched erase band feature for thin film recording heads
US6888700B2 (en) Perpendicular magnetic recording apparatus for improved playback resolution having flux generating elements proximate the read element
JP2619054B2 (en) Magnetic recording device
JP3565925B2 (en) Magnetoresistive head
US7486485B2 (en) Perpendicular hard disk drive resistive against external magnetic field
JPH0363912A (en) Thin-film magnetic head and production thereof
JP3573620B2 (en) Thin film magnetic head and magnetic storage device
JPH0490101A (en) Vertical magnetic recorder

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: QUANTUM CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIGITAL EQUIPMENT CORPORATION;REEL/FRAME:007166/0018

Effective date: 19941003

Owner name: CANADIAN IMPERIAL BANK OF COMMERCE, AS ADMINIST

Free format text: SECURITY INTEREST;ASSIGNOR:QUANTUM CORPORATION;REEL/FRAME:007152/0815

Effective date: 19941003

AS Assignment

Owner name: QUANTUM CORPORATION, CALIFORNIA

Free format text: RELEASE OF PATENT SECURITY INTEREST AND REASSIGNMENT OF PATENTS AND PATENT APPLICATIONS;ASSIGNOR:CANADIAN IMPERIAL BANK OF COMMERCE;REEL/FRAME:008604/0218

Effective date: 19970516

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: KEYBANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AG

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNOR:QUANTUM CORPORATION;REEL/FRAME:018268/0475

Effective date: 20060822

AS Assignment

Owner name: KEYBANK NATIONAL ASSOCIATION, AS ADMINISTRATIVE AG

Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNOR:QUANTUM CORPORATION;REEL/FRAME:018303/0228

Effective date: 20060822

AS Assignment

Owner name: QUANTUM CORPORATION,CALIFORNIA

Free format text: TERMINATION OF SECURITY INTEREST IN PATENTS REEL 018269 FRAME 0005 AND REEL 018268 FRAME 0475;ASSIGNOR:KEY BANK, NATIONAL ASSOCIATION;REEL/FRAME:019550/0659

Effective date: 20070712

Owner name: QUANTUM CORPORATION, CALIFORNIA

Free format text: TERMINATION OF SECURITY INTEREST IN PATENTS REEL 018269 FRAME 0005 AND REEL 018268 FRAME 0475;ASSIGNOR:KEY BANK, NATIONAL ASSOCIATION;REEL/FRAME:019550/0659

Effective date: 20070712

AS Assignment

Owner name: QUANTUM CORPORATION, CALIFORNIA

Free format text: RELEASE OF INTELLECTUAL PROPERTY SECURITY AGREEMENT AT REEL 018303 FRAME 0228;ASSIGNOR:KEYBANK NATIONAL ASSOCIATION;REEL/FRAME:019562/0926

Effective date: 20070712

AS Assignment

Owner name: CREDIT SUISSE,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:QUANTUM CORPORATION;ADVANCED DIGITAL INFORMATION CORPORATION;CERTANCE HOLDINGS CORPORATION;AND OTHERS;REEL/FRAME:019605/0159

Effective date: 20070712

Owner name: CREDIT SUISSE, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:QUANTUM CORPORATION;ADVANCED DIGITAL INFORMATION CORPORATION;CERTANCE HOLDINGS CORPORATION;AND OTHERS;REEL/FRAME:019605/0159

Effective date: 20070712

AS Assignment

Owner name: ADVANCED DIGITAL INFORMATION CORPORATION, WASHINGT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE, CAYMAN ISLANDS BRANCH (FORMERLY KNOWN AS CREDIT SUISSE), AS COLLATERAL AGENT;REEL/FRAME:027968/0007

Effective date: 20120329

Owner name: CERTANCE, LLC, WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE, CAYMAN ISLANDS BRANCH (FORMERLY KNOWN AS CREDIT SUISSE), AS COLLATERAL AGENT;REEL/FRAME:027968/0007

Effective date: 20120329

Owner name: QUANTUM INTERNATIONAL, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE, CAYMAN ISLANDS BRANCH (FORMERLY KNOWN AS CREDIT SUISSE), AS COLLATERAL AGENT;REEL/FRAME:027968/0007

Effective date: 20120329

Owner name: CERTANCE HOLDINGS CORPORATION, WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE, CAYMAN ISLANDS BRANCH (FORMERLY KNOWN AS CREDIT SUISSE), AS COLLATERAL AGENT;REEL/FRAME:027968/0007

Effective date: 20120329

Owner name: CERTANCE (US) HOLDINGS, INC., WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE, CAYMAN ISLANDS BRANCH (FORMERLY KNOWN AS CREDIT SUISSE), AS COLLATERAL AGENT;REEL/FRAME:027968/0007

Effective date: 20120329

Owner name: QUANTUM CORPORATION, WASHINGTON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE, CAYMAN ISLANDS BRANCH (FORMERLY KNOWN AS CREDIT SUISSE), AS COLLATERAL AGENT;REEL/FRAME:027968/0007

Effective date: 20120329

AS Assignment

Owner name: HERCULES TECHNOLOGY GROWTH CAPITAL, INC., CALIFORN

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADVANCED MICROSENSORS CORPORATION;REEL/FRAME:031694/0152

Effective date: 20130508