USRE28093E - Wound-healing cartilage powder - Google Patents
Wound-healing cartilage powder Download PDFInfo
- Publication number
- USRE28093E USRE28093E USRE28093DE USRE28093E US RE28093 E USRE28093 E US RE28093E US RE28093D E USRE28093D E US RE28093DE US RE28093 E USRE28093 E US RE28093E
- Authority
- US
- United States
- Prior art keywords
- cartilage
- wound
- healing
- powder
- wounds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 210000000845 cartilage Anatomy 0.000 title description 185
- 239000000843 powder Substances 0.000 title description 94
- 230000029663 wound healing Effects 0.000 title description 40
- 206010052428 Wound Diseases 0.000 description 97
- 208000027418 Wounds and injury Diseases 0.000 description 95
- 239000000284 extract Substances 0.000 description 68
- 230000035876 healing Effects 0.000 description 50
- 241001465754 Metazoa Species 0.000 description 48
- 238000012360 testing method Methods 0.000 description 36
- 239000002245 particle Substances 0.000 description 35
- 230000000694 effects Effects 0.000 description 33
- 238000000034 method Methods 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 239000000463 material Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 13
- 210000001519 tissue Anatomy 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 241000700159 Rattus Species 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 235000019441 ethanol Nutrition 0.000 description 11
- 238000000605 extraction Methods 0.000 description 11
- 239000002674 ointment Substances 0.000 description 11
- 244000309466 calf Species 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 239000000829 suppository Substances 0.000 description 10
- 208000025865 Ulcer Diseases 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 229940111202 pepsin Drugs 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 231100000397 ulcer Toxicity 0.000 description 9
- 241000282472 Canis lupus familiaris Species 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 238000000227 grinding Methods 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 230000003187 abdominal effect Effects 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 108010010803 Gelatin Proteins 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 235000011089 carbon dioxide Nutrition 0.000 description 5
- 230000001684 chronic effect Effects 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000001954 sterilising effect Effects 0.000 description 5
- 238000004659 sterilization and disinfection Methods 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- 208000002260 Keloid Diseases 0.000 description 4
- 201000004681 Psoriasis Diseases 0.000 description 4
- 239000001099 ammonium carbonate Substances 0.000 description 4
- 235000012501 ammonium carbonate Nutrition 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 210000000988 bone and bone Anatomy 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000005469 granulation Methods 0.000 description 4
- 230000003179 granulation Effects 0.000 description 4
- 210000001117 keloid Anatomy 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002271 resection Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 241000251730 Chondrichthyes Species 0.000 description 3
- 241000938605 Crocodylia Species 0.000 description 3
- 201000004624 Dermatitis Diseases 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 206010023330 Keloid scar Diseases 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 208000002847 Surgical Wound Diseases 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 238000000498 ball milling Methods 0.000 description 3
- -1 carragheenan Polymers 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 210000003414 extremity Anatomy 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 238000003621 hammer milling Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 3
- 210000002381 plasma Anatomy 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000001488 sodium phosphate Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 210000003437 trachea Anatomy 0.000 description 3
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 2
- SQDAZGGFXASXDW-UHFFFAOYSA-N 5-bromo-2-(trifluoromethoxy)pyridine Chemical compound FC(F)(F)OC1=CC=C(Br)C=N1 SQDAZGGFXASXDW-UHFFFAOYSA-N 0.000 description 2
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000722713 Carcharodon carcharias Species 0.000 description 2
- 229920001287 Chondroitin sulfate Polymers 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 2
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 102000018997 Growth Hormone Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 108010006025 bovine growth hormone Proteins 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229940059329 chondroitin sulfate Drugs 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229960004544 cortisone Drugs 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000002511 suppository base Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000000779 thoracic wall Anatomy 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- ZNEMGFATAVGQSF-UHFFFAOYSA-N 1-(2-amino-6,7-dihydro-4H-[1,3]thiazolo[4,5-c]pyridin-5-yl)-2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]ethanone Chemical compound NC=1SC2=C(CN(CC2)C(CC=2OC(=NN=2)C=2C=NC(=NC=2)NC2CC3=CC=CC=C3C2)=O)N=1 ZNEMGFATAVGQSF-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 206010073358 Anal squamous cell carcinoma Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 241000270725 Caiman Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 241000269333 Caudata Species 0.000 description 1
- 208000009043 Chemical Burns Diseases 0.000 description 1
- 241000270722 Crocodylidae Species 0.000 description 1
- FFEARJCKVFRZRR-SCSAIBSYSA-N D-methionine Chemical compound CSCC[C@@H](N)C(O)=O FFEARJCKVFRZRR-SCSAIBSYSA-N 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 206010017711 Gangrene Diseases 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000283903 Ovis aries Species 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 102100031951 Oxytocin-neurophysin 1 Human genes 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 235000001188 Peltandra virginica Nutrition 0.000 description 1
- 208000009344 Penetrating Wounds Diseases 0.000 description 1
- 244000197580 Poria cocos Species 0.000 description 1
- 235000008599 Poria cocos Nutrition 0.000 description 1
- 208000006311 Pyoderma Diseases 0.000 description 1
- 208000032107 Rigor Mortis Diseases 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 241000270506 Tupinambis Species 0.000 description 1
- 208000000558 Varicose Ulcer Diseases 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 206010048038 Wound infection Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 206010000269 abscess Diseases 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- 238000001266 bandaging Methods 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 230000001612 cachectic effect Effects 0.000 description 1
- 235000013877 carbamide Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000002192 cholecystectomy Methods 0.000 description 1
- 210000000589 cicatrix Anatomy 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 238000012321 colectomy Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000009799 cystectomy Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- LNNWVNGFPYWNQE-GMIGKAJZSA-N desomorphine Chemical compound C1C2=CC=C(O)C3=C2[C@]24CCN(C)[C@H]1[C@@H]2CCC[C@@H]4O3 LNNWVNGFPYWNQE-GMIGKAJZSA-N 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000013110 gastrectomy Methods 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 239000000960 hypophysis hormone Substances 0.000 description 1
- 238000009802 hysterectomy Methods 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007925 intracardiac injection Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 208000011379 keloid formation Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000003883 ointment base Substances 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- SQYNKIJPMDEDEG-UHFFFAOYSA-N paraldehyde Chemical compound CC1OC(C)OC(C)O1 SQYNKIJPMDEDEG-UHFFFAOYSA-N 0.000 description 1
- 229960003868 paraldehyde Drugs 0.000 description 1
- 206010033898 parapsoriasis Diseases 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003058 plasma substitute Substances 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 231100000075 skin burn Toxicity 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 238000001966 tensiometry Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 239000002383 tung oil Substances 0.000 description 1
- 230000002620 ureteric effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 208000009540 villous adenoma Diseases 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 239000003357 wound healing promoting agent Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/32—Bones; Osteocytes; Osteoblasts; Tendons; Tenocytes; Teeth; Odontoblasts; Cartilage; Chondrocytes; Synovial membrane
Definitions
- the invention pertains to woundhealing compositions comprising finely divided animal cartilage which is free of an interposition effect and which is characterized as having a substantially average maximum particle size of about 70 microns and an average particle size of between about 1 micron and about 40 microns.
- the invention also relates to methods of use of such material in a wound-healing method.
- This invention relates to wound-healing compositions and methods of making, improving and reactivating the same, and methods of treating and healing wounds.
- the particle size of the cartilage used has a surprisingly profound effect on the rate of healing and on the strength of the healed tissue. Not only is the rate of healing increased as the particle size of the cartilage is decreased, but also the manner or the process by which the cartilage is pulverized and the conditions prevailing during the pulverizing have a profound bearing on the results obtained with the cartilage powder.
- the effectiveness of the present invention has been demonstrated in comparative tests to be highly superior to results obtained on animals treated with either collagen, carragheenan, chondroitin sulfate, chondromucoprotein, fibrinogen, gelatin, talc, bone flour or systemic d-methionine.
- cartilage taken from the partly calcified skeletons (including foetal skeletons) of very young or newly born animals is much more effective in accelerating the healing of wounds than was the case with the bovine tracheal cartilage powder on which previous observations were based, which included substantial quantities of coarse adult cartilage powder.
- the young animal is not over six months old.
- the present invention relates preferably to young cartilage, i.e., from young animals or young or newly regenerated cartilage from older animals as reptiles, whether finely divided or not, and cartilage from mature animals in finely divided (average particle size 40 microns or less) particle form, it is to be understood that the invention encompasses such cartilage in either the form which would in maturity retain the cartilaginous form or which would in maturity ossify to bone.
- the cartilage may be prepared by any suitable means to result in a product which is essentially pure cartilage substance free from adhering tissue, which may have been removed by acid-pepsin or other suitable enzyme treatment, with or without mechanical assistance, or otherwise.
- extraction aids those which are either volatile and therefore can be readily removed from the extract by volatilization such as for example ammonia or ammonium carbonate, or such materials which if remaining in the extract would cause no harm if applied either topically or introduced parenterally.
- Dialysis may be employed to remove undesired salts or other dialyzable material which may be present.
- Other extraction aids are urea, sodium citrate, disodium phosphate, trisodium phosphate, sodium formate, sodium chloride, and similar compounds or mixtures of them.
- the present invention provides dosage units of effective wound healing quantity of cartilage powder from a young animal, or from a mature animal, having average particle size between about 1 micron and about 40 microns, or a substantial maximum particle size of about 70 microns, incorporated into a clinically acceptable wound healing carrier vehicle such as unguent, oil, salve, solution, extract, powder, etc.
- the invention also contemplates methods of enhancing the wound healing activity of a cartridge powder and of restoring wound healing activity in substantially inactivated cartilage powder including partially deactivated cartilage powder. Novel methods are also provided whereby finely divided cartilage powder may be stabilized before, during or after the final comminution stage of production thereof.
- Various techniques for the extraction of active wound healing components, agents, and compositions from cartilage powder are included within the present invention.
- the cartilage powder as well as the extract were effective when they were absorbed or incorporated with surgical gauze which then was applied to the wound and when the same materials were applied by spraying onto the wound.
- clinically acceptable carrier vehicles for the effective cartilage powder or extract such as salves based on aqueous gels such as those from alginates, gum tragacanth, gelatin, gluten, casein, polyvinylpyrrolidone, dextran and many others are effective in many applications. They are also convenient to apply especially over large areas such as is the case with burns.
- the effective cartilage powder or cartilage extracts suspended in oils such as tung oil, corn oil, olive oil, or linseed oil, may be applied directly to wounds.
- oils such as tung oil, corn oil, olive oil, or linseed oil
- the oil dispersions may be emulsified in water, forming oil-inwater type emulsions, or conversely, water may be emulsified in the oil dispersions forming water-in-oil type emulsions.
- the cartilage and cartilage extracts dispersed in aqueous or oil carriers may be applied directly to the wounds by spraying, brushing, by impregnating in bandaging materials or by any other means which makes it possible to bring the cartilage or its extract into intimate contact with the tissues.
- cartilage or cartilage extract preparations may be introduced subcutaneously, intra-muscularly, intravenously, or through suppositories introduced into rectal or other cavities.
- Cartilage powders dispersed in suitable oils have been successfully administered orally.
- Cartilage powder may be administered, as orally, in the form of pellets such as tablets or capsules.
- silica gel or other gel forming materials which are capable of coating the stomach walls, the rate of healing of stomach ulcers may be noticeably increased.
- the invention has been used with humans in treatment of keloids (hardened scar tissue).
- the keloid was initially cut out and resutured in the presence of the calf cartilage powder of the invention. After more than six months periodic observation, the keloid did not reappear and apparently the invention prevented the re-formation of the keloid scar tissue, contrary to the usual experience of frequent recurrence of keloid formation.
- the cartilage saline extract of this invention has also demonstrated a market anti-inflammatory effect. For example, as when introduced parenterally in the areas affected by psoriasis, almost immedaite reduction of the inflammation was observed.
- the statistical average of scores of tests involving the application of the cartilage of the present invention shows that there were produced increases of over 50% in the tensile strengths of seven-day old midline abdominal wounds in rats.
- the increase in wound healing rate was even further enhanced when a combination of optimal size (between about 10 and about microns average diameter) and optimal age of the cartilage source (calf) were combined, in an average of which cases maximal increase in wound tensile strength substantially higher than 50% was achieved.
- Wound strength increase averaging 50% results in less likelihood of wound disaster, less likelihood of wound infection, the capability of removing sutures earlier with attendant further lessening or likelihood of infection as well as further acceleration in final wound healing rate, thereby resulting in earlier discharge of the patient from care and safer post-care experience.
- the cartilage treated wound ages in accordance with the present invention, it does not become a mass of essentially acellular collagen as does the cicatrix of the untreated wound. Instead, it continues to proliferate in humans activity up to days after wound and frequently longer. It does not however, become hypertrophic or keloidal, and, in fact, appears less bulky than the corresponding control wounds.
- the local use of the finely ground calf cartilage powder is of great clinical value in the treatment of nongranulating wounds of different kinds, without untoward effects, either locally or systemically, as demonstrated in application to the primarily closed wounds of 87 human surgical incisions in a wide variety of procedures. There was no immediate or late evidence of antigenicity.
- the cartilage preparations of the present invention have been successfully utilized to accelerate and to improve the healing of the following types of wound, either by topical application or by injection of saline extract: chemical burns, third degree skin burns, radioactive injury, chest wall, abdominal and other wounds, operative and post-operative wounds, penetrating wounds such as those of thorax and abdomen, ulcers due to arteriosclerosis and to trophic disturbance, ulcers of skin, gangrene of skin due to the trauma or physical agent or to undetermined cause, dermatitis, lupus erythemathosus with ulcer, keloids, atopic eczema, parapsoriasis and psoriasis.
- Other types of wounds also have responded successfully to the cartilage preparations of this invention with improved results.
- the invention is especially useful in cases involving cortisone or other steroid treatment (known to retard healing) or involving diabetes.
- the wound tensile strength at seven days is determined in millimeters of mercury by a modification of the technique of the method illustrated in the publication cited above.
- the rat to be tested is killed by an intracardiac injection of paraldehyde or by exposure to toxic fumes such as to diethyl ether.
- the test is made prior to the onset of rigor mortis.
- a rubber latex prophylactic pouch is inserted into the peritoneal cavity through a defect made with a Kelly clamp in the apex of the vagina.
- the rotary air pump connected to the pouch is turned on regulating it in such a manner that the air pressure will increase at a rate of millimeters of mercury every five seconds.
- the pressure at which the wound splits and the pouch extrudes itself (wholly or in part) through the defect is recorded as the tensile strength of the wound. This is also a quantitative measure of the degree of healing or rate of healing achieved in the experiments.
- EXAMPLE l.CARTILAGE PEBBLE MILL GROUND The tracheas of healthy adult beef cattle were removed within 30 to 60 minutes after the animals were slaughtered. The traceas were then either processed immediately with an acid-pepsin solution or they were frozen to preserve them, in which case the acid-pepsin digestion may be deferred. The tracheas either fresh or previously frozen were then digested for about six hours at 50 C. in an aqueous solution containing 0.6% acetic acid (U.S.P. glacial) and 0.3% pepsin (N.F. IX grade, 3500 activity). After digestion the tracheal cartilage was removed frorn the acid-pepsin solution, washed first with water of about 70 C.
- U.S.P. glacial 0.6% acetic acid
- pepsin N.F. IX grade, 3500 activity
- the cartilage was dried in vacuum (20 mm. mercury) at C.
- the dried cartilage was defatted by extracting it with a solvent, such as hexane. It was then granulated.
- the granulated purified cartilage was ground to a fine powder in a laboratory four-quart size porcelain jar mill, loaded with one-inch size (average) flint pebbles in a weight ratio of l cartilage to 2 pebbles. Dry Ice (CO was then put on top of the mill charge and the mill was kept open for 5 minutes to allow the CO to displace the air in the mill. The lid of the mill was then clamped on tight and the mill rotated as is customary in the performance of the grinding operation. The grinding was carried out at about ---20 C. for 96 hours.
- the ground cartilage was screened through a 325 mesh nylon screen, thereby confining the active cartilage powder to particles less than about 40 microns in size, and having average or majority particle size between about 5 and 10 microns.
- Example 1 the preparation of the cartilage powder of the invention, except that grinding times differed to obtain different grinds, and the cartilage source in Example l-C was great white shark jaw cartilage which was ground in a mechanical mortar.
- the test method described above was performed to compare the rate of wound healing of each Example l-A, l-B and l-O with control wounds which were untreated. The percent of wound healing stated was 100% for the control and represented increases as stated below for the examples of the invention, each figure representing the average of about 20 to over 40 controlled pairs of tests:
- the cartilage was acid-pepsin digested as in Example 1, granulated, and then without drying was suspended in the extracting liquid and then transferred into a pebble mill which was charged to 50% of its volume with flint pebbles of average size, one inch diameter. The ratio of the cartilage to extracting liquid was kept to :75.
- the liquid suspension was charged into the mill in a quantity just suflicient to fill the voids of the pebbles with the top of the pebbles barely covered by the liquid.
- the air was then purged from the mill with nitrogen and the mill closed.
- the mill was allowed to run for 6 hours at between 3 C. and 4 C. which resulted in a medium fine grinding of the cartilage and in the simutlaneous extraction of the active wound-healing agent from the cartilage.
- the mill was emptied, the fluid paste strained free of the pebbles, the fluid transferred into a centrifuge operated at 6000 rpm. and at a temperature of between 3 C. and 4 C. After one-half hour the centrifuge was stopped and the supernatant liquid strained through a 400 mesh nylon screen. If the stained EXAMPLE 5 Total solids 01' clear extract by weight percent Cartilage source Extracting liquid a. Bovine tracl1eal.. Distilled water l) .do isotonic saline sol Ammonia (25%) 1% in water 2% urea in water e .-do 1% ammonium carbonate in water.
- No'rx.'lhe isotonic saline solution was prepared with distilled water and contained 0.9% NaCl.
- a laboratory Bowen type spray dryer was used with the following modifications. In place of the oil furnace, electric heating coils were used to supply the heat energy necessary for the evaporation of the wolatile portions of the extracts. Instead of air, nitrogen was used for the hot gas. A vaned disc, rotating at about 20,000 rpm. was used to atomize the extracts. The inlet gas temperature was held to about 280 F., the outlet temperature was between F. and F. The dryer was used as a closed system dryer with the exclusion of oxygen to avoid degrading the active material during the evaporation of the water.
- the solids percent means percent of solids in the ex- Lracting liquid as determined by drying at 100 C. for two ours.
- Yield percent means the dry solids percent obtained from the liquid by the drying process.
- the spray-dried powders were stored in tightly closed glass jars in a refrigerator at 4 C.
- EXAMPLE 7 -FREEZE-DRYING OF CARTILAGE EXTRACT S A laboratory vacuum shelf dryer was used. The extracts were refrigerated to 10 C. The shelf temperature was 50 C. The vapor pressure was about 0.8 mm. Hg. The solids percent was determined at 100 C.
- freeze-dried materials were stored in tightly closed glass jars in a refrigerator at 4 C.
- EXAMPLE 8 Cartilage powders are applied to wounds by dusting with a hand atomizer about 30 mg. into a 5.75 cm. longitudinal midline abdominal incision of the female rat. Of the 30 mg. applied to the wounds about 10-15 mg. was effectively utilized at the sites of the wound. llt is preferred that the dosage unit be applied to the wound in an amount substantially equivalent to between about 10-15 mg. per square centimeter.
- Rate of wound Cartilage powder healing (percent) 1. None, control 100 2.
- Example 4-q 135 Rate of wound healing related to 100 means the ratio, expressed as percent, of pressure required to rupture the healed tissue of the wound as compared with the pressure required for rupture of the wound of the untreated control animal, according to the test method described above.
- EXAMPLE 9 Cartilage extracts applied to wounds by swabbing to 5.75 cm. longitudinal midline abdominal incision of the female rat.
- Example 5-r 150 EXAMPLE 10 The etfect of parenterally injected cartilage extracts on the healing of wounds. In each case 5 cc. of the extract was injected into the subcutaneous tissue on the rat's back within 24 hours after the abdominal incision.
- Rate of wound Cartilage extract (liquid): healing (percent)
- rate of wound Cartilage extract (liquid): healing (percent)
- the dried extracts were dissolved either in water or in isotonic saline solution, depending on the salt content of the original preparation. The solutions were adjusted to correspond with the solids content of the extracts from which the dried materials were prepared. The solutions were applied by parenteral injections into rats in Example 10.
- Example 6-a Water I15 3.
- Example 7-21.-.. ..do.. 120 4.
- Example G-b. Isotonic saline 125 6.
- Example 6-11...- 140 9.
- Example 7-11. d 10.
- EXAMPLE 13 This example demonstrates the value of intravenous injections of cartilage extracts or solutions of dried extracts in the healing of wounds. These were made on dogs with circular incisions. Wounds were not saturated but protected only with sterile dressing. The rate of heal- 1 1 ing was measured by observing the degree of granulation as compared with the control.
- Rate of wound EXAMPLE 14 This example demonstrates the use of cartilage powder on open wounds. Powders were held between layers of porous fabric, i.e., surgical gauze, and held through bandages to the unsutured wound. Tests were made on dogs. The rate of healing was estimated by observing the degree of granulation.
- Rate of wound Cartilage powder healing (percent) 1. None, dry gauze-control 100 2.
- Example 2 135 3.
- Example 4-m 145 EXAMPLE 15 This example demonstrates the effect of applying liquid cartilage extracts on open wounds. Porous fabric i.e., surgical gauze was saturated with the extracts and applied to the open an unsutured Wounds while still wet. Tests were made on dogs. The rate of healing was measured by the observed degree of granulation.
- Rate of wound Cartilage extract healing (percent) 1. None, isotonic saline-control 100 2.
- Example S-r 150 EXAMPLE 16 This example demonstrates the effect of applying dried cartilage extract on open wounds. Porous fabric, i.e., surgical gauze, was saturated with the extracts, dried to a moisture content of about 5% at 30 C. and at a pressure of 50 mm. mercury. The dried gauze was applied to the open and unsutured wounds. Tests and observations were as in Example 15.
- Rate of wound Cartilage extract healing (percent) 1. None, isotonic saline-control 100 2.
- Example S-b 120 3.
- Example 5-] 135 4.
- Example 5-p 135 5.
- Example 5-r 150 EXAMPLE 17 These tests involved the intravenous injection of cartilage extracts combined with one or more blood extenders, such as whole blood, blood plasma, and a plasma substitute, namely polyvinylpyrrolidone or dextran. Tests were made on dogs. In carrying out these tests 100 cc. blood was taken from the animal and treated as follows:
- the blood was mixed with cc. cartilage extract and reinjected into the same animal.
- the plasma was obtained from the blood mixed with 10 cc. cartilage extract and reinjected into the same animal from which the blood was obtained.
- control animals were treated as follows:
- Control 2- The blood taken as in case of Control 1, the plasma separated and reinjected into the same animal;
- Control 3 The blood was taken from the animal as above in case of Control 1, and replaced with a saline solution of 3.5% polyvinylpyrrolidone viscosity type K-30.
- Rate of healing 15 Cartilage extract Test as per (percent) 1 None, Controll 100 None, Control2 90 None, Control 3..
- Example 5-p I 150 do II 145 III 135 The animals used in these experiments weighed not less than lbs. each.
- EXAMPLE 18-CART'ILAGE SUPPOSITORIES Suppositories were prepared with 20% cartilage powder and 80% suppository base.
- the suppository base was prepared in accordance with U.S.P. XVI, pages 828-9, Glycerinated Gelatin Suppositories.
- the suppositories were 2 gm. size and were administered rectally to dogs. The surface of the rectum was removed for 1 cm. from the rectal opening, about one hour before the insertion of the suppository. A fresh suppository was introduced every six hours. The rate of healing was determined by visual observation.
- Rate of wound Cartilage powder healing (percent) 1. None, control 100 2. None, suppository base-control 105 3.
- Example 4-m 135 EXAMPLE l9 Cartilage powder tablets and capsules were orally administered. The tablets were prepared without and with enteric coatings. The capsules were either gelatin or enteric material such as carboxymethyl cellulose. Both the tablets and the capsules contained 2 gm. cartilage powder each. The test animals were dogs and the wounds were circular unsutured. The dosage was 0.1 gm. cartilage powder/l-lb. body weight every six hours. The rate of healing was determined by visual observation.
- Rate of wound Cartilage powder healing (percent) EXAMPLE 2l.--ST ERILIZATION WITH AN ANTISEPTIC ALCOHOL, 70%
- the calf cartilage powder of the invention with an excess of about 70% (volume) ethyl alcohol.
- a sufiicient excess of alcohol is present when the cartilage powder forms a mobile slurry with the powder.
- the particle size of the powder controls the volume of alcohol required to form the mobile slurry. The smaller the particle size the larger the volume of alcohol is required.
- the alcohol slurry of the cartilage powder is best mixed at a rate to keep the powder suspended in the liquid.
- the cartilage swells somewhat and becomes gummy under the influence of the 70% alcohol.
- the difliculties caused by the swelling and gummy nature of the sterilized cartilage can be overcome by centrifuging the slurry to form a firm cartilage sediment, decanting the supernatant liquid and replacing it with anhydrous alcohol.
- the cartilage sediment mixed with the anhydrous alcohol, is dehydrated regaining substantially its original particle size and losing its gumminess. This dehydrated cartilage can be readily filtered and dries to a free flowing powder.
- EXAMPLE 22.STERILIZ.ATION WITH ISOPROPYL ALCOHOL can be readily filtered and the filter cake so obtained can be dried to a free flowing powder.
- the sterilization either with ethyl alcohol or with isopropyl alcohol can be carried out satisfactorily at ambient room temperatures, although sterilization at elevated temper investigating may reduce the time required.
- EXAMPLE 23.STERILIZATION OF THE CARTILAGE POWDER BY HEAT Cartilage powder of the invention is sterilized, without loss of wound healing activity, by heating it to about 125-432 C. for 3-4 hours, substantially in the absence of air or oxygen. Other temperatures, as low as 110 C., may be utilized, but for longer periods of time to achieve sterilization.
- the preferred procedure is to place the cartilage powder in a vessel with some Dry Ice over it and then covering the vessel loosely with a metal foil.
- the vessel is placed in a vacuum oven, the oven is connected with a vacuum pump and the air is evacuated to a vacuum of about mm. of mercury.
- the oven is then heated to about 127 C. and held there for about four hours. It is important that the entire mass of material in the vessel be heated through and maintained at about 125 to 132 C. for about three to four hours.
- the heat sterilized powder is ready for clinical use.
- EXAMPLE 24 -REACTIVATION AND ENHANCE- MENT OF CARTILAGE BY HEAT IN THE AB- SENCE OF OXYGEN
- This example illustrates lowering of the activity of calf cartilage powder when milled in the presence of air, and air together with heat, respectively, followed by the restoration and further enhancement of the wound healing activity when the partially or totally inactivated material is exposed to heat of about 127 C. for between 5 hours to 50 hours and in the virtual absence of air or oxygen (Tests 6 and 8).
- the cartilage powder was inactivated by hammer milling it under conditions of excessive aeration and some generation of heat (Test 5).
- the activity of the cartilage was lowered to about one-third of its activity by ball milling it in the presence of air (Test 7), as compared with the same material ball milled in a C0 atmosphere (Test 4).
- the heating of the cartilage was done in the following manner: a vacuum oven (Freas, size No. 504, Fisher Scientific Co.) was loaded with the cartilage powder and with a small quantity of Dry Ice (solid CO About 15 to 25 grams of the Dry Ice were placed in an open dish in the oven. The door of the oven was closed, the air evacuated to about 10 mm. pressure, the vacuum pump was disconnected, and the heating cycle started. During heating there was some pressure build-up in the oven caused by the expansion of the Dry Ice as it becomes gaseous carbon dioxide.
- Rate of wound Test healing (percent) 1. Control, no cartilage 100.0 2. Calf cartilage, lot lAX, ball milled in CO 127.7 3. #2, heated in C0 4 hrs., 45 min.,
- test results were based on 20 to over 40 pairs of animals (Sherman strain albino rats) for each of the eight tests enumerated above and the percent figure represents the statistical average of all such tests.
- Comparison of Test 3 with Test 2 shows that heat sterilization of the powder of this invention may be accomplished together with enhancement (130.5 vs. 127.7%) of wound healing rate.
- Comparison of Test 5 with Test 4 shows that highly effective powder of this invention may be completely deactivated by hammer-milling air with heat generation.
- Test 8 shows that healing of the degraded powder of Test 7 in CO at elevated temperature reactivates the material to a highly elfective rate of wound healing.
- EXAMPLE 25 Forty wounds involving a wide spectrum of human chronic nonhealing types of ulcers were treated according to the present invention.
- the wound was thoroughly cleansed with hydrogen peroxide, and washed with alcohol. It was dried with gauze.
- the cartilage preparation was applied by atomizing the powder onto the surface and into the wound. In 38 of the 40 cases this treatment resulted in the transformation of the wound surface from a nongranulating, sluggish, dirty grey surface to a typical pink, healthy granulating bed within ten days. In the other two cases a somewhat longer time was required.
- EXAMPLE 26 The cartilage powder of the invention was atomized into 83 surgical wounds in 39 human patients with 47 operations, as follows:
- EXAMPLE 27 Calf tracheal cartilage powder having maximum particle size of 40 microns was mixed with about an equal part of anhydrous propylene glycol. This premix was 16 then added to Neobase (an ointment base made by Burroughs Wellcome & Co. of Tuckahoe, N.Y.), which contains the following ingredients:
- EXAMPLE 28 An ointment particularly useful with surgical gauze was formulated by mixing the following:
- cartilage with substantially greater potency is obtained from the skeletons of very young animals.
- the highest potency material is generally obtained from animals less than one month old, although cartilage from adolescent animals taken before maturity may be used in this invention without excessively fine grinding. Young animals are intended to mean those which are still adolescent and have not yet reached maturity. Cartilage from foetal skeletons is often effective.
- Finely divided cartilage from other mammals, in addition to bovine and porcine and canine, is eifective in healing wounds in accordance with the present invention: for example, finely divided cartilage powder from rat trachea and the human knee have been successfully utilized in accordance with the invention; so also with other animals such as the finely divided cartilage of birds, fish, jaw-bone of shark, rib cage of a crocodile (South American caiman known to be one year old, as obtained from the New York City Zoological Gardens, in early adsolescence). Finely divided reptile cartilage is particularly effective in view of the extraordinary ability of the reptiles to regenerate their tissues and even their limbs.
- the cartilage powder may be dusted on the wound or atomized on it. It may also be applied in the form of ointment on the wound, as exemplified above.
- the extract may also be applied directly to the wound by spraying it on the wound, swabbing it on, or brushing it on. Both the powder and the extract may be applied first to an absorbent medium which is then applied to the wound and held on by a bandage or adhesive tape, or other suitable means.
- the cartilage or the extract may be incorporated into tablets, capsules or suppositories and applied orally, rectally or in the vaginal or uteral passages. Implantation as pellets and injection of solution of the extract of the invention has been effective.
- Cartilage extracts may be injected subcutaneously, intramuscularly or intravenously.
- the dried extracts may be used as powders or they may be reconstituted and used as the original extracts.
- the wounds to which the active materials are applied may be sutured or may be left open without materially affecting the rate of healing.
- the active materials may be administered once, preferably within the first 24 hours of the incision; or they may be applied before the incision or they may be applied in several applications in succession. Irradiating the cartilage powder with ultraviolet radiation in the absence of oxygen increases its activity.
- a dosage unit comprising an effective wound healing quantity of a non-interposing cartilage powder having a substantial maximum particle size of about 70 microns, and an average particle size between about 1 micron and about 40 microns from a young cartilage-containing animal.
- a dosage unit comprising an effective wound healing quantity of a non-interposing cartilage powder having a substantial maximum particle size of about 70 microns, and an average particle size between about 1 micron and about 40 microns from a young cartilage-containing mammal.
- composition of claim 1 having average particle size of about to 10 microns.
- a dosage unit comprising an effective wound healing quantity of a non-interposing cartilage powder having a substantial maximum particle size of about 70 microns and an average particle size between about 1 micron and about 40 microns from a young cartilage-containing animal incorporated into a clinically acceptable wound healing carrier vehicle.
- a non-interposing cartilage powder from a cartilagecontaining animal having an average particle size between about 1 micron and about 40 microns and having a substantial maximum particle size of about 70 microns.
- a dosage unit according to claim 1 comprising an effective wound-healing quantity of a noninterposing cartilage powder having a substantial maximum particle size of about 70 microns and an average particle size between about 1 micron and about 40 microns derived from shark or reptilian cartilage.
- a method of healing a wound of psoriasis in a human consisting essentially of the step of parenterally injecting into said human systemically or in the areas aflected by psoriasis, an eflective wound healing dose of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
- a method of healing a wound of dermatitis in an animal which consists essentially of the step of topically applying or parenterally injecting into said wound an eflective dose for healing dermatitis of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
- a method of healing an ulcer wound requiring healing in an animal which comprises parenterally injecting into the area affected by said wound in said animal, on eflective wound healing dose of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
- a method of healing a burn wound in on animal which comprises porenterally injecting into the area affected by said burn wound in said animal an efiective wound healing dose of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Developmental Biology & Embryology (AREA)
- Immunology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Description
United States Patent 28,093 WOUND-HEALING CARTILAGE POWDER Leslie L. Balassa, Blooming Grove, N.Y., assignor to Lescarden Ltd., Goshen, N.Y.
No Drawing. Original No. 3,400,199, dated Sept. 3, 1968,
Ser. No. 435,693, Feb. 26, 1965, which is a continuatiou-in-part of abandoned application Ser. No. 176,443, Feb. 28, 1962. Application for reissue Aug. 13, 1970, Ser. No. 63,669
Int. Cl. A61]; 17/00 US. Cl. 424-95 22 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE The invention pertains to woundhealing compositions comprising finely divided animal cartilage which is free of an interposition effect and which is characterized as having a substantially average maximum particle size of about 70 microns and an average particle size of between about 1 micron and about 40 microns. The invention also relates to methods of use of such material in a wound-healing method.
This application is a continuation-in-part of my copending application Ser. No. 176,443, filed Feb. 28, 1962, now abandoned.
This invention relates to wound-healing compositions and methods of making, improving and reactivating the same, and methods of treating and healing wounds.
It was observed some time ago that the healing of wounds of human patients is inhibited or retarded if the patients were at the same time undergoing cortisone treatment. It was found further that this inhibition of the healing of the wounds could be overcome in some instances by the use of cartilage powder applied locally.
It has also been shown that the healing of wounds has sometimes been accelerated by the use of rather coarse, hand-ground powder of acid-pepsin digested adult bovine tracheal cartilage having maximum particle size of about 400-450 microns. Experiments were carried out on albino Sherman strain female rats. There was observed a maximum average increase in the rate of healing and in the strength of the healed tissues of about over that of the control animals, the control animals being those with wounds untreated.
One of the problems involved in healing wounds has long been recognized as occurring in a primarily closed incision: when a composition is applied to such a wound, any excess in amount of such application at least initially produces a negative effect, which has sometimes been called the interposition effect. This is the reduction in tensile strength observed when any substance is placed into a primarily closed wound, even in very small amounts. In the test data reported in this specification where the negative results are reported for prior art compositions such as gelatin, talc, collagen, etc., as well as when the compositions of this invention had been deactivated or degraded by one process or another, it appears that Re. 28,093 Reissued July 30, 1974 a major contributing factor to the negative results has been the interposition effect. Thus, when the active composition of the invention demonstrates any improvement in the rate of wound healing, it should be remembered that the improvement has occurred in spite of the initial handicap of the interposition effect which must be overcome. Similarly, care must be exercised to avoid the use of excess quantities of the material of the present invention, to reduce the initial interposition effect" in topical applications.
Investigation has been made of many compositions in the past, among them chondroitin sulfate, chondromucoprotein, carragheenan and collagen, and in every instance these have yielded no wound healing effect whatever. Most have given small negative results, probably as a result of the interposition effect. Other compounds tested including local hyaluronic acid, glucuronic acid, n-acetylglucosamine, and lysozyme were tested for wound-healing activity without significant effect. For example, parenteral injections on rats of the last three named substances were given on the first post-operative day. This time was chosen since it is on this day that injections of a saline extract of the cartilage of this invention have been shown to be effective. The local applications were at the same density as has been employed for such cartilage preparations (24 mg./cm. of wound surface), while the parenteral injections were made from 5% solutions and were 2 cc. and 5 cc. in volume. All these tests were without any significant positive result.
I have now found that the particle size of the cartilage used has a surprisingly profound effect on the rate of healing and on the strength of the healed tissue. Not only is the rate of healing increased as the particle size of the cartilage is decreased, but also the manner or the process by which the cartilage is pulverized and the conditions prevailing during the pulverizing have a profound bearing on the results obtained with the cartilage powder. The effectiveness of the present invention has been demonstrated in comparative tests to be highly superior to results obtained on animals treated with either collagen, carragheenan, chondroitin sulfate, chondromucoprotein, fibrinogen, gelatin, talc, bone flour or systemic d-methionine. I have also found methods of further increasing the wound healing activity of the effective powders of this invention and methods of reactivating such powders after they have been inadvertently deactivated or otherwise reduced in activity.
Furthermore, I found most unexpectedly that cartilage taken from the partly calcified skeletons (including foetal skeletons) of very young or newly born animals is much more effective in accelerating the healing of wounds than was the case with the bovine tracheal cartilage powder on which previous observations were based, which included substantial quantities of coarse adult cartilage powder. Preferably the young animal is not over six months old.
While the present invention relates preferably to young cartilage, i.e., from young animals or young or newly regenerated cartilage from older animals as reptiles, whether finely divided or not, and cartilage from mature animals in finely divided (average particle size 40 microns or less) particle form, it is to be understood that the invention encompasses such cartilage in either the form which would in maturity retain the cartilaginous form or which would in maturity ossify to bone.
The cartilage may be prepared by any suitable means to result in a product which is essentially pure cartilage substance free from adhering tissue, which may have been removed by acid-pepsin or other suitable enzyme treatment, with or without mechanical assistance, or otherwise.
I have succeeded in preparing highly effective extracts by the use of aqueous solutions of materials which are in the pH range of about 6.5 to 10, and preferably between 5 and 8, at the concentrations employed in preparing the extracts. I prefer to use as extraction aids those which are either volatile and therefore can be readily removed from the extract by volatilization such as for example ammonia or ammonium carbonate, or such materials which if remaining in the extract would cause no harm if applied either topically or introduced parenterally. Dialysis may be employed to remove undesired salts or other dialyzable material which may be present. Other extraction aids are urea, sodium citrate, disodium phosphate, trisodium phosphate, sodium formate, sodium chloride, and similar compounds or mixtures of them.
I succeeded in concentrating the extracts and even obtained dry extracts of substantially unimpaired activity and which could be redissolved or diluted back to the original strength with saline solution by concentrating the extracts in vacuum at low temperature or by freezedrying them. Subjecting the cartilage or the cartilage powder or the extracts of the invention to irradiation by ultra violet light for a short period of time may increase the activity of the material to a noticeable degree. Irradiation with ionizing radiation such as gamma rays may also increase the activity of the cartilage.
I have found a surprising synergistic effect in the combination of cartilage powder or cartilage extract of the invention with growth hormone. This effect can be observed both in topical and in parenteral applications.
I succeeded in obtaining satisfactory effects through oral administration of suitably pelletized or encapsulated cartilage powder or cartilage extracts of the invention.
The present invention provides dosage units of effective wound healing quantity of cartilage powder from a young animal, or from a mature animal, having average particle size between about 1 micron and about 40 microns, or a substantial maximum particle size of about 70 microns, incorporated into a clinically acceptable wound healing carrier vehicle such as unguent, oil, salve, solution, extract, powder, etc. The invention also contemplates methods of enhancing the wound healing activity of a cartridge powder and of restoring wound healing activity in substantially inactivated cartilage powder including partially deactivated cartilage powder. Novel methods are also provided whereby finely divided cartilage powder may be stabilized before, during or after the final comminution stage of production thereof. Various techniques for the extraction of active wound healing components, agents, and compositions from cartilage powder are included within the present invention.
I found that there were very great differences in the activity of the preparations, depending on the method used in their preparation, the auxiliaries or carrier employed, and in the technique of application. For example, the cartilage powder as well as the extract were effective when they were absorbed or incorporated with surgical gauze which then was applied to the wound and when the same materials were applied by spraying onto the wound. Also clinically acceptable carrier vehicles for the effective cartilage powder or extract, such as salves based on aqueous gels such as those from alginates, gum tragacanth, gelatin, gluten, casein, polyvinylpyrrolidone, dextran and many others are effective in many applications. They are also convenient to apply especially over large areas such as is the case with burns.
The effective cartilage powder or cartilage extracts suspended in oils such as tung oil, corn oil, olive oil, or linseed oil, may be applied directly to wounds. The oil dispersions may be emulsified in water, forming oil-inwater type emulsions, or conversely, water may be emulsified in the oil dispersions forming water-in-oil type emulsions. The cartilage and cartilage extracts dispersed in aqueous or oil carriers may be applied directly to the wounds by spraying, brushing, by impregnating in bandaging materials or by any other means which makes it possible to bring the cartilage or its extract into intimate contact with the tissues. In the case of parenteral applications the cartilage or cartilage extract preparations may be introduced subcutaneously, intra-muscularly, intravenously, or through suppositories introduced into rectal or other cavities. Cartilage powders dispersed in suitable oils have been successfully administered orally. Cartilage powder may be administered, as orally, in the form of pellets such as tablets or capsules. On the other hand, by incorporating the cartilage powder onto silica gel or other gel forming materials which are capable of coating the stomach walls, the rate of healing of stomach ulcers may be noticeably increased.
The invention has been used with humans in treatment of keloids (hardened scar tissue). The keloid was initially cut out and resutured in the presence of the calf cartilage powder of the invention. After more than six months periodic observation, the keloid did not reappear and apparently the invention prevented the re-formation of the keloid scar tissue, contrary to the usual experience of frequent recurrence of keloid formation.
The cartilage saline extract of this invention has also demonstrated a market anti-inflammatory effect. For example, as when introduced parenterally in the areas affected by psoriasis, almost immedaite reduction of the inflammation was observed.
The statistical average of scores of tests involving the application of the cartilage of the present invention shows that there were produced increases of over 50% in the tensile strengths of seven-day old midline abdominal wounds in rats. The increase in wound healing rate was even further enhanced when a combination of optimal size (between about 10 and about microns average diameter) and optimal age of the cartilage source (calf) were combined, in an average of which cases maximal increase in wound tensile strength substantially higher than 50% was achieved. Wound strength increase averaging 50% results in less likelihood of wound disaster, less likelihood of wound infection, the capability of removing sutures earlier with attendant further lessening or likelihood of infection as well as further acceleration in final wound healing rate, thereby resulting in earlier discharge of the patient from care and safer post-care experience.
Furthermore, as the cartilage treated wound ages in accordance with the present invention, it does not become a mass of essentially acellular collagen as does the cicatrix of the untreated wound. Instead, it continues to proliferate in humans activity up to days after wound and frequently longer. It does not however, become hypertrophic or keloidal, and, in fact, appears less bulky than the corresponding control wounds. These observations point to the presence of inhibitory activity in the cartilage of the invention, in addition to the acceleratory factor.
The local use of the finely ground calf cartilage powder is of great clinical value in the treatment of nongranulating wounds of different kinds, without untoward effects, either locally or systemically, as demonstrated in application to the primarily closed wounds of 87 human surgical incisions in a wide variety of procedures. There was no immediate or late evidence of antigenicity.
Controlled tensiometric observations in 15 human volunteers utilizing in each instance paired incisions in the same individual with tensiometry from 7 to 14 days after wounding have shown that the wound treated therein locally with the cartilage preparation of the present invention has been so much stronger than the untreated wounds as to exhibit a measured mean positive differential of approximately 50% over the control value.
The cartilage preparations of the present invention have been successfully utilized to accelerate and to improve the healing of the following types of wound, either by topical application or by injection of saline extract: chemical burns, third degree skin burns, radioactive injury, chest wall, abdominal and other wounds, operative and post-operative wounds, penetrating wounds such as those of thorax and abdomen, ulcers due to arteriosclerosis and to trophic disturbance, ulcers of skin, gangrene of skin due to the trauma or physical agent or to undetermined cause, dermatitis, lupus erythemathosus with ulcer, keloids, atopic eczema, parapsoriasis and psoriasis. Other types of wounds also have responded successfully to the cartilage preparations of this invention with improved results. For example, the invention is especially useful in cases involving cortisone or other steroid treatment (known to retard healing) or involving diabetes.
Test methods.Unless otherwise stated, the effectiveness of the preparations of the examples herein was established in animal tests as described by J. Prudden, G. Nishihara and L. Baker in"The Acceleration of Wound Healing with Cartilage-I," Surgery, Gynecology & Obstetrics 105: 283 (1957).
Sherman strain albino female rats were employed in the tests. The preparation consisted of 5.5 centimeter midline abdominal incision under controlled conditions and closed with interrupted through-and-through sutures of No. 000 silk.
The wound tensile strength at seven days is determined in millimeters of mercury by a modification of the technique of the method illustrated in the publication cited above.
The rat to be tested is killed by an intracardiac injection of paraldehyde or by exposure to toxic fumes such as to diethyl ether. The test is made prior to the onset of rigor mortis. After the sutures have been removed from the wound, a rubber latex prophylactic pouch is inserted into the peritoneal cavity through a defect made with a Kelly clamp in the apex of the vagina. After the rubber pouch is in place, and the introitus has been snugged firmly (with a hermostat) around the tube leading to the peritoneal cavity, the rotary air pump connected to the pouch is turned on regulating it in such a manner that the air pressure will increase at a rate of millimeters of mercury every five seconds. The pressure at which the wound splits and the pouch extrudes itself (wholly or in part) through the defect is recorded as the tensile strength of the wound. This is also a quantitative measure of the degree of healing or rate of healing achieved in the experiments.
The following examples illustrate certain present preferred embodiments of the invention, and it is understood that other methods and embodiments within the spirit of the invention may be made without departing from the scope of the appended claims. Parts and ratios are by weight except as otherwise stated.
EXAMPLE l.CARTILAGE PEBBLE MILL GROUND The tracheas of healthy adult beef cattle were removed within 30 to 60 minutes after the animals were slaughtered. The traceas were then either processed immediately with an acid-pepsin solution or they were frozen to preserve them, in which case the acid-pepsin digestion may be deferred. The tracheas either fresh or previously frozen were then digested for about six hours at 50 C. in an aqueous solution containing 0.6% acetic acid (U.S.P. glacial) and 0.3% pepsin (N.F. IX grade, 3500 activity). After digestion the tracheal cartilage was removed frorn the acid-pepsin solution, washed first with water of about 70 C. and then with water of about 25 C. until the elfluent wash water showed no trace of pepsin or acetic acid. The cartilage was dried in vacuum (20 mm. mercury) at C. The dried cartilage was defatted by extracting it with a solvent, such as hexane. It was then granulated.
The granulated purified cartilage was ground to a fine powder in a laboratory four-quart size porcelain jar mill, loaded with one-inch size (average) flint pebbles in a weight ratio of l cartilage to 2 pebbles. Dry Ice (CO was then put on top of the mill charge and the mill was kept open for 5 minutes to allow the CO to displace the air in the mill. The lid of the mill was then clamped on tight and the mill rotated as is customary in the performance of the grinding operation. The grinding was carried out at about ---20 C. for 96 hours. The ground cartilage was screened through a 325 mesh nylon screen, thereby confining the active cartilage powder to particles less than about 40 microns in size, and having average or majority particle size between about 5 and 10 microns.
EXAMPLES l-A, 1--B AND l-C In these examples the same procedure was followed as described in Example 1 in the preparation of the cartilage powder of the invention, except that grinding times differed to obtain different grinds, and the cartilage source in Example l-C was great white shark jaw cartilage which was ground in a mechanical mortar. The test method described above was performed to compare the rate of wound healing of each Example l-A, l-B and l-O with control wounds which were untreated. The percent of wound healing stated was 100% for the control and represented increases as stated below for the examples of the invention, each figure representing the average of about 20 to over 40 controlled pairs of tests:
[Maximum] Rate of Particle size healing Example Cartilage used (average) (percent) Control None 100 1-A Calf tracheal Approx 70,; 1-B ..do Approx. 20;; 152.5 l-C Grezt white shark jaw Approx. 70; 130
EXAMPLE 2.CARTILAGE PEBBLE MILL-GROUND Cartilage obtained from the skeleton of a two-day old piglet was washed with distilled water immediately after removal from the carcass. The cartilage was then freed from the adhering tissue matter and then digested with an acid-pepsin solution [was] as described in Example l. The cartilage was ground and screened in accordance with the method described in Example 1.
EXAMPLE 3.-BOVINE TRACHEAL CARTILAGE FLUID ENERGY MILL-GROUND EXAMPLE 4 Cartilage from a variety of sources was ground in a fluid energy mill under the conditions indicated as follows:
Particle size, microns Grinding Tmpera- Cartilage source fluid tore) 0.) Average Maximum 240 a 5 25 5 3 -l 1o 25 5 7 25 5 7 l0 5 7 25 5 7 25 5 s o 25 5 8 Piglet, 1 month old -.do.-. 25 5 8 Piglet, 6 months old 25 5 8 Calf,l ay old.-.- 25 5 8 Cali, 2 weeks old 25 5 3 Cali, 1 month ol 25 5 8 Dog, 1 day old.. 25 5 8 Dog, 2 weeks old--.. 25 5 8 EXAMPLE 5.PREPARATION OF CARTILAGE lage powders in the liquids with a high speed, high shear, EXTRACT S IN THE PEBBLE MlLL closed turbine mixer or passing the extraction mixture Extracts of cartilage having high wound-healing activifi zggg 28 3; g fl s ifi gg it gi g fi ity were produced as follows: g g
The cartilage was acid-pepsin digested as in Example 1, granulated, and then without drying was suspended in the extracting liquid and then transferred into a pebble mill which was charged to 50% of its volume with flint pebbles of average size, one inch diameter. The ratio of the cartilage to extracting liquid was kept to :75. The liquid suspension was charged into the mill in a quantity just suflicient to fill the voids of the pebbles with the top of the pebbles barely covered by the liquid. The air was then purged from the mill with nitrogen and the mill closed. The mill was allowed to run for 6 hours at between 3 C. and 4 C. which resulted in a medium fine grinding of the cartilage and in the simutlaneous extraction of the active wound-healing agent from the cartilage.
At the end of the 6-hour cycle, the mill was emptied, the fluid paste strained free of the pebbles, the fluid transferred into a centrifuge operated at 6000 rpm. and at a temperature of between 3 C. and 4 C. After one-half hour the centrifuge was stopped and the supernatant liquid strained through a 400 mesh nylon screen. If the stained EXAMPLE 5 Total solids 01' clear extract by weight percent Cartilage source Extracting liquid a. Bovine tracl1eal.. Distilled water l) .do isotonic saline sol Ammonia (25%) 1% in water 2% urea in water e .-do 1% ammonium carbonate in water. i ..do 1% disodium phosphate in w er. 3% ammonium carbonate in water. h -.do 1% trisodlum phosphate in water. i ..do.-..... 1% sodium citrate in water- 8% sodium citrate in water ..do... 1% sodium iormate in waterl Pigleit 1 day old isotonic saline solution 1% ammonia (28%) in water.
. 3% ammonium carbonate in water.
N 2 than" o :;.do 3% sodium citrate in water...
Cali one day old. isotonic saline solution ..do 1% ammonia (28%) in water.
. .do isotonic saline solution plus ammonia to pH 8.
No'rx.'lhe isotonic saline solution was prepared with distilled water and contained 0.9% NaCl.
In addition to pebble mill and fluid energy mill grinding, satisfactory powders may be obtained by ball milling, hammer milling in inert atmosphere. While ball or pebble milling the cartilage with the extracting liquid gives satisfactory results, other methods, such as mixing the cartiactivity.
EXAMPLE 6.SPRAY-DRYING O'F CARTILAGE EXTRACTS Dry concentrates were prepared from cartilage extracts as follows:
A laboratory Bowen type spray dryer was used with the following modifications. In place of the oil furnace, electric heating coils were used to supply the heat energy necessary for the evaporation of the wolatile portions of the extracts. Instead of air, nitrogen was used for the hot gas. A vaned disc, rotating at about 20,000 rpm. was used to atomize the extracts. The inlet gas temperature was held to about 280 F., the outlet temperature was between F. and F. The dryer was used as a closed system dryer with the exclusion of oxygen to avoid degrading the active material during the evaporation of the water.
The following dry extracts were thus produced:
Solids, Yield, Appearance of Extract used percent percent dried powder 5. 2 4. 8 Si. yellow.
6. 5 0. 2 Do. 7. 6 7. 3 Do. 9.2 8. 9 Oil white. 6. 4 6. 2 Si. yellow. 7. l 0. 8 Do. 10. 0 9. 8 Off White.
6. 2 6. 0 8]. yellow. 7. 3 7. 1 Do. 1 Example 5-r 8.2 8. 0 Do.
The solids percent means percent of solids in the ex- Lracting liquid as determined by drying at 100 C. for two ours.
"Yield percent" means the dry solids percent obtained from the liquid by the drying process.
The spray-dried powders were stored in tightly closed glass jars in a refrigerator at 4 C.
EXAMPLE 7.-FREEZE-DRYING OF CARTILAGE EXTRACT S A laboratory vacuum shelf dryer was used. The extracts were refrigerated to 10 C. The shelf temperature was 50 C. The vapor pressure was about 0.8 mm. Hg. The solids percent was determined at 100 C.
Solids, Yield, Appearance of dried Extract used percent percent material a Example 5-b...- 5. 2 5. 1 Oil white coarse powder I). Example 5-0-..- 6. 5 6. 5 Do. c. Example 5-h. 7. 0 7. 8 Do. d. Example 5-}. 9. 2 10. 1 Do. 9. Example 5-1.-.- 6.4 6.6 Do. i Example 5-m-.. 7. 1 7. 3 Do. E.-. Example 5-0.... 10. 0 10.8 Do. Example 5p 6.2 6. 3 Do. i Example 7.2 7.6 Do. 1 Example 5r.... 8.2 8. 5 Do.
The freeze-dried materials were stored in tightly closed glass jars in a refrigerator at 4 C.
EXAMPLE 8 Cartilage powders are applied to wounds by dusting with a hand atomizer about 30 mg. into a 5.75 cm. longitudinal midline abdominal incision of the female rat. Of the 30 mg. applied to the wounds about 10-15 mg. was effectively utilized at the sites of the wound. llt is preferred that the dosage unit be applied to the wound in an amount substantially equivalent to between about 10-15 mg. per square centimeter.
Rate of wound Cartilage powder: healing (percent) 1. None, control 100 2. Example 1 125 3. Example 2 135 4. Example 3 130 5. Example 4-b 100 6. Example 4-c 110 7. Example 4-d 120 8. Example 4-e 105 9. Example 4-f 130 10. Example 4-g 135 11. Example 4-h 130 12. Example 4-i 140 13. Example 4-j 140 14. Example 4-k 135 15. Example 4-1 130 16. Example 4-m 140 17. Example 4-n 140 18. Example 4-0 135 19. Example 4-p 142 20. Example 4-q 135 Rate of wound healing related to 100 means the ratio, expressed as percent, of pressure required to rupture the healed tissue of the wound as compared with the pressure required for rupture of the wound of the untreated control animal, according to the test method described above.
EXAMPLE 9 Cartilage extracts applied to wounds by swabbing to 5.75 cm. longitudinal midline abdominal incision of the female rat.
Rate of wound Cartilage extract (liquid): healing (percent) 1. None, isotonic saline-control 100 2. Example -a 100 3. Example 5-b 125 4. Example 5-c 125 5. Example S-d 125 6. Example 5-e 125 7. Example 5-f 130 8. Example S-g 115 9. Example S-h 130 10. Example 5-i 130 11. Example S-j 130 12. Example 5-k 135 13. Example S-l 140 14. Example 5-m 140 15. Example S-n 130 16. Example 5-o 135 17. Example 5-p 140 18. Example S-q 145 19. Example 5-r 150 EXAMPLE 10 The etfect of parenterally injected cartilage extracts on the healing of wounds. In each case 5 cc. of the extract was injected into the subcutaneous tissue on the rat's back within 24 hours after the abdominal incision.
Rate of wound Cartilage extract (liquid): healing (percent) 1. None, isotonic saline-control 2. Example 5-a 3. Example S-b 4. Example 5-f 5. Example S-i 6. Example 5] 7. Example S-p 135 8. Example 5-r EXAMPLE 1] This example demonstrates the effect of parenterally injected cartilage extracts combined with a bovine growth hormone. In each case 5 cc. of the extract was mixed with 10 mgm. of a bovine growth hormone, distributed by the Endocrinology Study Section of the National Institutes of Health through the pituitary hormone distribution program. Approximate assay of the growth hormone:
Adenocorticotrophic hormone 0.06 U.S.P. milliunit/ mgm. Porlactin 0.1 International unit/ mgm. Vasopressin 0.01 U.S.P. unit/mgm. Thyreotrophic hormone 0.008 U.S.P. unit/mgm. Oxytocin 0.008 U.S.P. unit/mgm.
Test animals and wounds are as stated in Example 10.
Rate of wound Cartilage extract (liquid): healing (percent) This example demonstrates the value of reconstituted spray-dried and freeze-dried extracts in the healing of wounds. The dried extracts were dissolved either in water or in isotonic saline solution, depending on the salt content of the original preparation. The solutions were adjusted to correspond with the solids content of the extracts from which the dried materials were prepared. The solutions were applied by parenteral injections into rats in Example 10.
Rate of wound Dried Extract Solvent Healing (percent) 1. None isotonic saline-control 100 2. Example 6-a Water I15 3. Example 7-21.-.. ..do.. 120 4. Example G-b. Isotonic saline 125 6. Example 7-b ,do 130 6. Example (i-e. ater 130 7. Example 7-0.--. do 135 8. Example 6-11...- 140 9. Example 7-11. d 10. Example 6-l, 140 11. Example 7-1... 145
EXAMPLE 13 This example demonstrates the value of intravenous injections of cartilage extracts or solutions of dried extracts in the healing of wounds. These were made on dogs with circular incisions. Wounds were not saturated but protected only with sterile dressing. The rate of heal- 1 1 ing was measured by observing the degree of granulation as compared with the control.
Rate of wound EXAMPLE 14 This example demonstrates the use of cartilage powder on open wounds. Powders were held between layers of porous fabric, i.e., surgical gauze, and held through bandages to the unsutured wound. Tests were made on dogs. The rate of healing was estimated by observing the degree of granulation.
Rate of wound Cartilage powder: healing (percent) 1. None, dry gauze-control 100 2. Example 2 135 3. Example 4-f 135 4. Example 4-i 145 5. Example 4-m 145 EXAMPLE 15 This example demonstrates the effect of applying liquid cartilage extracts on open wounds. Porous fabric i.e., surgical gauze was saturated with the extracts and applied to the open an unsutured Wounds while still wet. Tests were made on dogs. The rate of healing was measured by the observed degree of granulation.
Rate of wound Cartilage extract: healing (percent) 1. None, isotonic saline-control 100 2. Example 5-b 125 3. Example 5-1 140 4. Example S-p 140 5. Example S-r 150 EXAMPLE 16 This example demonstrates the effect of applying dried cartilage extract on open wounds. Porous fabric, i.e., surgical gauze, was saturated with the extracts, dried to a moisture content of about 5% at 30 C. and at a pressure of 50 mm. mercury. The dried gauze was applied to the open and unsutured wounds. Tests and observations were as in Example 15.
Rate of wound Cartilage extract: healing (percent) 1. None, isotonic saline-control 100 2. Example S-b 120 3. Example 5-] 135 4. Example 5-p 135 5. Example 5-r 150 EXAMPLE 17 These tests involved the intravenous injection of cartilage extracts combined with one or more blood extenders, such as whole blood, blood plasma, and a plasma substitute, namely polyvinylpyrrolidone or dextran. Tests were made on dogs. In carrying out these tests 100 cc. blood was taken from the animal and treated as follows:
I. The blood was mixed with cc. cartilage extract and reinjected into the same animal.
II. The plasma was obtained from the blood mixed with 10 cc. cartilage extract and reinjected into the same animal from which the blood was obtained.
III. The blood was replaced by an equal volume of an isotonic aqueous saline solution of polyvinylpyrrolidone 3.5%, viscosity grade K-30 and 10 cc. of a cartilage extract.
The control animals were treated as follows:
Control 1--l00 cc. blood taken and then reinjected into the same animal;
Control 2-The blood taken as in case of Control 1, the plasma separated and reinjected into the same animal;
Control 3The blood was taken from the animal as above in case of Control 1, and replaced with a saline solution of 3.5% polyvinylpyrrolidone viscosity type K-30.
Note: All blood samples taken were citrated to prevent coagulation. The rate of healing was measured by the observed degree of granulation.
Rate of healing 15 Cartilage extract Test as per (percent) 1 None, Controll 100 None, Control2 90 None, Control 3..
Example 5-b 130 do 125 do 120 Example 5- 150 do. 145 .do.. 130 Example 5-p I 150 do II 145 III 135 The animals used in these experiments weighed not less than lbs. each.
EXAMPLE 18.-CART'ILAGE SUPPOSITORIES Suppositories were prepared with 20% cartilage powder and 80% suppository base. The suppository base was prepared in accordance with U.S.P. XVI, pages 828-9, Glycerinated Gelatin Suppositories. The suppositories were 2 gm. size and were administered rectally to dogs. The surface of the rectum was removed for 1 cm. from the rectal opening, about one hour before the insertion of the suppository. A fresh suppository was introduced every six hours. The rate of healing was determined by visual observation.
Rate of wound Cartilage powder: healing (percent) 1. None, control 100 2. None, suppository base-control 105 3. Example 4-f 130 4. Example 4-m 135 EXAMPLE l9 Cartilage powder tablets and capsules were orally administered. The tablets were prepared without and with enteric coatings. The capsules were either gelatin or enteric material such as carboxymethyl cellulose. Both the tablets and the capsules contained 2 gm. cartilage powder each. The test animals were dogs and the wounds were circular unsutured. The dosage was 0.1 gm. cartilage powder/l-lb. body weight every six hours. The rate of healing was determined by visual observation.
Rate oi wound healing Cartilage powder Form Coating (percent) 1 None, control) 2.-.. Example 4-! Tablnt ..do 1 do 115 115 EXAMPLE 20.IRRADIATED CARTILAGE POWDER on rats as in case of Example 8.
Rate of wound Cartilage powder: healing (percent) EXAMPLE 2l.--ST ERILIZATION WITH AN ANTISEPTIC ALCOHOL, 70%
Mix the calf cartilage powder of the invention with an excess of about 70% (volume) ethyl alcohol. A sufiicient excess of alcohol is present when the cartilage powder forms a mobile slurry with the powder. The particle size of the powder controls the volume of alcohol required to form the mobile slurry. The smaller the particle size the larger the volume of alcohol is required.
In general, 2 ml. alcohol mixed with each gram of a 30 micron average particle size cartilage powder is well in excess of the minimum required to form the slurry.
The alcohol slurry of the cartilage powder is best mixed at a rate to keep the powder suspended in the liquid. The cartilage swells somewhat and becomes gummy under the influence of the 70% alcohol.
In about 30 minutes the cartilage is sterilized by the alcohol. However, this sterilized cartilage, due to its swollen condition and gummy character, is diflicult to filter and forms a hard crust when dried. This hard crust has then to be reground to the original particle size.
The difliculties caused by the swelling and gummy nature of the sterilized cartilage can be overcome by centrifuging the slurry to form a firm cartilage sediment, decanting the supernatant liquid and replacing it with anhydrous alcohol.
The cartilage sediment, mixed with the anhydrous alcohol, is dehydrated regaining substantially its original particle size and losing its gumminess. This dehydrated cartilage can be readily filtered and dries to a free flowing powder.
EXAMPLE 22.STERILIZ.ATION WITH ISOPROPYL ALCOHOL can be readily filtered and the filter cake so obtained can be dried to a free flowing powder.
The sterilization either with ethyl alcohol or with isopropyl alcohol can be carried out satisfactorily at ambient room temperatures, although sterilization at elevated temperautres may reduce the time required.
EXAMPLE 23.STERILIZATION OF THE CARTILAGE POWDER BY HEAT Cartilage powder of the invention, surprisingly, is sterilized, without loss of wound healing activity, by heating it to about 125-432 C. for 3-4 hours, substantially in the absence of air or oxygen. Other temperatures, as low as 110 C., may be utilized, but for longer periods of time to achieve sterilization.
The preferred procedure is to place the cartilage powder in a vessel with some Dry Ice over it and then covering the vessel loosely with a metal foil. The vessel is placed in a vacuum oven, the oven is connected with a vacuum pump and the air is evacuated to a vacuum of about mm. of mercury. The oven is then heated to about 127 C. and held there for about four hours. It is important that the entire mass of material in the vessel be heated through and maintained at about 125 to 132 C. for about three to four hours.
The heat sterilized powder is ready for clinical use.
14 EXAMPLE 24.-REACTIVATION AND ENHANCE- MENT OF CARTILAGE BY HEAT IN THE AB- SENCE OF OXYGEN This example illustrates lowering of the activity of calf cartilage powder when milled in the presence of air, and air together with heat, respectively, followed by the restoration and further enhancement of the wound healing activity when the partially or totally inactivated material is exposed to heat of about 127 C. for between 5 hours to 50 hours and in the virtual absence of air or oxygen (Tests 6 and 8).
The cartilage powder was inactivated by hammer milling it under conditions of excessive aeration and some generation of heat (Test 5 The activity of the cartilage was lowered to about one-third of its activity by ball milling it in the presence of air (Test 7), as compared with the same material ball milled in a C0 atmosphere (Test 4).
The heating of the cartilage was done in the following manner: a vacuum oven (Freas, size No. 504, Fisher Scientific Co.) was loaded with the cartilage powder and with a small quantity of Dry Ice (solid CO About 15 to 25 grams of the Dry Ice were placed in an open dish in the oven. The door of the oven was closed, the air evacuated to about 10 mm. pressure, the vacuum pump was disconnected, and the heating cycle started. During heating there was some pressure build-up in the oven caused by the expansion of the Dry Ice as it becomes gaseous carbon dioxide.
Rate of wound Test: healing (percent) 1. Control, no cartilage 100.0 2. Calf cartilage, lot lAX, ball milled in CO 127.7 3. #2, heated in C0 4 hrs., 45 min.,
C. 130.5 4. Calf cartilage, lot 2AX, ball milled in CO 137.2 5. #4, hammer milled in air with heat generation 100.0 6. #5, heated in CO for 42 hrs., 128 C. 136.7 7. Calf cartilage, lot 2AX, ball milled in air 110.9 8. #7, heated in CO for 5 /2 hrs. 127 C. 129.1
The above test results were based on 20 to over 40 pairs of animals (Sherman strain albino rats) for each of the eight tests enumerated above and the percent figure represents the statistical average of all such tests.
Comparison of Test 3 with Test 2 shows that heat sterilization of the powder of this invention may be accomplished together with enhancement (130.5 vs. 127.7%) of wound healing rate.
Comparison of Test 5 with Test 4 shows that highly effective powder of this invention may be completely deactivated by hammer-milling air with heat generation.
Comparison of Test 6 with Test 5 shows that the thus deactivated hammer-milled powder may be reactivated by prolonged heating as stated.
Comparison of Test 7 with Test 4 shows that ball milling highly effective powder of the invention in air seriously lowers (from 137.2 to 110.9%) the rate of wound healing.
Comparison of Test 8 with Test 7 shows that healing of the degraded powder of Test 7 in CO at elevated temperature reactivates the material to a highly elfective rate of wound healing.
EXAMPLE 25 Forty wounds involving a wide spectrum of human chronic nonhealing types of ulcers were treated according to the present invention.
1 The types of wounds treated were as follows:
No. of wounds 1. Chronic varicose ulcer on bedrest or after surgical correction of venous incompetency 16 2. Chronic nonhealing ulcers of the abdomen following wound disruption in cachectic patients with inoperable carcinoma 6 3. Radiation ulcer l 4. Ulcers of the extremities in chronic ulcerative colitis (gangrenous pyoderma) 2 5. Nonhealing perineal defects in individuals having undergone total colectomy for chronic ulcerative colitis (not on steroids) 6. Nonhealing chest wall defect following necrosis of flaps in radical mastectomy l 7. Ulcers of the extremities in patient with systemic lupus erythematosus on massive steroid therapy 4 There was no particular sex or age distribution except that all were adults and none was older than 60 or younger than 25.
In each instance the local therapy was:
At the time of the dressing, the wound was thoroughly cleansed with hydrogen peroxide, and washed with alcohol. It was dried with gauze. The cartilage preparation was applied by atomizing the powder onto the surface and into the wound. In 38 of the 40 cases this treatment resulted in the transformation of the wound surface from a nongranulating, sluggish, dirty grey surface to a typical pink, healthy granulating bed within ten days. In the other two cases a somewhat longer time was required.
EXAMPLE 26 The cartilage powder of the invention was atomized into 83 surgical wounds in 39 human patients with 47 operations, as follows:
CARTILAGE POWDER INSTILLATION IN CLOSED SURGICAL WOUNDS No. No. Type of operation operations wounds (1) Bilateral phlebectomies 7 43 (2) Cholecystectomy (with and without common duct drainage); right subcostal incision l5 5 (3) Gastrectomy linea albaincision 1 1 (4) Exploratory iaparotorny for regional enteritis with emeciation and partial mechanical obstruction, midline incision 1 1 (5) Hysterectomy; midline incision- 1 1 (6) Breast biopsy (circurn-arcolary- 1 1 (7) Inguinal herniorrhaphy 22 22 (8) Ceeotomy for excision villous adenoma (right lower abdominal oblique) l l (9] Lipomectomy 1 1 (10) Plionidal cystectomy 1 1 (11) Small bowel resection for obstructing mesonteric tumor metastic from pancreas (midline incision) 1 1 (12) Abdominoperineal resection for squamous cell carcinoma of anus (midline incision) 1 1 (13) Ventral herniorrhaphy l 1 (14) Anterior resection oi rectoslgmoid (midline incision) 1 1 (15) Resection terminal 30 in. of ileum proximal to lleostomy for regional ileitis; (reopening midline incision used for previous total colectorny) 1 (l6) Lysis of adhesions and vagectomy (rnidline) 1 1 Total L. 47 83 In all 83 cases there was primary healing of all wounds except for intermediate suture abscess formation which was followed by healing without event. In none of these cases was there any abnormal liver chemistry, disturbed renal function, or evidence of sensitivity to the material of the invention. In no case was the wound nonilexible, thick or keloidal and all wounds appeared to be more flexible and less bulky than normally expected.
EXAMPLE 27 Calf tracheal cartilage powder having maximum particle size of 40 microns was mixed with about an equal part of anhydrous propylene glycol. This premix was 16 then added to Neobase (an ointment base made by Burroughs Wellcome & Co. of Tuckahoe, N.Y.), which contains the following ingredients:
diluted with about 50% additional water in an amount to yield a composition having about 10% of said powder.
Thus, a useful wound healing or dermatological salve was formed, although it is to be understood that other ointments and salves and salve bases may incorporate the powder or extract of the present invention.
EXAMPLE 28 An ointment particularly useful with surgical gauze was formulated by mixing the following:
Parts by weight Ex. 29-A Ex. 29-!) Polyethylene glycol, mol. wt. 4,000 5 5 Polyethylene glycol, mol. wt. l,54(1 30 25 Polyethylene glycol, mol. wt. 300 60 00 Cartilage powder, maximum particle size 40 50 10 This ointment is useful in certain dermatological applications and the physical properties may be further adjusted and controlled by varying the ratios of the polyethylene glycols or adding required amounts of propylene glycol and/or glycerol.
While isotonic saline is an effective extraction medium, more complete extraction with higher healing activity is obtained when the pH is raised slightly with ammonia. Salts other than NaCl provide more effective extraction, as shown in Example 5. An inert atmosphere during the extraction results in extracts of greater potency than when the extraction is carried out in the presence of oxygen. Since the presence of oxygen during processing has completely inactivated extracts of the cartilages herein shown otherwise to be vastly superior, the use of suitable known nontoxic antioxidants such as ascorbic acid or its salts or vitamin A may permit carrying out the extraction in the presence of some air without serious loss of potency.
Though bovine tracheal cartilage from mature animals, Le, a year old or older, is for some purposes a satisfactory source, cartilage with substantially greater potency is obtained from the skeletons of very young animals. The highest potency material is generally obtained from animals less than one month old, although cartilage from adolescent animals taken before maturity may be used in this invention without excessively fine grinding. Young animals are intended to mean those which are still adolescent and have not yet reached maturity. Cartilage from foetal skeletons is often effective. Finely divided cartilage from other mammals, in addition to bovine and porcine and canine, is eifective in healing wounds in accordance with the present invention: for example, finely divided cartilage powder from rat trachea and the human knee have been successfully utilized in accordance with the invention; so also with other animals such as the finely divided cartilage of birds, fish, jaw-bone of shark, rib cage of a crocodile (South American caiman known to be one year old, as obtained from the New York City Zoological Gardens, in early adsolescence). Finely divided reptile cartilage is particularly effective in view of the extraordinary ability of the reptiles to regenerate their tissues and even their limbs. For example, young cartilage from the tail of a tegu salamander, which tail had regenerated for three months, obtained from the same zoo was used without excessively fine grinding in effective wound healing experiments. Cartilage from the rib cage 1 7 of young lambs taken prior to ossification was successfully utilized.
When dry cartilage extract is desired, freeze-drying is preferred, but spray-drying is satisfactory in inert atmosphere. Vacuum drying is satisfactory when oxygen is excluded and temperature of the liquid is held below 40 C.
The cartilage powder may be dusted on the wound or atomized on it. It may also be applied in the form of ointment on the wound, as exemplified above. The extract may also be applied directly to the wound by spraying it on the wound, swabbing it on, or brushing it on. Both the powder and the extract may be applied first to an absorbent medium which is then applied to the wound and held on by a bandage or adhesive tape, or other suitable means. The cartilage or the extract may be incorporated into tablets, capsules or suppositories and applied orally, rectally or in the vaginal or uteral passages. Implantation as pellets and injection of solution of the extract of the invention has been effective.
Cartilage extracts may be injected subcutaneously, intramuscularly or intravenously. The dried extracts may be used as powders or they may be reconstituted and used as the original extracts. The wounds to which the active materials are applied may be sutured or may be left open without materially affecting the rate of healing. The active materials may be administered once, preferably within the first 24 hours of the incision; or they may be applied before the incision or they may be applied in several applications in succession. Irradiating the cartilage powder with ultraviolet radiation in the absence of oxygen increases its activity.
While certain present preferred embodiments of the invention have [has] been described and exemplified herein, it is to be understood that the invention may be otherwise embodied within the spirit thereof and within the scope of the appended claims.
What is claimed is:
1. A dosage unit comprising an effective wound healing quantity of a non-interposing cartilage powder having a substantial maximum particle size of about 70 microns, and an average particle size between about 1 micron and about 40 microns from a young cartilage-containing animal.
2. A dosage unit comprising an effective wound healing quantity of a non-interposing cartilage powder having a substantial maximum particle size of about 70 microns, and an average particle size between about 1 micron and about 40 microns from a young cartilage-containing mammal.
3. A non-interposing cartilage powder having a substantial maximum particle size of about 70 microns, and an average particle size between about 1 micron and about 40 microns in dosage unit form from a young cartilagecontaining vertebrate.
4. The composition of claim 1 having average particle size of about to 10 microns.
5. A dosage unit comprising an effective wound healing quantity of a non-interposing cartilage powder having a substantial maximum particle size of about 70 microns and an average particle size between about 1 micron and about 40 microns from a young cartilage-containing animal incorporated into a clinically acceptable wound healing carrier vehicle.
6. A non-interposing cartilage powder in dosage unit form from a cartilage-containing animal and having a substantial maximum particle size of about 70 microns, and an average particle size between about 1 micron and about 40 microns.
7. The sterilized product of claim 6.
8. A non-interposing cartilage powder from a cartilagecontaining animal having an average particle size between about 1 micron and about 40 microns and having a substantial maximum particle size of about 70 microns.
9. The irradiated cartilage powder of claim 8.
10. The process of treating a wound in an animal which comprises applying thereto the composition of claim 1 11. The process of treating a wound in an animal which comprises applying thereto the composition of claim 6.
12. A dosage unit according to claim 1, comprising an effective wound-healing quantity of a noninterposing cartilage powder having a substantial maximum particle size of about 70 microns and an average particle size between about 1 micron and about 40 microns derived from shark or reptilian cartilage.
13. A dosage unit according to claim 12, wherein the cartilage powder is derived from shark cartilage.
14. A method of healing a wound of psoriasis in a human consisting essentially of the step of parenterally injecting into said human systemically or in the areas aflected by psoriasis, an eflective wound healing dose of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
15. A method of healing a wound according to claim 14 wherein said wound is characterized by inflammation which is reduced upon treatment with said aqueous solution.
16. A method of healing a wound according to claim 15 wherein said eflective wound healing dose is administered in a saline solution.
17. A method of healing a wound according to claim 14 wherein said cartilage-containing animal is a young animal.
18. A method of healing a wound of dermatitis in an animal which consists essentially of the step of topically applying or parenterally injecting into said wound an eflective dose for healing dermatitis of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
19. A method of healing an ulcer wound requiring healing in an animal which comprises parenterally injecting into the area affected by said wound in said animal, on eflective wound healing dose of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
20. A method of healing a burn wound in on animal which comprises porenterally injecting into the area affected by said burn wound in said animal an efiective wound healing dose of an aqueous solution consisting essentially of at least the aqueous soluble portion of defatted, and essentially pure cartilage ground to a powder, free from adhering tissue, said cartilage being derived from a cartilage-containing animal.
21. The dosage unit of claim 5 wherein said clinically acceptable wound healing carrier vehicle is a suppository.
22. The dosage unit of claim 5 wherein said clinically acceptable wound healing carrier vehicle is an ointment.
References Cited The following references, cited by the Examiner, are of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 3,318,774 5/ 1967 Dingwall et a1 4-24-95 3,400,199 9/1968 Balassa 424- 3,476,855 1 1/1969 Balassa 424'95 3,478,146 11/1969 Balassa 424-95 (Other references on following page) 19 20 OTHER REFERENCES Sclrwartz et 211., Surgical Forum 10: 308-3 11 (1960). t t L, A p th 1 2 5 979 991 Iasrnski et a]. Path. Microbiol 24: 148-1153 (1961).
segzfi efoimber l g s a oogy Paulette er m m r- 4 Ap i dd b .105; -2 6, Se t 1959- h; T 957? at a Surg Gyn 0 s 283 8 pm 5 Inoue, Arch. Surg. 82; 432-434, March 19% Pruclden, Transplantation Bulletin 5 1): Jan. 14, 1958, Andemon at Bone Joint 8- 43A! 4, p. 14. October 1961.
Anderson et al., J. Bone & Joint Surgery 41A (8): 14554468, D member 1959 SHBP K. KROSE, Prunary Examrner
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17644362A | 1962-02-28 | 1962-02-28 | |
US435693A US3400199A (en) | 1965-02-26 | 1965-02-26 | Wound-healing cartilage powder |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE28093E true USRE28093E (en) | 1974-07-30 |
Family
ID=34922479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
USRE28093D Expired USRE28093E (en) | 1962-02-28 | Wound-healing cartilage powder |
Country Status (2)
Country | Link |
---|---|
US (1) | USRE28093E (en) |
CH (1) | CH479304A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4212857A (en) | 1976-10-29 | 1980-07-15 | Lescarden Ltd. | Method for stimulating the production of immunoglobulin and total complement |
WO1980002501A1 (en) * | 1979-05-11 | 1980-11-27 | Lescarden Ltd | Cartilage extraction processes and products |
US4486416A (en) | 1981-03-02 | 1984-12-04 | Soll David B | Protection of human and animal cells subject to exposure to trauma |
EP0255565A2 (en) * | 1986-08-05 | 1988-02-10 | Robapharm AG | Composition for stimulating chondrocytes and osteoblasts (ossein hydroxyapatite compound), method for its production and pharmaceutical products containing said composition) |
US4822607A (en) | 1976-10-29 | 1989-04-18 | Lescarden Ltd. | Anti-tumor agent and method |
WO1993010712A1 (en) * | 1991-12-06 | 1993-06-10 | The General Hospital Corporation | Cartilage degradation assay system |
US5733884A (en) | 1995-11-07 | 1998-03-31 | Nestec Ltd. | Enteral formulation designed for optimized wound healing |
US6168807B1 (en) | 1998-07-23 | 2001-01-02 | Les Laboratoires Aeterna Inc. | Low molecular weight components of shark cartilage, processes for their preparation and therapeutic uses thereof |
US6380366B1 (en) | 1994-04-28 | 2002-04-30 | Les Laboratoires Aeterna Inc. | Shark cartilage extract:process of making, methods of using and compositions thereof |
US6383522B1 (en) | 1997-03-11 | 2002-05-07 | Les Laboratoires Aeterna, Inc. | Toxicity reduced composition containing an anti-neoplastic agent and a shark cartilage extract |
US20100322994A1 (en) * | 2003-12-11 | 2010-12-23 | Isto Technologies, Inc. | Particulate cartilage system |
US8480757B2 (en) | 2005-08-26 | 2013-07-09 | Zimmer, Inc. | Implants and methods for repair, replacement and treatment of disease |
US8497121B2 (en) | 2006-12-20 | 2013-07-30 | Zimmer Orthobiologics, Inc. | Method of obtaining viable small tissue particles and use for tissue repair |
US9138318B2 (en) | 2007-04-12 | 2015-09-22 | Zimmer, Inc. | Apparatus for forming an implant |
US10167447B2 (en) | 2012-12-21 | 2019-01-01 | Zimmer, Inc. | Supports and methods for promoting integration of cartilage tissue explants |
-
0
- US USRE28093D patent/USRE28093E/en not_active Expired
-
1963
- 1963-02-25 CH CH239763A patent/CH479304A/en not_active IP Right Cessation
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4212857A (en) | 1976-10-29 | 1980-07-15 | Lescarden Ltd. | Method for stimulating the production of immunoglobulin and total complement |
US4822607A (en) | 1976-10-29 | 1989-04-18 | Lescarden Ltd. | Anti-tumor agent and method |
WO1980002501A1 (en) * | 1979-05-11 | 1980-11-27 | Lescarden Ltd | Cartilage extraction processes and products |
US4350682A (en) | 1979-05-11 | 1982-09-21 | Lescarden Ltd. | Cartilage extraction processes and products |
US4486416A (en) | 1981-03-02 | 1984-12-04 | Soll David B | Protection of human and animal cells subject to exposure to trauma |
EP0255565A2 (en) * | 1986-08-05 | 1988-02-10 | Robapharm AG | Composition for stimulating chondrocytes and osteoblasts (ossein hydroxyapatite compound), method for its production and pharmaceutical products containing said composition) |
EP0255565A3 (en) * | 1986-08-05 | 1990-01-31 | Robapharm Ag | Composition for stimulating chondrocytes and osteoblasts )ossein hydroxyapatite compound), method for its production and pharmaceutical products containing said composition) |
WO1993010712A1 (en) * | 1991-12-06 | 1993-06-10 | The General Hospital Corporation | Cartilage degradation assay system |
US5284155A (en) * | 1991-12-06 | 1994-02-08 | The General Hospital Corporation | Cartilage degradation assay system |
US6635285B2 (en) | 1994-04-28 | 2003-10-21 | Les Laboratoires Aeterna, Inc. | Shark cartilage extract: process of making, methods of using, and compositions thereof |
US6380366B1 (en) | 1994-04-28 | 2002-04-30 | Les Laboratoires Aeterna Inc. | Shark cartilage extract:process of making, methods of using and compositions thereof |
US20040081703A1 (en) * | 1994-04-28 | 2004-04-29 | Les Laboratoires Aeterna, Inc. | Shark cartilage extract: process of making, methods of using, and compositions thereof |
US5733884A (en) | 1995-11-07 | 1998-03-31 | Nestec Ltd. | Enteral formulation designed for optimized wound healing |
US6383522B1 (en) | 1997-03-11 | 2002-05-07 | Les Laboratoires Aeterna, Inc. | Toxicity reduced composition containing an anti-neoplastic agent and a shark cartilage extract |
US6855338B2 (en) | 1997-03-11 | 2005-02-15 | Les Laboratoires Aeterna, Inc. | Anti-tumor therapies comprising a combination of a cartilage extract and an anti-neoplastic agent providing high efficacy and low toxic side effects |
US6168807B1 (en) | 1998-07-23 | 2001-01-02 | Les Laboratoires Aeterna Inc. | Low molecular weight components of shark cartilage, processes for their preparation and therapeutic uses thereof |
US6506414B2 (en) | 1998-07-23 | 2003-01-14 | Les Laboratoires Aeterna Inc. | Low molecular weight components of shark cartilage, processes for their preparation and therapeutic uses thereof |
US8652507B2 (en) | 2003-12-11 | 2014-02-18 | Zimmer, Inc. | Juvenile cartilage composition |
US8518433B2 (en) | 2003-12-11 | 2013-08-27 | Zimmer, Inc. | Method of treating an osteochondral defect |
US8524268B2 (en) | 2003-12-11 | 2013-09-03 | Zimmer, Inc. | Cadaveric allogenic human juvenile cartilage implant |
US20100322994A1 (en) * | 2003-12-11 | 2010-12-23 | Isto Technologies, Inc. | Particulate cartilage system |
US8765165B2 (en) | 2003-12-11 | 2014-07-01 | Zimmer, Inc. | Particulate cartilage system |
US8784863B2 (en) | 2003-12-11 | 2014-07-22 | Zimmer, Inc. | Particulate cadaveric allogenic cartilage system |
US8834914B2 (en) | 2003-12-11 | 2014-09-16 | Zimmer, Inc. | Treatment methods using a particulate cadaveric allogenic juvenile cartilage particles |
US8480757B2 (en) | 2005-08-26 | 2013-07-09 | Zimmer, Inc. | Implants and methods for repair, replacement and treatment of disease |
US8497121B2 (en) | 2006-12-20 | 2013-07-30 | Zimmer Orthobiologics, Inc. | Method of obtaining viable small tissue particles and use for tissue repair |
US9138318B2 (en) | 2007-04-12 | 2015-09-22 | Zimmer, Inc. | Apparatus for forming an implant |
US10167447B2 (en) | 2012-12-21 | 2019-01-01 | Zimmer, Inc. | Supports and methods for promoting integration of cartilage tissue explants |
Also Published As
Publication number | Publication date |
---|---|
CH479304A (en) | 1969-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3400199A (en) | Wound-healing cartilage powder | |
US3478146A (en) | Wound-healing cartilage powder extracting process | |
US3476855A (en) | Sterilizing and enhancing activity of a finely divided cartilage powder | |
USRE28093E (en) | Wound-healing cartilage powder | |
AU778792B2 (en) | Composition and method for enhancing wound healing | |
CN103520764B (en) | Functional dressing, and preparation method and application thereof | |
Greenwood et al. | Hyperbaric oxygen and wound healing in post-irradiation head and neck surgery | |
JPH0674208B2 (en) | Use of GHL-Cu as wound healing and anti-inflammatory agent | |
Vachhrajani et al. | Science of wound healing and dressing materials | |
EP2717888A1 (en) | Methods of processing fetal support tissues, fetal support tissue powder products, and uses thereof | |
Günel et al. | Reactive oxygen radical levels in caustic esophageal burns | |
Sekiya et al. | Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution | |
US3772432A (en) | Cartilage compositions for dental use | |
CN115554187A (en) | Mussel mucin skin repair emulsion capable of achieving wet heat sterilization and preparation method thereof | |
CN112972755B (en) | Preparation method of biological hemostatic material based on porcine fibrinogen and thrombin | |
REISER et al. | Tryptic debridement of necrotic tissue | |
CN107427561A (en) | Skin wound therapeutic combination | |
CN104490760A (en) | Preparation method and application of capsaicin-collagen sponge | |
EP0137743A2 (en) | Topically administrable pharmaceutical compositions | |
KR101820519B1 (en) | Use of sulglycotide for promoting skin-wound-healing, and composition for external application comprising the same | |
US2717227A (en) | Composition containing nerve tissue extract and process of producing such extract | |
RU2108078C1 (en) | Method for treating deep burn wounds | |
EP0393190A1 (en) | Copolymers of vinyl alcohol with vinyl acetate, cross-linked by glutaric dialdehyde, method of obtaining them and a phramaceutical preparation based thereon | |
Sajjad et al. | The The Therapeutic Effects of Autologous Platelet-Rich Plasma Gel on Cutaneous Wound Healing in Rescued Horses: The Effects of Autologous Platelet-Rich Plasma Gel on skin Wound Healing in Horses | |
CN111821504B (en) | Silver ion disinfection gel and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CATRIX RESEARCH LIMIED PARTNERSHIP, 306 SOUTH STAT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LESCARDEN LTD.;REEL/FRAME:004037/0086 Effective date: 19820601 |