USRE49509E1 - Backward-compatible long training sequences for wireless communication networks - Google Patents
Backward-compatible long training sequences for wireless communication networks Download PDFInfo
- Publication number
- USRE49509E1 USRE49509E1 US17/368,156 US202117368156A USRE49509E US RE49509 E1 USRE49509 E1 US RE49509E1 US 202117368156 A US202117368156 A US 202117368156A US RE49509 E USRE49509 E US RE49509E
- Authority
- US
- United States
- Prior art keywords
- communications device
- wireless communications
- long training
- training sequence
- extended long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2614—Peak power aspects
- H04L27/262—Reduction thereof by selection of pilot symbols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70701—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2201/00—Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
- H04B2201/69—Orthogonal indexing scheme relating to spread spectrum techniques in general
- H04B2201/707—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
- H04B2201/70706—Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation with means for reducing the peak-to-average power ratio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0226—Channel estimation using sounding signals sounding signals per se
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
Definitions
- the present invention relates generally to wireless communication systems and more particularly to long training sequences of minimum peak-to-average power ratio which may be used by legacy systems.
- Each wireless communication device participating in wireless communications includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver.
- the transmitter typically includes a data modulation stage, one or more intermediate frequency stages, and a power amplifier.
- the data modulation stage converts raw data into baseband signals in accordance with a particular wireless communication standard.
- the intermediate frequency stages mix the baseband signals with one or more local oscillations to produce RF signals.
- the power amplifier amplifies the RF signals prior to transmission via an antenna.
- the receiver is typically coupled to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage.
- the low noise amplifier receives, via the antenna, inbound RF signals and amplifies the inbound RF signals.
- the intermediate frequency stages mix the amplified RF signals with one or more local oscillations to convert the amplified RF signal into baseband signals or intermediate frequency (IF) signals.
- the filtering stage filters the baseband signals or the IF signals to attenuate unwanted out of band signals to produce filtered signals.
- the data recovery stage recovers raw data from the filtered signals in accordance with a particular wireless communication standard.
- 802.11a an extension of the 802.11 standard, provides up to 54 Mbps in the 5 GHz band.
- 802.11b another extension of the 802.11 standard, provides 11 Mbps transmission (with a fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band.
- 802.11g another extension of the 802.11 standard, provides 20+ Mbps in the 2.4 GHz band.
- 802.11n a new extension of 802.11, is being developed to address, among other thins, higher throughput and compatibility issues.
- An 802.11a compliant communications device may reside in the same WLAN as a device that is compliant with another 802.11 standard.
- legacy devices When devices that are compliant with multiple versions of the 802.11 standard are in the same WLAN, the devices that are compliant with older versions are considered to be legacy devices. To ensure backward compatibility with legacy devices, specific mechanisms must be employed to insure that the legacy devices know when a device that is compliant with a newer version of the standard is using a wireless channel to avoid a collision. New implementations of wireless communication protocol enable higher speed throughput, while also enabling legacy devices which might be only compliant with 802.11a or 802.11g to communicate in systems which are operating at higher speeds.
- OFDM orthogonal frequency division multiplexing
- OFDM is a frequency division multiplexing modulation technique for transmitting large amounts of digital data over a radio wave. OFDM works by spreading a single data stream over a band of sub-carriers, each of which is transmitted in parallel.
- 802.11a and 802.11g compliant devices only 52 of the 64 active sub-carriers are used.
- Four of the active sub-carriers are pilot sub-carriers that the system uses as a reference to disregard frequency or phase shifts of the signal during transmission. The remaining 48 sub-carriers provide separate wireless pathways for sending information in a parallel fashion.
- the 52 sub-carriers are modulated using binary or quadrature phase shift keying (BPSK/QPSK), 16 Quadrature Amplitude Modulation (QAM), or 64 QAM. Therefore, 802.11a and 802.11g compliant devices use sub-carriers ⁇ 26 to +26, with the 0-index sub-carrier set to 0 and 0-index sub-carrier being the carrier frequency. As such, only part of the 20 Mhz band-width supported by 802.11a and 802.11g is use.
- BPSK/QPSK binary or quadrature phase shift keying
- QAM 16 Quadrature Amplitude Modulation
- 64 QAM 64 QAM. Therefore, 802.11a and 802.11g compliant devices use sub-carriers ⁇ 26 to +26, with the 0-index sub-carrier set to 0 and 0-index sub-carrier being the carrier frequency. As such, only part of the 20 Mhz band-width supported by 802.11a and 802.11g is use.
- each data packet starts with a preamble which includes a short training sequence followed by a long training sequence.
- the short and long training sequences are used for synchronization between the sender and the receiver.
- the long training sequence of 802.11a and 802.11g is defined such that each of sub-carriers ⁇ 26 to +26, except for the sub-carrier 0 which is set to 0, has one BPSK consellation constellation point, either +1 or ⁇ 1.
- the inventive long trains training sequence with a minimum peak-to-average power ratio should be usable by legacy devices in order to estimate channel impulse response and to estimate carrier frequency offset between a transmitter and a receiver.
- a network device for generating an expanded long training sequence with a minimal peak-to-average ratio.
- the network device includes a signal generating circuit for generating the expanded long training sequence.
- the network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio.
- the expanded long training sequence and the optimal expanded long training sequence are stored on more than 52 sub-carriers.
- a network device for generating an expanded long training sequence with a minimal peak-to-average ratio.
- the network device includes a signal generating circuit for generating the expanded long training sequence.
- the network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio.
- the expanded long training sequence and the optimal expanded long training sequence are stored on more than 56 sub-carriers.
- a network device for generating an expanded long training sequence with a minimal peak-to-average ratio.
- the network device includes a signal generating circuit for generating the expanded long training sequence.
- the network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio.
- the expanded long training sequence and the optimal expanded long training sequence are stored on more than 63 sub-carriers.
- a method for generating an expanded long training sequence with a minimal peak-to-average ratio includes the steps of generating the expanded long training sequence and producing an optimal expanded long training sequence with a minimal peak-to-average ratio.
- the method also includes the step of storing the expanded long training sequence and the optimal expanded long training sequence on more than 52 sub-carriers.
- FIG. 1 illustrates a communication system that includes a plurality of base stations, a plurality of wireless communication devices and a network hardware component;
- FIG. 2 illustrates a schematic block diagram of a processor that is configured to generate an expanded long training sequence
- FIG. 3 is a schematic block diagram of a processor that is configured to process an expanded long training sequence
- FIG. 4 illustrates the long training sequence that is used in 56 active sub-carriers.
- FIG. 5 illustrates the long training sequence that is used in 63 active sub-carriers.
- FIG. 1 illustrates a communication system 10 that includes a plurality of base stations and/or access points 12 - 16 , a plurality of wireless communication devices 18 - 32 and a network hardware component 34 .
- Wireless communication devices 18 - 32 may be laptop computers 18 and 26 , personal digital assistant hosts 20 and 30 , personal computer 24 and 32 and/or cellular telephone 22 and 28 .
- Base stations or access points 12 - 16 are operably coupled to network hardware 34 via local area network connections 36 , 38 and 40 .
- Network hardware 34 for example a router, a switch, a bridge, a modem, or a system controller, provides a wide area network connection for communication system 10 .
- Each of base stations or access points 12 - 16 has an associated antenna or antenna array to communicate with the wireless communication devices in its area.
- the wireless communication devices register with a particular base station or access point 12 - 14 to receive services from communication system 10 .
- Each wireless communication device includes a built-in radio or is coupled to an associated radio.
- the radio includes at least one radio frequency (RF) transmitter and at least one RF receiver.
- RF radio frequency
- the present invention provides an expanded long training sequence of minimum peak-to-average power ratio and thereby decreases power back-off.
- the inventive expanded long training sequence may be used by 802.11a or 802.11g devices for estimating the channel impulse response and by a receiver for estimating the carrier frequency offset between the transmitter clock and receiver clock.
- the inventive expanded long training sequence is usable by 802.11a or 802.11g systems only if the values at sub-carriers ⁇ 26 to +26 are identical to those of the current long training sequence used in 802.11a and 802.11g systems.
- the invention utilized utilizes the same +1 or ⁇ 1 binary phase shift key (BPSK) encoding for each new sub-carrier and the long training sequence of 802.11a or 802.11g systems is maintained in the present invention.
- BPSK binary phase shift key
- the expanded long training sequence is implemented in 56 active sub-carriers including sub-carriers ⁇ 28 to +28 except the 0-index sub-carrier which is set to 0.
- an expanded long training sequence is implemented using 63 active sub-carriers, i.e., all of the active sub-carriers ( ⁇ 32 to +31) except the 0-index sub-carrier which is set to 0.
- orthogonality is not affected, since a 64-point orthogonal transform is used to generate the time-domain sequence.
- the output of an auto-correlator for computing the carrier frequency offset is not affected by the extra sub-carriers.
- FIG. 2 illustrates a schematic block diagram of a processor that is configured to generate an expanded long training sequence.
- Processor 200 includes a symbol mapper 202 , a frequency domain window 204 , a signal generating circuit 205 , an inverse fast Fourier transform (IFFT) module 206 , a serial to parallel to serial module 208 , a digital transmit filter and/or time domain window module 210 , and digital to analog converters (D/A) 212 .
- IFFT inverse fast Fourier transform
- D/A digital to analog converters
- symbol mapper 202 For an expanded long training sequence, symbol mapper 202 generates symbols from the coded bits for each of the 64 subcarriers of an OFDM sequence.
- Frequency domain window 204 applies a weighting factor on each subcarrier.
- Signal generating circuit 205 generates the expanded long training sequence and if 56 active sub-carriers are being used, signal generating circuit generates the expanded long training sequence and stores the expanded long training sequence in sub-carriers ⁇ 28 to +28 except the 0-index sub-carrier which is set to 0. If 63 active sub-carriers are being used, signal generating circuit generates the expanded long training sequence and stores the expanded long training sequence in sub-carriers ⁇ 32 to +32 i.e., all of the active sub-carriers ( ⁇ 32 to +31) except the 0-index sub-carrier which is set to 0.
- the inventive long training sequence is inputted into an Inverse Fourier Transform 206 .
- Inverse Fourier Transform 206 may be an inverse Fast Fourier Transform (IFFT) or Inverse Discrete Fourier Transform (IFDT) (IDFT).
- IFFT inverse Fast Fourier Transform
- IFDT Inverse Discrete Fourier Transform
- Inverse Fourier Transform 206 processes the long training sequence from signal generating circuit 205 and thereafter produces an optimal expanded long training sequence with a minimal peak-to-average power ratio.
- the optimal expanded long training sequence may be used in either 56 active sub-carriers or 63 active subscribers.
- Serial to parallel Parallel to serial module 208 converts the serial parallel time domain signals from the Inverse Fourier Transform 206 into parallel serial time domain signals that are subsequently filtered and converted to analog signals via the D/A.
- FIG. 3 is a schematic block diagram of a processor that is configured to process an expanded long training sequence.
- Processor 300 includes a symbol demapper 302 , a frequency domain window 304 , a fast Fourier transform (FFT) module 306 , a parallel to serial to parallel module 308 , a digital receiver filter and/or time domain window module 310 , and analog to digital converters (A/D) 312 .
- A/D converters 312 convert the sequence into digital signals that are filtered via digital receiver filter 310 .
- Parallel to serial Serial to parallel module 308 converts the digital time domain signals into a plurality of serial time domain signals.
- FFT module 306 converts the serial time domain signals into frequency domain signals.
- Frequency domain window 304 applies a weighting factor on each frequency domain signal.
- Symbol demapper 302 generates the coded bits from each of the 64 subcarriers of an OFDM sequence received from the frequency domain window.
- FIG. 4 illustrates the long training sequence with a minimum peak-to-average power ratio that is used in 56 active sub-carriers. Out of the 16 possibilities for the four new sub-carrier positions, the sequence illustrated in FIG. 4 has the minimum peak-to-average power ratio, i.e., a peak-to-average power ratio of 3.6 dB.
- FIG. 5 illustrates the long training sequence with a minimum peak-to-average power ratio that is used in 63 active sub-carriers. Out of the 2048 possibilities for the eleven new sub-carrier positions, the sequence illustrated in FIG. 5 has the minimum peak-to-average power ratio, i.e., a peak-to-average power ratio of 3.6 dB.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 52 sub-carriers.
Description
Notice: The following multiple reissue applications have been filed for the reissue of U.S. Pat. No. 7,990,842: (1) reissue application Ser. No. 16/686,468, filed Nov. 18, 2019 and reissued as U.S. Reissue Pat. No. RE48,629 and (2) the present reissue application, which is a reissue continuation of Ser. No. 16/686,468. The present application is a reissue continuation application of reissue application Ser. No. 16/686,468, filed Nov. 18, 2019, which was a reissue application for U.S. Pat. No. 7,990,842, which was a CONTINUATION of U.S. application Ser. No. 11/188,771, filed Jul. 26, 2005 and issued as U.S. Pat. No. 7,646,703. Said U.S. application Ser. No. 11/188,771 makes reference to, claims priority to and claims benefit from U.S. Application No. 60/591,104, filed Jul. 27, 2004; and U.S. Application No. 60/634,102, filed Dec. 8, 2004. The above-identified applications are hereby incorporated herein by reference in their entirety.
1. Field of the Invention
The present invention relates generally to wireless communication systems and more particularly to long training sequences of minimum peak-to-average power ratio which may be used by legacy systems.
2. Description of the Related Art
Each wireless communication device participating in wireless communications includes a built-in radio transceiver (i.e., receiver and transmitter) or is coupled to an associated radio transceiver. As is known to those skilled in the art, the transmitter typically includes a data modulation stage, one or more intermediate frequency stages, and a power amplifier. The data modulation stage converts raw data into baseband signals in accordance with a particular wireless communication standard. The intermediate frequency stages mix the baseband signals with one or more local oscillations to produce RF signals. The power amplifier amplifies the RF signals prior to transmission via an antenna.
The receiver is typically coupled to the antenna and includes a low noise amplifier, one or more intermediate frequency stages, a filtering stage, and a data recovery stage. The low noise amplifier receives, via the antenna, inbound RF signals and amplifies the inbound RF signals. The intermediate frequency stages mix the amplified RF signals with one or more local oscillations to convert the amplified RF signal into baseband signals or intermediate frequency (IF) signals. The filtering stage filters the baseband signals or the IF signals to attenuate unwanted out of band signals to produce filtered signals. The data recovery stage recovers raw data from the filtered signals in accordance with a particular wireless communication standard.
Different wireless devices in a wireless communication system may be compliant with different standards or different variations of the same standard. For example, 802.11a an extension of the 802.11 standard, provides up to 54 Mbps in the 5 GHz band. 802.11b, another extension of the 802.11 standard, provides 11 Mbps transmission (with a fallback to 5.5, 2 and 1 Mbps) in the 2.4 GHz band. 802.11g, another extension of the 802.11 standard, provides 20+ Mbps in the 2.4 GHz band. 802.11n, a new extension of 802.11, is being developed to address, among other thins, higher throughput and compatibility issues. An 802.11a compliant communications device may reside in the same WLAN as a device that is compliant with another 802.11 standard. When devices that are compliant with multiple versions of the 802.11 standard are in the same WLAN, the devices that are compliant with older versions are considered to be legacy devices. To ensure backward compatibility with legacy devices, specific mechanisms must be employed to insure that the legacy devices know when a device that is compliant with a newer version of the standard is using a wireless channel to avoid a collision. New implementations of wireless communication protocol enable higher speed throughput, while also enabling legacy devices which might be only compliant with 802.11a or 802.11g to communicate in systems which are operating at higher speeds.
Devices implementing both the 802.11a and 802.11g standards use an orthogonal frequency division multiplexing (OFDM) encoding scheme. OFDM is a frequency division multiplexing modulation technique for transmitting large amounts of digital data over a radio wave. OFDM works by spreading a single data stream over a band of sub-carriers, each of which is transmitted in parallel. In 802.11a and 802.11g compliant devices, only 52 of the 64 active sub-carriers are used. Four of the active sub-carriers are pilot sub-carriers that the system uses as a reference to disregard frequency or phase shifts of the signal during transmission. The remaining 48 sub-carriers provide separate wireless pathways for sending information in a parallel fashion. The 52 sub-carriers are modulated using binary or quadrature phase shift keying (BPSK/QPSK), 16 Quadrature Amplitude Modulation (QAM), or 64 QAM. Therefore, 802.11a and 802.11g compliant devices use sub-carriers −26 to +26, with the 0-index sub-carrier set to 0 and 0-index sub-carrier being the carrier frequency. As such, only part of the 20 Mhz band-width supported by 802.11a and 802.11g is use.
In 802.11a/802.11g, each data packet starts with a preamble which includes a short training sequence followed by a long training sequence. The short and long training sequences are used for synchronization between the sender and the receiver. The long training sequence of 802.11a and 802.11g is defined such that each of sub-carriers −26 to +26, except for the sub-carrier 0 which is set to 0, has one BPSK consellation constellation point, either +1 or −1.
There exists a need to create a long training sequence of minimum peak-to-average ratio that uses more sub-carriers without interfering with adjacent channels. The inventive long trains training sequence with a minimum peak-to-average power ratio should be usable by legacy devices in order to estimate channel impulse response and to estimate carrier frequency offset between a transmitter and a receiver.
According to one aspect of the invention, there is provided a network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 52 sub-carriers.
According to another aspect of the invention, there is provided a network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 56 sub-carriers.
According to another aspect of the invention, there is provided a network device for generating an expanded long training sequence with a minimal peak-to-average ratio. The network device includes a signal generating circuit for generating the expanded long training sequence. The network device also includes an Inverse Fourier Transform for processing the expanded long training sequence from the signal generating circuit and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The expanded long training sequence and the optimal expanded long training sequence are stored on more than 63 sub-carriers.
According to another aspect of the invention, there is provided a method for generating an expanded long training sequence with a minimal peak-to-average ratio. The method includes the steps of generating the expanded long training sequence and producing an optimal expanded long training sequence with a minimal peak-to-average ratio. The method also includes the step of storing the expanded long training sequence and the optimal expanded long training sequence on more than 52 sub-carriers.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention that together with the description serve to explain the principles of the invention, wherein:
Reference will now be made to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
The present invention provides an expanded long training sequence of minimum peak-to-average power ratio and thereby decreases power back-off. The inventive expanded long training sequence may be used by 802.11a or 802.11g devices for estimating the channel impulse response and by a receiver for estimating the carrier frequency offset between the transmitter clock and receiver clock. The inventive expanded long training sequence is usable by 802.11a or 802.11g systems only if the values at sub-carriers −26 to +26 are identical to those of the current long training sequence used in 802.11a and 802.11g systems. As such, the invention utilized utilizes the same +1 or −1 binary phase shift key (BPSK) encoding for each new sub-carrier and the long training sequence of 802.11a or 802.11g systems is maintained in the present invention.
In a first embodiment of the invention, the expanded long training sequence is implemented in 56 active sub-carriers including sub-carriers −28 to +28 except the 0-index sub-carrier which is set to 0. In another embodiment, an expanded long training sequence is implemented using 63 active sub-carriers, i.e., all of the active sub-carriers (−32 to +31) except the 0-index sub-carrier which is set to 0. In both embodiments of the invention, orthogonality is not affected, since a 64-point orthogonal transform is used to generate the time-domain sequence. Additionally, the output of an auto-correlator for computing the carrier frequency offset is not affected by the extra sub-carriers.
It should be appreciated by one skilled in art, that the present invention may be utilized in any device that implements the OFDM encoding scheme. The foregoing description has been directed to specific embodiments of this invention. It will be apparent, however, that other variations and modifications may be made to the described embodiments, with the attainment of some or all of their advantages. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.
Claims (47)
1. A wireless communications device, comprising:
a signal generator that generates an extended long training sequence; and
an Inverse Fourier Transformer operatively coupled to the signal generator,
wherein the Inverse Fourier Transformer processes the extended long training sequence from the signal generator and provides an optimal extended long training sequence with a minimal peak-to-average ratio, and
wherein at least the optimal extended long training sequence is carried by a greater number of subcarriers than a standard wireless networking configuration for an Orthogonal Frequency Division Multiplexing scheme.
2. The wireless communications device according to claim 1 , wherein at least the optimal extended long training sequence is carried by at least 56 active sub-carriers.
3. The wireless communications device according to claim 2 , wherein the at least 56 active sub-carriers correspond to at least indexed sub-carriers −28 to +28.
4. The wireless communications device according to claim 2 , wherein the optimal extended long training sequence has a minimum peak-to-average power ratio of 3.6 dB.
5. The wireless communications device according to claim 1 , wherein at least the optimal extended long training sequence is carried by at least 63 active sub-carriers.
6. The wireless communications device according to claim 5 , wherein the at least 63 active sub-carriers correspond to at least indexed sub-carriers −32 to +31.
7. The wireless communications device according to claim 5 , wherein the optimal extended long training sequence has a minimum peak-to-average power ratio of 3.6 dB.
8. The wireless communications device according to claim 1 , wherein a binary phase shift key encoding is used for each sub-carrier above the +26 indexed sub-carrier and below the −26 indexed sub-carrier.
9. The wireless communications device according to claim 1 , wherein the Inverse Fourier Transformer comprises at least one of the following: an Inverse Fast Fourier Transformer and an Inverse Discrete Fourier Transformer.
10. The wireless communications device according to claim 1 , wherein the wireless communications device comprises one or more of the following: a personal digital assistant, a laptop computer, a personal computer and a cellular phone.
11. The wireless communications device according to claim 1 , wherein the wireless communications device comprises a wireless mobile communications device.
12. The wireless communications device according to claim 1 , wherein the wireless communications device comprises one or more of the following: an access point and a base station.
13. The wireless communications device according to claim 1 , wherein the wireless communications device is backwards compatible with legacy wireless local area network devices.
14. The wireless communications device according to claim 1 , wherein the optimal extended long training sequence is longer than a long training sequence used by a legacy wireless local area network device in accordance with a legacy wireless networking protocol standard.
15. The wireless communications device according to claim 14 , wherein the legacy wireless local area network device uses the optimal extended long training sequence to estimate a carrier frequency offset even though the optimal extended long training sequence is longer than the long training sequence that is specified by the legacy wireless networking protocol standard.
16. The wireless communications device according to claim 15 , wherein the long training sequence that is specified by the legacy wireless networking protocol standard is maintained in the extended long training sequence or the optimal extended long training sequence.
17. The wireless communications device according to claim 1 , wherein the wireless communications device decreases power back-off.
18. The wireless communications device according to claim 1 , wherein the wireless communications device registers with one or more of the following: an access point and a base station.
19. The wireless communications device according to claim 1 , wherein the extended long training sequence or the optimal extended long training sequence is encoded using binary phase shift key encoding on each of the subcarriers.
20. The wireless communications device according to claim 1 , comprising:
a symbol mapper operatively coupled to the signal generator, wherein the symbol mapper receives coded bits and generates symbols for each of 64 subcarriers of an Orthogonal Frequency Division Multiplexing sequence.
21. A wireless communications device, comprising:
a signal generator that generates an extended long training sequence; and
an Inverse Fourier Transformer operatively coupled to the signal generator,
wherein the Inverse Fourier Transformer processes the extended long training sequence from the signal generator and provides an optimal extended long training sequence with a minimal peak-to-average ratio, and
wherein at least the optimal extended long training sequence is carried by a greater number of subcarriers than a standard wireless networking configuration for an Orthogonal Frequency Division Multiplexing scheme, and
wherein the optimal extended long training sequence is carried by exactly 56 active sub-carriers.
22. The wireless communications device according to claim 21, wherein the optimal extended long training sequence has a minimum peak-to-average power ratio of 3.6 dB.
23. The wireless communications device according to claim 21, wherein a binary phase shift key encoding is used for each sub-carrier above the +26 indexed sub-carrier and below the −26 indexed sub-carrier.
24. The wireless communications device according to claim 21, wherein the Inverse Fourier Transformer comprises an Inverse Fast Fourier Transformer or an Inverse Discrete Fourier Transformer.
25. The wireless communications device according to claim 21, wherein the wireless communications device comprises one or more of the following: a personal digital assistant, a laptop computer, a personal computer, a processor, and a cellular phone.
26. The wireless communications device according to claim 21, wherein the wireless communications device comprises a wireless mobile communications device.
27. The wireless communications device according to claim 21, wherein the wireless communications device comprises one or more of the following: an access point and a base station.
28. The wireless communications device according to claim 21, wherein the wireless communications device is backwards compatible with legacy wireless local area network devices.
29. The wireless communications device according to claim 21, wherein the optimal extended long training sequence is longer than a long training sequence used by a legacy wireless local area network device in accordance with a legacy wireless networking protocol standard.
30. The wireless communications device according to claim 29, wherein the legacy wireless local area network device uses the optimal extended long training sequence to estimate a carrier frequency offset even though the optimal extended long training sequence is longer than the long training sequence that is specified by the legacy wireless networking protocol standard.
31. The wireless communications device according to claim 30, wherein the long training sequence that is specified by the legacy wireless networking protocol standard is maintained in the extended long training sequence or the optimal extended long training sequence.
32. The wireless communications device according to claim 29, wherein the legacy wireless networking protocol standard for the Orthogonal Frequency Division Multiplexing scheme corresponds to exactly 52 active subcarriers.
33. The wireless communications device according to claim 32, wherein, for a long training sequence of the legacy wireless networking protocol standard, the indexed sub-carrier 0 is set to zero and encodings for the indexed sub-carriers −26 to +26 excluding the indexed sub-carrier 0 are:
34. The wireless communications device according to claim 33, wherein:
the Inverse Fourier Transformer comprises an Inverse Fast Fourier Transformer or an Inverse Discrete Fourier Transformer;
the wireless communications device comprises one or more of the following: a personal digital assistant, a laptop computer, a personal computer, a cellular phone, an access point, a processor, and a base station;
the wireless communications device is backwards compatible with the legacy wireless local area network device;
the legacy wireless local area network device uses the optimal extended long training sequence to estimate a carrier frequency offset even though the optimal extended long training sequence is longer than the long training sequence that is specified by the legacy wireless networking protocol standard;
the wireless communications device decreases power back-off;
the extended long training sequence or the optimal extended long training sequence is encoded using binary phase shift key encoding on each of the 56 active subcarriers; and
the wireless communications device further comprises a symbol mapper operatively coupled to the signal generator, wherein the symbol mapper receives coded bits and generates symbols for each of 64 subcarriers of an Orthogonal Frequency Division Multiplexing sequence.
35. The wireless communications device according to claim 21, wherein the wireless communications device decreases power back-off.
36. The wireless communications device according to claim 21, wherein the wireless communications device registers with one or more of the following: an access point and a base station.
37. The wireless communications device according to claim 21, wherein the extended long training sequence or the optimal extended long training sequence is encoded using binary phase shift key encoding on each of the 56 active subcarriers.
38. The wireless communications device according to claim 21, comprising:
a symbol mapper operatively coupled to the signal generator, wherein the symbol mapper receives coded bits and generates symbols for each of 64 subcarriers of an Orthogonal Frequency Division Multiplexing sequence.
39. The wireless communications device according to claim 21, wherein at least one output of the Inverse Fourier Transformer is operatively coupled to at least one digital-to-analog converter.
40. The wireless communications device according to claim 21, wherein at least one output of the Inverse Fourier Transformer is operatively coupled to multiple digital-to-analog converters.
41. The wireless communications device according to claim 21, wherein an input of the signal generator is operatively coupled to a frequency-domain windower.
42. The wireless communications device according to claim 21, wherein an output of the Inverse Fourier Transformer is operatively coupled to a time-domain windower.
43. The wireless communications device according to claim 42, wherein an output of the time-domain windower is operatively coupled to at least one digital-to-analog converter.
44. The wireless communication device according to claim 21, wherein an output of the Inverse Fourier Transformer is operatively coupled to a digital transmit filter.
45. The wireless communications device according to claim 21, wherein an output of the Inverse Fourier Transformer is operatively coupled to a parallel-to-serial convertor.
46. The wireless communications device according to claim 21, wherein the optimal extended long training sequence is represented by encodings for indexed sub-carriers −28 to +28, excluding indexed sub-carrier 0 which is set to zero.
47. The wireless communications device according to claim 21, wherein the wireless communications device is configured to convert parallel frequency-domain signals into serial time-domain signals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/368,156 USRE49509E1 (en) | 2004-07-27 | 2021-07-06 | Backward-compatible long training sequences for wireless communication networks |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59110404P | 2004-07-27 | 2004-07-27 | |
US63410204P | 2004-12-08 | 2004-12-08 | |
US11/188,771 US7646703B2 (en) | 2004-07-27 | 2005-07-26 | Backward-compatible long training sequences for wireless communication networks |
US12/684,650 US7990842B2 (en) | 2004-07-27 | 2010-01-08 | Backward-compatible long training sequences for wireless communication networks |
US16/686,468 USRE48629E1 (en) | 2004-07-27 | 2019-11-18 | Backward-compatible long training sequences for wireless communication networks |
US17/368,156 USRE49509E1 (en) | 2004-07-27 | 2021-07-06 | Backward-compatible long training sequences for wireless communication networks |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/684,650 Reissue US7990842B2 (en) | 2004-07-27 | 2010-01-08 | Backward-compatible long training sequences for wireless communication networks |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE49509E1 true USRE49509E1 (en) | 2023-04-25 |
Family
ID=36574175
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/188,771 Active 2028-01-15 US7646703B2 (en) | 2004-07-27 | 2005-07-26 | Backward-compatible long training sequences for wireless communication networks |
US12/684,650 Ceased US7990842B2 (en) | 2004-07-27 | 2010-01-08 | Backward-compatible long training sequences for wireless communication networks |
US13/196,082 Active US8477594B2 (en) | 2004-07-27 | 2011-08-02 | Backward-compatible long training sequences for wireless communication networks |
US16/686,468 Active USRE48629E1 (en) | 2004-07-27 | 2019-11-18 | Backward-compatible long training sequences for wireless communication networks |
US17/368,156 Active USRE49509E1 (en) | 2004-07-27 | 2021-07-06 | Backward-compatible long training sequences for wireless communication networks |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/188,771 Active 2028-01-15 US7646703B2 (en) | 2004-07-27 | 2005-07-26 | Backward-compatible long training sequences for wireless communication networks |
US12/684,650 Ceased US7990842B2 (en) | 2004-07-27 | 2010-01-08 | Backward-compatible long training sequences for wireless communication networks |
US13/196,082 Active US8477594B2 (en) | 2004-07-27 | 2011-08-02 | Backward-compatible long training sequences for wireless communication networks |
US16/686,468 Active USRE48629E1 (en) | 2004-07-27 | 2019-11-18 | Backward-compatible long training sequences for wireless communication networks |
Country Status (1)
Country | Link |
---|---|
US (5) | US7646703B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7444134B2 (en) * | 2004-02-13 | 2008-10-28 | Broadcom Corporation | Device and method for transmitting long training sequence for wireless communications |
US7646703B2 (en) | 2004-07-27 | 2010-01-12 | Broadcom Corporation | Backward-compatible long training sequences for wireless communication networks |
EP2078400B1 (en) * | 2006-11-02 | 2017-09-27 | Telefonaktiebolaget LM Ericsson (publ) | Dft spread ofdm |
US8068458B2 (en) * | 2008-08-19 | 2011-11-29 | Telefonaktiebolaget L M Ericson (Publ) | Random access preamble selection |
US8170577B2 (en) | 2008-08-22 | 2012-05-01 | Telcom Ventures, Llc | Method and system enabling use of white space radio spectrum using digital broadcast signals |
US7920599B1 (en) * | 2010-02-03 | 2011-04-05 | Anna University | Methods and systems for synchronizing wireless transmission of data packets |
CN102098076B (en) * | 2011-02-25 | 2014-03-12 | 华为技术有限公司 | Method for eliminating neighboring cells interruption, device thereof and receiver |
CN102170701B (en) * | 2011-05-04 | 2016-08-31 | 中兴通讯股份有限公司 | The method of a kind of carrier resource distribution and base station |
KR102026898B1 (en) * | 2012-06-26 | 2019-09-30 | 삼성전자주식회사 | Method and apparatus for secure communication between transmitter and receiver, method and apparatus for determining the secure information |
Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5479444A (en) | 1993-03-09 | 1995-12-26 | Nokia Mobile Phones Ltd. | Training sequence in digital cellular radio telephone system |
US5914933A (en) | 1996-03-08 | 1999-06-22 | Lucent Technologies Inc. | Clustered OFDM communication system |
US6438173B1 (en) | 1997-08-05 | 2002-08-20 | Infineon Technologies Ag | Multicarrier transmission system for irregular transmission of data blocks |
US20030043887A1 (en) | 2001-04-03 | 2003-03-06 | Hudson John E. | Communication system and methods of estimating channel impulse responses therein |
US20040008803A1 (en) | 2002-04-23 | 2004-01-15 | Matteo Aldrovandi | Method and device for channel estimation in digital radio communication systems |
US6696941B2 (en) | 2001-09-04 | 2004-02-24 | Agere Systems Inc. | Theft alarm in mobile device |
WO2004030265A1 (en) | 2002-09-26 | 2004-04-08 | Kabushiki Kaisha Toshiba | Channel estimation for ofdm using orthogonal training sequences |
US20040093545A1 (en) | 2001-08-23 | 2004-05-13 | Amir Khandani | Method and apparatus for scrambling based peak-to-average power ratio reduction without side information |
US20040264585A1 (en) | 2003-06-25 | 2004-12-30 | Nokia Corporation | Signal constellations for multi-carrier systems |
US6858930B2 (en) | 2002-10-07 | 2005-02-22 | Lsi Logic Corporation | Multi chip module |
US6941156B2 (en) | 2001-06-26 | 2005-09-06 | Agere Systems Inc. | Automatic handoff for wireless piconet multimode cell phone |
US20050233709A1 (en) | 2003-04-10 | 2005-10-20 | Airgo Networks, Inc. | Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices |
US6963129B1 (en) | 2003-06-18 | 2005-11-08 | Lsi Logic Corporation | Multi-chip package having a contiguous heat spreader assembly |
US20050265219A1 (en) | 2004-05-11 | 2005-12-01 | Texas Instruments Incorporated | Orthogonal frequency division multiplex (OFDM) packet detect unit, method of detecting an OFDM packet and OFDM receiver employing the same |
US20050286474A1 (en) | 2004-04-05 | 2005-12-29 | Airgo Networks, Inc. | Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices |
US20060002361A1 (en) | 2004-06-22 | 2006-01-05 | Webster Mark A | Packet processing systems and methods |
US7039435B2 (en) | 2001-09-28 | 2006-05-02 | Agere Systems Inc. | Proximity regulation system for use with a portable cell phone and a method of operation thereof |
US20060120447A1 (en) | 2004-07-27 | 2006-06-08 | Broadcom Croporation | Backward-compatible long training sequences for wireless communication networks |
US20060209892A1 (en) | 2005-03-15 | 2006-09-21 | Radiospire Networks, Inc. | System, method and apparatus for wirelessly providing a display data channel between a generalized content source and a generalized content sink |
US20060209890A1 (en) | 2005-03-15 | 2006-09-21 | Radiospire Networks, Inc. | System, method and apparatus for placing training information within a digital media frame for wireless transmission |
US20070002749A1 (en) | 2005-06-29 | 2007-01-04 | Lakshmipathi Sondur | Multicarrier receiver and method for time-delay compensation in a multi-user uplink |
US20070047671A1 (en) | 2005-08-25 | 2007-03-01 | Mediatek Inc. | Frequency tracking and channel estimation in orthogonal frequency division multiplexing systems |
US20070060073A1 (en) | 2003-06-30 | 2007-03-15 | Agere Systems Inc. | Method and apparatus for communicating symbols in a multiple input multiple output communication system using interleaved subcarriers across a plurality of antennas |
US7203245B1 (en) | 2003-03-31 | 2007-04-10 | 3Com Corporation | Symbol boundary detector method and device for OFDM systems |
US7254171B2 (en) | 2000-01-20 | 2007-08-07 | Nortel Networks Limited | Equaliser for digital communications systems and method of equalisation |
US7319889B2 (en) | 2003-06-17 | 2008-01-15 | Agere Systems Inc. | System and method for conserving battery power in a mobile station |
US7324605B2 (en) | 2004-01-12 | 2008-01-29 | Intel Corporation | High-throughput multicarrier communication systems and methods for exchanging channel state information |
US7349436B2 (en) | 2003-09-30 | 2008-03-25 | Intel Corporation | Systems and methods for high-throughput wideband wireless local area network communications |
US7392015B1 (en) | 2003-02-14 | 2008-06-24 | Calamp Corp. | Calibration methods and structures in wireless communications systems |
US7433418B1 (en) | 2001-09-28 | 2008-10-07 | Arraycomm, Llc | Method and apparatus for efficient storage of training sequences for peak to average power constrained modulation formats |
US7444134B2 (en) | 2004-02-13 | 2008-10-28 | Broadcom Corporation | Device and method for transmitting long training sequence for wireless communications |
US7453793B1 (en) | 2003-04-10 | 2008-11-18 | Qualcomm Incorporated | Channel estimation for OFDM communication systems including IEEE 802.11A and extended rate systems |
US7564914B2 (en) | 2004-12-14 | 2009-07-21 | Broadcom Corporation | Method and system for frame formats for MIMO channel measurement exchange |
US7742388B2 (en) | 2004-07-20 | 2010-06-22 | Daniel Shearer | Packet generation systems and methods |
US8396072B2 (en) | 2011-02-21 | 2013-03-12 | Renesas Mobile Corporation | Method and apparatus for channel traffic congestion avoidance in a mobile communication system |
US8416862B2 (en) | 2005-04-21 | 2013-04-09 | Broadcom Corporation | Efficient feedback of channel information in a closed loop beamforming wireless communication system |
US8792432B2 (en) | 2011-02-14 | 2014-07-29 | Broadcom Corporation | Prioritizing RACH message contents |
-
2005
- 2005-07-26 US US11/188,771 patent/US7646703B2/en active Active
-
2010
- 2010-01-08 US US12/684,650 patent/US7990842B2/en not_active Ceased
-
2011
- 2011-08-02 US US13/196,082 patent/US8477594B2/en active Active
-
2019
- 2019-11-18 US US16/686,468 patent/USRE48629E1/en active Active
-
2021
- 2021-07-06 US US17/368,156 patent/USRE49509E1/en active Active
Patent Citations (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5479444A (en) | 1993-03-09 | 1995-12-26 | Nokia Mobile Phones Ltd. | Training sequence in digital cellular radio telephone system |
US5914933A (en) | 1996-03-08 | 1999-06-22 | Lucent Technologies Inc. | Clustered OFDM communication system |
US6438173B1 (en) | 1997-08-05 | 2002-08-20 | Infineon Technologies Ag | Multicarrier transmission system for irregular transmission of data blocks |
US7254171B2 (en) | 2000-01-20 | 2007-08-07 | Nortel Networks Limited | Equaliser for digital communications systems and method of equalisation |
US20030043887A1 (en) | 2001-04-03 | 2003-03-06 | Hudson John E. | Communication system and methods of estimating channel impulse responses therein |
US6941156B2 (en) | 2001-06-26 | 2005-09-06 | Agere Systems Inc. | Automatic handoff for wireless piconet multimode cell phone |
US7318185B2 (en) | 2001-08-23 | 2008-01-08 | Nortel Networks Limited | Method and apparatus for scrambling based peak-to-average power ratio reduction without side information |
US20040093545A1 (en) | 2001-08-23 | 2004-05-13 | Amir Khandani | Method and apparatus for scrambling based peak-to-average power ratio reduction without side information |
US6696941B2 (en) | 2001-09-04 | 2004-02-24 | Agere Systems Inc. | Theft alarm in mobile device |
US7433418B1 (en) | 2001-09-28 | 2008-10-07 | Arraycomm, Llc | Method and apparatus for efficient storage of training sequences for peak to average power constrained modulation formats |
US7039435B2 (en) | 2001-09-28 | 2006-05-02 | Agere Systems Inc. | Proximity regulation system for use with a portable cell phone and a method of operation thereof |
US20040008803A1 (en) | 2002-04-23 | 2004-01-15 | Matteo Aldrovandi | Method and device for channel estimation in digital radio communication systems |
WO2004030265A1 (en) | 2002-09-26 | 2004-04-08 | Kabushiki Kaisha Toshiba | Channel estimation for ofdm using orthogonal training sequences |
US6858930B2 (en) | 2002-10-07 | 2005-02-22 | Lsi Logic Corporation | Multi chip module |
US7392015B1 (en) | 2003-02-14 | 2008-06-24 | Calamp Corp. | Calibration methods and structures in wireless communications systems |
US7203245B1 (en) | 2003-03-31 | 2007-04-10 | 3Com Corporation | Symbol boundary detector method and device for OFDM systems |
US20050233709A1 (en) | 2003-04-10 | 2005-10-20 | Airgo Networks, Inc. | Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices |
US7453793B1 (en) | 2003-04-10 | 2008-11-18 | Qualcomm Incorporated | Channel estimation for OFDM communication systems including IEEE 802.11A and extended rate systems |
US8204554B2 (en) | 2003-06-17 | 2012-06-19 | Agere Systems Inc. | System and method for conserving battery power in a mobile station |
US7319889B2 (en) | 2003-06-17 | 2008-01-15 | Agere Systems Inc. | System and method for conserving battery power in a mobile station |
US6963129B1 (en) | 2003-06-18 | 2005-11-08 | Lsi Logic Corporation | Multi-chip package having a contiguous heat spreader assembly |
US7394865B2 (en) | 2003-06-25 | 2008-07-01 | Nokia Corporation | Signal constellations for multi-carrier systems |
US20040264585A1 (en) | 2003-06-25 | 2004-12-30 | Nokia Corporation | Signal constellations for multi-carrier systems |
US20070060073A1 (en) | 2003-06-30 | 2007-03-15 | Agere Systems Inc. | Method and apparatus for communicating symbols in a multiple input multiple output communication system using interleaved subcarriers across a plurality of antennas |
US7349436B2 (en) | 2003-09-30 | 2008-03-25 | Intel Corporation | Systems and methods for high-throughput wideband wireless local area network communications |
US7324605B2 (en) | 2004-01-12 | 2008-01-29 | Intel Corporation | High-throughput multicarrier communication systems and methods for exchanging channel state information |
US7444134B2 (en) | 2004-02-13 | 2008-10-28 | Broadcom Corporation | Device and method for transmitting long training sequence for wireless communications |
US7599332B2 (en) | 2004-04-05 | 2009-10-06 | Qualcomm Incorporated | Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices |
US20050286474A1 (en) | 2004-04-05 | 2005-12-29 | Airgo Networks, Inc. | Modified preamble structure for IEEE 802.11a extensions to allow for coexistence and interoperability between 802.11a devices and higher data rate, MIMO or otherwise extended devices |
US20050265219A1 (en) | 2004-05-11 | 2005-12-01 | Texas Instruments Incorporated | Orthogonal frequency division multiplex (OFDM) packet detect unit, method of detecting an OFDM packet and OFDM receiver employing the same |
US7539260B2 (en) | 2004-05-27 | 2009-05-26 | Qualcomm Incorporated | Detecting the number of transmit antennas in wireless communication systems |
US8457232B2 (en) | 2004-05-27 | 2013-06-04 | Qualcomm Incorporated | Detecting the number of transmit antennas in wireless communication systems |
US20060002361A1 (en) | 2004-06-22 | 2006-01-05 | Webster Mark A | Packet processing systems and methods |
US7742388B2 (en) | 2004-07-20 | 2010-06-22 | Daniel Shearer | Packet generation systems and methods |
US7646703B2 (en) | 2004-07-27 | 2010-01-12 | Broadcom Corporation | Backward-compatible long training sequences for wireless communication networks |
US7990842B2 (en) | 2004-07-27 | 2011-08-02 | Broadcom Corporation | Backward-compatible long training sequences for wireless communication networks |
USRE48629E1 (en) | 2004-07-27 | 2021-07-06 | Bell Northern Research, Llc | Backward-compatible long training sequences for wireless communication networks |
US8477594B2 (en) | 2004-07-27 | 2013-07-02 | Broadcom Corporation | Backward-compatible long training sequences for wireless communication networks |
US20100110876A1 (en) | 2004-07-27 | 2010-05-06 | Broadcom Corporation | Backward-compatible long training sequences for wireless communication networks |
US20060120447A1 (en) | 2004-07-27 | 2006-06-08 | Broadcom Croporation | Backward-compatible long training sequences for wireless communication networks |
US7957450B2 (en) | 2004-12-14 | 2011-06-07 | Broadcom Corporation | Method and system for frame formats for MIMO channel measurement exchange |
US7564914B2 (en) | 2004-12-14 | 2009-07-21 | Broadcom Corporation | Method and system for frame formats for MIMO channel measurement exchange |
US20060209892A1 (en) | 2005-03-15 | 2006-09-21 | Radiospire Networks, Inc. | System, method and apparatus for wirelessly providing a display data channel between a generalized content source and a generalized content sink |
US20060209890A1 (en) | 2005-03-15 | 2006-09-21 | Radiospire Networks, Inc. | System, method and apparatus for placing training information within a digital media frame for wireless transmission |
US8416862B2 (en) | 2005-04-21 | 2013-04-09 | Broadcom Corporation | Efficient feedback of channel information in a closed loop beamforming wireless communication system |
US20070002749A1 (en) | 2005-06-29 | 2007-01-04 | Lakshmipathi Sondur | Multicarrier receiver and method for time-delay compensation in a multi-user uplink |
US20070047671A1 (en) | 2005-08-25 | 2007-03-01 | Mediatek Inc. | Frequency tracking and channel estimation in orthogonal frequency division multiplexing systems |
US8792432B2 (en) | 2011-02-14 | 2014-07-29 | Broadcom Corporation | Prioritizing RACH message contents |
US8396072B2 (en) | 2011-02-21 | 2013-03-12 | Renesas Mobile Corporation | Method and apparatus for channel traffic congestion avoidance in a mobile communication system |
Non-Patent Citations (11)
Title |
---|
"Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHZ Band," IEEE Std 802. 11a-1999 (Supplement to IEEE Std 802.11-1999), Dec. 30, 1999, pp. 1-90, IEEE, United States. |
Abhayawardhana, V. S. et al., "Frequency Scaled Time Domain Equalization for OFDM in Broadband Fixed Wireless Access Channels," 2002 IEEE Wireless Communications and Networking Conference Record, Mar. 21, 2002, pp. 67-72, IEEE, Orland, United States. |
Decision: Settlement Prior to Institution of Trial; IPR 2019-01174; dated Dec. 11, 2019 (4 pages). |
Decision: Settlement Prior to Institution of Trial; IPR 2019-01345; dated Dec. 11, 2019 (3 pages). |
Decision: Settlement Prior to Institution of Trial; IPR 2019-01437; dated Dec. 11, 2019 (8 pages). |
Liebetreu, John et al., "Modifications to OFDM FFT-256 mode for supporting mobile operation," IEEE C802.16e-03/12, Mar. 3, 2003, pp. 0-8, IEEE. |
Ogawa, Yasutaka et al. "A MIMO-OFDM System for High-Speed Transmission," 2003 IEEE 58th Vehicular Technology Conference, Oct. 9, 2003, pp. 493-497, IEEE, Orland, United States. |
Order Granting Joint Morion to Dismiss; Case No. 18-CV-1785-CAB-BLM; dated Aug. 5, 2019 (2 pages). |
Order Granting Joint Motion for Dismissal as to Counts 3 and 6 of BNR's Amended Complaint and Counts VI, VII, X, and XI of ZTE Corporation, ZTE (TX), Inc., and ZTE (USA) Inc.'s Counterclaims; C.A. No. 3:18-cv-1786-CAB-BLM; dated Oct. 4, 2019 (1 page). |
Order Granting Joint Motion for Dismissal as to Counts III and IV of BNR's Complaint and Partial Dismissal of Counts I and II of Coolpad's Counterclaims; C.A. No. 3:18-cv-1783-CAB-BLM; dated Oct. 7, 2019 (1 page). |
Order Granting Joint Motion for Dismissal as to Counts III and VI of BNR's Second Amended Complaint; C.A. No. 3:18-cv-1784-CAB-BLM; dated Oct. 21, 2019 (1 page). |
Also Published As
Publication number | Publication date |
---|---|
US20060120447A1 (en) | 2006-06-08 |
US7646703B2 (en) | 2010-01-12 |
US20110280117A1 (en) | 2011-11-17 |
US7990842B2 (en) | 2011-08-02 |
US8477594B2 (en) | 2013-07-02 |
US20100110876A1 (en) | 2010-05-06 |
USRE48629E1 (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49509E1 (en) | Backward-compatible long training sequences for wireless communication networks | |
US9264275B2 (en) | Method and apparatus for wide bandwidth mixed-mode wireless communications | |
US8014437B2 (en) | Low-rate long-range mode for OFDM wireless LAN | |
JP4323669B2 (en) | Data transmission apparatus and data transmission method | |
CN109088840B (en) | Information transmission method and device | |
KR100532422B1 (en) | Orthogonal Frequency Division Multiplexor transceiving unit of wireless Local Area Network system providing for long-distance communication by double symbol transmitting in several channels and transceiving method thereof | |
TW200533105A (en) | Method for signaling information by modifying modulation constellations | |
EP1714417B1 (en) | Adaptive channelization scheme for high throughput multicarrier systems | |
KR102397927B1 (en) | Method and apparatus for peak to average power reduction in wireless communication systems using spectral mask filling | |
CN108289069A (en) | A kind of transmission method of reference signal, transmitting terminal and receiving terminal | |
JP2002330467A (en) | Wireless transmitter and wireless communication method | |
US7593478B2 (en) | Low peak to average ratio search algorithm | |
US20140334285A1 (en) | Base station apparatus for decreasing amount of transmission data with cloud radio access network | |
CN107634824B (en) | Method and device for transmitting signals | |
US20240380550A1 (en) | Data processing method and apparatus, and related device | |
US20230308329A1 (en) | Communication apparatus and communication method | |
CN112822137B (en) | Signal transmission method and device | |
JP2000174725A (en) | Transmission/reception device | |
CN116800574A (en) | Safe LTF sequence determining method and related device | |
Dhuheir et al. | Implementation of Polar Codes in 5G Systems with Different Waveform Modulations by Using USRP | |
CN116545596A (en) | Data processing method and device and related equipment | |
Harsule et al. | OFDM and MIMO Technology Strengthening the Next Generation of Wireless Networks | |
GB2430844A (en) | Air interface technique for E-UTRA transmissions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |