USRE44228E1 - Switching mode power supply and driving method - Google Patents
Switching mode power supply and driving method Download PDFInfo
- Publication number
- USRE44228E1 USRE44228E1 US13/410,228 US201213410228A USRE44228E US RE44228 E1 USRE44228 E1 US RE44228E1 US 201213410228 A US201213410228 A US 201213410228A US RE44228 E USRE44228 E US RE44228E
- Authority
- US
- United States
- Prior art keywords
- level
- voltage
- signal
- pulse
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000005070 sampling Methods 0.000 claims abstract description 210
- 238000001514 detection method Methods 0.000 claims abstract description 6
- 239000003990 capacitor Substances 0.000 claims description 31
- 230000002459 sustained effect Effects 0.000 claims 6
- 230000001276 controlling effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33515—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
Definitions
- the driving method includes (a) setting a sampling period; (b) sampling a voltage level of the first voltage that is generated by distributing a voltage that is applied to both ends of the inductor using a plurality of pulse strings including a first pulse string having a plurality of pulses; and (c) generating a switching control signal that controls the switching transistor to turn on/off using a voltage level that is sampled with a last pulse of the first pulse strings within a sampling period as a feedback voltage among voltage levels that are sampled at step (b).
- FIG. 6 is a diagram illustrating a waveform of a feedback signal, outputted by the feedback signal generator according to an embodiment of the present invention.
- the signal delay unit 508 can receive V GS and output it with a predetermined delay.
- the sampling unit 518 can include first and second sample and hold latches and first and second AND gates.
- the first and second AND gate can receive an output signal of the non-inverting output terminal Q of the SR latch 514 and the first and the second sampling pulse strings that are output from the sampling pulse string generator 516 , respectively.
- the first and second AND gates can perform an AND operation on their inputted signals.
- the first and second AND gates output a timing signal to corresponding clock signal input terminals of the first and second sample and hold latches for controlling a sampling operation time.
- the first and second sample and hold latches sample a Vwinding′ signal that is output from the buffer 504 and hold the sampled Vwinding′ signal until a next timing signal is input.
- the first and second sample and hold latches erase the Vwinding′ signal previous sampled and start holding the new Vwinding′ signal when a new sampling operation is started.
- the output signal of the pulse converter 512 changes from high to low, the input signal at terminal s changes and thus the output signal of the non-inverting output terminal Q of the SR latch 514 changes from low to high.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
where nPRIMARY is a number of windings of the primary coil L1, nSEC is a number of windings of the secondary coil L2, Vo is the output voltage and Vo′ is the voltage that is reflected from the secondary coil L2 to the primary coil L1.
where nVCC is a number of windings of the coil L3 and Vo″ is the voltage reflected from the coil L2 to the primary coil L1. The Vwinding voltage is proportional to the reflected voltage Vo″, and the winding ratio among the coils L1, L2 and L3 is predetermined. A precise value of the voltage Vo is shown at time T7, and the voltage Vo is proportional to the Vwinding voltage through Equations (1)-(2).
Claims (65)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/410,228 USRE44228E1 (en) | 2006-10-13 | 2012-03-01 | Switching mode power supply and driving method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060099771A KR101248605B1 (en) | 2006-10-13 | 2006-10-13 | Switching mode power supply and the driving method thereof |
KR10-2006-0099771 | 2006-10-13 | ||
US11/807,460 US7672146B2 (en) | 2006-10-13 | 2007-05-29 | Switching mode power supply and driving method |
US13/410,228 USRE44228E1 (en) | 2006-10-13 | 2012-03-01 | Switching mode power supply and driving method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/807,460 Reissue US7672146B2 (en) | 2006-10-13 | 2007-05-29 | Switching mode power supply and driving method |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE44228E1 true USRE44228E1 (en) | 2013-05-21 |
Family
ID=39302919
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/807,460 Ceased US7672146B2 (en) | 2006-10-13 | 2007-05-29 | Switching mode power supply and driving method |
US13/410,228 Active 2028-06-14 USRE44228E1 (en) | 2006-10-13 | 2012-03-01 | Switching mode power supply and driving method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/807,460 Ceased US7672146B2 (en) | 2006-10-13 | 2007-05-29 | Switching mode power supply and driving method |
Country Status (2)
Country | Link |
---|---|
US (2) | US7672146B2 (en) |
KR (1) | KR101248605B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9113521B2 (en) | 2013-05-29 | 2015-08-18 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US9247608B2 (en) | 2013-11-08 | 2016-01-26 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US9565731B2 (en) | 2015-05-01 | 2017-02-07 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US9655180B2 (en) | 2015-06-19 | 2017-05-16 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10098196B2 (en) | 2016-09-16 | 2018-10-09 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source having different operating modes |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101248605B1 (en) * | 2006-10-13 | 2013-03-28 | 페어차일드코리아반도체 주식회사 | Switching mode power supply and the driving method thereof |
EP2110938B1 (en) * | 2008-04-14 | 2018-08-29 | Power Systems Technologies GmbH | Control circuit on the primary side of an electronic power converter having a transformer without auxiliary winding with a regulation based on the secondary side current flow duration |
US8159837B2 (en) * | 2008-10-27 | 2012-04-17 | International Business Machines Corporation | Integrated bias and standby power supply circuit |
JP5581808B2 (en) * | 2010-05-27 | 2014-09-03 | サンケン電気株式会社 | DC power supply |
JP5828273B2 (en) | 2011-12-01 | 2015-12-02 | 富士電機株式会社 | Switching power supply |
JP5927877B2 (en) * | 2011-12-06 | 2016-06-01 | 富士電機株式会社 | Switching power supply |
CN102655378B (en) * | 2012-05-08 | 2014-06-04 | 成都芯源系统有限公司 | Isolated voltage converter circuit and control method thereof |
CN102801329B (en) * | 2012-08-09 | 2015-05-13 | 矽力杰半导体技术(杭州)有限公司 | High-efficiency and low-loss AC/DC (Alternating Current/Direct Current) power supply circuit and control method thereof |
JP5983172B2 (en) * | 2012-08-10 | 2016-08-31 | 富士電機株式会社 | Switching power supply device and switching power supply control circuit |
CN103107688B (en) | 2013-02-25 | 2016-12-28 | 昂宝电子(上海)有限公司 | The system and method for the live signal sampling in power converting system |
US9564820B2 (en) * | 2013-03-15 | 2017-02-07 | Linear Technology Corporation | Methods and systems for control of DC-DC converters |
CN103344816B (en) * | 2013-07-10 | 2015-09-23 | 成都芯源系统有限公司 | Method and circuit for sampling peak value of alternating voltage and switch converter applying circuit |
CN104422808B (en) * | 2013-08-30 | 2017-09-29 | 比亚迪股份有限公司 | A kind of sample circuit, switching power source control circuit, Switching Power Supply and the method for sampling |
US9590511B2 (en) | 2013-10-08 | 2017-03-07 | Rohm Co., Ltd. | Insulation type switching power source apparatus |
JP6216202B2 (en) * | 2013-10-08 | 2017-10-18 | ローム株式会社 | Isolated switching power supply |
KR101443316B1 (en) * | 2014-02-28 | 2014-09-29 | 방창용 | Power supply apparatus with management function |
US9853553B2 (en) * | 2014-03-03 | 2017-12-26 | Infineon Technologies Austria Ag | Interface circuits for USB and lighting applications |
KR101626360B1 (en) * | 2014-09-24 | 2016-06-01 | 메를로랩 주식회사 | AC LED driving circuit |
US9780690B2 (en) * | 2016-01-28 | 2017-10-03 | Infineon Technologies Austria Ag | Resonant decoupled auxiliary supply for a switched-mode power supply controller |
JP6631277B2 (en) * | 2016-01-28 | 2020-01-15 | 富士電機株式会社 | Switching power supply |
CN105915045B (en) * | 2016-03-16 | 2018-10-19 | 四川长虹电器股份有限公司 | Convertible frequency air-conditioner PFC control methods based on IGBT ring times |
US10153702B2 (en) | 2017-02-07 | 2018-12-11 | Infineon Technologies Austria Ag | Switched-mode power supply controller using a single pin for both input voltage sensing and control of power supply charging |
US11909321B2 (en) * | 2020-12-15 | 2024-02-20 | Rohm Co., Ltd. | Power supply controller and insulated switching power supply |
CN114362534A (en) * | 2021-04-29 | 2022-04-15 | 无锡芯朋微电子股份有限公司 | Power supply control circuit of switching power supply converter and power supply control method applying same |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5845019A (en) | 1992-08-20 | 1998-12-01 | Nikon Corporation | Image reader |
US5909363A (en) * | 1997-05-30 | 1999-06-01 | Samsung Electronics Co., Ltd. | Initial drive voltage supply control circuit for switching mode power supply |
US5959851A (en) * | 1996-09-13 | 1999-09-28 | Thomson Consumer Electronics, Inc. | Switched-mode power supply control circuit |
US6252783B1 (en) * | 1999-04-10 | 2001-06-26 | Fairchild Korea Semiconductor Ltd. | Switching power supply having a low power burst mode |
US6845019B2 (en) * | 2002-01-25 | 2005-01-18 | Fairchild Korea Semiconductor Ltd. | Flyback converter |
US6853563B1 (en) | 2003-07-28 | 2005-02-08 | System General Corp. | Primary-side controlled flyback power converter |
US6900995B2 (en) * | 2001-11-29 | 2005-05-31 | Iwatt, Inc. | PWM power converter controlled by transistion detection of a comparator error signal |
US7035122B2 (en) * | 2003-09-08 | 2006-04-25 | Fairchild Korea Semiconductor Ltd. | Switching power supply device and method |
US7064968B2 (en) * | 2002-12-18 | 2006-06-20 | Fairchild Korea Semiconductor Ltd. | Control for a switching power supply having automatic burst mode operation |
US7505287B1 (en) * | 2005-11-10 | 2009-03-17 | Iwatt Inc. | On-time control for constant current mode in a flyback power supply |
US7672146B2 (en) * | 2006-10-13 | 2010-03-02 | Fairchild Korea Semiconductor Ltd. | Switching mode power supply and driving method |
-
2006
- 2006-10-13 KR KR1020060099771A patent/KR101248605B1/en active IP Right Grant
-
2007
- 2007-05-29 US US11/807,460 patent/US7672146B2/en not_active Ceased
-
2012
- 2012-03-01 US US13/410,228 patent/USRE44228E1/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5845019A (en) | 1992-08-20 | 1998-12-01 | Nikon Corporation | Image reader |
US5959851A (en) * | 1996-09-13 | 1999-09-28 | Thomson Consumer Electronics, Inc. | Switched-mode power supply control circuit |
US5909363A (en) * | 1997-05-30 | 1999-06-01 | Samsung Electronics Co., Ltd. | Initial drive voltage supply control circuit for switching mode power supply |
US6252783B1 (en) * | 1999-04-10 | 2001-06-26 | Fairchild Korea Semiconductor Ltd. | Switching power supply having a low power burst mode |
US6900995B2 (en) * | 2001-11-29 | 2005-05-31 | Iwatt, Inc. | PWM power converter controlled by transistion detection of a comparator error signal |
US6845019B2 (en) * | 2002-01-25 | 2005-01-18 | Fairchild Korea Semiconductor Ltd. | Flyback converter |
US7064968B2 (en) * | 2002-12-18 | 2006-06-20 | Fairchild Korea Semiconductor Ltd. | Control for a switching power supply having automatic burst mode operation |
US6853563B1 (en) | 2003-07-28 | 2005-02-08 | System General Corp. | Primary-side controlled flyback power converter |
US7035122B2 (en) * | 2003-09-08 | 2006-04-25 | Fairchild Korea Semiconductor Ltd. | Switching power supply device and method |
US7505287B1 (en) * | 2005-11-10 | 2009-03-17 | Iwatt Inc. | On-time control for constant current mode in a flyback power supply |
US7672146B2 (en) * | 2006-10-13 | 2010-03-02 | Fairchild Korea Semiconductor Ltd. | Switching mode power supply and driving method |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9949330B2 (en) | 2013-05-29 | 2018-04-17 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10257897B2 (en) | 2013-05-29 | 2019-04-09 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US9113521B2 (en) | 2013-05-29 | 2015-08-18 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US11412593B2 (en) | 2013-05-29 | 2022-08-09 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US11653431B2 (en) | 2013-05-29 | 2023-05-16 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9635726B2 (en) | 2013-05-29 | 2017-04-25 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US11979955B2 (en) | 2013-05-29 | 2024-05-07 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9814112B2 (en) | 2013-05-29 | 2017-11-07 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10448473B2 (en) | 2013-05-29 | 2019-10-15 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US10757773B2 (en) | 2013-05-29 | 2020-08-25 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9497817B2 (en) | 2013-05-29 | 2016-11-15 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US12069784B2 (en) | 2013-11-08 | 2024-08-20 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9538600B2 (en) | 2013-11-08 | 2017-01-03 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10136484B2 (en) | 2013-11-08 | 2018-11-20 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US11317491B2 (en) | 2013-11-08 | 2022-04-26 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9247608B2 (en) | 2013-11-08 | 2016-01-26 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10966299B2 (en) | 2013-11-08 | 2021-03-30 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US11711875B2 (en) | 2013-11-08 | 2023-07-25 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US10375781B2 (en) | 2013-11-08 | 2019-08-06 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9888535B2 (en) | 2013-11-08 | 2018-02-06 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10652980B2 (en) | 2013-11-08 | 2020-05-12 | Lutron Technology Company Llc | Circuits and methods for controlling an intensity of a light-emitting diode light source |
US10455659B2 (en) | 2015-05-01 | 2019-10-22 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9888540B2 (en) | 2015-05-01 | 2018-02-06 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US12075532B2 (en) | 2015-05-01 | 2024-08-27 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9565731B2 (en) | 2015-05-01 | 2017-02-07 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US11388791B2 (en) | 2015-05-01 | 2022-07-12 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US10827577B2 (en) | 2015-05-01 | 2020-11-03 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US10194501B2 (en) | 2015-05-01 | 2019-01-29 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10609777B2 (en) | 2015-06-19 | 2020-03-31 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US11653427B2 (en) | 2015-06-19 | 2023-05-16 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US12022582B2 (en) | 2015-06-19 | 2024-06-25 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US9655180B2 (en) | 2015-06-19 | 2017-05-16 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US10356868B2 (en) | 2015-06-19 | 2019-07-16 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US10104735B2 (en) | 2015-06-19 | 2018-10-16 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source |
US11109456B2 (en) | 2015-06-19 | 2021-08-31 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source |
US11678416B2 (en) | 2016-09-16 | 2023-06-13 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source having different operating modes |
US10098196B2 (en) | 2016-09-16 | 2018-10-09 | Lutron Electronics Co., Inc. | Load control device for a light-emitting diode light source having different operating modes |
US10986709B2 (en) | 2016-09-16 | 2021-04-20 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source having different operating modes |
US11950336B2 (en) | 2016-09-16 | 2024-04-02 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source having different operating modes |
US10306723B2 (en) | 2016-09-16 | 2019-05-28 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source having different operating modes |
US11291093B2 (en) | 2016-09-16 | 2022-03-29 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source having different operating modes |
US10462867B2 (en) | 2016-09-16 | 2019-10-29 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source having different operating modes |
US10652978B2 (en) | 2016-09-16 | 2020-05-12 | Lutron Technology Company Llc | Load control device for a light-emitting diode light source having different operating modes |
Also Published As
Publication number | Publication date |
---|---|
US7672146B2 (en) | 2010-03-02 |
KR101248605B1 (en) | 2013-03-28 |
KR20080034057A (en) | 2008-04-18 |
US20080089100A1 (en) | 2008-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE44228E1 (en) | Switching mode power supply and driving method | |
US7701735B2 (en) | Converter and driving method thereof | |
US10361633B2 (en) | Control method and device for switching power supplies having more than one control mode | |
US8295062B2 (en) | Switching power supply apparatus and semiconductor device | |
US11303195B2 (en) | Partial zero voltage switching (ZVS) for flyback power converter and method therefor | |
CN110401349B (en) | Semiconductor device for power control, switching power supply device, and design method therefor | |
US8238123B2 (en) | Frequency limitation method with time hysteresis used in quasi-resonant control | |
US8498132B2 (en) | Method and apparatus for regulating a diode conduction duty cycle | |
US7388763B2 (en) | Switching power supply | |
US7710746B2 (en) | Switching mode power supply and driving method thereof | |
US20070133234A1 (en) | System and method for a primary feedback switched mode power supply | |
US8576595B2 (en) | Method and apparatus of providing a biased current limit for limiting maximum output power of power converters | |
US20100007394A1 (en) | Method and apparatus of providing a biased current limit for limiting maximum output power of power converters | |
US9318965B2 (en) | Method to control a minimum pulsewidth in a switch mode power supply | |
US20110157919A1 (en) | Vcc generator for switching regulator | |
KR20090097670A (en) | Power converter and driving method thereof | |
US20120230062A1 (en) | Dc-dc converter | |
US9093918B2 (en) | Control circuit for offline power converter without input capacitor | |
JP2012029415A (en) | Dc-dc converter and switching control circuit | |
US8929102B2 (en) | Sample and hold buffer | |
US7154762B2 (en) | Power source apparatus | |
KR100387381B1 (en) | Switching mode power supply with high efficiency | |
CN112701915A (en) | Local Zero Voltage Switching (ZVS) for flyback power converter and method thereof | |
JP4062962B2 (en) | Semiconductor device and power supply device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAIRCHILD KOREA SEMICONDUCTOR, LTD.;REEL/FRAME:044361/0205 Effective date: 20171102 |
|
AS | Assignment |
Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:044481/0541 Effective date: 20170504 Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC;FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:044481/0541 Effective date: 20170504 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 04481, FRAME 0541;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064072/0459 Effective date: 20230622 Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT REEL 04481, FRAME 0541;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT;REEL/FRAME:064072/0459 Effective date: 20230622 |