[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

USRE43955E1 - Process for the production of a three-dimensional object with resolution improvement by pixel-shift - Google Patents

Process for the production of a three-dimensional object with resolution improvement by pixel-shift Download PDF

Info

Publication number
USRE43955E1
USRE43955E1 US13/230,270 US201113230270A USRE43955E US RE43955 E1 USRE43955 E1 US RE43955E1 US 201113230270 A US201113230270 A US 201113230270A US RE43955 E USRE43955 E US RE43955E
Authority
US
United States
Prior art keywords
image
shifted
sub
bitmap
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/230,270
Inventor
Alexandr Shkolnik
Hendrik John
Ali El-Sibiani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envisiontec GmbH
Original Assignee
Envisiontec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004022961A external-priority patent/DE102004022961B4/en
Application filed by Envisiontec GmbH filed Critical Envisiontec GmbH
Priority to US13/230,270 priority Critical patent/USRE43955E1/en
Application granted granted Critical
Publication of USRE43955E1 publication Critical patent/USRE43955E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention related to a process and a device for the production of a three-dimensional object by layer-wise solidification of a photohardening material by mask illumination by means of a rastered image forming unit having constant resolution, wherein the resolution within the image/construction plane shall be improved in the sub-pixel range.
  • This invention relates to processes wherein the layer to be generated is based on illumination by means of a rastered mask, wherein the smallest physical resolution within the mask is provided by the size of a pixel.
  • IPC B29C67/00 “Rapid Prototyping apparatus and method of Rapid Prototyping” of Dicon AS (DK), (application)
  • U.S. Pat. No. 6,180,050 describes a linear scan technique for layer-wise solidification in the production of three-dimensional objects.
  • the resolution is enhanced by scanning, in X-direction, an illumination head having an array of optical fibers, which are displaced in the Y-direction.
  • the resolution of the material layer to be hardened is in direct dependency from the resolution of an image forming process.
  • an intermediary positioned optic additionally determines the scale of the projected or solidifiable layer.
  • the resolution per area unit in the image/construction plane thus is dependent on a) the resolution of the image forming unit or the smallest element, called pixel, and their relative mutual distances, called pixel-pitch, and b) the projection scale.
  • the surface roughness of the construction part thus is determined by the smallest volume unit of one voxel (volume-pixel), the size of which is composed of the projected pixel area in XY and the layer thickness in Z.
  • the resolution of the layer thickness is prescribed by the smallest resolution (step level) of the actuator in Z, in order to move the support platform. Resolutions already down to the one-figure ⁇ m range is achievable hereby. If an even lower surface roughness of the construction part shall be realized, the projection field and concurrently the width of the pixel area must be down-sized.
  • the projection m.H. of a multi-media projector shall be mentioned here; with a resolution of XGA (1024 ⁇ 768 image dots), a pixel of 17 ⁇ m and pixel-pitch of 17.9 ⁇ m, one realizes, at a projection to 275 mm ⁇ 206 mm with an enhancement factor of the projection optic of 15, a resolution in the image/construction plane and thus in the layer to be solidified of approximately 100 dpi, which corresponds to a pixel size in the projection plane of about 0.254 mm ⁇ 0.254 mm.
  • the resolution in the construction plane is equivalent to the resolution in the image forming unit.
  • the present invention provides a process for the production of a three-dimensional object by layer-wise solidification of a material solidifiable by the action of electromagnetic irradiation by means of mask illumination, wherein the mask is produced by an image forming unit having a prescribed resolution, which mask is formed from a constant number of image forming elements (pixel) being discrete and spatially arranged in a fixed manner to each other, characterized in that, for improving the resolution in the sub-pixel range along the outer and inner contours of the sectional areas of the object to be generated layer-wise, a multiple illumination is carried out for each layer which consists of a sequence of a multitude of images mutually shifted in the sub-pixel range in the image/construction plane, wherein a separate mask/bitmap is produced for each shifted image.
  • the invention also provides a device for the production of a three-dimensional object by layer-wise solidification of a material which is solidifiable under the application of electromagnetic irradiation by means of mask illumination, whereby the irradiation necessary for hardening is imaged into the image/construction plane
  • the device comprises a rastered, image forming unit for the selective illumination, which is embodied either by line or by matrix, characterized in that the image forming unit composes the image from individual image dots (pixels) and thus forms a rastered mask (bitmap), wherein the pixels are arranged within the plane in a manner mutually fixed to each other, and that the image forming unit and/or an imaging optic which is provided between the image forming unit and the image/construction plane is/are designed such that a sequence of a multitude of images, which are mutually shifted in a sub-pixel range, can be created, wherein a separate mask/bitmap can be produced for each shifted image.
  • the resolution in the image/construction plane is improved in the sub-pixel range by means of “pixel-shift”.
  • the present invention deals with the layer-wise solidification for the production of three-dimensional objects or construction elements by means of solidification of material (specifically by means of photo-polymerization) through mask projection, but not with a conventional layer-wise solidification through (linear) scan technique.
  • This can be carried out according to the invention very efficiently and advantageously by using a two-dimensionally set array as the image generating element, wherein raster and/or resolution is(are) preset, e.g. by means of a set micro mirror array.
  • VAROS Very Refraction Optical System
  • Double-CCD Double-CCD
  • the resolution or the number of image dots of the rastered, image forming unit itself does not have to be increased in order to realize an improvement in the solution within the construction plane.
  • the illumination does not occur in correspondingly down-sized, adjacently disposed partial areas, whereby the construction/illumination period for the whole area would be increased by the number of partial areas; rather, the projection/illumination occurs over the whole construction area.
  • the level of resolution improvement within the construction plane can be chosen freely.
  • FIG. 1 schematically shows a basic device for the generation of a three-dimensional object 3 by layer-wise hardening of a photohardening material 4 by means of mask projection 8 , wherein the projection unit 1 is present, with an image forming optic 2 , above the basin 6 which is filled with photohardening material 4 , and wherein the object 3 solidifies layer-wise on a support plate 5 , which can be moved within the basin 6 in vertical direction.
  • the irradiation necessary for hardening is projected into the image/construction plane 7 .
  • the illumination is carried out by means of a rastered image forming unit, which is formed in the form of a matrix.
  • the image thus is composed of single image dots (pixels) and thus forms a rastered mask (bitmap), wherein the pixels are arranged in a specially fixed manner to each other within the plane.
  • FIG. 8-12 show the principle of a mask generation (bitmapping) of a sectional area of a three-dimensional object in the starting position ( FIG. 8 ) and in various states of the bitmap which are displaced (shifted) in the sub-pixel range ( FIG. 9-11 ), as well as the overlapping of all bitmaps ( FIG. 12 ).
  • the sectional area i.e. the outer and inner contours, are prescribed by a sectorial trail 11 , which is superimposed by a rastered area (bitmap) 12 , the solution of which exactly corresponds to the resolution of the discrete elements (pixels) within the projected image 8 which is formed by the image forming matrix.
  • Vectorial trail 11 and bitmap 12 thus exist within a superior-ordered XY-coordinate system 10 .
  • FIG. 8 shows the bitmap in its starting position. By means of a specific algorithm, the active pixels 13 which describe the sectional area within the bitmap 12 in its starting position are calculated.
  • bitmap 14 is shifted within the sub-pixel range relative to the sectional area by delta X, whereby a new distribution of active pixels 15 is produced.
  • FIG. 10 shows a shift of bitmap 16 relative to the sectional area by delta Y with active pixels 17 .
  • FIG. 11 shows a diagonal shift of bitmap 18 relative to the sectional area by delta X and delta Y with active pixels 19 .
  • FIG. 12 all bitmaps 12 , 14 , 16 and 18 with their active pixels 13 , 15 , 17 and 19 are shown superimposed, whereby a resolution improvement in the (outer) contour portion of the sectional area is clearly noticeable.
  • a simplified process for resolution improvement is achieved by the measure that only bitmap 12 of the started position ( FIG. 8 ) and bitmap 18 of the diagonal shift ( FIG. 11 ) are superimposed. In this case, the bitmap or the image does only have to be shifted in one direction along the diagonal of the pixels.
  • a multiple (at least twice) of masks or bitmaps having different sub-pixel shifts can be generated and superimposed.
  • bitmaps of each individual layer necessary for mask projection are generated from layer data, in which the outer and inner contours of the respective object section is represented in vectorial trails (as e.g. defined in the data format CLI).
  • a separate bitmap is generated by transforming the XY coordinates of the vectors (for the outer and the inner contours) of the layer data by the respective shift-offset in XY (in the sub-pixel range), and by superposing them over the bitmap-raster, and thus by calculating a new distribution of active pixels for each shift.
  • the projected light output per pixel can be varied by “grey scaling” within a projection mask, in order to selectively influence the hardening level in one layer thereby. This is particularly meaningful in order to raise the light output of the pixels of the contour because only partial superimposition of the respective pixels of the contour are produced here due to the sub-pixel shift over individual bitmaps (in the areas within the contours a complete superimposition of the pixels of each individual bitmap is ensured).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

The invention relates to a process or a device for the production of a three-dimensional object by layer-wise solidification of a material which is solidifiable under the application of electromagnetic irradiation by means of mask illumination, wherein the mask is produced using an image forming unit having a prescribed resolution, which is formed from a constant number of image forming elements (pixels) being discrete and being arranged in a spatially mutually fixed manner. For the improvement of the resolution along the outer and inner contours of the sectional areas of the object to be generated layer-wise in the sub-pixel range, a multiple illumination per layer is performed, which consists of a series of multiple images that are mutually shifted in the sub-pixel range in the image/construction plane, wherein a separate mask/bitmap is produced for each shifted image.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Patent Application No. 60/569,893, filed on May 10, 2004.
TECHNICAL FIELD
The invention related to a process and a device for the production of a three-dimensional object by layer-wise solidification of a photohardening material by mask illumination by means of a rastered image forming unit having constant resolution, wherein the resolution within the image/construction plane shall be improved in the sub-pixel range.
BACKGROUND ART
For the layer-wise construction of three-dimensional objects from “light hardening” materials, various processes are mentioned in literature, see in this respect “Automated Fabrication-Improving Productivity in Manufacturing” of Marshall Burns, 1993 (ISBN 0-13-119462-3).
This invention relates to processes wherein the layer to be generated is based on illumination by means of a rastered mask, wherein the smallest physical resolution within the mask is provided by the size of a pixel.
Known possibilities presently are, inter alia, illumination by
    • a) Projection unit (on the basis of DLP®/DMD®, LCD, ILA®, etc.)
    • b) LD-display (reflective, transmissive)
    • c) LED-, or laser-diode-line/-matrix (which is moved in XY-plane over the layer)
    • d) Line or matrix (which is moved in XY-plane over the layer) based on MEM-technology (light-valve).
Some of these methods are described in the following patents:
IPC: B29C67/00 “Rapid Prototyping apparatus and method of Rapid Prototyping” of Dicon AS (DK), (application)
US patent US005247180 A “Stereolithographic Apparatus and Method of use” of Texas Instruments Inc., September 1993.
US patent US005980813 A “Rapid Prototyping using multiple materials” of SRI International, November 1999;
Utility Model DE G 93 19 405.6 “Device for the production of a three-dimensional object (model) according to the principle of photosolidification” of Research Center Informatik at the University Karlsruhe, Dez. 1993;
An application for the generation of micro-technical, three-dimensional construction parts according to a similar process is described in the Utility Model DE 299 11 122 U1 “Device for the production of a three-dimensional object” DeltaMed et al., June 1999.
PCT Application 02 008 019.8 “Device for the production of a three-dimensional object” of Envision Technologies GmbH, April 2002.
U.S. Pat. No. 6,180,050 describes a linear scan technique for layer-wise solidification in the production of three-dimensional objects. The resolution is enhanced by scanning, in X-direction, an illumination head having an array of optical fibers, which are displaced in the Y-direction.
DRAWBACKS OF THE PRIOR ART
With all of the above described processes, the resolution of the material layer to be hardened is in direct dependency from the resolution of an image forming process.
With the projection processes, an intermediary positioned optic additionally determines the scale of the projected or solidifiable layer.
The resolution per area unit in the image/construction plane thus is dependent on a) the resolution of the image forming unit or the smallest element, called pixel, and their relative mutual distances, called pixel-pitch, and b) the projection scale.
The surface roughness of the construction part thus is determined by the smallest volume unit of one voxel (volume-pixel), the size of which is composed of the projected pixel area in XY and the layer thickness in Z. The resolution of the layer thickness is prescribed by the smallest resolution (step level) of the actuator in Z, in order to move the support platform. Resolutions already down to the one-figure μm range is achievable hereby. If an even lower surface roughness of the construction part shall be realized, the projection field and concurrently the width of the pixel area must be down-sized.
As an example, the projection m.H. of a multi-media projector shall be mentioned here; with a resolution of XGA (1024×768 image dots), a pixel of 17 μm and pixel-pitch of 17.9 μm, one realizes, at a projection to 275 mm×206 mm with an enhancement factor of the projection optic of 15, a resolution in the image/construction plane and thus in the layer to be solidified of approximately 100 dpi, which corresponds to a pixel size in the projection plane of about 0.254 mm×0.254 mm.
In order to e.g. double the resolution in the image-/construction plane, while maintaining the same construction area, it is proposed in the projection processes to half the projection/enhancement factor (which means to quarter the area) and, for the illumination of the four partial planes, to shift either the whole projection unit or the construction space mutually in parallel.
This process has the significant drawback that relatively high masses have to be moved towards each other very precisely in order to ensure an exact abutment and a close connection of the partial planes, which means a considerable expenditure of costs and additional need of space in the whole arrangement for the mechanics required therefore.
With the selective direct illumination by scanning m.H. of a LED- or laser-diode-line/-matrix or direct illumination by a mask, which is formed by a transmissive LCD, the resolution in the construction plane is equivalent to the resolution in the image forming unit.
OBJECT OF THE INVENTION
It is an object of the invention to provide a process or a device which can enhance the resolution in the construction plane, while maintaining the same large construction area, many times in the sub-pixel range, i.e. to refine the rastering of the outer and inner contours in the sectional planes of the object,
    • a) without having to carry out an illumination in partial areas to be composed together, and
    • b) without enhancing the resolution of the rastered image-forming unit itself.
SOLUTION OF THE OBJECT
The present invention provides a process for the production of a three-dimensional object by layer-wise solidification of a material solidifiable by the action of electromagnetic irradiation by means of mask illumination, wherein the mask is produced by an image forming unit having a prescribed resolution, which mask is formed from a constant number of image forming elements (pixel) being discrete and spatially arranged in a fixed manner to each other, characterized in that, for improving the resolution in the sub-pixel range along the outer and inner contours of the sectional areas of the object to be generated layer-wise, a multiple illumination is carried out for each layer which consists of a sequence of a multitude of images mutually shifted in the sub-pixel range in the image/construction plane, wherein a separate mask/bitmap is produced for each shifted image.
The invention also provides a device for the production of a three-dimensional object by layer-wise solidification of a material which is solidifiable under the application of electromagnetic irradiation by means of mask illumination, whereby the irradiation necessary for hardening is imaged into the image/construction plane, wherein the device comprises a rastered, image forming unit for the selective illumination, which is embodied either by line or by matrix, characterized in that the image forming unit composes the image from individual image dots (pixels) and thus forms a rastered mask (bitmap), wherein the pixels are arranged within the plane in a manner mutually fixed to each other, and that the image forming unit and/or an imaging optic which is provided between the image forming unit and the image/construction plane is/are designed such that a sequence of a multitude of images, which are mutually shifted in a sub-pixel range, can be created, wherein a separate mask/bitmap can be produced for each shifted image.
Preferred embodiments of the process of the present invention include one or more of the following features:
  • (a) said image forming unit is formed of a constant number of image forming elements (pixel) being discrete and spatially arranged to each other in a two-dimensional matrix;
  • (b) a sequence of at least 2 images mutually shifted in the sub-pixel range is carried out in the image/construction plane, corresponding to the resolution of the image forming unit and under consideration of the corresponding sub-pixel shift;
  • (c) the sectional area, i.e. outer and inner contours, are defined by vectorial trails which are superimposed by technical image processing by a rastered area (bitmap), the resolution of which exactly corresponds to the resolution of the discrete elements (pixels) in the image forming unit and thus in the image in the construction plane, wherein the superimposition of vectorial trails and bitmap takes place in a superior-ordered XY-coordinate system, and wherein the active pixels are calculated by a specific algorithm in order to define the sectional area in the form of a rastered mask;
  • (d) the mask generation (bitmapping) of each sectional area of a three-dimensional object is carried out in the starting position and in various states displaced (shifted) in the sub-pixel range in XY, and that a total image having an enhanced resolution in the contour portion corresponding to the pixel shift is obtained by the superimposition of these bitmaps per sectional area;
  • (e) a bitmap is produced which is shifted relative to the sectional area by delta X, which results in a new distribution of active pixels;
  • (f) a bitmap is produced which is shifted by delta Y in the sub-pixel range relatively to the sectional area, which results in a new distribution of active pixels;
  • (g) a bitmap is produced which is shifted along the pixel diagonal by delta X and delta Y relatively to the sectional area, which results in a new distribution of active pixels;
  • (h) the total illumination of an individual layer results from the sum of the partial illuminations of the masks/bitmaps shifted in the sub-pixel range;
  • (i) for each layer of the object, a multitude of masks or bitmaps having different sub-pixel shifts in XY can be generated and can be illuminated serially for each layer to be hardened;
  • (j) a simplified process for resolution improvement is achieved in such a manner that only the bitmap of the starting position and the bitmap of the diagonal-shift by a half pixel-diagonal are produced and are subsequently illuminated for each layer to be hardened;
  • (k) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming unit is tilted for each shifted bitmap such that the desired shift of the image in the sub-pixel range in the image/construction plane is achieved;
  • (l) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming unit for each shifted bitmap is shifted by the corresponding sub-pixel range in X and Y, that is parallel in plane to the image/construction plane;
  • (m) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming projection unit is maintained fixed in its position, and the imaging optic of the projection unit is tilted for each shifted bitmap such that the desired shift of the image in the image/construction plane in the sub-pixel range is achieved;
  • (n) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted mariner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming projection unit is maintained fixed in its position, and the imaging optic of the projection unit is shifted for each shifted bitmap in XY such that the desired shift of the image in the image/construction plane in the sub-pixel range is achieved;
  • (o) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the projection unit is tilted for each bitmap via actuators such that the projected image in the construction plane is shifted in the corresponding sub-pixel range in X and Y;
  • (p) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening of the material layer, a cardanic mounted transparent, plane-parallel plate is arranged between the projection unit and the image/construction plane, which plate shifts, by rotation around two axis (XY) which are present in-plane parallel to the image/construction plane, the projection beam path and thus the image in the image/construction plane in the sub-pixel range in X and Y;
  • (q) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted mariner in the sub-pixel range for the purpose of selectively hardening of the material layer, a transparent plane-parallel plate is arranged between the projection unit and the image/construction plane, which plate shifts, by rotation around an axis parallel to a pixel-diagonal, the projection beam path and thus the image in the image/construction plane in the sub-pixel range along the pixel diagonal which is orthogonal thereto;
  • (r) for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening of the material layer, the projection unit is maintained fixed in its position, and the projection beam is deflected via a mirror into the image/construction plane, wherein the deflecting mirror is provided with an adjustment possibility (cardanic support) by which the projection beam for each shifted bitmap can be deflected such that a shift of the image in the sub-pixel range is achieved in the image-/construction plane; and
  • (s) the projected light output for each pixel is varied by “grey scaling” within a projection mask, in order to selectively influence the hardening level in a layer thereby and thus to raise the light output of the contour-pixel relative to the light output of the area-pixel, in order to compensate the partial illumination due to partial superimposition of a contour-pixel by the sub-pixel shift of the individual bitmap in the contour portion.
Preferred embodiments of the device of the present invention include one or more of the following features:
  • (1) said image forming unit for the selective illumination is embodied by a matrix;
  • (2) a series of at least 2 images, which are mutually shifted in a sub-pixel range, can be created in the image/construction plane
  • (3) said image forming unit is a projection unit;
  • (4) said image forming unit is a line, particularly a matrix having discretely emitting elements for image formation;
  • (5) the device is provided with actuators in order to shift the whole image forming unit per partial image in a plane-parallel manner towards the image/construction plane in XY in the sub-pixel range;
  • (6) the device is provided with actuators which can tilt the image forming unit per shift-generated bitmap such that the individual, shift-generated bitmaps in the image/construction plane are imaged in a manner shifted in the sub-pixel range;
  • (7) between the image forming unit and the image/construction plane, a mirror is arranged as an imaging optic and is cardanically mounted and is rotatable via actuators such that the beam path is deflected into the image plane and that the individual, shift-generated bitmaps in the image-/construction plane can be imaged in a correspondingly shifted manner in the sub-pixel range;
  • (8) between the image forming unit and the image/construction plane, a transparent plate having mutual plane-parallel surfaces is arranged as an imaging optic and can be tilted by means of one or more actuators such that the beam path is shifted and that the individual, shift-generated bitmaps in the image-/construction plane are imaged in a manner shifted in the sub-pixel range;
  • (9) the image forming projection unit is maintained fixed in its position and that the imaging optic can be shifted in XY in a sub-pixel range of the image forming unit via actuators such that the desired shift of the image in the image-/construction plane in a sub-pixel range is achieved; and
  • (10) the image forming projection unit is maintained fixed in its position and that the imaging optic can be tilted via actuators such that the desired shift of the image in the image/construction plane in the sub-pixel range is achieved.
DESCRIPTION OF THE INVENTION AND ITS ADVANTAGES
By means of the process of the invention or the device of the invention, the resolution in the image/construction plane is improved in the sub-pixel range by means of “pixel-shift”.
In particular, the present invention deals with the layer-wise solidification for the production of three-dimensional objects or construction elements by means of solidification of material (specifically by means of photo-polymerization) through mask projection, but not with a conventional layer-wise solidification through (linear) scan technique. This can be carried out according to the invention very efficiently and advantageously by using a two-dimensionally set array as the image generating element, wherein raster and/or resolution is(are) preset, e.g. by means of a set micro mirror array.
Compared to the scan technique, which is called VAROS (Variable Refraction Optical System) by Canon and “Double-CCD” by Epson, the principle of reading and overlapping of images mutually shifted in the sub-pixel range is used in this invention for rastered image forming processes of rapid prototyping.
The resolution or the number of image dots of the rastered, image forming unit itself does not have to be increased in order to realize an improvement in the solution within the construction plane.
For the enhancement of the resolution, the illumination does not occur in correspondingly down-sized, adjacently disposed partial areas, whereby the construction/illumination period for the whole area would be increased by the number of partial areas; rather, the projection/illumination occurs over the whole construction area.
By the measure that an overlapping of images that are mutually shifted in the sub-pixel range takes place, the construction/illumination period of the whole area increases only insubstantially.
The level of resolution improvement within the construction plane can be chosen freely.
DESCRIPTION OF THE DRAWINGS AND THE PREFERRED EMBODIMENTS OF THE INVENTION
The present invention will be explained in detail in the following by way of examples and not in a limiting manner by means of drawings.
FIG. 1 schematically shows a basic device for the generation of a three-dimensional object 3 by layer-wise hardening of a photohardening material 4 by means of mask projection 8, wherein the projection unit 1 is present, with an image forming optic 2, above the basin 6 which is filled with photohardening material 4, and wherein the object 3 solidifies layer-wise on a support plate 5, which can be moved within the basin 6 in vertical direction. In a process based on photohardening by means of mask illumination, the irradiation necessary for hardening is projected into the image/construction plane 7. The illumination is carried out by means of a rastered image forming unit, which is formed in the form of a matrix. The image thus is composed of single image dots (pixels) and thus forms a rastered mask (bitmap), wherein the pixels are arranged in a specially fixed manner to each other within the plane.
By a simple example, FIG. 8-12 show the principle of a mask generation (bitmapping) of a sectional area of a three-dimensional object in the starting position (FIG. 8) and in various states of the bitmap which are displaced (shifted) in the sub-pixel range (FIG. 9-11), as well as the overlapping of all bitmaps (FIG. 12).
The sectional area, i.e. the outer and inner contours, are prescribed by a sectorial trail 11, which is superimposed by a rastered area (bitmap) 12, the solution of which exactly corresponds to the resolution of the discrete elements (pixels) within the projected image 8 which is formed by the image forming matrix. Vectorial trail 11 and bitmap 12 thus exist within a superior-ordered XY-coordinate system 10. FIG. 8 shows the bitmap in its starting position. By means of a specific algorithm, the active pixels 13 which describe the sectional area within the bitmap 12 in its starting position are calculated.
In FIG. 9, the bitmap 14 is shifted within the sub-pixel range relative to the sectional area by delta X, whereby a new distribution of active pixels 15 is produced.
FIG. 10 shows a shift of bitmap 16 relative to the sectional area by delta Y with active pixels 17.
FIG. 11 shows a diagonal shift of bitmap 18 relative to the sectional area by delta X and delta Y with active pixels 19.
In FIG. 12, all bitmaps 12, 14, 16 and 18 with their active pixels 13, 15, 17 and 19 are shown superimposed, whereby a resolution improvement in the (outer) contour portion of the sectional area is clearly noticeable.
A simplified process for resolution improvement is achieved by the measure that only bitmap 12 of the started position (FIG. 8) and bitmap 18 of the diagonal shift (FIG. 11) are superimposed. In this case, the bitmap or the image does only have to be shifted in one direction along the diagonal of the pixels.
Depending on the resolution improvement desired for each object layer, a multiple (at least twice) of masks or bitmaps having different sub-pixel shifts can be generated and superimposed.
By means of a differently shifted and superimposed illumination of each object/material layer (here by means of bitmaps 12, 14, 16, 18), a resolution improvement in XY in the portion of outer and inner contours is achieved. In order to realize respective sub-pixel shifts in the image within the construction plane, the following various embodiments are described:
  • 1) In FIG. 2, the image forming unit 1 is tilted for each shifted bitmap such that the desired shift of the image in the sub-pixel range within the image/construction plane is achieved.
  • 2) In FIG. 3, the image forming unit 1 is shifted for each shifted bitmap by the corresponding sub-pixel level in X and 7, that is parallel in plane to the image/construction plane, by means of actuators.
  • 3) In FIG. 4, the image forming projection unit is maintained fixed in its position, The imaging optic 2 is tilted for each shifted bitmap such that the desired shift of the image within the image-/construction plane in the sub-pixel range is achieved.
  • 4) In FIG. 5, the image forming projection unit is maintained fixed in its position. The imaging optic 2 is moved for each shifted bitmap in XY such that the desired shift of the image within the image-/construction plane in the sub-pixel range is achieved.
  • 5) Particular cases for imaging by image-ward telecentric irradiation path, by an image-ward approximately telecentric irradiation path, and by teleobjectives having long focal length, in order to keep optical errors (angle errors, distortion) small:
    • a) In FIG. 5, the projection unit 1 is tilted for each shifted bitmap via actuators such that the projection image 8 within the image/construction plane 7 is shifted in the corresponding sub-pixel range in X and Y.
    • b) In FIG. 6, a cardanically mounted transparent, plane-parallel plate 9 (glass plate) is disposed between the protection unit 1 and the image/construction plane 7, which plate shifts the protection irradiation path 8 and thus the image within the image/construction plane 7 in the sub-pixel range in X and 7 by means of rotation around two axis (XY), which are located parallel in plane to the image/construction plane.
    • c) In FIG. 7, the projection unit 1 is maintained fixed in its position. The projection beam 8 is deflected via a mirror 10 into the image/construction plane 7. The deflecting mirror 10 is provided with an adjustment possibility (cardanic support), by which the protection beam can be deflected for each shifted bitmap such that a shift of the image within the image/construction plane 7 in the sub-pixel range is achieved.
The embodiments 1) to 5) or a) to c) described above can be realized individually or combined with each other.
The bitmaps of each individual layer necessary for mask projection are generated from layer data, in which the outer and inner contours of the respective object section is represented in vectorial trails (as e.g. defined in the data format CLI).
For this, a specific SW is used which carries out the transformation of the vectorial trails into the bitmap format (bitmapping).
For each sub-pixel shift in XY, a separate bitmap is generated by transforming the XY coordinates of the vectors (for the outer and the inner contours) of the layer data by the respective shift-offset in XY (in the sub-pixel range), and by superposing them over the bitmap-raster, and thus by calculating a new distribution of active pixels for each shift.
The projected light output per pixel can be varied by “grey scaling” within a projection mask, in order to selectively influence the hardening level in one layer thereby. This is particularly meaningful in order to raise the light output of the pixels of the contour because only partial superimposition of the respective pixels of the contour are produced here due to the sub-pixel shift over individual bitmaps (in the areas within the contours a complete superimposition of the pixels of each individual bitmap is ensured).
When projecting/superimposing the section images shifted by sub-pixels, an almost homogeneous distribution of the light output or the illumination intensity can be achieved by means of the superimposition of grey scalings, particularly along the contours of the projected area structure, through the sum of the grey scaling masks.

Claims (24)

1. A process for the production of a three-dimensional object by layer-wise solidification of a material solidifiable by the action of electromagnetic irradiation by means of mask illumination, comprising: providing a projection unit for producing a mask having an image forming optic directed at a solidifiable material; producing a mask, wherein the mask is produced by an image forming unit having a prescribed resolution, which mask is formed from a constant number of image forming elements (pixel) being discrete and spatially arranged in a fixed manner to each other, characterized in that, for improving the resolution in the sub-pixel range along the outer and inner contours of the sectional areas of the object to be generated layer-wise, a multiple illumination is carried out for each layer which consists of a sequence of a multitude of images mutually shifted in the sub-pixel range in the image/construction plane, wherein a separate mask/bitmap is produced for each shifted image.
2. The process according to claim 1, characterized in that said image forming unit is formed of a constant number of image forming elements (pixel) being discrete and spatially arranged to each other in a two-dimensional matrix.
3. The process according to claim 1, characterized in that a sequence of at least 2 images mutually shifted in the sub-pixel range is carried out in the image/construction plane, corresponding to the resolution of the image forming unit and under consideration of the corresponding sub-pixel shift.
4. The process according to claim 1 for the generation of the bitmap from a sectional area of a three-dimensional object, characterized in that the sectional area, i.e. outer and inner contours, are defined by vector paths which are superimposed by technical image processing by a rastered area (bitmap), the resolution of which exactly corresponds to the resolution of the discrete elements (pixels) in the image forming unit and thus in the image in the construction plane, wherein the superimposition of vector paths and bitmap takes place in a superior-ordered XY-coordinate system, and wherein the active pixels are calculated by a specific algorithm in order to define the sectional area in the form of a rastered mask.
5. The process according to claim 1, characterized in that the mask generation (bitmapping) of each sectional area of a three-dimensional object is carried out in the starting position and in various states displaced (shifted) in the sub-pixel range in XY, and that a total image having an enhanced resolution in the contour portion corresponding to the pixel shift is obtained by the superimposition of these bitmaps per sectional area.
6. The process according to claim 1, characterized in that a bitmap is produced which is shifted relative to the sectional area by delta X, which results in a new distribution of active pixels.
7. The process according to claim 1, characterized in that a bitmap is produced which is shifted by delta Y in the sub-pixel range relatively to the sectional area, which results in a new distribution of active pixels.
8. The process according to claim 1, characterized in that a bitmap is produced which is shifted along the pixel diagonal by delta X and delta Y relatively to the sectional area, which results in a new distribution of active pixels.
9. The process according to claim 1, characterized in that the total illumination of an individual layer results from the sum of the partial illuminations of the masks/bitmaps shifted in the sub-pixel range.
10. The process according to claim 1, wherein, for each layer of the object, a multitude of masks or bitmaps having different sub-pixel shifts in XY can be generated and can be illuminated serially for each layer to be hardened.
11. The process according to claim 1, characterized in that a simplified process for resolution improvement is achieved in such a manner that only the bitmap of the starting position and the bitmap of the diagonal-shift by a half pixel-diagonal are produced and are subsequently illuminated for each layer to be hardened.
12. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming unit is tilted for each shifted bitmap such that the desired shift of the image in the sub-pixel range in the image/construction plane is achieved.
13. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming unit for each shifted bitmap is shifted by the corresponding sub-pixel range in X and Y, that is parallel in plane to the image/construction plane.
14. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming projection unit is maintained fixed in its position, and the imaging optic of the projection unit is tilted for each shifted bitmap such that the desired shift of the image in the image/construction plane in the sub-pixel range is achieved.
15. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the image forming projection unit is maintained fixed in its position, and the imaging optic of the projection unit is shifted for each shifted bitmap in XY such that the desired shift of the image in the image/construction plane in the sub-pixel range is achieved.
16. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening the material layer, the projection unit is tilted for each bitmap via actuators such that the projected image in the construction plane is shifted in the corresponding sub-pixel range in X and Y.
17. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening of the material layer, a cardanic mounted transparent, plane-parallel plate is arranged between the projection unit and the image/construction plane, which plate shifts, by rotation around two axis (XY) which are present in-plane parallel to the image/construction plane, the projection beam path and thus the image in the image/construction plane in the sub-pixel range in X and Y.
18. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening of the material layer, a transparent plane-parallel plate is arranged between the projection unit and the image/construction plane, which plate shifts, by rotation around an axis parallel to a pixel-diagonal, the projection beam path and thus the image in the image/construction plane in the sub-pixel range along the pixel diagonal which is orthogonal thereto.
19. The process according to claim 1, characterized in that, for the shifted imaging of the rastered masks/bitmaps in the construction plane which are produced in a shifted manner in the sub-pixel range for the purpose of selectively hardening of the material layer, the projection unit is maintained fixed in its position, and the projection beam is deflected via a mirror into the image/construction plane, wherein the deflecting mirror is provided with an adjustment possibility (cardanic support) by which the projection beam for each shifted bitmap can be deflected such that a shift of the image in the sub-pixel range is achieved in the image-/construction plane.
20. The process according to claim 1, characterized in that the projected light output for each pixel is varied by “grey scaling” within a projection mask, in order to selectively influence the hardening level in a layer thereby and thus to raise the light output of the contour-pixel relative to the light output of the area-pixel, in order to compensate the partial illumination due to partial superimposition of a contour-pixel by the sub-pixel shift of the individual bitmap in the contour portion.
21. The process of claim 1, wherein each image that is mutually shifted in the subpixel range defines a degree of overlap between the object and each pixel and the multiple illumination step comprises projecting the electromagnetic radiation onto the solidifiable material based on each degree of overlap for each pixel and each mutually shifted image.
22. The process of claim 1, wherein each image in the multitude of images corresponds to a different bitmap location relative to a fixed coordinate system.
23. The process of claim 1, wherein the image forming unit includes an image forming matrix, and the multiple illumination of each object layer comprises:
providing an image of the object layer;
defining a bitmap, wherein the bitmap has a plurality of grid elements and each grid element corresponds to a location in the image forming unit;
superimposing the layer image on the bitmap to define a first relative orientation between the layer image and the bitmap;
calculating a first degree of overlap between each grid element and the layer image when the bitmap is in the first relative orientation;
shifting the bitmap relative to the layer image to define a second relative orientation between the layer image and the bitmap;
calculating a second degree of overlap between each grid element and the layer image when the layer image is in the second relative orientation; and
projecting electromagnetic radiation onto the curable resin based on the first degree of overlap and the second degree of overlap for each grid element.
24. The process of claim 23, wherein the step of projecting electromagnetic radiation onto the curable resin comprises first projecting electromagnetic radiation onto the curable resin such that each location in the image forming unit matrix projects electromagnetic radiation having an intensity that corresponds to the first degree of overlap for the bitmap grid element that corresponds to the image forming unit matrix location and second projecting electromagnetic radiation onto the curable resin such that each location in the image forming unit matrix projects electromagnetic radiation having an intensity that corresponds to the second degree of overlap for the bitmap grid element that corresponds to the image forming unit matrix location.
US13/230,270 2004-05-10 2011-09-12 Process for the production of a three-dimensional object with resolution improvement by pixel-shift Active 2029-05-25 USRE43955E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/230,270 USRE43955E1 (en) 2004-05-10 2011-09-12 Process for the production of a three-dimensional object with resolution improvement by pixel-shift

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US56989304P 2004-05-10 2004-05-10
DE102004022961 2004-05-10
DE102004022961A DE102004022961B4 (en) 2004-05-10 2004-05-10 Method for producing a three-dimensional object with resolution improvement by means of pixel shift
US11/126,068 US7790093B2 (en) 2004-05-10 2005-05-09 Process for the production of a three-dimensional object with resolution improvement by “pixel-shift”
US13/230,270 USRE43955E1 (en) 2004-05-10 2011-09-12 Process for the production of a three-dimensional object with resolution improvement by pixel-shift

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/126,068 Reissue US7790093B2 (en) 2004-05-10 2005-05-09 Process for the production of a three-dimensional object with resolution improvement by “pixel-shift”

Publications (1)

Publication Number Publication Date
USRE43955E1 true USRE43955E1 (en) 2013-02-05

Family

ID=34967004

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/230,270 Active 2029-05-25 USRE43955E1 (en) 2004-05-10 2011-09-12 Process for the production of a three-dimensional object with resolution improvement by pixel-shift

Country Status (6)

Country Link
US (1) USRE43955E1 (en)
EP (2) EP1744871B1 (en)
JP (1) JP5184080B2 (en)
DE (1) DE502005004008D1 (en)
HK (1) HK1138235A1 (en)
WO (1) WO2005110722A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205601B2 (en) 2013-02-12 2015-12-08 Carbon3D, Inc. Continuous liquid interphase printing
US9360757B2 (en) 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
US9453142B2 (en) 2014-06-23 2016-09-27 Carbon3D, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US9486964B2 (en) 2012-05-03 2016-11-08 B9Creations, LLC Solid imaging apparatus with improved part separation from the image plate
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US9914265B2 (en) 2012-12-20 2018-03-13 Kulzer Gmbh Method for producing a homogeneous light distribution
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
WO2019145795A2 (en) 2018-01-26 2019-08-01 Cellink Ab Systems and methods for optical assessments of bioink printability
US10391708B2 (en) 2013-07-16 2019-08-27 Schultheiss Gmbh Method and device for producing a three-dimensional object and exposure mask generating apparatus
US10471699B2 (en) 2014-06-20 2019-11-12 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US11186736B2 (en) 2018-10-10 2021-11-30 Cellink Ab Double network bioinks
CN115139528A (en) * 2022-06-10 2022-10-04 深圳市纵维立方科技有限公司 Slice processing method and device in 3D printing, storage medium and electronic equipment
US11679555B2 (en) 2019-02-21 2023-06-20 Sprintray, Inc. Reservoir with substrate assembly for reducing separation forces in three-dimensional printing
US11747732B2 (en) 2017-11-02 2023-09-05 Jabil Inc. Digital masking system, pattern imaging apparatus and digital masking method
US11786711B2 (en) 2013-08-14 2023-10-17 Carbon, Inc. Continuous liquid interphase printing
US11826951B2 (en) 2019-09-06 2023-11-28 Cellink Ab Temperature-controlled multi-material overprinting

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022606A1 (en) 2004-05-07 2005-12-15 Envisiontec Gmbh Method for producing a three-dimensional object with improved separation of hardened material layers from a building level
US7758799B2 (en) 2005-04-01 2010-07-20 3D Systems, Inc. Edge smoothness with low resolution projected images for use in solid imaging
DE102006019963B4 (en) 2006-04-28 2023-12-07 Envisiontec Gmbh Device and method for producing a three-dimensional object by layer-by-layer solidifying a material that can be solidified under the influence of electromagnetic radiation using mask exposure
DE102006019964C5 (en) 2006-04-28 2021-08-26 Envisiontec Gmbh Device and method for producing a three-dimensional object by means of mask exposure
US7636610B2 (en) 2006-07-19 2009-12-22 Envisiontec Gmbh Method and device for producing a three-dimensional object, and computer and data carrier useful therefor
EP1880830B1 (en) * 2006-07-19 2011-12-21 Envisiontec GmbH Method and device for producing a three-dimensional object, and computer and data carrier useful thereof
US9415544B2 (en) 2006-08-29 2016-08-16 3D Systems, Inc. Wall smoothness, feature accuracy and resolution in projected images via exposure levels in solid imaging
US8003039B2 (en) 2007-01-17 2011-08-23 3D Systems, Inc. Method for tilting solid image build platform for reducing air entrainment and for build release
DE102007010624B4 (en) 2007-03-02 2009-04-30 Deltamed Gmbh Device for layerwise generative production of three-dimensional molded parts, process for producing these molded parts and these molded parts
EP2011631B1 (en) 2007-07-04 2012-04-18 Envisiontec GmbH Process and device for producing a three-dimensional object
DE102007041489A1 (en) 2007-08-31 2009-03-05 Deltamed Gmbh Flexible medical-technical molded body and method for its production
DK2052693T4 (en) 2007-10-26 2021-03-15 Envisiontec Gmbh Process and free-form manufacturing system to produce a three-dimensional object
DE102008009003A1 (en) 2008-02-13 2009-08-20 Dreve Prodimed Gmbh Apparatus and method for the generative production of 3-dimensional objects based on a multi-phase system
US8048359B2 (en) 2008-10-20 2011-11-01 3D Systems, Inc. Compensation of actinic radiation intensity profiles for three-dimensional modelers
US8777602B2 (en) 2008-12-22 2014-07-15 Nederlandse Organisatie Voor Tobgepast-Natuurwetenschappelijk Onderzoek TNO Method and apparatus for layerwise production of a 3D object
US8678805B2 (en) 2008-12-22 2014-03-25 Dsm Ip Assets Bv System and method for layerwise production of a tangible object
KR20110104532A (en) 2008-12-22 2011-09-22 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 Method and apparatus for layerwise production of a 3d object
US8372330B2 (en) 2009-10-19 2013-02-12 Global Filtration Systems Resin solidification substrate and assembly
KR101995185B1 (en) 2009-12-17 2019-07-01 디에스엠 아이피 어셋츠 비.브이. Liquid radiation curable resins for additive fabrication comprising a triaryl sulfonium borate cationic photoinitiator
US8691476B2 (en) 2011-12-16 2014-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. EUV mask and method for forming the same
DE102013107571A1 (en) * 2013-07-16 2015-01-22 Rapid Shape Gmbh Method and device for producing a three-dimensional object and exposure mask generating device
EP3078482B1 (en) * 2013-12-03 2019-05-22 Prismlab China Ltd. Photo-curing 3d printing device and imaging system thereof
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
DE102014108633B9 (en) 2014-06-18 2024-07-04 Kulzer Gmbh Device and method for producing three-dimensional objects by rapid prototyping
DE102014108634A1 (en) 2014-06-18 2016-01-07 Heraeus Kulzer Gmbh More efficient method of producing three-dimensional objects using rapid prototyping
JP6547327B2 (en) * 2015-02-19 2019-07-24 セイコーエプソン株式会社 Three-dimensional object formation device, control method for three-dimensional object formation device, and control program for three-dimensional object formation device
US10821717B2 (en) 2016-07-22 2020-11-03 General Electric Company Layer orientation control for pixel-based additive manufacturing
US10737479B2 (en) 2017-01-12 2020-08-11 Global Filtration Systems Method of making three-dimensional objects using both continuous and discontinuous solidification
CN108327253B (en) * 2017-01-19 2021-08-06 上海普利生机电科技有限公司 Photocurable three-dimensional printing method and apparatus
KR101966333B1 (en) * 2017-01-24 2019-04-08 주식회사 캐리마 A 3D printer having a large scale display screen exposure system being divided by a plurality of display screens
EP3698968A1 (en) * 2019-02-22 2020-08-26 Essilor International Method and system for manufacturing an optical volume element from a hardenable material using an additive manufacturing technology
DE102021120194B9 (en) 2021-08-03 2022-10-06 Kulzer Gmbh Process for the production of a real dental partial or full denture base
US12030251B2 (en) 2021-08-20 2024-07-09 General Electric Company Irradiation devices with optical modulators for additively manufacturing three-dimensional objects
US12017298B2 (en) 2021-08-20 2024-06-25 General Electric Company Irradiation devices with optical modulators for additively manufacturing three-dimensional objects

Citations (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2254194A5 (en) 1973-12-10 1975-07-04 Armour Dial Inc Aesthetic fluids prepn - from water soluble resin solutions having non-Newtonian characteristics
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
FR2583334A1 (en) 1985-06-14 1986-12-19 Cilas Alcatel Process and device for producing a model of an industrial component
EP0250121A2 (en) 1986-06-03 1987-12-23 Cubital Ltd. Three-dimensional modelling apparatus
US4837379A (en) 1988-06-02 1989-06-06 Organogenesis Inc. Fibrin-collagen tissue equivalents and methods for preparation thereof
US4929402A (en) 1984-08-08 1990-05-29 3D Systems, Inc. Method for production of three-dimensional objects by stereolithography
US4999143A (en) 1988-04-18 1991-03-12 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
EP0426363A2 (en) 1989-10-30 1991-05-08 Stratasys Inc. Apparatus and method for creating three-dimensional objects
EP0435564A2 (en) 1989-12-22 1991-07-03 E.I. Du Pont De Nemours And Company Solid imaging system
DE4105314A1 (en) 1990-02-22 1991-08-29 Jobs Spa THREE-DIMENSIONAL PLOTTER
EP0466422A1 (en) 1990-07-05 1992-01-15 E.I. Du Pont De Nemours And Company Solid imaging system using differential tension elastomeric film
US5093130A (en) 1989-09-26 1992-03-03 Plant Genetics Powder coated hydrogel capsules
EP0484086A1 (en) 1990-10-29 1992-05-06 E.I. Du Pont De Nemours And Company Solid imaging semi-permeable film coating
DE4102257A1 (en) 1991-01-23 1992-07-30 Artos Med Produkte Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle
US5137662A (en) 1988-11-08 1992-08-11 3-D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
US5143663A (en) 1989-06-12 1992-09-01 3D Systems, Inc. Stereolithography method and apparatus
US5173266A (en) 1989-07-19 1992-12-22 Drummond Scientific Company Safety pipet
JPH04371829A (en) 1991-06-21 1992-12-24 Teijin Seiki Co Ltd Three dimensional shape-making method and device
US5174931A (en) 1988-09-26 1992-12-29 3D Systems, Inc. Method of and apparatus for making a three-dimensional product by stereolithography
DE4125534A1 (en) 1991-08-01 1993-02-18 Eos Electro Optical Syst Three=dimensional layering - in which transparent sealed cover is used over bath to allow radiation through but exclude ambient atmos.
US5236637A (en) 1984-08-08 1993-08-17 3D Systems, Inc. Method of and apparatus for production of three dimensional objects by stereolithography
US5247180A (en) 1991-12-30 1993-09-21 Texas Instruments Incorporated Stereolithographic apparatus and method of use
US5248456A (en) 1989-06-12 1993-09-28 3D Systems, Inc. Method and apparatus for cleaning stereolithographically produced objects
US5254979A (en) 1988-03-12 1993-10-19 Dupont Pixel Systems Limited Raster operations
US5263130A (en) 1986-06-03 1993-11-16 Cubital Ltd. Three dimensional modelling apparatus
US5268994A (en) 1990-01-30 1993-12-07 Societe Nationale Elf Aquitaine (Production) Method of plotting surfaces in a 3D volume
FR2692053A1 (en) 1992-06-05 1993-12-10 Goreta Lucas Model prodn. by selective photopolymerisation of liq. or powder - using active liq. crystal mask or active light source controlled by computer instead of controlled movement focused laser
US5298208A (en) 1991-11-01 1994-03-29 Athletic Helmet, Inc. Method for molding a protective helmet
US5306446A (en) 1992-07-10 1994-04-26 Howe Robert J Apparatus with roller and for irradiation of photopolymers
US5345391A (en) 1988-04-18 1994-09-06 3D Systems, Inc. Method and apparatus for production of high resolution three-dimensional objects by stereolithography
US5360981A (en) 1989-05-11 1994-11-01 British Telecommunications Public Limited Company Amorphous silicon memory
WO1995011007A1 (en) 1993-10-18 1995-04-27 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
WO1995015841A1 (en) 1992-06-05 1995-06-15 Finab Limited Machine for making objects by selectively photopolymerising layered liquids or powders
US5437820A (en) 1992-02-12 1995-08-01 Brotz; Gregory R. Process for manufacturing a three-dimensional shaped product
US5447822A (en) 1989-09-28 1995-09-05 3D Systems, Inc. Apparatus and related method for forming a substantially flat stereolithographic working surface
WO1996000422A1 (en) 1994-06-27 1996-01-04 Hercules Incorporated Programmable mask for producing three-dimensional objects
US5510077A (en) 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
JPH08192469A (en) 1995-01-20 1996-07-30 Ushio Inc Photo-setting resin curing method
US5545367A (en) 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5569431A (en) 1984-08-08 1996-10-29 3D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
US5651934A (en) 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US5653925A (en) 1995-09-26 1997-08-05 Stratasys, Inc. Method for controlled porosity three-dimensional modeling
DE4340108C2 (en) 1993-11-22 1997-09-25 Emi Tec Elektronische Material Shielding element and method for its production
US5823778A (en) 1996-06-14 1998-10-20 The United States Of America As Represented By The Secretary Of The Air Force Imaging method for fabricating dental devices
DE19716240A1 (en) 1997-04-18 1998-10-29 Mivatec Gmbh Photo plot method and arrangement for recording a computer-stored raster image on a flat light-sensitive recording medium
DE19727554A1 (en) 1997-06-28 1999-01-07 Huels Chemische Werke Ag Process for hydrophilizing the surface of polymeric substrates using a macroinitiator as a primer
US5858746A (en) 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
US5894036A (en) 1997-06-10 1999-04-13 Tylko; Marek K. Three-dimensional plotter
US5897825A (en) 1994-10-13 1999-04-27 3D Systems, Inc. Method for producing a three-dimensional object
US5902537A (en) 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
US5943235A (en) 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
DE29911122U1 (en) 1999-06-25 1999-09-30 DeltaMed Medizinprodukte GmbH, 64546 Mörfelden-Walldorf Device for producing a three-dimensional object
US5980813A (en) 1997-04-17 1999-11-09 Sri International Rapid prototyping using multiple materials
EP0958912A1 (en) 1997-11-11 1999-11-24 NTT Data Corporation Optical formation device and method
US6013099A (en) 1998-04-29 2000-01-11 Medtronic, Inc. Medical device for delivering a water-insoluble therapeutic salt or substance
DE19838797A1 (en) 1998-08-26 2000-03-02 Martin Umwelt & Energietech Spacing device for circuit board adhesive dispenser; has sensor to detect relative movement between dispenser cartridge dosing needle and reference element during movement towards circuit board surface
US6051179A (en) 1997-03-19 2000-04-18 Replicator Systems, Inc. Apparatus and method for production of three-dimensional models by spatial light modulator
WO2000021735A1 (en) 1998-10-12 2000-04-20 Dicon A/S Rapid prototyping apparatus and method of rapid prototyping
US6078038A (en) 1994-02-15 2000-06-20 Cooper; J. Carl Apparatus and method for displaying a high resolution image with relatively lower resolution display device
US6124858A (en) 1997-04-14 2000-09-26 Adobe Systems Incorporated Raster image mapping
US6158946A (en) 1996-04-24 2000-12-12 Tokyo Electron Limited Positioning apparatus for substrates to be processed
WO2001000390A1 (en) 1999-06-25 2001-01-04 HAP Handhabungs-, Automatisierungs- und Präzisionstechnik GmbH Method and device for producing an object by means of stereolithography
US6171610B1 (en) 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
WO2001012679A1 (en) 1999-08-13 2001-02-22 Deltamed Medizinprodukte Gmbh Composition that hardens with visible light and use thereof
DE10003374C1 (en) 2000-01-26 2001-08-23 Fraunhofer Ges Forschung Process for making prototypes or molds from molding material
US6280727B1 (en) 1997-06-18 2001-08-28 Cohesion Technologies, Inc. Compositions containing thrombin and microfibrillar collagen and methods for preparation and use thereof
DE20106887U1 (en) 2001-04-20 2001-09-06 Envision Technologies GmbH, 45768 Marl Device for producing a three-dimensional object
WO2001072501A1 (en) 2000-03-28 2001-10-04 Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. Method and device for producing components from light-curable materials
US20010028495A1 (en) 1998-05-29 2001-10-11 Quate Calvin F. Compositions and methods involving direct write optical lithography
DE10018987A1 (en) 2000-04-17 2001-10-31 Envision Technologies Gmbh Device and method for producing three-dimensional objects
US20010048183A1 (en) 2000-05-31 2001-12-06 Sanyo Electric Co., Ltd Optical shaping apparatus and optical shaping process
US6334865B1 (en) 1998-08-04 2002-01-01 Fusion Medical Technologies, Inc. Percutaneous tissue track closure assembly and method
US6352710B2 (en) 1996-03-22 2002-03-05 Focal, Inc. Compliant tissue sealants
US20020028854A1 (en) 2000-09-01 2002-03-07 Andre-Luc Allanic Photopolymerizable foam composition, procedure for obtaining three-dimensional parts by rapid prototyping, device for implementation, part obtained and use
WO2002027408A2 (en) 2000-09-27 2002-04-04 The Regents Of The University Of California Dynamic mask projection stereo micro lithography
US6391245B1 (en) 1999-04-13 2002-05-21 Eom Technologies, L.L.C. Method for creating three-dimensional objects by cross-sectional lithography
US6501483B1 (en) 1998-05-29 2002-12-31 Ati Technologies, Inc. Method and apparatus for antialiasing using a non-uniform pixel sampling pattern
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
EP1270185A1 (en) 2001-06-22 2003-01-02 3D Systems, Inc. Recoating system and method for solid freeform fabrication
US6508971B2 (en) 1995-09-27 2003-01-21 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US6547552B1 (en) 2000-02-08 2003-04-15 Efrem V. Fudim Fabrication of three-dimensional objects by irradiation of radiation-curable materials
US20030074096A1 (en) 2001-10-15 2003-04-17 Suman Das Solid freeform fabrication of structurally engineered multifunctional devices
WO2003059184A2 (en) 2001-12-21 2003-07-24 Biomat Sciences, Inc. Process of making dental restorations
US6600965B1 (en) 1988-04-18 2003-07-29 3D Systems, Inc. Method and apparatus for production of high resolution three-dimensional objects by stereolithography
US20030173714A1 (en) 2002-03-12 2003-09-18 Teijin Seiki Co., Ltd. Three-dimensional stereolithographic method and apparatus
US6630009B2 (en) 2000-07-20 2003-10-07 3D Systems, Inc. Metallic filled pastes
US20030205849A1 (en) 2000-08-29 2003-11-06 Farnworth Warren M. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US20040008309A1 (en) 1998-03-13 2004-01-15 Sharp Kabushiki Kaisha Liquid crystal display device with improved field angles
US20040028293A1 (en) 2002-08-07 2004-02-12 Allen William J. Image display system and method
US20040027363A1 (en) 2002-08-07 2004-02-12 William Allen Image display system and method
US6764636B1 (en) 1999-03-01 2004-07-20 3D Systems, Inc. Fast three-dimensional modeling method and device
US6833231B2 (en) 2002-07-31 2004-12-21 3D Systems, Inc. Toughened stereolithographic resin compositions
US6833234B1 (en) 2000-08-04 2004-12-21 Massachusetts Institute Of Technology Stereolithographic patterning with variable size exposure areas
US20050023710A1 (en) 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations
US20050208168A1 (en) 2004-03-18 2005-09-22 Hickerson Kevin P Apparatus for three dimensional printing using image layers
US6963319B2 (en) 2002-08-07 2005-11-08 Hewlett-Packard Development Company, L.P. Image display system and method
US20050248061A1 (en) 2004-05-07 2005-11-10 Alexandr Shkolnik Process for the production of a three-dimensional object with an improved separation of hardened material layers from a construction plane
US20050248062A1 (en) 2004-05-10 2005-11-10 Alexandr Shkolnik Process for the production of a three-dimensional object with resolution improvement by "pixel-shift"
US20050288813A1 (en) 2003-10-14 2005-12-29 Laixia Yang Direct write and freeform fabrication apparatus and method
US6989225B2 (en) 2002-07-18 2006-01-24 3D Systems, Inc. Stereolithographic resins with high temperature and high impact resistance
US20060078638A1 (en) 2004-10-08 2006-04-13 3D Systems, Inc. Stereolithographic apparatus
EP1674243A2 (en) 2004-12-27 2006-06-28 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
US20060192312A1 (en) 2005-02-28 2006-08-31 3D Systems, Inc. Multiple vat leveling system
US20060239588A1 (en) 2005-04-01 2006-10-26 3D Systems, Inc. Edge smoothness with low resolution projected images for use in solid imaging
US20060249884A1 (en) 2005-05-03 2006-11-09 3D Systems, Inc. Bubble-free cross-sections for use in solid imaging
US7195472B2 (en) 2001-04-23 2007-03-27 Envisiontec Gmbh Apparatus and method for the non-destructive separation of hardened material layers from a flat construction plane
US20070075459A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070075458A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070075460A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070077323A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070074659A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070075461A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
EP1849587A1 (en) 2006-04-28 2007-10-31 Envisiontec GmbH Device and method for creating a three dimensional object using mask illumination
US20070257055A1 (en) 2006-05-03 2007-11-08 3D Systems, Inc. Material delivery system for use in solid imaging
US20070259066A1 (en) 2006-05-03 2007-11-08 3D Systems, Inc. Material delivery tension and tracking system for use in solid imaging
EP1880830A1 (en) 2006-07-19 2008-01-23 Envisiontec GmbH Method and device for producing a three-dimensional object, and computer and data carrier useful thereof
EP1894704A1 (en) 2006-08-29 2008-03-05 3D Systems, Inc. Improved wall smoothness, feature accuracy and resolution in projected images via control of exposure levels in solid imaging
US20080169586A1 (en) 2007-01-17 2008-07-17 Hull Charles W Imager Assembly and Method for Solid Imaging
US20080170112A1 (en) 2007-01-17 2008-07-17 Hull Charles W Build pad, solid image build, and method for building build supports
US20080169589A1 (en) 2007-01-17 2008-07-17 Sperry Charles R Solid imaging apparatus and method
US7403213B1 (en) 1997-06-04 2008-07-22 Texas Instruments Incorporated Boundary dispersion for artifact mitigation
EP1950032A2 (en) 2007-01-17 2008-07-30 3D Systems, Inc. Imager and method for consistent repeatable alignment in a solid imaging apparatus
US20080179787A1 (en) 2007-01-17 2008-07-31 Sperry Charles R Elevator and method for tilting solid image build platform for reducing air entrainment and for build release
US20080179786A1 (en) 2007-01-17 2008-07-31 Sperry Charles R Cartridge for solid imaging apparatus and method
US20080181977A1 (en) 2007-01-17 2008-07-31 Sperry Charles R Brush assembly for removal of excess uncured build material
US20080206383A1 (en) 2007-01-17 2008-08-28 Hull Charles W Solid Imaging System with Removal of Excess Uncured Build Material
US20080226346A1 (en) 2007-01-17 2008-09-18 3D Systems, Inc. Inkjet Solid Imaging System and Method for Solid Imaging
US20080309665A1 (en) 2007-06-13 2008-12-18 3D Systems, Inc., A California Corporation Distributed rapid prototyping
EP2011631A1 (en) 2007-07-04 2009-01-07 Envisiontec GmbH Process and device for producing a three-dimensional object

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597778B2 (en) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド Three-dimensional object assembling system and assembling method
DE9319405U1 (en) 1993-12-17 1994-03-31 Forschungszentrum Informatik an der Universität Karlsruhe, 76131 Karlsruhe Device for producing a three-dimensional object (model) according to the principle of photofixing
DE69414003T2 (en) * 1993-12-29 1999-04-01 Kira Corp., Aichi FILM LAMINATION PROCESS
US5945058A (en) * 1997-05-13 1999-08-31 3D Systems, Inc. Method and apparatus for identifying surface features associated with selected lamina of a three-dimensional object being stereolithographically formed
DE19930617B4 (en) 1999-07-02 2004-11-18 EMUGE-Werk Richard Glimpel GmbH & Co. KG Fabrik für Präzisionswerkzeuge Device for thread milling
DE19939617A1 (en) * 1999-08-20 2001-03-29 Deltamed Medizinprodukte Gmbh Device and method for producing a three-dimensional object
US6200646B1 (en) 1999-08-25 2001-03-13 Spectra Group Limited, Inc. Method for forming polymeric patterns, relief images and colored polymeric bodies using digital light processing technology
JP4828028B2 (en) * 2001-01-23 2011-11-30 ナブテスコ株式会社 3D modeling apparatus and 3D modeling method

Patent Citations (164)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2254194A5 (en) 1973-12-10 1975-07-04 Armour Dial Inc Aesthetic fluids prepn - from water soluble resin solutions having non-Newtonian characteristics
US4929402A (en) 1984-08-08 1990-05-29 3D Systems, Inc. Method for production of three-dimensional objects by stereolithography
US4575330B1 (en) 1984-08-08 1989-12-19
US6027324A (en) 1984-08-08 2000-02-22 3D Systems, Inc. Apparatus for production of three dimensional objects by stereolithography
US5236637A (en) 1984-08-08 1993-08-17 3D Systems, Inc. Method of and apparatus for production of three dimensional objects by stereolithography
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US5569431A (en) 1984-08-08 1996-10-29 3D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
US5571471A (en) 1984-08-08 1996-11-05 3D Systems, Inc. Method of production of three-dimensional objects by stereolithography
US5630981A (en) 1984-08-08 1997-05-20 3D Systems, Inc. Method for production of three-dimensional objects by stereolithography
FR2583334A1 (en) 1985-06-14 1986-12-19 Cilas Alcatel Process and device for producing a model of an industrial component
EP0250121A2 (en) 1986-06-03 1987-12-23 Cubital Ltd. Three-dimensional modelling apparatus
US5263130A (en) 1986-06-03 1993-11-16 Cubital Ltd. Three dimensional modelling apparatus
EP0250121B1 (en) 1986-06-03 1994-11-02 Cubital Ltd. Three-dimensional modelling apparatus
US5254979A (en) 1988-03-12 1993-10-19 Dupont Pixel Systems Limited Raster operations
US6600965B1 (en) 1988-04-18 2003-07-29 3D Systems, Inc. Method and apparatus for production of high resolution three-dimensional objects by stereolithography
US5345391A (en) 1988-04-18 1994-09-06 3D Systems, Inc. Method and apparatus for production of high resolution three-dimensional objects by stereolithography
US4999143A (en) 1988-04-18 1991-03-12 3D Systems, Inc. Methods and apparatus for production of three-dimensional objects by stereolithography
US4837379A (en) 1988-06-02 1989-06-06 Organogenesis Inc. Fibrin-collagen tissue equivalents and methods for preparation thereof
US5651934A (en) 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US6048487A (en) 1988-09-26 2000-04-11 3D Systems, Inc. Recoating stereolithographic layers
US5891382A (en) 1988-09-26 1999-04-06 3D System, Inc. Recoating of stereolithographic layers
US5174931A (en) 1988-09-26 1992-12-29 3D Systems, Inc. Method of and apparatus for making a three-dimensional product by stereolithography
US5137662A (en) 1988-11-08 1992-08-11 3-D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
US5360981A (en) 1989-05-11 1994-11-01 British Telecommunications Public Limited Company Amorphous silicon memory
US5143663A (en) 1989-06-12 1992-09-01 3D Systems, Inc. Stereolithography method and apparatus
US5248456A (en) 1989-06-12 1993-09-28 3D Systems, Inc. Method and apparatus for cleaning stereolithographically produced objects
US5173266A (en) 1989-07-19 1992-12-22 Drummond Scientific Company Safety pipet
US5093130A (en) 1989-09-26 1992-03-03 Plant Genetics Powder coated hydrogel capsules
US5447822A (en) 1989-09-28 1995-09-05 3D Systems, Inc. Apparatus and related method for forming a substantially flat stereolithographic working surface
EP0426363A2 (en) 1989-10-30 1991-05-08 Stratasys Inc. Apparatus and method for creating three-dimensional objects
EP0435564A2 (en) 1989-12-22 1991-07-03 E.I. Du Pont De Nemours And Company Solid imaging system
US5268994A (en) 1990-01-30 1993-12-07 Societe Nationale Elf Aquitaine (Production) Method of plotting surfaces in a 3D volume
DE4105314A1 (en) 1990-02-22 1991-08-29 Jobs Spa THREE-DIMENSIONAL PLOTTER
US5529473A (en) 1990-07-05 1996-06-25 E. I. Du Pont De Nemours And Company Solid imaging system using differential tension elastomerc film
EP0466422A1 (en) 1990-07-05 1992-01-15 E.I. Du Pont De Nemours And Company Solid imaging system using differential tension elastomeric film
US5391072A (en) 1990-10-29 1995-02-21 E. I. Du Pont De Nemours And Company Solid imaging apparatus having a semi-permeable film
EP0484086A1 (en) 1990-10-29 1992-05-06 E.I. Du Pont De Nemours And Company Solid imaging semi-permeable film coating
DE4102257A1 (en) 1991-01-23 1992-07-30 Artos Med Produkte Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle
JPH04371829A (en) 1991-06-21 1992-12-24 Teijin Seiki Co Ltd Three dimensional shape-making method and device
DE4125534A1 (en) 1991-08-01 1993-02-18 Eos Electro Optical Syst Three=dimensional layering - in which transparent sealed cover is used over bath to allow radiation through but exclude ambient atmos.
US5298208A (en) 1991-11-01 1994-03-29 Athletic Helmet, Inc. Method for molding a protective helmet
US5247180A (en) 1991-12-30 1993-09-21 Texas Instruments Incorporated Stereolithographic apparatus and method of use
US5437820A (en) 1992-02-12 1995-08-01 Brotz; Gregory R. Process for manufacturing a three-dimensional shaped product
US5510077A (en) 1992-03-19 1996-04-23 Dinh; Thomas Q. Method of making an intraluminal stent
US5545367A (en) 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
US5858746A (en) 1992-04-20 1999-01-12 Board Of Regents, The University Of Texas System Gels for encapsulation of biological materials
WO1995015841A1 (en) 1992-06-05 1995-06-15 Finab Limited Machine for making objects by selectively photopolymerising layered liquids or powders
FR2692053A1 (en) 1992-06-05 1993-12-10 Goreta Lucas Model prodn. by selective photopolymerisation of liq. or powder - using active liq. crystal mask or active light source controlled by computer instead of controlled movement focused laser
US5306446A (en) 1992-07-10 1994-04-26 Howe Robert J Apparatus with roller and for irradiation of photopolymers
WO1995011007A1 (en) 1993-10-18 1995-04-27 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
DE4340108C2 (en) 1993-11-22 1997-09-25 Emi Tec Elektronische Material Shielding element and method for its production
US6078038A (en) 1994-02-15 2000-06-20 Cooper; J. Carl Apparatus and method for displaying a high resolution image with relatively lower resolution display device
WO1996000422A1 (en) 1994-06-27 1996-01-04 Hercules Incorporated Programmable mask for producing three-dimensional objects
US5897825A (en) 1994-10-13 1999-04-27 3D Systems, Inc. Method for producing a three-dimensional object
JPH08192469A (en) 1995-01-20 1996-07-30 Ushio Inc Photo-setting resin curing method
US5902537A (en) 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
US5653925A (en) 1995-09-26 1997-08-05 Stratasys, Inc. Method for controlled porosity three-dimensional modeling
US6508971B2 (en) 1995-09-27 2003-01-21 3D Systems, Inc. Selective deposition modeling method and apparatus for forming three-dimensional objects and supports
US5943235A (en) 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
US6352710B2 (en) 1996-03-22 2002-03-05 Focal, Inc. Compliant tissue sealants
US6158946A (en) 1996-04-24 2000-12-12 Tokyo Electron Limited Positioning apparatus for substrates to be processed
US5823778A (en) 1996-06-14 1998-10-20 The United States Of America As Represented By The Secretary Of The Air Force Imaging method for fabricating dental devices
US6051179A (en) 1997-03-19 2000-04-18 Replicator Systems, Inc. Apparatus and method for production of three-dimensional models by spatial light modulator
US6124858A (en) 1997-04-14 2000-09-26 Adobe Systems Incorporated Raster image mapping
US5980813A (en) 1997-04-17 1999-11-09 Sri International Rapid prototyping using multiple materials
DE19716240A1 (en) 1997-04-18 1998-10-29 Mivatec Gmbh Photo plot method and arrangement for recording a computer-stored raster image on a flat light-sensitive recording medium
US7403213B1 (en) 1997-06-04 2008-07-22 Texas Instruments Incorporated Boundary dispersion for artifact mitigation
US5894036A (en) 1997-06-10 1999-04-13 Tylko; Marek K. Three-dimensional plotter
US6280727B1 (en) 1997-06-18 2001-08-28 Cohesion Technologies, Inc. Compositions containing thrombin and microfibrillar collagen and methods for preparation and use thereof
DE19727554A1 (en) 1997-06-28 1999-01-07 Huels Chemische Werke Ag Process for hydrophilizing the surface of polymeric substrates using a macroinitiator as a primer
EP0958912A1 (en) 1997-11-11 1999-11-24 NTT Data Corporation Optical formation device and method
US6180050B1 (en) 1997-11-11 2001-01-30 The Institute Of Physical And Chemical Research Optical formation device and method
US20040008309A1 (en) 1998-03-13 2004-01-15 Sharp Kabushiki Kaisha Liquid crystal display device with improved field angles
US6171610B1 (en) 1998-04-24 2001-01-09 University Of Massachusetts Guided development and support of hydrogel-cell compositions
US6013099A (en) 1998-04-29 2000-01-11 Medtronic, Inc. Medical device for delivering a water-insoluble therapeutic salt or substance
US6501483B1 (en) 1998-05-29 2002-12-31 Ati Technologies, Inc. Method and apparatus for antialiasing using a non-uniform pixel sampling pattern
US20010028495A1 (en) 1998-05-29 2001-10-11 Quate Calvin F. Compositions and methods involving direct write optical lithography
US20050023710A1 (en) 1998-07-10 2005-02-03 Dmitri Brodkin Solid free-form fabrication methods for the production of dental restorations
US6334865B1 (en) 1998-08-04 2002-01-01 Fusion Medical Technologies, Inc. Percutaneous tissue track closure assembly and method
DE19838797A1 (en) 1998-08-26 2000-03-02 Martin Umwelt & Energietech Spacing device for circuit board adhesive dispenser; has sensor to detect relative movement between dispenser cartridge dosing needle and reference element during movement towards circuit board surface
US7128866B1 (en) 1998-10-12 2006-10-31 Dicon A/S Rapid prototyping apparatus and method of rapid prototyping
EP1156922B1 (en) 1998-10-12 2003-06-25 Dicon A/S Rapid prototyping apparatus and method of rapid prototyping
WO2000021735A1 (en) 1998-10-12 2000-04-20 Dicon A/S Rapid prototyping apparatus and method of rapid prototyping
DE69909136T2 (en) 1998-10-12 2004-05-06 Dicon A/S RAPID PROTOTYPING DEVICE AND RAPID PROTOTYPING METHOD
US6764636B1 (en) 1999-03-01 2004-07-20 3D Systems, Inc. Fast three-dimensional modeling method and device
US6391245B1 (en) 1999-04-13 2002-05-21 Eom Technologies, L.L.C. Method for creating three-dimensional objects by cross-sectional lithography
DE29911122U1 (en) 1999-06-25 1999-09-30 DeltaMed Medizinprodukte GmbH, 64546 Mörfelden-Walldorf Device for producing a three-dimensional object
EP1192041B1 (en) 1999-06-25 2003-03-05 Hap Handhabungs-, Automatisierungs- und Präzisionstechnik GmbH Method and device for producing an object by means of stereolithography
WO2001000390A1 (en) 1999-06-25 2001-01-04 HAP Handhabungs-, Automatisierungs- und Präzisionstechnik GmbH Method and device for producing an object by means of stereolithography
DE19929199A1 (en) * 1999-06-25 2001-01-18 Hap Handhabungs Automatisierun Method and device for producing a three-dimensional object
WO2001012679A1 (en) 1999-08-13 2001-02-22 Deltamed Medizinprodukte Gmbh Composition that hardens with visible light and use thereof
DE10003374C1 (en) 2000-01-26 2001-08-23 Fraunhofer Ges Forschung Process for making prototypes or molds from molding material
US6547552B1 (en) 2000-02-08 2003-04-15 Efrem V. Fudim Fabrication of three-dimensional objects by irradiation of radiation-curable materials
WO2001072501A1 (en) 2000-03-28 2001-10-04 Fraunhofer Gesellschaft Zur Förderung Der Angewandten Forschung E. V. Method and device for producing components from light-curable materials
US6942830B2 (en) 2000-04-17 2005-09-13 Envisiontec Gmbh Device and method for the production of three-dimensional objects
DE10018987A1 (en) 2000-04-17 2001-10-31 Envision Technologies Gmbh Device and method for producing three-dimensional objects
US20010048183A1 (en) 2000-05-31 2001-12-06 Sanyo Electric Co., Ltd Optical shaping apparatus and optical shaping process
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
US6630009B2 (en) 2000-07-20 2003-10-07 3D Systems, Inc. Metallic filled pastes
US6974656B2 (en) 2000-07-20 2005-12-13 3D Systems, Inc. Paste filled with metal powder and metal products obtained with same
US6833234B1 (en) 2000-08-04 2004-12-21 Massachusetts Institute Of Technology Stereolithographic patterning with variable size exposure areas
US20030205849A1 (en) 2000-08-29 2003-11-06 Farnworth Warren M. Layer thickness control for stereolithography utilizing variable liquid elevation and laser focal length
US20020028854A1 (en) 2000-09-01 2002-03-07 Andre-Luc Allanic Photopolymerizable foam composition, procedure for obtaining three-dimensional parts by rapid prototyping, device for implementation, part obtained and use
US20050259785A1 (en) 2000-09-27 2005-11-24 Xiang Zhang Dynamic mask projection stereo micro lithography
WO2002027408A2 (en) 2000-09-27 2002-04-04 The Regents Of The University Of California Dynamic mask projection stereo micro lithography
US20020155189A1 (en) 2001-04-20 2002-10-24 Envision Technologies Gmbh, Apparatus for manufacturing a three-dimensional object
US7052263B2 (en) 2001-04-20 2006-05-30 Envisiontec Gmbh Apparatus for manufacturing a three-dimensional object
EP1250997A1 (en) 2001-04-20 2002-10-23 Envision Technologies GmbH Manufacturing device for three-dimensional object
DE20106887U1 (en) 2001-04-20 2001-09-06 Envision Technologies GmbH, 45768 Marl Device for producing a three-dimensional object
US7195472B2 (en) 2001-04-23 2007-03-27 Envisiontec Gmbh Apparatus and method for the non-destructive separation of hardened material layers from a flat construction plane
EP1270185A1 (en) 2001-06-22 2003-01-02 3D Systems, Inc. Recoating system and method for solid freeform fabrication
US20030074096A1 (en) 2001-10-15 2003-04-17 Suman Das Solid freeform fabrication of structurally engineered multifunctional devices
WO2003059184A3 (en) 2001-12-21 2003-12-11 Biomat Sciences Inc Process of making dental restorations
WO2003059184A2 (en) 2001-12-21 2003-07-24 Biomat Sciences, Inc. Process of making dental restorations
US20030173714A1 (en) 2002-03-12 2003-09-18 Teijin Seiki Co., Ltd. Three-dimensional stereolithographic method and apparatus
US6989225B2 (en) 2002-07-18 2006-01-24 3D Systems, Inc. Stereolithographic resins with high temperature and high impact resistance
US6833231B2 (en) 2002-07-31 2004-12-21 3D Systems, Inc. Toughened stereolithographic resin compositions
US7034811B2 (en) 2002-08-07 2006-04-25 Hewlett-Packard Development Company, L.P. Image display system and method
US6963319B2 (en) 2002-08-07 2005-11-08 Hewlett-Packard Development Company, L.P. Image display system and method
US20040028293A1 (en) 2002-08-07 2004-02-12 Allen William J. Image display system and method
US20040027363A1 (en) 2002-08-07 2004-02-12 William Allen Image display system and method
US20050288813A1 (en) 2003-10-14 2005-12-29 Laixia Yang Direct write and freeform fabrication apparatus and method
US20050208168A1 (en) 2004-03-18 2005-09-22 Hickerson Kevin P Apparatus for three dimensional printing using image layers
US20050248061A1 (en) 2004-05-07 2005-11-10 Alexandr Shkolnik Process for the production of a three-dimensional object with an improved separation of hardened material layers from a construction plane
US20050248062A1 (en) 2004-05-10 2005-11-10 Alexandr Shkolnik Process for the production of a three-dimensional object with resolution improvement by "pixel-shift"
US7790093B2 (en) 2004-05-10 2010-09-07 Envisiontec Gmbh Process for the production of a three-dimensional object with resolution improvement by “pixel-shift”
DE102004022961A1 (en) 2004-05-10 2005-12-15 Envisiontec Gmbh Method for producing a three-dimensional object with resolution improvement by means of pixel shift
US20060078638A1 (en) 2004-10-08 2006-04-13 3D Systems, Inc. Stereolithographic apparatus
US20080217818A1 (en) 2004-10-08 2008-09-11 Holmboe Scott B Stereolithographic Apparatus
EP1674243A2 (en) 2004-12-27 2006-06-28 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
US20060192312A1 (en) 2005-02-28 2006-08-31 3D Systems, Inc. Multiple vat leveling system
US20060239588A1 (en) 2005-04-01 2006-10-26 3D Systems, Inc. Edge smoothness with low resolution projected images for use in solid imaging
US7758799B2 (en) 2005-04-01 2010-07-20 3D Systems, Inc. Edge smoothness with low resolution projected images for use in solid imaging
US20060249884A1 (en) 2005-05-03 2006-11-09 3D Systems, Inc. Bubble-free cross-sections for use in solid imaging
US20070074659A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070075461A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070077323A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070075460A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070075458A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20070075459A1 (en) 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US20080038396A1 (en) 2006-04-28 2008-02-14 Envisiontec Gmbh Device and method for producing a three-dimensional object by means of mask exposure
EP1849587A1 (en) 2006-04-28 2007-10-31 Envisiontec GmbH Device and method for creating a three dimensional object using mask illumination
EP1849587B1 (en) 2006-04-28 2009-07-08 Envisiontec GmbH Device and method for creating a three dimensional object using mask illumination
US20070259066A1 (en) 2006-05-03 2007-11-08 3D Systems, Inc. Material delivery tension and tracking system for use in solid imaging
US20070257055A1 (en) 2006-05-03 2007-11-08 3D Systems, Inc. Material delivery system for use in solid imaging
US7467939B2 (en) 2006-05-03 2008-12-23 3D Systems, Inc. Material delivery tension and tracking system for use in solid imaging
EP1880830A1 (en) 2006-07-19 2008-01-23 Envisiontec GmbH Method and device for producing a three-dimensional object, and computer and data carrier useful thereof
EP1880830B1 (en) 2006-07-19 2011-12-21 Envisiontec GmbH Method and device for producing a three-dimensional object, and computer and data carrier useful thereof
EP1894704A1 (en) 2006-08-29 2008-03-05 3D Systems, Inc. Improved wall smoothness, feature accuracy and resolution in projected images via control of exposure levels in solid imaging
US20080054531A1 (en) 2006-08-29 2008-03-06 3D Systems, Inc. Wall Smoothness, Feature Accuracy and Resolution In Projected Images Via Exposure Levels In Solid Imaging
US20080169586A1 (en) 2007-01-17 2008-07-17 Hull Charles W Imager Assembly and Method for Solid Imaging
US20080179786A1 (en) 2007-01-17 2008-07-31 Sperry Charles R Cartridge for solid imaging apparatus and method
US20080181977A1 (en) 2007-01-17 2008-07-31 Sperry Charles R Brush assembly for removal of excess uncured build material
US20080226346A1 (en) 2007-01-17 2008-09-18 3D Systems, Inc. Inkjet Solid Imaging System and Method for Solid Imaging
US20080231731A1 (en) 2007-01-17 2008-09-25 Hull Charles W Imager and method for consistent repeatable alignment in a solid imaging apparatus
EP1950032B1 (en) 2007-01-17 2012-06-20 3D Systems, Inc. Method for aligning an imager of a solid imaging apparatus and imager assembly
US20080169589A1 (en) 2007-01-17 2008-07-17 Sperry Charles R Solid imaging apparatus and method
US20080179787A1 (en) 2007-01-17 2008-07-31 Sperry Charles R Elevator and method for tilting solid image build platform for reducing air entrainment and for build release
US20080170112A1 (en) 2007-01-17 2008-07-17 Hull Charles W Build pad, solid image build, and method for building build supports
EP1950032A2 (en) 2007-01-17 2008-07-30 3D Systems, Inc. Imager and method for consistent repeatable alignment in a solid imaging apparatus
US20080206383A1 (en) 2007-01-17 2008-08-28 Hull Charles W Solid Imaging System with Removal of Excess Uncured Build Material
US20080309665A1 (en) 2007-06-13 2008-12-18 3D Systems, Inc., A California Corporation Distributed rapid prototyping
EP2011631A1 (en) 2007-07-04 2009-01-07 Envisiontec GmbH Process and device for producing a three-dimensional object
EP2011631B1 (en) 2007-07-04 2012-04-18 Envisiontec GmbH Process and device for producing a three-dimensional object

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
37 CFR 1.99 Submission and declaration.
3D Systems, Inc. v. Envisiontec, Inc., et al. Special Masters Report and Recommendation on the Parties' Summary Judgement Motions.
4 W. Allen, R. Ulichney "Wobulation: Doubling the Addressed Resolution," SID 05 Digest, 2005.
Burns, "Automatic Fabrication Improving Productivity in Manufacturing", 1993 (ISBN 0-13-119462-3).
C. Sun, et al., "Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic mask," Sensors and Actuators A 121 (2005) 113-120.
http:/www.hp.com/hpinfo/newsroom/press/2004/040609a.html "HP technology doubles the resolution of digital projection displays" Jun. 9, 2004.
IEEE Super Resolution article abstract vol. 20, issue 3, pp. 21-36, May 2003.
International Preliminary Report on Patentability for PCT/EP2008/009041, dated Apr. 27, 2010.
International Search Report (German Translation) for PCT/EP2005/005003, dated Oct. 5, 2004.
International Search Report for PCT/EP2008/009040, dated Feb. 4, 2009.
K. Takahashi, "A New Application of DMD to Photolithography and Rapid Prototyping System," Institute of Electronics, Information, and Communication Engineers.
Kuhtreiber, W., Ph.D., et al., "Cell Encapsulation Technology and Therapeutics," Birkhauser, Boston (1998).
Landers, R., and Mulhaupt, R., "Desktop Manufacturing of Complex Objects, Prototypes and Biomedical Scaffolds by means of Computer-Assisted Design Combined with Computer-Guided 3D Plotting of Polymers and Reactive Oligomers," Macromolecular Materials and Engineering, 282:17-22 (2000).
Nikolaychik, V.V., et al., A New, Cryoprecipitate Based Coating for Improved Endothelial Cell Attachment and Growth on Medical Grade Artificial Surfaces:, ASAIO Journal, 40:M846-M852 (1994).
Okada, T., and Ikada, Y., "Tissue Reactions to Subcutaneously Implanted, Surface-Modified Silicones," Journal of Biomedical Materials Research, 27:1509-1518 (1993).
Opposition to EP 1,849,587, dated Apr. 8, 2010.
Relou, I.A., et al., "Effect of Culture Conditions on Endothelial Cell Growth and Responsiveness," Tissue & Cell, 30(5):525-538 (1998).
S. Ventura, et al., "Freeform Fabrication of Functional Silicon Nitride Components by Direct Photoshaping," Mat Res. Sol. Symp. Proc., vol. 625 (2000).
Sachs, E., et al., "Three Dimensional Printing: Rapid Tooling and Prototypes Directly from CAD Model," Journal of Engineering for Industry, 114:481-488 (1992).
Stark, G.B., et al., "Biological Matrices and Tissue Reconstruction," Springer Publications, Berlin (1998).
Wobulation, saved as PDF from the internet; wikipedia definition, citing several resolution-relate patents.
Wohlers Report 2000. "Rapid Prototyping & Tooling State of the Industry Annual Worldwide Progress Report", T. Wohlers, Wohlers Association, Inc., Fort Collins, Colorado (2000).
Written Opinion of the International Searching Authority for PCT/EP2008/009040, dated Feb. 4, 2009.
Written Opinion of the International Searching Authority for PCT/EP2008/009041, dated Apr. 27, 2007.

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9486964B2 (en) 2012-05-03 2016-11-08 B9Creations, LLC Solid imaging apparatus with improved part separation from the image plate
US9636873B2 (en) 2012-05-03 2017-05-02 B9Creations, LLC Solid image apparatus with improved part separation from the image plate
US9914265B2 (en) 2012-12-20 2018-03-13 Kulzer Gmbh Method for producing a homogeneous light distribution
US10144181B2 (en) 2013-02-12 2018-12-04 Carbon, Inc. Continuous liquid interphase printing
US10150253B2 (en) 2013-02-12 2018-12-11 Carbon, Inc. Method for three-dimensional fabrication with feed through carrier
US9205601B2 (en) 2013-02-12 2015-12-08 Carbon3D, Inc. Continuous liquid interphase printing
US9498920B2 (en) 2013-02-12 2016-11-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US9993974B2 (en) 2013-02-12 2018-06-12 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US9211678B2 (en) 2013-02-12 2015-12-15 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US10596755B2 (en) 2013-02-12 2020-03-24 Carbon, Inc. Method for three-dimensional fabrication
US10618215B2 (en) 2013-02-12 2020-04-14 Carbon, Inc. Method for three-dimensional fabrication with feed-through carrier
US9216546B2 (en) 2013-02-12 2015-12-22 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication with feed through carrier
US11235516B2 (en) 2013-02-12 2022-02-01 Carbon, Inc. Method and apparatus for three-dimensional fabrication
US10093064B2 (en) 2013-02-12 2018-10-09 Carbon, Inc. Method for three-dimensional fabrication
US10391708B2 (en) 2013-07-16 2019-08-27 Schultheiss Gmbh Method and device for producing a three-dimensional object and exposure mask generating apparatus
US10016938B2 (en) 2013-08-14 2018-07-10 Carbon, Inc. Continuous liquid interphase printing
US9360757B2 (en) 2013-08-14 2016-06-07 Carbon3D, Inc. Continuous liquid interphase printing
US11786711B2 (en) 2013-08-14 2023-10-17 Carbon, Inc. Continuous liquid interphase printing
US11141910B2 (en) 2013-08-14 2021-10-12 Carbon, Inc. Continuous liquid interphase printing
US10471699B2 (en) 2014-06-20 2019-11-12 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US11400698B2 (en) 2014-06-20 2022-08-02 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US11772324B2 (en) 2014-06-20 2023-10-03 Carbon, Inc. Three-dimensional printing with reciprocal feeding of polymerizable liquid
US9982164B2 (en) 2014-06-23 2018-05-29 Carbon, Inc. Polyurea resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US9676963B2 (en) 2014-06-23 2017-06-13 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US11850803B2 (en) 2014-06-23 2023-12-26 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
US10647880B2 (en) 2014-06-23 2020-05-12 Carbon, Inc. Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US9453142B2 (en) 2014-06-23 2016-09-27 Carbon3D, Inc. Polyurethane resins having multiple mechanisms of hardening for use in producing three-dimensional objects
US10899868B2 (en) 2014-06-23 2021-01-26 Carbon, Inc. Methods for producing footwear with materials having multiple mechanisms of hardening
US10968307B2 (en) 2014-06-23 2021-04-06 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US10240066B2 (en) 2014-06-23 2019-03-26 Carbon, Inc. Methods of producing polyurea three-dimensional objects from materials having multiple mechanisms of hardening
US9598606B2 (en) 2014-06-23 2017-03-21 Carbon, Inc. Methods of producing polyurethane three-dimensional objects from materials having multiple mechanisms of hardening
US10155882B2 (en) 2014-06-23 2018-12-18 Carbon, Inc. Methods of producing EPOXY three-dimensional objects from materials having multiple mechanisms of hardening
US11299579B2 (en) 2014-06-23 2022-04-12 Carbon, Inc. Water cure methods for producing three-dimensional objects from materials having multiple mechanisms of hardening
US11312084B2 (en) 2014-06-23 2022-04-26 Carbon, Inc. Methods for producing helmet inserts with materials having multiple mechanisms of hardening
US11358342B2 (en) 2014-06-23 2022-06-14 Carbon, Inc. Methods of producing three-dimensional objects from materials having multiple mechanisms of hardening
US11707893B2 (en) 2014-06-23 2023-07-25 Carbon, Inc. Methods for producing three-dimensional objects with apparatus having feed channels
US11440266B2 (en) 2014-06-23 2022-09-13 Carbon, Inc. Methods of producing epoxy three-dimensional objects from materials having multiple mechanisms of hardening
US10793745B2 (en) 2017-05-01 2020-10-06 Formlabs, Inc. Dual-cure resins and related methods
US10316213B1 (en) 2017-05-01 2019-06-11 Formlabs, Inc. Dual-cure resins and related methods
US11747732B2 (en) 2017-11-02 2023-09-05 Jabil Inc. Digital masking system, pattern imaging apparatus and digital masking method
WO2019145795A2 (en) 2018-01-26 2019-08-01 Cellink Ab Systems and methods for optical assessments of bioink printability
US11931966B2 (en) 2018-01-26 2024-03-19 Cellink Bioprinting Ab Systems and methods for optical assessments of bioink printability
US11186736B2 (en) 2018-10-10 2021-11-30 Cellink Ab Double network bioinks
US11679555B2 (en) 2019-02-21 2023-06-20 Sprintray, Inc. Reservoir with substrate assembly for reducing separation forces in three-dimensional printing
US11826951B2 (en) 2019-09-06 2023-11-28 Cellink Ab Temperature-controlled multi-material overprinting
CN115139528A (en) * 2022-06-10 2022-10-04 深圳市纵维立方科技有限公司 Slice processing method and device in 3D printing, storage medium and electronic equipment
CN115139528B (en) * 2022-06-10 2024-04-16 深圳市纵维立方科技有限公司 Slice processing method and device in 3D printing, storage medium and electronic equipment

Also Published As

Publication number Publication date
JP2007536131A (en) 2007-12-13
EP1894705B1 (en) 2010-08-25
WO2005110722A1 (en) 2005-11-24
JP5184080B2 (en) 2013-04-17
EP1744871B1 (en) 2008-05-07
DE502005004008D1 (en) 2008-06-19
EP1894705A3 (en) 2008-12-03
HK1138235A1 (en) 2010-08-20
EP1744871A1 (en) 2007-01-24
EP1894705A2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
USRE43955E1 (en) Process for the production of a three-dimensional object with resolution improvement by pixel-shift
US7790093B2 (en) Process for the production of a three-dimensional object with resolution improvement by “pixel-shift”
Zhou et al. Additive manufacturing based on optimized mask video projection for improved accuracy and resolution
US20220111584A1 (en) Large area projection micro stereolithography
Zhou et al. Optimized mask image projection for solid freeform fabrication
US7833000B2 (en) Optical modeling apparatus
JP2008027438A (en) Method and device for producing three-dimensional object, and computer and data carrier useful thereof
JP5133841B2 (en) Slice image generation method and modeling apparatus
CN101063811A (en) Device and method for creating a three dimensional object using mask illumination
JP2023520296A (en) Predictive method and relative apparatus for isotropic stereolithography 3D printing with variable speed and power hybrid light source
CN111923411A (en) Dynamic imaging 3D printing system and printing method thereof
CA3137084A1 (en) Stereo lithographic 3d printing assembly and stereo lithographic3d printing method
JP7345769B2 (en) Direct writing exposure system and direct writing exposure method
CN103270453A (en) Criss-cross writing strategy
US12128610B2 (en) Systems, devices, and methods for kaleidoscopic 3D printing
Xu et al. Vibration-assisted vat photopolymerization for pixelated-aliasing-free surface fabrication
US12130407B2 (en) System and method for parallel two-photon lithography using a metalens array
DE102004064131B4 (en) Method for generating a bitmap and device for producing a three-dimensional object
KR101064674B1 (en) Method for making digital lithographic pattern data and digital lithography apparatus using the method
CN110370627B (en) 3D photocuring method and 3D photocuring equipment
Dagli Dynamic resolution control in a laser projection based stereolithography system

Legal Events

Date Code Title Description
CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552)

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12