USRE42900E1 - Method of addressing messages and communications systems - Google Patents
Method of addressing messages and communications systems Download PDFInfo
- Publication number
- USRE42900E1 USRE42900E1 US11/859,360 US85936007A USRE42900E US RE42900 E1 USRE42900 E1 US RE42900E1 US 85936007 A US85936007 A US 85936007A US RE42900 E USRE42900 E US RE42900E
- Authority
- US
- United States
- Prior art keywords
- radio frequency
- devices
- frequency communications
- wireless
- interrogator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004891 communication Methods 0.000 title claims abstract description 268
- 238000000034 method Methods 0.000 title claims abstract description 152
- 230000004044 response Effects 0.000 claims abstract description 72
- 230000006870 function Effects 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
- G06F13/4004—Coupling between buses
- G06F13/4027—Coupling between buses using bus bridges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/60—Memory management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/20—Image enhancement or restoration using local operators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/44—Star or tree networks
Definitions
- This invention relates to communications protocols and to digital data communications. Still more particularly, the invention relates to data communications protocols in mediums such as radio communication or the like. The invention also relates to radio frequency identification devices for inventory control, object monitoring, determining the existence, location or movement of objects, or for remote automated payment.
- Communications protocols are used in various applications. For example, communications protocols can be used in electronic identification systems. As large numbers of objects are moved in inventory, product manufacturing, and merchandising operations, there is a continuous challenge to accurately monitor the location and flow of objects. Additionally, there is a continuing goal to interrogate the location of objects in an inexpensive and streamlined manner. One way of tracking objects is with an electronic identification system.
- an identification device may be provided with a unique identification code in order to distinguish between a number of different devices.
- the devices are entirely passive (have no power supply), which results in a small and portable package.
- identification systems are only capable of operation over a relatively short range, limited by the size of a magnetic field used to supply power to the devices and to communicate with the devices.
- Another wireless electronic identification system utilizes a large active transponder device affixed to an object to be monitored which receives a signal from an interrogator. The device receives the signal, then generates and transmits a responsive signal.
- the interrogation signal and the responsive signal are typically radio-frequency (RF) signals produced by an RF transmitter circuit.
- RF radio-frequency
- Electronic identification systems can also be used for remote payment.
- the toll booth can determine the identity of the radio frequency identification device, and thus of the owner of the device, and debit an account held by the owner for payment of toll or can receive a credit card number against which the toll can be charged.
- remote payment is possible for a variety of other goods or services.
- a communication system typically includes two transponders: a commander station or interrogator, and a responder station or transponder device which replies to the interrogator.
- the interrogator If the interrogator has prior knowledge of the identification number of a device which the interrogator is looking for, it can specify that a response is requested only from the device with that identification number. Sometimes, such information is not available. For example, there are occasions where the interrogator is attempting to determine which of multiple devices are within communication range.
- the interrogator When the interrogator sends a message to a transponder device requesting a reply, there is a possibility that multiple transponder devices will attempt to respond simultaneously, causing a collision, and thus causing an erroneous message to be received by the interrogator. For example, if the interrogator sends out a command requesting that all devices within a communications range identify themselves, and gets a large number of simultaneous replies, the interrogator may not be able to interpret any of these replies. Thus, arbitration schemes are employed to permit communications free of collisions.
- the interrogator sends a command causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number.
- the interrogator determines the arbitration number of every responder station capable of communicating at the same time. Therefore, the interrogator is able to conduct subsequent uninterrupted communication with devices, one at a time, by addressing only one device.
- Aloha Another arbitration scheme is referred to as the Aloha or slotted Aloha scheme.
- This scheme is discussed in various references relating to communications, such as Digital Communications: Fundamentals and Applications, Bernard Sklar, published January 1988 by Prentice Hall.
- a device will respond to an interrogator using one of many time domain slots selected randomly by the device.
- a problem with the Aloha scheme is that if there are many devices, or potentially many devices in the field (i.e. in communications range, capable of responding) then there must be many available slots or many collisions will occur. Having many available slots slows down replies. If the magnitude of the number of devices in a field is unknown, then many slots are needed. This results in the system slowing down significantly because the reply time equals the number of slots multiplied by the time period required for one reply.
- the invention provides a wireless identification device configured to provide a signal to identify the device in response to an interrogation signal.
- One aspect of the invention provides a method of establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices.
- the method comprises utilizing a tree search method to establish communications without collision between the interrogator and individual ones of the multiple wireless identification devices.
- a search tree is defined for the tree search method.
- the tree has multiple levels respectively representing subgroups of the multiple wireless identification devices.
- the method further comprising starting the tree search at a selectable level of the search tree.
- the method further comprises determining the maximum possible number of wireless identification devices that could communicate with the interrogator, and selecting a level of the search tree based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator.
- the method further comprises starting the tree search at a level determined by taking the base two logarithm of the determined maximum possible number, wherein the level of the tree containing all subgroups is considered level zero, and lower levels are numbered consecutively.
- Another aspect of the invention provides a communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion.
- the respective wireless identification devices have a unique identification number.
- the interrogator is configured to employ a tree search technique to determine the unique identification numbers of the different wireless identification devices so as to be able to establish communications between the interrogator and individual ones of the multiple wireless identification devices without collision by multiple wireless identification devices attempting to respond to the interrogator at the same time.
- the interrogator is configured to start the tree search at a selectable level of the search tree.
- a radio frequency identification device comprising an integrated circuit including a receiver, a transmitter, and a microprocessor.
- the integrated circuit is a monolithic single die single metal layer integrated circuit including the receiver, the transmitter, and the microprocessor.
- the device of this embodiment includes an active transponder, instead of a transponder which relies on magnetic coupling for power, and therefore has a much greater range.
- FIG. 1 is a high level circuit schematic showing an interrogator and a radio frequency identification device embodying the invention.
- FIG. 2 is a front view of a housing, in the form of a badge or card, supporting the circuit of FIG. 1 according to one embodiment the invention.
- FIG. 3 is a front view of a housing supporting the circuit of FIG. 1 according to another embodiment of the invention.
- FIG. 4 is a diagram illustrating a tree splitting sort method for establishing communication with a radio frequency identification device in a field of a plurality of such devices.
- FIG. 5 is a diagram illustrating a modified tree splitting sort method for establishing communication with a radio frequency identification device in a field of a plurality of such devices.
- FIG. 1 illustrates a wireless identification device 12 in accordance with one embodiment of the invention.
- the wireless identification device is a radio frequency data communication device 12 , and includes RFID circuitry 16 .
- the device 12 further includes at least one antenna 14 connected to the circuitry 16 for wireless or radio frequency transmission and reception by the circuitry 16 .
- the RFID circuitry is defined by an integrated circuit as described in the above-incorporated patent application Ser. No. 08/705,043, filed Aug. 29, 1996, now U.S. Pat. No. 6,130,602. Other embodiments are possible.
- a power source or supply 18 is connected to the integrated circuit 16 to supply power to the integrated circuit 16 .
- the power source 18 comprises a battery.
- the device 12 transmits and receives radio frequency communications to and from an interrogator 26 .
- An exemplary interrogator is described in commonly assigned U.S. patent application Ser. No. 08/907,689, filed Aug. 8, 1997 and, now U.S. Pat. No. 6,289,209, which is incorporated herein by reference.
- the interrogator 26 includes an antenna 28 , as well as dedicated transmitting and receiving circuitry, similar to that implemented on the integrated circuit 16 .
- the interrogator 26 transmits an interrogation signal or command 27 via the antenna 28 .
- the device 12 receives the incoming interrogation signal via its antenna 14 .
- the device 12 responds by generating and transmitting a responsive signal or reply 29 .
- the responsive signal 29 typically includes information that uniquely identifies, or labels the particular device 12 that is transmitting, so as to identify any object or person with which the device 12 is associated.
- FIG. 1 Although only one device 12 is shown in FIG. 1 , typically there will be multiple devices 12 that correspond with the interrogator 26 , and the particular devices 12 that are in communication with the interrogator 26 will typically change over time. In the illustrated embodiment in FIG. 1 , there is no communication between multiple devices 12 . Instead, the devices 12 respectively communicate with the interrogator 26 . Multiple devices 12 can be used in the same field of an interrogator 26 (i.e., within communications range of an interrogator 26 ).
- the radio frequency data communication device 12 can be included in any appropriate housing or packaging.
- Various methods of manufacturing housings are described in commonly assigned U.S. patent application Ser. No. 08/800,037, filed Feb. 13, 1997, and now U.S. Pat. No. 5,988,510, which is incorporated herein by reference.
- FIG. 2 shows but one embodiment in the form of a card or badge 19 including a housing 11 of plastic or other suitable material supporting the device 12 and the power supply 18 .
- the front face of the badge has visual identification features such as graphics, text, information found on identification or credit cards, etc.
- FIG. 3 illustrates but one alternative housing supporting the device 12 . More particularly, FIG. 3 shows a miniature housing 20 encasing the device 12 and power supply 18 to define a tag which can be supported by an object (e.g., hung from an object, affixed to an object, etc.). Although two particular types of housings have been disclosed, the device 12 can be included in any appropriate housing.
- the battery can take any suitable form.
- the battery type will be selected depending on weight, size, and life requirements for a particular application.
- the battery 18 is a thin profile button-type cell forming a small, thin energy cell more commonly utilized in watches and small electronic devices requiring a thin profile.
- a conventional button-type cell has a pair of electrodes, an anode formed by one face and a cathode formed by an opposite face.
- the power source 18 comprises a series connected pair of button type cells.
- any suitable power source can be employed.
- the circuitry 16 further includes a backscatter transmitter and is configured to provide a responsive signal to the interrogator 26 by radio frequency. More particularly, the circuitry 16 includes a transmitter, a receiver, and memory such as is described in U.S. patent application Ser. No. 08/705,043, now U.S. Pat. No. 6,130,602.
- the interrogator 26 communicates with the devices 12 via an electromagnetic link, such as via an RF link (e.g., at microwave frequencies, in one embodiment), so all transmissions by the interrogator 26 are heard simultaneously by all devices 12 within range.
- an electromagnetic link such as via an RF link (e.g., at microwave frequencies, in one embodiment)
- the interrogator 26 sends out a command requesting that all devices 12 within range identify themselves, and gets a large number of simultaneous replies, the interrogator 26 may not be able to interpret any of these replies. Therefore, arbitration schemes are provided.
- the interrogator 26 can specify that a response is requested only from the device 12 with that identification number.
- the interrogator 26 To target a command at a specific device 12 , (i.e., to initiate point-on-point communication), the interrogator 26 must send a number identifying a specific device 12 along with the command. At start-up, or in a new or changing environment, these identification numbers are not known by the interrogator 26 . Therefore, the interrogator 26 must identify all devices 12 in the field (within communication range) such as by determining the identification numbers of the devices 12 in the field. After this is accomplished, point-to-point communication can proceed as desired by the interrogator 26 .
- RFID systems are a type of multiaccess communication system.
- the distance between the interrogator 26 and devices 12 within the field is typically fairly short (e.g., several meters), so packet transmission time is determined primarily by packet size and baud rate. Propagation delays are negligible.
- packet transmission time is determined primarily by packet size and baud rate. Propagation delays are negligible.
- the inventors have determined that the use of random access methods work effectively for contention resolution (i.e., for dealing with collisions between devices 12 attempting to respond to the interrogator 26 at the same time).
- RFID systems have some characteristics that are different from other communications systems.
- one characteristic of the illustrated RFID systems is that the devices 12 never communicate without being prompted by the interrogator 26 . This is in contrast to typical multiaccess systems where the transmitting units operate more independently.
- contention for the communication medium is short lived as compared to the ongoing nature of the problem in other multiaccess systems.
- the interrogator can communicate with them in a point-to-point fashion.
- arbitration in a RFID system is a transient rather than steady-state phenomenon.
- the capability of a device 12 is limited by practical restrictions on size, power, and cost. The lifetime of a device 12 can often be measured in terms of number of transmissions before battery power is lost. Therefore, one of the most important measures of system performance in RFID arbitration is total time required to arbitrate a set of devices 12 . Another measure is power consumed by the devices 12 during the process. This is in contrast to the measures of throughput and packet delay in other types of multiaccess systems.
- FIG. 4 illustrates one arbitration scheme that can be employed for communication between the interrogator and devices 12 .
- the interrogator 26 sends a command causing each device 12 of a potentially large number of responding devices 12 to select a random number from a known range and use it as that device's arbitration number.
- the interrogator 26 determines the arbitration number of every responder station capable of communicating at the same time. Therefore, the interrogator 26 is able to conduct subsequent uninterrupted communication with devices 12 , one at a time, by addressing only one device 12 .
- the interrogator sends an Identify command (IdentifyCmnd) causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number.
- the interrogator sends an arbitration value (AVALUE) and an arbitration mask (AMASK) to a set of devices 12 .
- sixteen bits are used for AVALUE and AMASK.
- Other numbers of bits can also be employed depending, for example, on the number of devices 12 expected to be encountered in a particular application, on desired cost points, etc.
- the interrogator sets AVALUE to 0000 (or “don't care” for all bits, as indicated by the character “X” in FIG. 4 ) and AMASK to 0000.
- the interrogator transmits a command to all devices 12 requesting that they identify themselves.
- AMASK is 0000 and anything bitwise ANDed with all zeros results in all zeros, so both the devices 12 in the field respond, and there is a collision.
- the interrogator sets AMASK to 0001 and AVALUE to 0000 and transmits an identify command.
- the left side equals the right side, so the equation is true for the device 12 with the random value of 1100.
- the left side equals the right side, so the equation is true for the device 12 with the random value of 1010. Because the equation is true for both devices 12 in the field, both devices 12 in the field respond, and there is another collision.
- the interrogator next sets AMASK to 0011 with AVALUE still at 0000 and transmits an Identify command.
- the left side equals the right side, so the equation is true for the device 12 with the random value of 1100, so this device 12 responds.
- the left side does not equal the right side, so the equation is false for the device 12 with the random value of 1010, and this device 12 does not respond. Therefore, there is no collision, and the interrogator can determine the identity (e.g., an identification number) for the device 12 that does respond.
- the identity e.g., an identification number
- De-recursion takes place, and the devices 12 to the right for the same AMASK level are accessed when AVALUE is set at 0010, and AMASK is set to 0011.
- the right side equals the left side, so the equation is true for the device 12 with the random value of 1010. Because there are no other devices 12 in the subtree, a good reply is returned by the device 12 with the random value of 1010. There is no collision, and the interrogator 26 can determine the identity (e.g., an identification number) for the device 12 that does respond.
- identity e.g., an identification number
- recursion what is meant is that a function makes a call to itself. In other words, the function calls itself within the body of the function. After the called function returns, de-recursion takes place and execution continues at the place just after the function call; i.e. at the beginning of the statement after the function call.
- Arbitrate(AMASK, AVALUE) ⁇ collision IdentifyCmnd(AMASK, AVALUE) if (collision) then ⁇ /* recursive call for left side */ Arbitrate((AMASK>>1)+1, AVALUE) /* recursive call for right side */ Arbitrate((AMASK>>1)+1, AVALUE+(AMASK+1)) ⁇ /* endif */ ⁇ /* return */
- the routine generates values for AMASK and AVALUE to be used by the interrogator in an identify command “IdentifyCmnd.” Note that the routine calls itself if there is a collision. De-recursion occurs when there is no collision. AVALUE and AMASK would have values such as the following assuming collisions take place all the way down to the bottom of the tree.
- This method is referred to as a splitting method. It works by splitting groups of colliding devices 12 into subsets that are resolved in turn.
- the splitting method can also be viewed as a type of tree search. Each split moves the method one level deeper in the tree.
- Depth first traversals are performed by using recursion, as is employed in the code listed above.
- Breadth-first traversals are accomplished by using a queue instead of recursion. The following is an example of code for performing a breadth-first traversal.
- AVALUE and AMASK would have values such as those indicated in the following table for such code.
- Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”.
- FIG. 5 illustrates an embodiment wherein the interrogator 26 starts the tree search at a selectable level of the search tree.
- the search tree has a plurality of nodes 51 , 52 , 53 , 54 etc. at respective levels.
- the size of subgroups of random values decrease in size by half with each node descended.
- the upper bound of the number of devices 12 in the field (the maximum possible number of devices that could communicate with the interrogator) is determined, and the tree search method is started at a level 32 , 34 , 36 , 38 , or 40 in the tree depending on the determined upper bound.
- the maximum number of devices 12 potentially capable of responding to the interrogator is determined manually and input into the interrogator 26 via an input device such as a keyboard, graphical user interface, mouse, or other interface.
- the level of the search tree on which to start the tree search is selected based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator.
- the tree search is started at a level determined by taking the base two logarithm of the determined maximum possible number. More particularly, the tree search is started at a level determined by taking the base two logarithm of the power of two nearest the determined maximum possible number of devices 12 .
- the level of the tree containing all subgroups of random values is considered level zero (see FIG. 5 ), and lower levels are numbered 1 , 2 , 3 , 4 , etc. consecutively.
- the number of collisions is reduced, the battery life of the devices 12 is increased, and arbitration time is reduced.
- AVALUE and AMASK would have values such as the following assuming collisions take place from level 3 all the way down to the bottom of the tree.
- Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”.
- the interrogator transmits a command requesting devices 12 having random values RV within a specified group of random values to respond, the specified group being chosen in response to the determined maximum number.
- Devices 12 receiving the command respectively determine if their chosen random values fall within the specified group and, if so, send a reply to the interrogator.
- the interrogator determines if a collision occurred between devices that sent a reply and, if so, creates a new, smaller, specified group, descending in the tree, as described above in connection with FIG. 4 .
- Aloha Another arbitration method that can be employed is referred to as the “Aloha” method.
- Aloha every time a device 12 is involved in a collision, it waits a random period of time before retransmitting. This method can be improved by dividing time into equally sized slots and forcing transmissions to be aligned with one of these slots. This is referred to as “slotted Aloha.”
- the interrogator asks all devices 12 in the field to transmit their identification numbers in the next time slot. If the response is garbled, the interrogator informs the devices 12 that a collision has occurred, and the slotted Aloha scheme is put into action. This means that each device 12 in the field responds within an arbitrary slot determined by a randomly selected value. In other words, in each successive time slot, the devices 12 decide to transmit their identification number with a certain probability.
- the Aloha method is based on a system operated by the University of Hawaii. In 1971, the University of Hawaii began operation of a system named Aloha.
- a communication satellite was used to interconnect several university computers by use of a random access protocol.
- the system operates as follows. Users or devices transmit at any time they desire. After transmitting, a user listens for an acknowledgment from the receiver or interrogator. Transmissions from different users will sometimes overlap in time (collide), causing reception errors in the data in each of the contending messages. The errors are detected by the receiver, and the receiver sends a negative acknowledgment to the users. When a negative acknowledgment is received, the messages are retransmitted by the colliding users after a random delay. If the colliding users attempted to retransmit without the random delay, they would collide again. If the user does not receive either an acknowledgment or a negative acknowledgment within a certain amount of time, the user “times out” and retransmits the message.
- slotted Aloha There is a scheme known as slotted Aloha which improves the Aloha scheme by requiring a small amount of coordination among stations.
- a sequence of coordination pulses is broadcast to all stations (devices).
- packet lengths are constant. Messages are required to be sent in a slot time between synchronization pulses, and can be started only at the beginning of a time slot. This reduces the rate of collisions because only messages transmitted in the same slot can interfere with one another.
- the retransmission mode of the pure Aloha scheme is modified for slotted Aloha such that if a negative acknowledgment occurs, the device retransmits after a random delay of an integer number of slot times.
- an Aloha method (such as the method described in the commonly assigned patent application mentioned above) is combined with determining the upper bound on a set of devices and starting at a level in the tree depending on the determined upper bound, such as by combining an Aloha method with the method shown and described in connection with FIG. 5 .
- devices 12 sending a reply to the interrogator 26 do so within a randomly selected time slot of a number of slots.
- levels of the search tree are skipped. Skipping levels in the tree, after a collision caused by multiple devices 12 responding, reduces the number of subsequent collisions without adding significantly to the number of no replies. In real-time systems, it is desirable to have quick arbitration sessions on a set of devices 12 whose unique identification numbers are unknown. Level skipping reduces the number of collisions, both reducing arbitration time and conserving battery life on a set of devices 12 . In one embodiment, every other level is skipped. In alternative embodiments, more than one level is skipped each time.
- Skipping levels reduces the number of collisions, thus saving battery power in the devices 12 . Skipping deeper (skipping more than one level) further reduces the number of collisions. The more levels that are skipped, the greater the reduction in collisions. However, skipping levels results in longer search times because the number of queries (Identify commands) increases. The more levels that are skipped, the longer the search times. Skipping just one level has an almost negligible effect on search time, but drastically reduces the number of collisions. If more than one level is skipped, search time increases substantially. Skipping every other level drastically reduces the number of collisions and saves battery power without significantly increasing the number of queries.
- a level skipping method is combined with determining the upper bound on a set of devices and starting at a level in the tree depending on the determined upper bound, such as by combining a level skipping method with the method shown and described in connection with FIG. 5 .
- both a level skipping method and an Aloha method are combined with the method shown and described in connection with FIG. 5 .
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mobile Radio Communication Systems (AREA)
- Image Processing (AREA)
Abstract
Description
Arbitrate(AMASK, AVALUE) |
{ |
collision=IdentifyCmnd(AMASK, AVALUE) |
if (collision) then |
{ |
/* recursive call for left side */ |
Arbitrate((AMASK>>1)+1, AVALUE) |
/* recursive call for right side */ |
Arbitrate((AMASK>>1)+1, AVALUE+(AMASK+1)) |
} /* endif */ |
}/* return */ |
| AMASK | ||
0000 | 0000 | ||
0000 | 0001 | ||
0000 | 0011 | ||
0000 | 0111 | ||
0000 | 1111* | ||
1000 | 1111* | ||
0100 | 0111 | ||
0100 | 1111* | ||
1100 | 1111* | ||
| AMASK | ||
0000 | 0000 | ||
0000 | 0001 | ||
0000 | 0011* | ||
0010 | 0011 | ||
. . . | . . . | ||
Arbitrate(AMASK, AVALUE) | |
{ | |
enqueue(0,0) | |
while (queue != empty) | |
(AMASK,AVALUE) = dequeue( ) | |
collision=IdentifyCmnd(AMASK, AVALUE) | |
if (collision) then | |
{ | |
TEMP = AMASK+1 | |
NEW_AMASK = (AMASK>>1)+1 | |
enqueue(NEW_AMASK, AVALUE) | |
enqueue(NEW_AMASK, AVALUE+TEMP) | |
} /* endif */ | |
endwhile | |
}/* return */ | |
| AMASK | ||
0000 | 0000 | ||
0000 | 0001 | ||
0001 | 0001 | ||
0000 | 0011 | ||
0010 | 0011 | ||
0001 | 0011 | ||
0011 | 0011 | ||
0000 | 0111 | ||
0100 | 0111 | ||
. . . | . . . | ||
| AMASK | ||
0000 | 0111 | ||
0000 | 1111* | ||
1000 | 1111* | ||
0100 | 0111 | ||
0100 | 1111* | ||
1100 | 1111* | ||
Claims (123)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/859,360 USRE42900E1 (en) | 1998-02-19 | 2007-09-21 | Method of addressing messages and communications systems |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/026,043 US6118789A (en) | 1998-02-19 | 1998-02-19 | Method of addressing messages and communications system |
US09/617,390 US6307847B1 (en) | 1998-02-19 | 2000-07-17 | Method of addressing messages and communications systems |
US10/693,696 USRE41530E1 (en) | 1998-02-19 | 2003-10-23 | Method and apparatus to select radio frequency identification devices in accordance with an arbitration scheme |
US11/859,360 USRE42900E1 (en) | 1998-02-19 | 2007-09-21 | Method of addressing messages and communications systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/617,390 Reissue US6307847B1 (en) | 1998-02-19 | 2000-07-17 | Method of addressing messages and communications systems |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE42900E1 true USRE42900E1 (en) | 2011-11-08 |
Family
ID=21829559
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/026,043 Expired - Lifetime US6118789A (en) | 1997-10-17 | 1998-02-19 | Method of addressing messages and communications system |
US09/234,396 Expired - Lifetime US6233369B1 (en) | 1997-10-17 | 1999-01-20 | Morphology processing apparatus and method |
US09/617,390 Ceased US6307847B1 (en) | 1998-02-19 | 2000-07-17 | Method of addressing messages and communications systems |
US10/693,696 Expired - Lifetime USRE41530E1 (en) | 1998-02-19 | 2003-10-23 | Method and apparatus to select radio frequency identification devices in accordance with an arbitration scheme |
US11/859,360 Expired - Lifetime USRE42900E1 (en) | 1998-02-19 | 2007-09-21 | Method of addressing messages and communications systems |
US11/859,364 Expired - Lifetime USRE41531E1 (en) | 1998-02-19 | 2007-09-21 | Communications systems for radio frequency identification (RFID) |
US12/493,542 Expired - Lifetime USRE43254E1 (en) | 1998-02-19 | 2009-06-29 | Method of addressing messages and communications systems |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/026,043 Expired - Lifetime US6118789A (en) | 1997-10-17 | 1998-02-19 | Method of addressing messages and communications system |
US09/234,396 Expired - Lifetime US6233369B1 (en) | 1997-10-17 | 1999-01-20 | Morphology processing apparatus and method |
US09/617,390 Ceased US6307847B1 (en) | 1998-02-19 | 2000-07-17 | Method of addressing messages and communications systems |
US10/693,696 Expired - Lifetime USRE41530E1 (en) | 1998-02-19 | 2003-10-23 | Method and apparatus to select radio frequency identification devices in accordance with an arbitration scheme |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/859,364 Expired - Lifetime USRE41531E1 (en) | 1998-02-19 | 2007-09-21 | Communications systems for radio frequency identification (RFID) |
US12/493,542 Expired - Lifetime USRE43254E1 (en) | 1998-02-19 | 2009-06-29 | Method of addressing messages and communications systems |
Country Status (1)
Country | Link |
---|---|
US (7) | US6118789A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8645222B1 (en) | 2009-03-20 | 2014-02-04 | Jpmorgan Chase Bank, N.A. | System and methods for mobile ordering and payment |
US9014077B2 (en) | 1998-02-19 | 2015-04-21 | Round Rock Research, Llc | Methods and apparatus for conducting financial transactions |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2319698B (en) * | 1996-11-21 | 2001-08-08 | Motorola Inc | Method for communicating with a plurality of contactless data carriers and contactless data carrier for use therein |
US6118789A (en) | 1998-02-19 | 2000-09-12 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6072801A (en) | 1998-02-19 | 2000-06-06 | Micron Technology, Inc. | Method of addressing messages, method of establishing wireless communications, and communications system |
USRE43382E1 (en) | 1998-02-19 | 2012-05-15 | Round Rock Research, Llc | Method of addressing messages and communications systems |
US6061344A (en) | 1998-02-19 | 2000-05-09 | Micron Technology, Inc. | Method of addressing messages and communications system |
US8538801B2 (en) | 1999-02-19 | 2013-09-17 | Exxonmobile Research & Engineering Company | System and method for processing financial transactions |
WO2001003311A1 (en) * | 1999-07-06 | 2001-01-11 | Swisscom Mobile Ag | Portable radio receiver with an identification module |
JPWO2002041158A1 (en) * | 2000-11-20 | 2004-03-25 | 松下電器産業株式会社 | Non-contact reader / writer, information communication system using the same, and management system using the same |
US20020111702A1 (en) * | 2001-02-15 | 2002-08-15 | Angel Jeffrey R. | Factory personnel monitors |
US6988667B2 (en) | 2001-05-31 | 2006-01-24 | Alien Technology Corporation | Methods and apparatuses to identify devices |
US7193504B2 (en) * | 2001-10-09 | 2007-03-20 | Alien Technology Corporation | Methods and apparatuses for identification |
US20050175253A1 (en) * | 2002-01-22 | 2005-08-11 | National University Of Singapore | Method for producing cloud free and cloud-shadow free images |
US6933849B2 (en) | 2002-07-09 | 2005-08-23 | Fred Sawyer | Method and apparatus for tracking objects and people |
AU2003285901B2 (en) * | 2002-10-18 | 2009-03-05 | Symbol Technologies, Inc. | Method for the efficient reading of a population of radio frequency identification tags with unique identification numbers over a noisy air channel |
JP2004259123A (en) * | 2003-02-27 | 2004-09-16 | Nec Micro Systems Ltd | Rfid (radio frequency identification) system and program for rfid |
US8102244B2 (en) | 2003-08-09 | 2012-01-24 | Alien Technology Corporation | Methods and apparatuses to identify devices |
US7119664B2 (en) * | 2003-09-17 | 2006-10-10 | Id Solutions, Inc. | Deep sleep in an RFID tag |
US7716160B2 (en) | 2003-11-07 | 2010-05-11 | Alien Technology Corporation | Methods and apparatuses to identify devices |
US7362212B2 (en) * | 2004-09-24 | 2008-04-22 | Battelle Memorial Institute | Communication methods, systems, apparatus, and devices involving RF tag registration |
AU2005330521B2 (en) | 2005-04-07 | 2009-10-29 | Freedom Shopping, Inc. | Self checkout kiosk and retail security system |
WO2006115374A1 (en) * | 2005-04-25 | 2006-11-02 | Lg Electronics Inc. | Reader control system |
JP4696008B2 (en) * | 2006-03-20 | 2011-06-08 | 富士通株式会社 | IP transmission apparatus and IP transmission method |
US8427315B2 (en) * | 2006-03-29 | 2013-04-23 | Impinj, Inc. | Ahead-of-time scheduling of commands in RFID reader systems |
US7924141B2 (en) * | 2006-12-01 | 2011-04-12 | Round Rock Research, Llc | RFID communication systems and methods, and RFID readers and systems |
NZ577712A (en) * | 2007-01-11 | 2011-04-29 | Freedom Shopping Inc | Checking distance and direction of rfid tag to determine theft |
US7973644B2 (en) | 2007-01-30 | 2011-07-05 | Round Rock Research, Llc | Systems and methods for RFID tag arbitration where RFID tags generate multiple random numbers for different arbitration sessions |
US8446258B2 (en) | 2007-02-21 | 2013-05-21 | Impinj, Inc. | Causing RFID tag to change how many remaining commands it will comply with |
US8181865B2 (en) * | 2007-04-24 | 2012-05-22 | Freedom Shopping, Inc. | Radio frequency identification point of sale unassisted retail transaction and digital media kiosk |
US8134452B2 (en) * | 2007-05-30 | 2012-03-13 | Round Rock Research, Llc | Methods and systems of receiving data payload of RFID tags |
US8384522B2 (en) * | 2008-09-03 | 2013-02-26 | Commscope, Inc. Of North Carolina | Radio frequency identification triangulation systems for communications patching systems and related methods of determining patch cord connectivity information |
US9893406B2 (en) | 2009-08-19 | 2018-02-13 | Vubiq Networks, Inc. | Method of forming a waveguide interface by providing a mold to form a support block of the interface |
CN102625962B (en) | 2009-08-19 | 2014-10-15 | 伍比克公司 | Precision waveguide interface |
JP5703769B2 (en) * | 2011-01-19 | 2015-04-22 | ソニー株式会社 | Image conversion apparatus, image conversion method, program, and electronic apparatus |
US9449265B1 (en) * | 2011-08-02 | 2016-09-20 | Impinj International Ltd. | RFID tags with port-dependent functionality |
US9780435B2 (en) | 2011-12-05 | 2017-10-03 | Adasa Inc. | Aerial inventory antenna |
US10846497B2 (en) | 2011-12-05 | 2020-11-24 | Adasa Inc. | Holonomic RFID reader |
US9747480B2 (en) | 2011-12-05 | 2017-08-29 | Adasa Inc. | RFID and robots for multichannel shopping |
US11093722B2 (en) | 2011-12-05 | 2021-08-17 | Adasa Inc. | Holonomic RFID reader |
US10050330B2 (en) | 2011-12-05 | 2018-08-14 | Adasa Inc. | Aerial inventory antenna |
US10476130B2 (en) | 2011-12-05 | 2019-11-12 | Adasa Inc. | Aerial inventory antenna |
US9646185B2 (en) * | 2012-01-30 | 2017-05-09 | Nxp B.V. | System and method for managing RFID tags |
EP2817986B1 (en) | 2012-02-23 | 2017-11-29 | Intel Corporation | Peer-based collaborative discovery and signaling of another device in limited-signal areas |
US9342974B2 (en) * | 2012-04-13 | 2016-05-17 | Intel Corporation | Autonomous aggregated search platform and methods using the same |
GB2536310B (en) * | 2015-03-09 | 2017-11-15 | Cirrus Logic Int Semiconductor Ltd | Identification of modules on a bus |
RU2657185C1 (en) | 2017-09-13 | 2018-06-08 | Самсунг Электроникс Ко., Лтд. | High frequency local positioning system |
US10818997B2 (en) | 2017-12-29 | 2020-10-27 | Vubiq Networks, Inc. | Waveguide interface and printed circuit board launch transducer assembly and methods of use thereof |
Citations (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075632A (en) | 1974-08-27 | 1978-02-21 | The United States Of America As Represented By The United States Department Of Energy | Interrogation, and detection system |
US4761778A (en) | 1985-04-11 | 1988-08-02 | Massachusetts Institute Of Technology | Coder-packetizer for random accessing in digital communication with multiple accessing |
US4796023A (en) | 1986-12-05 | 1989-01-03 | King Robert E | Stabilized binary tree protocol |
US4799059A (en) | 1986-03-14 | 1989-01-17 | Enscan, Inc. | Automatic/remote RF instrument monitoring system |
US4845504A (en) | 1987-04-08 | 1989-07-04 | M/A-Com, Inc. | Mobile radio network for nationwide communications |
US4862453A (en) | 1986-10-03 | 1989-08-29 | The Marconi Company Limited | Communication system |
US4926182A (en) | 1986-05-30 | 1990-05-15 | Sharp Kabushiki Kaisha | Microwave data transmission apparatus |
US4955018A (en) | 1987-11-10 | 1990-09-04 | Echelon Systems Corporation | Protocol for network having plurality of intelligent cells |
US4969146A (en) | 1987-11-10 | 1990-11-06 | Echelon Systems Corporation | Protocol for network having a plurality of intelligent cells |
US5019813A (en) | 1987-04-13 | 1991-05-28 | N.V. Nederlandsche Apparatenfabriek Nedap | System for the contactless exchange of data |
US5025486A (en) | 1988-12-09 | 1991-06-18 | Dallas Semiconductor Corporation | Wireless communication system with parallel polling |
US5046066A (en) | 1987-02-09 | 1991-09-03 | Telesystems Slw Inc. | Wireless local area network |
US5055968A (en) | 1988-07-04 | 1991-10-08 | Sony Corporation | Thin electronic device having an integrated circuit chip and a power battery and a method for producing same |
US5121407A (en) | 1990-09-27 | 1992-06-09 | Pittway Corporation | Spread spectrum communications system |
US5124697A (en) | 1989-10-16 | 1992-06-23 | Motorola, Inc. | Acknowledge-back pager |
US5142694A (en) | 1989-07-24 | 1992-08-25 | Motorola, Inc. | Reporting unit |
US5144668A (en) | 1991-01-25 | 1992-09-01 | Motorola, Inc. | Signal overlap detection in a communication system |
US5144313A (en) | 1988-10-27 | 1992-09-01 | Steffen Kirknes | Method for processing transmitted and reflected signals for removing unwanted signals and noise from wanted signals |
US5150310A (en) | 1989-08-30 | 1992-09-22 | Consolve, Inc. | Method and apparatus for position detection |
US5150114A (en) | 1989-11-10 | 1992-09-22 | U.S. Philips Corporation | Polling-type information transmission system |
US5164985A (en) | 1987-10-27 | 1992-11-17 | Nysen Paul A | Passive universal communicator system |
US5168510A (en) | 1984-03-06 | 1992-12-01 | Comsource Systems | Spread spectrum-time diversity communications systems and transceivers for multidrop area networks |
US5194860A (en) | 1989-11-16 | 1993-03-16 | The General Electric Company, P.L.C. | Radio telemetry systems with channel selection |
US5231646A (en) | 1992-03-16 | 1993-07-27 | Kyros Corporation | Communications system |
US5266925A (en) | 1991-09-30 | 1993-11-30 | Westinghouse Electric Corp. | Electronic identification tag interrogation method |
US5307463A (en) | 1990-03-08 | 1994-04-26 | Allen-Bradley Company, Inc. | Programmable controller communication module |
US5365551A (en) | 1992-12-15 | 1994-11-15 | Micron Technology, Inc. | Data communication transceiver using identification protocol |
US5373503A (en) | 1993-04-30 | 1994-12-13 | Information Technology, Inc. | Group randomly addressed polling method |
US5449296A (en) | 1994-03-07 | 1995-09-12 | Cabel-Con, Inc. Usa | Cable connector apparatus for preventing radiation leakage |
US5461627A (en) | 1991-12-24 | 1995-10-24 | Rypinski; Chandos A. | Access protocol for a common channel wireless network |
US5479416A (en) | 1993-09-30 | 1995-12-26 | Micron Technology, Inc. | Apparatus and method for error detection and correction in radio frequency identification device |
US5500650A (en) | 1992-12-15 | 1996-03-19 | Micron Technology, Inc. | Data communication method using identification protocol |
US5530702A (en) | 1994-05-31 | 1996-06-25 | Ludwig Kipp | System for storage and communication of information |
US5550547A (en) | 1994-09-12 | 1996-08-27 | International Business Machines Corporation | Multiple item radio frequency tag identification protocol |
US5619648A (en) | 1994-11-30 | 1997-04-08 | Lucent Technologies Inc. | Message filtering techniques |
US5621412A (en) | 1994-04-26 | 1997-04-15 | Texas Instruments Incorporated | Multi-stage transponder wake-up, method and structure |
US5625628A (en) | 1995-03-15 | 1997-04-29 | Hughes Electronics | Aloha optimization |
US5640151A (en) | 1990-06-15 | 1997-06-17 | Texas Instruments Incorporated | Communication system for communicating with tags |
EP0779520A2 (en) | 1995-12-12 | 1997-06-18 | AT&T Corp. | Enhanced uplink modulated backscatter system |
US5649296A (en) | 1995-06-19 | 1997-07-15 | Lucent Technologies Inc. | Full duplex modulated backscatter system |
WO1997048216A3 (en) | 1996-06-10 | 1998-02-12 | At & T Wireless Serivces Inc | Registration of mobile packet data terminals after disaster |
US5790946A (en) | 1993-07-15 | 1998-08-04 | Rotzoll; Robert R. | Wake up device for a communications system |
US5805586A (en) | 1995-05-02 | 1998-09-08 | Motorola Inc. | Method, device and data communication system for multilink polling |
US5914671A (en) | 1997-02-27 | 1999-06-22 | Micron Communications, Inc. | System and method for locating individuals and equipment, airline reservation system, communication system |
US5936560A (en) | 1996-12-04 | 1999-08-10 | Fujitsu Limited | Data compression method and apparatus performing high-speed comparison between data stored in a dictionary window and data to be compressed |
US5942987A (en) | 1994-09-09 | 1999-08-24 | Intermec Ip Corp. | Radio frequency identification system with write broadcast capability |
WO1999043127A1 (en) | 1998-02-19 | 1999-08-26 | Micron Communications, Inc. | Method of identifying wireless units |
US5952922A (en) | 1996-12-31 | 1999-09-14 | Lucent Technologies Inc. | In-building modulated backscatter system |
US5966471A (en) | 1997-12-23 | 1999-10-12 | United States Of America | Method of codebook generation for an amplitude-adaptive vector quantization system |
US5974078A (en) | 1993-03-17 | 1999-10-26 | Micron Technology, Inc. | Modulated spread spectrum in RF identification systems method |
US5988510A (en) | 1997-02-13 | 1999-11-23 | Micron Communications, Inc. | Tamper resistant smart card and method of protecting data in a smart card |
US6038455A (en) | 1995-09-25 | 2000-03-14 | Cirrus Logic, Inc. | Reverse channel reuse scheme in a time shared cellular communication system |
US6061344A (en) | 1998-02-19 | 2000-05-09 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6072801A (en) | 1998-02-19 | 2000-06-06 | Micron Technology, Inc. | Method of addressing messages, method of establishing wireless communications, and communications system |
US6075973A (en) | 1998-05-18 | 2000-06-13 | Micron Technology, Inc. | Method of communications in a backscatter system, interrogator, and backscatter communications system |
US6097292A (en) * | 1997-04-01 | 2000-08-01 | Cubic Corporation | Contactless proximity automated data collection system and method |
US6104333A (en) | 1996-12-19 | 2000-08-15 | Micron Technology, Inc. | Methods of processing wireless communication, methods of processing radio frequency communication, and related systems |
US6118789A (en) | 1998-02-19 | 2000-09-12 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6130623A (en) | 1996-12-31 | 2000-10-10 | Lucent Technologies Inc. | Encryption for modulated backscatter systems |
US6130602A (en) * | 1996-05-13 | 2000-10-10 | Micron Technology, Inc. | Radio frequency data communications device |
US6150921A (en) * | 1996-10-17 | 2000-11-21 | Pinpoint Corporation | Article tracking system |
US6169474B1 (en) | 1998-04-23 | 2001-01-02 | Micron Technology, Inc. | Method of communications in a backscatter system, interrogator, and backscatter communications system |
US6177858B1 (en) * | 1995-12-01 | 2001-01-23 | Pierre Raimbault | Method for remotely interrogating tags, and station and tag implementing said method |
US6185307B1 (en) | 1997-07-16 | 2001-02-06 | Gilbarco Inc. | Cryptography security for remote dispenser transactions |
US6192222B1 (en) | 1998-09-03 | 2001-02-20 | Micron Technology, Inc. | Backscatter communication systems, interrogators, methods of communicating in a backscatter system, and backscatter communication methods |
US6216132B1 (en) | 1997-11-20 | 2001-04-10 | International Business Machines Corporation | Method and system for matching consumers to events |
US6243012B1 (en) * | 1996-12-31 | 2001-06-05 | Lucent Technologies Inc. | Inexpensive modulated backscatter reflector |
US6265962B1 (en) | 1997-09-03 | 2001-07-24 | Micron Technology, Inc. | Method for resolving signal collisions between multiple RFID transponders in a field |
US6289209B1 (en) | 1996-12-18 | 2001-09-11 | Micron Technology, Inc. | Wireless communication system, radio frequency communications system, wireless communications method, radio frequency communications method |
US6288629B1 (en) * | 1997-05-23 | 2001-09-11 | Intermec Ip Corp. | Method of using write—ok flag for radio frequency (RF) transponders (RF Tags) |
US6324211B1 (en) | 1998-04-24 | 2001-11-27 | Micron Technology, Inc. | Interrogators communication systems communication methods and methods of processing a communication signal |
US6415439B1 (en) * | 1997-02-04 | 2002-07-02 | Microsoft Corporation | Protocol for a wireless control system |
JP2002228809A (en) | 2001-02-01 | 2002-08-14 | Victor Co Of Japan Ltd | Color separation and composition optical system, and projection display device using the same |
US6459726B1 (en) | 1998-04-24 | 2002-10-01 | Micron Technology, Inc. | Backscatter interrogators, communication systems and backscatter communication methods |
US6566997B1 (en) | 1999-12-03 | 2003-05-20 | Hid Corporation | Interference control method for RFID systems |
US6570487B1 (en) | 1997-01-24 | 2003-05-27 | Axcess Inc. | Distributed tag reader system and method |
US20030235184A1 (en) | 2002-06-20 | 2003-12-25 | Dorenbosch Jheroen P. | Method and apparatus for speaker arbitration in a multi-participant communication session |
US6707376B1 (en) | 2002-08-09 | 2004-03-16 | Sensormatic Electronics Corporation | Pulsed power method for increased read range for a radio frequency identification reader |
US6714559B1 (en) | 1991-12-04 | 2004-03-30 | Broadcom Corporation | Redundant radio frequency network having a roaming terminal communication protocol |
US6778096B1 (en) * | 1997-11-17 | 2004-08-17 | International Business Machines Corporation | Method and apparatus for deploying and tracking computers |
US6784787B1 (en) | 1997-11-14 | 2004-08-31 | Btg International Limited | Identification system |
US6850510B2 (en) | 1995-10-05 | 2005-02-01 | Broadcom Corporation | Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones |
US20050060069A1 (en) | 1997-10-22 | 2005-03-17 | Breed David S. | Method and system for controlling a vehicle |
US20060022815A1 (en) | 2004-07-30 | 2006-02-02 | Fischer Jeffrey H | Interference monitoring in an RFID system |
US7026935B2 (en) | 2003-11-10 | 2006-04-11 | Impinj, Inc. | Method and apparatus to configure an RFID system to be adaptable to a plurality of environmental conditions |
US20070176751A1 (en) | 1994-09-09 | 2007-08-02 | Cesar Christian L | Multiple Item Radio Frequency Tag Identification Protocol |
US20080129485A1 (en) | 2006-12-01 | 2008-06-05 | Micron Technology, Inc. | RFID communication systems and methods, and RFID readers and systems |
US20080180221A1 (en) | 2007-01-30 | 2008-07-31 | Micron Technology, Inc. | Systems and methods for RFID tag arbitration |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4395697A (en) * | 1980-08-15 | 1983-07-26 | Environmental Research Institute Of Michigan | Off-image detection circuit for an image analyzer |
US4791675A (en) * | 1985-12-31 | 1988-12-13 | Schlumberger Systems And Services, Inc. | VSP Connectivity pattern recognition system |
US4797806A (en) * | 1987-02-19 | 1989-01-10 | Gtx Corporation | High speed serial pixel neighborhood processor and method |
US5091972A (en) * | 1990-09-17 | 1992-02-25 | Eastman Kodak Company | System and method for reducing digital image noise |
US5623624A (en) * | 1993-02-01 | 1997-04-22 | Micron Technology, Inc. | Memory control architecture for high speed transfer options |
JP4686288B2 (en) | 2005-07-25 | 2011-05-25 | キャストリップ・リミテッド・ライアビリティ・カンパニー | Casting roll |
-
1998
- 1998-02-19 US US09/026,043 patent/US6118789A/en not_active Expired - Lifetime
-
1999
- 1999-01-20 US US09/234,396 patent/US6233369B1/en not_active Expired - Lifetime
-
2000
- 2000-07-17 US US09/617,390 patent/US6307847B1/en not_active Ceased
-
2003
- 2003-10-23 US US10/693,696 patent/USRE41530E1/en not_active Expired - Lifetime
-
2007
- 2007-09-21 US US11/859,360 patent/USRE42900E1/en not_active Expired - Lifetime
- 2007-09-21 US US11/859,364 patent/USRE41531E1/en not_active Expired - Lifetime
-
2009
- 2009-06-29 US US12/493,542 patent/USRE43254E1/en not_active Expired - Lifetime
Patent Citations (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075632A (en) | 1974-08-27 | 1978-02-21 | The United States Of America As Represented By The United States Department Of Energy | Interrogation, and detection system |
US5168510A (en) | 1984-03-06 | 1992-12-01 | Comsource Systems | Spread spectrum-time diversity communications systems and transceivers for multidrop area networks |
US4761778A (en) | 1985-04-11 | 1988-08-02 | Massachusetts Institute Of Technology | Coder-packetizer for random accessing in digital communication with multiple accessing |
US4799059A (en) | 1986-03-14 | 1989-01-17 | Enscan, Inc. | Automatic/remote RF instrument monitoring system |
US4926182A (en) | 1986-05-30 | 1990-05-15 | Sharp Kabushiki Kaisha | Microwave data transmission apparatus |
US4862453A (en) | 1986-10-03 | 1989-08-29 | The Marconi Company Limited | Communication system |
US4796023A (en) | 1986-12-05 | 1989-01-03 | King Robert E | Stabilized binary tree protocol |
US5046066A (en) | 1987-02-09 | 1991-09-03 | Telesystems Slw Inc. | Wireless local area network |
US4845504A (en) | 1987-04-08 | 1989-07-04 | M/A-Com, Inc. | Mobile radio network for nationwide communications |
US5019813A (en) | 1987-04-13 | 1991-05-28 | N.V. Nederlandsche Apparatenfabriek Nedap | System for the contactless exchange of data |
US5164985A (en) | 1987-10-27 | 1992-11-17 | Nysen Paul A | Passive universal communicator system |
US4955018A (en) | 1987-11-10 | 1990-09-04 | Echelon Systems Corporation | Protocol for network having plurality of intelligent cells |
US4969146A (en) | 1987-11-10 | 1990-11-06 | Echelon Systems Corporation | Protocol for network having a plurality of intelligent cells |
US5055968A (en) | 1988-07-04 | 1991-10-08 | Sony Corporation | Thin electronic device having an integrated circuit chip and a power battery and a method for producing same |
US5144313A (en) | 1988-10-27 | 1992-09-01 | Steffen Kirknes | Method for processing transmitted and reflected signals for removing unwanted signals and noise from wanted signals |
US5025486A (en) | 1988-12-09 | 1991-06-18 | Dallas Semiconductor Corporation | Wireless communication system with parallel polling |
US5142694A (en) | 1989-07-24 | 1992-08-25 | Motorola, Inc. | Reporting unit |
US5150310A (en) | 1989-08-30 | 1992-09-22 | Consolve, Inc. | Method and apparatus for position detection |
US5124697A (en) | 1989-10-16 | 1992-06-23 | Motorola, Inc. | Acknowledge-back pager |
US5150114A (en) | 1989-11-10 | 1992-09-22 | U.S. Philips Corporation | Polling-type information transmission system |
US5194860A (en) | 1989-11-16 | 1993-03-16 | The General Electric Company, P.L.C. | Radio telemetry systems with channel selection |
US5307463A (en) | 1990-03-08 | 1994-04-26 | Allen-Bradley Company, Inc. | Programmable controller communication module |
US5640151A (en) | 1990-06-15 | 1997-06-17 | Texas Instruments Incorporated | Communication system for communicating with tags |
US5686902A (en) * | 1990-06-15 | 1997-11-11 | Texas Instruments Incorporated | Communication system for communicating with tags |
US5121407A (en) | 1990-09-27 | 1992-06-09 | Pittway Corporation | Spread spectrum communications system |
US5144668A (en) | 1991-01-25 | 1992-09-01 | Motorola, Inc. | Signal overlap detection in a communication system |
US5266925A (en) | 1991-09-30 | 1993-11-30 | Westinghouse Electric Corp. | Electronic identification tag interrogation method |
US6714559B1 (en) | 1991-12-04 | 2004-03-30 | Broadcom Corporation | Redundant radio frequency network having a roaming terminal communication protocol |
US5461627A (en) | 1991-12-24 | 1995-10-24 | Rypinski; Chandos A. | Access protocol for a common channel wireless network |
US5231646A (en) | 1992-03-16 | 1993-07-27 | Kyros Corporation | Communications system |
US5365551A (en) | 1992-12-15 | 1994-11-15 | Micron Technology, Inc. | Data communication transceiver using identification protocol |
US5500650A (en) | 1992-12-15 | 1996-03-19 | Micron Technology, Inc. | Data communication method using identification protocol |
US5627544A (en) | 1992-12-15 | 1997-05-06 | Micron Technology, Inc. | Data communication method using identification protocol |
US5841770A (en) | 1992-12-15 | 1998-11-24 | Micron Technology, Inc. | Data communication system using indentification protocol |
US5583850A (en) | 1992-12-15 | 1996-12-10 | Micron Technology, Inc. | Data communication system using identification protocol |
US5974078A (en) | 1993-03-17 | 1999-10-26 | Micron Technology, Inc. | Modulated spread spectrum in RF identification systems method |
US5373503A (en) | 1993-04-30 | 1994-12-13 | Information Technology, Inc. | Group randomly addressed polling method |
US5790946A (en) | 1993-07-15 | 1998-08-04 | Rotzoll; Robert R. | Wake up device for a communications system |
US5608739A (en) | 1993-09-30 | 1997-03-04 | Micron Technology, Inc. | Apparatus and method for error detection and correction in radio frequency identification device |
US5479416A (en) | 1993-09-30 | 1995-12-26 | Micron Technology, Inc. | Apparatus and method for error detection and correction in radio frequency identification device |
US5449296A (en) | 1994-03-07 | 1995-09-12 | Cabel-Con, Inc. Usa | Cable connector apparatus for preventing radiation leakage |
US5621412A (en) | 1994-04-26 | 1997-04-15 | Texas Instruments Incorporated | Multi-stage transponder wake-up, method and structure |
US5530702A (en) | 1994-05-31 | 1996-06-25 | Ludwig Kipp | System for storage and communication of information |
US5942987A (en) | 1994-09-09 | 1999-08-24 | Intermec Ip Corp. | Radio frequency identification system with write broadcast capability |
US20070176751A1 (en) | 1994-09-09 | 2007-08-02 | Cesar Christian L | Multiple Item Radio Frequency Tag Identification Protocol |
US6919793B2 (en) | 1994-09-09 | 2005-07-19 | Intermec Ip Corp. | Radio frequency identification system write broadcast capability |
US5550547A (en) | 1994-09-12 | 1996-08-27 | International Business Machines Corporation | Multiple item radio frequency tag identification protocol |
US5619648A (en) | 1994-11-30 | 1997-04-08 | Lucent Technologies Inc. | Message filtering techniques |
US5625628A (en) | 1995-03-15 | 1997-04-29 | Hughes Electronics | Aloha optimization |
US5805586A (en) | 1995-05-02 | 1998-09-08 | Motorola Inc. | Method, device and data communication system for multilink polling |
US5649296A (en) | 1995-06-19 | 1997-07-15 | Lucent Technologies Inc. | Full duplex modulated backscatter system |
US6038455A (en) | 1995-09-25 | 2000-03-14 | Cirrus Logic, Inc. | Reverse channel reuse scheme in a time shared cellular communication system |
US6850510B2 (en) | 1995-10-05 | 2005-02-01 | Broadcom Corporation | Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones |
US6177858B1 (en) * | 1995-12-01 | 2001-01-23 | Pierre Raimbault | Method for remotely interrogating tags, and station and tag implementing said method |
EP0779520A2 (en) | 1995-12-12 | 1997-06-18 | AT&T Corp. | Enhanced uplink modulated backscatter system |
US5940006A (en) * | 1995-12-12 | 1999-08-17 | Lucent Technologies Inc. | Enhanced uplink modulated backscatter system |
US20080048835A1 (en) | 1996-05-13 | 2008-02-28 | O'toole James E | Radio Frequency Identification Apparatuses |
US20080048832A1 (en) | 1996-05-13 | 2008-02-28 | O'toole James E | Systems Utilizing an Interrogator and One or More RFID Tags |
US20070139164A1 (en) | 1996-05-13 | 2007-06-21 | O'toole James E | Radio frequency data communications device |
US7385477B2 (en) | 1996-05-13 | 2008-06-10 | Keystone Technology Solutions, Llc | Radio frequency data communications device |
US6130602A (en) * | 1996-05-13 | 2000-10-10 | Micron Technology, Inc. | Radio frequency data communications device |
US6771634B1 (en) | 1996-06-10 | 2004-08-03 | At&T Wireless Services, Inc. | Registration of mobile packet data terminals after disaster |
US6157633A (en) | 1996-06-10 | 2000-12-05 | At&T Wireless Sucs. Inc. | Registration of mobile packet data terminals after disaster |
WO1997048216A3 (en) | 1996-06-10 | 1998-02-12 | At & T Wireless Serivces Inc | Registration of mobile packet data terminals after disaster |
US6483427B1 (en) | 1996-10-17 | 2002-11-19 | Rf Technologies, Inc. | Article tracking system |
US6150921A (en) * | 1996-10-17 | 2000-11-21 | Pinpoint Corporation | Article tracking system |
US5936560A (en) | 1996-12-04 | 1999-08-10 | Fujitsu Limited | Data compression method and apparatus performing high-speed comparison between data stored in a dictionary window and data to be compressed |
US6289209B1 (en) | 1996-12-18 | 2001-09-11 | Micron Technology, Inc. | Wireless communication system, radio frequency communications system, wireless communications method, radio frequency communications method |
US6104333A (en) | 1996-12-19 | 2000-08-15 | Micron Technology, Inc. | Methods of processing wireless communication, methods of processing radio frequency communication, and related systems |
US6265963B1 (en) | 1996-12-19 | 2001-07-24 | Micron Technology, Inc. | Methods of processing wireless communication, methods of processing radio frequency communication, and related systems |
US6243012B1 (en) * | 1996-12-31 | 2001-06-05 | Lucent Technologies Inc. | Inexpensive modulated backscatter reflector |
US5952922A (en) | 1996-12-31 | 1999-09-14 | Lucent Technologies Inc. | In-building modulated backscatter system |
US6130623A (en) | 1996-12-31 | 2000-10-10 | Lucent Technologies Inc. | Encryption for modulated backscatter systems |
US6570487B1 (en) | 1997-01-24 | 2003-05-27 | Axcess Inc. | Distributed tag reader system and method |
US6415439B1 (en) * | 1997-02-04 | 2002-07-02 | Microsoft Corporation | Protocol for a wireless control system |
US5988510A (en) | 1997-02-13 | 1999-11-23 | Micron Communications, Inc. | Tamper resistant smart card and method of protecting data in a smart card |
US5914671A (en) | 1997-02-27 | 1999-06-22 | Micron Communications, Inc. | System and method for locating individuals and equipment, airline reservation system, communication system |
US6097292A (en) * | 1997-04-01 | 2000-08-01 | Cubic Corporation | Contactless proximity automated data collection system and method |
US6288629B1 (en) * | 1997-05-23 | 2001-09-11 | Intermec Ip Corp. | Method of using write—ok flag for radio frequency (RF) transponders (RF Tags) |
US6185307B1 (en) | 1997-07-16 | 2001-02-06 | Gilbarco Inc. | Cryptography security for remote dispenser transactions |
US6265962B1 (en) | 1997-09-03 | 2001-07-24 | Micron Technology, Inc. | Method for resolving signal collisions between multiple RFID transponders in a field |
US20050060069A1 (en) | 1997-10-22 | 2005-03-17 | Breed David S. | Method and system for controlling a vehicle |
US6784787B1 (en) | 1997-11-14 | 2004-08-31 | Btg International Limited | Identification system |
US6778096B1 (en) * | 1997-11-17 | 2004-08-17 | International Business Machines Corporation | Method and apparatus for deploying and tracking computers |
US6216132B1 (en) | 1997-11-20 | 2001-04-10 | International Business Machines Corporation | Method and system for matching consumers to events |
US5966471A (en) | 1997-12-23 | 1999-10-12 | United States Of America | Method of codebook generation for an amplitude-adaptive vector quantization system |
US6072801A (en) | 1998-02-19 | 2000-06-06 | Micron Technology, Inc. | Method of addressing messages, method of establishing wireless communications, and communications system |
US20080042806A1 (en) | 1998-02-19 | 2008-02-21 | Wood Clifton W Jr | Method of Addressing Messages and Communications System |
US7672260B2 (en) | 1998-02-19 | 2010-03-02 | Keystone Technology Solutions, Llc | Method of addressing messages and communications system |
US20090322491A1 (en) | 1998-02-19 | 2009-12-31 | Keystone Technology Solutions, Llc | Method of Addressing Messages and Communications System |
WO1999043127A1 (en) | 1998-02-19 | 1999-08-26 | Micron Communications, Inc. | Method of identifying wireless units |
EP1072128B1 (en) | 1998-02-19 | 2008-05-07 | Micron Technology, Inc. | Method and system of identifying wireless units |
US6061344A (en) | 1998-02-19 | 2000-05-09 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6307847B1 (en) | 1998-02-19 | 2001-10-23 | Micron Technology, Inc. | Method of addressing messages and communications systems |
US6307848B1 (en) | 1998-02-19 | 2001-10-23 | Micron Technology, Inc. | Method of addressing messages, method of establishing wireless communications, and communications system |
US6282186B1 (en) | 1998-02-19 | 2001-08-28 | Micron Technology, Inc. | Method of addressing messages and communications system |
US6275476B1 (en) | 1998-02-19 | 2001-08-14 | Micron Technology, Inc. | Method of addressing messages and communications system |
US20080007412A1 (en) | 1998-02-19 | 2008-01-10 | Wood Clifton W Jr | Method of Addressing Messages and Communications System |
US6226300B1 (en) | 1998-02-19 | 2001-05-01 | Micron Technology, Inc. | Method of addressing messages, and establishing communications using a tree search technique that skips levels |
US7315522B2 (en) | 1998-02-19 | 2008-01-01 | Micron Technology, Inc. | Communication methods using slotted replies |
US20050207364A1 (en) | 1998-02-19 | 2005-09-22 | Wood Clifton W Jr | Method of addressing messages and communications system |
US6118789A (en) | 1998-02-19 | 2000-09-12 | Micron Technology, Inc. | Method of addressing messages and communications system |
US20060209781A1 (en) | 1998-02-19 | 2006-09-21 | Micron Technology, Inc. | Method of addressing messages and communications system |
US20060056325A1 (en) | 1998-02-19 | 2006-03-16 | Wood Clifton W Jr | Method of addressing messages and communications system |
US6169474B1 (en) | 1998-04-23 | 2001-01-02 | Micron Technology, Inc. | Method of communications in a backscatter system, interrogator, and backscatter communications system |
US6324211B1 (en) | 1998-04-24 | 2001-11-27 | Micron Technology, Inc. | Interrogators communication systems communication methods and methods of processing a communication signal |
US6459726B1 (en) | 1998-04-24 | 2002-10-01 | Micron Technology, Inc. | Backscatter interrogators, communication systems and backscatter communication methods |
US6075973A (en) | 1998-05-18 | 2000-06-13 | Micron Technology, Inc. | Method of communications in a backscatter system, interrogator, and backscatter communications system |
US6229987B1 (en) | 1998-05-18 | 2001-05-08 | Micron Technology, Inc. | Method of communications in a backscatter system, interrogator, and backscatter communications system |
US6192222B1 (en) | 1998-09-03 | 2001-02-20 | Micron Technology, Inc. | Backscatter communication systems, interrogators, methods of communicating in a backscatter system, and backscatter communication methods |
US6566997B1 (en) | 1999-12-03 | 2003-05-20 | Hid Corporation | Interference control method for RFID systems |
JP2002228809A (en) | 2001-02-01 | 2002-08-14 | Victor Co Of Japan Ltd | Color separation and composition optical system, and projection display device using the same |
US20030235184A1 (en) | 2002-06-20 | 2003-12-25 | Dorenbosch Jheroen P. | Method and apparatus for speaker arbitration in a multi-participant communication session |
US6707376B1 (en) | 2002-08-09 | 2004-03-16 | Sensormatic Electronics Corporation | Pulsed power method for increased read range for a radio frequency identification reader |
US7026935B2 (en) | 2003-11-10 | 2006-04-11 | Impinj, Inc. | Method and apparatus to configure an RFID system to be adaptable to a plurality of environmental conditions |
US20060022800A1 (en) | 2004-07-30 | 2006-02-02 | Reva Systems Corporation | Scheduling in an RFID system having a coordinated RFID tag reader array |
US20060022801A1 (en) | 2004-07-30 | 2006-02-02 | Reva Systems Corporation | RFID tag data acquisition system |
US20060022815A1 (en) | 2004-07-30 | 2006-02-02 | Fischer Jeffrey H | Interference monitoring in an RFID system |
US20080129485A1 (en) | 2006-12-01 | 2008-06-05 | Micron Technology, Inc. | RFID communication systems and methods, and RFID readers and systems |
US20080180221A1 (en) | 2007-01-30 | 2008-07-31 | Micron Technology, Inc. | Systems and methods for RFID tag arbitration |
WO2008094728A1 (en) | 2007-01-30 | 2008-08-07 | Keystone Technology Solutions, Llc. | Systems and methods for rfid tag arbitration |
Non-Patent Citations (95)
Title |
---|
Auto-ID Center, Massachusetts Institute of Technology, "13.56 MHz ISM Band Class 1 Radio Frequency Identification Tag Interface Specification: Recommended Standard," Technical Report, Feb. 1, 2003. |
Capetanakis, John I., "Generalized TDMA: The Multi-Accessing Tree Protocol," IEEE Transactions on Information Theory, vol. Com. 27, No. 10, pp. 1476-1484, Oct. 1979. |
Capetanakis, John I., "Tree Algorithms for Packet Broadcast Channels", IEEE Transactions on Information Theory, vol. IT-25, No. 5, pp. 505-515, Sep. 1979. |
CNN Money, "Manhattan Associates Announces Next-Generation Microsoft-Based RFID Solutions," located at http:// money.cnn.com/services/tickerheadlines/prn/cItu045.PI.09162003122727.24911.htm, Sep. 16, 2003. |
Engels, Daniel, "The Use of the Electronic Product Code," Auto-ID Center, Massachusetts Institute of Technology, Technical Report, Feb. 1, 2003. |
EPC Global, Inc. "EPC Radio Frequency Identity Protocols- Class-1 Generation-2 UHF RFID- Protocol for Communications at 860 MHz-960MHz," version 1.0.9, cover sheet and pp. 37-38, Jan. 2005. |
eRetailNews, "The Electronic Product Code (EPC)," located at http://www.eretailnews.com/features/epc/htm, accessed Oct. 15, 2003. |
eRetailNews, "The Electronic Product Code (EPC)-A Technology Revolution?" located at http://www.eretailnews.com/features/0105epc1.htm, accessed Oct. 15, 2003. |
eRetailNews, "The Electronic Product Code Schematic," located at http://eee.eretailnews.com/features/0105epcschema.htm, accessed Oct. 15, 2003. |
Extended Search Report and Search Opinion for EP Patent Application No. 05016513.3, Jan. 22, 2007. |
Extended Search Report and Search Opinion for EP Patent Application No. 05016514.1, Jan. 26, 2007. |
Finkenzeller, Klaus, "Radio Frequency ldenitifcation-The Authors Homepage of the RFID Handbook," located at http://www.rfid-handbook.com, accessed Feb. 22, 2007. |
High Tech Aid, "ISO/IEC 18000-RFID Air Interface Standards," located at http://www.hightechaid.com/standards/18000.htm, Feb. 1, 2003. |
Humblet, Pierre A. et al., "Efficient Accessing of a Multiaccess Channel," Proceedings of the 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, pp. 624-627, 1980. |
International Application No. PCT/US08/50630, International Search Report, Jun. 27, 2008. |
International Application No. PCT/US08/50630, Written Opinion, Jun. 27, 2008. |
International Application No. PCT/US99/02288, Written Opinion, Jan. 27, 2000. |
International Application No. PCT/US99102288, International Search Report, Aug. 3, 1999. |
ISO/IEC "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 4: Transmission Protocol," ISO/IEC FDIS 14443-4:2000(E), Jul. 13, 2000. |
ISO/IEC, "Automatic Identification-Radio Frequency Identification for Item Management-Communications and Interfaces-Part 3: Physical Layer, Anti Collision System and Protocol Values at 13.56 MHz Mode 4," ISO/IEC 18000-3-4, Mar. 1, 2001. |
ISO/IEC, "Automatic Identification-Radio Frequency Identification for Item Management-Communications and Interfaces-Part 3: Physical Layer, Anti-Collision System and Protocol Values at 13.56 MHz Mode 1," ISO/IEC 18000-3-1, Mar. 1, 2001. |
ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 1: Physical Characteristics," ISO/IEC FCD 14443-1, 1997. |
ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 2: Radio Frequency Power and Signal Interface," ISO/IEC FCD 14443-2, Mar. 26, 1999. |
ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Proximity Cards-Part 3: Initiation and Anticollision," ISO/IEC FDIS 14443-3:2000(E), Jul. 13, 2000. |
ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Vicinity Cards-Part 1: Physical Characteristics," ISO/IEC FDIS 15693-1:2000(E), May 19, 2000. |
ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Vicinity Cards-Part 2: Interface and Initialization," ISO/IEC FDIS 15693-2:2000(E), Feb. 3, 2000. |
ISO/IEC, "Identification Cards-Contactless Integrated Circuit(s) Cards-Vicinity Cards-Part 3: Anitcollision and Transmission Protocol," ISO/IEC CD 15693-3:1999(E), Nov. 17, 1999. |
ISO/IEC, "Information Technology AIDC Techniques-RFID for Item Management-Air Interface-Part 3: Paramenters for Air Interface Communications at 13.56 MHz," ISO/IEC 18000-3 FCD, May 27, 2002. |
Mullin, Eileen, "Electronic Product Code," Baseline Magazine, located at www.baselinemag.com/article2/0,3959,655991,00.asp, Sep. 5, 2002. |
RFID Journal, "Second Source of Class 1 EPC Chips," located at http://www.rfidjournal.com/article/articleview/473/1/1/, Jun. 26, 2003. |
Smart Active Labels Consortium, organization homepage located at http://www.sal-c.org, accessed Feb. 22, 2007. |
Symbol Technologies, Inc., "Understanding Gen 2: What It Is, How You Will Benefit and Criteria for Vendor Assessment," white paper, Jan. 2006. |
Transaction History of related Transaction History of related U.S. Appl. No. 10/652,573, filed Aug. 28, 2003, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 09/026,043, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,118,789. |
Transaction History of related U.S. Appl. No. 09/026,045, filed Feb. 19, 1998, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System," now U.S. Patent No. 6,072,801. |
Transaction History of related U.S. Appl. No. 09/026,050, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,061,344. |
Transaction History of related U.S. Appl. No. 09/026,248, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,275,476. |
Transaction History of related U.S. Appl. No. 09/551,304, filed Apr. 18, 2000, entitled "Method of Addressing Messages and Communications Systems," now U.S. Patent No. 6,282,186. |
Transaction History of related U.S. Appl. No. 09/556,235, filed Apr. 18, 2000, entitled "Method of Addressing Messages, and Establishing Communications Using a Tree Search Technique That Skips Levels," now U.S. Patent No. 6,226,300. |
Transaction History of related U.S. Appl. No. 09/617,390, filed Jul. 17, 2000, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,307,847. |
Transaction History of related U.S. Appl. No. 09/773,461, filed Jan. 31, 2001, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System," now U.S. Patent No. 6,307,848. |
Transaction History of related U.S. Appl. No. 09/820,467, filed Mar. 28, 2001, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 7,315,522. |
Transaction History of related U.S. Appl. No. 10/693,696, filed Oct. 23, 2003, entitled "Method and Apparatus to Select Radio Frequency Identification Devices in Accordance with an Arbitration Scheme." |
Transaction History of related U.S. Appl. No. 10/693,697, filed Oct. 23, 2003, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System." |
Transaction History of related U.S. Appl. No. 11/143,395, filed Jun. 1, 2005, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/270,204, filed Nov. 8, 2005, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/416,846, filed May 2, 2006, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/700,525, filed Jan. 30, 2007, entitled "Systems and Methods for RFID Tag Arbitration." |
Transaction History of related U.S. Appl. No. 11/755,073, filed May 30, 2007, entitled "Methods and Systems of Receiving Data Payload of RFID Tags." |
Transaction History of related U.S. Appl. No. 11/855,855, filed Sep. 14, 2007, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/855,860, filed Sep. 14, 2007, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/859,364, filed Sep. 21, 2007, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/862,121, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/862,124, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications." |
Transaction History of related U.S. Appl. No. 11/862,130, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications System." |
Transaction History of related U.S. Appl. No. 11/865,580, filed Oct. 1, 2007, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System." |
Transaction History of related U.S. Appl. No. 11/865,584, filed Oct. 1, 2007, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System." |
Tuttle, John R., U.S. Appl. No. 11/755,073 entitled "Methods and Systems of Receiving Data Payload of RFID Tags," filed May 30, 2007. |
USPTO Transaction History of U.S. Appl. No. 09/026,043, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,118,789. |
USPTO Transaction History of U.S. Appl. No. 09/026,045, filed Feb. 19, 1998, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System," now U.S. Patent No. 6,072,801. |
USPTO Transaction History of U.S. Appl. No. 09/026,050, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,061,344. |
USPTO Transaction History of U.S. Appl. No. 09/026,248, filed Feb. 19, 1998, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,275,476. |
USPTO Transaction History of U.S. Appl. No. 09/551,304, filed Apr. 18, 2000, entitled "Method of Addressing Messages and Communications Systems," now U.S. Patent 6,282,186. |
USPTO Transaction History of U.S. Appl. No. 09/556,235, filed Apr. 18, 2000, entitled "Method of Addressing Messages, and Establishing Communications Using a Tree Search Technique That Skips Levels," now U.S. Patent No. 6,226,300. |
USPTO Transaction History of U.S. Appl. No. 09/617,390, filed Jul. 17, 2000, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 6,307,847. |
USPTO Transaction History of U.S. Appl. No. 09/773,461, filed Jan. 31, 2001, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System," now U.S. Patent No. 6,307,848. |
USPTO Transaction History of U.S. Appl. No. 09/820,467, filed Mar. 28, 2001, entitled "Method of Addressing Messages and Communications System," now U.S. Patent No. 7,315,522. |
USPTO Transaction History of U.S. Appl. No. 10/652,573, filed Aug. 28, 2003, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 10/693,696, filed Oct. 23,2003, entitled "Method and Apparatus to Select Radio Frequency Identification Devices in Accordance with an Arbitration Scheme." |
USPTO Transaction History of U.S. Appl. No. 10/693,697, filed Oct. 23, 2003, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/143,395, filed Jun. 1, 2005, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/270,204, filed Nov. 8, 2005, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/416,846, filed May 2, 2006, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/855,855, filed Sep. 14, 2007, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/855,860, filed Sep. 14, 2007, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/859,364, filed Sep. 21, 2007, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/862,121, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/862,124, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications." |
USPTO Transaction History of U.S. Appl. No. 11/862,130, filed Sep. 26, 2007, entitled "Method of Addressing Messages and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/865,580, filed Oct. 1, 2007, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System." |
USPTO Transaction History of U.S. Appl. No. 11/865,584, filed Oct. 1, 2007, entitled "Method of Addressing Messages, Methods of Establishing Wireless Communications, and Communications System." |
Wolf, Jack Keil, "Principles of Group Testing and an Application to the Design and Analysis of Multi-Access Protocols," NATO ASI Series E, Applied Sciences, No. 91, pp. 237-257, 1985. |
Wood, Jr., Clifton W., U.S. Appl. No. 10/652,573, filed Aug. 28, 2008. |
Wood, Jr., Clifton W., U.S. Appl. No. 10/693,696, filed Oct. 23, 2003. |
Wood, Jr., Clifton W., U.S. Appl. No. 10/693,697, filed Oct. 23, 2003. |
Wood, Jr., Clifton W., U.S. Appl. No. 11/859,364, filed Sep. 21, 2007. |
Wood, Jr., Clifton W., U.S. Appl. No. 11/862,121, filed Sep. 26, 2007. |
Wood, Jr., Clifton W., U.S. Appl. No. 11/862,124, filed Sep. 26, 2007. |
Wood, Jr., Clifton W., U.S. Appl. No. 11/862,130, filed Sep. 21, 2007. |
Wood, Jr., Clifton W., U.S. Appl. No. 11/865,580, filed Oct. 1, 2007. |
Wood, Jr., Clifton W., U.S. Appl. No. 11/865,584, filed Oct. 1, 2007. |
Wood, Jr., Clifton W., U.S. Appl. No. 12/493,542, filed Jun. 29, 2009. |
Wood, Jr., Clifton W., U.S. Appl. No. 12/541,882, filed Aug. 14, 2009. |
Wright, Jim, "Trends and Innovations in RF Indentification," Sun Microsystems Inc. presentation, Mar. 2005. |
Zebra Technologies Corporation, "Electronic Product Code (EPC)," located at http://www.rfid.zebra.com/epc/htm, accessed Oct. 15 2003. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9014077B2 (en) | 1998-02-19 | 2015-04-21 | Round Rock Research, Llc | Methods and apparatus for conducting financial transactions |
US8645222B1 (en) | 2009-03-20 | 2014-02-04 | Jpmorgan Chase Bank, N.A. | System and methods for mobile ordering and payment |
US9230259B1 (en) | 2009-03-20 | 2016-01-05 | Jpmorgan Chase Bank, N.A. | Systems and methods for mobile ordering and payment |
US9886706B2 (en) | 2009-03-20 | 2018-02-06 | Jpmorgan Chase Bank, N.A. | Systems and methods for mobile ordering and payment |
Also Published As
Publication number | Publication date |
---|---|
USRE41530E1 (en) | 2010-08-17 |
US6307847B1 (en) | 2001-10-23 |
US6233369B1 (en) | 2001-05-15 |
USRE43254E1 (en) | 2012-03-20 |
US6118789A (en) | 2000-09-12 |
USRE41531E1 (en) | 2010-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE42900E1 (en) | Method of addressing messages and communications systems | |
USRE40686E1 (en) | Method of addressing messages and communications system | |
US6226300B1 (en) | Method of addressing messages, and establishing communications using a tree search technique that skips levels | |
US6275476B1 (en) | Method of addressing messages and communications system | |
USRE43382E1 (en) | Method of addressing messages and communications systems | |
EP1596544B1 (en) | Method and devices for establishing wireless communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KEYSTONE TECHNOLOGY SOLUTIONS, LLC;REEL/FRAME:023839/0881 Effective date: 20091222 |