USRE41897E1 - Catalyst composition, method of polymerization, and polymer therefrom - Google Patents
Catalyst composition, method of polymerization, and polymer therefrom Download PDFInfo
- Publication number
- USRE41897E1 USRE41897E1 US10/761,101 US76110104A USRE41897E US RE41897 E1 USRE41897 E1 US RE41897E1 US 76110104 A US76110104 A US 76110104A US RE41897 E USRE41897 E US RE41897E
- Authority
- US
- United States
- Prior art keywords
- group
- catalyst
- metal
- reactor
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 237
- 238000000034 method Methods 0.000 title claims abstract description 89
- 238000006116 polymerization reaction Methods 0.000 title claims abstract description 41
- 239000000203 mixture Substances 0.000 title claims abstract description 39
- 229920000642 polymer Polymers 0.000 title abstract description 72
- 239000003446 ligand Substances 0.000 claims abstract description 118
- -1 polyethylene Polymers 0.000 claims abstract description 103
- 150000002736 metal compounds Chemical class 0.000 claims abstract description 73
- 150000001875 compounds Chemical class 0.000 claims description 87
- 230000008569 process Effects 0.000 claims description 61
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 58
- 239000012190 activator Substances 0.000 claims description 55
- 229910052751 metal Inorganic materials 0.000 claims description 48
- 239000002184 metal Substances 0.000 claims description 48
- 239000007789 gas Substances 0.000 claims description 41
- 125000004429 atom Chemical group 0.000 claims description 37
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 36
- 239000005977 Ethylene Substances 0.000 claims description 36
- 229910052723 transition metal Inorganic materials 0.000 claims description 36
- 150000003624 transition metals Chemical class 0.000 claims description 36
- 239000001257 hydrogen Substances 0.000 claims description 34
- 229910052739 hydrogen Inorganic materials 0.000 claims description 34
- 125000005842 heteroatom Chemical group 0.000 claims description 31
- 229910052757 nitrogen Inorganic materials 0.000 claims description 29
- 239000002002 slurry Substances 0.000 claims description 25
- 125000004432 carbon atom Chemical group C* 0.000 claims description 24
- 125000004122 cyclic group Chemical group 0.000 claims description 23
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 17
- 229910052736 halogen Inorganic materials 0.000 claims description 17
- 150000002367 halogens Chemical class 0.000 claims description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 14
- 125000000217 alkyl group Chemical group 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 239000010703 silicon Substances 0.000 claims description 13
- 125000000129 anionic group Chemical group 0.000 claims description 12
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 12
- 150000001336 alkenes Chemical class 0.000 claims description 11
- 229910052732 germanium Inorganic materials 0.000 claims description 11
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 10
- 229910052720 vanadium Inorganic materials 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 7
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 7
- 238000007254 oxidation reaction Methods 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 239000000839 emulsion Substances 0.000 claims description 6
- 229910052696 pnictogen Inorganic materials 0.000 claims description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- 239000004215 Carbon black (E152) Substances 0.000 claims description 5
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims description 5
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 claims description 5
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 4
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 4
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 4
- 230000000379 polymerizing effect Effects 0.000 claims description 4
- 150000007942 carboxylates Chemical group 0.000 claims description 3
- 150000004820 halides Chemical class 0.000 claims description 3
- 125000000623 heterocyclic group Chemical group 0.000 claims description 3
- 125000003107 substituted aryl group Chemical group 0.000 claims description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical group NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 claims description 2
- 229940125904 compound 1 Drugs 0.000 claims 2
- 239000011990 phillips catalyst Substances 0.000 claims 2
- 239000004698 Polyethylene Substances 0.000 abstract description 22
- 229920000573 polyethylene Polymers 0.000 abstract description 20
- 230000002902 bimodal effect Effects 0.000 abstract description 14
- 229920000098 polyolefin Polymers 0.000 abstract description 7
- 238000000465 moulding Methods 0.000 abstract description 3
- 239000000243 solution Substances 0.000 description 61
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 51
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 42
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 26
- 239000002245 particle Substances 0.000 description 21
- 229910052782 aluminium Inorganic materials 0.000 description 19
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 18
- 239000002904 solvent Substances 0.000 description 17
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 15
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 239000000178 monomer Substances 0.000 description 15
- 229910052726 zirconium Inorganic materials 0.000 description 15
- 239000010936 titanium Substances 0.000 description 14
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000001125 extrusion Methods 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 11
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 10
- 229910052796 boron Inorganic materials 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 230000036961 partial effect Effects 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 230000004913 activation Effects 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 9
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 9
- 230000000737 periodic effect Effects 0.000 description 9
- 229910001220 stainless steel Inorganic materials 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical class C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- DZFKTKUBVXISNX-UHFFFAOYSA-K CC(C)(C)C([O-])=O.CC(C)(C)C([O-])=O.CC(C)(C)C([O-])=O.C1=CC=C2C([Zr+3])C=CC2=C1 Chemical compound CC(C)(C)C([O-])=O.CC(C)(C)C([O-])=O.CC(C)(C)C([O-])=O.C1=CC=C2C([Zr+3])C=CC2=C1 DZFKTKUBVXISNX-UHFFFAOYSA-K 0.000 description 7
- 0 [3*]*12[1*][Y]([4*])([6*])C1C([5*])([7*])[2*]2.[3*]C1(C)C([5*])([7*])C[Y]1([4*])[6*] Chemical compound [3*]*12[1*][Y]([4*])([6*])C1C([5*])([7*])[2*]2.[3*]C1(C)C([5*])([7*])C[Y]1([4*])[6*] 0.000 description 7
- 125000003710 aryl alkyl group Chemical group 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 230000003213 activating effect Effects 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 6
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 150000004678 hydrides Chemical class 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical compound [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 4
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical class [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000001282 iso-butane Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 229910052768 actinide Inorganic materials 0.000 description 3
- 150000001255 actinides Chemical class 0.000 description 3
- 125000002015 acyclic group Chemical group 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000008116 calcium stearate Substances 0.000 description 3
- 235000013539 calcium stearate Nutrition 0.000 description 3
- 239000003426 co-catalyst Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 150000004696 coordination complex Chemical class 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 3
- 229910052747 lanthanoid Inorganic materials 0.000 description 3
- 150000002602 lanthanoids Chemical class 0.000 description 3
- 125000002524 organometallic group Chemical group 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 3
- ORYGRKHDLWYTKX-UHFFFAOYSA-N trihexylalumane Chemical compound CCCCCC[Al](CCCCCC)CCCCCC ORYGRKHDLWYTKX-UHFFFAOYSA-N 0.000 description 3
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 3
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 241001469893 Oxyzygonectes dovii Species 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 229910021552 Vanadium(IV) chloride Inorganic materials 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000005115 alkyl carbamoyl group Chemical group 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000005840 aryl radicals Chemical class 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- MUALRAIOVNYAIW-UHFFFAOYSA-N binap Chemical group C1=CC=CC=C1P(C=1C(=C2C=CC=CC2=CC=1)C=1C2=CC=CC=C2C=CC=1P(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 MUALRAIOVNYAIW-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- UJYLYGDHTIVYRI-UHFFFAOYSA-N cadmium(2+);ethane Chemical compound [Cd+2].[CH2-]C.[CH2-]C UJYLYGDHTIVYRI-UHFFFAOYSA-N 0.000 description 2
- 229910052798 chalcogen Inorganic materials 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- AHXGRMIPHCAXFP-UHFFFAOYSA-L chromyl dichloride Chemical compound Cl[Cr](Cl)(=O)=O AHXGRMIPHCAXFP-UHFFFAOYSA-L 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012685 gas phase polymerization Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 238000004896 high resolution mass spectrometry Methods 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000012968 metallocene catalyst Substances 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- QSLMQGXOMLSFAW-UHFFFAOYSA-N methanidylbenzene;zirconium(4+) Chemical compound [Zr+4].[CH2-]C1=CC=CC=C1.[CH2-]C1=CC=CC=C1.[CH2-]C1=CC=CC=C1.[CH2-]C1=CC=CC=C1 QSLMQGXOMLSFAW-UHFFFAOYSA-N 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- QLOKAVKWGPPUCM-UHFFFAOYSA-N oxovanadium;dihydrochloride Chemical compound Cl.Cl.[V]=O QLOKAVKWGPPUCM-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000002685 polymerization catalyst Substances 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- JTJFQBNJBPPZRI-UHFFFAOYSA-J vanadium tetrachloride Chemical compound Cl[V](Cl)(Cl)Cl JTJFQBNJBPPZRI-UHFFFAOYSA-J 0.000 description 2
- HEPBQSXQJMTVFI-UHFFFAOYSA-N zinc;butane Chemical compound [Zn+2].CCC[CH2-].CCC[CH2-] HEPBQSXQJMTVFI-UHFFFAOYSA-N 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- ZOICEQJZAWJHSI-UHFFFAOYSA-N (2,3,4,5,6-pentafluorophenyl)boron Chemical compound [B]C1=C(F)C(F)=C(F)C(F)=C1F ZOICEQJZAWJHSI-UHFFFAOYSA-N 0.000 description 1
- CHEANNSDVJOIBS-MHZLTWQESA-N (3s)-3-cyclopropyl-3-[3-[[3-(5,5-dimethylcyclopenten-1-yl)-4-(2-fluoro-5-methoxyphenyl)phenyl]methoxy]phenyl]propanoic acid Chemical compound COC1=CC=C(F)C(C=2C(=CC(COC=3C=C(C=CC=3)[C@@H](CC(O)=O)C3CC3)=CC=2)C=2C(CCC=2)(C)C)=C1 CHEANNSDVJOIBS-MHZLTWQESA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- MFWFDRBPQDXFRC-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;vanadium Chemical compound [V].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MFWFDRBPQDXFRC-LNTINUHCSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- YBCVSZCMASDRCS-UHFFFAOYSA-N 1-[ethoxy-[ethoxy-(2-methoxyphenoxy)-propoxymethyl]sulfanyl-propoxymethoxy]-2-methoxybenzene Chemical compound C=1C=CC=C(OC)C=1OC(OCC)(OCCC)SC(OCC)(OCCC)OC1=CC=CC=C1OC YBCVSZCMASDRCS-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- ROQYRVHPVSJCCO-UHFFFAOYSA-N 1H-benzimidazole tris(2,3,4,5,6-pentafluorophenyl)borane Chemical compound C1=CC=C2NC=NC2=C1.FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F ROQYRVHPVSJCCO-UHFFFAOYSA-N 0.000 description 1
- CORHDXNAYKUXRI-UHFFFAOYSA-N 1h-cyclopenta[12]annulene Chemical compound C1=CC=CC=CC=CC=CC2=C1CC=C2 CORHDXNAYKUXRI-UHFFFAOYSA-N 0.000 description 1
- RRTLQRYOJOSPEA-UHFFFAOYSA-N 2-bromo-1,3,5-trimethylbenzene Chemical group CC1=CC(C)=C(Br)C(C)=C1 RRTLQRYOJOSPEA-UHFFFAOYSA-N 0.000 description 1
- JTXUVHFRSRTSAT-UHFFFAOYSA-N 3,5,5-trimethylhex-1-ene Chemical compound C=CC(C)CC(C)(C)C JTXUVHFRSRTSAT-UHFFFAOYSA-N 0.000 description 1
- LDTAOIUHUHHCMU-UHFFFAOYSA-N 3-methylpent-1-ene Chemical compound CCC(C)C=C LDTAOIUHUHHCMU-UHFFFAOYSA-N 0.000 description 1
- BKBFSTAARDXBIR-UHFFFAOYSA-N CCCBCCC Chemical compound CCCBCCC BKBFSTAARDXBIR-UHFFFAOYSA-N 0.000 description 1
- UWKKBEQZACDEBT-UHFFFAOYSA-N CCCC[Mg] Chemical compound CCCC[Mg] UWKKBEQZACDEBT-UHFFFAOYSA-N 0.000 description 1
- BFIMMTCNYPIMRN-UHFFFAOYSA-N Cc1cc(C)c(C)c(C)c1 Chemical compound Cc1cc(C)c(C)c(C)c1 BFIMMTCNYPIMRN-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 239000013032 Hydrocarbon resin Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 239000002879 Lewis base Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- CQBWEBXPMRPCSI-UHFFFAOYSA-M O[Cr](O[SiH3])(=O)=O Chemical compound O[Cr](O[SiH3])(=O)=O CQBWEBXPMRPCSI-UHFFFAOYSA-M 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- 229910021551 Vanadium(III) chloride Inorganic materials 0.000 description 1
- 239000011954 Ziegler–Natta catalyst Substances 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- HXEMAHFTVFVYMX-UHFFFAOYSA-M [Br-].CC[Ca+] Chemical compound [Br-].CC[Ca+] HXEMAHFTVFVYMX-UHFFFAOYSA-M 0.000 description 1
- JHHOSKHJLDRDPR-UHFFFAOYSA-N [H]N12CCN(C3=C(C)C=C(C)C=C3C)[Zr]1(CC1=CC=CC=C1)(CC1=CC=CC=C1)N(C1=C(C)C=C(C)C=C1C)CC2 Chemical compound [H]N12CCN(C3=C(C)C=C(C)C=C3C)[Zr]1(CC1=CC=CC=C1)(CC1=CC=CC=C1)N(C1=C(C)C=C(C)C=C1C)CC2 JHHOSKHJLDRDPR-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005234 alkyl aluminium group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940083916 aluminum distearate Drugs 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- RDIVANOKKPKCTO-UHFFFAOYSA-K aluminum;octadecanoate;hydroxide Chemical compound [OH-].[Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O RDIVANOKKPKCTO-UHFFFAOYSA-K 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000001636 atomic emission spectroscopy Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- AZWXAPCAJCYGIA-UHFFFAOYSA-N bis(2-methylpropyl)alumane Chemical compound CC(C)C[AlH]CC(C)C AZWXAPCAJCYGIA-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 1
- 229910000085 borane Inorganic materials 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- JKFJJYOIWGFQGI-UHFFFAOYSA-M bromo-bis(2-methylpropyl)alumane Chemical compound [Br-].CC(C)C[Al+]CC(C)C JKFJJYOIWGFQGI-UHFFFAOYSA-M 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011951 cationic catalyst Substances 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 125000004803 chlorobenzyl group Chemical group 0.000 description 1
- MJSNUBOCVAKFIJ-LNTINUHCSA-N chromium;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Cr].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O MJSNUBOCVAKFIJ-LNTINUHCSA-N 0.000 description 1
- NPCUWXDZFXSRLT-UHFFFAOYSA-N chromium;2-ethylhexanoic acid Chemical compound [Cr].CCCCC(CC)C(O)=O NPCUWXDZFXSRLT-UHFFFAOYSA-N 0.000 description 1
- XEHUIDSUOAGHBW-UHFFFAOYSA-N chromium;pentane-2,4-dione Chemical compound [Cr].CC(=O)CC(C)=O.CC(=O)CC(C)=O.CC(=O)CC(C)=O XEHUIDSUOAGHBW-UHFFFAOYSA-N 0.000 description 1
- WVBBLFIICUWMEM-UHFFFAOYSA-N chromocene Chemical compound [Cr+2].C1=CC=[C-][CH]1.C1=CC=[C-][CH]1 WVBBLFIICUWMEM-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000004038 corrins Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- WWPSJFCVFWMRBH-UHFFFAOYSA-L dibromoalumane Chemical compound Br[AlH]Br WWPSJFCVFWMRBH-UHFFFAOYSA-L 0.000 description 1
- PDZFAAAZGSZIFN-UHFFFAOYSA-N dichloro(2-methylpropyl)borane Chemical compound CC(C)CB(Cl)Cl PDZFAAAZGSZIFN-UHFFFAOYSA-N 0.000 description 1
- LHCGBIFHSCCRRG-UHFFFAOYSA-N dichloroborane Chemical compound ClBCl LHCGBIFHSCCRRG-UHFFFAOYSA-N 0.000 description 1
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 1
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 1
- FAFYLCKQPJOORN-UHFFFAOYSA-N diethylborane Chemical compound CCBCC FAFYLCKQPJOORN-UHFFFAOYSA-N 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- GXCQMKSGALTBLC-UHFFFAOYSA-N dihexylmercury Chemical compound CCCCCC[Hg]CCCCCC GXCQMKSGALTBLC-UHFFFAOYSA-N 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical compound C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 1
- ZTJBELXDHFJJEU-UHFFFAOYSA-N dimethylboron Chemical compound C[B]C ZTJBELXDHFJJEU-UHFFFAOYSA-N 0.000 description 1
- YOTZYFSGUCFUKA-UHFFFAOYSA-N dimethylphosphine Chemical compound CPC YOTZYFSGUCFUKA-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- OYCNHLAKDKIJIT-UHFFFAOYSA-N ethyl-bis(2-methylpropyl)borane Chemical compound CC(C)CB(CC)CC(C)C OYCNHLAKDKIJIT-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- KGPPDNUWZNWPSI-UHFFFAOYSA-N flurotyl Chemical group FC(F)(F)COCC(F)(F)F KGPPDNUWZNWPSI-UHFFFAOYSA-N 0.000 description 1
- 229950000929 flurotyl Drugs 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- VGRFVJMYCCLWPQ-UHFFFAOYSA-N germanium Chemical compound [Ge].[Ge] VGRFVJMYCCLWPQ-UHFFFAOYSA-N 0.000 description 1
- 229910021436 group 13–16 element Inorganic materials 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003936 heterocyclopentadienyl group Chemical group 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229920006270 hydrocarbon resin Polymers 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- QLNAVQRIWDRPHA-UHFFFAOYSA-N iminophosphane Chemical compound P=N QLNAVQRIWDRPHA-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- ICIWUVCWSCSTAQ-UHFFFAOYSA-N iodic acid Chemical class OI(=O)=O ICIWUVCWSCSTAQ-UHFFFAOYSA-N 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 150000007527 lewis bases Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- NXPHGHWWQRMDIA-UHFFFAOYSA-M magnesium;carbanide;bromide Chemical compound [CH3-].[Mg+2].[Br-] NXPHGHWWQRMDIA-UHFFFAOYSA-M 0.000 description 1
- CCERQOYLJJULMD-UHFFFAOYSA-M magnesium;carbanide;chloride Chemical compound [CH3-].[Mg+2].[Cl-] CCERQOYLJJULMD-UHFFFAOYSA-M 0.000 description 1
- MHERPFVRWOTBSF-UHFFFAOYSA-N methyl(phenyl)phosphane Chemical compound CPC1=CC=CC=C1 MHERPFVRWOTBSF-UHFFFAOYSA-N 0.000 description 1
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- GUVXZFRDPCKWEM-UHFFFAOYSA-N pentalene Chemical compound C1=CC2=CC=CC2=C1 GUVXZFRDPCKWEM-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical class OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- JBLSZOJIKAQEKG-UHFFFAOYSA-N phenyl hypobromite Chemical compound BrOC1=CC=CC=C1 JBLSZOJIKAQEKG-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 150000003063 pnictogens Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 238000010094 polymer processing Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- KBGJIKKXNIQHQH-UHFFFAOYSA-N potassium;methanidylbenzene Chemical compound [K+].[CH2-]C1=CC=CC=C1 KBGJIKKXNIQHQH-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- SCABQASLNUQUKD-UHFFFAOYSA-N silylium Chemical class [SiH3+] SCABQASLNUQUKD-UHFFFAOYSA-N 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- UBZYKBZMAMTNKW-UHFFFAOYSA-J titanium tetrabromide Chemical compound Br[Ti](Br)(Br)Br UBZYKBZMAMTNKW-UHFFFAOYSA-J 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- SQBBHCOIQXKPHL-UHFFFAOYSA-N tributylalumane Chemical compound CCCC[Al](CCCC)CCCC SQBBHCOIQXKPHL-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- LFXVBWRMVZPLFK-UHFFFAOYSA-N trioctylalumane Chemical compound CCCCCCCC[Al](CCCCCCCC)CCCCCCCC LFXVBWRMVZPLFK-UHFFFAOYSA-N 0.000 description 1
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 description 1
- 125000005287 vanadyl group Chemical group 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F10/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2420/00—Metallocene catalysts
- C08F2420/04—Cp or analog not bridged to a non-Cp X ancillary anionic donor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65916—Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2314/00—Polymer mixtures characterised by way of preparation
- C08L2314/06—Metallocene or single site catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S526/00—Synthetic resins or natural rubbers -- part of the class 520 series
- Y10S526/943—Polymerization with metallocene catalysts
Definitions
- the present invention relates to a catalyst composition comprising at least two metal compounds useful in olefin polymerization processes to produce polyolefins.
- at least one of the metal compounds is a Group 15 containing metal compound.
- the other metal compound is a bulky ligand metallocene-type catalyst.
- the present invention also relates to a new polyolefin, generally polyethylene, particularly a multimodal polymer and more specifically, a bimodal polymer, and its use in various end-use applications such as film, molding and pipe.
- Polyethylenes with a higher density and higher molecular weight are valued in film applications requiring high stiffness, good toughness and high throughput. Such resins are also valued in pipe applications requiring stiffness, toughness and long-term durability, and particularly resistance to environmental stress cracking.
- Typical metallocene polymerization catalysts i.e. those containing a transition metal bound, for example, to at least one cyclopentadienyl, indenyl or fluorenyl group
- these resins have excellent toughness properties, particularly dart impact properties, they, like other metallocene catalyzed polyethylenes, can be difficult to process, for example, on older extrusion equipment.
- One of the means used to improve the processing of such metallocene catalyzed polyethylenes is to blend them with another polyethylene. While the two polymer blend tends to be more processable, it is expensive and adds a cumbersome blending step to the manufacturing/fabrication process.
- PCT patent application WO 99/03899 discloses using a typical metallocene catalyst and a conventional Ziegler-Natta catalyst in the same reactor to produce a bimodal MWD HDPE.
- Using two different types of catalysts result in a polymer whose characteristics cannot be predicted from those of the polymers that each catalyst would produce if utilized separately. This unpredictability occurs, for example, from competition or other influence between the catalyst or catalyst systems used.
- These polymers however still do not have a preferred balance of processability and strength properties.
- the present invention provides a catalyst composition, a polymerization process using the catalyst composition, polymer produced therefrom and products made from the polymer.
- the invention is directed to a catalyst composition including at least two metal compounds, where at least one metal compound is a Group 15 containing metal compound, and where the other metal compound is a bulky ligand metallocene-type compound, a conventional transition metal catalyst, or combinations thereof.
- the invention is directed to a catalyst composition including at least two metal compounds, where at least one metal compound is a Group 15 containing bidentate or tridentate ligated Group 3 to 14 metal compound, preferably a Group 3 to 7, more preferably a Group 4 to 6, and even more preferably a Group 4 metal compound, and where the other metal compound is a bulky ligand metallocene-type compound, a conventional transition metal catalyst, or combinations thereof In this embodiment it is preferred that the other metal compound is a bulky ligand metallocene-type compound.
- the invention is directed to a catalyst composition including at least two metal compounds, where one metal compound is a Group 3 to 14 metal atom bound to at least one leaving group and also bound to at least two Group 15 atoms, at least one of which is also bound to a Group 15 or 16 atom through another group, and where the second metal compound, is different from the first metal compound, and is a bulky ligand metallocene-type catalyst, a conventional-type transition metal catalyst, or combinations thereof.
- the invention is directed to processes for polymerizing olefin(s) utilizing the above catalyst compositions, especially in a single polymerization reactor.
- the invention is directed to the polymers prepared utilizing the above catalyst composition, preferably to a new bimodal MWD HDPE.
- the present invention relates to the use of a mixed catalyst composition where one of the catalysts is a Group 15 containing metal compound. Applicants have discovered that using these compounds in combination with another catalyst, preferably a bulky ligand metallocene type compound, produces a new bimodal MWD HDPE product. Surprisingly, the mixed catalyst composition of the present invention may be utilized in a single reactor system.
- the mixed catalyst composition of the present invention includes a Group 15 containing metal compound.
- the Group 15 containing compound generally includes a Group 3 to 14 metal atom, preferably a Group 3 to 7, more preferably a Group 4 to 6, and even more preferably a Group 4 metal atom, bound to at least one leaving group and also bound to at least two Group 15 atoms, at least one of which is also bound to a Group 15 or 16 atom through another group.
- At least one of the Group 15 atoms is also bound to a Group 15 or 16 atom through another group which may be a C 1 to C 20 hydrocarbon group, a heteroatom containing group, silicon, germanium, tin, lead, or phosphorus, wherein the Group 15 or 16 atom may also be bound to nothing or a hydrogen, a Group 14 atom containing group, a halogen, or a heteroatom containing group, and wherein each of the two Group 15 atoms are also bound to a cyclic group and may optionally be bound to hydrogen, a halogen, a heteroatom or a hydrocarbyl group, or a heteroatom containing group.
- the Group 15 containing metal compound of the present invention may be represented by the formulae: wherein
- R 3 is absent or a hydrocarbon group, hydrogen, a halogen, a heteroatom containing group, preferably a linear, cyclic or branched alkyl group having 1 to 20 carbon atoms, more preferably R 3 is absent, hydrogen or an alkyl group, and most preferably hydrogen
- Formal charge of the YZL or YZL′ ligand it is meant the charge of the entire ligand absent the metal and the leaving groups X.
- R 1 and R 2 may also be interconnected” it is meant that R 1 and R 2 may be directly bound to each other or may be bound to each other through other groups.
- R 4 and R 5 may also be interconnected” it is meant that R 4 and R 5 may be directly bound to each other or may be bound to each other through other groups.
- An alkyl group may be a linear, branched alkyl radicals, or alkenyl radicals, alkynyl radicals, cycloalkyl radicals or aryl radicals, acyl radicals, aroyl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl- or dialkyl-carbamoyl radicals, acyloxy radicals, acylamino radicals, aroylamino radicals, straight, branched or cyclic, alkylene radicals, or combination thereof.
- An aralkyl arylalkyl group is defined to be a substituted aryl group.
- R 4 and R 5 are independently a group represented by the following formula: wherein
- R 4 and R 5 are both a group represented by the following formula:
- M is a Group 4 metal, preferably zirconium, titanium or hafnium, and even more preferably zirconium; each of L, Y, and Z is nitrogen; each of R 1 and R 2 is —CH 2 —CH 2 —; R 3 is hydrogen; and R 6 and R 7 are absent.
- the Group 15 containing metal compound is represented by the formula:
- Ph phenyl
- the Group 15 containing metal compounds of the invention are prepared by methods known in the art, such as those disclosed in EP 0 893 454 A1, U.S. Pat. No. 5,889,128 and the references cited in U.S. Pat. No. 5,889,128 which are all herein incorporated by reference.
- U.S. application Ser. No. 09/312,878, filed May 17, 1999 pending discloses a gas or slurry phase polymerization process using a supported bisamide catalyst, which is also incorporated herein by reference.
- a preferred direct synthesis of these compounds comprises reacting the neutral ligand, (see for example YZL or YZL′ of formula 1 or 2) with M n X n (M is a Group 3 to 14 metal, n is the oxidation state of M, each X is an anionic group, such as halide, in a non-coordinating or weakly coordinating solvent, such as ether, toluene, xylene, benzene, methylene chloride, and/or hexane or other solvent having a boiling point above 60° C., at about 20 to about 150° C.
- a non-coordinating or weakly coordinating solvent such as ether, toluene, xylene, benzene, methylene chloride, and/or hexane or other solvent having a boiling point above 60° C., at about 20 to about 150° C.
- magnesium salts are removed by filtration, and the metal complex isolated by standard techniques.
- the Group 15 containing metal compound is prepared by a method comprising reacting a neutral ligand, (see for example YZL or YZL′ of formula 1 or 2) with a compound represented by the formula M n X n (where M is a Group 3 to 14 metal, n is the oxidation state of M, each X is an anionic leaving group) in a non-coordinating or weakly coordinating solvent, at about 20° C. or above, preferably at about 20 to about 100° C., then treating the mixture with an excess of an alkylating agent, then recovering the metal complex.
- a neutral ligand see for example YZL or YZL′ of formula 1 or 2
- M is a Group 3 to 14 metal
- n is the oxidation state of M
- each X is an anionic leaving group
- the solvent has a boiling point above 60° C., such as toluene, xylene, benzene, and/or hexane.
- the solvent comprises ether and/or methylene chloride, either being preferable.
- the mixed catalyst composition of the present invention also includes a second metal compound, which is preferably a bulky ligand metallocene-type compound.
- bulky ligand metallocene-type compounds include half and full sandwich compounds having one or more bulky ligands bonded to at least one metal atom.
- Typical bulky ligand metallocene-type compounds are generally described as containing one or more bulky ligand(s) and one or more leaving group(s) bonded to at least one metal atom.
- at least one bulky ligands is ⁇ -bonded to the metal atom, most preferably ⁇ 5 -bonded to the metal atom.
- the bulky ligands are generally represented by one or more open, acyclic, or fused ring(s) or ring system(s) or a combination thereof.
- These bulky ligands preferably the ring(s) or ring system(s) are typically composed of atoms selected from Groups 13 to 16 atoms of the Periodic Table of Elements, preferably the atoms are selected from the group consisting of carbon, nitrogen, oxygen, silicon, sulfur, phosphorous, germanium, boron and aluminum or a combination thereof.
- the ring(s) or ring system (s) are composed of carbon atoms such as but not limited to those cyclopentadienyl ligands or cyclopentadienyl-type ligand structures or other similar functioning ligand structure such as a pentadiene, a cyclooctatetraendiyl or an imide ligand.
- the metal atom is preferably selected from Groups 3 through 15 and the lanthanide or actinide series of the Periodic Table of Elements.
- the metal is a transition metal from Groups 4 through 12, more preferably Groups 4, 5 and 6, and most preferably the transition metal is from Group 4.
- the bulky ligand metallocene-type catalyst compounds are represented by the formula: L A L BM′ M Q n (III) where M′ M is a metal atom from the Periodic Table of the Elements and may be a Group 3 to 12 metal or from the lanthanide or actinide series of the Periodic Table of Elements, preferably M′ M is a Group 4, 5 or 6 transition metal, more preferably M′ M is a Group 4 transition metal, even more preferably, M′ M is zirconium, hafnium or titanium.
- the bulky ligands, L A and L B are open, acyclic or fused ring(s) or ring system(s) and are any ancillary ligand system, including unsubstituted or substituted, cyclopentadienyl ligands or cyclopentadienyl-type ligands, heteroatom substituted and/or heteroatom containing cyclopentadienyl-type ligands.
- Non-limiting examples of bulky ligands include cyclopentadienyl ligands, cyclopentaphenanthreneyl ligands, indenyl ligands, benzindenyl ligands, fluorenyl ligands, octahydrofluorenyl ligands, cyclooctatetraendiyl ligands, cyclopentacyclododecene ligands, azenyl ligands, azulene ligands, pentalene ligands, phosphoyl ligands, phosphinimine (WO 99/40125), pyrrolyl ligands, pyrozolyl ligands, carbazolyl ligands, borabenzene ligands and the like, including hydrogenated versions thereof, for example tetrahydroindenyl ligands.
- L A and L B may be any other ligand structure capable of ⁇ -bonding to M′ , M preferably ⁇ 3 -bonding to M , M and most preferably ⁇ 5 -bonding.
- the atomic molecular weight (MW) of L A or L B exceeds 60 a.m.u., preferably greater than 65 a.m.u.
- L A and L B may comprise one or more heteroatoms, for example, nitrogen, silicon, boron, germanium, sulfur and phosphorous, in combination with carbon atoms to form an open, acyclic, or preferably a fused, ring or ring system, for example, a hetero-cyclopentadienyl ancillary ligand.
- Other L A and L B bulky ligands include but are not limited to bulky amides, phosphides, alkoxides, aryloxides, imides, carbolides, borollides, porphyrins, phthalocyanines, corrins and other polyazomacrocycles.
- each L A and L B may be the same or different type of bulky ligand that is bonded to M′ , M. In one embodiment of formula (III) only one of either L A or L B is present.
- each L A and L B may be unsubstituted or substituted with a combination of substituent groups R.
- substituent groups R include one or more from the group selected from hydrogen, or linear, branched alkyl radicals, or alkenyl radicals, alkynyl radicals, cycloalkyl radicals or aryl radicals, acyl radicals, aroyl radicals, alkoxy radicals, aryloxy radicals, alkylthio radicals, dialkylamino radicals, alkoxycarbonyl radicals, aryloxycarbonyl radicals, carbomoyl radicals, alkyl- or dialkyl-carbamoyl radicals, acyloxy radicals, acylamino radicals, aroylamino radicals, straight, branched or cyclic, alkylene radicals, or combination thereof.
- substituent groups R have up to 50 non-hydrogen atoms, preferably from 1 to 30 carbon, that can also be substituted with halogens or heteroatoms or the like.
- alkyl substituents R include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, cyclohexyl, benzyl or phenyl groups and the like, including all their isomers, for example tertiary butyl, isopropyl, and the like.
- hydrocarbyl radicals include fluoromethyl, fluroethyl, difluroethyl, iodopropyl, bromohexyl, chlorobenzyl and hydrocarbyl substituted organometalloid radicals including trimethylsilyl, trimethylgermyl, methyldiethylsilyl and the like; and halocarbyl-substituted organometalloid radicals including tris(trifluoromethyl)-silyl, methyl-bis (difluoromethyl)silyl, bromomethyldimethylgermyl and the like; and disubstitiuted boron radicals including dimethylboron for example; and disubslituled pnictogen radicals including dimethylamine, dimethylphosphine, diphenylamine, methylphenylphosphine, chalcogen radicals including methoxy, ethoxy, propoxy, phenoxy, methylsulfide and ethylsulf
- Non-hydrogen substituents R include the atoms carbon, silicon, boron, aluminum, nitrogen, phosphorous, oxygen, tin, sulfur, germanium and the like, including olefins such as but not limited to olefinically unsaturated substituents including vinyl-terminated ligands, for example but-3-cnyl, prop-2-cnyl, hex-5-cnyl and the like. Also, at least two R groups, preferably two adjacent R groups, are joined to form a ring structure having from 3 to 30 atoms selected from carbon, nitrogen, oxygen, phosphorous, silicon, germanium, aluminum, boron or a combination thereof. Also, a substituent group R group such as 1-butanyl may form a carbon sigma bond to the metal M′ , M.
- ligands may be bonded to the metal M′ , M such as at least one leaving group Q.
- Q is a monoanionic labile ligand having a sigma-bond to M′ , M.
- n is 0, 1 or 2 such that formula (III) above represents a neutral bulky ligand metallocene-type catalyst compound.
- Non-limiting examples of O ligands include weak bases such as amines, phosphines, ethers, carboxylates, dienes, hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides or halogens and the like or a combination thereof.
- weak bases such as amines, phosphines, ethers, carboxylates, dienes, hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides or halogens and the like or a combination thereof.
- two or more Q's form a part of a fused ring or ring system.
- Q ligands include those substituents for R as described above and including cyclobutyl, cyclohexyl, heptyl, tolyl, trifluromethyl, tetramethylene, pentamethylene, methylidene, methyoxy, ethyoxy, propoxy, phenoxy, bis(N-methylanilide), dimethylamide, dimethylphosphine radicals and the like.
- the bulky ligand metallocene-type catalyst compounds of the invention include those of formula (III) where L A and L B are bridged to each other by at least one bridging group, A, such that the formula is represented by L A AL BM′ ,M Q n (IV)
- bridging group A include bridging groups containing at least one Group 13 to 16 atom, often referred to as a divalent moiety such as but not limited to at least one of a carbon, oxygen, nitrogen, silicon, aluminum, boron, germanium and tin atom or a combination thereof.
- bridging group A contains a carbon, silicon or germanium atom, most preferably A contains at least one silicon atom or at least one carbon atom.
- the bridging group A may also contain substituent groups R as defined above including halogens and iron.
- Non-limiting examples of bridging group A may be represented by R′ 2 C, R′ 2 Si, R′ 2 SiR′ 2 Si, R′ 2 Ge, R′P, where R′ is independently, a radical group which is hydride, hydrocarbyl, substituted hydrocarbyl, halocarbyl, substituted halocarbyl, hydrocarbyl-substituted organometalloid, halocarbyl-substituted organometalloid, disubstituted boron, disubstituted pnictogen, substituted chalcogen, or halogen or two or more R′ may be joined to form a ring or ring system.
- the bridged, bulky ligand metallocene-type catalyst compounds of formula (IV) have two or more bridging groups A (EP 664 301 B1).
- the bulky ligand metallocene-type catalyst compounds are those where the R substituents on the bulky ligands L A and L B of formulas (III) and (IV) are substituted with the same or different number of substituents on each of the bulky ligands. In another embodiment, the bulky ligands L A and L B of formulas (III) and (IV) are different from each other.
- bulky ligand metallocene-type catalysts compounds useful in the invention include bridged heteroatom, mono-bulky ligand metallocene-type compounds.
- These types of catalysts and catalyst systems are described in, for example, PCT publication WO 92/00333, WO 94/07928, WO 91/04257, WO 94/03506, WO96/00244, WO 97/15602 and WO 99/20637 and U.S. Pat. Nos. 5,057,475, 5,096,867, 5,055,438, 5,198,401, 5,227,440 and 5,264,405 and European publication EP-A-0 420 436, all of which are herein fully incorporated by reference.
- the bulky ligand metallocene-type catalyst compound is represented by the formula: L C AJM′ MQ n (V) where M′ M is a Group 3 to 16 metal atom or a metal selected from the Group of actinides and lanthanides of the Periodic Table of Elements, preferably, M′ M is a Group 4 to 12 transition metal, and more preferably, M′ M is a Group 4, 5 or 6 transition metal and most preferably, M′ M is a Group 4 transition metal in any oxidation state, especially titanium; L C is a substituted or unsubstituted bulky ligand bonded to, M′ M; J is bonded toM′ , M; A is bonded to, M′ M and J; J is a heteroatom ancillary ligand; and A is a bridging group; Q is a univalent anionic ligand; and n is the integer 0, 1 or 2.
- L C , A and J form a fused ring system.
- L C of formula (V) is as defined above for L A , A, M′ M and Q of formula (V) are as defined above in formula (III).
- J is a heteroatom containing ligand in which J is an element with a coordination number of three from Group 15 or an element with a coordination number of two from Group 16 of the Periodic Table of Elements.
- J contains a nitrogen, phosphorus, oxygen or sulfur atom with nitrogen being most preferred.
- the bulky ligand metallocene-type catalyst compounds are heterocyclic ligand complexes where the bulky ligands, the ring(s) or ring system(s), include one or more heteroatoms or a combination thereof.
- heteroatoms include a Group 13 to 16 element, preferably nitrogen, boron, sulfur, oxygen, aluminum, silicon, phosphorous and tin. Examples of these bulky ligand metallocene-type catalyst compounds are described in WO 96/33202, WO 96/34021, WO 97/17379 and WO 98/22486 and EP-A1-0 874 005 and U.S. Pat. Nos. 5,637,660, 5,539,124, 5,554,775, 5,756,611, 5,233,049, 5,744,417, and 5,856,258 all of which are herein incorporated by reference.
- the bulky ligand metallocene-type catalyst compounds are those complexes known as transition metal catalysts based on bidentate ligands containing pyridine or quinoline moieties, such as those described in U.S. application Ser. No. 09/103,620 filed Jun. 23, 1998 U.S. Pat. No. 6,103,657 filed Aug. 15, 2000, which is herein incorporated by reference.
- the bulky ligand metallocene-type catalyst compounds are those described in PCT publications WO 99/01481 and WO 98/42664, which are fully incorporated herein by reference.
- the bulky ligand type metallocene-type catalyst compound is a complex of a metal, preferably a transition metal, a bulky ligand, preferably a substituted or unsubstituted pi-bonded ligand, and one or more heteroallyl moieties, such as those described in U.S. Pat. Nos. 5,527,752 and 5,747,406 and EP-B1-0 735 057, all of which are herein fully incorporated by reference.
- the other metal compound or second metal compound is the bulky ligand metallocene-type catalyst compound is represented by the formula: L DM′ M Q 2 (YZ)X n (VI) where, M′ M is a Group 3 to 16 metal, preferably a Group 4 to 12 transition metal, and most preferably a Group 4 , 5 or 6 transition metal; L D is a bulky ligand that is bonded to M′ , M; each Q is independently bonded to M′ , M and Q 2 (YZ) forms a ligand, preferably a unicharged polydentate ligand; A or Q is a univalent anionic ligand also bonded to M′ , M; X is a univalent anionic group when n is 2 or X is a divalent anionic group when n is 1; n is 1 or 2.
- L and M′ , M are as defined above for formula (III).
- Q is as defined above for formula (III), preferably Q is selected from the group consisting of —O—, —NR—, —CR 2 — and —S—; Y is either C or S; Z is selected from the group consisting of —OR, NR 2 , —CR 3 , —SR, —SiR 3 , —PR 2 , —H, and substituted or unsubstituted aryl groups, with the proviso that when Q is —NR— then Z is selected from one of the group consisting of —OR, —NR 2 , —SR, —SiR 3 , —PR 2 and —H; R is selected from a group containing carbon, silicon, nitrogen, oxygen, and/or phosphorus, preferably where R is a hydrocarbon group containing from 1 to 20 carbon atoms, most preferably an alkyl, cycloalkyl, or an aryl group
- the metal compounds described herein are preferably combined with one or more activators to form an olefin polymerization catalyst system.
- activator is defined to be any compound or component or method which can activate any of the Group 15 containing metal compounds and/or the bulky ligand metallocene-type catalyst compounds of the invention as described above.
- Non-limiting activators for example may include a Lewis acid or a non-coordinating ionic activator or ionizing activator or any other compound including Lewis bases, aluminum alkyls, conventional-type cocatalysts and combinations thereof that can convert a neutral bulky ligand metallocene-type catalyst compound or Group 15 containing metal compound to a catalytically active Group 15 containing metal compound or bulky ligand metallocene-type cation.
- alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronaphtyl boron metalloid precursor, polyhalogenated heteroborane anions (WO 98/43983) or combination thereof, that would ionize the neutral bulky ligand metallocene-type catalyst and/or the Group 15 containing metal compound.
- activators neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, a trisperfluorophenyl boron metalloid precursor or a trisperfluoronaphtyl boron metalloid precursor, polyhalogenated heteroborane an
- an activation method using ionizing ionic compounds not containing an active proton but capable of producing a Group 15 containing metal compound cation or bulky ligand metallocene-type catalyst cation and their non-coordinating anion are also contemplated, and are described in EP-A-0 426 637, EP-A-0 573 403 and U.S. Pat. No. 5,387,568, which are all herein incorporated by reference.
- Organoaluminum compounds useful as activators include trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum and the like.
- Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion of the ionizing compound.
- Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-B1-0 500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Pat. Nos. 5,153,157, 5,198,401, 5,066,741, 5,206,197, 5,241,025, 5,384,299 and 5,502,124 and U.S. patent application Ser. No. 08/285,380, filed Aug. 3, 1994 abandoned May 23, 1995, all of which are herein fully incorporated by reference.
- activators include those described in PCT publication WO 98/07515 such as tris (2,2′,2′′-nonafluorobiphenyl) fluoroaluminate, which publication is fully incorporated herein by reference.
- Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, EP-B1 0 573 120, PCT publications WO 94/07928 and WO 95/14044 and U.S. Pat. Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference.
- WO 98/09996 incorporated herein by reference describes activating bulky ligand metallocene-type catalyst compounds with perchlorates, periodates and iodates including their hydrates.
- WO 98/30602 and WO 98/30603 incorporated by reference describe the use of lithium (2,2′-bisphenyl-ditrimethylsilicate)•4THF as an activator for a bulky ligand metallocene-type catalyst compound.
- WO 99/18135 incorporated herein by reference describes the use of organo-boron-aluminum acitivators.
- EP-B1-0 781 299 describes using a silylium salt in combination with a non-coordinating compatible anion.
- methods of activation such as using radiation (see EP-B1-0 615 981 herein incorporated by reference), electrochemical oxidation, and the like are also contemplated as activating methods for the purposes of rendering the neutral bulky ligand metallocene-type catalyst compound or precursor to a bulky ligand metallocene-type cation capable of polymerizing olefins.
- Other activators or methods for activating a bulky ligand metallocene-type catalyst compound are described in for example, U.S. Pat Nos.
- Group 15 containing metal compounds and bulky ligand metallocene-type catalyst compounds can be combined with one or more of the catalyst compounds represented by formulas (III) through (VI) with one or more activators or activation methods described above.
- any one of the bulky ligand metallocene-type catalyst compounds of the invention have at least one fluoride or fluorine containing leaving group as described in U.S. application Ser. No. 09/191,916 filed Nov. 13, 1998 pending.
- modified alumoxanes are combined with the first and second metal compounds of the invention to form a catalyst system.
- MMAO3A modified methyl alumoxane in heptane, commercially available from Akzo Chemicals, Inc., Holland, under the trade name Modified Methylalumoxane type 3A, see for example those aluminoxanes disclosed in U.S. Pat. No. 5,041,584, which is herein incorporated by reference
- Modified Methylalumoxane type 3A see for example those aluminoxanes disclosed in U.S. Pat. No. 5,041,584, which is herein incorporated by reference
- the first and second metal compounds may be combined at molar ratios of 1:1000 to 1000:1, preferably 1:99 to 99:1, preferably 10:90 to 90:10, more preferably 20:80 to 80:20, more preferably 30:70 to 70:30, more preferably 40:60 to 60:40.
- the particular ratio chosen will depend on the end product desired and/or the method of activation
- the preferred weight percents are 10 to 95 weight % compound of formula 1 and 5 to 90 weight % compound of formula 2, preferably 50 to 90 weight % compound of Formula 1 and 10 to 50 weight % compound of formula 2, more preferably 60 to 80 weight % compound of formula 1 to 40 to 20 weight % compound of formula 2.
- the compound of Formula 2 is activated with methylalumoxane, then combined with the compound of Formula 2, then injected in the reactor.
- the preferred weight percents are 10 to 95 weight % Compound I and 5 to 90 weight % indenyl zirconium tris-pivalate, preferably 50 to 90 weight % Compound I and 10 to 50 weight % indenyl zirconium tris-pivalate, more preferably 60-80 weight % Compound I to 40 to 20 weight % indenyl zirconium tris-pivalate.
- the indenyl zirconium tris-pivalate is activated with methylalumoxane, then combined with Compound I, then injected in the reactor.
- the combined metal compounds and the activator are combined in ratios of about 1000:1 to about 0.5:1.
- the metal compounds and the activator are combined in a ratio of about 300:1 to about 1:1, preferably about 150:1 to about 1:1, for boranes, borates, aluminates, etc. the ratio is preferably about 1:1 to about 10:1 and for alkyl aluminum compounds (such as diethylalumimim chloride combined with water) the ratio is preferably about 0.5:1 to about 10:1.
- the mixed catalyst composition of the present invention may alternately include the Group 15 containing metal compound, as described above, and a conventional-type transition catalyst.
- Conventional-type transition metal catalysts are those traditional Ziegler-Natta, vanadium and Phillips-type catalysts well known in the art. Such as, for example Ziegler-Natta catalysts as described in Ziegler-Natta Catalysts and Polymerizations, John Boor, Academic Press, New York, 1979. Examples of conventional-type transition metal catalysts are also discussed in U.S. Pat. Nos. 4,115,639, 4,077,904, 4,482,687, 4,564,605, 4,721,763, 4,879,359 and 4,960,741 all of which are herein fully incorporated by reference.
- the conventional-type transition metal catalyst compounds that may be used in the present invention include transition metal compounds from Groups 3 to 17, preferably 4 to 12, more preferably 4 to 6 of the Periodic Table of Elements.
- These conventional-type transition metal catalysts may be represented by the formula: MR x , where M is a metal from Groups 3 to 17, preferably Group 4 to 6, more preferably Group 4, most preferably titanium; R is a halogen or a hydrocarbyloxy group; and x is the oxidation state of the metal M.
- R include alkoxy, phenoxy, bromide, chloride and fluoride.
- Non-limiting examples of conventional-type transition metal catalysts where M is titanium include TiCl 4 , TiBr 4 , Ti(OC 2 H 5 ) 3 Cl, Ti(OC 2 H 5 )Cl 3 , Ti(OC 4 H 9 ) 3 Cl, Ti(OC 3 H 7 ) 2 Cl 2 , Ti(OC 2 H 5 ) 2 Br 2 , TiCl 3 .1 ⁇ 3AlCl 3 and Ti(OC 12 H 25 )Cl 3 .
- the preferred conventional-type vanadium catalyst compounds are VOCl 3 , VCl 4 and VOCl 2 —OR where R is a hydrocarbon radical, preferably a C 1 to C 10 aliphatic or aromatic hydrocarbon radical such as ethyl, phenyl, isopropyl, butyl, propyl, n-butyl, iso-butyl, tertiary-butyl, hexyl, cyclohexyl, naphthyl, etc., and vanadium acetyl acetonates.
- R is a hydrocarbon radical, preferably a C 1 to C 10 aliphatic or aromatic hydrocarbon radical such as ethyl, phenyl, isopropyl, butyl, propyl, n-butyl, iso-butyl, tertiary-butyl, hexyl, cyclohexyl, naphthyl, etc., and vanadium acet
- Conventional-type chromium catalyst compounds often referred to as Phillips-type catalysts, suitable for use in the present invention include CrO 3 , chromocene, silyl chromate, chromyl chloride (CrO 2 Cl 2 ), chromium-2-ethyl-hexanoate, chromium acetylacetonate (Cr(AcAc) 3 , and the like.
- CrO 3 chromocene
- silyl chromate chromyl chloride
- CrO 2 Cl 2 chromium-2-ethyl-hexanoate
- Cr(AcAc) 3 chromium acetylacetonate
- Non-limiting examples are disclosed in U.S. Pat. Nos. 3,709,853, 3,709,954, 3,231,550, 3,242,099 and 4,077,904, which are herein fully incorporated by reference.
- catalysts may include cationic catalysts such as AlCl 3 , and other cobalt, iron, nickel and palladium catalysts well known in the art. See for example U.S. Pat. Nos. 3,487,112, 4,472,559, 4,182,814 and 4,689,437 all of which are incorporated herein by reference.
- these conventional-type transition metal catalyst compounds excluding some conventional-type chromium catalyst compounds are activated with one or more of the conventional-type cocatalysts described below.
- conventional type transition metal catalysts can be activated using the activators described above in this patent specification as appreciated by one in the art.
- Conventional-type cocatalyst compounds for the above conventional-type transition metal catalyst compounds may be represented by the formula M 3 M 4 v X 2 n R 3 b ⁇ c , wherein M 3 is a metal from Group 1 to 3 and 12 to 13 of the Periodic Table of Elements; M 4 is a metal of Group 1 of the Periodic Table of Elements; v is a number from 0 to 1; each X 2 is any halogen; c is a number from 0 to 3; each R 3 is a monovalent hydrocarbon radical or hydrogen; b is a number from 1 to 4; and wherein b minus c is at least 1.
- M 3 R 3 k is a Group IA, IIA, IIB or IIIA metal, such as lithium, sodium, beryllium, barium, boron, aluminum, zinc, cadmium, and gallium; k equals 1, 2 or 3 depending upon the valency of M 3 which valency in turn normally depends upon the particular Group to which M 3 belongs; and each R 3 may be any monovalent hydrocarbon radical.
- Non-limiting examples of conventional-type organometallic cocatalyst compounds useful with the conventional-type catalyst compounds described above include methyllithium, butyllithium, dihexylmercury, butylmagnesium, diethylcadmium, benzylpotassium, diethylzinc, tri-n-butylaluminum, diisobutyl ethylboron, diethylcadmium, di-n-butylzinc and tri-n-amylboron, and, in particular, the aluminum alkyls, such as tri-hexylaluminum, triethylaluminum, trimethylaluminum, and tri-isobutylaluminum.
- Non-limiting examples of such conventional-type cocatalyst compounds include di-isobutylaluminum bromide, isobutylboron dichloride, methyl magnesium chloride, ethylberyllium chloride, ethyl-calcium bromide, di-isobutylaluminum hydride, methylcadmium hydride, diethylboron hydride, hexylberyllium hydride, dipropylboron hydride, octylmagnesium hydride, butylzinc hydride, dichloroboron hydride, di-bromo-aluminum hydride and bromocadmium hydride.
- the metal compounds, mixed metal compounds and catalyst systems described above are suitable for use in any polymerization process, including solution, gas or slurry processes or a combination thereof.
- the polymerization process is preferably a gas or slurry phase process and more preferably utilizes a single reactor, and most preferably a single gas phase reactor.
- the catalyst system consists of the metal compounds (catalyst) and or the activator (cocatalyst) which arc preferably introduced into the reactor in solution.
- Solutions of the metal compounds are prepared by taking the catalyst and dissolving it in any suitable solvent such as an alkane, toluene, xylene, etc.
- the solvent may first be purified in order to remove any poisons, which may affect the catalyst activity, including any trace water and/or oxygenated compounds. Purification of the solvent may be accomplished by using activated alumina and activated supported copper catalyst.
- the catalyst is preferably completely dissolved into the solution to form a homogeneous solution. Both catalysts may be dissolved into the same solvent, if desired. Once the catalysts are in solution, they may be stored indefinitely until use.
- the catalyst is combined with an activator prior to introduction into the reactor.
- other solvents and reactants can be added to the catalyst solutions (on-line or off-line), to the activator (on-line or off-line), or to the activated catalyst or catalysts. See U.S. Pat. Nos. 5,317,036 and 5,693,727, EP-A-0 593 083, and WO 97/46599 which are fully incorporated herein by reference, that describe solution feed systems to a reactor. There are many different configurations which are possible to combine the catalysts and activator.
- the catalyst system, the metal compounds and or the activator are preferably introduced into the reactor in one or more solutions.
- the metal compounds may be activated independently, in series or together.
- a solution of the two activated metal compounds in an alkane such as pentane, hexane, toluene, isopentane or the like is introduced into a gas phase or slurry phase reactor.
- the catalysts system or the components can be introduced into the reactor in a suspension or an emulsion.
- the second metal compound is contacted with the activator, such as modified methylalumoxane, in a solvent and just before the solution is fed into a gas, slurry or solution phase reactor.
- a solution of the Group 15 containing metal compound is combined with a solution of the second compound and the activator and then introduced into the reactor.
- the metal compound and/or the co- catalyst occurs naturally in liquid form, it can be introduced “neat” into the particle lean zone. More likely, the liquid catalyst is introduced into the particle lean zone as a solution ( single phase, or “true solution” using a solvent to dissolve the metal compound and/or co - catalyst ) , an emulsion ( partially dissolving the catalyst components in a solvent ) , suspension, dispersion, or slurry ( each having at least two phases ) .
- the liquid catalyst employed is a solution or an emulsion, most preferably a solution.
- “liquid catalyst” or “liquid form” includes neat, solution, emulsion, and dispersions of the transition metal or rare earth metal component ( s ) of the catalyst and/or co - catalyst.
- A refers to a catalyst or mixture of catalysts
- B refers to a different catalyst or mixture of catalysts.
- the mixtures of catalysts in A and B can be the same catalysts, just in different ratios. Further, it is noted that additional solvents or inert gases may be added at many locations.
- this invention is directed toward the polymerization or copolymerization reactions involving the polymerization of one or more monomers having from 2 to 30 carbon atoms, preferably 2 to 12 carbon atoms, and more preferably 2 to 8 carbon atoms.
- the invention is particularly well suited to the copolymerization reactions involving the polymerization of one or more olefin monomers of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, hexene-1, octene-1, decene-1, 3-methyl-pentene-1, 3,5,5-trimethyl-hexene-1 and cyclic olefins or a combination thereof.
- Other monomers can include vinyl monomers, diolefins such as dienes, polyenes, norbornene, norbornadiene monomers.
- a copolymer of ethylene is produced, where the comonomer is at least one alpha-olefin having from 4 to 15 carbon atoms, preferably from 4 to 12 carbon atoms, more preferably from 4 to 8 carbon atoms and most preferably from 4 to 7 carbon atoms.
- the geminally disubstituted olefins disclosed in WO 98/37109 may be polymerized or copolymerized using the invention herein described.
- ethylene or propylene is polymerized with at least two different comonomers to form a terpolymer.
- the preferred comonomers are a combination of alpha-olefin monomers having 4 to 10 carbon atoms, more preferably 4 to 8 carbon atoms, optionally with at least one diene monomer.
- the preferred terpolymers include the combinations such as ethylene/butene-1/hexene-1, ethylene/propylene/butene-1, propylene/ethylene/hexene-1, ethylene/propylene/norbornene and the like.
- the process of the invention relates to the polymerization of ethylene and at least one comonomer having from 4 to 8 carbon atoms, preferably 4 to 7 carbon atoms.
- the comonomers are butene-1, 4-methyl-pentene-1, hexene-1 and octene-1, the most preferred being hexene-1 and/or butene-1.
- a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor.
- a gas fluidized bed process for producing polymers a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer.
- the reactor pressure in a gas phase process may vary from about 10 psig (69 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 100 psig (690 kPa) to about 400 psig (2759 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa).
- the reactor temperature in the gas phase process may vary from about 30° C. to about 120° C., preferably from about 60° C. to about 115° C., more preferably in the range of from about 75° C. to 110° C., and most preferably in the range of from about 85° C. to about 110° C.
- Altering the polymerization temperature can also be used as a tool to alter the final polymer product properties.
- the productivity of the catalyst or catalyst system is influenced by the main monomer partial pressure.
- the preferred mole percent of the main monomer, ethylene or propylene, preferably ethylene is from about 25 to 90 mole percent and the monomer partial pressure is in the range of from about 75 psia (517 kPa) to about 300 psia (2069 kPa), which are typical conditions in a gas phase polymerization process.
- the ethylene partial pressure is about 220 to 240 psi (1517-1653 kPa).
- the molar ratio of hexene to ethylene ins the reactor is 0.03:1 to 0.08:1.
- the reactor utilized in the present invention and the process of the invention produce greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr).
- a slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0° C. to about 120° C.
- a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers and often hydrogen along with catalyst are added.
- the suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor.
- the liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane.
- the medium employed should be liquid under the conditions of polymerization and relatively inert.
- a propane medium When used the process must be operated above the reaction diluent critical temperature and pressure.
- a hexane or an isobutane medium is employed.
- a preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
- a particle form polymerization or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
- the preferred temperature in the particle form process is within the range of about 185° F. (85° C.) to about 230° F. (110° C.).
- Two preferred polymerization methods for the slurry process are those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof.
- Non-limiting examples of slurry processes include continuous loop or stirred tank processes.
- other examples of slurry processes are described in U.S. Pat. No. 4,613,484, which is herein fully incorporated by reference.
- the slurry process is carried out continuously in a loop reactor.
- the catalyst as a solution, as a suspension, as an emulsion, as a slurry in isobutane or as a dry free flowing powder is injected regularly to the reactor loop, which is itself filled with circulating slurry of growing polymer particles in a diluent of isobutane containing monomer and comonomer.
- Hydrogen optionally, may be added as a molecular weight control.
- the reactor is maintained at pressure of about 525 psig to 625 psig (3620 kPa to 4309 kPa) and at a temperature in the range of about 140° F. to about 220° F. (about 60° C.
- reaction heat is removed through the loop wall since much of the reactor is in the form of a double-jacketed pipe.
- the slurry is allowed to exit the reactor at regular intervals or continuously to a heated low pressure flash vessel, rotary dryer and a nitrogen purge column in sequence for removal of the isobutane diluent and all unreacted monomer and comonomers.
- the resulting hydrocarbon free powder is then compounded for use in various applications.
- the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr).
- the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).
- the total reactor pressure is in the range of from 400 psig (2758 kPa) to 800 psig (5516 kPa), preferably 450 psig (3103 kPa) to about 700 psig (4827 kPa), more preferably 500 psig (3448 kPa) to about 650 psig (4482 kPa), most preferably from about 525 psig (3620 kPa) to 625 psig (4309 kPa).
- the concentration of ethylene in the reactor liquid medium is in the range of from about 1 to 10 weight percent, preferably from about 2 to about 7 weight percent, more preferably from about 2.5 to about 6 weight percent, most preferably from about 3 to about 6 weight percent.
- a preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
- any scavengers such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
- a slurry of an aluminum distearate in mineral oil is introduced into the reactor, separately or with the first and or second metal complex and/or with an activator, from the metal compounds and or the activators. More information on using aluminum stearate type additives may be found in U.S. application Ser. No. 09/113,261 filed Jul. 10, 1998 U.S. Pat. No. 6,031,120 filed Feb. 29, 2000, which is incorporated by reference herein.
- the second metal compound and Group 15 metal compound of the catalyst system are introduced to the reactor in series, it is preferably that the second metal compound is added and/or activated first and that the Group 15 metal compound is added and/or activated second.
- the residence time of the catalyst composition is between about 3 to about 6 hours and preferably between about 3.5 and about 5 hours.
- the mole ratio of comonomer to ethylene, C x /C 2 , where C x is the amount of comonomer and C 2 is the amount of ethylene is between about 0.001 to 0.0100 and more preferably between about 0.002 to 0.008.
- the melt index (and other properties) of the polymer produced may be changed by manipulating hydrogen concentration in the polymerization system by:
- the hydrogen concentration in the reactor is about 100 to 5000 ppm, preferably 200 to 2000 ppm, more preferably 250 to 1900 ppm, more preferably 300 to 1800 ppm, and more preferably 350 to 1700 ppm, more preferably 400 to 1600 ppm, more preferably 500 to 1500 ppm, more preferably 500 to 1400 ppm, more preferably 500 to 1200 ppm, more preferably 600 to 1200 ppm, preferably 700 to 1100 ppm, and more preferably 800 to 1000 ppm.
- the hydrogen concentration in the reactor being inversely proportional to the polymer's weight average molecular weight (M w ).
- the catalyst and/or the activator may be placed on, deposited on, contacted with, incorporated within, adsorbed, or absorbed in a support.
- the support is any of the solid, porous supports, including microporous supports.
- Typical support materials include talc; inorganic oxides such as silica, magnesium chloride, alumina, silica-alumina; polymeric supports such as polyethylene, polypropylene, polystyrene, cross-linked polystyrene; and the like.
- the support is used in finely divided form. Prior to use the support is preferably partially or completely dehydrated. The dehydration may be done physically by calcining or by chemically converting all or part of the active hydroxyls.
- the new polymers produced by the process of the present invention may be used in a wide variety of products and end use applications.
- the new polymers include polyethylene, and even more preferably include bimodal polyethylene produced in a single reactor. In addition to bimodal polymers, it is not beyond the scope of the present application to produce a unimodal or multi-modal polymer.
- the Group 15 containing metal compound when used alone, produces a high weight average molecular weight M w polymer (such as for example above 100,000, preferably above 150,000, preferably above 200,000, preferably above 250,000, more preferably above 300,000).
- the second metal compound when used alone, produces a low molecular weight polymer (such as for example below 80,000, preferably below 70,000, preferably below 60,000, more preferably below 50,000, more preferably below 40,000, more preferably below 30,000, more preferably below 20,000 and above 5,000, more preferably below 20,000 and above 10,000).
- the polyolefins, particularly polyethylenes, produced by the present invention have a density of 0.89 to 0.97 g/cm 3 .
- polyethylenes having a density of 0.910 to 0.965 g/cm 3 , more preferably 0.915 to 0.960 g/cm 3 , and even more preferably 0.920 to 0.955 g/cm 3 can be produced.
- a density of 0.915 to 0.940 g/cm 3 would be preferred, in other embodiments densities of 0.930 to 0.970 g/cm 3 are preferred.
- the polyolefin recovered typically has a melt index I 2 (as measured by ASTM D-1238, Condition E at 190° C. ) of about 0.01 to 10000 dg/min or less.
- the polyolefin is ethylene homopolymer or copolymer.
- a melt index of 10 dg/min or less is preferred.
- a melt index of 1 dg/min or less is preferred.
- Polyethylene having a I 2 between 0.01 and 10 dg/min is preferred.
- the polymer produced herein has an I 21 (as measured by ASTM-D-1238-F, at 190° C.) of 0.1 to 10 dg/min, preferably 0.2 to 7.5 dg/min, preferably 2.0 dg/min or less, preferably 1.5 dg/min or less, preferably 1.2 dg/min or less, more preferably between 0.5 and 1.0 dg/min, more preferably between 0.6 and 0.8 dg/min.
- I 21 as measured by ASTM-D-1238-F, at 190° C.
- the polymers of the invention have a melt flow index “MIR” of I 21 /I 2 of 80 or more, preferably 90 or more, preferably 100 or more, preferably 125 or more.
- the polymer has an I 21 (as measured by ASTM 1238, condition F, at 190° C.) (sometimes referred to as Flow Index) of 2.0 dg/min or less, preferably 1.5 dg/min or less, preferably 1.2 dg/min or less, more preferably between 0.5 and 1.0 dg/min, more preferably between 0.6 and 0.8 dg/min and an I 21/I2 of 80 or more, preferably 90 or more, preferably 100 or more, preferably 125 or more and has one or more of the following properties in addition:
- the catalyst composition described above is used to make a polyethylene having a density of between 0.94 and 0.970 g/cm 3 (as measured by ASTM D 2839) and an I 2 of 0.5 or less g/10 min or less
- the catalyst composition described above is used to make a polyethylene having an I 21 of less than 10 and a density of between about 0.940 and 0.950 g/cm 3 or an I 21 of less than 20 and a density of about 0.945 g/cm 3 or less.
- the polymer of the invention is made into a pipe by methods known in the art.
- the polymers of the invention have a I 21 of from about 2 to about 10 dg/min and preferably from about 2 to about 8 dg/min.
- the pipe of the invention satisfies ISO qualifications.
- the catalyst composition of the present invention is used to make polyethylene pipe able to withstand at least 50 years at an ambient temperature of 20° C., using water as the internal test medium and either water or air as the outside environment (Hydro static (hoop) stress as measured by ISO TR 9080).
- the polymer has a notch tensile test (resistance to slow crack growth) result of greater than 150 hours at 3.0 MPa, preferably greater than 500 hours at 3.0 MPa and more preferably greater than 600 hours at 3.0 mPa. (as measured by ASTM F1473).
- the catalyst composition of the present invention is used to make polyethylene pipe having a predicted S-4 T c for 110 mm pipe of less than ⁇ 5° C., preferably of less than ⁇ 15° C. and more preferably less than ⁇ 40° C. (ISO DIS 13477/ASTM F1589).
- the polymer has an extrusion rate of greater than about 17 lbs/hour/inch of die circumference and preferably greater than about 20 lbs/hour/inch of die circumference and more preferably greater than about 22 lbs/hour/inch of die circumference
- the polyolefins of the invention can be made into films, molded articles (including pipes), sheets, wire and cable coating and the like.
- the films may be formed by any of the conventional techniques known in the art including extrusion, co-extrusion, lamination, blowing and casting.
- the film may be obtained by the flat film or tubular process which may be followed by orientation in a uniaxial direction or in two mutually perpendicular directions in the plane of the film to the same or different extents. Orientation may be to the same extent in both directions or may be to different extents.
- Particularly preferred methods to form the polymers into films include extrusion or coextrusion on a blown or cast film line.
- the polymer of the invention is made into a film by methods known in the art.
- the polymers of the invention have a I 21 of from about 2 to about 50 dg/min, preferably from about 2 to about 30 dg/min, even more preferably from about 2 to about 20 dg/min, still more preferably about 5 to about 15 dg/min and yet more preferably from about 5 to about 10 dg/min.
- the polymer has an MD Tear of 0.5 mil (13 ⁇ ) film of between about 5 g/mil and 25 g/mil preferably, between about 15 g/mil and 25 g/mil, and more preferably between about 20 g/mil and 25 g/mil.
- the films produced may further contain additives such as slip, antiblock, antioxidants, pigments, fillers, antifog, UV stabilizers, antistats, polymer processing aids, neutralizers, lubricants, surfactants, pigments, dyes and nucleating agents.
- Preferred additives include silicon dioxide, synthetic silica, titanium dioxide, polydimethylsiloxane, calcium carbonate, metal stearates, calcium stearate, zinc stearate, talc, BaSO 4 , diatomaceous earth, wax, carbon black, flame retarding additives, low molecular weight resins, hydrocarbon resins, glass beads and the like.
- the additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to 10 weight %.
- the polymer of the invention is made into a molded article by methods known in the art, for example, by blow molding and injection-stretch molding.
- the polymers of the invention have a I 21 of from about 20 dg/min to about 50 dg/min and preferably from about 35 dg/min to about 45 dg/min.
- the polymers of the invention including those described above, have an ash content less than 100 ppm, more preferably less than 75 ppm, and even more preferably less than 50 ppm is produced.
- the ash contains negligibly small levels of titanium as measured by Inductively Coupled Plasma/Atomic Emission Spectroscopy (ICPAES) as is well known in the art.
- ICPAES Inductively Coupled Plasma/Atomic Emission Spectroscopy
- the polymers of the invention contain a nitrogen containing ligand detectable by High Resolution Mass Spectroscopy (HRMS) as is well known in the art.
- HRMS High Resolution Mass Spectroscopy
- An ethylene-hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C. and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger.
- Ethylene was fed to the reactor at a rate of about 40 pounds per hour (18.1 kg/hr)
- hexene was fed to the reactor at a rate of about 0.6 pounds per hour (0.27 kg/hr)
- hydrogen was fed to the reactor at a rate of 5 mPPII.
- Nitrogen was fed to the reactor as a make-up gas at about 5-8 PPH. The production rate was about 27 PPH.
- the reactor was equipped with a plenum having about 1,900 PPH of recycle gas flow.
- the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor, as described in detail in U.S. Pat. No. 5,693,727 which is incorporated herein by reference.
- a tapered catalyst injection nozzle having a 0.041 inch (0.10 cm) hole size was positioned in the plenum gas flow.
- a solution of 1 wt % of Catalyst A in toluene and cocatalyst (MMAO-3A, 1 wt % Aluminum) were mixed in line prior to passing through the injection nozzle into the fluidized bed.
- MMAO-3A is modified methyl alumoxane in heptane, commercially available from Akzo Chemicals, Inc.
- MMAO to catalyst was controlled so that the Al:Zr molar ratio was 400:1. Nitrogen and isopentane were also fed to the injection nozzle as needed to maintain a stable average particle size. A unimodal polymer having nominal 0.28 dg/min (I 21 ) and 0.935 g/cc (density) properties was obtained. A residual zirconium of 1.63 ppmw was calculated based on a reactor mass balance.
- An ethylene-hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 80° C. and 320 psig (2.2 MPa) total reactor pressure having a water cooled heat exchanger.
- Ethylene was fed to the reactor at a rate of about 37 pounds per hour (19.8 kg/hr), hexene was fed to the reactor at a rate of about 0.4 pounds per hour (0.18 kg/hr) and hydrogen was fed to the reactor at a rate of 12 mPPH.
- Ethylene was fed to maintain 180 psi (1.2 MPa) ethylene partial pressure in the reactor. The production rate was about 25 PPH.
- the reactor was equipped with a plenum having about 1,030 PPH of recycle gas flow.
- the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor.
- a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was positioned in the plenum gas flow.
- a solution of 1 wt % Catalyst B in hexane catalyst was mixed with 0.2 lb/hr (0.09 kg/hr) hexene in a 3/16 inch (0.48 cm) stainless steel tube for about 15 minutes.
- the Catalyst B and hexene mixture were mixed with cocatalyst (MMAO-3A, 1 wt % Aluminum) in a line for about 40 minutes.
- An ethylene-hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 80° C. and 320 psig (2.2 MPa) total reactor pressure having a water cooled heat exchanger.
- Ethylene was fed to the reactor at a rate of about 53 pounds per hour (24 kg/hr)
- hexene was fed to the reactor at a rate of about 0.5 pounds per hour (0.22 kg/hr)
- hydrogen was fed to the reactor at a rate of 9 mPPH.
- Ethylene was fed to maintain 220 psi (1.52 MPa) ethylene partial pressure in the reactor.
- the production rate was about 25 PPH.
- the reactor was equipped with a plenum having about 990 PPH of recycle gas flow.
- the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor.
- a tapered catalyst injection nozzle having a 0.055 inch (0.12) hole size was positioned in the plenum gas flow.
- a solution of 1 wt % Catalyst B in hexane catalyst was mixed with 0.2 lb/hr (0.09 kg/hr) hexene in a 3/16 inch (0.48 cm) stainless steel tube for about 15 minutes.
- the Catalyst B and hexene mixture were mixed with cocatalyst (MMAO-3A, 1 wt % Aluminum) in a line for about 20-25 minutes.
- a 1 wt % Catalyst A in toluene solution was activated with cocatalyst (MMAO-3A, 1 wt % Aluminum) for about 50-55 minutes.
- the two independently activated solutions were combined into a single process line for about 4 minutes.
- the quantity of Catalyst A catalyst was about 40-45 mol % of the total solution fed.
- isopentane and nitrogen were added to control particle size.
- the total system was passed through the injection nozzle into the fluidized bed.
- MMAO to catalyst ratio was controlled so that the Al:Zr molar ratio was 300:1.
- a bimodal polymer was produced which was 0.045 g/10 min melt index and 7.48 g/10 min flow index. The density was 0.9496 g/cc. A residual zirconium of 1.7 ppmw was calculated based on a reactor mass balance. SEC analysis and deconvolution using 7-8 floury distributions was completed and the results are shown in Table I.
- An ethylene-hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C. and 320 psig (2.2 MPa) total reactor pressure having a water cooled heat exchanger.
- Ethylene was fed to the reactor at a rate of about 50 pounds per hour (22.7 kg/hr), some of the hexene was fed to the reactor at a rate of about 0.7 pounds per hour (0.32 kg/hr) and hydrogen was fed to the reactor at a rate of 11 mPPH.
- Ethylene was fed to maintain 220 psi (1.52 MPa) ethylene partial pressure in the reactor. The production rate was about 29 PPH.
- the reactor was equipped with a plenum having about 970 PPH of recycle gas flow.
- the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor.
- a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) hole size was positioned in the plenum gas flow.
- a solution of 1 wt % Catalyst B in hexane catalyst was mixed with 0.2 lb/hr (0.09 kg/hr) hexene in a 3/16 inch (0.48 cm) stainless steel tube for about 15 minutes.
- the Catalyst B and hexene mixture were mixed with cocatalyst (MMAO-3A, 1 wt % Aluminum) in a line for about 20-25 minutes.
- cocatalyst MMAO-3A, 1 wt % Aluminum
- a 1 wt % Catalyst A in toluene solution was activated with cocatalyst (MMAO-3A, 1 wt % Aluminum) for about 50-55 minutes.
- the two independently activated solutions were combined into a single process line for about 4 minutes.
- the quantity of Catalyst A catalyst was about 40-45 mol % of the total solution fed.
- isopentane and nitrogen were added to control particle size. The total system was passed through the injection nozzle into the fluidized bed.
- MMAO to catalyst was controlled so that the Al:Zr molar ratio was 300:1.
- a bimodal polymer was produced which was 0.054 g/10 min melt index and 7.94 g/10 min flow index. The density was 0.948 g/cc.
- a residual zirconium of 1.1 ppmw was calculated based on a reactor mass balance. SEC analysis and deconvolution using 7-8 floury distributions was completed and the results are shown in Table I.
- An ethylene-hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C. and 320 psig (2.2 MPa) total reactor pressure having a water cooled heat exchanger.
- Ethylene was fed to the reactor at a rate of about 60 pounds per hour (27.2 kg/hr)
- hexene was fed to the reactor at a rate of about 0.8 pounds per hour (0.36 kg/hr)
- hydrogen was fed to the reactor at a rate of 13 mPPH.
- Ethylene was fed to maintain 220 psi (1.52 MPa) ethylene partial pressure in the reactor. The production rate was about 34 PPH.
- the reactor was equipped with a plenum having about 960 PPH of recycle gas flow, (The plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor.)
- a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) was positioned in the plenum gas flow.
- a solution of 1 wt % Catalyst B in hexane catalyst was mixed with 0.2 lb/hr (0.09 kg/hr) hexene in a 3/16 inch (0.48 cm) stainless steel tube for about 15 minutes.
- the Catalyst B and hexene mixture were mixed with cocatalyst (MMAO-3A, 1 wt % Aluminum) in a line for about 20-25 minutes.
- cocatalyst MMAO-3A, 1 wt % Aluminum
- a 1 wt % Catalyst A in toluene solution was activated with cocatalyst (MMAO-3A, 1 wt % Aluminum) for about 50-55 minutes.
- the two independently activated solutions were combined into a single process line for about 4 minutes.
- the quantity of Catalyst A catalyst was about 40-45 mol % of the total solution fed.
- isopentane and nitrogen were added to control particle size. The total system was passed through the injection nozzle into the fluidized bed.
- MMAO to catalyst ratio was controlled so that the Al:Zr molar ratio was 300:1.
- a bimodal polymer was produced which was 0.077 g/10 min melt index and 12.7 g/10 min flow index. The density was 0.9487 g/cc.
- a residual zirconium of 0.9 ppmw was calculated based on a reactor mass balance. SEC analysis and deconvolution using 7-8 floury distributions was completed and the results are shown in Table I.
- An ethylene-hexene copolymer was produced in a 14-inch (35.6 cm) pilot plant scale gas phase reactor operating at 85° C. and 320 psig (2.2 MPa) total reactor pressure having a water cooled heat exchanger.
- Ethylene was fed to the reactor at a rate of about 60 pounds per hour (27.2 kg/hr)
- hexene was fed to the reactor at a rate of about 0.8 pounds per hour (0.36 kg/hr)
- hydrogen was fed to the reactor at a rate of 13 mPPH.
- Ethylene was fed to maintain 220 psi (1.52 MPa) ethylene partial pressure in the reactor.
- the production rate was about 34 PPH.
- the reactor was equipped with a plenum having about 1,100 PPH of recycle gas flow.
- the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor.
- a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) was positioned in the plenum gas flow.
- a solution of 1 wt % Catalyst B in hexane catalyst was mixed with 0.2 lb/hr (0.09 kg/hr) hexene in a 3/16 inch (0.48 cm) stainless steel tube for about 15 minutes.
- the Catalyst B and hexene mixture were mixed with cocatalyst (MMAO-3A, 1 wt % Aluminum) in a line for about 10-15 minutes.
- Catalyst A in toluene solution was added to the activated Catalyst B solution for about 5 minutes before being sprayed into the reactor.
- the quantity of Catalyst A catalyst was about 40-45 mol % of the total solution fed.
- isopentane and nitrogen were added to control particle size.
- the total system was passed through the injection nozzle into the fluidized bed.
- MMAO to catalyst ratio was controlled so that the final Al:Zr molar ratio was 300:1.
- a bimodal polymer was produced which was 0.136 g/10 min melt index and 38.1 g/10 min flow index. The density was 0.9488 g/cc.
- a residual zirconium of 0.5 ppmw was calculated based on a reactor mass balance. SEC analysis and deconvolution using 7-8 floury distributions was completed and the results are shown in Table I.
- An ethylene-hexene copolymer was produced in a 14-inch (35.6 cm)pilot plant scale gas phase reactor operating at 85° C. and 350 psig (2.4 MPa) total reactor pressure having a water cooled heat exchanger.
- Ethylene was fed to the reactor at a rate of about 42 pounds per hour (19.1 kg/hr), hexene was fed to the reactor at a rate of about 0.8 pounds per hour (0.36 kg/hr) and hydrogen was fed to the reactor at a rate of 13 mPPH.
- Ethylene was fed to maintain 220 psi (1.52 MPa) ethylene partial pressure in the reactor.
- the production rate was about 32 PPH.
- the reactor was equipped with a plenum having about 2010 PPH of recycle gas flow.
- the plenum is a device used to create a particle lean zone in a fluidized bed gas-phase reactor.
- a tapered catalyst injection nozzle having a 0.055 inch (0.14 cm) was positioned in the plenum gas flow.
- a solution of 0.25 wt % Catalyst B in hexane catalyst was mixed with 0.1 lb/hr (0.05 kg/hr) hexene in a 3/16 inch (0.48 cm) stainless steel tube.
- the Catalyst B and hexene mixture were mixed with cocatalyst (MMAO-3A, 1 wt % Aluminum) in a line for about 15 minutes.
- Catalyst A in toluene solution was added to the activated Catalyst B solution for about 15 minutes before being sprayed into the reactor.
- the quantity of Catalyst A catalyst was about 65-70 mol % of the total solution fed.
- isopentane and nitrogen were added to control particle size.
- the total system was passed through the injection nozzle into the fluidized bed.
- MMAO to catalyst ratio was controlled so that the final Al:Zr molar ratio was 500.
- a bimodal polymer was produced which was 0.06 g/10 min melt index and 6.26 g/10 min flow index. The density was 0.9501 g/cc.
- a residual zirconium of 0.65 ppmw was calculated based on a reactor mass balance. SEC analysis and deconvolution using 7-8 floury distributions was completed and the results are shown in Table I.
- Comparative Examples 1 and 2 give experimental data on how the single component catalyst system behave.
- Examples 3 and 4 demonstrate the effect of temperature on essentially the same reactor conditions and catalyst feed system. Note that at higher temperature, the M w /M n is lower, as is the MFR.
- Examples 5 and 6 compare the effect of activation scheme for essentially the same reactor conditions and catalyst feed system. Note that in Example 6, the overall activity of the catalyst is better. However, the amount of high molecular weight material produced is lower.
- Examples 6 and 7 demonstrate the ability to control the amount of high molecular weight material produced at essentially similar reactor conditions. Example 7 fed a higher percentage of Catalyst A feed, hence a higher quantity of higher Mw material was produced.
- Polymer A 350 pounds (159 kg) of polyethylene produced according to example 4 above (referred to as Polymer A) was compounded on a Wemer-Fleiderer ZSK-30 twin screw extruder with 1000 ppm IrganoxTM 1076 and 1500 ppm IrgafosTM 1068 at a melt temperature of 220° C. and formed into pellets. Then the pellets were blown into a 0.5 mil (13 ⁇ m) film on an Alpine blown film extrusion line. The extrusion condition were: die-160 mm triplex, 1.5 mm die gap, 400° C. die temperature, 48 inches (122 cm) layflat width, target melt temperature—410° F.
- Elong Ultimate Elongation ESCORENE ED7755.10 is a polyethylene polymer available from Exxon Chemical Company, Houston, Texas, having an I 21 of 7.5, and MIR of 125, an M w of 180,000, a density of 0.95 g/cc, produced using a dual reactor system.
- the extrusion conditions were: 400° F. (204° C.) die temperature, output rate—100 lb/hr (46 kg/hr).
- a typical set temperature profile was: 380° F./400° F./400° F./400° F./400° F./400° F./410° F./410° F. (193° C./204° C./204° C./204° C./204° C./204° C./210° C./210° C.) for Barrel1/Barrel2/Block adaptor/Bottom adaptor/Verical adaptor/Die bottom/Die middle/Die top.
- the pellet samples were extruded to produce 1.0 mil (25 ⁇ m) film sample at the line speed of 92 fpm (48 cm/sec) and 0.5 mil (13 ⁇ m) film sample at the line speed of 184 fpm (94 cm/sec) at the blow-up ratio (BUR) of 4.0.
- BUR blow-up ratio
- the bubble showed excellent stability with a typical “necked-in” wine glass shape.
- the FLH (frost line height) of blown bubble was maintained at 36 inches (91.4 cm) and 40 inches (101.6 cm), respectively for 1.0 mil (25 ⁇ m) and 0.5 mil (12.5 pm) film.
- the extrusion head pressure and motor load exhibited slightly higher than ESCORENETM HD7755.10 (a conventional series reactor product of Exxon Chemical Company in Mt Belvue Tex.) at the same extrusion conditions.
- the resultant film properties are reported in Table B. All the film samples were conditioned at to 23° C., 50% humidity for 40 hours.
- Dart impact strength of 0.5 mil (12.5 ⁇ m) film exhibited 380 g, which exceeded that of ESCORENETM HD7755.10 which showed 330 g.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
wherein
-
- M is a Group 3 to 12 transition metal or a Group 13 or 14 main group metal, preferably a Group 4, 5, or 6 metal, and more preferably a Group 4 metal, and most preferably zirconium, titanium or hafnium,
- each X is independently a leaving group, preferably, an anionic leaving group, and more preferably hydrogen, a hydrocarbyl group, a heteroatom or a halogen, and most preferably an alkyl.
- y is 0 or 1 (when y is 0 group L′ is absent),
- n is the oxidation state of M, preferably +3, +4, or +5, and m or e preferably +4,
- m is the formal charge of the YZL or the YZL′ ligand, preferably 0, −1, −2 or −3, and more preferably −2,
- L is a Group 15 or 16 element, preferably nitrogen,
- L′ is a Group 15 or 16 element or Group 14 containing group, preferably carbon, silicon or germanium,
- Y is a Group 15 element, preferably nitrogen or phosphorus, and more preferably nitrogen,
- Z is a Group 15 element, preferably nitrogen or phosphorus, and more preferably nitrogen,
- R1 and R2 are independently a C1 to C20 hydrocarbon group, a heteroatom containing group having up to twenty carbon atoms, silicon, germanium, tin, lead, or phosphorus, preferably a C2 to C20 alkyl, aryl or aralkyl arylalkyl group, more preferably a linear, branched or cyclic C2 to C20 alkyl group, most preferably a C2 to C6 hydrocarbon group.
-
- R4 and R5 are independently an alkyl group, an aryl group, substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, a cyclic arylakyl arylalkyl group, a substituted cyclic aralkyl arylalkyl group or multiple ring system, preferably having up to 20 carbon atoms, more preferably between 3 and 10 carbon atoms, and even more preferably a C1 to C20 hydrocarbon group, a C1 to C20 aryl group or a C1 to C20 aralkyl arylalkyl group, or a heteroatom containing group, for example PR3, where R is an alkyl group.
- R1 and R2 may be interconnected to each other, and/or R4 and R5 may be interconnected to each other,
- R6 and R7 are independently absent, or hydrogen, an alkyl group, halogen, heteroatom or a hydrocarbyl group, preferably a linear, cyclic or branched alkyl group having 1 to 20 carbon atoms, more preferably absent, and
- R* is absent, or is hydrogen, a Group 14 atom containing group, a halogen, a heteroatom containing group.
wherein
-
- R8 to R12 are each independently hydrogen, a C1 to C40 alkyl group, a halide, a heteroatom, a heteroatom containing group containing up to 40 carbon atoms, preferably a C1 to C20 linear or branched alkyl group, preferably a methyl, ethyl, propyl or butyl group, any two R groups may form a cyclic group and/or a heterocyclic group. The cyclic groups may be aromatic. In a preferred embodiment R9, R10 and R12 are independently a methyl, ethyl, propyl or butyl group (including all isomers), in a preferred embodiment R9, R10 and R12 are methyl groups, and R8 and R11 are hydrogen.
LALBM′ MQn (III)
where M′ M is a metal atom from the Periodic Table of the Elements and may be a Group 3 to 12 metal or from the lanthanide or actinide series of the Periodic Table of Elements, preferably M′ M is a Group 4, 5 or 6 transition metal, more preferably M′ M is a Group 4 transition metal, even more preferably, M′ M is zirconium, hafnium or titanium. The bulky ligands, LA and LB, are open, acyclic or fused ring(s) or ring system(s) and are any ancillary ligand system, including unsubstituted or substituted, cyclopentadienyl ligands or cyclopentadienyl-type ligands, heteroatom substituted and/or heteroatom containing cyclopentadienyl-type ligands. Non-limiting examples of bulky ligands include cyclopentadienyl ligands, cyclopentaphenanthreneyl ligands, indenyl ligands, benzindenyl ligands, fluorenyl ligands, octahydrofluorenyl ligands, cyclooctatetraendiyl ligands, cyclopentacyclododecene ligands, azenyl ligands, azulene ligands, pentalene ligands, phosphoyl ligands, phosphinimine (WO 99/40125), pyrrolyl ligands, pyrozolyl ligands, carbazolyl ligands, borabenzene ligands and the like, including hydrogenated versions thereof, for example tetrahydroindenyl ligands. In one embodiment, LA and LB may be any other ligand structure capable of η-bonding to M′ , M preferably η3-bonding to M , M and most preferably η5-bonding. In yet another embodiment, the atomic molecular weight (MW) of LA or LB exceeds 60 a.m.u., preferably greater than 65 a.m.u. In another embodiment, LA and LB may comprise one or more heteroatoms, for example, nitrogen, silicon, boron, germanium, sulfur and phosphorous, in combination with carbon atoms to form an open, acyclic, or preferably a fused, ring or ring system, for example, a hetero-cyclopentadienyl ancillary ligand. Other LA and LB bulky ligands include but are not limited to bulky amides, phosphides, alkoxides, aryloxides, imides, carbolides, borollides, porphyrins, phthalocyanines, corrins and other polyazomacrocycles. Independently, each LA and LB may be the same or different type of bulky ligand that is bonded to M′ , M. In one embodiment of formula (III) only one of either LA or LB is present.
LAALBM′ ,MQn (IV)
LCAJM′ MQn (V)
where M′ M is a Group 3 to 16 metal atom or a metal selected from the Group of actinides and lanthanides of the Periodic Table of Elements, preferably, M′ M is a Group 4 to 12 transition metal, and more preferably, M′ M is a Group 4, 5 or 6 transition metal and most preferably, M′ M is a Group 4 transition metal in any oxidation state, especially titanium; LC is a substituted or unsubstituted bulky ligand bonded to, M′ M; J is bonded toM′ , M; A is bonded to, M′ M and J; J is a heteroatom ancillary ligand; and A is a bridging group; Q is a univalent anionic ligand; and n is the integer 0, 1 or 2. In formula (V) above, LC, A and J form a fused ring system. In an embodiment, LC of formula (V) is as defined above for LA, A, M′ M and Q of formula (V) are as defined above in formula (III).
LDM′ MQ2(YZ)Xn (VI)
where, M′ M is a Group 3 to 16 metal, preferably a Group 4 to 12 transition metal, and most preferably a Group 4 , 5 or 6 transition metal; LD is a bulky ligand that is bonded to M′ , M; each Q is independently bonded to M′ , M and Q2(YZ) forms a ligand, preferably a unicharged polydentate ligand; A or Q is a univalent anionic ligand also bonded to M′ , M; X is a univalent anionic group when n is 2 or X is a divalent anionic group when n is 1; n is 1 or 2.
- Illustration 1: A and B plus the activator are mixed off-line and then fed to the reactor.
- Illustration 2: A and B are mixed off-line. Activator is added in-line and then fed to the reactor.
- Illustration 3: A or B is contacted with the activator (off-line) and then either A or B is added in-line before entering the reactor.
- Illustration 4: A or B is contacted with the activator (on-line) and then either A or B is added in-line before entering the reactor.
- Illustration 5: A and B are each contacted with the activator off-line. Then A and activator and B and activator are contacted in line before entering the reactor.
- Illustration 6: A and B are each contacted with the activator in-line. Then A and activator and B and activator are contacted in-line before entering the reactor. (This is a preferred configuration since the ratio of A to B and the ratio of activator to A and the ratio of activator to B can be controlled independently.)
- Illustration 7: In this example, A or B is contacted with the activator (on-line) while a separate solution of either A or B is contacted with activator off-line. Then both stream of A or B and activator are contacted in-line before entering the reactor.
- Illustration 8: A is contacted on-line with B. Then, an activator is fed to in-line to the A and B mixture.
- Illustration9: A is activated with activator off-line. Then A and activator is contacted on-line with B. Then, an activator is fed to in-line to the A and B and activator mixture.
-
- 1) changing the amount of the first catalyst in the polymerization system, and/or
- 2) changing the amount of the second catalyst in the polymerization system, and/or
- 3) adding hydrogen to the polymerization process; and/or
- 4) changing the amount of liquid and/or gas that is withdrawn and/or purged from the process; and/or
- 5) changing the amount and/or composition of a recovered liquid and/or recovered gas returned to the polymerization process, said recovered liquid or recovered gas being recovered from polymer discharged from the polymerization process; and/or
- 6) using a hydrogenation catalyst in the polymerization process; and/or
- 7) changing the polymerization temperature; and/or
- 8) changing the ethylene partial pressure in the polymerization process; and/or
- 9) changing the ethylene to hexene ratio in the polymerization process; and/or
- 10) changing the activator to transition metal ratio in the activation sequence.
-
- (a) Mw/Mn of between 15 and 80, preferably between 20 and 60, preferably between 20 and 40. Molecular weight (Mw and Mn) are measured as described below in the examples section;
- (b) an Mw of 180,000 or more, preferably 200,000 or more, preferably 250,000 or more, preferably 300,000 or more;
- (c) a density (as measured by ASTM 2839) of 0.94 to 0.970 g/cm3; preferably 0.945 to 0.965 g/cm3; preferably 0.950 to 0.960 g/cm3;
- (e) a residual metal content of 5.0 ppm transition metal or less, preferably 2.0 ppm transition metal or less, preferably 1.8 ppm transition metal or less, preferably 1.6 ppm transition metal or less, preferably 1.5 ppm transition metal or less, preferably 2.0 ppm or less of Group 4 metal, preferably 1.8 ppm or less of Group 4 metal, preferably 1.6 ppm or less of Group 4 metal, preferably 1.5 ppm or less of Group 4 metal, preferably 2.0 ppm or less zirconium, preferably 1.8 ppm or less zirconium, preferably 1.6 ppm or less zirconium, preferably 1.5 ppm or less zirconium, measured by Inductively Coupled Plasma Optical Emission Spectroscopy (ICPAES) run against commercially available standards, where the sample is heated so as to fully decompose all organics and the solvent comprises nitric acid and, if any support is present, another acid to dissolve any support (such as hydrofluoric acid to dissolve silica supports) is present;
- (f) 35 weight percent or more high weight average molecular weight component, as measured by size-exclusion chromatography, preferably 40% or more. In a particularly preferred embodiment the higher molecular weight fraction is present at between 35 and 70 weight %, more preferably between 40 and 60 weight %.
- Mn and Mw were measured by gel permeation chromatography on a waters 150° C. GPC instrument equipped with differential refraction index detectors. The GPC columns were calibrated by running a series of molecular weight standards and the molecular weights were calculated using Mark Houwink coefficients for the polymer in question.
MWD=Mw/Mn - Density was measured according to ASTM D 1505.
- Melt Index (MI) I2 was measured according to ASTM D-1238, Condition E, at 190° C.
- I21 was measured according to ASTM D-1238, Condition F, at 190° C.
- Melt Index Ratio (MIR) is the ratio of I21, over I2.
- Weight % comonomer was measured by proton NMR.
- Dart Impact was measured according to ASTM D 1709.
- MD and TD Elmendorf Tear were measured according to ASTM D 1922.
- MD and TD 1% Secant modulus were measured according to ASTM D 882.
- MD and TD tensile strength and ultimate tensile strength were measured according to ASTM D882.
- MD and TD elongation and ultimate elongation were measured according to ASTM D 412.
- MD and TD Modulus were measured according to ASTM 882-91.
- Haze was measured according to ASTM 1003-95, Condition A.
- 45° gloss was measured according to ASTM D 2457.
- BUR is blow up ratio.
- “PPH” is pounds per hour. “mPPH” is millipounds per hour. “ppmw” is parts per million by weight.
- Indenyl zirconium tris pivalate, a bulky ligand metallocene-type compound, also represented by formula VI, can be prepared by performing the following general reactions:
Zr(NEt2)4+IndH→IndZr(NEt2)3+Et2NH (1)
IndZr(NEt2)3+3(CH3)3COO2H→IndZr[O2OC(CH3)]3+Et2NH (2)
- 1. Weighed out 100 grams of purified toluene into a 1 L Erlenmeyer flask equipped with a Teflon coated stir bar.
- 2. Added 7.28 grams of Tetrabenzyl Zirconium.
- 3. Placed solution on agitator and stirred for 5 minutes. All of the solids went into solution.
- 4. Added 5.42 grams of Ligand I.
- 5. Added an additional 551 grains of purified toluene and allowed mixture to stir for 15 minutes. No solids remained in the solution.
- 6. Poured catalyst solution into a clean, purged 1-L Whitey sample cylinder, labeled, removed from glovebox and placed in holding area for operations.
Alternate Preparation of Compound I {[(2,4,6-Me3C6H2) NCH2CH2]2NH}Zr(CH2Ph)2
- 1. Transfer 1 liter of purified hexane into a 1 L Erlenmeyer flask equipped with a Teflon coated stir bar.
- 2. Add 6.67 grams of indenyl zirconium tris pivalate dried powder.
- 3. Place solution on magnetic agitator and stir for 15 minutes. All of the solids go into solution.
- 4. Pour solution into a clean, purged 1-L Whitey sample cylinder, labeled, and removed from glovebox and place in holding area until use in operation.
TABLE I | |||||||
Example | 1 (Comp) | 2 (Comp) | 3 | 4 | 5 | 6 | 7 |
I21 (dg/min) | 0.28 | n/a | 7.5 | 7.94 | 12.6 | 38.1 | 6.26 |
I21/I2 | — | — | 165.3 | 147 | 164.6 | 280.4 | 104 |
I2 (dg/min) | no flow | 797 | 0.045 | 0.054 | 0.077 | 0.136 | 0.060 |
Experimental SEC Data | |||||||
Mn | 80,600 | 2,952 | 7,908 | 10,896 | 10,778 | 10,282 | 8,700 |
Mw | 407,375 | 13,398 | 340,011 | 263,839 | 259,389 | 261,138 | 287,961 |
Mw/Mn | 5.05 | 4.54 | 43 | 24.2 | 24.1 | 25.4 | 33.10 |
Mn (calculated) | — | — | 7,645 | 10,552 | 10,673 | 10,105 | 8,523 |
Mw (calculated) | — | — | 339,752 | 258,282 | 248,215 | 252,310 | 284,814 |
Mw/Mn (calculated) | — | — | 44.44 | 24.48 | 23.26 | 24.97 | 33.42 |
LMW Mn (calculated) | — | 2,988 | 3,741 | 5,548 | 5,731 | 6,382 | 4,165 |
LMW Mw (calc.) | — | 13,214 | 13,259 | 16,388 | 25,214 | 18,333 | 11,771 |
LMW Mw/Mn (calc.) | — | 4.42 | 3.54 | 2.95 | 2.65 | 2.87 | 2.83 |
HMW Mn (calculated) | 73,979 | — | 122,758 | 111,256 | 85,461 | 88,374 | 115,954 |
HMW Mw (calc.) | 407,513 | — | 633,154 | 501,013 | 484,657 | 607,625 | 526,630 |
HMW Mw/Mn (calc.) | 5.51 | — | 5.16 | 4.50 | 5.67 | 6.88 | 4.54 |
SPLIT (HMW/Total) | 100.00 | 0.00 | 52.67 | 49.92 | 49.64 | 39.70 | 53.03 |
Reactor Conditions | |||||||
Reactor Temp (° C.) | 85 | 80 | 80 | 85 | 85 | 85 | 85 |
C2 psi/Mpa | 220/1.52 | 180/1.24 | 220/1.52 | 220/1.52 | 220/1.52 | 220/1.52 | 220/1.52 |
H2/C2 mole ratio | 0.0016 | 0.0018 | 0.0013 | 0.0014 | 0.0014 | 0.0010 | 0.0019 |
C6/C2 mole ratio | 0.00488 | 0.00153 | 0.0074 | 0.0073 | 0.0077 | 0.0075 | 0.0050 |
Residence time (hr) | 3.6 | 7.5 | 5.3 | 4.74 | 3.87 | 3.87 | 3.4 |
Molar ratio | — | — | 0.71 | 0.73 | 0.76 | 0.76 | 2.16 |
HMW/LMW | |||||||
Molar % Catalyst A | 100 | — | 41 | 42 | 43 | 43 | 68 |
Zr ppm, by lab | — | — | 1.33 | 1.61 | 1.33 | 0.8 | 0.97 |
Zr ppm, by feed | 1.63 | — | 1.46 | 1.06 | 0.9 | 0.54 | 0.62 |
Average | 1.63 | — | 1.40 | 1.34 | 1.12 | 0.67 | 0.80 |
Al/Zr mole ratio | 400 | — | 330 | 380 | 320 | 307 | 500 |
Catalyst B activity g | — | — | |||||
PE/mmol cat-hr | 9,965 | 12,515 | 18,754 | 37,288 | 50,142 | ||
Catalyst A activity g | — | — | |||||
PE/mmol cat-hr | 15,559 | — | 15,730 | 17,042 | 24,323 | 32,465 | 26,203 |
TABLE A | |||||||
Polymer A | HD7755.10 | Polymer A | HD7755.10 | Polymer A | HD7755.10 | ||
Rate lb/hr/ | 317 (144) | 317 (144) | 421 (191) | 421 (191) | 460 (209) | 460 (209) |
(kg/hr) | ||||||
Film Gage | 0.524 mil/ | 0.502 mil/ | 0.532 mil/ | 0.519 mil/ | 0.543 mil/ | 0.528 mil/ |
13 μm | 13 μm | 14 μm | 13 μm | 14 μm | 13 μm | |
Density g/cc | 0.9489 | 0.949 | 0.9502 | 0.949 | 0.9468 | 0.9489 |
26″ (66 cm) | 355 g | 308 g | 327 g | 325 g | nm | nm |
dart @ 1 day | ||||||
26″ (66 cm) | 351 g | 308 g | 314 g | 344 g | 301 g | 360 g |
dart @ 7 days | ||||||
MD Tear | 22 (0.87) | 16 (0.63) | 25 (0.98) | 15 (0.59) | 22 (0.87) | 15 (0.59) |
g/mil (g/μ) | ||||||
TD Tear | 97 (3.82) | 102 (4.02) | 77 (3.03) | 84 (3.31) | 100 (3.94) | 81 (3.19) |
g/mil (g/μ) | ||||||
1% Secant | 161,000 | 200,200 | 159,000 | 183,800 | 156,200 | 178,700 |
MD, psi (MPa) | (1110) | (1380) | (1096) | (1267) | (1077) | (1232) |
1% Secant | 184,500 | 212,500 | 163,500 | 206,600 | 161,400 | 212,500 |
TD, psi (MPa) | (1272) | (1465) | (1127) | (1425) | (1113) | (1465) |
MD UT Str. | 14445 | 14347 | 12574 | 15110 | 12934 | 15609 |
psi (MPa) | (100) | (99) | (87) | (104) | (89) | (108) |
TD UT Str. | 13369 | 12124 | 10785 | 12278 | 11727 | 11482 |
psi (MPa) | (92) | (84) | (74) | (85) | (81) | (79) |
U Elong. % | 285 | 293 | 246 | 296 | 253 | 299 |
U Elon. % | 317 | 393 | 305 | 377 | 340 | 377 |
Haze % | 59.6 | 64.0 | 57.8 | 62.0 | 56.9 | 60.9 |
45° Gloss | 13.6 | 10.8 | 13.4 | 12.0 | 14.9 | 11.9 |
MD = Machine Direction, TD = Transverse Direction, UT Str = Ultimate Tensile strength U. Elong = Ultimate Elongation | ||||||
ESCORENE ED7755.10 is a polyethylene polymer available from Exxon Chemical Company, Houston, Texas, having an I21 of 7.5, and MIR of 125, an Mw of 180,000, a density of 0.95 g/cc, produced using a dual reactor system. |
TABLE B | |||
Escorene ™ 7755 | Polymer B | ||
I2 (g/10 min) | 0.08 | 0.062 | ||
I21 (g/10 min) | 10 | 10.02 | ||
I21/I2 | 134 | 160.5 | ||
Density (g/cc) | 0.952 | 0.9485 | ||
Output (lb/hr) (kg/hr) | 104 | 100 | ||
(47) | (47) | |||
Die rate (lb/hr/in die) | ˜8 | ˜8 | ||
Head pressure psi/MPa | 7,200 | 7600 | ||
(50) | (53) | |||
Motor Load (amp) | 56 | 61 | ||
BUR | 4 | 4 | ||
FLH (inch) (cm) | 36 | 40 | 36 | 40 |
(91.4) | (101.6) | (91.4) | (101.6) | |
melt fracture | no | no | no | |
Bubble | good | good | good | |
Stability | ||||
Take-up (fpm) (m/s) | 92 | 185 | 92 | 184 |
(0.5) | (0.9) | (0.5) | (0.9) | |
Film gauge (mil ) (μ) | 1 | 0.5 | 1 | 0.5 |
(25) | (12.5) | (25) | (12.5) | |
Dart Impact strength (g) | 250 | 330 | 290 | 360 |
Tensile str. (psi) (MPa) | ||||
MD | 8,400 | 11,300 | 8100 | 11400 |
(58) | (78) | (56) | (79) | |
TD | 7,900 | 10,400 | 7230 | 9520 |
(55) | (72) | (50) | (66) | |
Elongation | ||||
MD | 350 | 230 | 410 | 330 |
TD | 570 | 390 | 580 | 410 |
Elmendorf Tear (g/mil) (g/μ) | ||||
MD | 25 | 22 | 24 | 33 |
(0.98) | (0.87) | (0.95) | (1.30) | |
TD | 142 | 72 | 205 | 71 |
(5.59) | (2.83) | (8.07) | (2.80) | |
Modulus (psi) (MPa) | ||||
MD | 127,000 | 144,000 | 131500 | 135350 |
(876) | (993) | (907) | (933) | |
TD | 146,000 | 169,000 | 160250 | 156300 |
(1007) | (1165) | (1105) | (1078) | |
MD = machine direction, TD = transverse direction. |
TABLE C | |||
Sample | Polymer C | Polymer D | Escorene 7755 |
Rxn Temp | 85 | 85 | |
(° C.) | |||
C2 (psi) (kpa) | 220 | 220 | |
(1517) | (1517) | ||
H2/C2 (molar) | 0.0014-0.0016 | 0.00102 | |
C6/C2 (molar) | 0.0075-0.0078 | 0.00531-0.00586 | |
Mn | 14,600 | 16,400 | |
Mw | 309,100 | 298,200 | 291,500 |
Mw/Mn | 21.2 | 18.2 | 15.7 |
HMW/LMW | 53.8/46.2 | 50.5/49.5 | |
I2 (g/10 min) | 0.056 | 0.049 | 0.08 |
I21 (g/10 min) | 6.48 | 6.7 | 10 |
MFR (I21/I2) | 115.8 | 138 | 134 |
Density (g/cc) | 0.9487 | 0.9461 | 0.952 |
Output (lb/hr) | 102 | 102 | 100 |
(kg/hr) | (46) | (46) | (45) |
Die rate (lb/hr/ | ˜8 | ˜8 | 10 |
in die) | |||
Head. (psi) | 8,120 | 7,890 | 7,230 |
(MPa) | (56) | (54) | (50) |
Motor Load | 64.5 | 63 | 59 |
(amp) | |||
BUR | 4 | 4 | 4 |
FLH (inch) | 40 | 40 | 36 | 40 | 36 | 40 |
(cm) | (101.6) | (101.6) | (91.4) | (101.6) | (91.4) | (101.6) |
melt fracture | no | no | no |
Bubble | Fair | Good | Good | Good | Good | Good |
Stability | ||||||
Film gauge | 1 | 0.5 | 1 | 0.5 | 1 | 0.5 |
(mil ) (μm) | (25.4) | (12.7) | (25.4) | (12.7) | (25.4) | (12.7) |
Dart Impact (g) | 200 | 380 | 200 | 380 | 250 | 330 |
Tensile | ||||||
strength | ||||||
MD (psi) | 10,300 | 19,900 | 9,900 | 15,500 | 8,400 | 11,300 |
(MPa) | (71) | (137) | (68) | (107) | (58) | (78) |
TD (psi) | 7,900 | 13,800 | 8,400 | 14,500 | 7,900 | 10,400 |
(MPa) | (55) | (95) | (58) | (100) | (55) | (72) |
Elongation (%) | ||||||
MD | 320 | 240 | 290 | 250 | 350 | 230 |
TD | 630 | 385 | 610 | 350 | 570 | 390 |
Elmendorf Tear | ||||||
MD (g/mil) | 24 | 21 | 36 | 36 | 25 | 22 |
(g/μ) | (0.95) | (0.83) | (1.42) | (1.42) | (0.98) | (0.87) |
TD (g/mil) | 410 | 87 | 350 | 66 | 142 | 72 |
(g/μ) | (16.1) | (3.4) | (13.8) | (2.6) | (5.6) | (2.8) |
Modulus | ||||||
MD (kpsi) | 105 | 120 | 103 | 110 | 127 | 144 |
(MPa) | (724) | (827) | (710) | (758) | (876) | (993) |
TD (psi) | 128 | 126 | 129 | 114 | 146 | 169 |
(MPa) | (883) | (869) | (889) | (786) | (1007) | (1165) |
Alpine line, 2″ screw, 4 inch (10.2 cm) die, 40 mil (1016 μm) die gap, 410° F. (210° C.) die set Temp. |
-
- 1. Compound I could be dissolved in a solvent, preferably toluene to form the desired weight % solution then used in combination with other catalyst systems.
- 2. Catalyst A could be used as a 0.50 weight % solution in toluene and Catalyst B could be used as a 0.25 weight % solution in hexane at molar ratios of B to A of about 0.7 when the two are activated separately then mixed together (parallel activation) or at molar ratios of B to A of 2.2 to 1.5 when A is activated then B is added (sequential activation).
- 3. Raising or lowering the reaction temperature to narrow or broaden the Mw/Mn, respectively.
- 4. Changing residence time to affect product properties. Large changes can have significant impact. One to five, preferably four hours residence time appears to produce good product properties.
- 5. Spraying the catalyst into the reactor in such a way as to create a particle lean zone. A particle lean zone can be created by a 50,000 lb/hr flow of cycle gas through 6 inch pipe. The catalyst can be atomized w/a spray nozzel using nitrogen atomizing gas.
- 6. The activator, preferably MMAO 3A can be used at 7 weight % al in isopentane, hexane or heptane at feed rate sufficient to give an Al/Zr ratio of 100 to 300.
- 7. Catalyst A is mixed on-line with MMAO 3A then Catalyst B is added on line, then the mixture is introduced into the reactor.
- 8. Catalyst A is mixed on-line with MMAO 3A and Catalyst B is mixed on line with MMAO 3A thereafter the two activated catalysts are mixed on-line then introduced into the reactor.
Claims (21)
LA L B MQ n or L A AL B MQ n
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/761,101 USRE41897E1 (en) | 1999-10-22 | 2004-01-20 | Catalyst composition, method of polymerization, and polymer therefrom |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/425,387 US6274684B1 (en) | 1999-10-22 | 1999-10-22 | Catalyst composition, method of polymerization, and polymer therefrom |
US10/761,101 USRE41897E1 (en) | 1999-10-22 | 2004-01-20 | Catalyst composition, method of polymerization, and polymer therefrom |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/425,387 Reissue US6274684B1 (en) | 1999-10-22 | 1999-10-22 | Catalyst composition, method of polymerization, and polymer therefrom |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE41897E1 true USRE41897E1 (en) | 2010-10-26 |
Family
ID=23686344
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/425,387 Ceased US6274684B1 (en) | 1999-10-22 | 1999-10-22 | Catalyst composition, method of polymerization, and polymer therefrom |
US09/865,067 Abandoned US20020052453A1 (en) | 1999-10-22 | 2001-05-24 | Catalyst composition, method of polymerization, and polymer therefrom |
US09/864,571 Expired - Lifetime US6534604B2 (en) | 1999-10-22 | 2001-05-24 | Catalyst composition, method of polymerization, and polymer therefrom |
US10/632,295 Expired - Lifetime US6841631B2 (en) | 1999-10-22 | 2003-08-01 | Catalyst composition, method of polymerization, and polymer therefrom |
US10/634,474 Expired - Fee Related US6894128B2 (en) | 1999-10-22 | 2003-08-05 | Catalyst composition, method of polymerization, and polymer therefrom |
US10/635,864 Expired - Fee Related US7754840B2 (en) | 1999-10-22 | 2003-08-06 | Bimodal high density polyethlyene |
US10/761,101 Expired - Lifetime USRE41897E1 (en) | 1999-10-22 | 2004-01-20 | Catalyst composition, method of polymerization, and polymer therefrom |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/425,387 Ceased US6274684B1 (en) | 1999-10-22 | 1999-10-22 | Catalyst composition, method of polymerization, and polymer therefrom |
US09/865,067 Abandoned US20020052453A1 (en) | 1999-10-22 | 2001-05-24 | Catalyst composition, method of polymerization, and polymer therefrom |
US09/864,571 Expired - Lifetime US6534604B2 (en) | 1999-10-22 | 2001-05-24 | Catalyst composition, method of polymerization, and polymer therefrom |
US10/632,295 Expired - Lifetime US6841631B2 (en) | 1999-10-22 | 2003-08-01 | Catalyst composition, method of polymerization, and polymer therefrom |
US10/634,474 Expired - Fee Related US6894128B2 (en) | 1999-10-22 | 2003-08-05 | Catalyst composition, method of polymerization, and polymer therefrom |
US10/635,864 Expired - Fee Related US7754840B2 (en) | 1999-10-22 | 2003-08-06 | Bimodal high density polyethlyene |
Country Status (2)
Country | Link |
---|---|
US (7) | US6274684B1 (en) |
ZA (2) | ZA200203101B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110275772A1 (en) * | 2007-12-18 | 2011-11-10 | Univation Technologies, Llc | Method for Controlling Bimodal Catalyst Activity During Polymerization |
WO2012091965A1 (en) * | 2010-12-17 | 2012-07-05 | Carnegie Mellon University | Electrochemically mediated atom transfer radical polymerization |
US9533297B2 (en) | 2012-02-23 | 2017-01-03 | Carnegie Mellon University | Ligands designed to provide highly active catalyst complexes |
US9982070B2 (en) | 2015-01-12 | 2018-05-29 | Carnegie Mellon University | Aqueous ATRP in the presence of an activator regenerator |
US10072042B2 (en) | 2011-08-22 | 2018-09-11 | Carnegie Mellon University | Atom transfer radical polymerization under biologically compatible conditions |
US11174325B2 (en) | 2017-01-12 | 2021-11-16 | Carnegie Mellon University | Surfactant assisted formation of a catalyst complex for emulsion atom transfer radical polymerization processes |
US11421051B2 (en) | 2017-12-18 | 2022-08-23 | Dow Global Technologies Llc | Zirconocene-titanocene catalyst system |
Families Citing this family (204)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6274684B1 (en) * | 1999-10-22 | 2001-08-14 | Univation Technologies, Llc | Catalyst composition, method of polymerization, and polymer therefrom |
US6300439B1 (en) | 1999-11-08 | 2001-10-09 | Univation Technologies, Llc | Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process |
GB9928679D0 (en) * | 1999-12-03 | 2000-02-02 | Bp Chem Int Ltd | Polymerisation process |
US6281306B1 (en) * | 1999-12-16 | 2001-08-28 | Univation Technologies, Llc | Method of polymerization |
US6852809B2 (en) * | 1999-12-27 | 2005-02-08 | Sumitomo Chemical Company, Limited | Catalyst component for addition polymerization, catalyst for addition polymerization, and process for producing addition polymer |
DE60043574D1 (en) * | 2000-04-13 | 2010-02-04 | Borealis Tech Oy | Polymer composition for pipes |
US7829646B2 (en) * | 2000-08-18 | 2010-11-09 | Chevron Phillips Chemical Company Lp | Olefin polymers, method of making, and use thereof |
US6656866B2 (en) * | 2000-12-04 | 2003-12-02 | Univation Technologies, Llc | Catalyst preparation method |
BR0211290A (en) * | 2001-07-19 | 2004-09-14 | Univation Tech Llc | Low comonomer incorporation metallocene catalyst compounds |
US6919467B2 (en) * | 2001-12-18 | 2005-07-19 | Univation Technologies, Llc | Imino-amide catalyst compositions for the polymerization of olefins |
US7199255B2 (en) * | 2001-12-18 | 2007-04-03 | Univation Technologies, Llc | Imino-amide catalysts for olefin polymerization |
US6875828B2 (en) * | 2002-09-04 | 2005-04-05 | Univation Technologies, Llc | Bimodal polyolefin production process and films therefrom |
AU2003284160A1 (en) * | 2002-10-25 | 2004-05-13 | Exxonmobil Chemical Patents Inc. | Late transition metal catalysts for olefin oligomerizations |
US7172987B2 (en) | 2002-12-31 | 2007-02-06 | Univation Technologies, Llc | Bimetallic catalyst, method of polymerization and bimodal polyolefins therefrom |
KR100469470B1 (en) * | 2003-01-30 | 2005-02-02 | 엘지전자 주식회사 | Damper using thermal transformation and washing machine having the same |
GB0312063D0 (en) * | 2003-05-27 | 2003-07-02 | Exxonmobil Chem Patents Inc | Catalyst composition II |
US20050250011A1 (en) * | 2004-04-02 | 2005-11-10 | Maxwell Technologies, Inc. | Particle packaging systems and methods |
US6828395B1 (en) | 2003-10-15 | 2004-12-07 | Univation Technologies, Llc | Polymerization process and control of polymer composition properties |
US7238756B2 (en) * | 2003-10-15 | 2007-07-03 | Univation Technologies, Llc | Polymerization process and control of polymer composition properties |
BRPI0415341B1 (en) * | 2003-10-15 | 2014-02-04 | Method for producing a polymer composition | |
US6878454B1 (en) * | 2003-12-05 | 2005-04-12 | Univation Technologies, Llc | Polyethylene films |
US7288596B2 (en) | 2003-12-22 | 2007-10-30 | Univation Technologies, Llc | Polyethylene compositions having improved tear properties |
US6967184B2 (en) * | 2004-02-17 | 2005-11-22 | Univation Technologies, Llc | Fluoroalcohol leaving group for non-metallocene olefin polymerization catalysts |
US20050182210A1 (en) | 2004-02-17 | 2005-08-18 | Natarajan Muruganandam | De-foaming spray dried catalyst slurries |
EP2357203B1 (en) * | 2004-03-17 | 2017-05-24 | Dow Global Technologies LLC | Catalyst composition comprising shuttling agent for higher olefin multi-block copolymer formation |
SG183748A1 (en) * | 2004-03-17 | 2012-09-27 | Dow Global Technologies Llc | Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation |
EP1789974A1 (en) * | 2004-06-28 | 2007-05-30 | Prysmian Cavi e Sistemi Energia S.r.l. | Cable with environmental stress cracking resistance |
US7193017B2 (en) * | 2004-08-13 | 2007-03-20 | Univation Technologies, Llc | High strength biomodal polyethylene compositions |
US7321015B2 (en) * | 2004-12-07 | 2008-01-22 | Nova Chemicals (International) S.A. | Adjusting polymer characteristics through process control |
US7473750B2 (en) * | 2004-12-07 | 2009-01-06 | Fina Technology, Inc. | Random copolymers and formulations useful for thermoforming and blow molding applications |
US7323523B2 (en) * | 2004-12-07 | 2008-01-29 | Nova Chemicals (International) S.A. | Adjusting polymer characteristics through process control |
EP1674809A1 (en) * | 2004-12-23 | 2006-06-28 | Borealis Technology OY | Mineral filled polyethylene for inner liners |
US7312279B2 (en) * | 2005-02-07 | 2007-12-25 | Univation Technologies, Llc | Polyethylene blend compositions |
US20060247394A1 (en) * | 2005-04-29 | 2006-11-02 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7220806B2 (en) * | 2005-04-29 | 2007-05-22 | Fina Technology, Inc. | Process for increasing ethylene incorporation into random copolymers |
US7645834B2 (en) * | 2005-04-29 | 2010-01-12 | Fina Technologies, Inc. | Catalyst system for production of polyolefins |
US7081285B1 (en) | 2005-04-29 | 2006-07-25 | Fina Technology, Inc. | Polyethylene useful for blown films and blow molding |
US20060275571A1 (en) * | 2005-06-02 | 2006-12-07 | Mure Cliff R | Polyethylene pipes |
US7282546B2 (en) * | 2005-06-22 | 2007-10-16 | Fina Technology, Inc. | Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations |
US7226886B2 (en) | 2005-09-15 | 2007-06-05 | Chevron Phillips Chemical Company, L.P. | Polymerization catalysts and process for producing bimodal polymers in a single reactor |
US7625982B2 (en) * | 2005-08-22 | 2009-12-01 | Chevron Phillips Chemical Company Lp | Multimodal polyethylene compositions and pipe made from same |
US7312283B2 (en) * | 2005-08-22 | 2007-12-25 | Chevron Phillips Chemical Company Lp | Polymerization catalysts and process for producing bimodal polymers in a single reactor |
ATE444334T1 (en) * | 2005-08-24 | 2009-10-15 | Dow Global Technologies Inc | POLYOLEFIN COMPOUNDS, ARTICLES MADE THEREFROM AND PRODUCTION PROCESSES THEREOF |
US7786203B2 (en) * | 2005-09-16 | 2010-08-31 | Milliken & Company | Polymer compositions comprising nucleating or clarifying agents and articles made using such compositions |
US7393916B2 (en) * | 2005-11-01 | 2008-07-01 | Univation Technologies, Llc | Method of reducing gels in polyolefins |
US7619047B2 (en) | 2006-02-22 | 2009-11-17 | Chevron Phillips Chemical Company, Lp | Dual metallocene catalysts for polymerization of bimodal polymers |
US7683002B2 (en) | 2006-04-04 | 2010-03-23 | Fina Technology, Inc. | Transition metal catalyst and formation thereof |
US20070299222A1 (en) | 2006-04-04 | 2007-12-27 | Fina Technology, Inc. | Transition metal catalysts and formation thereof |
US20070235896A1 (en) * | 2006-04-06 | 2007-10-11 | Fina Technology, Inc. | High shrink high modulus biaxially oriented films |
US7893181B2 (en) * | 2006-07-11 | 2011-02-22 | Fina Technology, Inc. | Bimodal film resin and products made therefrom |
US20080051538A1 (en) * | 2006-07-11 | 2008-02-28 | Fina Technology, Inc. | Bimodal pipe resin and products made therefrom |
US7449529B2 (en) * | 2006-07-11 | 2008-11-11 | Fina Technology, Inc. | Bimodal blow molding resin and products made therefrom |
US7514510B2 (en) * | 2006-07-25 | 2009-04-07 | Fina Technology, Inc. | Fluorenyl catalyst compositions and olefin polymerization process |
US7470759B2 (en) * | 2006-07-31 | 2008-12-30 | Fina Technology, Inc. | Isotactic-atactic polypropylene and methods of making same |
US20080061468A1 (en) * | 2006-09-07 | 2008-03-13 | Frank Li | Fiber processing of high ethylene level propylene-ethylene random copolymers by use of nucleators |
TWI432456B (en) * | 2006-10-03 | 2014-04-01 | Univation Tech Llc | Effervescent nozzle for catalyst injection |
US7538167B2 (en) * | 2006-10-23 | 2009-05-26 | Fina Technology, Inc. | Syndiotactic polypropylene and methods of preparing same |
US20080114130A1 (en) * | 2006-11-10 | 2008-05-15 | John Ashbaugh | Resin composition for production of high tenacity slit film, monofilaments and fibers |
MY157264A (en) | 2006-11-14 | 2016-05-31 | Univation Tech Llc | Catalyst systems and polymerization processes |
US8075830B2 (en) | 2006-12-15 | 2011-12-13 | Fina Technology, Inc. | Polypropylene blown film |
EP2097459A1 (en) * | 2006-12-29 | 2009-09-09 | Fina Technology, Inc. | Succinate-containing polymerization catalyst system using n-butylmethyldimethoxysilane for preparation of polypropylene film grade resins |
US7754834B2 (en) * | 2007-04-12 | 2010-07-13 | Univation Technologies, Llc | Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density |
US20120172548A1 (en) | 2007-05-02 | 2012-07-05 | Lg Chem, Ltd. | Polyolefin and preparation method thereof |
US8859084B2 (en) * | 2008-01-29 | 2014-10-14 | Fina Technology, Inc. | Modifiers for oriented polypropylene |
US8003741B2 (en) | 2008-02-07 | 2011-08-23 | Fina Technology, Inc. | Ziegler-Natta catalyst |
US20090202770A1 (en) * | 2008-02-08 | 2009-08-13 | Fengkui Li | Polypropylene/polyisobutylene blends and films prepared from same |
ATE545664T1 (en) * | 2008-04-28 | 2012-03-15 | Univation Tech Llc | METHOD FOR PRODUCING CATALYST SYSTEMS |
US7740070B2 (en) * | 2008-06-16 | 2010-06-22 | Halliburton Energy Services, Inc. | Wellbore servicing compositions comprising a density segregation inhibiting composite and methods of making and using same |
US8268913B2 (en) * | 2008-06-30 | 2012-09-18 | Fina Technology, Inc. | Polymeric blends and methods of using same |
US8545971B2 (en) * | 2008-06-30 | 2013-10-01 | Fina Technology, Inc. | Polymeric compositions comprising polylactic acid and methods of making and using same |
US8759446B2 (en) | 2008-06-30 | 2014-06-24 | Fina Technology, Inc. | Compatibilized polypropylene and polylactic acid blends and methods of making and using same |
EP2344551B1 (en) | 2008-09-25 | 2014-05-28 | Basell Polyolefine GmbH | Impact resistant lldpe composition and films made thereof |
BRPI0919740B1 (en) | 2008-09-25 | 2019-08-27 | Basell Polyolefine Gmbh | impact resistant lldpe composition and films made of it |
US20110230629A1 (en) * | 2008-09-25 | 2011-09-22 | Basell Polyolefine Gmbh | Impact Resistant LLDPE Composition and Films Made Thereof |
US9334342B2 (en) | 2008-10-01 | 2016-05-10 | Fina Technology, Inc. | Polypropylene for reduced plate out in polymer article production processes |
US20100087602A1 (en) * | 2008-10-08 | 2010-04-08 | Fina Technology, Inc. | Long chain branched polypropylene for cast film applications |
US8653198B2 (en) | 2009-03-26 | 2014-02-18 | Fina Technology, Inc. | Method for the preparation of a heterophasic copolymer and uses thereof |
US20100247887A1 (en) | 2009-03-26 | 2010-09-30 | Fina Technology, Inc. | Polyolefin films for in-mold labels |
US9090000B2 (en) | 2009-03-26 | 2015-07-28 | Fina Technology, Inc. | Injection stretch blow molded articles and random copolymers for use therein |
US9174384B2 (en) * | 2009-09-01 | 2015-11-03 | Fina Technology, Inc. | Multilayer polypropylene films and methods of making and using same |
US8592535B2 (en) | 2010-01-11 | 2013-11-26 | Fina Technology, Inc. | Ziegler-natta catalyst systems and polymers formed therefrom |
US10351640B2 (en) | 2010-04-22 | 2019-07-16 | Fina Technology, Inc. | Formation of Ziegler-Natta catalyst using non-blended components |
US8278403B2 (en) | 2010-07-08 | 2012-10-02 | Fina Technology, Inc. | Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers |
CA2713042C (en) | 2010-08-11 | 2017-10-24 | Nova Chemicals Corporation | Method of controlling polymer architecture |
US20120046429A1 (en) | 2010-08-23 | 2012-02-23 | Fina Technology, Inc. | Sequential Formation of Ziegler-Natta Catalyst Using Non-blended Components |
US10711077B2 (en) | 2011-02-07 | 2020-07-14 | Fina Technology, Inc. | Ziegler-natta catalyst composition with controlled morphology |
US8586192B2 (en) | 2011-02-15 | 2013-11-19 | Fina Technology, Inc. | Compatibilized polymeric compositions comprising polyolefin-polylactic acid copolymers and methods of making the same |
US9382347B2 (en) | 2011-02-16 | 2016-07-05 | Fina Technology Inc | Ziegler-Natta catalysts doped with non-group IV metal chlorides |
US8628718B2 (en) | 2011-02-18 | 2014-01-14 | Fina Technology, Inc. | Modified polylactic acid, polymeric blends and methods of making the same |
CA2739969C (en) | 2011-05-11 | 2018-08-21 | Nova Chemicals Corporation | Improving reactor operability in a gas phase polymerization process |
US9637567B2 (en) | 2011-05-13 | 2017-05-02 | Univation Technologies, Llc | Spray-dried catalyst compositions and polymerization processes employing the same |
EP2776476B1 (en) | 2011-11-08 | 2019-03-13 | Univation Technologies, LLC | Methods for producing polyolefins with catalyst systems |
CA2760264C (en) | 2011-12-05 | 2018-08-21 | Nova Chemicals Corporation | Passivated supports for use with olefin polymerization catalysts |
US8829094B2 (en) * | 2011-12-22 | 2014-09-09 | Fina Technology, Inc. | Use of nucleation in ICP resins |
US8580893B2 (en) | 2011-12-22 | 2013-11-12 | Fina Technology, Inc. | Methods for improving multimodal polyethylene and films produced therefrom |
KR101331556B1 (en) | 2012-03-30 | 2013-11-20 | 대림산업 주식회사 | Multimodal polyolefin resin and article prepared with the same |
CA2783494C (en) | 2012-07-23 | 2019-07-30 | Nova Chemicals Corporation | Adjusting polymer composition |
US8895679B2 (en) | 2012-10-25 | 2014-11-25 | Chevron Phillips Chemical Company Lp | Catalyst compositions and methods of making and using same |
US8937139B2 (en) | 2012-10-25 | 2015-01-20 | Chevron Phillips Chemical Company Lp | Catalyst compositions and methods of making and using same |
KR101437509B1 (en) | 2012-12-03 | 2014-09-03 | 대림산업 주식회사 | Catalyst composition for preparing multimodal polyolefin resin having superior moldability and mechanical properties and polymerization method using the same |
EP2743000A1 (en) * | 2012-12-13 | 2014-06-18 | Basell Poliolefine Italia S.r.l. | Catalyst system for the preparation of polyolefins |
US9034991B2 (en) | 2013-01-29 | 2015-05-19 | Chevron Phillips Chemical Company Lp | Polymer compositions and methods of making and using same |
US8877672B2 (en) | 2013-01-29 | 2014-11-04 | Chevron Phillips Chemical Company Lp | Catalyst compositions and methods of making and using same |
KR101549209B1 (en) | 2013-11-18 | 2015-09-02 | 주식회사 엘지화학 | Olefin based polymer having excellent processibility |
WO2015072658A1 (en) | 2013-11-18 | 2015-05-21 | 주식회사 엘지화학 | Olefin-based polymer with excellent processability |
US9206293B2 (en) | 2014-01-31 | 2015-12-08 | Fina Technology, Inc. | Polyethyene and articles produced therefrom |
US9079993B1 (en) * | 2014-05-22 | 2015-07-14 | Chevron Phillips Chemical Company Lp | High clarity low haze compositions |
EA038649B1 (en) | 2014-06-11 | 2021-09-29 | Фина Технолоджи, Инк. | Method of transporting water containing chlorine dioxide, chlorine, chloramines or hypochlorites, and article for transporting water made from a chlorine resistant polyethylene compound |
US9624321B2 (en) | 2014-06-13 | 2017-04-18 | Fina Technology, Inc. | Formation of a Ziegler-Natta catalyst |
US9650448B2 (en) | 2014-06-13 | 2017-05-16 | Fina Technology, Inc. | Formation of a Ziegler-Natta catalyst |
WO2016021509A1 (en) * | 2014-08-06 | 2016-02-11 | Nsマテリアルズ株式会社 | Resin molded article, method for producing same, wavelength conversion member and lighting member |
CN106062012B (en) | 2014-09-05 | 2018-10-26 | 株式会社Lg化学 | Support type mixed catalyst and the method for preparing the polymer based on alkene using it |
KR101617870B1 (en) | 2014-09-05 | 2016-05-03 | 주식회사 엘지화학 | Olefin based polymer having excellent processibility |
WO2016060445A1 (en) | 2014-10-13 | 2016-04-21 | 주식회사 엘지화학 | Ethylene/1-hexene or ethylene/1-butene copolymer having outstanding working properties and environmental stress cracking resistance |
CN105814101B (en) | 2014-10-13 | 2018-03-02 | 株式会社Lg化学 | The butylene copolymer of the hexene of ethene with excellent workability and environmental stress crack resistance/1 or ethene/1 |
CN107001504B (en) | 2014-11-25 | 2020-07-17 | 尤尼威蒂恩技术有限责任公司 | Method for controlling melt index of polyolefin |
KR101747401B1 (en) | 2014-12-08 | 2017-06-14 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processibility |
WO2016093580A1 (en) | 2014-12-08 | 2016-06-16 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processability |
KR101747396B1 (en) | 2014-12-15 | 2017-06-14 | 주식회사 엘지화학 | Olefin based polymer having excellent processibility |
WO2016099118A1 (en) | 2014-12-15 | 2016-06-23 | 주식회사 엘지화학 | Olefin-based polymer having excellent processability |
KR101831418B1 (en) | 2015-04-13 | 2018-02-22 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processibility and surface characteristic |
KR101891638B1 (en) | 2015-04-15 | 2018-08-24 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processibility |
CA2891693C (en) | 2015-05-21 | 2022-01-11 | Nova Chemicals Corporation | Controlling the placement of comonomer in an ethylene copolymer |
CA2892552C (en) | 2015-05-26 | 2022-02-15 | Victoria Ker | Process for polymerization in a fluidized bed reactor |
CA2892882C (en) | 2015-05-27 | 2022-03-22 | Nova Chemicals Corporation | Ethylene/1-butene copolymers with enhanced resin processability |
WO2017039995A1 (en) | 2015-08-31 | 2017-03-09 | Exxonmobil Chemical Patents Inc. | Aluminum alkyls with pendant olefins for polyolefin reactions |
US10676547B2 (en) | 2015-08-31 | 2020-06-09 | Exxonmobil Chemical Patents Inc. | Aluminum alkyls with pendant olefins on clays |
US10618988B2 (en) | 2015-08-31 | 2020-04-14 | Exxonmobil Chemical Patents Inc. | Branched propylene polymers produced via use of vinyl transfer agents and processes for production thereof |
US9982067B2 (en) | 2015-09-24 | 2018-05-29 | Exxonmobil Chemical Patents Inc. | Polymerization process using pyridyldiamido compounds supported on organoaluminum treated layered silicate supports |
US10000593B2 (en) | 2015-10-02 | 2018-06-19 | Exxonmobil Chemical Patents Inc. | Supported Salan catalysts |
US9982076B2 (en) | 2015-10-02 | 2018-05-29 | Exxonmobil Chemical Patents Inc. | Supported bis phenolate transition metals complexes, production and use thereof |
US10414887B2 (en) * | 2015-10-02 | 2019-09-17 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and methods of using same |
US9994658B2 (en) | 2015-10-02 | 2018-06-12 | Exxonmobil Chemical Patents Inc. | Polymerization process using bis phenolate compounds supported on organoaluminum treated layered silicate supports |
US9975973B2 (en) | 2015-10-02 | 2018-05-22 | Exxonmobil Chemical Patents Inc. | Asymmetric fluorenyl-substituted salan catalysts |
US9994657B2 (en) | 2015-10-02 | 2018-06-12 | Exxonmobil Chemical Patents Inc. | Polymerization process using bis phenolate compounds supported on organoaluminum treated layered silicate supports |
CN105428422B (en) | 2016-01-05 | 2019-03-01 | 京东方科技集团股份有限公司 | Thin film transistor (TFT), array substrate, display panel and display device |
KR101711788B1 (en) | 2016-03-09 | 2017-03-14 | 한화케미칼 주식회사 | Hybride catalyst compositon, preparation method thereof, and manufactured polyolefin using the same |
KR101800866B1 (en) | 2016-04-26 | 2017-12-21 | 대림산업 주식회사 | Multimodal polyolefin resin with high melt strength and article prepared with the same |
US10562987B2 (en) | 2016-06-30 | 2020-02-18 | Exxonmobil Chemical Patents Inc. | Polymers produced via use of quinolinyldiamido transition metal complexes and vinyl transfer agents |
WO2018075243A1 (en) | 2016-10-19 | 2018-04-26 | Exxonmobil Chemical Patents Inc. | Supported catalyst systems and methods of using same |
BR112019006896B1 (en) | 2016-10-28 | 2022-12-06 | Fina Technology, Inc | PROCESS FOR MANUFACTURING A BOPP FILM |
EP3538569B1 (en) | 2016-11-08 | 2021-12-01 | Univation Technologies, LLC | Polyethylene composition |
KR102454616B1 (en) | 2016-11-08 | 2022-10-18 | 유니베이션 테크놀로지즈, 엘엘씨 | polyethylene composition |
WO2018089195A1 (en) | 2016-11-08 | 2018-05-17 | Univation Technologies, Llc | Bimodal polyethylene |
KR102090812B1 (en) | 2016-11-15 | 2020-03-18 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processibility |
EP3415540B1 (en) | 2016-11-15 | 2022-09-14 | LG Chem, Ltd. | Ethylene/alpha-olefin copolymer having excellent environmental stress crack resistance |
KR102073252B1 (en) | 2016-12-05 | 2020-02-04 | 주식회사 엘지화학 | Catalyst composition for polymerizing olefin copolymer and preparation method of olefin copolymer |
KR102072697B1 (en) | 2016-12-09 | 2020-02-03 | 주식회사 엘지화학 | Ethylene/1-hexene copolymer having excellent processibility and physical property |
KR102234944B1 (en) | 2016-12-13 | 2021-03-31 | 주식회사 엘지화학 | Olefin copolymer |
KR102229002B1 (en) | 2016-12-14 | 2021-03-16 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer having excellent processibility and environmental stress crack resistance |
WO2018147968A1 (en) | 2017-02-13 | 2018-08-16 | Univation Technologies, Llc | Bimodal polyethylene resins |
KR102211603B1 (en) | 2017-02-28 | 2021-02-02 | 주식회사 엘지화학 | Catalyst composition for polymerizing olefin copolymer and preparation method of olefin copolymer |
US10626200B2 (en) | 2017-02-28 | 2020-04-21 | Exxonmobil Chemical Patents Inc. | Branched EPDM polymers produced via use of vinyl transfer agents and processes for production thereof |
US10676551B2 (en) | 2017-03-01 | 2020-06-09 | Exxonmobil Chemical Patents Inc. | Branched ethylene copolymers produced via use of vinyl transfer agents and processes for production thereof |
CN111051353B (en) | 2017-08-28 | 2022-09-09 | 尤尼威蒂恩技术有限责任公司 | Bimodal polyethylene |
KR102293208B1 (en) | 2017-09-01 | 2021-08-23 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer and method for preparing the same |
KR102294874B1 (en) | 2017-09-11 | 2021-08-26 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer |
CN111051419A (en) | 2017-09-11 | 2020-04-21 | 尤尼威蒂恩技术有限责任公司 | Bimodal polyethylene composition containing carbon black |
EP3692079B1 (en) | 2017-10-06 | 2024-09-04 | ExxonMobil Chemical Patents Inc. | Polyethylene extrudates and methods of making the same |
EP3749707A1 (en) | 2018-02-05 | 2020-12-16 | ExxonMobil Chemical Patents Inc. | Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene |
BR112020018814B1 (en) | 2018-03-28 | 2023-12-12 | Univation Technologies, Llc | BIMODAL POLYETHYLENE COMPOSITION, METHOD FOR PRODUCING A BIMODAL POLYETHYLENE COMPOSITION, MANUFACTURED ARTICLE AND BOTTLE CAP OR CLOSURE |
WO2019212310A1 (en) | 2018-05-04 | 2019-11-07 | 주식회사 엘지화학 | ADHESIVE COMPOSITION COMPRISING ETHYLENE/α-OLEFIN COPOLYMER |
WO2019212307A1 (en) | 2018-05-04 | 2019-11-07 | 주식회사 엘지화학 | Ethylene/alpha-olefin copolymer and method for preparing same |
EP3770188A4 (en) | 2018-05-04 | 2021-05-26 | Lg Chem, Ltd. | Olefin-based copolymer, and preparation method therefor |
EP3747916A4 (en) | 2018-05-04 | 2021-04-14 | Lg Chem, Ltd. | Ethylene/alpha-olefin copolymer and method for preparing same |
KR102421535B1 (en) | 2018-05-04 | 2022-07-20 | 주식회사 엘지화학 | Ethylene/alpha-olefin Copolymer, Method For Preparing The Same |
KR102622329B1 (en) | 2018-05-04 | 2024-01-09 | 주식회사 엘지화학 | Ethylene/alpha-olefin Copolymer, Method For Preparing The Same And Resin Composition For Optical Film Comprising The Same |
CN111902438B (en) | 2018-05-04 | 2023-01-10 | Lg化学株式会社 | Ethylene/alpha-olefin copolymer and process for producing the same |
EP3760652B1 (en) | 2018-05-04 | 2022-11-30 | Lg Chem, Ltd. | Ethylene/alpha-olefin copolymer and method for preparing the same |
CN111989350B (en) | 2018-05-04 | 2023-06-23 | Lg化学株式会社 | Olefin-based copolymer and process for producing the same |
CN112469748B (en) | 2018-06-13 | 2023-04-04 | 尤尼威蒂恩技术有限责任公司 | Bimodal polyethylene copolymers and films thereof |
EP3830147A1 (en) * | 2018-07-31 | 2021-06-09 | Dow Global Technologies LLC | Polyethylene formulations for large part blow molding applications |
EP3844194A1 (en) | 2018-08-29 | 2021-07-07 | Univation Technologies, LLC | Bimodal polyethylene copolymer and film thereof |
CA3126921A1 (en) | 2018-08-29 | 2020-03-05 | Univation Technologies, Llc | Method of changing melt rheology property of bimodal polyethylene polymer |
WO2020056119A1 (en) | 2018-09-14 | 2020-03-19 | Fina Technology, Inc. | Polyethylene and controlled rheology polypropylene polymer blends and methods of use |
SG11202102947QA (en) | 2018-09-28 | 2021-04-29 | Univation Tech Llc | Bimodal polyethylene copolymer composition and pipe made thereof |
KR20210071034A (en) | 2018-10-05 | 2021-06-15 | 다우 글로벌 테크놀로지스 엘엘씨 | Genetically reinforced polyethylene formulation |
WO2020096734A1 (en) | 2018-11-06 | 2020-05-14 | Dow Global Technologies Llc | Alkane-soluble non-metallocene precatalysts |
JP7524170B2 (en) | 2018-11-06 | 2024-07-29 | ダウ グローバル テクノロジーズ エルエルシー | Alkane-soluble nonmetallocene precatalysts |
KR20210091199A (en) | 2018-11-06 | 2021-07-21 | 다우 글로벌 테크놀로지스 엘엘씨 | Olefin polymerization process using alkane-soluble non-metallocene procatalyst |
CN113474404A (en) | 2019-02-20 | 2021-10-01 | 弗纳技术股份有限公司 | Polymer composition with low warpage |
KR102372974B1 (en) | 2019-04-05 | 2022-03-10 | 한화솔루션 주식회사 | Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same |
KR102203007B1 (en) | 2019-06-05 | 2021-01-14 | 대림산업 주식회사 | Method for manufacturing multimodal polyolefins using multistage continuous polymerization process |
US12037426B2 (en) | 2019-08-28 | 2024-07-16 | Lg Chem, Ltd. | Olefin-based copolymer and method for preparing the same |
US20220325083A1 (en) | 2019-09-26 | 2022-10-13 | Univation Technologies, Llc | Bimodal polyethylene homopolymer composition |
KR102526767B1 (en) | 2019-09-30 | 2023-04-27 | 주식회사 엘지화학 | ethylene/1-hexene copolymer having excellent long term property and processibility |
WO2021066437A1 (en) | 2019-09-30 | 2021-04-08 | 주식회사 엘지화학 | Ethylene/1-hexene copolymer having excellent long-term properties and processibility |
KR102475975B1 (en) | 2019-10-17 | 2022-12-08 | 한화솔루션 주식회사 | Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same |
KR102619077B1 (en) | 2019-12-05 | 2023-12-29 | 한화솔루션 주식회사 | Process for Preparing a Polyolefin |
KR102547238B1 (en) | 2020-02-26 | 2023-06-26 | 한화솔루션 주식회사 | Processes for Preparing Mixed Catalytic Composition and Catalyst Comprising the Same |
KR102579801B1 (en) | 2020-04-16 | 2023-09-19 | 한화솔루션 주식회사 | Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same |
KR102668044B1 (en) | 2020-05-28 | 2024-05-23 | 한화솔루션 주식회사 | Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same |
WO2022015094A1 (en) | 2020-07-16 | 2022-01-20 | 주식회사 엘지화학 | Transition metal compound and catalyst composition including same |
KR102579813B1 (en) | 2020-08-20 | 2023-09-19 | 한화솔루션 주식회사 | Catalyst Comprising Mixed Transition Metal Compounds, Polyolefin Prepared Using the Same, and Processes for Preparing the Same |
US20230257498A1 (en) * | 2020-09-22 | 2023-08-17 | Dow Global Technologies Llc | Bimodal polyethylene copolymer and film thereof |
CN114599692B (en) | 2020-09-29 | 2024-02-02 | 株式会社Lg化学 | Ethylene/1-hexene copolymers with improved flexibility and processability |
CA3193704A1 (en) | 2020-09-30 | 2022-04-07 | Rujul M. MEHTA | Bimodal polyethylene copolymers for pe-80 pipe applications |
KR20220064497A (en) | 2020-11-12 | 2022-05-19 | 한화솔루션 주식회사 | Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same |
KR102613125B1 (en) | 2020-12-23 | 2023-12-14 | 한화솔루션 주식회사 | Mixed Catalytic Composition, Catalyst Comprising the Composition, Process for Preparing a Polyolefin Using the Catalyst |
CA3214562A1 (en) | 2021-04-26 | 2022-11-03 | Michael Mcleod | Thin single-site catalyzed polymer sheets |
KR20230030731A (en) | 2021-08-26 | 2023-03-07 | 한화솔루션 주식회사 | Mixed Catalytic Composition, Catalyst Comprising the Same, and Processes for Preparing the Same |
KR20230076779A (en) | 2021-11-23 | 2023-05-31 | 한화솔루션 주식회사 | Polyolefin Having Excellent Processability and Process for Preparing the Same |
EP4431535A1 (en) | 2021-12-07 | 2024-09-18 | Hanwha Solutions Corporation | Catalyst for olefin polymerization comprising hybrid catalyst composition and olefinic polymer prepared using same |
WO2024118536A1 (en) | 2022-11-29 | 2024-06-06 | Fina Technology, Inc. | Polypropylenes for additive manufacturing |
Citations (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057565A (en) | 1975-07-22 | 1977-11-08 | E. I. Du Pont De Nemours And Company | 2-Dialkylaminobenzyl and 2-dialkylaminomethylphenyl derivatives of selected transition metals |
US4335224A (en) | 1980-02-29 | 1982-06-15 | Nippon Oil Company, Limited | Polymer compositions comprising ethylene polymer blends |
US4461873A (en) | 1982-06-22 | 1984-07-24 | Phillips Petroleum Company | Ethylene polymer blends |
US4530914A (en) * | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
US4547551A (en) | 1982-06-22 | 1985-10-15 | Phillips Petroleum Company | Ethylene polymer blends and process for forming film |
EP0197310A2 (en) | 1985-03-07 | 1986-10-15 | Mitsubishi Petrochemical Co., Ltd. | Catalyst components for polymerizing olefins |
EP0241560A1 (en) | 1985-10-11 | 1987-10-21 | Sumitomo Chemical Company, Limited | Catalyst for olefin polymerization and process for preparing olefin polymer by using the same |
JPH0278663A (en) | 1988-09-14 | 1990-03-19 | N O K Sogo Gijutsu Kenkyusho:Kk | 26-ethylidenenitrilophenylpyridine, production thereof and metal salt complex |
EP0423962A2 (en) | 1989-09-29 | 1991-04-24 | Nippon Petrochemicals Company, Limited | Ethylene polymer compositions |
WO1991012285A1 (en) | 1990-02-09 | 1991-08-22 | Exxon Chemical Patents Inc. | Block copolymers from ionic catalysts |
US5102955A (en) | 1989-12-29 | 1992-04-07 | Mobil Oil Corporation | Broad distribution, high molecular weight low density polyethylene and method of making thereof |
US5124418A (en) | 1985-11-15 | 1992-06-23 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
WO1992012162A1 (en) | 1990-12-27 | 1992-07-23 | Exxon Chemical Patents Inc. | An amido transition metal compound and a catalyst system for the production of isotactic polypropylene |
EP0528523A1 (en) | 1991-07-24 | 1993-02-24 | Mobil Oil Corporation | Improved ethylene polymer film resins |
EP0529978A1 (en) | 1991-08-30 | 1993-03-03 | BP Chemicals Limited | Multistage polymerisation process |
EP0533452A1 (en) | 1991-03-21 | 1993-03-24 | Mobil Oil Corporation | Production of bimodal ethylene polymers in tandem reactors |
EP0593083A1 (en) | 1992-10-16 | 1994-04-20 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization reaction utilizing soluble unsupported catalysts |
US5306775A (en) | 1991-09-18 | 1994-04-26 | Phillips Petroleum Company | Polyethylene blends |
US5319029A (en) | 1991-09-18 | 1994-06-07 | Phillips Petroleum Company | Polyethylene blends |
WO1994021700A1 (en) | 1993-03-22 | 1994-09-29 | Exxon Chemical Patents Inc. | Block copolymers from ionic catalysts |
US5426243A (en) | 1994-08-17 | 1995-06-20 | Albemarle Corporation | Process for preparing 1,6-dibromo-2-naphthylene compounds |
WO1996008498A1 (en) | 1994-09-12 | 1996-03-21 | The Dow Chemical Company | Metal complexes containing non-aromatic, anionic, dienyl groups and addition polymerization catalysts therefrom |
JPH0881415A (en) | 1994-07-12 | 1996-03-26 | Ube Ind Ltd | Production of alkenecarboxylic acid ester |
US5506184A (en) | 1994-06-22 | 1996-04-09 | Mobil Oil Corporation | Olefin polymerization catalyst system |
US5525678A (en) | 1994-09-22 | 1996-06-11 | Mobil Oil Corporation | Process for controlling the MWD of a broad/bimodal resin produced in a single reactor |
US5539076A (en) | 1993-10-21 | 1996-07-23 | Mobil Oil Corporation | Bimodal molecular weight distribution polyolefins |
JPH08277307A (en) | 1995-04-06 | 1996-10-22 | Asahi Chem Ind Co Ltd | Catalyst for olefin polymerization and polymerization using the same |
EP0751142A2 (en) | 1995-06-30 | 1997-01-02 | Hoechst Aktiengesellschaft | Chiral manganese-triazanonane complexes and process for their preparation |
WO1997002294A1 (en) | 1995-07-03 | 1997-01-23 | Mobil Oil Corporation | Single reactor bimodal hmw-hdpe film resin with improved bubble stability |
US5608019A (en) | 1992-12-28 | 1997-03-04 | Mobil Oil Corporation | Temperature control of MW in olefin polymerization using supported metallocene catalyst |
US5614456A (en) | 1993-11-15 | 1997-03-25 | Mobil Oil Corporation | Catalyst for bimodal molecular weight distribution ethylene polymers and copolymers |
US5622906A (en) | 1994-09-16 | 1997-04-22 | Phillips Petroleum Company | Compositions useful for olefin polymerization and processes therefor and therewith |
WO1997019959A1 (en) | 1995-11-27 | 1997-06-05 | The Dow Chemical Company | Supported catalyst containing tethered cation forming activator |
US5637660A (en) | 1995-04-17 | 1997-06-10 | Lyondell Petrochemical Company | Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety |
US5639834A (en) | 1993-10-26 | 1997-06-17 | Fina Research, S.A. | Process for producing polyethylene having a broad molecular weight distribution |
US5643846A (en) | 1993-04-28 | 1997-07-01 | Fina Technology, Inc. | Process for a isotactic/syndiotactic polymer blend in a single reactor |
US5672669A (en) | 1993-12-23 | 1997-09-30 | Union Carbide Chemicals & Plastics Technology Corporation | Spray dried, filled metallocene catalyst composition for use in polyolefin manufacture |
US5674796A (en) | 1994-07-20 | 1997-10-07 | Lucky Engineering Co., Ltd. | Processes of regenerating Ni catalysts and of preparing Ni catalysts |
WO1997042197A1 (en) | 1996-05-02 | 1997-11-13 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | New compounds having one group 13 element, bound with one mono- or di-anionic trident ligand, a method of preparation and application thereof as polymerisation catalysts |
US5693727A (en) | 1996-06-06 | 1997-12-02 | Union Carbide Chemicals & Plastics Technology Corporation | Method for feeding a liquid catalyst to a fluidized bed polymerization reactor |
WO1997045434A1 (en) | 1996-05-31 | 1997-12-04 | Borealis A/S | Novel transition metal complexes and method for preparing them |
WO1997048736A1 (en) | 1996-06-17 | 1997-12-24 | Exxon Chemical Patents Inc. | Supported late transition metal catalyst systems |
WO1997048735A1 (en) * | 1996-06-17 | 1997-12-24 | Exxon Chemical Patents Inc. | Mixed transition metal catalyst systems for olefin polymerization |
EP0816384A2 (en) | 1996-07-02 | 1998-01-07 | BP Chemicals Limited | Supported polymerisation catalysts |
EP0816372A1 (en) | 1996-06-20 | 1998-01-07 | Hoechst Aktiengesellschaft | Transition metal compound |
US5707913A (en) | 1994-06-15 | 1998-01-13 | Basf Aktiengesellschaft | Amidinato catalyst systems for the polymerization of olefins |
JPH107712A (en) | 1996-06-25 | 1998-01-13 | Mitsui Petrochem Ind Ltd | Production of alpha-olefin oligomer |
JPH1045904A (en) | 1996-07-31 | 1998-02-17 | Sumitomo Chem Co Ltd | Production of poly-1,4-phenylene ether |
US5723399A (en) | 1995-09-14 | 1998-03-03 | Showa Denko K.K. | Ethylenic polymerization catalyst |
US5726115A (en) | 1995-03-08 | 1998-03-10 | Shell Oil Company | Bridged bis-amino group 4 metal compounds in a catalyst composition for the production of alpha-olefins |
US5747620A (en) | 1993-02-22 | 1998-05-05 | Idemitsu Kosan Co., Ltd. | Ethylene copolymer, thermoplastic resin composition containing same, and process for preparing ethylene copolymer |
EP0668295B1 (en) | 1994-02-17 | 1998-06-03 | Union Carbide Chemicals & Plastics Technology Corporation | Spray dried, filled metallocene catalyst composition for use in polyolefin manufacture |
US5763549A (en) | 1989-10-10 | 1998-06-09 | Fina Technology, Inc. | Cationic metallocene catalysts based on organoaluminum anions |
WO1998027124A1 (en) | 1996-12-17 | 1998-06-25 | E.I. Du Pont De Nemours And Company | Polymerization of ethylene with specific iron or cobalt complexes, novel pyridinebis(imines) and novel complexes of pyridinebis(imines) with iron and cobalt |
WO1998030612A1 (en) | 1997-01-13 | 1998-07-16 | E.I. Du Pont De Nemours And Company | Polymerization of propylene |
WO1998030569A1 (en) | 1997-01-13 | 1998-07-16 | The Penn State Research Foundation | Asymmetric synthesis and catalysis with chiral heterocyclic compounds |
WO1998034964A1 (en) | 1997-02-07 | 1998-08-13 | Exxon Chemical Patents Inc. | Group 5 transition metal compounds |
WO1998034961A1 (en) * | 1997-02-07 | 1998-08-13 | Mitsui Chemicals, Inc. | Olefin polymerization catalyst and process for the production of olefin polymers |
US5798427A (en) | 1995-05-16 | 1998-08-25 | Union Carbide Chemicals & Plastics Technology Corporation | Ethylene polymers having enhanced processability |
WO1998037109A1 (en) | 1997-02-24 | 1998-08-27 | Exxon Chemical Patents Inc. | Olefin copolymers from bridged bis(arylamido) group 4 catalyst compounds |
WO1998037106A1 (en) | 1997-02-25 | 1998-08-27 | Exxon Chemical Patents Inc. | Polymerization catalyst systems comprising heterocyclic fused cyclopentadienide ligands |
WO1998046651A2 (en) | 1997-04-11 | 1998-10-22 | Massachusetts Institute Of Technology | Living olefin polymerization processes |
EP0874005A1 (en) | 1997-04-25 | 1998-10-28 | Mitsui Chemicals, Inc. | Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and Alpha-olefin/conjugated diene copolymers |
WO1998049209A1 (en) | 1997-04-25 | 1998-11-05 | Mobil Oil Corporation | Premium pipe resins |
WO1998055467A1 (en) | 1997-06-02 | 1998-12-10 | Schering Aktiengesellschaft | Production of mono and 1,7-bis-n-hydroxyalkyl-cyclene and lithium salt complexes |
JPH10330416A (en) * | 1997-05-27 | 1998-12-15 | Mitsui Chem Inc | Catalyst for polymerizing olefin and method for polymerization of olefin |
JPH10330412A (en) * | 1997-05-27 | 1998-12-15 | Mitsui Chem Inc | Catalyst for olefin polymerization and polymerization of the same |
EP0803520B1 (en) | 1996-04-25 | 1998-12-16 | Basf Aktiengesellschaft | Polymerization catalysts containing beta-diketiminate-ligands |
US5854166A (en) | 1996-08-19 | 1998-12-29 | Northwestern University | Synthesis and use of (perfluoroaryl) fluoro-aluminate anion |
EP0890575A1 (en) | 1997-07-08 | 1999-01-13 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Novel compounds containing an element of groups 11,12 or 14 and a tridentate ligand, process for their preparation and their use particularly as polymerisation catalysts |
WO1999001460A1 (en) | 1997-07-02 | 1999-01-14 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst for the production of olefin polymers |
WO1999012981A1 (en) | 1997-09-05 | 1999-03-18 | Bp Chemicals Limited | Polymerisation catalysts |
WO1999002472A8 (en) | 1997-07-15 | 1999-03-25 | Du Pont | Manufacture of alpha-olefins |
EP0905153A1 (en) | 1997-09-27 | 1999-03-31 | Fina Research S.A. | Production of polyethylene having a broad molecular weight distribution |
US5895771A (en) | 1997-06-05 | 1999-04-20 | Akzo Nobel Nv | Fluorinated alkoxy and/or aryloxy aluminates as cocatalysts for metallocene-catalyzed olefin polymerizations |
BE1011323A7 (en) | 1997-08-12 | 1999-07-06 | Ciechanowski Stanislas | Packaging comprising a means of diffusing a message and a plate to support this means |
WO1999046304A1 (en) | 1998-03-12 | 1999-09-16 | Bp Chemicals Limited | Polymerisation catalyst |
WO1999046303A1 (en) | 1998-03-12 | 1999-09-16 | Bp Chemicals Limited | Polymerisation catalysts |
WO2000037556A1 (en) | 1998-12-18 | 2000-06-29 | Borealis Technology Oy | A multimodal polymer composition |
US6090893A (en) | 1994-12-16 | 2000-07-18 | Borealis Polymers Oy | Polyethylene composition |
US6180731B1 (en) | 1995-08-22 | 2001-01-30 | Basf Aktiengesellschaft | Polymerisates of ethylene with a high degree of resistance to stress crack, and a catalyst system for the production thereof |
US6187940B1 (en) | 1998-08-17 | 2001-02-13 | The Dow Chemical Company | Three coordinate aluminum catalyst activator composition |
US6191239B1 (en) | 1998-02-18 | 2001-02-20 | Eastman Chemical Company | Process for producing polyethylene |
US6194520B1 (en) | 1991-03-06 | 2001-02-27 | Mobil Oil Corporation | Ethylene polymer resins for blow molding applications |
US6211111B1 (en) | 1998-08-17 | 2001-04-03 | The Dow Chemical Company | Activator composition comprising aluminum compound mixture |
US6214760B1 (en) | 1998-08-11 | 2001-04-10 | The Dow Chemical Company | Catalyst activator composition |
US6225421B1 (en) | 1997-08-20 | 2001-05-01 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Process for the manufacture of a composition comprising ethylene polymers |
US6225424B1 (en) | 1997-09-03 | 2001-05-01 | Tosoh Corporation | Polyethylene resin as a material of a container for a high purity chemical, and a container for a high purity chemical made thereof |
US6255419B1 (en) * | 1997-02-07 | 2001-07-03 | Mitsui Chemicals, Inc. | Olefin polymerization catalyst and process for producing olefin polymers |
US6265505B1 (en) | 1999-11-18 | 2001-07-24 | Univation Technologies, Llc | Catalyst system and its use in a polymerization process |
US6271323B1 (en) | 1999-10-28 | 2001-08-07 | Univation Technologies, Llc | Mixed catalyst compounds, catalyst systems and their use in a polymerization process |
US6271325B1 (en) * | 1999-05-17 | 2001-08-07 | Univation Technologies, Llc | Method of polymerization |
US6274684B1 (en) | 1999-10-22 | 2001-08-14 | Univation Technologies, Llc | Catalyst composition, method of polymerization, and polymer therefrom |
US6291614B1 (en) | 1998-09-16 | 2001-09-18 | The Dow Chemical Company | Dinuclear fluoroaryl aluminum alkyl complexes |
US6294495B1 (en) * | 1998-05-01 | 2001-09-25 | Exxonmobil Chemicals Patent Inc. | Tridentate ligand-containing metal catalyst complexes for olefin polymerization |
US6300438B1 (en) | 1999-10-22 | 2001-10-09 | Univation Technolgies, Llc | Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process |
US6300439B1 (en) | 1999-11-08 | 2001-10-09 | Univation Technologies, Llc | Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process |
US20010029232A1 (en) | 1997-07-27 | 2001-10-11 | Moris Eisen | Process for the production of stereoregular polymers and elastomers of alpha-olefins and certain novel catalysts therefor |
US6316549B1 (en) | 1991-10-15 | 2001-11-13 | The Dow Chemical Company | Ethylene polymer fiber made from ethylene polymer blends |
US6333389B2 (en) | 1998-12-18 | 2001-12-25 | Univation Technologies, Llc | Olefin polymerization catalysts, their production and use |
US6380328B1 (en) | 1999-12-10 | 2002-04-30 | Univation Technologies, Llc | Catalyst systems and their use in a polymerization process |
US6399722B1 (en) | 1999-12-01 | 2002-06-04 | Univation Technologies, Llc | Solution feed of multiple catalysts |
US6410474B1 (en) | 1994-09-08 | 2002-06-25 | Exxonmobil Oil Corporation | Process for controlling the MWD of a broad/bimodal resin in a single reactor |
US6417304B1 (en) | 1999-11-18 | 2002-07-09 | Univation Technologies, Llc | Method of polymerization and polymer produced therefrom |
US6420507B1 (en) | 1997-05-01 | 2002-07-16 | The Dow Chemical Company | Olefin polymers prepared with substituted indenyl containing metal complexes |
US20020103071A1 (en) | 2000-12-04 | 2002-08-01 | Oskam John H. | Catalyst composition and method of polymerization |
US20020107137A1 (en) | 2000-12-06 | 2002-08-08 | Peterson Thomas Henry | Catalyst support method and polymerization with supported catalysts |
US20020119890A1 (en) | 2000-12-04 | 2002-08-29 | Wenzel Timothy T. | Catalyst preparation method |
US6518444B1 (en) | 2000-12-18 | 2003-02-11 | Univation Technologies, Llc | Preparation of polymerization catalysts |
US6689847B2 (en) | 2000-12-04 | 2004-02-10 | Univation Technologies, Llc | Polymerization process |
US6703338B2 (en) | 2002-06-28 | 2004-03-09 | Univation Technologies, Llc | Polymerization catalyst activators, method of preparing, and their use in polymerization processes |
US6723808B2 (en) | 2000-08-28 | 2004-04-20 | Univation Technologies, Llc | Catalyst system and its use in a polymerization process |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2332890A1 (en) | 1972-06-29 | 1974-01-17 | Exxon Research Engineering Co | CONTINUOUS PROCESS FOR THE MANUFACTURING OF ELASTOMERIC COPOLYMERISATES OF AETHYLENE WITH A HIGHER ALPHAOLEFIN |
US4789714A (en) * | 1983-06-15 | 1988-12-06 | Exxon Research & Engineering Co. | Molecular weight distribution modification in tubular reactor |
JPS61189522U (en) * | 1985-05-17 | 1986-11-26 | ||
FR2586022B1 (en) * | 1985-08-06 | 1987-11-13 | Bp Chimie Sa | POLYMERIZATION OF OLEFINS IN THE GASEOUS PHASE WITH A ZIEGLER-NATTA CATALYST AND TWO ORGANOMETALLIC COMPOUNDS |
DE3782243T2 (en) | 1986-08-26 | 1993-03-04 | Mitsui Petrochemical Ind | CATALYST FOR POLYMERIZING ALPHA OLEFIN AND METHOD. |
JP2618384B2 (en) * | 1986-12-27 | 1997-06-11 | 三井石油化学工業株式会社 | Solid catalyst for olefin polymerization and its preparation |
FR2660926B1 (en) * | 1990-04-11 | 1992-07-31 | Bp Chemicals Snc | ALPHA-OLEFIN PREPOLYMER CONTAINING A TRANSITIONAL METAL AND PROCESS FOR THE POLYMERIZATION OF ALPHA-OLEFIN IN THE GAS PHASE USING THE PREPOLYMER. |
US5290745A (en) * | 1992-08-10 | 1994-03-01 | Union Carbide Chemicals & Plastics Technology Corporation | Process for producing ethylene polymers having reduced hexane extractable content |
GB9218805D0 (en) | 1992-09-04 | 1992-10-21 | British Petroleum Co Plc | Novel metallocene complexes |
US5705578A (en) * | 1995-05-04 | 1998-01-06 | Phillips Petroleum Company | Method for making and using a supported metallocene catalyst system |
-
1999
- 1999-10-22 US US09/425,387 patent/US6274684B1/en not_active Ceased
-
2001
- 2001-05-24 US US09/865,067 patent/US20020052453A1/en not_active Abandoned
- 2001-05-24 US US09/864,571 patent/US6534604B2/en not_active Expired - Lifetime
-
2002
- 2002-04-18 ZA ZA200203101A patent/ZA200203101B/en unknown
- 2002-04-18 ZA ZA200203098A patent/ZA200203098B/en unknown
-
2003
- 2003-08-01 US US10/632,295 patent/US6841631B2/en not_active Expired - Lifetime
- 2003-08-05 US US10/634,474 patent/US6894128B2/en not_active Expired - Fee Related
- 2003-08-06 US US10/635,864 patent/US7754840B2/en not_active Expired - Fee Related
-
2004
- 2004-01-20 US US10/761,101 patent/USRE41897E1/en not_active Expired - Lifetime
Patent Citations (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057565A (en) | 1975-07-22 | 1977-11-08 | E. I. Du Pont De Nemours And Company | 2-Dialkylaminobenzyl and 2-dialkylaminomethylphenyl derivatives of selected transition metals |
US4335224A (en) | 1980-02-29 | 1982-06-15 | Nippon Oil Company, Limited | Polymer compositions comprising ethylene polymer blends |
US4461873A (en) | 1982-06-22 | 1984-07-24 | Phillips Petroleum Company | Ethylene polymer blends |
US4547551A (en) | 1982-06-22 | 1985-10-15 | Phillips Petroleum Company | Ethylene polymer blends and process for forming film |
US4530914A (en) * | 1983-06-06 | 1985-07-23 | Exxon Research & Engineering Co. | Process and catalyst for producing polyethylene having a broad molecular weight distribution |
EP0197310A2 (en) | 1985-03-07 | 1986-10-15 | Mitsubishi Petrochemical Co., Ltd. | Catalyst components for polymerizing olefins |
EP0241560A1 (en) | 1985-10-11 | 1987-10-21 | Sumitomo Chemical Company, Limited | Catalyst for olefin polymerization and process for preparing olefin polymer by using the same |
US5124418A (en) | 1985-11-15 | 1992-06-23 | Exxon Chemical Patents Inc. | Supported polymerization catalyst |
JPH0278663A (en) | 1988-09-14 | 1990-03-19 | N O K Sogo Gijutsu Kenkyusho:Kk | 26-ethylidenenitrilophenylpyridine, production thereof and metal salt complex |
EP0423962A2 (en) | 1989-09-29 | 1991-04-24 | Nippon Petrochemicals Company, Limited | Ethylene polymer compositions |
US5763549A (en) | 1989-10-10 | 1998-06-09 | Fina Technology, Inc. | Cationic metallocene catalysts based on organoaluminum anions |
US5102955A (en) | 1989-12-29 | 1992-04-07 | Mobil Oil Corporation | Broad distribution, high molecular weight low density polyethylene and method of making thereof |
WO1991012285A1 (en) | 1990-02-09 | 1991-08-22 | Exxon Chemical Patents Inc. | Block copolymers from ionic catalysts |
WO1992012162A1 (en) | 1990-12-27 | 1992-07-23 | Exxon Chemical Patents Inc. | An amido transition metal compound and a catalyst system for the production of isotactic polypropylene |
US5318935A (en) | 1990-12-27 | 1994-06-07 | Exxon Chemical Patents Inc. | Amido transition metal compound and a catalyst system for the production of isotatic polypropylene |
US6194520B1 (en) | 1991-03-06 | 2001-02-27 | Mobil Oil Corporation | Ethylene polymer resins for blow molding applications |
EP0533452A1 (en) | 1991-03-21 | 1993-03-24 | Mobil Oil Corporation | Production of bimodal ethylene polymers in tandem reactors |
EP0528523A1 (en) | 1991-07-24 | 1993-02-24 | Mobil Oil Corporation | Improved ethylene polymer film resins |
EP0529978A1 (en) | 1991-08-30 | 1993-03-03 | BP Chemicals Limited | Multistage polymerisation process |
US5306775A (en) | 1991-09-18 | 1994-04-26 | Phillips Petroleum Company | Polyethylene blends |
US5319029A (en) | 1991-09-18 | 1994-06-07 | Phillips Petroleum Company | Polyethylene blends |
US6316549B1 (en) | 1991-10-15 | 2001-11-13 | The Dow Chemical Company | Ethylene polymer fiber made from ethylene polymer blends |
EP0593083A1 (en) | 1992-10-16 | 1994-04-20 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization reaction utilizing soluble unsupported catalysts |
US5317036A (en) | 1992-10-16 | 1994-05-31 | Union Carbide Chemicals & Plastics Technology Corporation | Gas phase polymerization reactions utilizing soluble unsupported catalysts |
US5608019A (en) | 1992-12-28 | 1997-03-04 | Mobil Oil Corporation | Temperature control of MW in olefin polymerization using supported metallocene catalyst |
US5747620A (en) | 1993-02-22 | 1998-05-05 | Idemitsu Kosan Co., Ltd. | Ethylene copolymer, thermoplastic resin composition containing same, and process for preparing ethylene copolymer |
WO1994021700A1 (en) | 1993-03-22 | 1994-09-29 | Exxon Chemical Patents Inc. | Block copolymers from ionic catalysts |
US5643846A (en) | 1993-04-28 | 1997-07-01 | Fina Technology, Inc. | Process for a isotactic/syndiotactic polymer blend in a single reactor |
US5539076A (en) | 1993-10-21 | 1996-07-23 | Mobil Oil Corporation | Bimodal molecular weight distribution polyolefins |
US5639834A (en) | 1993-10-26 | 1997-06-17 | Fina Research, S.A. | Process for producing polyethylene having a broad molecular weight distribution |
US5614456A (en) | 1993-11-15 | 1997-03-25 | Mobil Oil Corporation | Catalyst for bimodal molecular weight distribution ethylene polymers and copolymers |
US5672669A (en) | 1993-12-23 | 1997-09-30 | Union Carbide Chemicals & Plastics Technology Corporation | Spray dried, filled metallocene catalyst composition for use in polyolefin manufacture |
EP0668295B1 (en) | 1994-02-17 | 1998-06-03 | Union Carbide Chemicals & Plastics Technology Corporation | Spray dried, filled metallocene catalyst composition for use in polyolefin manufacture |
US5707913A (en) | 1994-06-15 | 1998-01-13 | Basf Aktiengesellschaft | Amidinato catalyst systems for the polymerization of olefins |
US5506184A (en) | 1994-06-22 | 1996-04-09 | Mobil Oil Corporation | Olefin polymerization catalyst system |
JPH0881415A (en) | 1994-07-12 | 1996-03-26 | Ube Ind Ltd | Production of alkenecarboxylic acid ester |
US5674796A (en) | 1994-07-20 | 1997-10-07 | Lucky Engineering Co., Ltd. | Processes of regenerating Ni catalysts and of preparing Ni catalysts |
US5426243A (en) | 1994-08-17 | 1995-06-20 | Albemarle Corporation | Process for preparing 1,6-dibromo-2-naphthylene compounds |
US6410474B1 (en) | 1994-09-08 | 2002-06-25 | Exxonmobil Oil Corporation | Process for controlling the MWD of a broad/bimodal resin in a single reactor |
WO1996008498A1 (en) | 1994-09-12 | 1996-03-21 | The Dow Chemical Company | Metal complexes containing non-aromatic, anionic, dienyl groups and addition polymerization catalysts therefrom |
US5622906A (en) | 1994-09-16 | 1997-04-22 | Phillips Petroleum Company | Compositions useful for olefin polymerization and processes therefor and therewith |
US5525678A (en) | 1994-09-22 | 1996-06-11 | Mobil Oil Corporation | Process for controlling the MWD of a broad/bimodal resin produced in a single reactor |
US6090893A (en) | 1994-12-16 | 2000-07-18 | Borealis Polymers Oy | Polyethylene composition |
US5726115A (en) | 1995-03-08 | 1998-03-10 | Shell Oil Company | Bridged bis-amino group 4 metal compounds in a catalyst composition for the production of alpha-olefins |
JPH08277307A (en) | 1995-04-06 | 1996-10-22 | Asahi Chem Ind Co Ltd | Catalyst for olefin polymerization and polymerization using the same |
US5637660A (en) | 1995-04-17 | 1997-06-10 | Lyondell Petrochemical Company | Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety |
US5798427A (en) | 1995-05-16 | 1998-08-25 | Union Carbide Chemicals & Plastics Technology Corporation | Ethylene polymers having enhanced processability |
EP0751142A2 (en) | 1995-06-30 | 1997-01-02 | Hoechst Aktiengesellschaft | Chiral manganese-triazanonane complexes and process for their preparation |
US5756727A (en) | 1995-06-30 | 1998-05-26 | Hoechst Ag | Chiral manganese triazononane complexes |
US6403181B1 (en) | 1995-07-03 | 2002-06-11 | Mobil Oil Corporation | Premium pipe resins |
WO1997002294A1 (en) | 1995-07-03 | 1997-01-23 | Mobil Oil Corporation | Single reactor bimodal hmw-hdpe film resin with improved bubble stability |
US6180731B1 (en) | 1995-08-22 | 2001-01-30 | Basf Aktiengesellschaft | Polymerisates of ethylene with a high degree of resistance to stress crack, and a catalyst system for the production thereof |
US5723399A (en) | 1995-09-14 | 1998-03-03 | Showa Denko K.K. | Ethylenic polymerization catalyst |
WO1997019959A1 (en) | 1995-11-27 | 1997-06-05 | The Dow Chemical Company | Supported catalyst containing tethered cation forming activator |
EP0803520B1 (en) | 1996-04-25 | 1998-12-16 | Basf Aktiengesellschaft | Polymerization catalysts containing beta-diketiminate-ligands |
WO1997042197A1 (en) | 1996-05-02 | 1997-11-13 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | New compounds having one group 13 element, bound with one mono- or di-anionic trident ligand, a method of preparation and application thereof as polymerisation catalysts |
WO1997045434A1 (en) | 1996-05-31 | 1997-12-04 | Borealis A/S | Novel transition metal complexes and method for preparing them |
WO1997046599A1 (en) | 1996-06-06 | 1997-12-11 | Union Carbide Chemicals & Plastics Technology Corporation | Manufacture of stereoregular polymers |
US5693727A (en) | 1996-06-06 | 1997-12-02 | Union Carbide Chemicals & Plastics Technology Corporation | Method for feeding a liquid catalyst to a fluidized bed polymerization reactor |
WO1997048735A1 (en) * | 1996-06-17 | 1997-12-24 | Exxon Chemical Patents Inc. | Mixed transition metal catalyst systems for olefin polymerization |
WO1997048736A1 (en) | 1996-06-17 | 1997-12-24 | Exxon Chemical Patents Inc. | Supported late transition metal catalyst systems |
EP0816372A1 (en) | 1996-06-20 | 1998-01-07 | Hoechst Aktiengesellschaft | Transition metal compound |
US6090739A (en) | 1996-06-20 | 2000-07-18 | Targor Gmbh | Transition metal compound |
JPH107712A (en) | 1996-06-25 | 1998-01-13 | Mitsui Petrochem Ind Ltd | Production of alpha-olefin oligomer |
EP0816384A2 (en) | 1996-07-02 | 1998-01-07 | BP Chemicals Limited | Supported polymerisation catalysts |
JPH1045904A (en) | 1996-07-31 | 1998-02-17 | Sumitomo Chem Co Ltd | Production of poly-1,4-phenylene ether |
US5854166A (en) | 1996-08-19 | 1998-12-29 | Northwestern University | Synthesis and use of (perfluoroaryl) fluoro-aluminate anion |
WO1998027124A1 (en) | 1996-12-17 | 1998-06-25 | E.I. Du Pont De Nemours And Company | Polymerization of ethylene with specific iron or cobalt complexes, novel pyridinebis(imines) and novel complexes of pyridinebis(imines) with iron and cobalt |
US5955555A (en) | 1996-12-17 | 1999-09-21 | E.I. Du Pont De Nemours And Company | Polymerization of ethylene |
WO1998030569A1 (en) | 1997-01-13 | 1998-07-16 | The Penn State Research Foundation | Asymmetric synthesis and catalysis with chiral heterocyclic compounds |
WO1998030612A1 (en) | 1997-01-13 | 1998-07-16 | E.I. Du Pont De Nemours And Company | Polymerization of propylene |
WO1998034964A1 (en) | 1997-02-07 | 1998-08-13 | Exxon Chemical Patents Inc. | Group 5 transition metal compounds |
US6255419B1 (en) * | 1997-02-07 | 2001-07-03 | Mitsui Chemicals, Inc. | Olefin polymerization catalyst and process for producing olefin polymers |
WO1998034961A1 (en) * | 1997-02-07 | 1998-08-13 | Mitsui Chemicals, Inc. | Olefin polymerization catalyst and process for the production of olefin polymers |
EP0893454A1 (en) | 1997-02-07 | 1999-01-27 | Mitsui Chemicals, Inc. | Olefin polymerization catalyst and process for the production of olefin polymers |
WO1998037109A1 (en) | 1997-02-24 | 1998-08-27 | Exxon Chemical Patents Inc. | Olefin copolymers from bridged bis(arylamido) group 4 catalyst compounds |
WO1998037106A1 (en) | 1997-02-25 | 1998-08-27 | Exxon Chemical Patents Inc. | Polymerization catalyst systems comprising heterocyclic fused cyclopentadienide ligands |
WO1998046651A2 (en) | 1997-04-11 | 1998-10-22 | Massachusetts Institute Of Technology | Living olefin polymerization processes |
US5889128A (en) * | 1997-04-11 | 1999-03-30 | Massachusetts Institute Of Technology | Living olefin polymerization processes |
WO1998046651A3 (en) | 1997-04-11 | 1999-03-25 | Massachusetts Inst Technology | Living olefin polymerization processes |
EP0874005A1 (en) | 1997-04-25 | 1998-10-28 | Mitsui Chemicals, Inc. | Olefin polymerization catalysts, transition metal compounds, processes for olefin polymerization, and Alpha-olefin/conjugated diene copolymers |
WO1998049209A1 (en) | 1997-04-25 | 1998-11-05 | Mobil Oil Corporation | Premium pipe resins |
US6420507B1 (en) | 1997-05-01 | 2002-07-16 | The Dow Chemical Company | Olefin polymers prepared with substituted indenyl containing metal complexes |
JPH10330412A (en) * | 1997-05-27 | 1998-12-15 | Mitsui Chem Inc | Catalyst for olefin polymerization and polymerization of the same |
JPH10330416A (en) * | 1997-05-27 | 1998-12-15 | Mitsui Chem Inc | Catalyst for polymerizing olefin and method for polymerization of olefin |
WO1998055467A1 (en) | 1997-06-02 | 1998-12-10 | Schering Aktiengesellschaft | Production of mono and 1,7-bis-n-hydroxyalkyl-cyclene and lithium salt complexes |
US5895771A (en) | 1997-06-05 | 1999-04-20 | Akzo Nobel Nv | Fluorinated alkoxy and/or aryloxy aluminates as cocatalysts for metallocene-catalyzed olefin polymerizations |
WO1999001460A1 (en) | 1997-07-02 | 1999-01-14 | Union Carbide Chemicals & Plastics Technology Corporation | Catalyst for the production of olefin polymers |
WO1999002536A1 (en) | 1997-07-08 | 1999-01-21 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Metal complexes with a tridentate ligand as polymerisation catalysts |
US6303807B1 (en) | 1997-07-08 | 2001-10-16 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Metal complexes with a tridentate ligand as polymerization catalysts |
EP0890575A1 (en) | 1997-07-08 | 1999-01-13 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Novel compounds containing an element of groups 11,12 or 14 and a tridentate ligand, process for their preparation and their use particularly as polymerisation catalysts |
WO1999002472A8 (en) | 1997-07-15 | 1999-03-25 | Du Pont | Manufacture of alpha-olefins |
US20010029232A1 (en) | 1997-07-27 | 2001-10-11 | Moris Eisen | Process for the production of stereoregular polymers and elastomers of alpha-olefins and certain novel catalysts therefor |
BE1011323A7 (en) | 1997-08-12 | 1999-07-06 | Ciechanowski Stanislas | Packaging comprising a means of diffusing a message and a plate to support this means |
US6225421B1 (en) | 1997-08-20 | 2001-05-01 | Solvay Polyolefins Europe-Belgium (Societe Anonyme) | Process for the manufacture of a composition comprising ethylene polymers |
US6225424B1 (en) | 1997-09-03 | 2001-05-01 | Tosoh Corporation | Polyethylene resin as a material of a container for a high purity chemical, and a container for a high purity chemical made thereof |
WO1999012981A1 (en) | 1997-09-05 | 1999-03-18 | Bp Chemicals Limited | Polymerisation catalysts |
EP0905153A1 (en) | 1997-09-27 | 1999-03-31 | Fina Research S.A. | Production of polyethylene having a broad molecular weight distribution |
US6191239B1 (en) | 1998-02-18 | 2001-02-20 | Eastman Chemical Company | Process for producing polyethylene |
WO1999046303A1 (en) | 1998-03-12 | 1999-09-16 | Bp Chemicals Limited | Polymerisation catalysts |
WO1999046304A1 (en) | 1998-03-12 | 1999-09-16 | Bp Chemicals Limited | Polymerisation catalyst |
US6294495B1 (en) * | 1998-05-01 | 2001-09-25 | Exxonmobil Chemicals Patent Inc. | Tridentate ligand-containing metal catalyst complexes for olefin polymerization |
US6214760B1 (en) | 1998-08-11 | 2001-04-10 | The Dow Chemical Company | Catalyst activator composition |
US6211111B1 (en) | 1998-08-17 | 2001-04-03 | The Dow Chemical Company | Activator composition comprising aluminum compound mixture |
US6187940B1 (en) | 1998-08-17 | 2001-02-13 | The Dow Chemical Company | Three coordinate aluminum catalyst activator composition |
US6291614B1 (en) | 1998-09-16 | 2001-09-18 | The Dow Chemical Company | Dinuclear fluoroaryl aluminum alkyl complexes |
WO2000037556A1 (en) | 1998-12-18 | 2000-06-29 | Borealis Technology Oy | A multimodal polymer composition |
US6333389B2 (en) | 1998-12-18 | 2001-12-25 | Univation Technologies, Llc | Olefin polymerization catalysts, their production and use |
US6271325B1 (en) * | 1999-05-17 | 2001-08-07 | Univation Technologies, Llc | Method of polymerization |
US6300438B1 (en) | 1999-10-22 | 2001-10-09 | Univation Technolgies, Llc | Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process |
US6534604B2 (en) | 1999-10-22 | 2003-03-18 | Univation Technologies, Llc | Catalyst composition, method of polymerization, and polymer therefrom |
US6894128B2 (en) | 1999-10-22 | 2005-05-17 | Univation Technologies, Llc | Catalyst composition, method of polymerization, and polymer therefrom |
US6841631B2 (en) | 1999-10-22 | 2005-01-11 | Univation Technologies, Llc | Catalyst composition, method of polymerization, and polymer therefrom |
US6274684B1 (en) | 1999-10-22 | 2001-08-14 | Univation Technologies, Llc | Catalyst composition, method of polymerization, and polymer therefrom |
US20040030066A1 (en) | 1999-10-22 | 2004-02-12 | Loveday Donald R. | Catalyst composition, method of polymerization, and polymer therefrom |
US6271323B1 (en) | 1999-10-28 | 2001-08-07 | Univation Technologies, Llc | Mixed catalyst compounds, catalyst systems and their use in a polymerization process |
US20010031695A1 (en) | 1999-10-28 | 2001-10-18 | Loveday Donald R. | Mixed catalyst compounds, catalyst systems and thier use in a polymerization process |
US6300439B1 (en) | 1999-11-08 | 2001-10-09 | Univation Technologies, Llc | Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process |
US6417304B1 (en) | 1999-11-18 | 2002-07-09 | Univation Technologies, Llc | Method of polymerization and polymer produced therefrom |
US6265505B1 (en) | 1999-11-18 | 2001-07-24 | Univation Technologies, Llc | Catalyst system and its use in a polymerization process |
US6696537B2 (en) | 1999-11-18 | 2004-02-24 | Univation Technologies, Llc | Method of polymerization and polymer produced therefrom |
US20020111443A1 (en) | 1999-12-01 | 2002-08-15 | Szul John F. | Solution feed of multiple catalysts |
US6399722B1 (en) | 1999-12-01 | 2002-06-04 | Univation Technologies, Llc | Solution feed of multiple catalysts |
US6380328B1 (en) | 1999-12-10 | 2002-04-30 | Univation Technologies, Llc | Catalyst systems and their use in a polymerization process |
US6723808B2 (en) | 2000-08-28 | 2004-04-20 | Univation Technologies, Llc | Catalyst system and its use in a polymerization process |
US20020119890A1 (en) | 2000-12-04 | 2002-08-29 | Wenzel Timothy T. | Catalyst preparation method |
US6656866B2 (en) | 2000-12-04 | 2003-12-02 | Univation Technologies, Llc | Catalyst preparation method |
US6689847B2 (en) | 2000-12-04 | 2004-02-10 | Univation Technologies, Llc | Polymerization process |
US20020103071A1 (en) | 2000-12-04 | 2002-08-01 | Oskam John H. | Catalyst composition and method of polymerization |
US20020107137A1 (en) | 2000-12-06 | 2002-08-08 | Peterson Thomas Henry | Catalyst support method and polymerization with supported catalysts |
US6518444B1 (en) | 2000-12-18 | 2003-02-11 | Univation Technologies, Llc | Preparation of polymerization catalysts |
US6703338B2 (en) | 2002-06-28 | 2004-03-09 | Univation Technologies, Llc | Polymerization catalyst activators, method of preparing, and their use in polymerization processes |
Non-Patent Citations (54)
Title |
---|
A. Muñoz-Escalona, L. Méndez, J. Sancho, P. Lafuente, B. Peña, W. Michiels, G. Hidalgo & M. F. Martinez-Nuñez, Development of Supported Single-Site Catalysts and Produced Polyethylene, Metalorganic Catalysts for Synthesis and Polymerisation, Recent Results by Ziegler-Natta and Metallocene Investigations, pp. 381-396, (1999). |
A. Mu�oz-Escalona, L. M�ndez, J. Sancho, P. Lafuente, B. Pe�a, W. Michiels, G. Hidalgo & M. F. Martinez-Nu�ez, Development of Supported Single-Site Catalysts and Produced Polyethylene, Metalorganic Catalysts for Synthesis and Polymerisation, Recent Results by Ziegler-Natta and Metallocene Investigations, pp. 381-396, (1999). |
AAPO U. Härkönen, Markku Ahlgrén, Tapani A. Pakkanen, & Jouni Pursiainen, Synthesis, crystal structure and characterization of the heterometallic tetranuclear butterfly cluster [Ru3IrH2(CO)12Cl], Journal of Organometallic Chemistry 519 (1996), pp. 205-208. |
AAPO U. H�rk�nen, Markku Ahlgr�n, Tapani A. Pakkanen, & Jouni Pursiainen, Synthesis, crystal structure and characterization of the heterometallic tetranuclear butterfly cluster [Ru3IrH2(CO)12Cl], Journal of Organometallic Chemistry 519 (1996), pp. 205-208. |
Andrew D. Horton, Jan De With, Arian J. Van Der Linden & Henk Van De Weg, Cationic Alkylzirconium Complexes Based on a Tridentate Diamide Ligand: New Alkene Polymerization Catalysts, Organometallics 1996, 15, 2672-2674. |
Berthold, et al., "Advanced Polymerisation process for tailor made pipe resins" Plast., Rubber Compos. Process. Appl. (1996), pp. 368-372. |
Bohm, L. L., et al., "Bimodal High density polyethylene resin for film" Plastics, Rubber and Composites Processing and Applications (1998) pp. 25-29, vol. 27 No. 1. |
Bohm, Ludwig L., et al. "High Density Polyethylene Pipe Resins" Advanced Materials 4 (1992), pp. 234-238, No. 3. |
Burkhardt, Ulrich et al. "Aufbereiten von multimodalen Polymerwerk-stoffen, Basis PP and PE" Dieter Voigt, Institut fur Polymerforschung Dresden (1995) pp. 55-78. |
Chunming Wang, Stefan Friedrich, Todd R. Younkin, Robert T. Li, Robert H. Grubbs, Donald A. Bansleben, & Michael W. Day, Neutral Nickel(II)-Based Catalysts for Ethylene Polymerization, Organometallics 1998, 17, 3149-3151. |
Eskelinen, Mari, et al., "Effect of Polymerization Temperature on the Polymerization of Ethylene with Dicyclopentadienlyzirconiumdichloride/Methylalumoxane Catalyst" Eur. Polym. J. (1996) pp. 331-335, vol. 32, No. 3. |
Eugene Ou-Xian Chen & Tobin J. Marks, Cocatalysts for Metal-Catalyzed Olefin Polymerization: Activators, Activation Processes, and Structure-Activity Relationships, Chem. Rev. 2000, 100, 1391-1434. |
F. Geoffrey N. Cloke, Peter B. Hitchcock & Jason B. Love, Zirconium Complexes incorporating the New Tridentate Diamide Ligand [(Me3Si)N{CH2Ch2N(SiMe3)}2]2-(L); the Crystal Structures of [Zr(BH4)2L] and [ZrCl{CH(SiMe3)2}L], J. Chem. Soc. Dalton Trans, 1995, pp. 25-30. |
Fr�d�ric Gu�rin, David H. McConville & Nicholas C. Payne, Conformationally Rigid Diamide Complexes: Synthesis and Structure of Titanium(IV) Alkyl Derivatives, Organometallics 1996, 15, 5085-5089. |
Fr�d�ric Gu�rin, David H. McConville, & Jagadese J. Vittal, Conformationally Rigid Diamide Complexes of Zirconium: Electron Deficient Analogues of Cp2Zr, Organometallics 1996, 15, 5586-5590. |
Fr�d�ric Gu�rin, David H. McConville, Jagadese J. Vittal & Glen A. P. Yap, Synthesis, Structure, and Reactivity of Zirconium Alkyl Complexes Bearing Ancillary Pyridine Diamide Ligands, Organometallics 1998, 17, 5172-5177. |
Fr�d�ric Gu�rin, Orin Del Vechhio & David H. McConville, Ortho-substituted aryl diamido complexes of zirconium: observation of rotameric isomers, Polyhedron vol. 17, No. 5-6, pp. 917-923, 1998. |
Frédéric Guérin, David H. McConville & Nicholas C. Payne, Conformationally Rigid Diamide Complexes: Synthesis and Structure of Titanium(IV) Alkyl Derivatives, Organometallics 1996, 15, 5085-5089. |
Frédéric Guérin, David H. McConville, & Jagadese J. Vittal, Conformationally Rigid Diamide Complexes of Zirconium: Electron Deficient Analogues of Cp2Zr, Organometallics 1996, 15, 5586-5590. |
Frédéric Guérin, David H. McConville, Jagadese J. Vittal & Glen A. P. Yap, Synthesis, Structure, and Reactivity of Zirconium Alkyl Complexes Bearing Ancillary Pyridine Diamide Ligands, Organometallics 1998, 17, 5172-5177. |
Frédéric Guérin, Orin Del Vechhio & David H. McConville, Ortho-substituted aryl diamido complexes of zirconium: observation of rotameric isomers, Polyhedron vol. 17, No. 5-6, pp. 917-923, 1998. |
Giuseppe Di Silvestro, Piero Sozzani, & Alberto Terragni, Polymerization of propene with enatiomorphic site catalysts, 1, Macromol. Chem. Phys. 197, 3209-3228 (1996). |
Hans Fuhrmann, Simon Brenner, Perdita Arndt, & Rhett Kempe, Octahedral Group 4 Metal Complexes That Contain Amine, Amido, and Aminopyridinato Ligands: Synthesis, Structure, and Application in alpha-Olefin Oligo-and Polymerization, Inorg. Chem. 1996, 35, 6742-6745. |
Hans Fuhrmann, Simon Brenner, Perdita Arndt, & Rhett Kempe, Octahedral Group 4 Metal Complexes That Contain Amine, Amido, and Aminopyridinato Ligands: Synthesis, Structure, and Application in α-Olefin Oligo-and Polymerization, Inorg. Chem. 1996, 35, 6742-6745. |
Howard C. S. Clark, F. Geoffrey N. Cloke, Peter B. Hitchcock, Jason B. Love, & Adrian P. Wainwright, Titanium(IV) complexes incorporating the aminodiamide ligand [(SiMe3) N{Ch2CH2N(SiMe3)}2 ]2-(L); the X-ray crystal structures of [TiMe2(L)] and [TiCI{CH(SiMe3)2}(l)], Journal of Organometallic Chemistry 501, 1995, 333-340. |
Inorganic Chemistry, Furhman/Kempe et al., vol. 35, pp. 6742-6745 (1996). |
J. Am. Chem. Soc., Baumann et al., vol. 119, pp. 3830-3831 (1997). |
J. Am. Chem. Soc., Scollard et al., vol. 118, pp. 10008-10009 (1996). |
J. Berthold, L. L. B�hm, H. F. Enderle, P. G�bel, H. L�ker, R. Lecht, & U. Schulte, Advanced polymerization process for tailor made pipe resins, Plastics, Rubber and Composites Processing and Applications 1996, vol. 25, No. 8, pp. 366-372. |
J. Berthold, L. L. Böhm, H. F. Enderle, P. Göbel, H. Lüker, R. Lecht, & U. Schulte, Advanced polymerization process for tailor made pipe resins, Plastics, Rubber and Composites Processing and Applications 1996, vol. 25, No. 8, pp. 366-372. |
J. Chem. Soc. Dalton Trans., Cloke et al., pp. 25-30 (1995). |
John D. Scollard & David H. McConville, Living Polymerization of alpha-Olefins by Chelating Diamide Complexes of Titanium, J. Am. Chem. Soc. 1996, 118, 10008-10009. |
John D. Scollard & David H. McConville, Living Polymerization of α-Olefins by Chelating Diamide Complexes of Titanium, J. Am. Chem. Soc. 1996, 118, 10008-10009. |
John Scheirs, Ludwig L. B�hm, Jesse C. Boot & Pat S. Leevers, PE100 Resins for Pipe Applications: Continuing the Development into the 21st Century, TRIP vol. 4, No. 12, Dec. 1996, pp. 408-415. |
John Scheirs, Ludwig L. Böhm, Jesse C. Boot & Pat S. Leevers, PE100 Resins for Pipe Applications: Continuing the Development into the 21st Century, TRIP vol. 4, No. 12, Dec. 1996, pp. 408-415. |
Journal of Organometallic Chemistry, Clark et al., vol. 501, pp. 333-340 (1995). |
Journal of Organometallic Chemistry, Harkonen et al., vol. 519, No. 1, pp. 205-208 (1996). |
K. Ebner, Bi-Model HDPE for Piping Systems and Further Applications, Advances in Plastics Technology APT'97, Dec. 9-11, 1997, Katowice, Poland, pp. 1-8. |
Kang, Kap Ku, et al. "The Synthesis and Polymerization Behavior of Bimetallic Pyrideine Diaminde Completxes, Containing Transition Metal (Ti,Zr)" Journal of Polymer Science: Part A: Polymer Chemistry (1999) pp. 3756-3762 vol. 37. |
Lan-Chang Liang, Richard R. Schrock, William M. Davis, & David H. McConville, Synthesis of Group 4 Complexes that Contain the Diamidoamine Ligands, [2,4,6-Me3C6H2NCH2CH2)2NR]2-([Mes2N2NR]2-; R=H or CH3), and Polymerization of 1-Hexene by Activated [Mes2N2NR]ZrMe2 Complexes, J. Am. Chem Soc. 1999, 121, 5797-5798. |
Macromolecular Chemistry and Physics, Silvestro et al., vol. 197, No. 10, pp. 3209-3228 (1996). |
Macromolecules, Repo, vol. 30, pp. 171-175 (1997). |
Organometallics, Bei et al., vol. 16, pp. 3282-3302 (1997). |
Organometallics, Grubbs, vol. 17, pp. 3149-3151 (1998). |
Organometallics, Guerin et al., vol. 15 (26), pp. 5586-5590 (1996). |
Organometallics, Guerin et al., vol. 15, pp. 5085-5089 (1996). |
Organometallics, Guerin et al., vol. 17 (23), pp. 5172-5177 (1998). |
Organometallics, Horton et al., vol. 15, pp. 2672-2674 (1996). |
Polyhedron, Guerin et al., vol. 17 (5-6), pp. 917-923 (1998). |
Robert Baumann, William M. Davis, & Richard R. Schrock, Synthesis of Titanium and Zirconium Complexes That Contain the Tridentate Diamido Ligand, [((t-Bu-d6)N-o-C6H1)2O]2-({NON}2-) and the Living Polymerization of 1-Hexene by Activated [NON]ZrMe2, J. Am. Chem. Soc. 1997, 119, 3830-3831. |
Scholten, Wolters, "GERG Materials Bank of PE Gas Pipe Grades Recent Developments" (1998) pp. 257-268. |
Timo Repo, Martti Klinga, Pekka Pietikainen, Markku Leskel�, Anne-Marja Uusitalo, Tuula Pakkanen, Kimmo Hakala, P�ivi Aaltonen & Barbro L�fgren, Ethylenebis(salicylideneiminato)zirconium Dichloride: Crystal Structure and Use as a Heterogeneous Catalyst in the Polymerization of Ethylene, Macromolecules 1997, 30, 171-175. |
Timo Repo, Martti Klinga, Pekka Pietikainen, Markku Leskelä, Anne-Marja Uusitalo, Tuula Pakkanen, Kimmo Hakala, Päivi Aaltonen & Barbro Löfgren, Ethylenebis(salicylideneiminato)zirconium Dichloride: Crystal Structure and Use as a Heterogeneous Catalyst in the Polymerization of Ethylene, Macromolecules 1997, 30, 171-175. |
Xiaohong Bei, Dale C. Swenson, & Richard F. Jordan, Synthesis, Structures, Bonding, and Ethylene Reactivity of Group 4 Metal Alkyl Complexes Incorporating 8-Quinolinolato Ligands, Organometallics 1997, 16, 3282-3302. |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110275772A1 (en) * | 2007-12-18 | 2011-11-10 | Univation Technologies, Llc | Method for Controlling Bimodal Catalyst Activity During Polymerization |
US8318872B2 (en) * | 2007-12-18 | 2012-11-27 | Univation Technologies, Llc | Method for controlling bimodal catalyst activity during polymerization |
WO2012091965A1 (en) * | 2010-12-17 | 2012-07-05 | Carnegie Mellon University | Electrochemically mediated atom transfer radical polymerization |
US9644042B2 (en) | 2010-12-17 | 2017-05-09 | Carnegie Mellon University | Electrochemically mediated atom transfer radical polymerization |
US10072042B2 (en) | 2011-08-22 | 2018-09-11 | Carnegie Mellon University | Atom transfer radical polymerization under biologically compatible conditions |
US9533297B2 (en) | 2012-02-23 | 2017-01-03 | Carnegie Mellon University | Ligands designed to provide highly active catalyst complexes |
US9982070B2 (en) | 2015-01-12 | 2018-05-29 | Carnegie Mellon University | Aqueous ATRP in the presence of an activator regenerator |
US11174325B2 (en) | 2017-01-12 | 2021-11-16 | Carnegie Mellon University | Surfactant assisted formation of a catalyst complex for emulsion atom transfer radical polymerization processes |
US11421051B2 (en) | 2017-12-18 | 2022-08-23 | Dow Global Technologies Llc | Zirconocene-titanocene catalyst system |
Also Published As
Publication number | Publication date |
---|---|
US20040030066A1 (en) | 2004-02-12 |
US7754840B2 (en) | 2010-07-13 |
US20010044508A1 (en) | 2001-11-22 |
US6274684B1 (en) | 2001-08-14 |
US20040030070A1 (en) | 2004-02-12 |
US20020052453A1 (en) | 2002-05-02 |
US6841631B2 (en) | 2005-01-11 |
US6534604B2 (en) | 2003-03-18 |
US6894128B2 (en) | 2005-05-17 |
US20040034179A1 (en) | 2004-02-19 |
ZA200203101B (en) | 2003-10-29 |
ZA200203098B (en) | 2003-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41897E1 (en) | Catalyst composition, method of polymerization, and polymer therefrom | |
AU767697B2 (en) | Catalyst compositions, methods of polymerization, and polymers therefrom | |
US6586544B2 (en) | Solution feed of multiple catalysts | |
US6689847B2 (en) | Polymerization process | |
US6956094B2 (en) | Bimodal polyolefin | |
RU2233845C2 (en) | Method for polymerization of olefin using catalytic composition | |
US6605675B2 (en) | Polymerization process | |
AU763705B2 (en) | Start up methods for multiple catalyst systems | |
US6372868B1 (en) | Start up methods for multiple catalyst systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Fee payment |
Year of fee payment: 12 |