USH1867H - Variable cut scroll saw - Google Patents
Variable cut scroll saw Download PDFInfo
- Publication number
- USH1867H USH1867H US08/899,938 US89993897A USH1867H US H1867 H USH1867 H US H1867H US 89993897 A US89993897 A US 89993897A US H1867 H USH1867 H US H1867H
- Authority
- US
- United States
- Prior art keywords
- blade
- scroll saw
- disposed
- frame
- clamps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005096 rolling process Methods 0.000 description 3
- 238000007792 addition Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D51/00—Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends
- B23D51/08—Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of devices for mounting straight saw blades or other tools
- B23D51/12—Sawing machines or sawing devices working with straight blades, characterised only by constructional features of particular parts; Carrying or attaching means for tools, covered by this subclass, which are connected to a carrier at both ends of devices for mounting straight saw blades or other tools for use with tools, dealt with in this subclass, which are connected to a carrier at both ends, e.g. bows adjustable in length or height
- B23D51/14—Attachment of the tool
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D49/00—Machines or devices for sawing with straight reciprocating saw blades, e.g. hacksaws
- B23D49/007—Jig saws, i.e. machine saws with a vertically reciprocating narrow saw blade chucked at both ends for contour cutting
Definitions
- This invention relates generally to scroll saws and, more particularly, to a scroll saw that can be adjusted from fine to coarse (aggressive) cutting.
- Scroll saws are typically of three types: parallel arm scroll saws, one-piece C-arm shaped scroll saws, or cable scroll saws.
- Parallel arm scroll saws include upper and lower horizontally extending arms which pivot in unison about vertically aligned pivot pins. Examples of such saws are shown in U.S. Pat. Nos. 4,616,541, 4,838,138 and 4,841,823.
- C-arm shaped scroll saws connect upper and lower arms in a single C-shaped arm structure which pivots about a pivot point located on the bight end portion of the C-shaped arm structure. Examples of such saws are shown in U.S. Pat. Nos. 4,503,742, 4,625,609 and 4,646,605.
- Cable scroll saws have cables, instead of arms, that are connected directly or indirectly to the blade holders.
- the cable scroll saws have low moving masses, which help reduce vibration.
- such designs produce a portable, low cost scroll saw. Examples of such saws are shown in U.S. Pat. Nos. 199,845, 1,820,294 and 2,810,410, as well as Canadian Patent Application No. 2,104,569.
- an improved scroll saw is employed.
- the scroll saw includes a frame with a worktable for supporting workpieces, first and second blade clamps for clamping a blade therebetween, an oscillating mechanism disposed within the frame, the oscillating mechanism moving the first and second blade clamps in a direction along a substantially vertical axis, wherein one of the first and second blade clamps is selectively shiftable so that the blade is shifted to a selected angle from the vertical axis.
- a cam is used to move one of the blade clamps.
- FIG. 1 is a partial cross-sectional side view of a scroll saw of the present invention
- FIG. 2 is a side elevational view of a blade clamp shifting mechanism
- FIGS. 3A and 3B illustrate the blade cutting path for a blade moving along a substantially vertical axis and a blade shifted to a selected angle from the vertical axis;
- FIG. 4 is a side elevational view of an alternative blade clamp shifting mechanism
- FIG. 5 is a partial cross-sectional rear view of the blade clamp shifting mechanism of FIG. 4;
- FIG. 6 is a partial cross-sectional front view along line VI--VI of FIG. 1;
- FIG. 7 is a view of the blade clamp along line VII--VII of FIG. 6; apparatus according to a second embodiment of the present invention.
- FIGS. 8A and 8B are profiles of alternative sliding holders for use in the blade clamp.
- a cable scroll saw 10 is shown as an exemplary scroll saw.
- the present invention can be implemented in other types of scroll saw.
- Scroll saw 10 of the present invention includes a frame 11.
- frame 11 is hollow and carries most of the elements described below within.
- the frame 11 may be C-shaped.
- the frame 11 carries a table 12 for supporting a workpiece (not shown). It will be noted that the table 12 extends within the opening of the frame.
- the table 12 has a slot or hole 12h, allowing a blade 26 to extend therethrough.
- the blade 26 is held by an upper blade clamp 200 and a lower blade clamp 19.
- An oscillating drive mechanism moves the blade clamps up and down along a substantially vertical axis.
- the drive mechanism includes a motor 13.
- the motor 13 rotates a driving wheel 13d, which in turn has a crank pin 13p thereon.
- a driving pulley 15 is disposed nearby.
- the driving pulley 15 rotates about a pivot 16, preferably connected to the frame 11.
- the pulley 15 has a pulley pin 15p.
- the crank pin 13p and the pulley pin 15p are connected via a connecting arm 14, so that, when the motor 13 rotates the driving wheel 13d, the pulley 15 will also rotate.
- the driving pulley 15 will oscillate instead of making full revolutions.
- a cable 25, preferably made of stainless steel, connecting the upper blade clamp 200 and the lower blade clamp 19 is disposed around the driving pulley 15. Because of the oscillating motion of the driving pulley 15, the cable 25 will also oscillate. Persons skilled in the art will recognize that cable 25 can be attached to the pulley 15 to prevent slippage.
- the upper pulley 21 is connected to a lever 23.
- the lever 23 is pivotally connected about pivot 20. Accordingly, the lever 23, and thus the upper pulley 21, can pivot about pivot 20. By rotating the upper pulley 21 towards the rear, the tension of the cable 25 is diminished, allowing for easy blade removal as discussed below.
- the pivot 20 is part of a carrying assembly 42.
- the carrying assembly has a detent mechanism in order to maintain the lever 23 at a certain position, so that cable tension is at a maximum.
- the detent mechanism includes a detent ball 24 biased by a spring 43 against lever 23.
- the lever 23 has a detent hole 44 that receives the ball 24.
- the lever 23 has an extension 27, preferably arcuate-shaped, which contacts the ball 24 while the lever 23 is being rotated.
- Stops 28,29 are preferably provided on the extension 27 and the lever 23 to limit the range of rotational movement of lever 23. These stops 28,29 contact the carrying assembly 42.
- the carrying assembly 42 and thus the upper pulley 21, may be moved up and down, also affecting cable tension. This may be done via a threaded shaft 40 having threads 41 which mesh with threads in the carrying assembly 42.
- the carrying assembly 42 is preferably disposed in channels 45 at both ends, limiting any rotational movement. Accordingly, as a user rotates the shaft 40 via knob 22, the rotational movement of the shaft 40 is translated into vertical linear movement of the carrying assembly 42.
- Shaft 40 may also be provided with a retainer ring 46 to prevent accidental removal of the shaft 40.
- a shifting mechanism 30 is preferably disposed next to the upper blade clamp 200. This mechanism allows the user to move the blade clamp 200 in order to change the angle of the blade 26 relative to the vertical axis, changing the type of cut. Persons skilled in the art will recognize that the shifting mechanism may be placed next to the cable 25 or pulley 21 to achieve the same result. Accordingly, such solutions are equivalent to the one described below.
- a preferred embodiment of the shifting mechanism 30 includes a cam 300 having a camming surface 31 contacting the blade clamp 200.
- the cam 300 pivots about pivot 33 and is kept on the pivot 33 by a retainer ring 37.
- Pivot 33 may be fixedly connected to the frame 11.
- a user need only move lever 32 to vary how much the blade clamp 200 is shifted.
- the camming surface 31 then moves the blade clamp 200.
- the camming surface 31 is calibrated so that the shift amount of the blade clamp 200 is directly proportional to the cam movement about pivot 33.
- FIG. 3A illustrates the cutting path of blade 26 when it moves along a substantially vertical axis, where the solid lines show the middle position, the broken lines show the higher position and the dotted lines show the lower position. This cutting path is used for fine work.
- FIG. 3B illustrates the cutting path of blade 26 when the blade clamp 200 has been shifted. Again, the solid lines show the middle position, the broken lines show the higher position and the dotted lines show the lower position. As shown in FIG. 3B, the cutting path is more aggressive and allows for faster, yet coarser, cuts.
- a locking track 35 fixedly connected to the frame 11 has an arcuate slot 35s, which follows the arcuate trajectory of a boss 34 disposed on the lever 32.
- a thumbscrew or wingnut 36 can then be disposed on the other side of the track 35. A user need only to screw on the wingnut 36 to fix the position of cam 300.
- the upper blade clamp 200 has a body 201.
- the body 201 has inclined surfaces 202.
- the inclined surfaces 202 are exposed.
- Channels 203 for carrying sliding/rolling elements are provided underneath the inclined surfaces 202.
- the preferred sliding/rolling element is a ball 204.
- the channel 203 is shallow enough that a portion of the ball 204 extends through and above a slot 205 on the inclined surface 202. It is also preferable that the slot 205 be narrow enough to ensure that the ball 204 is kept within the channel 203.
- a user In order to install the blade 26, a user must release the cable tension by moving lever 23 or by lowering carrying assembly 42. Then the user inserts the blade 26 between the inclined surfaces 202. The balls 204 slide or roll upward and then fall back down, clamping the blade 26 therebetween. The user can then restore the cable tension.
- the user again releases the cable tension as discussed above and lifts and/or pulls the blade 26 towards the user, until the blade 26 is removed.
- FIGS. 8A and 8B show two alternative sliding elements 207, which slide along channels 203 to perform the same function as ball 204.
- the elements 207 may be cylindrical. It may also be advantageous to provide projections 206 on the elements 207 to better grasp the blade 26.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sawing (AREA)
Abstract
The scroll saw disclosed herein includes a frame with a worktable for supporting workpieces, first and second blade clamps for clamping a blade therebetween, an oscillating mechanism disposed within the frame, the oscillating mechanism moving the first and second blade clamps in a direction along a substantially vertical axis, wherein one of the first and second blade clamps is selectively shiftable so that the blade is shifted to a selected angle from the vertical axis. Preferably, a cam is used to move one of the blade clamps.
Description
This invention relates generally to scroll saws and, more particularly, to a scroll saw that can be adjusted from fine to coarse (aggressive) cutting.
Scroll saws are typically of three types: parallel arm scroll saws, one-piece C-arm shaped scroll saws, or cable scroll saws. Parallel arm scroll saws include upper and lower horizontally extending arms which pivot in unison about vertically aligned pivot pins. Examples of such saws are shown in U.S. Pat. Nos. 4,616,541, 4,838,138 and 4,841,823.
C-arm shaped scroll saws connect upper and lower arms in a single C-shaped arm structure which pivots about a pivot point located on the bight end portion of the C-shaped arm structure. Examples of such saws are shown in U.S. Pat. Nos. 4,503,742, 4,625,609 and 4,646,605.
Cable scroll saws have cables, instead of arms, that are connected directly or indirectly to the blade holders. The cable scroll saws have low moving masses, which help reduce vibration. In addition, such designs produce a portable, low cost scroll saw. Examples of such saws are shown in U.S. Pat. Nos. 199,845, 1,820,294 and 2,810,410, as well as Canadian Patent Application No. 2,104,569.
All these saws have vertical, or near vertical, cutting blade paths. These allow for fine cutting, as users demand precision in their cutting. However, this limits the use of the scroll saw to only fine work. However, sometimes users want faster cuts.
It is an object of this invention to provide a scroll saw that allows both fine and coarse cutting of workpieces, thus providing greater flexibility than prior art scroll saws.
In accordance with the present invention, an improved scroll saw is employed. The scroll saw includes a frame with a worktable for supporting workpieces, first and second blade clamps for clamping a blade therebetween, an oscillating mechanism disposed within the frame, the oscillating mechanism moving the first and second blade clamps in a direction along a substantially vertical axis, wherein one of the first and second blade clamps is selectively shiftable so that the blade is shifted to a selected angle from the vertical axis. Preferably, a cam is used to move one of the blade clamps.
Additional features and benefits of the present invention are described, and will be apparent from, the accompanying drawings and the detailed description below.
The accompanying drawings illustrate preferred embodiments of the invention according to the practical application of the principles thereof, and in which:
FIG. 1 is a partial cross-sectional side view of a scroll saw of the present invention;
FIG. 2 is a side elevational view of a blade clamp shifting mechanism;
FIGS. 3A and 3B illustrate the blade cutting path for a blade moving along a substantially vertical axis and a blade shifted to a selected angle from the vertical axis;
FIG. 4 is a side elevational view of an alternative blade clamp shifting mechanism;
FIG. 5 is a partial cross-sectional rear view of the blade clamp shifting mechanism of FIG. 4;
FIG. 6 is a partial cross-sectional front view along line VI--VI of FIG. 1;
FIG. 7 is a view of the blade clamp along line VII--VII of FIG. 6; apparatus according to a second embodiment of the present invention; and
FIGS. 8A and 8B are profiles of alternative sliding holders for use in the blade clamp.
The invention is now described with reference to the accompanying figures, wherein like numerals designate like parts. Referring to FIG. 1, a cable scroll saw 10 is shown as an exemplary scroll saw. However, the present invention can be implemented in other types of scroll saw.
Scroll saw 10 of the present invention includes a frame 11. Preferably, frame 11 is hollow and carries most of the elements described below within. In addition, the frame 11 may be C-shaped.
The frame 11 carries a table 12 for supporting a workpiece (not shown). It will be noted that the table 12 extends within the opening of the frame. The table 12 has a slot or hole 12h, allowing a blade 26 to extend therethrough.
The blade 26 is held by an upper blade clamp 200 and a lower blade clamp 19. An oscillating drive mechanism moves the blade clamps up and down along a substantially vertical axis. As shown in FIG. 1, the drive mechanism includes a motor 13. The motor 13 rotates a driving wheel 13d, which in turn has a crank pin 13p thereon.
A driving pulley 15 is disposed nearby. The driving pulley 15 rotates about a pivot 16, preferably connected to the frame 11. In addition, the pulley 15 has a pulley pin 15p. The crank pin 13p and the pulley pin 15p are connected via a connecting arm 14, so that, when the motor 13 rotates the driving wheel 13d, the pulley 15 will also rotate. However, because the driving wheel 13d and the driving pulley 15 have different diameters, the driving pulley 15 will oscillate instead of making full revolutions.
A cable 25, preferably made of stainless steel, connecting the upper blade clamp 200 and the lower blade clamp 19 is disposed around the driving pulley 15. Because of the oscillating motion of the driving pulley 15, the cable 25 will also oscillate. Persons skilled in the art will recognize that cable 25 can be attached to the pulley 15 to prevent slippage.
Referring to FIGS. 1 and 6, the upper pulley 21 is connected to a lever 23. The lever 23 is pivotally connected about pivot 20. Accordingly, the lever 23, and thus the upper pulley 21, can pivot about pivot 20. By rotating the upper pulley 21 towards the rear, the tension of the cable 25 is diminished, allowing for easy blade removal as discussed below.
The pivot 20 is part of a carrying assembly 42. In addition to the pivot 20, the carrying assembly has a detent mechanism in order to maintain the lever 23 at a certain position, so that cable tension is at a maximum. The detent mechanism includes a detent ball 24 biased by a spring 43 against lever 23. The lever 23 has a detent hole 44 that receives the ball 24. In addition, the lever 23 has an extension 27, preferably arcuate-shaped, which contacts the ball 24 while the lever 23 is being rotated.
The carrying assembly 42, and thus the upper pulley 21, may be moved up and down, also affecting cable tension. This may be done via a threaded shaft 40 having threads 41 which mesh with threads in the carrying assembly 42. The carrying assembly 42 is preferably disposed in channels 45 at both ends, limiting any rotational movement. Accordingly, as a user rotates the shaft 40 via knob 22, the rotational movement of the shaft 40 is translated into vertical linear movement of the carrying assembly 42. Shaft 40 may also be provided with a retainer ring 46 to prevent accidental removal of the shaft 40.
Referring to FIGS. 1, 2, 4 and 5, a shifting mechanism 30 is preferably disposed next to the upper blade clamp 200. This mechanism allows the user to move the blade clamp 200 in order to change the angle of the blade 26 relative to the vertical axis, changing the type of cut. Persons skilled in the art will recognize that the shifting mechanism may be placed next to the cable 25 or pulley 21 to achieve the same result. Accordingly, such solutions are equivalent to the one described below.
A preferred embodiment of the shifting mechanism 30 includes a cam 300 having a camming surface 31 contacting the blade clamp 200. The cam 300 pivots about pivot 33 and is kept on the pivot 33 by a retainer ring 37. Pivot 33 may be fixedly connected to the frame 11.
In order to change the cutting path of blade 26, a user need only move lever 32 to vary how much the blade clamp 200 is shifted. The camming surface 31 then moves the blade clamp 200. Preferably, the camming surface 31 is calibrated so that the shift amount of the blade clamp 200 is directly proportional to the cam movement about pivot 33.
FIG. 3A illustrates the cutting path of blade 26 when it moves along a substantially vertical axis, where the solid lines show the middle position, the broken lines show the higher position and the dotted lines show the lower position. This cutting path is used for fine work.
FIG. 3B illustrates the cutting path of blade 26 when the blade clamp 200 has been shifted. Again, the solid lines show the middle position, the broken lines show the higher position and the dotted lines show the lower position. As shown in FIG. 3B, the cutting path is more aggressive and allows for faster, yet coarser, cuts.
It is preferable to lock the cam 300 in place, in order to ensure that the blade clamp 200 does not unintentionally shift positions during cutting. A locking track 35 fixedly connected to the frame 11 has an arcuate slot 35s, which follows the arcuate trajectory of a boss 34 disposed on the lever 32. A thumbscrew or wingnut 36 can then be disposed on the other side of the track 35. A user need only to screw on the wingnut 36 to fix the position of cam 300.
Another aspect of the invention is a new toolless blade clamp. Referring to FIGS. 6 and 7, the upper blade clamp 200 has a body 201. The body 201 has inclined surfaces 202. Preferably, the inclined surfaces 202 are exposed. Channels 203 for carrying sliding/rolling elements are provided underneath the inclined surfaces 202. As shown in FIGS. 6 and 7, the preferred sliding/rolling element is a ball 204. Preferably, the channel 203 is shallow enough that a portion of the ball 204 extends through and above a slot 205 on the inclined surface 202. It is also preferable that the slot 205 be narrow enough to ensure that the ball 204 is kept within the channel 203.
In order to install the blade 26, a user must release the cable tension by moving lever 23 or by lowering carrying assembly 42. Then the user inserts the blade 26 between the inclined surfaces 202. The balls 204 slide or roll upward and then fall back down, clamping the blade 26 therebetween. The user can then restore the cable tension.
In order to remove the blade 26, the user again releases the cable tension as discussed above and lifts and/or pulls the blade 26 towards the user, until the blade 26 is removed.
Persons skilled in the art will recognize that other sliding/rolling elements may be used instead of ball 204. For example, FIGS. 8A and 8B show two alternative sliding elements 207, which slide along channels 203 to perform the same function as ball 204. The elements 207 may be cylindrical. It may also be advantageous to provide projections 206 on the elements 207 to better grasp the blade 26.
Persons skilled in the art may also recognize other alternatives to the means disclosed herein. However, all these additions and/or alterations are considered to be equivalents of the present invention.
Claims (26)
1. A scroll saw comprising:
a frame;
a table connected to said frame for supporting workpieces;
first and second blade clamps for clamping a blade therebetween; and
an oscillating mechanism disposed within the frame, the oscillating mechanism moving the first and second blade clamps along a substantially vertical axis, the oscillating mechanism comprising a motor, a pulley driven by the motor, and cable connected to at least one of the blade clamps, where the cable is disposed on the pulley;
wherein one of the first and second blade clamps is selectively shiftable so that the blade is shifted to a selected angle from the vertical axis.
2. The scroll saw of claim 1, wherein a cam is disposed against said one of first and second blade clamps and used to shift said one of first and second blade clamps.
3. The scroll saw of claim 1, further comprising a cable tensioning mechanism for increasing tension of said cable.
4. The scroll saw of claim 3, wherein the cable tensioning mechanism comprises a movable pulley operatively connected to said frame, said movable pulley being movable in relation to said frame.
5. The scroll saw of claim 4, wherein said movable pulley is movable in a vertical direction.
6. The scroll saw of claim 1, wherein one of said blade clamps comprises:
a body;
first and second surfaces on said body;
a channel disposed in said first surface; and
a sliding element disposed in said channel.
7. The scroll saw of claim 6, wherein the blade is held between the sliding element and the second surface.
8. The scroll saw of claim 6, wherein the sliding element is a ball.
9. A method for varying cut type in a scroll saw comprising a frame, a table connected to said frame for supporting workpieces, first and second blade clamps for clamping a blade therebetween, and an oscillating mechanism disposed within the frame, the oscillating mechanism moving the first and second blade clamps in a direction along a substantially vertical axis, said method comprising the step of:
shifting one of the first and second blade clamps so that the blade is shifted to a selected angle from the vertical axis.
10. The method for varying cut type in a scroll saw of claim 9, wherein the shifting step is performed by moving a cam disposed against said one of first and second blade clamps.
11. The method for varying cut type in a scroll saw of claim 9, further comprising the step of providing a blade clamp shifting mechanism.
12. The method for varying cut type in a scroll saw of claim 11, wherein said blade clamp shifting mechanism is a cam disposed against disposed against said one of first and second blade clamps.
13. The method for varying cut type in a scroll saw of claim 11, wherein the oscillating mechanism comprises:
a motor;
a pulley driven by the motor; and
a cable connected to at least one of said blade clamps, said cable being disposed on said pulley, so that the cable moves in the same direction as the pulley.
14. A blade clamp comprising:
a body;
first and second surfaces on said body;
a first channel disposed in said first surface; and
a first sliding element disposed in said first channel.
15. The blade clamp of claim 14, wherein a blade is held between the first sliding element and the second surface.
16. The blade clamp of claim 14, further comprising a second channel disposed in said second surface, and a second sliding element disposed in said second channel.
17. The blade clamp of claim 16, wherein a blade is held between the first and second sliding elements.
18. The blade clamp of claim 14, wherein the first sliding element is a ball.
19. A scroll saw comprising:
a frame;
a table connected to said frame for supporting workpieces;
first and second blade clamps for clamping a blade therebetween;
an oscillating mechanism disposed within the frame, the oscillating mechanism moving the first and second blade clamps along a substantially vertical axis, the oscillating mechanism comprising a motor, a pulley driven by the motor, and a cable connected to at least one of the blade clamps, where the cable is disposed on the pulley; and
a blade shifting mechanism for shifting one of the first and second blade clamps so that the blade is shifted to a selected angle from the vertical axis.
20. The scroll saw of claim 19, wherein said blade shifting mechanism comprises a cam disposed against said one of the first and second blade clamps.
21. The scroll saw of claim 19, further comprising a cable tensioning mechanism for increasing tension of said cable.
22. The scroll saw of claim 21, wherein the cable tensioning mechanism comprises a movable pulley operatively connected to said frame, said movable pulley being movable in relation to said frame.
23. The scroll saw of claim 22, wherein said movable pulley is movable in a vertical direction.
24. The scroll saw of claim 19, wherein one of said blade clamps comprises:
a body;
first and second surfaces on said body;
a channel disposed in said first surface; and
a sliding element disposed in said channel.
25. The scroll saw of claim 24, wherein the blade is held between the sliding element and the second surface.
26. The scroll saw of claim 24, wherein the sliding element is a ball.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/899,938 USH1867H (en) | 1997-07-24 | 1997-07-24 | Variable cut scroll saw |
TW087109492A TW429185B (en) | 1997-07-24 | 1998-06-15 | Scroll saw and method for varying cut type in the scroll saw |
CN98116101A CN1106241C (en) | 1997-07-24 | 1998-07-14 | Variable cut scroll saw |
EP98305843A EP0893186A3 (en) | 1997-07-24 | 1998-07-22 | Variable cut scroll saw |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/899,938 USH1867H (en) | 1997-07-24 | 1997-07-24 | Variable cut scroll saw |
Publications (1)
Publication Number | Publication Date |
---|---|
USH1867H true USH1867H (en) | 2000-10-03 |
Family
ID=25411754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/899,938 Abandoned USH1867H (en) | 1997-07-24 | 1997-07-24 | Variable cut scroll saw |
Country Status (4)
Country | Link |
---|---|
US (1) | USH1867H (en) |
EP (1) | EP0893186A3 (en) |
CN (1) | CN1106241C (en) |
TW (1) | TW429185B (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6591729B1 (en) * | 2000-06-09 | 2003-07-15 | Gregory M. Novak | Portable band saw for cutting meat |
US6725757B1 (en) * | 2003-02-18 | 2004-04-27 | Pei-Lieh Chiang | Scroll saw with a saw blade that is easy to replace |
US20040168555A1 (en) * | 2003-02-06 | 2004-09-02 | Robert Donovan | Band saw |
US20070266838A1 (en) * | 2006-05-17 | 2007-11-22 | Rexon Industrial Corp., Ltd. | Saw blade mounting structure of a scroll saw |
US7311029B2 (en) | 2002-08-09 | 2007-12-25 | Black & Decker Inc. | Quick-pin blade tensioning device |
US7484301B1 (en) * | 2006-07-03 | 2009-02-03 | Antonio Hughes | Hacksaw with a reciprocating blade |
US20110197457A1 (en) * | 2008-07-31 | 2011-08-18 | Wackwitz Jeffrey M | Band saw blade removal mechanism |
US20150096419A1 (en) * | 2013-10-08 | 2015-04-09 | Robert Bosch Gmbh | Power Tool System |
CN108856883A (en) * | 2018-08-21 | 2018-11-23 | 任广伟 | A kind of electric reciprocating saw |
US20190015914A1 (en) * | 2017-07-14 | 2019-01-17 | Jose Medeiros | Reciprocating Cutting Device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103433978A (en) * | 2013-08-19 | 2013-12-11 | 苏州市胜能弹簧五金制品有限公司 | Handheld steel wire cutting machine |
CN108943032A (en) * | 2017-05-24 | 2018-12-07 | 吕共生 | A kind of sabre with scroll saw function |
CN111136334B (en) * | 2019-12-23 | 2021-06-01 | 中国有色桂林矿产地质研究院有限公司 | Cutting method for hinge beam of forging cubic press |
CN116174810B (en) * | 2023-03-27 | 2023-10-13 | 无锡协和精密模切件有限公司 | High-precision numerical control band saw machine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US199845A (en) * | 1878-01-29 | Improvement in scroll-sawing machines | ||
US1467720A (en) * | 1921-06-25 | 1923-09-11 | Wm A Field Company | Jig saw |
US4238884A (en) * | 1979-06-19 | 1980-12-16 | Black & Decker Inc. | Orbital jig saw |
US4342241A (en) * | 1977-01-27 | 1982-08-03 | Kockums Industri Ab | Band sawing method |
US4356750A (en) * | 1979-11-29 | 1982-11-02 | Benchmark Tool Company | Band saw tension and tracking assembly |
US4825741A (en) * | 1987-04-03 | 1989-05-02 | Rio Grande-Albuquerque, Inc. | Reciprocatory machine tool |
US5018420A (en) * | 1987-05-22 | 1991-05-28 | Mefina S.A. | Machine tool |
US5267498A (en) * | 1991-08-20 | 1993-12-07 | Ryobi Limited | Fret-saw machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5520081A (en) * | 1994-02-18 | 1996-05-28 | R. B. Industries, Inc. | Multiple position blade holder for scroll saw |
-
1997
- 1997-07-24 US US08/899,938 patent/USH1867H/en not_active Abandoned
-
1998
- 1998-06-15 TW TW087109492A patent/TW429185B/en not_active IP Right Cessation
- 1998-07-14 CN CN98116101A patent/CN1106241C/en not_active Expired - Fee Related
- 1998-07-22 EP EP98305843A patent/EP0893186A3/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US199845A (en) * | 1878-01-29 | Improvement in scroll-sawing machines | ||
US1467720A (en) * | 1921-06-25 | 1923-09-11 | Wm A Field Company | Jig saw |
US4342241A (en) * | 1977-01-27 | 1982-08-03 | Kockums Industri Ab | Band sawing method |
US4238884A (en) * | 1979-06-19 | 1980-12-16 | Black & Decker Inc. | Orbital jig saw |
US4356750A (en) * | 1979-11-29 | 1982-11-02 | Benchmark Tool Company | Band saw tension and tracking assembly |
US4825741A (en) * | 1987-04-03 | 1989-05-02 | Rio Grande-Albuquerque, Inc. | Reciprocatory machine tool |
US5018420A (en) * | 1987-05-22 | 1991-05-28 | Mefina S.A. | Machine tool |
US5267498A (en) * | 1991-08-20 | 1993-12-07 | Ryobi Limited | Fret-saw machine |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6591729B1 (en) * | 2000-06-09 | 2003-07-15 | Gregory M. Novak | Portable band saw for cutting meat |
US7311029B2 (en) | 2002-08-09 | 2007-12-25 | Black & Decker Inc. | Quick-pin blade tensioning device |
US8381624B2 (en) | 2003-02-06 | 2013-02-26 | Chang Type Industrial Co., Ltd. | Band saw |
US20040168555A1 (en) * | 2003-02-06 | 2004-09-02 | Robert Donovan | Band saw |
US6725757B1 (en) * | 2003-02-18 | 2004-04-27 | Pei-Lieh Chiang | Scroll saw with a saw blade that is easy to replace |
US20070266838A1 (en) * | 2006-05-17 | 2007-11-22 | Rexon Industrial Corp., Ltd. | Saw blade mounting structure of a scroll saw |
US7484301B1 (en) * | 2006-07-03 | 2009-02-03 | Antonio Hughes | Hacksaw with a reciprocating blade |
US20110197457A1 (en) * | 2008-07-31 | 2011-08-18 | Wackwitz Jeffrey M | Band saw blade removal mechanism |
US8567295B2 (en) * | 2008-07-31 | 2013-10-29 | Milwaukee Electric Tool Corporation | Band saw blade removal mechanism |
US20150096419A1 (en) * | 2013-10-08 | 2015-04-09 | Robert Bosch Gmbh | Power Tool System |
US10500656B2 (en) * | 2013-10-08 | 2019-12-10 | Robert Bosch Gmbh | Power tool system |
US20190015914A1 (en) * | 2017-07-14 | 2019-01-17 | Jose Medeiros | Reciprocating Cutting Device |
CN108856883A (en) * | 2018-08-21 | 2018-11-23 | 任广伟 | A kind of electric reciprocating saw |
Also Published As
Publication number | Publication date |
---|---|
EP0893186A2 (en) | 1999-01-27 |
CN1106241C (en) | 2003-04-23 |
TW429185B (en) | 2001-04-11 |
CN1208677A (en) | 1999-02-24 |
EP0893186A3 (en) | 2001-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USH1867H (en) | Variable cut scroll saw | |
CA2356498C (en) | Adjustment mechanism | |
US7726225B2 (en) | Miter saw having holder fixing mechanism | |
US5791224A (en) | Circular sawing machine | |
JPH0839508A (en) | Adjustable work support device for combined miter saw | |
US6502493B1 (en) | Table saw blade heel adjuster | |
EP1579938B1 (en) | Miter saw having circular saw blade section pivotally movable upward and downward and tiltable leftward and rightward | |
JP3202650B2 (en) | Drill head | |
US7770501B2 (en) | Miter saw having compact gear case at cutting portion | |
EP0860250A2 (en) | Bevel locking system for a sliding compound miter saw | |
JP4449821B2 (en) | Tabletop circular saw | |
USRE38122E1 (en) | Miter saw | |
US5228376A (en) | Scroll saw | |
US7003887B2 (en) | Shoe clamping mechanism for power tool and power tool incorporating such mechanism | |
JP2006327089A (en) | Desktop cutter | |
US6631661B2 (en) | Bevel locking system for a sliding compound miter saw | |
US7311029B2 (en) | Quick-pin blade tensioning device | |
US8245616B2 (en) | Rotating blade guide assembly | |
US2884027A (en) | Jig saws | |
US4807507A (en) | Self-lubricating holder for scroll saw blade | |
CN1091669C (en) | Electric handsaw | |
JP2008100356A (en) | Slide type bench cutter | |
US4576075A (en) | Circular saw machine | |
CA2140479A1 (en) | Low profile workpiece clamping apparatus | |
US4559851A (en) | Saw chain grinder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BLACK & DECKER INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QUIRAM, RONALD;REEL/FRAME:008966/0968 Effective date: 19970916 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |