[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US9934381B1 - System and method for detecting malicious activity based on at least one environmental property - Google Patents

System and method for detecting malicious activity based on at least one environmental property Download PDF

Info

Publication number
US9934381B1
US9934381B1 US15/425,954 US201715425954A US9934381B1 US 9934381 B1 US9934381 B1 US 9934381B1 US 201715425954 A US201715425954 A US 201715425954A US 9934381 B1 US9934381 B1 US 9934381B1
Authority
US
United States
Prior art keywords
virtual machine
network traffic
environmental property
outbound network
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/425,954
Inventor
Darien Kindlund
Julia Wolf
James Bennett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magenta Security Holdings LLC
Magenta Security Intermediate Holdings LLC
Mandiant Inc
Original Assignee
FireEye Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FireEye Inc filed Critical FireEye Inc
Priority to US15/425,954 priority Critical patent/US9934381B1/en
Assigned to FIREEYE, INC. reassignment FIREEYE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOLF, JULIA, KINDLUND, DARIEN
Assigned to FIREEYE, INC. reassignment FIREEYE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENNETT, JAMES
Priority to US15/943,406 priority patent/US10467414B1/en
Publication of US9934381B1 publication Critical patent/US9934381B1/en
Application granted granted Critical
Assigned to UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT FIRST LIEN PATENT SECURITY AGREEMENT Assignors: FIREEYE SECURITY HOLDINGS US LLC
Assigned to UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT SECOND LIEN PATENT SECURITY AGREEMENT Assignors: FIREEYE SECURITY HOLDINGS US LLC
Assigned to FIREEYE SECURITY HOLDINGS US LLC reassignment FIREEYE SECURITY HOLDINGS US LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FIREEYE, INC.
Assigned to MANDIANT, INC. reassignment MANDIANT, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FIREEYE, INC.
Assigned to STG PARTNERS, LLC reassignment STG PARTNERS, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUSARUBRA US LLC, SKYHIGH SECURITY LLC
Assigned to MUSARUBRA US LLC reassignment MUSARUBRA US LLC MERGER (SEE DOCUMENT FOR DETAILS). Assignors: FIREEYE SECURITY HOLDINGS US LLC
Assigned to MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC reassignment MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC INTELLECTUAL PROPERTY ASSIGNMENT AGREEMENT Assignors: MUSARUBRA US LLC
Assigned to MAGENTA SECURITY HOLDINGS LLC reassignment MAGENTA SECURITY HOLDINGS LLC INTELLECTUAL PROPERTY ASSIGNMENT AGREEMENT Assignors: MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC
Assigned to UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT reassignment UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT FIRST LIEN PATENT SECURITY AGREEMENT Assignors: MAGENTA SECURITY HOLDINGS LLC, SKYHIGH SECURITY LLC
Assigned to MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC reassignment MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUSARUBRA US LLC
Assigned to MAGENTA SECURITY HOLDINGS LLC reassignment MAGENTA SECURITY HOLDINGS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC
Assigned to MUSARUBRA US LLC, SKYHIGH SECURITY LLC reassignment MUSARUBRA US LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: STG PARTNERS, LLC
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/566Dynamic detection, i.e. detection performed at run-time, e.g. emulation, suspicious activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/52Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow
    • G06F21/53Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems during program execution, e.g. stack integrity ; Preventing unwanted data erasure; Buffer overflow by executing in a restricted environment, e.g. sandbox or secure virtual machine
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/561Virus type analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/562Static detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/562Static detection
    • G06F21/565Static detection by checking file integrity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/567Computer malware detection or handling, e.g. anti-virus arrangements using dedicated hardware
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1425Traffic logging, e.g. anomaly detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/145Countermeasures against malicious traffic the attack involving the propagation of malware through the network, e.g. viruses, trojans or worms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/03Indexing scheme relating to G06F21/50, monitoring users, programs or devices to maintain the integrity of platforms
    • G06F2221/033Test or assess software

Definitions

  • Embodiments of the present invention relate generally to malicious content detection. More particularly, embodiments of the invention relate to detecting exfiltration content.
  • Malicious software may include any program or file that is harmful by design to a computer.
  • Malware includes computer viruses, worms, Trojan horses, adware, spyware, and any programming that gathers information about a computer or its user or otherwise operates without permission.
  • the owners of the computers are often unaware that these programs have been added to their computers and are often similarly unaware of their function.
  • Malicious network content is a type of malware distributed over a network via websites, e.g., servers operating on a network according to a hypertext transfer protocol (HTTP) standard or other well-known standard. Malicious network content distributed in this manner may be actively downloaded and installed on a computer, without the approval or knowledge of its user, simply by the computer accessing the web site hosting the malicious network content (the “malicious web site”). Malicious network content may be embedded within objects associated with web pages hosted by the malicious web site. Malicious network content may also enter a computer on receipt or opening of email. For example, email may contain an attachment, such as a PDF document, with embedded malicious executable programs. Furthermore, malicious content may exist in files contained in a computer memory or storage device, having infected those files through any of a variety of attack vectors.
  • HTTP hypertext transfer protocol
  • anti-virus scanning utilities may have limited effectiveness to protect against all exploits by polymorphic malware.
  • Polymorphic malware has the capability to mutate to defeat the signature match process while keeping its original malicious capabilities intact. Signatures generated to identify one form of a polymorphic virus may not match against a mutated form.
  • polymorphic malware is often referred to as a family of virus rather than a single virus, and improved anti-virus techniques to identify such malware families is desirable.
  • Another type of malware detection solution employs virtual environments to replay content within a sandbox established by virtual machines (VMs). Such solutions monitor the behavior of content during execution to detect anomalies that may signal the presence of malware.
  • VMs virtual machines
  • One such system offered by FireEye, Inc., the assignee of the present patent application employs a two-phase malware detection approach to detect malware contained in network traffic monitored in real-time. In a first or “static” phase, a heuristic is applied to network traffic to identify and filter packets that appear suspicious in that they exhibit characteristics associated with malware. In a second or “dynamic” phase, the suspicious packets (and typically only the suspicious packets) are replayed within one or more virtual machines.
  • the two-phase malware detection solution may detect numerous types of malware and, even malware missed by other commercially available approaches. Through verification, the two-phase malware detection solution may also achieve a significant reduction of false positives relative to such other commercially available approaches. Dealing with false positives in malware detection may needlessly slow or interfere with download of network content or receipt of email, for example. This two-phase approach has even proven successful against many types of polymorphic malware and other forms of advanced persistent threats.
  • Data loss/leak prevention solution is a system that is designed to detect potential data breach/data exfiltration transmissions and prevent them by monitoring, detecting & blocking sensitive data while in-use (endpoint actions), in-motion (network traffic), and at-rest (data storage).
  • sensitive data is disclosed to unauthorized personnel either by malicious intent or inadvertent mistake.
  • sensitive data can come in the form of private or company information, intellectual property (IP), financial or patient information, credit-card data, and other information depending on the business and the industry.
  • IP intellectual property
  • financial or patient information credit-card data, and other information depending on the business and the industry.
  • IP intellectual property
  • credit-card data credit-card data
  • FIG. 1 is a block diagram illustrating a malicious content detection system according to one embodiment of the invention.
  • FIG. 2 is a block diagram illustrating a system for detecting exfiltration content according to one embodiment.
  • FIG. 3 is a flow diagram illustrating a method for detecting exfiltration content according to one embodiment of the invention.
  • FIG. 4 is a block diagram illustrating a system configuration for detecting exfiltration content according to another embodiment of the invention.
  • FIG. 5 is a block diagram of a computer network system deploying a malicious content detection system according to one embodiment of the invention.
  • FIG. 6 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the invention.
  • a malicious content suspect is executed within a virtual machine (or other designated operating environments such as a sandboxed environment) that simulates or mimics a target operating environment that will likely cause the malicious content suspect to generate malicious indicators and activity.
  • a malicious content suspect refers to any suspicious content that is likely malicious.
  • a packet inspector is configured to monitor and inspect the outbound network traffic originated from an application used to render/display/run the malicious content suspect (if applicable) within the VM to determine whether the malicious content suspect is designed to perform content exfiltration or generic data theft. If so, the malicious content suspect may be declared as malicious.
  • the packet inspection may be performed by capturing the outbound network traffic upon detecting the malicious content suspect's callback (e.g., upon content render/load/execution, the operating system of the victim is compromised and the content instructs the operating system to transmit packets back the content/malware author, so that a clandestine channel is established, which allows the content/malware author to effectively take ownership of the victim system remotely for further nefarious purposes).
  • the packet inspector searches and compares the content of the packets against predetermined network traffic patterns or signatures.
  • the packet inspector is configured to search the outbound network traffic emitted by the VM to a fake network that is isolated from connectivity to real assets external to the VM, in order to determine whether the outbound network traffic contains any machine or operating environment identifying information that identifies certain unique or almost unique characteristics of the virtual machine (e.g., a machine or computer identifier (ID), or user ID). If the outbound network traffic includes content that matches the predetermined network traffic patterns or signatures, an alert may be generated indicating that the malicious content suspect should be declared as malicious. Since the malicious content suspect is executed within an effectively isolated VM, the actual exfiltration content would not actually be transmitted to an external network. As a result, the malicious content suspect can be determined whether it is likely malicious without running a risk of causing damage to real enterprise assets or signaling to the malware author that such analysis was performed.
  • ID machine or computer identifier
  • FIG. 1 is a block diagram illustrating a malicious content detection system according to one embodiment of the invention.
  • system 100 includes controller 101 to manage or control one or more virtual machines (VMs) 102 (also referred to as a sandboxed operating environment or simply a sandbox), where content associated with VMs 102 are stored in storage device 109 in a form of VM disk files 110 .
  • VMs virtual machines
  • Controller 101 may be implemented as part of a VM monitor or manager (VMM), also referred to as a hypervisor for managing or monitoring VMs, which may be hosted by a host operating system (OS).
  • VM 102 may be hosted by a guest OS.
  • the host OS and the guest OS may be the same type of operating systems or different types of operating systems (e.g., WindowsTM, LinuxTM, UnixTM, Mac OSTM, iOSTM, etc.) or different versions thereof.
  • a VM is a simulation of a machine (abstract or real) that is usually different from the target machine (where it is being simulated on). Virtual machines may be based on specifications of a hypothetical computer or emulate the computer architecture and functions of a real world computer.
  • a virtual machine referred to herein can be any type of virtual machines, such as, for example, hardware emulation, full virtualization, para-virtualization, and operating system-level virtualization virtual machines.
  • a scheduler 140 of controller 101 is configured to identify and select a VM, in this example VM 102 , from a VM pool 145 that has been configured to closely simulate a target operating environment (e.g., particular version of an OS with particular versions of certain software installed therein) in which malicious content suspect 106 is to be analyzed.
  • a malicious content suspect refers to any suspicious content that is likely malicious.
  • the scheduler 140 then launches VM 102 in which monitoring module 105 is running within VM 102 and configured to monitor activities and behavior of malicious content suspect 106 .
  • monitoring module 105 maintains a persistent communication channel with analysis module 103 of controller 101 to communicate certain events or activities of malicious content suspect 106 during the execution.
  • monitoring module 105 is configured to send a message via the communication channel to analysis module 103 , where the message may be recorded as part of event log 108 .
  • the message may include information identifying an event triggered by malicious content suspect 106 .
  • Event log 108 records events that have been selectively monitored and detected by monitoring module 103 , such as, for example, certain network activity events. Content of the event log 108 may be stored in a persistent storage as part of event log file(s) 112 of VM disk file 110 associated with VM 102 .
  • the recorded events may be analyzed by analysis module 103 based on a set of rules or policies (not shown) to determine whether malicious content suspect 106 is likely malicious (e.g., high probability of malicious) and/or should be declared as malicious.
  • monitoring module 105 in response to some predetermined events (e.g., file creation, registry access, DLL loading, process execution, power management such as sleep) triggered by malicious content suspect 106 , monitoring module 105 sends a message describing the event(s) via a communication channel to controller 101 , which may be recorded as part of event log 108 .
  • Event log 108 may be further cached in a persistent storage as part of event log file(s) 112 .
  • a packet inspector 125 is configured to monitor and inspect the outbound network traffic originated from the malicious content suspect 106 within the VM 102 to determine whether the malicious content suspect 106 performs specific content exfiltration or generic data theft.
  • the packet inspection may be performed by capturing the outbound network traffic upon detecting the malicious content suspect's callback (e.g., transmitting packets back the original content/malware author to signal that the OS has been compromised and ready to be remotely controlled).
  • the packet inspector 125 searches and compares the content of the packets against predetermined network traffic patterns or signatures as part of rules 126 .
  • the packet inspector 125 is configured to search the outbound network traffic to determine whether the outbound network traffic contains any machine or operating environment identifying information that identifies certain unique or almost unique characteristics of the virtual machine 102 (e.g., a computer or machine identifier, or user identifier). If the outbound network traffic includes content that matches the predetermined network traffic patterns or signatures 126 , an alert may be generated indicating that the malicious content suspect 106 may be declared as malicious.
  • FIG. 2 is a block diagram illustrating a system for detecting exfiltration content according to one embodiment.
  • the system as shown in FIG. 2 may be implemented as part of malicious content detection system 100 of FIG. 1 .
  • a packet capturer 202 is configured to monitor at least the outbound network traffic 220 initiated by malicious content suspect 106 .
  • Packet capturer 202 may be implemented as part of a network stack (e.g., TCP/IP stack) and/or within a firewall 250 of a guest operating system that hosts a VM in which malicious content suspect 106 is executed.
  • the captured packets may be temporarily stored in buffer 204 and analyzed by packet inspector 125 based on a set of rules 126 .
  • Rules 126 represent a set of predefined system characteristics, network traffic patterns, and/or signatures, etc. If certain content of the outbound network traffic 220 matches at least some of the data in rules 126 , packet inspector 125 may notify monitoring module 105 to send an alert 210 to controller 101 . Alternatively, packet inspector 125 may send the alert 210 to controller 101 directly. Packet inspector 125 and/or rules 126 may also be implemented as part of network stack/firewall 250 . Packet capturer 202 and packet inspector 125 may be integrated as a single unit.
  • Packet capturer 202 and packet inspector 125 may be implemented in any one or more of the layers of a network stack, such as, an application layer, a transport control protocol (TCP) layer, an Internet protocol (IP) layer, and/or a media access control (MAC) layer, etc.
  • TCP transport control protocol
  • IP Internet protocol
  • MAC media access control
  • packet inspector 125 upon detecting outbound malicious network activity (i.e., callback), identifies the computer name or NetBIOS name of the VM in which malicious content suspect 106 is running.
  • NetBIOS network basic input/output system
  • the session layer of the OSI model controls the dialogues (connections) between computers. It establishes, manages, and terminates the connections between the local and remote application. It provides for full-duplex, half-duplex, or simplex operation, and establishes checkpointing, adjournment, termination, and restart procedures.
  • the OSI model made this layer responsible for graceful close of sessions, which is a property of the Transmission Control Protocol, and also for session checkpointing and recovery, which is not usually used in the Internet Protocol Suite.
  • the session layer is commonly implemented explicitly in application environments that use remote procedure calls.
  • the name used for malware detection can be used as a string, which can be encoded, and then used to scan subsequent suspicious content generated by the malicious content suspect 106 .
  • the string can be encoded/compressed using standard reversible algorithms, for example, exclusive OR (XOR), BASE64, or ZLIB compression algorithm, any other commonly used encoding algorithms or methods.
  • XOR exclusive OR
  • BASE64 BASE64
  • ZLIB compression algorithm any other commonly used encoding algorithms or methods.
  • the encoded/compressed string can then be used to perform a search in the outbound network traffic 220 , where a match indicates potential exfiltration of sensitive content from the malicious content suspect 106 . This approach does not require knowledge of any password credentials previously stored on the VM.
  • a switch mechanism can be used by a system user or system administrator to activate/enable or deactivate/disable this feature via at least an appropriate command line action or other user interface action.
  • packet inspector 125 and/or packet capturer 202 can perform real-time traffic analysis and packet logging on IP networks. They can perform protocol analysis, content searching, and content matching. They can also be used to detect probes or attacks, including, but not limited to, operating system fingerprinting attempts, common gateway interface, buffer overflows, server message block probes, and stealth port scans.
  • the packet inspector 125 and/or packet capturer 202 read network packets (e.g., outbound traffic packets), log packets to a storage device, and monitor network traffic and analyze it against rules 126 .
  • the packet capturing and inspection can be performed automatically without user interaction or knowledge.
  • the virtual network interface 206 is configured to simulate a physical network interface, such as a network interface card, a network gateway device of a local area network (LAN), or a remote node such as a Web server, that the malicious content suspect 106 would normally access.
  • the virtual network interface 206 may be a virtual network interface of the same VM or alternatively, the virtual network interface may be represented by another VM hosted by the same host operating system or VMM 101 of FIG. 1 . Since the malicious content suspect 106 is contained or sandboxed within a VM, it cannot actually access an external network (e.g., Internet), the malware detection can be performed without the knowledge of the original author of the malicious content suspect 106 . As a result, the malware author cannot collect the malware detection information or interfere with the malware detection process for the purpose of avoiding being detected in the future.
  • an external network e.g., Internet
  • packet inspector 126 scans captured packets stored in buffer 204 to search for certain patterns or signatures predefined in rules 126 to determine whether the packets include certain identifying information that identifies a machine represented by the VM.
  • the identifying information may include the unique or almost unique environmental properties of the VM, such as, for example, a computer name or NetBIOS name, hardware identifying information (e.g., hardware identifiers such as serial numbers for processor, motherboard, basic input/output system (BIOS), network interface, and/or storage device), application identifying information (e.g., software product IDs), and/or user identifying information (e.g., username or user ID, security ID).
  • hardware identifying information e.g., hardware identifiers such as serial numbers for processor, motherboard, basic input/output system (BIOS), network interface, and/or storage device
  • application identifying information e.g., software product IDs
  • user identifying information e.g., username or user ID, security ID.
  • the packet capturer 202 and packet inspector 125 may be activated or deactivated via a command.
  • an administrator can issue a command, for example, via a command line interface (CLI) or a user interface, to deactivate the packet capturing and packet inspection if the false positive rate is above a predetermined threshold.
  • CLI command line interface
  • a user interface to deactivate the packet capturing and packet inspection if the false positive rate is above a predetermined threshold.
  • the system will profile this “background traffic” when the VM has not yet processed any initial malicious content suspect and “train” the packet inspector 125 through specific exclusion rules within 126, so that this “background traffic” does not yield any subsequent false positive alerts 210 .
  • FIG. 3 is a flow diagram illustrating a method for detecting exfiltration content according to one embodiment of the invention.
  • the method as shown in FIG. 3 may be performed by system 100 of FIG. 1 or the system of FIG. 2 , which may include processing logic in hardware, software, or a combination thereof.
  • processing logic launches and executes malicious content suspect in a virtual machine that is configured to simulate a target operating environment associated with the malicious content suspect.
  • processing logic monitors and captures outbound network traffic that is initiated as a result of executing/rendering/loading from execution of the malicious content suspect to a virtual network interface (e.g., virtual network interface card or a virtual Web server).
  • a virtual network interface e.g., virtual network interface card or a virtual Web server.
  • processing logic dynamically performs a packet inspection on the captured outbound network traffic to determine whether the outbound network traffic satisfies a set of one or more rules (e.g., containing a predetermined environmental property of the VM).
  • the processing logic scans and analyzes the packets to search for certain system identifying information such as machine, hardware, software, and user identifying information that matches a set of predefined patterns or signatures. If a match is found, an alert is generated indicating that the malicious content suspect may be considered or declared as malicious.
  • FIG. 4 is a block diagram illustrating a system configuration for detecting exfiltration content according to another embodiment of the invention.
  • packet capturer 202 and packet inspector 125 are implemented as part of firewall 404 or any of the network layers in a network stack (not shown).
  • Firewall 404 may be part of an operating system of data processing system 402 .
  • firewall 404 may be implemented in a gateway device or router associated with a LAN in which data processing system 402 is a member.
  • a firewall can either be software-based or hardware-based and is used to help keep a network secure. Its primary objective is to control the incoming and outgoing network traffic by analyzing the data packets and determining whether it should be allowed through or not, based on a predetermined rule set.
  • a network's firewall builds a bridge between the internal network or computer it protects, upon securing that the other network is secure and trusted, usually an external (inter)network, such as the Internet, that is not assumed to be secure and trusted.
  • Many personal computer operating systems include software-based firewalls to protect against threats from the public Internet. Many routers that pass data between networks contain firewall components and, conversely, many firewalls can perform basic routing functions.
  • packet capturer 202 and packet inspector 125 are configured to capture and analyze the outbound network traffic 430 initiated from an application such as application(s) 408 .
  • the outbound network traffic may be sent to a remote node such as remote Web server 410 over network 450 .
  • Network 450 may be a LAN, a wide area network (WAN), or a combination thereof.
  • packet inspector 125 dynamically scans packets captured by packet capturer 202 and stored in buffer 204 to search for certain patterns or signatures predefined in rules 126 to determine whether the packets include certain identifying information that identifies the real machine on the internal enterprise network which is running the application 408 that appears to be processing malicious content suspect.
  • the identifying information may include the unique or almost unique environmental properties of the real machine on the internal enterprise network, such as, for example, a computer name or NetBIOS name, hardware identifying information (e.g., hardware identifiers such as serial numbers for processor, motherboard, basic input/output system (BIOS), network interface, and/or storage device), application identifying information (e.g., software product IDs), and/or user identifying information (e.g., username or user ID, security ID).
  • the packet capturer 202 and packet inspector 125 may also be activated/enabled or deactivated/disabled via a command. For example, an administrator can issue a command, for example, via a CLI or a user interface, to deactivate the packet capturing and packet inspection if the false positive rate is too high.
  • packet inspector 125 sends an alert 435 to administrator 420 .
  • packet inspector 125 may further communicate with security system 406 to contain or shut down the suspect application 408 or machine 408 or alternatively, cause firewall 404 to block any further network traffic, inbound and/or outbound traffic, associated with the suspect application 408 or machine 408 .
  • Security system 406 may be part of a network intrusion detection system and/or network intrusion prevention system.
  • FIG. 5 is a block diagram of an illustrative computer network system having a malicious content detection system 850 in accordance with a further illustrative embodiment.
  • the malicious content detection system 850 may represent any of the malicious content detection systems described above, such as, for example, detection system 100 of FIG. 1 .
  • the malicious content detection system 850 is illustrated with a server device 810 and a client device 830 , each coupled for communication via a communication network 820 .
  • FIG. 5 depicts data transmitted from the server device 810 to the client device 830 , either device can transmit and receive data from the other.
  • Network content is utilized as an example of content for malicious content detection purposes; however, other types of content can also be applied.
  • Network content may include any data transmitted over a network (i.e., network data).
  • Network data may include text, software, images, audio, or other digital data.
  • An example of network content includes web content, or any network data that may be transmitted using a Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML) protocol, or be transmitted in a manner suitable for display on a Web browser software application.
  • HTTP Hypertext Transfer Protocol
  • HTTP Hypertext Markup Language
  • Another example of network content includes email messages, which may be transmitted using an email protocol such as Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POP3), or Internet Message Access Protocol (IMAP4).
  • SMTP Simple Mail Transfer Protocol
  • POP3 Post Office Protocol version 3
  • IMAP4 Internet Message Access Protocol
  • a further example of network content includes Instant Messages, which may be transmitted using an Instant Messaging protocol such as Session Initiation Protocol (SIP) or Extensible Messaging and Presence Protocol (XMPP).
  • network content may include any network data that is transferred using other data transfer protocols, such as File Transfer Protocol (FTP).
  • FTP File Transfer Protocol
  • the malicious network content detection system 850 may monitor exchanges of network content (e.g., Web content) in real-time rather than intercepting and holding the network content until such time as it can determine whether the network content includes malicious network content.
  • the malicious network content detection system 850 may be configured to inspect exchanges of network content over the communication network 820 , identify suspicious network content, and analyze the suspicious network content using a virtual machine to detect malicious network content. In this way, the malicious network content detection system 850 may be computationally efficient and scalable as data traffic volume and the number of computing devices communicating over the communication network 820 increase. Therefore, the malicious network content detection system 850 may not become a bottleneck in the computer network system.
  • the communication network 820 may include a public computer network such as the Internet, in which case a firewall 825 may be interposed between the communication network 820 and the client device 830 .
  • the communication network may be a private computer network such as a wireless telecommunication network, wide area network, or local area network, or a combination of networks.
  • the communication network 820 may include any type of network and be used to communicate different types of data, communications of web data may be discussed below for purposes of example.
  • the malicious network content detection system 850 is shown as coupled with the network 820 by a network tap 840 (e.g., a data/packet capturing device).
  • the network tap 840 may include a digital network tap configured to monitor network data and provide a copy of the network data to the malicious network content detection system 850 .
  • Network data may comprise signals and data that are transmitted over the communication network 820 including data flows from the server device 810 to the client device 830 .
  • the network tap 840 monitors and copies the network data without an appreciable decline in performance of the server device 810 , the client device 830 , or the communication network 820 .
  • the network tap 840 may copy any portion of the network data, for example, any number of data packets from the network data.
  • the network tap 840 may include an assembly integrated into the appliance or computer system that includes network ports, network interface card and related logic (not shown) for connecting to the communication network 820 to non-disruptively “tap” traffic thereon and provide a copy of the traffic to the heuristic module 860 .
  • the network tap 840 can be integrated into a firewall, router, switch or other network device (not shown) or can be a standalone component, such as an appropriate commercially available network tap.
  • vTAP virtual tap
  • vTAP can be used to copy traffic from virtual networks.
  • the network tap 840 may also capture metadata from the network data.
  • the metadata may be associated with the server device 810 and/or the client device 830 .
  • the metadata may identify the server device 810 and/or the client device 830 .
  • the server device 810 transmits metadata which is captured by the tap 840 .
  • a heuristic module 860 (described herein) may determine the server device 810 and the client device 830 by analyzing data packets within the network data in order to generate the metadata.
  • the term, “content,” as used herein may be construed to include the intercepted network data and/or the metadata unless the context requires otherwise.
  • the malicious network content detection system 850 may include a heuristic module 860 , a heuristics database 862 , a scheduler 870 , a virtual machine pool 880 , an analysis engine 882 and a reporting module 884 .
  • the network tap 840 may be contained within the malicious network content detection system 850 .
  • the heuristic module 860 receives the copy of the network data from the network tap 840 and applies heuristics to the data to determine if the network data might contain suspicious network content.
  • the heuristics applied by the heuristic module 860 may be based on data and/or rules stored in the heuristics database 862 .
  • the heuristic module 860 may examine the image of the captured content without executing or opening the captured content. For example, the heuristic module 860 may examine the metadata or attributes of the captured content and/or the code image (e.g., a binary image of an executable) to determine whether a certain portion of the captured content matches a predetermined pattern or signature that is associated with a particular type of malicious content.
  • the heuristic module 860 flags network data as suspicious after applying a heuristic analysis. This detection process is also referred to as a static malicious content detection.
  • the suspicious network data may then be provided to the scheduler 870 . In some embodiments, the suspicious network data is provided directly to the scheduler 870 with or without buffering or organizing one or more data flows.
  • a suspicious characteristic of the network content is identified.
  • the identified characteristic may be stored for reference and analysis.
  • the entire packet may be inspected (e.g., using deep packet inspection techniques) and multiple characteristics may be identified before proceeding to the next step.
  • the characteristic may be determined as a result of an analysis across multiple packets comprising the network content. A score related to a probability that the suspicious characteristic identified indicates malicious network content is determined.
  • the heuristic module 860 may also provide a priority level for the packet and/or the features present in the packet.
  • the scheduler 870 may then load and configure a virtual machine from the virtual machine pool 880 in an order related to the priority level, and dispatch the virtual machine to the analysis engine 882 to process the suspicious network content.
  • the heuristic module 860 may provide the packet containing the suspicious network content to the scheduler 870 , along with a list of the features present in the packet and the malicious probability scores associated with each of those features. Alternatively, the heuristic module 860 may provide a pointer to the packet containing the suspicious network content to the scheduler 870 such that the scheduler 870 may access the packet via a memory shared with the heuristic module 860 . In another embodiment, the heuristic module 860 may provide identification information regarding the packet to the scheduler 870 such that the scheduler 870 , or virtual machine may query the heuristic module 860 for data regarding the packet as needed.
  • the scheduler 870 may identify the client device 830 and retrieve a virtual machine associated with the client device 830 .
  • a virtual machine may itself be executable software that is configured to mimic the performance of a device (e.g., the client device 830 ).
  • the virtual machine may be retrieved from the virtual machine pool 880 .
  • the scheduler 870 may identify, for example, a Web browser running on the client device 830 , and retrieve a virtual machine associated with the web browser.
  • the heuristic module 860 transmits the metadata identifying the client device 830 to the scheduler 870 .
  • the scheduler 870 receives one or more data packets of the network data from the heuristic module 860 and analyzes the one or more data packets to identify the client device 830 .
  • the metadata may be received from the network tap 840 .
  • the scheduler 870 may retrieve and configure the virtual machine to mimic the pertinent performance characteristics of the client device 830 .
  • the scheduler 870 configures the characteristics of the virtual machine to mimic only those features of the client device 830 that are affected by the network data copied by the network tap 840 .
  • the scheduler 870 may determine the features of the client device 830 that are affected by the network data by receiving and analyzing the network data from the network tap 840 .
  • Such features of the client device 830 may include ports that are to receive the network data, select device drivers that are to respond to the network data, and any other devices coupled to or contained within the client device 830 that can respond to the network data.
  • the heuristic module 860 may determine the features of the client device 830 that are affected by the network data by receiving and analyzing the network data from the network tap 840 . The heuristic module 860 may then transmit the features of the client device to the scheduler 870 .
  • the virtual machine pool 880 may be configured to store one or more virtual machines.
  • the virtual machine pool 880 may include software and/or a storage medium capable of storing software.
  • the virtual machine pool 880 stores a single virtual machine that can be configured by the scheduler 870 to mimic the performance of any client device 830 on the communication network 820 .
  • the virtual machine pool 880 may store any number of distinct virtual machines that can be configured to simulate the performance of a wide variety of client devices 830 .
  • the analysis engine 882 simulates the receipt and/or display of the network content from the server device 810 after the network content is received by the client device 110 to analyze the effects of the network content upon the client device 830 .
  • the analysis engine 882 may identify the effects of malware or malicious network content by analyzing the simulation of the effects of the network content upon the client device 830 that is carried out on the virtual machine.
  • the analysis engine 882 may be configured to monitor the virtual machine for indications that the suspicious network content is in fact malicious network content. Such indications may include unusual network transmissions, unusual changes in performance, and the like. This detection process is referred to as a dynamic malicious content detection.
  • the analysis engine 882 may flag the suspicious network content as malicious network content according to the observed behavior of the virtual machine.
  • the reporting module 884 may issue alerts indicating the presence of malware, and using pointers and other reference information, identify the packets of the network content containing the malware. Additionally, the server device 810 may be added to a list of malicious network content providers, and future network transmissions originating from the server device 810 may be blocked from reaching their intended destinations, e.g., by firewall 825 .
  • the computer network system may also include a further communication network 890 , which couples the malicious content detection system (MCDS) 850 with one or more other MCDS, of which MCDS 892 and MCDS 894 are shown, and a management system 896 , which may be implemented as a Web server having a Web interface.
  • the communication network 890 may, in some embodiments, be coupled for communication with or part of network 820 .
  • the management system 896 is responsible for managing the MCDS 850 , 892 , 894 and providing updates to their operation systems and software programs.
  • the management system 896 may cause malware signatures generated by any of the MCDS 850 , 892 , 894 to be shared with one or more of the other MCDS 850 , 892 , 894 , for example, on a subscription basis.
  • the malicious content detection system as described in the foregoing embodiments may be incorporated into one or more of the MCDS 850 , 892 , 894 , or into all of them, depending on the deployment.
  • the management system 896 itself or another dedicated computer station may incorporate the malicious content detection system in deployments where such detection is to be conducted at a centralized resource.
  • the detection or analysis performed by the heuristic module 860 may be referred to as static detection or static analysis, which may generate a first score (e.g., a static detection score) according to a first scoring scheme or algorithm.
  • the detection or analysis performed by the analysis engine 882 is referred to as dynamic detection or dynamic analysis, which may generate a second score (e.g., a dynamic detection score) according to a second scoring scheme or algorithm.
  • the first and second scores may be combined, according to a predetermined algorithm, to derive a final score indicating the probability that a malicious content suspect is indeed malicious.
  • detection systems 850 and 892 - 894 may deployed in a variety of distribution ways.
  • detection system 850 may be deployed as a detection appliance at a client site to detect any suspicious content, for example, at a local area network (LAN) of the client.
  • LAN local area network
  • any of MCDS 892 and MCDS 894 may also be deployed as dedicated data analysis systems.
  • Systems 850 and 892 - 894 may be configured and managed by a management system 896 over network 890 , which may be a LAN, a wide area network (WAN) such as the Internet, or a combination of both.
  • WAN wide area network
  • Management system 896 may be implemented as a Web server having a Web interface to allow an administrator of a client (e.g., corporation entity) to log in to manage detection systems 850 and 892 - 894 .
  • an administrator may able to activate or deactivate certain functionalities of malicious content detection systems 850 and 892 - 894 or alternatively, to distribute software updates such as malicious content definition files (e.g., malicious signatures or patterns) or rules, etc.
  • a user can submit via a Web interface suspicious content to be analyzed, for example, by dedicated data analysis systems 892 - 894 .
  • malicious content detection includes static detection and dynamic detection. Such static and dynamic detections can be distributed amongst different systems over a network. For example, static detection may be performed by detection system 850 at a client site, while dynamic detection of the same content can be offloaded to the cloud, for example, by any of detection systems 892 - 894 . Other configurations may exist.
  • FIG. 6 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the invention.
  • the system as shown in FIG. 6 may represents any of data processing systems described above performing any of the processes or methods described above.
  • the system as shown in FIG. 6 may represent a desktop, a tablet, a server, a mobile phone, a media player, a personal digital assistant (PDA), a personal communicator, a gaming device, a network router or hub, a wireless access point (AP) or repeater, a set-top box, or a combination thereof.
  • PDA personal digital assistant
  • AP wireless access point
  • the system includes processor 901 and peripheral interface 902 , also referred to herein as a chipset, to couple various components to processor 901 including memory 903 and devices 905 - 908 via a bus or an interconnect.
  • processor 901 may represent a single processor or multiple processors with a single processor core or multiple processor cores included therein.
  • Processor 901 may represent one or more general-purpose processors such as a microprocessor, a central processing unit (CPU), or the like.
  • processor 901 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets.
  • processor 901 may also be one or more special-purpose processors such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), a network processor, a graphics processor, a network processor, a communications processor, a cryptographic processor, a co-processor, an embedded processor, or any other type of logic capable of processing instructions.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • DSP digital signal processor
  • Processor 901 is configured to execute instructions for performing the operations and steps discussed herein.
  • Peripheral interface 902 may include memory control hub (MCH) and input output control hub (ICH). Peripheral interface 902 may include a memory controller (not shown) that communicates with a memory 903 . Peripheral interface 902 may also include a graphics interface that communicates with graphics subsystem 904 , which may include a display controller and/or a display device. Peripheral interface 902 may communicate with graphics device 904 via an accelerated graphics port (AGP), a peripheral component interconnect (PCI) express bus, or other types of interconnects.
  • AGP accelerated graphics port
  • PCI peripheral component interconnect
  • MCH is sometimes referred to as a Northbridge and an ICH is sometimes referred to as a Southbridge.
  • the terms MCH, ICH, Northbridge and Southbridge are intended to be interpreted broadly to cover various chips who functions include passing interrupt signals toward a processor.
  • the MCH may be integrated with processor 901 .
  • peripheral interface 902 operates as an interface chip performing some functions of the MCH and ICH.
  • a graphics accelerator may be integrated within the MCH or processor 901 .
  • Memory 903 may include one or more volatile storage (or memory) devices such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or other types of storage devices.
  • RAM random access memory
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • SRAM static RAM
  • Memory 903 may store information including sequences of instructions that are executed by processor 901 , or any other device. For example, executable code and/or data of a variety of operating systems, device drivers, firmware (e.g., input output basic system or BIOS), and/or applications can be loaded in memory 903 and executed by processor 901 .
  • BIOS input output basic system
  • An operating system can be any kind of operating systems, such as, for example, Windows® operating system from Microsoft®, Mac OS®/iOS® from Apple, Android® from Google®, Linux®, Unix®, or other real-time or embedded operating systems such as VxWorks.
  • Peripheral interface 902 may provide an interface to IO devices such as devices 905 - 908 , including wireless transceiver(s) 905 , input device(s) 906 , audio IO device(s) 907 , and other IO devices 908 .
  • Wireless transceiver 905 may be a WiFi transceiver, an infrared transceiver, a Bluetooth transceiver, a WiMax transceiver, a wireless cellular telephony transceiver, a satellite transceiver (e.g., a global positioning system (GPS) transceiver) or a combination thereof.
  • GPS global positioning system
  • Input device(s) 906 may include a mouse, a touch pad, a touch sensitive screen (which may be integrated with display device 904 ), a pointer device such as a stylus, and/or a keyboard (e.g., physical keyboard or a virtual keyboard displayed as part of a touch sensitive screen).
  • input device 906 may include a touch screen controller coupled to a touch screen.
  • the touch screen and touch screen controller can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen.
  • Audio IO 907 may include a speaker and/or a microphone to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and/or telephony functions.
  • Other optional devices 908 may include a storage device (e.g., a hard drive, a flash memory device), universal serial bus (USB) port(s), parallel port(s), serial port(s), a printer, a network interface, a bus bridge (e.g., a PCI-PCI bridge), sensor(s) (e.g., a motion sensor, a light sensor, a proximity sensor, etc.), or a combination thereof.
  • Optional devices 908 may further include an imaging processing subsystem (e.g., a camera), which may include an optical sensor, such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips.
  • an imaging processing subsystem e.g., a camera
  • an optical sensor such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips.
  • CCD charged coupled device
  • CMOS complementary metal-oxide semiconductor
  • FIG. 6 illustrates various components of a data processing system, it is not intended to represent any particular architecture or manner of interconnecting the components; as such details are not germane to embodiments of the present invention. It will also be appreciated that network computers, handheld computers, mobile phones, and other data processing systems which have fewer components or perhaps more components may also be used with embodiments of the invention.
  • the techniques shown in the figures can be implemented using code and data stored and executed on one or more electronic devices.
  • Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer-readable media, such as non-transitory computer-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer-readable transmission media (e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals).
  • non-transitory computer-readable storage media e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory
  • transitory computer-readable transmission media e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals.
  • processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), firmware, software (e.g., embodied on a non-transitory computer readable medium), or a combination of both.
  • processing logic comprises hardware (e.g. circuitry, dedicated logic, etc.), firmware, software (e.g., embodied on a non-transitory computer readable medium), or a combination of both.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Computer And Data Communications (AREA)

Abstract

Techniques for detecting exfiltration content are described herein. According to one embodiment, a malicious content suspect is executed and a packet inspection of outbound network traffic is performed by a packet inspector running within the virtual machine. Occurring before the outbound network traffic leaving the virtual machine, the packet inspector determines whether a portion of outbound network traffic matches one or more portions of predetermined network traffic patterns or signatures. If so, a determination is made whether the outbound network traffic includes at least one environmental property of the virtual machine that is unique or almost unique to the virtual machine. If so, migration of the outbound network traffic outside of the virtual machine is precluded and an alert is transmitted. The alert includes the malicious content suspect that is attempting to perform an exfiltration of data.

Description

This is a Continuation application claiming the benefit of priority on U.S. patent application Ser. No. 13/801,573 filed Mar. 13, 2013, now U.S. Pat. No. 9,565,202 issued Feb. 7, 2017, which is incorporated by reference in its entirety.
FIELD OF THE INVENTION
Embodiments of the present invention relate generally to malicious content detection. More particularly, embodiments of the invention relate to detecting exfiltration content.
BACKGROUND
Malicious software, or malware for short, may include any program or file that is harmful by design to a computer. Malware includes computer viruses, worms, Trojan horses, adware, spyware, and any programming that gathers information about a computer or its user or otherwise operates without permission. The owners of the computers are often unaware that these programs have been added to their computers and are often similarly unaware of their function.
Malicious network content is a type of malware distributed over a network via websites, e.g., servers operating on a network according to a hypertext transfer protocol (HTTP) standard or other well-known standard. Malicious network content distributed in this manner may be actively downloaded and installed on a computer, without the approval or knowledge of its user, simply by the computer accessing the web site hosting the malicious network content (the “malicious web site”). Malicious network content may be embedded within objects associated with web pages hosted by the malicious web site. Malicious network content may also enter a computer on receipt or opening of email. For example, email may contain an attachment, such as a PDF document, with embedded malicious executable programs. Furthermore, malicious content may exist in files contained in a computer memory or storage device, having infected those files through any of a variety of attack vectors.
Various processes and devices have been employed to prevent the problems associated with malicious content. For example, computers often run antivirus scanning software that scans a particular computer for viruses and other forms of malware. The scanning typically involves automatic detection of a match between content stored on the computer (or attached media) and a library or database of signatures of known malware. The scanning may be initiated manually or based on a schedule specified by a user or system administrator associated with the particular computer. Unfortunately, by the time malware is detected by the scanning software, some damage on the computer or loss of privacy may have already occurred, and the malware may have propagated from the infected computer to other computers. Additionally, it may take days or weeks for new signatures to be manually created, the scanning signature library updated and received for use by the scanning software, and the new signatures employed in new scans.
Moreover, anti-virus scanning utilities may have limited effectiveness to protect against all exploits by polymorphic malware. Polymorphic malware has the capability to mutate to defeat the signature match process while keeping its original malicious capabilities intact. Signatures generated to identify one form of a polymorphic virus may not match against a mutated form. Thus polymorphic malware is often referred to as a family of virus rather than a single virus, and improved anti-virus techniques to identify such malware families is desirable.
Another type of malware detection solution employs virtual environments to replay content within a sandbox established by virtual machines (VMs). Such solutions monitor the behavior of content during execution to detect anomalies that may signal the presence of malware. One such system offered by FireEye, Inc., the assignee of the present patent application, employs a two-phase malware detection approach to detect malware contained in network traffic monitored in real-time. In a first or “static” phase, a heuristic is applied to network traffic to identify and filter packets that appear suspicious in that they exhibit characteristics associated with malware. In a second or “dynamic” phase, the suspicious packets (and typically only the suspicious packets) are replayed within one or more virtual machines. For example, if a user is trying to download a file over a network, the file is extracted from the network traffic and analyzed in the virtual machine. The results of the analysis aids in determining whether the file is malicious. The two-phase malware detection solution may detect numerous types of malware and, even malware missed by other commercially available approaches. Through verification, the two-phase malware detection solution may also achieve a significant reduction of false positives relative to such other commercially available approaches. Dealing with false positives in malware detection may needlessly slow or interfere with download of network content or receipt of email, for example. This two-phase approach has even proven successful against many types of polymorphic malware and other forms of advanced persistent threats.
Data loss/leak prevention solution is a system that is designed to detect potential data breach/data exfiltration transmissions and prevent them by monitoring, detecting & blocking sensitive data while in-use (endpoint actions), in-motion (network traffic), and at-rest (data storage). In data leakage incidents, sensitive data is disclosed to unauthorized personnel either by malicious intent or inadvertent mistake. Such sensitive data can come in the form of private or company information, intellectual property (IP), financial or patient information, credit-card data, and other information depending on the business and the industry. However, such a system is not capable of detecting a malware that performs data exfiltration before it causes damage.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention are illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.
FIG. 1 is a block diagram illustrating a malicious content detection system according to one embodiment of the invention.
FIG. 2 is a block diagram illustrating a system for detecting exfiltration content according to one embodiment.
FIG. 3 is a flow diagram illustrating a method for detecting exfiltration content according to one embodiment of the invention.
FIG. 4 is a block diagram illustrating a system configuration for detecting exfiltration content according to another embodiment of the invention.
FIG. 5 is a block diagram of a computer network system deploying a malicious content detection system according to one embodiment of the invention.
FIG. 6 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the invention.
DETAILED DESCRIPTION
Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment.
Techniques for detecting exfiltration content are described herein. According to some embodiments, a malicious content suspect is executed within a virtual machine (or other designated operating environments such as a sandboxed environment) that simulates or mimics a target operating environment that will likely cause the malicious content suspect to generate malicious indicators and activity. A malicious content suspect refers to any suspicious content that is likely malicious. A packet inspector is configured to monitor and inspect the outbound network traffic originated from an application used to render/display/run the malicious content suspect (if applicable) within the VM to determine whether the malicious content suspect is designed to perform content exfiltration or generic data theft. If so, the malicious content suspect may be declared as malicious.
The packet inspection may be performed by capturing the outbound network traffic upon detecting the malicious content suspect's callback (e.g., upon content render/load/execution, the operating system of the victim is compromised and the content instructs the operating system to transmit packets back the content/malware author, so that a clandestine channel is established, which allows the content/malware author to effectively take ownership of the victim system remotely for further nefarious purposes). The packet inspector searches and compares the content of the packets against predetermined network traffic patterns or signatures. In one embodiment, the packet inspector is configured to search the outbound network traffic emitted by the VM to a fake network that is isolated from connectivity to real assets external to the VM, in order to determine whether the outbound network traffic contains any machine or operating environment identifying information that identifies certain unique or almost unique characteristics of the virtual machine (e.g., a machine or computer identifier (ID), or user ID). If the outbound network traffic includes content that matches the predetermined network traffic patterns or signatures, an alert may be generated indicating that the malicious content suspect should be declared as malicious. Since the malicious content suspect is executed within an effectively isolated VM, the actual exfiltration content would not actually be transmitted to an external network. As a result, the malicious content suspect can be determined whether it is likely malicious without running a risk of causing damage to real enterprise assets or signaling to the malware author that such analysis was performed.
FIG. 1 is a block diagram illustrating a malicious content detection system according to one embodiment of the invention. Referring to FIG. 1, system 100 includes controller 101 to manage or control one or more virtual machines (VMs) 102 (also referred to as a sandboxed operating environment or simply a sandbox), where content associated with VMs 102 are stored in storage device 109 in a form of VM disk files 110.
Controller 101 may be implemented as part of a VM monitor or manager (VMM), also referred to as a hypervisor for managing or monitoring VMs, which may be hosted by a host operating system (OS). VM 102 may be hosted by a guest OS. The host OS and the guest OS may be the same type of operating systems or different types of operating systems (e.g., Windows™, Linux™, Unix™, Mac OS™, iOS™, etc.) or different versions thereof. A VM is a simulation of a machine (abstract or real) that is usually different from the target machine (where it is being simulated on). Virtual machines may be based on specifications of a hypothetical computer or emulate the computer architecture and functions of a real world computer. A virtual machine referred to herein can be any type of virtual machines, such as, for example, hardware emulation, full virtualization, para-virtualization, and operating system-level virtualization virtual machines.
According to one embodiment, when malicious content suspect 106 is received for a dynamic content analysis (as opposed to be a static content analysis described below), a scheduler 140 of controller 101 is configured to identify and select a VM, in this example VM 102, from a VM pool 145 that has been configured to closely simulate a target operating environment (e.g., particular version of an OS with particular versions of certain software installed therein) in which malicious content suspect 106 is to be analyzed. A malicious content suspect refers to any suspicious content that is likely malicious. The scheduler 140 then launches VM 102 in which monitoring module 105 is running within VM 102 and configured to monitor activities and behavior of malicious content suspect 106.
In addition, monitoring module 105 maintains a persistent communication channel with analysis module 103 of controller 101 to communicate certain events or activities of malicious content suspect 106 during the execution. In response to detecting certain predetermined events triggered by malicious content suspect 106, monitoring module 105 is configured to send a message via the communication channel to analysis module 103, where the message may be recorded as part of event log 108. The message may include information identifying an event triggered by malicious content suspect 106. Event log 108 records events that have been selectively monitored and detected by monitoring module 103, such as, for example, certain network activity events. Content of the event log 108 may be stored in a persistent storage as part of event log file(s) 112 of VM disk file 110 associated with VM 102. The recorded events may be analyzed by analysis module 103 based on a set of rules or policies (not shown) to determine whether malicious content suspect 106 is likely malicious (e.g., high probability of malicious) and/or should be declared as malicious.
In one embodiment, in response to some predetermined events (e.g., file creation, registry access, DLL loading, process execution, power management such as sleep) triggered by malicious content suspect 106, monitoring module 105 sends a message describing the event(s) via a communication channel to controller 101, which may be recorded as part of event log 108. Event log 108 may be further cached in a persistent storage as part of event log file(s) 112.
According to one embodiment, a packet inspector 125 is configured to monitor and inspect the outbound network traffic originated from the malicious content suspect 106 within the VM 102 to determine whether the malicious content suspect 106 performs specific content exfiltration or generic data theft. The packet inspection may be performed by capturing the outbound network traffic upon detecting the malicious content suspect's callback (e.g., transmitting packets back the original content/malware author to signal that the OS has been compromised and ready to be remotely controlled). The packet inspector 125 searches and compares the content of the packets against predetermined network traffic patterns or signatures as part of rules 126. In one embodiment, the packet inspector 125 is configured to search the outbound network traffic to determine whether the outbound network traffic contains any machine or operating environment identifying information that identifies certain unique or almost unique characteristics of the virtual machine 102 (e.g., a computer or machine identifier, or user identifier). If the outbound network traffic includes content that matches the predetermined network traffic patterns or signatures 126, an alert may be generated indicating that the malicious content suspect 106 may be declared as malicious.
FIG. 2 is a block diagram illustrating a system for detecting exfiltration content according to one embodiment. The system as shown in FIG. 2 may be implemented as part of malicious content detection system 100 of FIG. 1. Referring to FIG. 2, in this example, a packet capturer 202 is configured to monitor at least the outbound network traffic 220 initiated by malicious content suspect 106. Packet capturer 202 may be implemented as part of a network stack (e.g., TCP/IP stack) and/or within a firewall 250 of a guest operating system that hosts a VM in which malicious content suspect 106 is executed. The captured packets may be temporarily stored in buffer 204 and analyzed by packet inspector 125 based on a set of rules 126. Rules 126 represent a set of predefined system characteristics, network traffic patterns, and/or signatures, etc. If certain content of the outbound network traffic 220 matches at least some of the data in rules 126, packet inspector 125 may notify monitoring module 105 to send an alert 210 to controller 101. Alternatively, packet inspector 125 may send the alert 210 to controller 101 directly. Packet inspector 125 and/or rules 126 may also be implemented as part of network stack/firewall 250. Packet capturer 202 and packet inspector 125 may be integrated as a single unit. Packet capturer 202 and packet inspector 125 may be implemented in any one or more of the layers of a network stack, such as, an application layer, a transport control protocol (TCP) layer, an Internet protocol (IP) layer, and/or a media access control (MAC) layer, etc.
In one embodiment, upon detecting outbound malicious network activity (i.e., callback), packet inspector 125 identifies the computer name or NetBIOS name of the VM in which malicious content suspect 106 is running. NetBIOS (network basic input/output system) services related to the session layer of the Open Systems Interconnection (OSI) model allowing applications on separate computers to communicate over a local area network. The session layer of the OSI model controls the dialogues (connections) between computers. It establishes, manages, and terminates the connections between the local and remote application. It provides for full-duplex, half-duplex, or simplex operation, and establishes checkpointing, adjournment, termination, and restart procedures. The OSI model made this layer responsible for graceful close of sessions, which is a property of the Transmission Control Protocol, and also for session checkpointing and recovery, which is not usually used in the Internet Protocol Suite. The session layer is commonly implemented explicitly in application environments that use remote procedure calls.
The name used for malware detection can be used as a string, which can be encoded, and then used to scan subsequent suspicious content generated by the malicious content suspect 106. More specifically, the string can be encoded/compressed using standard reversible algorithms, for example, exclusive OR (XOR), BASE64, or ZLIB compression algorithm, any other commonly used encoding algorithms or methods. The encoded/compressed string can then be used to perform a search in the outbound network traffic 220, where a match indicates potential exfiltration of sensitive content from the malicious content suspect 106. This approach does not require knowledge of any password credentials previously stored on the VM.
However, this technique assumes computer names or NetBIOS names that are unique enough such that the encoded/compressed forms of this data do not match on generic network traffic, which may lead to false positives. In one embodiment, a switch mechanism can be used by a system user or system administrator to activate/enable or deactivate/disable this feature via at least an appropriate command line action or other user interface action.
According to one embodiment, packet inspector 125 and/or packet capturer 202 can perform real-time traffic analysis and packet logging on IP networks. They can perform protocol analysis, content searching, and content matching. They can also be used to detect probes or attacks, including, but not limited to, operating system fingerprinting attempts, common gateway interface, buffer overflows, server message block probes, and stealth port scans. The packet inspector 125 and/or packet capturer 202 read network packets (e.g., outbound traffic packets), log packets to a storage device, and monitor network traffic and analyze it against rules 126. The packet capturing and inspection can be performed automatically without user interaction or knowledge.
In this example, the virtual network interface 206 is configured to simulate a physical network interface, such as a network interface card, a network gateway device of a local area network (LAN), or a remote node such as a Web server, that the malicious content suspect 106 would normally access. The virtual network interface 206 may be a virtual network interface of the same VM or alternatively, the virtual network interface may be represented by another VM hosted by the same host operating system or VMM 101 of FIG. 1. Since the malicious content suspect 106 is contained or sandboxed within a VM, it cannot actually access an external network (e.g., Internet), the malware detection can be performed without the knowledge of the original author of the malicious content suspect 106. As a result, the malware author cannot collect the malware detection information or interfere with the malware detection process for the purpose of avoiding being detected in the future.
According to one embodiment, packet inspector 126 scans captured packets stored in buffer 204 to search for certain patterns or signatures predefined in rules 126 to determine whether the packets include certain identifying information that identifies a machine represented by the VM. The identifying information may include the unique or almost unique environmental properties of the VM, such as, for example, a computer name or NetBIOS name, hardware identifying information (e.g., hardware identifiers such as serial numbers for processor, motherboard, basic input/output system (BIOS), network interface, and/or storage device), application identifying information (e.g., software product IDs), and/or user identifying information (e.g., username or user ID, security ID). Note that the packet capturer 202 and packet inspector 125 may be activated or deactivated via a command. For example, an administrator can issue a command, for example, via a command line interface (CLI) or a user interface, to deactivate the packet capturing and packet inspection if the false positive rate is above a predetermined threshold.
In cases where legitimate, pre-installed applications within the VM emit similar unique or almost unique environmental information out on the network, the system will profile this “background traffic” when the VM has not yet processed any initial malicious content suspect and “train” the packet inspector 125 through specific exclusion rules within 126, so that this “background traffic” does not yield any subsequent false positive alerts 210.
FIG. 3 is a flow diagram illustrating a method for detecting exfiltration content according to one embodiment of the invention. The method as shown in FIG. 3 may be performed by system 100 of FIG. 1 or the system of FIG. 2, which may include processing logic in hardware, software, or a combination thereof. Referring to FIG. 3, at block 302, processing logic launches and executes malicious content suspect in a virtual machine that is configured to simulate a target operating environment associated with the malicious content suspect. At block 304, processing logic monitors and captures outbound network traffic that is initiated as a result of executing/rendering/loading from execution of the malicious content suspect to a virtual network interface (e.g., virtual network interface card or a virtual Web server). At block 306, processing logic dynamically performs a packet inspection on the captured outbound network traffic to determine whether the outbound network traffic satisfies a set of one or more rules (e.g., containing a predetermined environmental property of the VM). In one embodiment, the processing logic scans and analyzes the packets to search for certain system identifying information such as machine, hardware, software, and user identifying information that matches a set of predefined patterns or signatures. If a match is found, an alert is generated indicating that the malicious content suspect may be considered or declared as malicious.
According to some embodiments, the techniques described above can also be applied in real time within an actual production machine instead of a simulated operating environment such as a virtual machine. FIG. 4 is a block diagram illustrating a system configuration for detecting exfiltration content according to another embodiment of the invention. Referring to FIG. 4, in this example, packet capturer 202 and packet inspector 125 are implemented as part of firewall 404 or any of the network layers in a network stack (not shown). Firewall 404 may be part of an operating system of data processing system 402. Alternatively, firewall 404 may be implemented in a gateway device or router associated with a LAN in which data processing system 402 is a member.
A firewall can either be software-based or hardware-based and is used to help keep a network secure. Its primary objective is to control the incoming and outgoing network traffic by analyzing the data packets and determining whether it should be allowed through or not, based on a predetermined rule set. A network's firewall builds a bridge between the internal network or computer it protects, upon securing that the other network is secure and trusted, usually an external (inter)network, such as the Internet, that is not assumed to be secure and trusted. Many personal computer operating systems include software-based firewalls to protect against threats from the public Internet. Many routers that pass data between networks contain firewall components and, conversely, many firewalls can perform basic routing functions.
In one embodiment, packet capturer 202 and packet inspector 125 are configured to capture and analyze the outbound network traffic 430 initiated from an application such as application(s) 408. The outbound network traffic may be sent to a remote node such as remote Web server 410 over network 450. Network 450 may be a LAN, a wide area network (WAN), or a combination thereof.
According to one embodiment, packet inspector 125 dynamically scans packets captured by packet capturer 202 and stored in buffer 204 to search for certain patterns or signatures predefined in rules 126 to determine whether the packets include certain identifying information that identifies the real machine on the internal enterprise network which is running the application 408 that appears to be processing malicious content suspect. The identifying information may include the unique or almost unique environmental properties of the real machine on the internal enterprise network, such as, for example, a computer name or NetBIOS name, hardware identifying information (e.g., hardware identifiers such as serial numbers for processor, motherboard, basic input/output system (BIOS), network interface, and/or storage device), application identifying information (e.g., software product IDs), and/or user identifying information (e.g., username or user ID, security ID). Note that the packet capturer 202 and packet inspector 125 may also be activated/enabled or deactivated/disabled via a command. For example, an administrator can issue a command, for example, via a CLI or a user interface, to deactivate the packet capturing and packet inspection if the false positive rate is too high.
If certain content of the outbound network traffic 430 matches at least some of the data in rules 126, according to one embodiment, packet inspector 125 sends an alert 435 to administrator 420. In addition, since the outbound traffic may reach the intended destination 410, packet inspector 125 may further communicate with security system 406 to contain or shut down the suspect application 408 or machine 408 or alternatively, cause firewall 404 to block any further network traffic, inbound and/or outbound traffic, associated with the suspect application 408 or machine 408. Security system 406 may be part of a network intrusion detection system and/or network intrusion prevention system.
FIG. 5 is a block diagram of an illustrative computer network system having a malicious content detection system 850 in accordance with a further illustrative embodiment. The malicious content detection system 850 may represent any of the malicious content detection systems described above, such as, for example, detection system 100 of FIG. 1. The malicious content detection system 850 is illustrated with a server device 810 and a client device 830, each coupled for communication via a communication network 820. In various embodiments, there may be multiple server devices and multiple client devices sending and receiving data to/from each other, and the same device can serve as either a server or a client in separate communication sessions. Although FIG. 5 depicts data transmitted from the server device 810 to the client device 830, either device can transmit and receive data from the other.
Note that throughout this application, network content is utilized as an example of content for malicious content detection purposes; however, other types of content can also be applied. Network content may include any data transmitted over a network (i.e., network data). Network data may include text, software, images, audio, or other digital data. An example of network content includes web content, or any network data that may be transmitted using a Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML) protocol, or be transmitted in a manner suitable for display on a Web browser software application. Another example of network content includes email messages, which may be transmitted using an email protocol such as Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POP3), or Internet Message Access Protocol (IMAP4). A further example of network content includes Instant Messages, which may be transmitted using an Instant Messaging protocol such as Session Initiation Protocol (SIP) or Extensible Messaging and Presence Protocol (XMPP). In addition, network content may include any network data that is transferred using other data transfer protocols, such as File Transfer Protocol (FTP).
The malicious network content detection system 850 may monitor exchanges of network content (e.g., Web content) in real-time rather than intercepting and holding the network content until such time as it can determine whether the network content includes malicious network content. The malicious network content detection system 850 may be configured to inspect exchanges of network content over the communication network 820, identify suspicious network content, and analyze the suspicious network content using a virtual machine to detect malicious network content. In this way, the malicious network content detection system 850 may be computationally efficient and scalable as data traffic volume and the number of computing devices communicating over the communication network 820 increase. Therefore, the malicious network content detection system 850 may not become a bottleneck in the computer network system.
The communication network 820 may include a public computer network such as the Internet, in which case a firewall 825 may be interposed between the communication network 820 and the client device 830. Alternatively, the communication network may be a private computer network such as a wireless telecommunication network, wide area network, or local area network, or a combination of networks. Though the communication network 820 may include any type of network and be used to communicate different types of data, communications of web data may be discussed below for purposes of example.
The malicious network content detection system 850 is shown as coupled with the network 820 by a network tap 840 (e.g., a data/packet capturing device). The network tap 840 may include a digital network tap configured to monitor network data and provide a copy of the network data to the malicious network content detection system 850. Network data may comprise signals and data that are transmitted over the communication network 820 including data flows from the server device 810 to the client device 830. In one example, the network tap 840 monitors and copies the network data without an appreciable decline in performance of the server device 810, the client device 830, or the communication network 820. The network tap 840 may copy any portion of the network data, for example, any number of data packets from the network data. In embodiments where the malicious content detection system 850 is implemented as an dedicated appliance or a dedicated computer system, the network tap 840 may include an assembly integrated into the appliance or computer system that includes network ports, network interface card and related logic (not shown) for connecting to the communication network 820 to non-disruptively “tap” traffic thereon and provide a copy of the traffic to the heuristic module 860. In other embodiments, the network tap 840 can be integrated into a firewall, router, switch or other network device (not shown) or can be a standalone component, such as an appropriate commercially available network tap. In virtual environments, a virtual tap (vTAP) can be used to copy traffic from virtual networks.
The network tap 840 may also capture metadata from the network data. The metadata may be associated with the server device 810 and/or the client device 830. For example, the metadata may identify the server device 810 and/or the client device 830. In some embodiments, the server device 810 transmits metadata which is captured by the tap 840. In other embodiments, a heuristic module 860 (described herein) may determine the server device 810 and the client device 830 by analyzing data packets within the network data in order to generate the metadata. The term, “content,” as used herein may be construed to include the intercepted network data and/or the metadata unless the context requires otherwise.
The malicious network content detection system 850 may include a heuristic module 860, a heuristics database 862, a scheduler 870, a virtual machine pool 880, an analysis engine 882 and a reporting module 884. In some embodiments, the network tap 840 may be contained within the malicious network content detection system 850.
The heuristic module 860 receives the copy of the network data from the network tap 840 and applies heuristics to the data to determine if the network data might contain suspicious network content. The heuristics applied by the heuristic module 860 may be based on data and/or rules stored in the heuristics database 862. The heuristic module 860 may examine the image of the captured content without executing or opening the captured content. For example, the heuristic module 860 may examine the metadata or attributes of the captured content and/or the code image (e.g., a binary image of an executable) to determine whether a certain portion of the captured content matches a predetermined pattern or signature that is associated with a particular type of malicious content. In one example, the heuristic module 860 flags network data as suspicious after applying a heuristic analysis. This detection process is also referred to as a static malicious content detection. The suspicious network data may then be provided to the scheduler 870. In some embodiments, the suspicious network data is provided directly to the scheduler 870 with or without buffering or organizing one or more data flows.
When a characteristic of the packet, such as a sequence of characters or keyword, is identified that meets the conditions of a heuristic, a suspicious characteristic of the network content is identified. The identified characteristic may be stored for reference and analysis. In some embodiments, the entire packet may be inspected (e.g., using deep packet inspection techniques) and multiple characteristics may be identified before proceeding to the next step. In some embodiments, the characteristic may be determined as a result of an analysis across multiple packets comprising the network content. A score related to a probability that the suspicious characteristic identified indicates malicious network content is determined.
The heuristic module 860 may also provide a priority level for the packet and/or the features present in the packet. The scheduler 870 may then load and configure a virtual machine from the virtual machine pool 880 in an order related to the priority level, and dispatch the virtual machine to the analysis engine 882 to process the suspicious network content.
The heuristic module 860 may provide the packet containing the suspicious network content to the scheduler 870, along with a list of the features present in the packet and the malicious probability scores associated with each of those features. Alternatively, the heuristic module 860 may provide a pointer to the packet containing the suspicious network content to the scheduler 870 such that the scheduler 870 may access the packet via a memory shared with the heuristic module 860. In another embodiment, the heuristic module 860 may provide identification information regarding the packet to the scheduler 870 such that the scheduler 870, or virtual machine may query the heuristic module 860 for data regarding the packet as needed.
The scheduler 870 may identify the client device 830 and retrieve a virtual machine associated with the client device 830. A virtual machine may itself be executable software that is configured to mimic the performance of a device (e.g., the client device 830). The virtual machine may be retrieved from the virtual machine pool 880. Furthermore, the scheduler 870 may identify, for example, a Web browser running on the client device 830, and retrieve a virtual machine associated with the web browser.
In some embodiments, the heuristic module 860 transmits the metadata identifying the client device 830 to the scheduler 870. In other embodiments, the scheduler 870 receives one or more data packets of the network data from the heuristic module 860 and analyzes the one or more data packets to identify the client device 830. In yet other embodiments, the metadata may be received from the network tap 840.
The scheduler 870 may retrieve and configure the virtual machine to mimic the pertinent performance characteristics of the client device 830. In one example, the scheduler 870 configures the characteristics of the virtual machine to mimic only those features of the client device 830 that are affected by the network data copied by the network tap 840. The scheduler 870 may determine the features of the client device 830 that are affected by the network data by receiving and analyzing the network data from the network tap 840. Such features of the client device 830 may include ports that are to receive the network data, select device drivers that are to respond to the network data, and any other devices coupled to or contained within the client device 830 that can respond to the network data. In other embodiments, the heuristic module 860 may determine the features of the client device 830 that are affected by the network data by receiving and analyzing the network data from the network tap 840. The heuristic module 860 may then transmit the features of the client device to the scheduler 870.
The virtual machine pool 880 may be configured to store one or more virtual machines. The virtual machine pool 880 may include software and/or a storage medium capable of storing software. In one example, the virtual machine pool 880 stores a single virtual machine that can be configured by the scheduler 870 to mimic the performance of any client device 830 on the communication network 820. The virtual machine pool 880 may store any number of distinct virtual machines that can be configured to simulate the performance of a wide variety of client devices 830.
The analysis engine 882 simulates the receipt and/or display of the network content from the server device 810 after the network content is received by the client device 110 to analyze the effects of the network content upon the client device 830. The analysis engine 882 may identify the effects of malware or malicious network content by analyzing the simulation of the effects of the network content upon the client device 830 that is carried out on the virtual machine. There may be multiple analysis engines 882 to simulate multiple streams of network content. The analysis engine 882 may be configured to monitor the virtual machine for indications that the suspicious network content is in fact malicious network content. Such indications may include unusual network transmissions, unusual changes in performance, and the like. This detection process is referred to as a dynamic malicious content detection.
The analysis engine 882 may flag the suspicious network content as malicious network content according to the observed behavior of the virtual machine. The reporting module 884 may issue alerts indicating the presence of malware, and using pointers and other reference information, identify the packets of the network content containing the malware. Additionally, the server device 810 may be added to a list of malicious network content providers, and future network transmissions originating from the server device 810 may be blocked from reaching their intended destinations, e.g., by firewall 825.
The computer network system may also include a further communication network 890, which couples the malicious content detection system (MCDS) 850 with one or more other MCDS, of which MCDS 892 and MCDS 894 are shown, and a management system 896, which may be implemented as a Web server having a Web interface. The communication network 890 may, in some embodiments, be coupled for communication with or part of network 820. The management system 896 is responsible for managing the MCDS 850, 892, 894 and providing updates to their operation systems and software programs. Also, the management system 896 may cause malware signatures generated by any of the MCDS 850, 892, 894 to be shared with one or more of the other MCDS 850, 892, 894, for example, on a subscription basis. Moreover, the malicious content detection system as described in the foregoing embodiments may be incorporated into one or more of the MCDS 850, 892, 894, or into all of them, depending on the deployment. Also, the management system 896 itself or another dedicated computer station may incorporate the malicious content detection system in deployments where such detection is to be conducted at a centralized resource.
Further information regarding an embodiment of a malicious content detection system can be had with reference to U.S. Pat. No. 8,171,553, the disclosure of which being incorporated herein by reference in its entirety.
As described above, the detection or analysis performed by the heuristic module 860 may be referred to as static detection or static analysis, which may generate a first score (e.g., a static detection score) according to a first scoring scheme or algorithm. The detection or analysis performed by the analysis engine 882 is referred to as dynamic detection or dynamic analysis, which may generate a second score (e.g., a dynamic detection score) according to a second scoring scheme or algorithm. The first and second scores may be combined, according to a predetermined algorithm, to derive a final score indicating the probability that a malicious content suspect is indeed malicious.
Furthermore, detection systems 850 and 892-894 may deployed in a variety of distribution ways. For example, detection system 850 may be deployed as a detection appliance at a client site to detect any suspicious content, for example, at a local area network (LAN) of the client. In addition, any of MCDS 892 and MCDS 894 may also be deployed as dedicated data analysis systems. Systems 850 and 892-894 may be configured and managed by a management system 896 over network 890, which may be a LAN, a wide area network (WAN) such as the Internet, or a combination of both. Management system 896 may be implemented as a Web server having a Web interface to allow an administrator of a client (e.g., corporation entity) to log in to manage detection systems 850 and 892-894. For example, an administrator may able to activate or deactivate certain functionalities of malicious content detection systems 850 and 892-894 or alternatively, to distribute software updates such as malicious content definition files (e.g., malicious signatures or patterns) or rules, etc. Furthermore, a user can submit via a Web interface suspicious content to be analyzed, for example, by dedicated data analysis systems 892-894. As described above, malicious content detection includes static detection and dynamic detection. Such static and dynamic detections can be distributed amongst different systems over a network. For example, static detection may be performed by detection system 850 at a client site, while dynamic detection of the same content can be offloaded to the cloud, for example, by any of detection systems 892-894. Other configurations may exist.
FIG. 6 is a block diagram illustrating an example of a data processing system which may be used with one embodiment of the invention. For example, the system as shown in FIG. 6 may represents any of data processing systems described above performing any of the processes or methods described above. the system as shown in FIG. 6 may represent a desktop, a tablet, a server, a mobile phone, a media player, a personal digital assistant (PDA), a personal communicator, a gaming device, a network router or hub, a wireless access point (AP) or repeater, a set-top box, or a combination thereof.
Referring to FIG. 6, in one embodiment, the system includes processor 901 and peripheral interface 902, also referred to herein as a chipset, to couple various components to processor 901 including memory 903 and devices 905-908 via a bus or an interconnect. Processor 901 may represent a single processor or multiple processors with a single processor core or multiple processor cores included therein. Processor 901 may represent one or more general-purpose processors such as a microprocessor, a central processing unit (CPU), or the like. More particularly, processor 901 may be a complex instruction set computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long instruction word (VLIW) microprocessor, or processor implementing other instruction sets, or processors implementing a combination of instruction sets. Processor 901 may also be one or more special-purpose processors such as an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), a digital signal processor (DSP), a network processor, a graphics processor, a network processor, a communications processor, a cryptographic processor, a co-processor, an embedded processor, or any other type of logic capable of processing instructions. Processor 901 is configured to execute instructions for performing the operations and steps discussed herein.
Peripheral interface 902 may include memory control hub (MCH) and input output control hub (ICH). Peripheral interface 902 may include a memory controller (not shown) that communicates with a memory 903. Peripheral interface 902 may also include a graphics interface that communicates with graphics subsystem 904, which may include a display controller and/or a display device. Peripheral interface 902 may communicate with graphics device 904 via an accelerated graphics port (AGP), a peripheral component interconnect (PCI) express bus, or other types of interconnects.
An MCH is sometimes referred to as a Northbridge and an ICH is sometimes referred to as a Southbridge. As used herein, the terms MCH, ICH, Northbridge and Southbridge are intended to be interpreted broadly to cover various chips who functions include passing interrupt signals toward a processor. In some embodiments, the MCH may be integrated with processor 901. In such a configuration, peripheral interface 902 operates as an interface chip performing some functions of the MCH and ICH. Furthermore, a graphics accelerator may be integrated within the MCH or processor 901.
Memory 903 may include one or more volatile storage (or memory) devices such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or other types of storage devices. Memory 903 may store information including sequences of instructions that are executed by processor 901, or any other device. For example, executable code and/or data of a variety of operating systems, device drivers, firmware (e.g., input output basic system or BIOS), and/or applications can be loaded in memory 903 and executed by processor 901. An operating system can be any kind of operating systems, such as, for example, Windows® operating system from Microsoft®, Mac OS®/iOS® from Apple, Android® from Google®, Linux®, Unix®, or other real-time or embedded operating systems such as VxWorks.
Peripheral interface 902 may provide an interface to IO devices such as devices 905-908, including wireless transceiver(s) 905, input device(s) 906, audio IO device(s) 907, and other IO devices 908. Wireless transceiver 905 may be a WiFi transceiver, an infrared transceiver, a Bluetooth transceiver, a WiMax transceiver, a wireless cellular telephony transceiver, a satellite transceiver (e.g., a global positioning system (GPS) transceiver) or a combination thereof. Input device(s) 906 may include a mouse, a touch pad, a touch sensitive screen (which may be integrated with display device 904), a pointer device such as a stylus, and/or a keyboard (e.g., physical keyboard or a virtual keyboard displayed as part of a touch sensitive screen). For example, input device 906 may include a touch screen controller coupled to a touch screen. The touch screen and touch screen controller can, for example, detect contact and movement or break thereof using any of a plurality of touch sensitivity technologies, including but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well as other proximity sensor arrays or other elements for determining one or more points of contact with the touch screen.
Audio IO 907 may include a speaker and/or a microphone to facilitate voice-enabled functions, such as voice recognition, voice replication, digital recording, and/or telephony functions. Other optional devices 908 may include a storage device (e.g., a hard drive, a flash memory device), universal serial bus (USB) port(s), parallel port(s), serial port(s), a printer, a network interface, a bus bridge (e.g., a PCI-PCI bridge), sensor(s) (e.g., a motion sensor, a light sensor, a proximity sensor, etc.), or a combination thereof. Optional devices 908 may further include an imaging processing subsystem (e.g., a camera), which may include an optical sensor, such as a charged coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, utilized to facilitate camera functions, such as recording photographs and video clips.
Note that while FIG. 6 illustrates various components of a data processing system, it is not intended to represent any particular architecture or manner of interconnecting the components; as such details are not germane to embodiments of the present invention. It will also be appreciated that network computers, handheld computers, mobile phones, and other data processing systems which have fewer components or perhaps more components may also be used with embodiments of the invention.
Some portions of the preceding detailed descriptions have been presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of operations leading to a desired result. The operations are those requiring physical manipulations of physical quantities.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions utilizing terms such as those set forth in the claims below, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The techniques shown in the figures can be implemented using code and data stored and executed on one or more electronic devices. Such electronic devices store and communicate (internally and/or with other electronic devices over a network) code and data using computer-readable media, such as non-transitory computer-readable storage media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash memory devices; phase-change memory) and transitory computer-readable transmission media (e.g., electrical, optical, acoustical or other form of propagated signals—such as carrier waves, infrared signals, digital signals).
The processes or methods depicted in the preceding figures may be performed by processing logic that comprises hardware (e.g. circuitry, dedicated logic, etc.), firmware, software (e.g., embodied on a non-transitory computer readable medium), or a combination of both. Although the processes or methods are described above in terms of some sequential operations, it should be appreciated that some of the operations described may be performed in a different order. Moreover, some operations may be performed in parallel rather than sequentially.
In the foregoing specification, embodiments of the invention have been described with reference to specific exemplary embodiments thereof. It will be evident that various modifications may be made thereto without departing from the broader spirit and scope of the invention as set forth in the following claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense.

Claims (24)

What is claimed is:
1. A computer-implemented method for detecting exfiltration of data, comprising:
executing a malicious content suspect within a virtual machine;
performing a packet inspection on outbound network traffic by a packet inspector running within the virtual machine prior to the outbound network traffic leaving the virtual machine, the packet inspection to determine whether a portion of outbound network traffic matches one or more portions of predetermined network traffic patterns or signatures;
determining whether the outbound network traffic includes at least one environmental property of the virtual machine that is unique to or distinctive of the virtual machine after determining the portion of the outbound network traffic matches the one or more portions of predetermined network traffic patterns or signatures, the at least one environmental property is unique to or distinctive of the virtual machine in that the at least one environmental property pertains to the virtual machine so as to allow the match to indicate that the malicious content suspect is attempting to perform an exfiltration of data;
precluding migration of the outbound network traffic outside of the virtual machine upon determining that the outbound network traffic includes the at least one environmental property of the virtual machine that is unique to or distinctive of the virtual machine; and
transmitting an alert indicating that the malicious content suspect is attempting to perform the exfiltration of data upon determining that the outbound network traffic includes the at least one environmental property of the virtual machine.
2. The method of claim 1, wherein the determining whether the outbound network traffic includes the at least one environmental property of the virtual machine comprises matching the at least one environmental property to any of a set of patterns associated with the virtual machine selected to process the malicious content suspect.
3. The method of claim 1, wherein the at least one environmental property of the virtual machine comprises an identifier of an electronic device represented by the virtual machine.
4. The method of claim 1, wherein the at least one environmental property of the virtual machine comprises information that distinguishes hardware included in an electronic device represented by the virtual machine from other hardware.
5. The method of claim 1, wherein the alert being transmitted over a network.
6. The method of claim 1, wherein the malicious content suspect is extracted from the outbound network traffic by a packet capturer of a guest operating system that hosts the virtual machine.
7. The method of claim 6, wherein the packet capturer being implemented as part of a firewall of the guest operating system.
8. The method of claim 1, wherein a destination of the outbound network traffic is represented by a virtual network interface presented by the virtual machine, without allowing the outbound network traffic to reach an actual destination outside of a data processing system that hosts the virtual machine.
9. The method of claim 1, wherein the at least one environmental property includes at least one of (i) a computer name or NetBIOS name, (ii) a serial number of a hardware component, (iii) an identifier of a software application, or (iv) information identifying a user of an electronic device represented by the virtual machine.
10. A non-transitory machine-readable medium having instructions stored therein, which when executed by a processor, cause the processor to perform operations for detecting exfiltration, comprising:
executing a malicious content suspect within a virtual machine;
prior to outbound network traffic initiated by the malicious content suspect leaving the virtual machine, performing a packet inspection within the virtual machine on the outbound network traffic by analyzing a portion of the outbound network traffic in comparison to one or more portions of predetermined network traffic patterns or signatures;
determining whether the outbound network traffic includes at least one environmental property of the virtual machine that is unique to or distinctive of the virtual machine after determining the portion of the outbound network traffic matches the one or more portions of predetermined network traffic patterns or signatures, the at least one environmental property is unique to or distinctive of the virtual machine in that the at least one environmental property pertains to the virtual machine so as to allow the match to indicate that the malicious content suspect is attempting to perform an exfiltration of data; and
responsive to determining the outbound network traffic includes the at least one environmental property of the virtual machine that is unique to or distinctive of the virtual machine, precluding migration of the outbound network traffic outside of the virtual machine, and transmitting an alert over a network, the alert indicating that the malicious content suspect is attempting to perform the exfiltration of data.
11. The non-transitory machine-readable medium of claim 10, wherein the determining whether the outbound network traffic includes the at least one environmental property of the virtual machine comprises matching the at least one environmental property to any of a set of patterns associated with the virtual machine selected to process the malicious content suspect.
12. The non-transitory machine-readable medium of claim 10, wherein the at least one environmental property of the virtual machine comprises an identifier of an electronic device represented by the virtual machine.
13. The non-transitory machine-readable medium of claim 10, wherein the performing of the packet inspection comprises performing a search of data that is part of the outbound network traffic based on a predetermined signature that was generated by encoding, using a predetermined encoding algorithm, a text string representing a unique identifier of an electronic device represented by the virtual machine.
14. The non-transitory machine-readable medium of claim 10, wherein the at least one environmental property of the virtual machine is unique when an encoded or compressed form of data of the at least one environmental property fails to match generic network traffic.
15. The non-transitory machine-readable medium of claim 10 being implemented as part of a firewall.
16. A data processing system, comprising:
a processor; and
a memory coupled to the processor for storing instructions, which when executed from the memory, cause the processor to
execute a malicious content suspect within a virtual machine,
prior to outbound network traffic initiated by the malicious content suspect leaving the virtual machine, perform a packet inspection, by a packet inspector executed by the processor and running within the virtual machine, on the outbound network traffic, the packet inspection to determine whether a portion of the outbound network traffic matches one or more portions of predetermined network traffic patterns or signatures,
determine whether the outbound network traffic includes at least one environmental property of the virtual machine that is unique to or distinctive of the virtual machine after determining that the portion of the outbound network traffic matches the one or more portions of predetermined network traffic patterns or signatures, and
preclude migration of the outbound network traffic outside of the virtual machine and transmitting an alert indicating that the malicious content suspect is attempting to perform an exfiltration of data upon determining that the outbound network traffic includes the at least one environmental property of the virtual machine that is unique to or distinctive of the virtual machine.
17. The system of claim 16, wherein the determining whether the outbound network traffic includes the at least one environmental property of the virtual machine comprises matching the at least one environmental property to any of a set of patterns associated with the virtual machine selected to process the malicious content suspect.
18. The system of claim 16, wherein the alert being transmitted to a controller, the controller is implemented as part of a virtual machine monitor (VMM).
19. The system of claim 18, wherein the controller includes a scheduler that selects a configuration of the virtual machine, the configuration includes a selection of at least a particular version of an operating system includes a selection of a particular version of a particular operating system and one or more of version of application software to operate with the particular version of the operating system.
20. The system of claim 16, wherein the at least one environmental property of the virtual machine comprises an identifier of an electronic device represented by the virtual machine.
21. The system of claim 16, wherein the performing of the packet inspection comprises performing a search of data that is part of the outbound network traffic based on a predetermined signature that was generated by encoding, using a predetermined encoding algorithm, a text string representing a unique identifier of an electronic device represented by the virtual machine comprising the at least one environmental property.
22. The system of claim 16, wherein the at least one environmental property of the virtual machine is unique or distinctive when an encoded or compressed form of data of the at least one environmental property fails to match generic network traffic.
23. The system of claim 16, wherein the at least one environmental property is unique to or distinctive of the virtual machine in that the at least one environmental property pertains to the virtual machine so as to allow the match to indicate that the malicious content suspect is attempting to perform an exfiltration of data.
24. The system of claim 23, wherein the at least one environmental property includes at least one of (i) a computer name or NetBIOS name, (ii) a serial number of a hardware component, (iii) an identifier of a software application, or (iv) information identifying a user of an electronic device represented by the virtual machine.
US15/425,954 2013-03-13 2017-02-06 System and method for detecting malicious activity based on at least one environmental property Active US9934381B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/425,954 US9934381B1 (en) 2013-03-13 2017-02-06 System and method for detecting malicious activity based on at least one environmental property
US15/943,406 US10467414B1 (en) 2013-03-13 2018-04-02 System and method for detecting exfiltration content

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/801,573 US9565202B1 (en) 2013-03-13 2013-03-13 System and method for detecting exfiltration content
US15/425,954 US9934381B1 (en) 2013-03-13 2017-02-06 System and method for detecting malicious activity based on at least one environmental property

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/801,573 Continuation US9565202B1 (en) 2013-03-13 2013-03-13 System and method for detecting exfiltration content

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/943,406 Continuation US10467414B1 (en) 2013-03-13 2018-04-02 System and method for detecting exfiltration content

Publications (1)

Publication Number Publication Date
US9934381B1 true US9934381B1 (en) 2018-04-03

Family

ID=57908840

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/801,573 Active US9565202B1 (en) 2013-03-13 2013-03-13 System and method for detecting exfiltration content
US15/425,954 Active US9934381B1 (en) 2013-03-13 2017-02-06 System and method for detecting malicious activity based on at least one environmental property
US15/943,406 Active US10467414B1 (en) 2013-03-13 2018-04-02 System and method for detecting exfiltration content

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/801,573 Active US9565202B1 (en) 2013-03-13 2013-03-13 System and method for detecting exfiltration content

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/943,406 Active US10467414B1 (en) 2013-03-13 2018-04-02 System and method for detecting exfiltration content

Country Status (1)

Country Link
US (3) US9565202B1 (en)

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10169585B1 (en) 2016-06-22 2019-01-01 Fireeye, Inc. System and methods for advanced malware detection through placement of transition events
US10176321B2 (en) 2015-09-22 2019-01-08 Fireeye, Inc. Leveraging behavior-based rules for malware family classification
US10339300B2 (en) * 2015-03-23 2019-07-02 Binary Guard Corp. Advanced persistent threat and targeted malware defense
US10417031B2 (en) 2015-03-31 2019-09-17 Fireeye, Inc. Selective virtualization for security threat detection
US10447728B1 (en) 2015-12-10 2019-10-15 Fireeye, Inc. Technique for protecting guest processes using a layered virtualization architecture
US10454950B1 (en) 2015-06-30 2019-10-22 Fireeye, Inc. Centralized aggregation technique for detecting lateral movement of stealthy cyber-attacks
US10454953B1 (en) 2014-03-28 2019-10-22 Fireeye, Inc. System and method for separated packet processing and static analysis
US10462173B1 (en) 2016-06-30 2019-10-29 Fireeye, Inc. Malware detection verification and enhancement by coordinating endpoint and malware detection systems
US10467411B1 (en) 2013-12-26 2019-11-05 Fireeye, Inc. System and method for generating a malware identifier
US10469512B1 (en) 2013-05-10 2019-11-05 Fireeye, Inc. Optimized resource allocation for virtual machines within a malware content detection system
US10467414B1 (en) 2013-03-13 2019-11-05 Fireeye, Inc. System and method for detecting exfiltration content
US10476909B1 (en) 2013-12-26 2019-11-12 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US10474813B1 (en) 2015-03-31 2019-11-12 Fireeye, Inc. Code injection technique for remediation at an endpoint of a network
US10476906B1 (en) 2016-03-25 2019-11-12 Fireeye, Inc. System and method for managing formation and modification of a cluster within a malware detection system
US10491627B1 (en) 2016-09-29 2019-11-26 Fireeye, Inc. Advanced malware detection using similarity analysis
US10503904B1 (en) 2017-06-29 2019-12-10 Fireeye, Inc. Ransomware detection and mitigation
US10505956B1 (en) 2013-06-28 2019-12-10 Fireeye, Inc. System and method for detecting malicious links in electronic messages
US10511614B1 (en) 2004-04-01 2019-12-17 Fireeye, Inc. Subscription based malware detection under management system control
US10515214B1 (en) 2013-09-30 2019-12-24 Fireeye, Inc. System and method for classifying malware within content created during analysis of a specimen
US10523609B1 (en) 2016-12-27 2019-12-31 Fireeye, Inc. Multi-vector malware detection and analysis
US10528726B1 (en) 2014-12-29 2020-01-07 Fireeye, Inc. Microvisor-based malware detection appliance architecture
US10534906B1 (en) 2014-02-05 2020-01-14 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US10554507B1 (en) 2017-03-30 2020-02-04 Fireeye, Inc. Multi-level control for enhanced resource and object evaluation management of malware detection system
US10552610B1 (en) 2016-12-22 2020-02-04 Fireeye, Inc. Adaptive virtual machine snapshot update framework for malware behavioral analysis
US10567405B1 (en) 2004-04-01 2020-02-18 Fireeye, Inc. System for detecting a presence of malware from behavioral analysis
US10565378B1 (en) 2015-12-30 2020-02-18 Fireeye, Inc. Exploit of privilege detection framework
US10572665B2 (en) 2012-12-28 2020-02-25 Fireeye, Inc. System and method to create a number of breakpoints in a virtual machine via virtual machine trapping events
US10581874B1 (en) 2015-12-31 2020-03-03 Fireeye, Inc. Malware detection system with contextual analysis
US10581898B1 (en) 2015-12-30 2020-03-03 Fireeye, Inc. Malicious message analysis system
US10581879B1 (en) 2016-12-22 2020-03-03 Fireeye, Inc. Enhanced malware detection for generated objects
US10587647B1 (en) 2016-11-22 2020-03-10 Fireeye, Inc. Technique for malware detection capability comparison of network security devices
US10587636B1 (en) 2004-04-01 2020-03-10 Fireeye, Inc. System and method for bot detection
US10592678B1 (en) 2016-09-09 2020-03-17 Fireeye, Inc. Secure communications between peers using a verified virtual trusted platform module
US10601863B1 (en) 2016-03-25 2020-03-24 Fireeye, Inc. System and method for managing sensor enrollment
US10601848B1 (en) 2017-06-29 2020-03-24 Fireeye, Inc. Cyber-security system and method for weak indicator detection and correlation to generate strong indicators
US10601865B1 (en) 2015-09-30 2020-03-24 Fireeye, Inc. Detection of credential spearphishing attacks using email analysis
US10637880B1 (en) 2013-05-13 2020-04-28 Fireeye, Inc. Classifying sets of malicious indicators for detecting command and control communications associated with malware
US10642753B1 (en) 2015-06-30 2020-05-05 Fireeye, Inc. System and method for protecting a software component running in virtual machine using a virtualization layer
US10657251B1 (en) 2013-09-30 2020-05-19 Fireeye, Inc. Multistage system and method for analyzing obfuscated content for malware
US10666686B1 (en) 2015-03-25 2020-05-26 Fireeye, Inc. Virtualized exploit detection system
US10671721B1 (en) 2016-03-25 2020-06-02 Fireeye, Inc. Timeout management services
US10701091B1 (en) 2013-03-15 2020-06-30 Fireeye, Inc. System and method for verifying a cyberthreat
US10706149B1 (en) 2015-09-30 2020-07-07 Fireeye, Inc. Detecting delayed activation malware using a primary controller and plural time controllers
US10715542B1 (en) 2015-08-14 2020-07-14 Fireeye, Inc. Mobile application risk analysis
US10713358B2 (en) 2013-03-15 2020-07-14 Fireeye, Inc. System and method to extract and utilize disassembly features to classify software intent
US10713362B1 (en) 2013-09-30 2020-07-14 Fireeye, Inc. Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US10726127B1 (en) 2015-06-30 2020-07-28 Fireeye, Inc. System and method for protecting a software component running in a virtual machine through virtual interrupts by the virtualization layer
US10728263B1 (en) 2015-04-13 2020-07-28 Fireeye, Inc. Analytic-based security monitoring system and method
US10735458B1 (en) 2013-09-30 2020-08-04 Fireeye, Inc. Detection center to detect targeted malware
US10740456B1 (en) 2014-01-16 2020-08-11 Fireeye, Inc. Threat-aware architecture
US10747872B1 (en) 2017-09-27 2020-08-18 Fireeye, Inc. System and method for preventing malware evasion
US10757120B1 (en) 2004-04-01 2020-08-25 Fireeye, Inc. Malicious network content detection
US10757134B1 (en) 2014-06-24 2020-08-25 Fireeye, Inc. System and method for detecting and remediating a cybersecurity attack
US10785255B1 (en) 2016-03-25 2020-09-22 Fireeye, Inc. Cluster configuration within a scalable malware detection system
US10791138B1 (en) 2017-03-30 2020-09-29 Fireeye, Inc. Subscription-based malware detection
US10798112B2 (en) 2017-03-30 2020-10-06 Fireeye, Inc. Attribute-controlled malware detection
US10798121B1 (en) 2014-12-30 2020-10-06 Fireeye, Inc. Intelligent context aware user interaction for malware detection
US10798105B2 (en) 2018-11-15 2020-10-06 Bank Of America Corporation Access control value systems
US10795991B1 (en) 2016-11-08 2020-10-06 Fireeye, Inc. Enterprise search
US10805346B2 (en) 2017-10-01 2020-10-13 Fireeye, Inc. Phishing attack detection
US10805340B1 (en) 2014-06-26 2020-10-13 Fireeye, Inc. Infection vector and malware tracking with an interactive user display
US10812513B1 (en) 2013-03-14 2020-10-20 Fireeye, Inc. Correlation and consolidation holistic views of analytic data pertaining to a malware attack
US10817606B1 (en) 2015-09-30 2020-10-27 Fireeye, Inc. Detecting delayed activation malware using a run-time monitoring agent and time-dilation logic
US10826931B1 (en) 2018-03-29 2020-11-03 Fireeye, Inc. System and method for predicting and mitigating cybersecurity system misconfigurations
US10834107B1 (en) 2015-11-10 2020-11-10 Fireeye, Inc. Launcher for setting analysis environment variations for malware detection
US10848521B1 (en) 2013-03-13 2020-11-24 Fireeye, Inc. Malicious content analysis using simulated user interaction without user involvement
US10846117B1 (en) 2015-12-10 2020-11-24 Fireeye, Inc. Technique for establishing secure communication between host and guest processes of a virtualization architecture
US10855700B1 (en) 2017-06-29 2020-12-01 Fireeye, Inc. Post-intrusion detection of cyber-attacks during lateral movement within networks
US10868818B1 (en) 2014-09-29 2020-12-15 Fireeye, Inc. Systems and methods for generation of signature generation using interactive infection visualizations
US10872151B1 (en) 2015-12-30 2020-12-22 Fireeye, Inc. System and method for triggering analysis of an object for malware in response to modification of that object
US10872164B2 (en) 2018-11-15 2020-12-22 Bank Of America Corporation Trusted access control value systems
US10873597B1 (en) 2015-09-30 2020-12-22 Fireeye, Inc. Cyber attack early warning system
US10887328B1 (en) 2015-09-29 2021-01-05 Fireeye, Inc. System and method for detecting interpreter-based exploit attacks
US10893059B1 (en) 2016-03-31 2021-01-12 Fireeye, Inc. Verification and enhancement using detection systems located at the network periphery and endpoint devices
US10893068B1 (en) 2017-06-30 2021-01-12 Fireeye, Inc. Ransomware file modification prevention technique
US10902119B1 (en) 2017-03-30 2021-01-26 Fireeye, Inc. Data extraction system for malware analysis
US10902117B1 (en) 2014-12-22 2021-01-26 Fireeye, Inc. Framework for classifying an object as malicious with machine learning for deploying updated predictive models
US10904286B1 (en) 2017-03-24 2021-01-26 Fireeye, Inc. Detection of phishing attacks using similarity analysis
US10929266B1 (en) 2013-02-23 2021-02-23 Fireeye, Inc. Real-time visual playback with synchronous textual analysis log display and event/time indexing
US10956477B1 (en) 2018-03-30 2021-03-23 Fireeye, Inc. System and method for detecting malicious scripts through natural language processing modeling
US11003773B1 (en) 2018-03-30 2021-05-11 Fireeye, Inc. System and method for automatically generating malware detection rule recommendations
US11005860B1 (en) 2017-12-28 2021-05-11 Fireeye, Inc. Method and system for efficient cybersecurity analysis of endpoint events
US11068587B1 (en) 2014-03-21 2021-07-20 Fireeye, Inc. Dynamic guest image creation and rollback
US11075930B1 (en) 2018-06-27 2021-07-27 Fireeye, Inc. System and method for detecting repetitive cybersecurity attacks constituting an email campaign
US11075945B2 (en) 2013-09-30 2021-07-27 Fireeye, Inc. System, apparatus and method for reconfiguring virtual machines
US11082435B1 (en) 2004-04-01 2021-08-03 Fireeye, Inc. System and method for threat detection and identification
US11108809B2 (en) 2017-10-27 2021-08-31 Fireeye, Inc. System and method for analyzing binary code for malware classification using artificial neural network techniques
US11113086B1 (en) 2015-06-30 2021-09-07 Fireeye, Inc. Virtual system and method for securing external network connectivity
US11113396B2 (en) 2019-02-22 2021-09-07 Bank Of America Corporation Data management system and method
US11122081B2 (en) 2019-02-21 2021-09-14 Bank Of America Corporation Preventing unauthorized access to information resources by deploying and utilizing multi-path data relay systems and sectional transmission techniques
US11153341B1 (en) 2004-04-01 2021-10-19 Fireeye, Inc. System and method for detecting malicious network content using virtual environment components
US11176251B1 (en) 2018-12-21 2021-11-16 Fireeye, Inc. Determining malware via symbolic function hash analysis
US11182473B1 (en) 2018-09-13 2021-11-23 Fireeye Security Holdings Us Llc System and method for mitigating cyberattacks against processor operability by a guest process
US11200080B1 (en) 2015-12-11 2021-12-14 Fireeye Security Holdings Us Llc Late load technique for deploying a virtualization layer underneath a running operating system
US11210390B1 (en) 2013-03-13 2021-12-28 Fireeye Security Holdings Us Llc Multi-version application support and registration within a single operating system environment
US11228491B1 (en) 2018-06-28 2022-01-18 Fireeye Security Holdings Us Llc System and method for distributed cluster configuration monitoring and management
US11240275B1 (en) 2017-12-28 2022-02-01 Fireeye Security Holdings Us Llc Platform and method for performing cybersecurity analyses employing an intelligence hub with a modular architecture
US11244044B1 (en) 2015-09-30 2022-02-08 Fireeye Security Holdings Us Llc Method to detect application execution hijacking using memory protection
US11244056B1 (en) 2014-07-01 2022-02-08 Fireeye Security Holdings Us Llc Verification of trusted threat-aware visualization layer
US11258806B1 (en) 2019-06-24 2022-02-22 Mandiant, Inc. System and method for automatically associating cybersecurity intelligence to cyberthreat actors
US11271955B2 (en) 2017-12-28 2022-03-08 Fireeye Security Holdings Us Llc Platform and method for retroactive reclassification employing a cybersecurity-based global data store
US11297074B1 (en) 2014-03-31 2022-04-05 FireEye Security Holdings, Inc. Dynamically remote tuning of a malware content detection system
US11310238B1 (en) 2019-03-26 2022-04-19 FireEye Security Holdings, Inc. System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources
US11316900B1 (en) 2018-06-29 2022-04-26 FireEye Security Holdings Inc. System and method for automatically prioritizing rules for cyber-threat detection and mitigation
US11314859B1 (en) 2018-06-27 2022-04-26 FireEye Security Holdings, Inc. Cyber-security system and method for detecting escalation of privileges within an access token
US11368475B1 (en) 2018-12-21 2022-06-21 Fireeye Security Holdings Us Llc System and method for scanning remote services to locate stored objects with malware
US11381578B1 (en) 2009-09-30 2022-07-05 Fireeye Security Holdings Us Llc Network-based binary file extraction and analysis for malware detection
US11392700B1 (en) 2019-06-28 2022-07-19 Fireeye Security Holdings Us Llc System and method for supporting cross-platform data verification
US11436327B1 (en) 2019-12-24 2022-09-06 Fireeye Security Holdings Us Llc System and method for circumventing evasive code for cyberthreat detection
US11522884B1 (en) 2019-12-24 2022-12-06 Fireeye Security Holdings Us Llc Subscription and key management system
US11552986B1 (en) 2015-12-31 2023-01-10 Fireeye Security Holdings Us Llc Cyber-security framework for application of virtual features
US11558401B1 (en) 2018-03-30 2023-01-17 Fireeye Security Holdings Us Llc Multi-vector malware detection data sharing system for improved detection
US11556640B1 (en) 2019-06-27 2023-01-17 Mandiant, Inc. Systems and methods for automated cybersecurity analysis of extracted binary string sets
US11601444B1 (en) 2018-12-31 2023-03-07 Fireeye Security Holdings Us Llc Automated system for triage of customer issues
US11636198B1 (en) 2019-03-30 2023-04-25 Fireeye Security Holdings Us Llc System and method for cybersecurity analyzer update and concurrent management system
US11637862B1 (en) 2019-09-30 2023-04-25 Mandiant, Inc. System and method for surfacing cyber-security threats with a self-learning recommendation engine
US11677786B1 (en) 2019-03-29 2023-06-13 Fireeye Security Holdings Us Llc System and method for detecting and protecting against cybersecurity attacks on servers
US11743290B2 (en) 2018-12-21 2023-08-29 Fireeye Security Holdings Us Llc System and method for detecting cyberattacks impersonating legitimate sources
US11763004B1 (en) 2018-09-27 2023-09-19 Fireeye Security Holdings Us Llc System and method for bootkit detection
US11838300B1 (en) 2019-12-24 2023-12-05 Musarubra Us Llc Run-time configurable cybersecurity system
US11886585B1 (en) 2019-09-27 2024-01-30 Musarubra Us Llc System and method for identifying and mitigating cyberattacks through malicious position-independent code execution
US11979428B1 (en) 2016-03-31 2024-05-07 Musarubra Us Llc Technique for verifying exploit/malware at malware detection appliance through correlation with endpoints
US12074887B1 (en) 2018-12-21 2024-08-27 Musarubra Us Llc System and method for selectively processing content after identification and removal of malicious content

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080276302A1 (en) 2005-12-13 2008-11-06 Yoggie Security Systems Ltd. System and Method for Providing Data and Device Security Between External and Host Devices
US8869270B2 (en) 2008-03-26 2014-10-21 Cupp Computing As System and method for implementing content and network security inside a chip
US8381297B2 (en) 2005-12-13 2013-02-19 Yoggie Security Systems Ltd. System and method for providing network security to mobile devices
US8365272B2 (en) 2007-05-30 2013-01-29 Yoggie Security Systems Ltd. System and method for providing network and computer firewall protection with dynamic address isolation to a device
US8631488B2 (en) * 2008-08-04 2014-01-14 Cupp Computing As Systems and methods for providing security services during power management mode
US8789202B2 (en) 2008-11-19 2014-07-22 Cupp Computing As Systems and methods for providing real time access monitoring of a removable media device
US9973501B2 (en) 2012-10-09 2018-05-15 Cupp Computing As Transaction security systems and methods
US9536091B2 (en) * 2013-06-24 2017-01-03 Fireeye, Inc. System and method for detecting time-bomb malware
CN105359156B (en) * 2013-07-05 2018-06-12 日本电信电话株式会社 Unauthorized access detecting system and unauthorized access detection method
US11157976B2 (en) 2013-07-08 2021-10-26 Cupp Computing As Systems and methods for providing digital content marketplace security
US10033693B2 (en) 2013-10-01 2018-07-24 Nicira, Inc. Distributed identity-based firewalls
US9762614B2 (en) 2014-02-13 2017-09-12 Cupp Computing As Systems and methods for providing network security using a secure digital device
US10652263B2 (en) * 2014-07-21 2020-05-12 David Paul Heilig Identifying malware-infected network devices through traffic monitoring
US9363280B1 (en) 2014-08-22 2016-06-07 Fireeye, Inc. System and method of detecting delivery of malware using cross-customer data
US10116493B2 (en) 2014-11-21 2018-10-30 Cisco Technology, Inc. Recovering from virtual port channel peer failure
US10606626B2 (en) * 2014-12-29 2020-03-31 Nicira, Inc. Introspection method and apparatus for network access filtering
US10114966B2 (en) 2015-03-19 2018-10-30 Netskope, Inc. Systems and methods of per-document encryption of enterprise information stored on a cloud computing service (CCS)
US10091222B1 (en) * 2015-03-31 2018-10-02 Juniper Networks, Inc. Detecting data exfiltration as the data exfiltration occurs or after the data exfiltration occurs
US10289846B2 (en) * 2015-04-17 2019-05-14 Easy Solutions Enterprises Corp. Systems and methods for detecting and addressing remote access malware
US9785776B2 (en) * 2015-04-27 2017-10-10 Iboss, Inc. High risk program identification based on program behavior
US10395029B1 (en) 2015-06-30 2019-08-27 Fireeye, Inc. Virtual system and method with threat protection
US10216927B1 (en) 2015-06-30 2019-02-26 Fireeye, Inc. System and method for protecting memory pages associated with a process using a virtualization layer
US10033759B1 (en) 2015-09-28 2018-07-24 Fireeye, Inc. System and method of threat detection under hypervisor control
US10324746B2 (en) 2015-11-03 2019-06-18 Nicira, Inc. Extended context delivery for context-based authorization
US9894036B2 (en) 2015-11-17 2018-02-13 Cyber Adapt, Inc. Cyber threat attenuation using multi-source threat data analysis
US11403418B2 (en) 2018-08-30 2022-08-02 Netskope, Inc. Enriching document metadata using contextual information
US10333828B2 (en) 2016-05-31 2019-06-25 Cisco Technology, Inc. Bidirectional multicasting over virtual port channel
US11509501B2 (en) * 2016-07-20 2022-11-22 Cisco Technology, Inc. Automatic port verification and policy application for rogue devices
US10938837B2 (en) 2016-08-30 2021-03-02 Nicira, Inc. Isolated network stack to manage security for virtual machines
US10193750B2 (en) 2016-09-07 2019-01-29 Cisco Technology, Inc. Managing virtual port channel switch peers from software-defined network controller
US10243946B2 (en) 2016-11-04 2019-03-26 Netskope, Inc. Non-intrusive security enforcement for federated single sign-on (SSO)
US10594732B2 (en) * 2016-11-08 2020-03-17 Ca, Inc. Selective traffic blockage
US9756061B1 (en) * 2016-11-18 2017-09-05 Extrahop Networks, Inc. Detecting attacks using passive network monitoring
US10609160B2 (en) 2016-12-06 2020-03-31 Nicira, Inc. Performing context-rich attribute-based services on a host
US11032246B2 (en) 2016-12-22 2021-06-08 Nicira, Inc. Context based firewall services for data message flows for multiple concurrent users on one machine
US10581960B2 (en) 2016-12-22 2020-03-03 Nicira, Inc. Performing context-rich attribute-based load balancing on a host
US10803173B2 (en) 2016-12-22 2020-10-13 Nicira, Inc. Performing context-rich attribute-based process control services on a host
US10812451B2 (en) 2016-12-22 2020-10-20 Nicira, Inc. Performing appID based firewall services on a host
US10802857B2 (en) 2016-12-22 2020-10-13 Nicira, Inc. Collecting and processing contextual attributes on a host
US10805332B2 (en) 2017-07-25 2020-10-13 Nicira, Inc. Context engine model
US11611570B2 (en) * 2016-12-30 2023-03-21 British Telecommunications Public Limited Company Attack signature generation
WO2018122049A1 (en) 2016-12-30 2018-07-05 British Telecommunications Public Limited Company Data breach detection
US11658996B2 (en) * 2016-12-30 2023-05-23 British Telecommunications Public Limited Company Historic data breach detection
US11150936B2 (en) * 2017-01-23 2021-10-19 Hysolate Ltd. Techniques for binding user identities to appropriate virtual machines with single sign-on
US11153322B2 (en) 2017-01-23 2021-10-19 Hysolate Ltd. Techniques for seamlessly launching applications in appropriate virtual machines
US10699003B2 (en) 2017-01-23 2020-06-30 Hysolate Ltd. Virtual air-gapped endpoint, and methods thereof
US11010352B2 (en) 2017-01-23 2021-05-18 Hysolate Ltd. Unified file system on air-gapped endpoints
US11038906B1 (en) * 2017-02-03 2021-06-15 Level 3 Communications, Llc Network threat validation and monitoring
US10476673B2 (en) 2017-03-22 2019-11-12 Extrahop Networks, Inc. Managing session secrets for continuous packet capture systems
CN107045610B (en) * 2017-05-08 2020-06-12 Oppo广东移动通信有限公司 Data migration method, terminal device and computer readable storage medium
US10855694B2 (en) * 2017-05-30 2020-12-01 Keysight Technologies Singapore (Sales) Pte. Ltd. Methods, systems, and computer readable media for monitoring encrypted packet flows within a virtual network environment
US10547509B2 (en) 2017-06-19 2020-01-28 Cisco Technology, Inc. Validation of a virtual port channel (VPC) endpoint in the network fabric
US10834113B2 (en) 2017-07-25 2020-11-10 Netskope, Inc. Compact logging of network traffic events
US10903985B2 (en) 2017-08-25 2021-01-26 Keysight Technologies Singapore (Sales) Pte. Ltd. Monitoring encrypted network traffic flows in a virtual environment using dynamic session key acquisition techniques
US10992652B2 (en) 2017-08-25 2021-04-27 Keysight Technologies Singapore (Sales) Pte. Ltd. Methods, systems, and computer readable media for monitoring encrypted network traffic flows
KR102474582B1 (en) * 2017-08-28 2022-12-05 삼성전자주식회사 Method and system for preventing execution of a dirty virtual machine on an undesirable host server in a virtualization cluster environment
US9967292B1 (en) 2017-10-25 2018-05-08 Extrahop Networks, Inc. Inline secret sharing
US11042638B2 (en) * 2017-11-14 2021-06-22 Southern Methodist University Detecting malicious software using sensors
US10778651B2 (en) 2017-11-15 2020-09-15 Nicira, Inc. Performing context-rich attribute-based encryption on a host
GB2569567B (en) * 2017-12-20 2020-10-21 F Secure Corp Method of detecting malware in a sandbox environment
US10802893B2 (en) 2018-01-26 2020-10-13 Nicira, Inc. Performing process control services on endpoint machines
US10862773B2 (en) 2018-01-26 2020-12-08 Nicira, Inc. Performing services on data messages associated with endpoint machines
US11159538B2 (en) 2018-01-31 2021-10-26 Palo Alto Networks, Inc. Context for malware forensics and detection
JP7256196B2 (en) * 2018-01-31 2023-04-11 パロ アルト ネットワークス,インコーポレイテッド Contextual profiling for malware detection
US10764309B2 (en) * 2018-01-31 2020-09-01 Palo Alto Networks, Inc. Context profiling for malware detection
US10389574B1 (en) 2018-02-07 2019-08-20 Extrahop Networks, Inc. Ranking alerts based on network monitoring
US10038611B1 (en) 2018-02-08 2018-07-31 Extrahop Networks, Inc. Personalization of alerts based on network monitoring
US10270794B1 (en) 2018-02-09 2019-04-23 Extrahop Networks, Inc. Detection of denial of service attacks
US10868834B2 (en) 2018-05-11 2020-12-15 Cisco Technology, Inc. Detecting targeted data exfiltration in encrypted traffic
JP6970344B2 (en) * 2018-08-03 2021-11-24 日本電信電話株式会社 Infection spread attack detection device, attack source identification method and program
US10411978B1 (en) 2018-08-09 2019-09-10 Extrahop Networks, Inc. Correlating causes and effects associated with network activity
US10893030B2 (en) 2018-08-10 2021-01-12 Keysight Technologies, Inc. Methods, systems, and computer readable media for implementing bandwidth limitations on specific application traffic at a proxy element
US10594718B1 (en) 2018-08-21 2020-03-17 Extrahop Networks, Inc. Managing incident response operations based on monitored network activity
EP3881201A4 (en) * 2018-11-13 2022-10-19 Wenspire Method and device for monitoring data output by a server
US11416641B2 (en) 2019-01-24 2022-08-16 Netskope, Inc. Incident-driven introspection for data loss prevention
US11204794B2 (en) * 2019-04-19 2021-12-21 EMC IP Holding Company LLC Automated disaster recovery of discrete virtual machines
US10965702B2 (en) 2019-05-28 2021-03-30 Extrahop Networks, Inc. Detecting injection attacks using passive network monitoring
US11165814B2 (en) 2019-07-29 2021-11-02 Extrahop Networks, Inc. Modifying triage information based on network monitoring
US11388072B2 (en) 2019-08-05 2022-07-12 Extrahop Networks, Inc. Correlating network traffic that crosses opaque endpoints
US10742530B1 (en) 2019-08-05 2020-08-11 Extrahop Networks, Inc. Correlating network traffic that crosses opaque endpoints
IT201900014295A1 (en) * 2019-08-07 2021-02-07 Cyber Evolution Srl SYSTEM FOR THE PROTECTION OF COMPUTER NETWORKS AND RELATED SECURITY PROCEDURE
US10742677B1 (en) 2019-09-04 2020-08-11 Extrahop Networks, Inc. Automatic determination of user roles and asset types based on network monitoring
US11711385B2 (en) 2019-09-25 2023-07-25 Bank Of America Corporation Real-time detection of anomalous content in transmission of textual data
WO2021080602A1 (en) * 2019-10-25 2021-04-29 Hewlett-Packard Development Company, L.P. Malware identification
US11165823B2 (en) 2019-12-17 2021-11-02 Extrahop Networks, Inc. Automated preemptive polymorphic deception
US11265346B2 (en) * 2019-12-19 2022-03-01 Palo Alto Networks, Inc. Large scale high-interactive honeypot farm
US11271907B2 (en) * 2019-12-19 2022-03-08 Palo Alto Networks, Inc. Smart proxy for a large scale high-interaction honeypot farm
US11539718B2 (en) 2020-01-10 2022-12-27 Vmware, Inc. Efficiently performing intrusion detection
US11470064B2 (en) 2020-02-18 2022-10-11 Bank Of America Corporation Data integrity system for transmission of incoming and outgoing data
US11451550B2 (en) 2020-04-23 2022-09-20 Bank Of America Corporation System for automated electronic data exfiltration path identification, prioritization, and remediation
US11689568B2 (en) * 2020-05-08 2023-06-27 International Business Machines Corporation Dynamic maze honeypot response system
US11281480B2 (en) 2020-05-28 2022-03-22 Sap Se Enhancing parameter-less exit-calls from a command line interface
US11108728B1 (en) 2020-07-24 2021-08-31 Vmware, Inc. Fast distribution of port identifiers for rule processing
US11463466B2 (en) 2020-09-23 2022-10-04 Extrahop Networks, Inc. Monitoring encrypted network traffic
US11310256B2 (en) 2020-09-23 2022-04-19 Extrahop Networks, Inc. Monitoring encrypted network traffic
US11824894B2 (en) 2020-11-25 2023-11-21 International Business Machines Corporation Defense of targeted database attacks through dynamic honeypot database response generation
US11575694B2 (en) * 2021-01-20 2023-02-07 Bank Of America Corporation Command and control steganographic communications detection engine
CN113038475B (en) * 2021-03-15 2023-01-20 中山大学 Malicious anchor node detection and target node positioning method based on sparse item recovery
US11956212B2 (en) 2021-03-31 2024-04-09 Palo Alto Networks, Inc. IoT device application workload capture
US11349861B1 (en) 2021-06-18 2022-05-31 Extrahop Networks, Inc. Identifying network entities based on beaconing activity
US11475158B1 (en) 2021-07-26 2022-10-18 Netskope, Inc. Customized deep learning classifier for detecting organization sensitive data in images on premises
US11296967B1 (en) 2021-09-23 2022-04-05 Extrahop Networks, Inc. Combining passive network analysis and active probing
US12039056B2 (en) * 2022-03-10 2024-07-16 Denso Corporation Securing software package composition information
US11843606B2 (en) 2022-03-30 2023-12-12 Extrahop Networks, Inc. Detecting abnormal data access based on data similarity

Citations (325)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292580A (en) 1978-11-30 1981-09-29 Siemens Aktiengesellschaft Circuit arrangement for attenuation of power oscillations in networks
US5175732A (en) 1991-02-15 1992-12-29 Standard Microsystems Corp. Method and apparatus for controlling data communication operations within stations of a local-area network
US5440723A (en) 1993-01-19 1995-08-08 International Business Machines Corporation Automatic immune system for computers and computer networks
US5657473A (en) 1990-02-21 1997-08-12 Arendee Limited Method and apparatus for controlling access to and corruption of information in computer systems
US5842002A (en) 1994-06-01 1998-11-24 Quantum Leap Innovations, Inc. Computer virus trap
US5978917A (en) 1997-08-14 1999-11-02 Symantec Corporation Detection and elimination of macro viruses
US6088803A (en) 1997-12-30 2000-07-11 Intel Corporation System for virus-checking network data during download to a client device
US6094677A (en) 1997-05-30 2000-07-25 International Business Machines Corporation Methods, systems and computer program products for providing insertions during delays in interactive systems
US20010005889A1 (en) 1999-12-24 2001-06-28 F-Secure Oyj Remote computer virus scanning
US6269330B1 (en) 1997-10-07 2001-07-31 Attune Networks Ltd. Fault location and performance testing of communication networks
US6279113B1 (en) 1998-03-16 2001-08-21 Internet Tools, Inc. Dynamic signature inspection-based network intrusion detection
US6298445B1 (en) 1998-04-30 2001-10-02 Netect, Ltd. Computer security
US20010047326A1 (en) 2000-03-14 2001-11-29 Broadbent David F. Interface system for a mortgage loan originator compliance engine
WO2002006928A2 (en) 2000-07-14 2002-01-24 Vcis, Inc. Computer immune system and method for detecting unwanted code in a computer system
US20020018903A1 (en) 2000-07-21 2002-02-14 Tadashi Kokubo Anti-thrombogenic material and manufacturing method therefor
US6357008B1 (en) 1997-09-23 2002-03-12 Symantec Corporation Dynamic heuristic method for detecting computer viruses using decryption exploration and evaluation phases
WO2002023805A2 (en) 2000-09-13 2002-03-21 Karakoram Limited Monitoring network activity
US20020038430A1 (en) 2000-09-13 2002-03-28 Charles Edwards System and method of data collection, processing, analysis, and annotation for monitoring cyber-threats and the notification thereof to subscribers
US20020091819A1 (en) 2001-01-05 2002-07-11 Daniel Melchione System and method for configuring computer applications and devices using inheritance
US6424627B1 (en) 1997-02-24 2002-07-23 Metrobility Optical Systems Full-duplex medium tap apparatus and system
US6442696B1 (en) 1999-10-05 2002-08-27 Authoriszor, Inc. System and method for extensible positive client identification
US20020144156A1 (en) 2001-01-31 2002-10-03 Copeland John A. Network port profiling
US20020162015A1 (en) 2001-04-29 2002-10-31 Zhaomiao Tang Method and system for scanning and cleaning known and unknown computer viruses, recording medium and transmission medium therefor
US20020166063A1 (en) 2001-03-01 2002-11-07 Cyber Operations, Llc System and method for anti-network terrorism
US6484315B1 (en) 1999-02-01 2002-11-19 Cisco Technology, Inc. Method and system for dynamically distributing updates in a network
US6487666B1 (en) 1999-01-15 2002-11-26 Cisco Technology, Inc. Intrusion detection signature analysis using regular expressions and logical operators
US20020184528A1 (en) 2001-04-12 2002-12-05 Shevenell Michael P. Method and apparatus for security management via vicarious network devices
US6493756B1 (en) 1999-10-28 2002-12-10 Networks Associates, Inc. System and method for dynamically sensing an asynchronous network event within a modular framework for network event processing
US20020188887A1 (en) 2000-05-19 2002-12-12 Self Repairing Computers, Inc. Computer with switchable components
US20020194490A1 (en) 2001-06-18 2002-12-19 Avner Halperin System and method of virus containment in computer networks
US6550012B1 (en) 1998-12-11 2003-04-15 Network Associates, Inc. Active firewall system and methodology
US20030074578A1 (en) 2001-10-16 2003-04-17 Richard Ford Computer virus containment
US20030084318A1 (en) 2001-10-31 2003-05-01 Schertz Richard L. System and method of graphically correlating data for an intrusion protection system
US20030115483A1 (en) 2001-12-04 2003-06-19 Trend Micro Incorporated Virus epidemic damage control system and method for network environment
US20030188190A1 (en) 2002-03-26 2003-10-02 Aaron Jeffrey A. System and method of intrusion detection employing broad-scope monitoring
US20030200460A1 (en) 2002-02-28 2003-10-23 Ntt Docomo, Inc Server apparatus, and information processing method
US20030212902A1 (en) 2002-05-13 2003-11-13 Van Der Made Peter A.J. Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine
US20030237000A1 (en) 2002-06-19 2003-12-25 International Business Machines Corporation Method, system and program product for detecting intrusion of a wireless network
US20040003323A1 (en) 2002-06-29 2004-01-01 Steve Bennett Control over faults occurring during the operation of guest software in the virtual-machine architecture
US20040015712A1 (en) 2002-07-19 2004-01-22 Peter Szor Heuristic detection of malicious computer code by page tracking
US20040019832A1 (en) 2002-07-23 2004-01-29 International Business Machines Corporation Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US20040047356A1 (en) 2002-09-06 2004-03-11 Bauer Blaine D. Network traffic monitoring
US20040083408A1 (en) 2002-10-24 2004-04-29 Mark Spiegel Heuristic detection and termination of fast spreading network worm attacks
US20040093513A1 (en) 2002-11-07 2004-05-13 Tippingpoint Technologies, Inc. Active network defense system and method
US20040111531A1 (en) 2002-12-06 2004-06-10 Stuart Staniford Method and system for reducing the rate of infection of a communications network by a software worm
US6775657B1 (en) 1999-12-22 2004-08-10 Cisco Technology, Inc. Multilayered intrusion detection system and method
US20040165588A1 (en) 2002-06-11 2004-08-26 Pandya Ashish A. Distributed network security system and a hardware processor therefor
US20040236963A1 (en) 2003-05-20 2004-11-25 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US20040243349A1 (en) 2003-05-30 2004-12-02 Segue Software, Inc. Method of non-intrusive analysis of secure and non-secure web application traffic in real-time
US20040249911A1 (en) 2003-03-31 2004-12-09 Alkhatib Hasan S. Secure virtual community network system
US6832367B1 (en) 2000-03-06 2004-12-14 International Business Machines Corporation Method and system for recording and replaying the execution of distributed java programs
US20040255161A1 (en) 2003-04-12 2004-12-16 Deep Nines, Inc. System and method for network edge data protection
US20040268147A1 (en) 2003-06-30 2004-12-30 Wiederin Shawn E Integrated security system
US20050021740A1 (en) 2001-08-14 2005-01-27 Bar Anat Bremler Detecting and protecting against worm traffic on a network
US20050033989A1 (en) 2002-11-04 2005-02-10 Poletto Massimiliano Antonio Detection of scanning attacks
US20050033960A1 (en) 2001-02-12 2005-02-10 Jukka Vialen Message authentication
US20050050148A1 (en) 2003-06-18 2005-03-03 Said Mohammadioun System and method for providing notification on remote devices
US20050086523A1 (en) 2003-10-15 2005-04-21 Zimmer Vincent J. Methods and apparatus to provide network traffic support and physical security support
US20050091513A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device, method and program for detecting unauthorized access
US20050091533A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device and method for worm detection, and computer product
US6895550B2 (en) 2001-12-05 2005-05-17 I2 Technologies Us, Inc. Computer-implemented PDF document management
US6898632B2 (en) 2003-03-31 2005-05-24 Finisar Corporation Network security tap for use with intrusion detection system
US20050114663A1 (en) 2003-11-21 2005-05-26 Finisar Corporation Secure network access devices with data encryption
US20050125195A1 (en) 2001-12-21 2005-06-09 Juergen Brendel Method, apparatus and sofware for network traffic management
US6907396B1 (en) 2000-06-01 2005-06-14 Networks Associates Technology, Inc. Detecting computer viruses or malicious software by patching instructions into an emulator
US20050157662A1 (en) 2004-01-20 2005-07-21 Justin Bingham Systems and methods for detecting a compromised network
US20050183143A1 (en) 2004-02-13 2005-08-18 Anderholm Eric J. Methods and systems for monitoring user, application or device activity
US20050201297A1 (en) 2003-12-12 2005-09-15 Cyrus Peikari Diagnosis of embedded, wireless mesh networks with real-time, flexible, location-specific signaling
US20050210533A1 (en) 2001-11-30 2005-09-22 Copeland John A Packet Sampling Flow-Based Detection of Network Intrusions
US20050238005A1 (en) 2004-04-21 2005-10-27 Yi-Fen Chen Method and apparatus for controlling traffic in a computer network
US20050265331A1 (en) 2003-11-12 2005-12-01 The Trustees Of Columbia University In The City Of New York Apparatus method and medium for tracing the origin of network transmissions using n-gram distribution of data
US6981279B1 (en) 2000-08-17 2005-12-27 International Business Machines Corporation Method and apparatus for replicating and analyzing worm programs
US20060010495A1 (en) 2004-07-06 2006-01-12 Oded Cohen Method for protecting a computer from suspicious objects
US20060015715A1 (en) 2004-07-16 2006-01-19 Eric Anderson Automatically protecting network service from network attack
US20060021054A1 (en) 2004-07-21 2006-01-26 Microsoft Corporation Containment of worms
US20060031476A1 (en) 2004-08-05 2006-02-09 Mathes Marvin L Apparatus and method for remotely monitoring a computer network
US7007107B1 (en) 2001-10-22 2006-02-28 United Electronic Industries Methods and apparatus for performing data acquisition and control
US20060047665A1 (en) 2001-01-09 2006-03-02 Tim Neil System and method for simulating an application for subsequent deployment to a device in communication with a transaction server
US20060070130A1 (en) 2004-09-27 2006-03-30 Microsoft Corporation System and method of identifying the source of an attack on a computer network
US20060075496A1 (en) 2003-05-20 2006-04-06 International Bussiness Machines Corporation Applying blocking measures progressively to malicious network traffic
US7028179B2 (en) 2001-07-03 2006-04-11 Intel Corporation Apparatus and method for secure, automated response to distributed denial of service attacks
US20060095968A1 (en) 2004-10-28 2006-05-04 Cisco Technology, Inc. Intrusion detection in a data center environment
US7043757B2 (en) 2001-05-22 2006-05-09 Mci, Llc System and method for malicious code detection
US20060101517A1 (en) 2004-10-28 2006-05-11 Banzhof Carl E Inventory management-based computer vulnerability resolution system
US20060101516A1 (en) 2004-10-12 2006-05-11 Sushanthan Sudaharan Honeynet farms as an early warning system for production networks
US20060117385A1 (en) 2004-11-30 2006-06-01 Mester Michael L Monitoring propagation protection within a network
US20060123477A1 (en) 2004-12-06 2006-06-08 Kollivakkam Raghavan Method and apparatus for generating a network topology representation based on inspection of application messages at a network device
US7069316B1 (en) 2002-02-19 2006-06-27 Mcafee, Inc. Automated Internet Relay Chat malware monitoring and interception
US20060143709A1 (en) 2004-12-27 2006-06-29 Raytheon Company Network intrusion prevention
US20060150249A1 (en) 2003-05-07 2006-07-06 Derek Gassen Method and apparatus for predictive and actual intrusion detection on a network
US7080408B1 (en) 2001-11-30 2006-07-18 Mcafee, Inc. Delayed-delivery quarantining of network communications having suspicious contents
US20060161987A1 (en) 2004-11-10 2006-07-20 Guy Levy-Yurista Detecting and remedying unauthorized computer programs
US20060161989A1 (en) 2004-12-13 2006-07-20 Eran Reshef System and method for deterring rogue users from attacking protected legitimate users
US20060161983A1 (en) 2005-01-20 2006-07-20 Cothrell Scott A Inline intrusion detection
US20060164199A1 (en) 2005-01-26 2006-07-27 Lockdown Networks, Inc. Network appliance for securely quarantining a node on a network
US20060173992A1 (en) 2002-11-04 2006-08-03 Daniel Weber Event detection/anomaly correlation heuristics
US20060179147A1 (en) 2005-02-07 2006-08-10 Veritas Operating Corporation System and method for connection failover using redirection
US7093002B2 (en) 2001-12-06 2006-08-15 Mcafee, Inc. Handling of malware scanning of files stored within a file storage device of a computer network
US20060184632A1 (en) 2005-02-15 2006-08-17 Spam Cube, Inc. Apparatus and method for analyzing and filtering email and for providing web related services
US20060191010A1 (en) 2005-02-18 2006-08-24 Pace University System for intrusion detection and vulnerability assessment in a computer network using simulation and machine learning
US7100201B2 (en) 2002-01-24 2006-08-29 Arxceo Corporation Undetectable firewall
US20060221956A1 (en) 2005-03-31 2006-10-05 Narayan Harsha L Methods for performing packet classification via prefix pair bit vectors
US20060236393A1 (en) 2005-03-31 2006-10-19 Microsoft Corporation System and method for protecting a limited resource computer from malware
US20060242709A1 (en) 2005-04-21 2006-10-26 Microsoft Corporation Protecting a computer that provides a Web service from malware
US20060251104A1 (en) 2005-03-31 2006-11-09 Fujitsu Limited Service apparatus, method of controlling switching of connection destination of client apparatus by service apparatus, and storage medium readable by machine
US20060288417A1 (en) 2005-06-21 2006-12-21 Sbc Knowledge Ventures Lp Method and apparatus for mitigating the effects of malicious software in a communication network
US20070006313A1 (en) 2004-09-17 2007-01-04 Phillip Porras Method and apparatus for combating malicious code
US20070006288A1 (en) 2005-06-30 2007-01-04 Microsoft Corporation Controlling network access
US20070011174A1 (en) 1998-09-22 2007-01-11 Kazuo Takaragi Method and a device for managing a computer network
US20070016951A1 (en) 2005-07-13 2007-01-18 Piccard Paul L Systems and methods for identifying sources of malware
US20070033645A1 (en) 2005-07-22 2007-02-08 Alcatel DNS based enforcement for confinement and detection of network malicious activities
US20070038943A1 (en) 2005-08-15 2007-02-15 Cisco Technology, Inc. Interactive text communication system
US20070064689A1 (en) 2003-09-19 2007-03-22 Shin Yong M Method of controlling communication between devices in a network and apparatus for the same
US20070094730A1 (en) 2005-10-20 2007-04-26 Cisco Technology, Inc. Mechanism to correlate the presence of worms in a network
US7231667B2 (en) 2003-05-29 2007-06-12 Computer Associates Think, Inc. System and method for computer virus detection utilizing heuristic analysis
US20070143827A1 (en) 2005-12-21 2007-06-21 Fiberlink Methods and systems for intelligently controlling access to computing resources
US7240368B1 (en) 1999-04-14 2007-07-03 Verizon Corporate Services Group Inc. Intrusion and misuse deterrence system employing a virtual network
US7240364B1 (en) 2000-05-20 2007-07-03 Ciena Corporation Network device identity authentication
US20070156895A1 (en) 2005-12-29 2007-07-05 Research In Motion Limited System and method of dynamic management of spam
US20070157180A1 (en) 2005-12-30 2007-07-05 Microsoft Corporation Approximating finite domains in symbolic state exploration
US20070157306A1 (en) 2005-12-30 2007-07-05 Elrod Craig T Network threat detection and mitigation
US20070171824A1 (en) 2006-01-25 2007-07-26 Cisco Technology, Inc. A California Corporation Sampling rate-limited traffic
US20070174915A1 (en) 2006-01-23 2007-07-26 University Of Washington Detection of spyware threats within virtual machine
US20070171921A1 (en) * 2006-01-24 2007-07-26 Citrix Systems, Inc. Methods and systems for interacting, via a hypermedium page, with a virtual machine executing in a terminal services session
US20070192858A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Peer based network access control
US20070192500A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Network access control including dynamic policy enforcement point
US20070198275A1 (en) 2002-06-27 2007-08-23 Malden Matthew S Method and system for processing intelligence information
US20070240222A1 (en) 2006-04-06 2007-10-11 George Tuvell System and Method for Managing Malware Protection on Mobile Devices
US7287278B2 (en) 2003-08-29 2007-10-23 Trend Micro, Inc. Innoculation of computing devices against a selected computer virus
US20070250930A1 (en) 2004-04-01 2007-10-25 Ashar Aziz Virtual machine with dynamic data flow analysis
US20070271446A1 (en) 2004-07-16 2007-11-22 Tomonori Nakamura Application Execution Device and Application Execution Device Application Execution Method
US20080005782A1 (en) 2004-04-01 2008-01-03 Ashar Aziz Heuristic based capture with replay to virtual machine
GB2439806A (en) 2006-06-30 2008-01-09 Sophos Plc Classifying software as malware using characteristics (or "genes")
US20080077793A1 (en) 2006-09-21 2008-03-27 Sensory Networks, Inc. Apparatus and method for high throughput network security systems
US20080080518A1 (en) 2006-09-29 2008-04-03 Hoeflin David A Method and apparatus for detecting compromised host computers
US7356736B2 (en) 2001-09-25 2008-04-08 Norman Asa Simulated computer system for monitoring of software performance
WO2008041950A2 (en) 2006-10-04 2008-04-10 Trek 2000 International Ltd. Method, apparatus and system for authentication of external storage devices
US20080098476A1 (en) 2005-04-04 2008-04-24 Bae Systems Information And Electronic Systems Integration Inc. Method and Apparatus for Defending Against Zero-Day Worm-Based Attacks
US20080120722A1 (en) 2006-11-17 2008-05-22 Caleb Sima Web application assessment based on intelligent generation of attack strings
US20080134334A1 (en) 2006-11-30 2008-06-05 Electronics And Telecommunications Research Institute Apparatus and method for detecting network attack
US20080134178A1 (en) 2006-10-17 2008-06-05 Manageiq, Inc. Control and management of virtual systems
US20080141376A1 (en) 2006-10-24 2008-06-12 Pc Tools Technology Pty Ltd. Determining maliciousness of software
US7392542B2 (en) 2003-08-29 2008-06-24 Seagate Technology Llc Restoration of data corrupted by viruses using pre-infected copy of data
US20080162849A1 (en) * 2006-12-27 2008-07-03 Uday Savagaonkar Providing protected access to critical memory regions
US20080184373A1 (en) 2007-01-25 2008-07-31 Microsoft Corporation Protection Agents and Privilege Modes
US20080184367A1 (en) 2007-01-25 2008-07-31 Mandiant, Inc. System and method for determining data entropy to identify malware
US20080215742A1 (en) 2000-04-28 2008-09-04 German Goldszmidt METHOD AND APPARATUS FOR DYNAMICALLY ADJUSTING RESOURCES ASSIGNED TO PLURALITY OF CUSTOMERS, FOR MEETING SERVICE LEVEL AGREEMENTS (SLAs) WITH MINIMAL RESOURCES, AND ALLOWING COMMON POOLS OF RESOURCES TO BE USED ACROSS PLURAL CUSTOMERS ON A DEMAND BASIS
US20080222729A1 (en) 2007-03-05 2008-09-11 Songqing Chen Containment of Unknown and Polymorphic Fast Spreading Worms
US7428300B1 (en) 2002-12-09 2008-09-23 Verizon Laboratories Inc. Diagnosing fault patterns in telecommunication networks
US7441272B2 (en) 2004-06-09 2008-10-21 Intel Corporation Techniques for self-isolation of networked devices
US20080263665A1 (en) 2007-04-20 2008-10-23 Juniper Networks, Inc. Network attack detection using partial deterministic finite automaton pattern matching
US7448084B1 (en) 2002-01-25 2008-11-04 The Trustees Of Columbia University In The City Of New York System and methods for detecting intrusions in a computer system by monitoring operating system registry accesses
US7458098B2 (en) 2002-03-08 2008-11-25 Secure Computing Corporation Systems and methods for enhancing electronic communication security
US20080295172A1 (en) 2007-05-22 2008-11-27 Khushboo Bohacek Method, system and computer-readable media for reducing undesired intrusion alarms in electronic communications systems and networks
US20080301810A1 (en) 2007-06-04 2008-12-04 Agilent Technologies, Inc. Monitoring apparatus and method therefor
US7464407B2 (en) 2002-08-20 2008-12-09 Nec Corporation Attack defending system and attack defending method
US20080307524A1 (en) 2004-04-08 2008-12-11 The Regents Of The University Of California Detecting Public Network Attacks Using Signatures and Fast Content Analysis
US7467408B1 (en) 2002-09-09 2008-12-16 Cisco Technology, Inc. Method and apparatus for capturing and filtering datagrams for network security monitoring
US20080320594A1 (en) 2007-03-19 2008-12-25 Xuxian Jiang Malware Detector
US20090007100A1 (en) 2007-06-28 2009-01-01 Microsoft Corporation Suspending a Running Operating System to Enable Security Scanning
US20090013408A1 (en) 2007-07-06 2009-01-08 Messagelabs Limited Detection of exploits in files
US7480773B1 (en) 2005-05-02 2009-01-20 Sprint Communications Company L.P. Virtual machine use and optimization of hardware configurations
US20090031423A1 (en) 2006-12-20 2009-01-29 Peng Liu Proactive worm containment (pwc) for enterprise networks
US20090036111A1 (en) 2007-07-30 2009-02-05 Mobile Iron, Inc. Virtual Instance Architecture for Mobile Device Management Systems
US20090044024A1 (en) 2007-08-06 2009-02-12 The Regents Of The University Of Michigan Network service for the detection, analysis and quarantine of malicious and unwanted files
US20090044274A1 (en) 2007-08-08 2009-02-12 Vmware, Inc. Impeding Progress of Malicious Guest Software
US7496960B1 (en) 2000-10-30 2009-02-24 Trend Micro, Inc. Tracking and reporting of computer virus information
US20090083369A1 (en) 2004-10-04 2009-03-26 Netmask (El-Mar) Dynamic content conversion
US20090089879A1 (en) 2007-09-28 2009-04-02 Microsoft Corporation Securing anti-virus software with virtualization
US20090094697A1 (en) 2007-10-05 2009-04-09 Google Inc. Intrusive software management
US7519990B1 (en) 2002-07-19 2009-04-14 Fortinet, Inc. Managing network traffic flow
US7530104B1 (en) 2004-02-09 2009-05-05 Symantec Corporation Threat analysis
US20090126016A1 (en) 2007-10-02 2009-05-14 Andrey Sobko System and method for detecting multi-component malware
US20090125976A1 (en) 2007-11-08 2009-05-14 Docomo Communications Laboratories Usa, Inc. Automated test input generation for web applications
US20090133125A1 (en) 2007-11-21 2009-05-21 Yang Seo Choi Method and apparatus for malware detection
US7540025B2 (en) 2004-11-18 2009-05-26 Cisco Technology, Inc. Mitigating network attacks using automatic signature generation
US20090158430A1 (en) 2005-10-21 2009-06-18 Borders Kevin R Method, system and computer program product for detecting at least one of security threats and undesirable computer files
US20090187992A1 (en) 2006-06-30 2009-07-23 Poston Robert J Method and system for classification of software using characteristics and combinations of such characteristics
US20090193293A1 (en) 2006-02-28 2009-07-30 Stolfo Salvatore J Systems, Methods, and Media for Outputting Data Based Upon Anomaly Detection
US20090198689A1 (en) 2008-02-01 2009-08-06 Matthew Frazier System and method for data preservation and retrieval
US20090199296A1 (en) 2008-02-04 2009-08-06 Samsung Electronics Co., Ltd. Detecting unauthorized use of computing devices based on behavioral patterns
US20090198670A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for collecting and organizing data corresponding to an event
US20090199274A1 (en) 2008-02-01 2009-08-06 Matthew Frazier method and system for collaboration during an event
US20090198651A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for analyzing data related to an event
US20090228233A1 (en) 2008-03-06 2009-09-10 Anderson Gary F Rank-based evaluation
US20090241190A1 (en) 2008-03-24 2009-09-24 Michael Todd System and method for securing a network from zero-day vulnerability exploits
US20090241187A1 (en) 2008-03-19 2009-09-24 Websense, Inc. Method and system for protection against information stealing software
US7607171B1 (en) 2002-01-17 2009-10-20 Avinti, Inc. Virus detection by executing e-mail code in a virtual machine
US20090265692A1 (en) 2008-04-21 2009-10-22 Microsoft Corporation Active property checking
US20090271867A1 (en) 2005-12-30 2009-10-29 Peng Zhang Virtual machine to detect malicious code
US20090300761A1 (en) 2008-05-28 2009-12-03 John Park Intelligent Hashes for Centralized Malware Detection
US20090328221A1 (en) 2008-06-30 2009-12-31 Microsoft Corporation Malware detention for suspected malware
US20090328185A1 (en) 2004-11-04 2009-12-31 Eric Van Den Berg Detecting exploit code in network flows
US7644441B2 (en) 2003-09-26 2010-01-05 Cigital, Inc. Methods for identifying malicious software
US20100030996A1 (en) 2008-08-01 2010-02-04 Mandiant, Inc. System and Method for Forensic Identification of Elements Within a Computer System
US20100043073A1 (en) 2008-08-13 2010-02-18 Fujitsu Limited Anti-virus method, computer, and recording medium
US20100058474A1 (en) 2008-08-29 2010-03-04 Avg Technologies Cz, S.R.O. System and method for the detection of malware
US7676841B2 (en) 2005-02-01 2010-03-09 Fmr Llc Network intrusion mitigation
US20100064044A1 (en) 2008-09-05 2010-03-11 Kabushiki Kaisha Toshiba Information Processing System and Control Method for Information Processing System
US20100077481A1 (en) 2008-09-22 2010-03-25 Microsoft Corporation Collecting and analyzing malware data
US20100083376A1 (en) 2008-09-26 2010-04-01 Symantec Corporation Method and apparatus for reducing false positive detection of malware
US7698548B2 (en) 2005-12-08 2010-04-13 Microsoft Corporation Communications traffic segregation for security purposes
US20100115621A1 (en) 2008-11-03 2010-05-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious Network Content
US20100132038A1 (en) 2008-11-26 2010-05-27 Zaitsev Oleg V System and Method for Computer Malware Detection
US20100154056A1 (en) 2008-12-17 2010-06-17 Symantec Corporation Context-Aware Real-Time Computer-Protection Systems and Methods
US20100192223A1 (en) 2004-04-01 2010-07-29 Osman Abdoul Ismael Detecting Malicious Network Content Using Virtual Environment Components
US7779463B2 (en) 2004-05-11 2010-08-17 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US7784097B1 (en) 2004-11-24 2010-08-24 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US20100251104A1 (en) 2009-03-27 2010-09-30 Litera Technology Llc. System and method for reflowing content in a structured portable document format (pdf) file
US20100281102A1 (en) 2009-05-02 2010-11-04 Chinta Madhav Methods and systems for launching applications into existing isolation environments
US7832008B1 (en) 2006-10-11 2010-11-09 Cisco Technology, Inc. Protection of computer resources
US20100287260A1 (en) 2009-03-13 2010-11-11 Docusign, Inc. Systems and methods for document management transformation and security
US7849506B1 (en) 2004-10-12 2010-12-07 Avaya Inc. Switching device, method, and computer program for efficient intrusion detection
US7869073B2 (en) 2005-03-22 2011-01-11 Fuji Xerox Co., Ltd. Image forming system, image forming method and information terminal device
US7877803B2 (en) 2005-06-27 2011-01-25 Hewlett-Packard Development Company, L.P. Automated immune response for a computer
US20110025504A1 (en) 2009-07-31 2011-02-03 Lyon Geoff M USB Hosted Sensor Module
US20110041179A1 (en) 2009-08-11 2011-02-17 F-Secure Oyj Malware detection
US20110047594A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for mobile communication device application advisement
US20110047620A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for server-coupled malware prevention
US7904959B2 (en) 2005-04-18 2011-03-08 The Trustees Of Columbia University In The City Of New York Systems and methods for detecting and inhibiting attacks using honeypots
US7908660B2 (en) 2007-02-06 2011-03-15 Microsoft Corporation Dynamic risk management
US20110078794A1 (en) 2009-09-30 2011-03-31 Jayaraman Manni Network-Based Binary File Extraction and Analysis for Malware Detection
US7930738B1 (en) 2005-06-02 2011-04-19 Adobe Systems Incorporated Method and apparatus for secure execution of code
US20110093951A1 (en) 2004-06-14 2011-04-21 NetForts, Inc. Computer worm defense system and method
US20110099635A1 (en) 2009-10-27 2011-04-28 Silberman Peter J System and method for detecting executable machine instructions in a data stream
US20110099633A1 (en) 2004-06-14 2011-04-28 NetForts, Inc. System and method of containing computer worms
US7937761B1 (en) 2004-12-17 2011-05-03 Symantec Corporation Differential threat detection processing
US20110113231A1 (en) 2009-11-12 2011-05-12 Daniel Kaminsky System and method for providing secure reception and viewing of transmitted data over a network
US20110145920A1 (en) 2008-10-21 2011-06-16 Lookout, Inc System and method for adverse mobile application identification
US20110167494A1 (en) 2009-12-31 2011-07-07 Bowen Brian M Methods, systems, and media for detecting covert malware
WO2011084431A2 (en) 2009-12-15 2011-07-14 Mcafee, Inc. Systems and methods for behavioral sandboxing
US7996836B1 (en) 2006-12-29 2011-08-09 Symantec Corporation Using a hypervisor to provide computer security
US8010667B2 (en) 2007-12-12 2011-08-30 Vmware, Inc. On-access anti-virus mechanism for virtual machine architecture
US8020206B2 (en) 2006-07-10 2011-09-13 Websense, Inc. System and method of analyzing web content
US8028338B1 (en) 2008-09-30 2011-09-27 Symantec Corporation Modeling goodware characteristics to reduce false positive malware signatures
US20110247072A1 (en) 2008-11-03 2011-10-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious PDF Network Content
US8045094B2 (en) 2006-12-26 2011-10-25 Sharp Kabushiki Kaisha Backlight device, display device, and television receiver
US8045458B2 (en) 2007-11-08 2011-10-25 Mcafee, Inc. Prioritizing network traffic
US20110265182A1 (en) 2010-04-27 2011-10-27 Microsoft Corporation Malware investigation by analyzing computer memory
US20110271342A1 (en) 2010-04-28 2011-11-03 Electronics And Telecommunications Research Institute Defense method and device against intelligent bots using masqueraded virtual machine information
US20110307956A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for analyzing malicious code using a static analyzer
US20110314546A1 (en) 2004-04-01 2011-12-22 Ashar Aziz Electronic Message Analysis for Malware Detection
US8087086B1 (en) 2008-06-30 2011-12-27 Symantec Corporation Method for mitigating false positive generation in antivirus software
US20120079596A1 (en) 2010-08-26 2012-03-29 Verisign, Inc. Method and system for automatic detection and analysis of malware
US20120084859A1 (en) 2010-09-30 2012-04-05 Microsoft Corporation Realtime multiple engine selection and combining
US20120144489A1 (en) 2010-12-07 2012-06-07 Microsoft Corporation Antimalware Protection of Virtual Machines
US8201246B1 (en) 2008-02-25 2012-06-12 Trend Micro Incorporated Preventing malicious codes from performing malicious actions in a computer system
US8204984B1 (en) 2004-04-01 2012-06-19 Fireeye, Inc. Systems and methods for detecting encrypted bot command and control communication channels
US20120174218A1 (en) 2010-12-30 2012-07-05 Everis Inc. Network Communication System With Improved Security
US8220055B1 (en) 2004-02-06 2012-07-10 Symantec Corporation Behavior blocking utilizing positive behavior system and method
US8225288B2 (en) 2008-01-29 2012-07-17 Intuit Inc. Model-based testing using branches, decisions, and options
US8234709B2 (en) 2008-06-20 2012-07-31 Symantec Operating Corporation Streaming malware definition updates
US8233882B2 (en) 2009-06-26 2012-07-31 Vmware, Inc. Providing security in mobile devices via a virtualization software layer
US20120198279A1 (en) 2011-02-02 2012-08-02 Salesforce.Com, Inc. Automated Testing on Mobile Devices
US8239944B1 (en) 2008-03-28 2012-08-07 Symantec Corporation Reducing malware signature set size through server-side processing
US20120210423A1 (en) 2010-12-01 2012-08-16 Oliver Friedrichs Method and apparatus for detecting malicious software through contextual convictions, generic signatures and machine learning techniques
US20120222114A1 (en) 2007-03-06 2012-08-30 Vedvyas Shanbhogue Method and apparatus for network filtering and firewall protection on a secure partition
US8286251B2 (en) 2006-12-21 2012-10-09 Telefonaktiebolaget L M Ericsson (Publ) Obfuscating computer program code
US20120278886A1 (en) 2011-04-27 2012-11-01 Michael Luna Detection and filtering of malware based on traffic observations made in a distributed mobile traffic management system
US8307435B1 (en) 2010-02-18 2012-11-06 Symantec Corporation Software object corruption detection
US20120297489A1 (en) 2005-06-06 2012-11-22 International Business Machines Corporation Computer network intrusion detection
US8321936B1 (en) 2007-05-30 2012-11-27 M86 Security, Inc. System and method for malicious software detection in multiple protocols
US20120317644A1 (en) 2011-06-09 2012-12-13 Microsoft Corporation Applying Antimalware Logic without Revealing the Antimalware Logic to Adversaries
US20120331553A1 (en) 2006-04-20 2012-12-27 Fireeye, Inc. Dynamic signature creation and enforcement
US20120330801A1 (en) 2011-06-27 2012-12-27 Raytheon Company Distributed Malware Detection
US8353031B1 (en) 2006-09-25 2013-01-08 Symantec Corporation Virtual security appliance
US8370939B2 (en) 2010-07-23 2013-02-05 Kaspersky Lab, Zao Protection against malware on web resources
US8370938B1 (en) 2009-04-25 2013-02-05 Dasient, Inc. Mitigating malware
US20130036470A1 (en) 2011-08-03 2013-02-07 Zhu Minghang Cross-vm network filtering
US20130097706A1 (en) 2011-09-16 2013-04-18 Veracode, Inc. Automated behavioral and static analysis using an instrumented sandbox and machine learning classification for mobile security
US20130160131A1 (en) 2011-12-20 2013-06-20 Matias Madou Application security testing
US20130160130A1 (en) 2011-12-20 2013-06-20 Kirill Mendelev Application security testing
US8510842B2 (en) 2011-04-13 2013-08-13 International Business Machines Corporation Pinpointing security vulnerabilities in computer software applications
US8510827B1 (en) 2006-05-18 2013-08-13 Vmware, Inc. Taint tracking mechanism for computer security
US20130227691A1 (en) 2012-02-24 2013-08-29 Ashar Aziz Detecting Malicious Network Content
US8528086B1 (en) 2004-04-01 2013-09-03 Fireeye, Inc. System and method of detecting computer worms
US8539582B1 (en) 2004-04-01 2013-09-17 Fireeye, Inc. Malware containment and security analysis on connection
US20130247186A1 (en) 2012-03-15 2013-09-19 Aaron LeMasters System to Bypass a Compromised Mass Storage Device Driver Stack and Method Thereof
US20130246370A1 (en) 2007-08-29 2013-09-19 Anthony V. Bartram System, method, and computer program product for determining whether code is unwanted based on the decompilation thereof
US8561177B1 (en) 2004-04-01 2013-10-15 Fireeye, Inc. Systems and methods for detecting communication channels of bots
US8566946B1 (en) 2006-04-20 2013-10-22 Fireeye, Inc. Malware containment on connection
US20130298243A1 (en) 2012-05-01 2013-11-07 Taasera, Inc. Systems and methods for orchestrating runtime operational integrity
US8584094B2 (en) 2007-06-29 2013-11-12 Microsoft Corporation Dynamically computing reputation scores for objects
US8584234B1 (en) 2010-07-07 2013-11-12 Symantec Corporation Secure network cache content
US8627476B1 (en) 2010-07-05 2014-01-07 Symantec Corporation Altering application behavior based on content provider reputation
US20140032875A1 (en) 2012-07-27 2014-01-30 James Butler Physical Memory Forensics System and Method
US20140053260A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated Adaptive Observation of Behavioral Features on a Mobile Device
US20140053261A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated On-Line Behavioral Analysis Engine in Mobile Device with Multiple Analyzer Model Providers
US20140096229A1 (en) 2012-09-28 2014-04-03 Juniper Networks, Inc. Virtual honeypot
US20140115578A1 (en) 2012-10-21 2014-04-24 Geoffrey Howard Cooper Providing a virtual security appliance architecture to a virtual cloud infrastructure
US20140181131A1 (en) 2012-12-26 2014-06-26 David Ross Timeline wrinkling system and method
US20140189882A1 (en) 2012-12-28 2014-07-03 Robert Jung System and method for the programmatic runtime de-obfuscation of obfuscated software utilizing virtual machine introspection and manipulation of virtual machine guest memory permissions
US20140189866A1 (en) 2012-12-31 2014-07-03 Jason Shiffer Identification of obfuscated computer items using visual algorithms
US20140283037A1 (en) 2013-03-15 2014-09-18 Michael Sikorski System and Method to Extract and Utilize Disassembly Features to Classify Software Intent
US20140280245A1 (en) 2013-03-15 2014-09-18 Mandiant Corporation System and method to visualize user sessions
US20140283063A1 (en) 2013-03-15 2014-09-18 Matthew Thompson System and Method to Manage Sinkholes
US8850060B1 (en) 2004-04-19 2014-09-30 Acronis International Gmbh Network interface within a designated virtual execution environment (VEE)
US8881282B1 (en) 2004-04-01 2014-11-04 Fireeye, Inc. Systems and methods for malware attack detection and identification
US20140337836A1 (en) 2013-05-10 2014-11-13 Fireeye, Inc. Optimized resource allocation for virtual machines within a malware content detection system
US20140344926A1 (en) 2013-03-15 2014-11-20 Sean Cunningham System and method employing structured intelligence to verify and contain threats at endpoints
US8898788B1 (en) 2004-04-01 2014-11-25 Fireeye, Inc. Systems and methods for malware attack prevention
US20140380474A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. System and Method for Detecting Time-Bomb Malware
US20140380473A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. Zero-day discovery system
US20150007312A1 (en) 2013-06-28 2015-01-01 Vinay Pidathala System and method for detecting malicious links in electronic messages
US8990944B1 (en) 2013-02-23 2015-03-24 Fireeye, Inc. Systems and methods for automatically detecting backdoors
US20150096023A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Fuzzy hash of behavioral results
US20150096025A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. System, Apparatus and Method for Using Malware Analysis Results to Drive Adaptive Instrumentation of Virtual Machines to Improve Exploit Detection
US20150096024A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Advanced persistent threat (apt) detection center
US20150096022A1 (en) 2013-09-30 2015-04-02 Michael Vincent Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US9009823B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for efficient security coverage of mobile software applications installed on mobile devices
US9009822B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for multi-phase analysis of mobile applications
US9027135B1 (en) 2004-04-01 2015-05-05 Fireeye, Inc. Prospective client identification using malware attack detection
US20150186645A1 (en) 2013-12-26 2015-07-02 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US20150220735A1 (en) 2014-02-05 2015-08-06 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US9104867B1 (en) 2013-03-13 2015-08-11 Fireeye, Inc. Malicious content analysis using simulated user interaction without user involvement
US9159035B1 (en) 2013-02-23 2015-10-13 Fireeye, Inc. Framework for computer application analysis of sensitive information tracking
US9176843B1 (en) 2013-02-23 2015-11-03 Fireeye, Inc. Framework for efficient security coverage of mobile software applications
US9189627B1 (en) 2013-11-21 2015-11-17 Fireeye, Inc. System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection
US9195829B1 (en) 2013-02-23 2015-11-24 Fireeye, Inc. User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications
US20150372980A1 (en) 2014-06-24 2015-12-24 Fireeye, Inc. Intrusion prevention and remedy system
US9223972B1 (en) 2014-03-31 2015-12-29 Fireeye, Inc. Dynamically remote tuning of a malware content detection system
US9241010B1 (en) 2014-03-20 2016-01-19 Fireeye, Inc. System and method for network behavior detection
US9251343B1 (en) 2013-03-15 2016-02-02 Fireeye, Inc. Detecting bootkits resident on compromised computers
US20160044000A1 (en) 2014-08-05 2016-02-11 Fireeye, Inc. System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology
US9311479B1 (en) 2013-03-14 2016-04-12 Fireeye, Inc. Correlation and consolidation of analytic data for holistic view of a malware attack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9565202B1 (en) 2013-03-13 2017-02-07 Fireeye, Inc. System and method for detecting exfiltration content

Patent Citations (412)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292580A (en) 1978-11-30 1981-09-29 Siemens Aktiengesellschaft Circuit arrangement for attenuation of power oscillations in networks
US5657473A (en) 1990-02-21 1997-08-12 Arendee Limited Method and apparatus for controlling access to and corruption of information in computer systems
US5175732A (en) 1991-02-15 1992-12-29 Standard Microsystems Corp. Method and apparatus for controlling data communication operations within stations of a local-area network
US5440723A (en) 1993-01-19 1995-08-08 International Business Machines Corporation Automatic immune system for computers and computer networks
US5842002A (en) 1994-06-01 1998-11-24 Quantum Leap Innovations, Inc. Computer virus trap
US6424627B1 (en) 1997-02-24 2002-07-23 Metrobility Optical Systems Full-duplex medium tap apparatus and system
US6094677A (en) 1997-05-30 2000-07-25 International Business Machines Corporation Methods, systems and computer program products for providing insertions during delays in interactive systems
US5978917A (en) 1997-08-14 1999-11-02 Symantec Corporation Detection and elimination of macro viruses
US6357008B1 (en) 1997-09-23 2002-03-12 Symantec Corporation Dynamic heuristic method for detecting computer viruses using decryption exploration and evaluation phases
US6269330B1 (en) 1997-10-07 2001-07-31 Attune Networks Ltd. Fault location and performance testing of communication networks
US6088803A (en) 1997-12-30 2000-07-11 Intel Corporation System for virus-checking network data during download to a client device
US6279113B1 (en) 1998-03-16 2001-08-21 Internet Tools, Inc. Dynamic signature inspection-based network intrusion detection
US6298445B1 (en) 1998-04-30 2001-10-02 Netect, Ltd. Computer security
US20070011174A1 (en) 1998-09-22 2007-01-11 Kazuo Takaragi Method and a device for managing a computer network
US6550012B1 (en) 1998-12-11 2003-04-15 Network Associates, Inc. Active firewall system and methodology
US6487666B1 (en) 1999-01-15 2002-11-26 Cisco Technology, Inc. Intrusion detection signature analysis using regular expressions and logical operators
US6484315B1 (en) 1999-02-01 2002-11-19 Cisco Technology, Inc. Method and system for dynamically distributing updates in a network
US7240368B1 (en) 1999-04-14 2007-07-03 Verizon Corporate Services Group Inc. Intrusion and misuse deterrence system employing a virtual network
US6442696B1 (en) 1999-10-05 2002-08-27 Authoriszor, Inc. System and method for extensible positive client identification
US6493756B1 (en) 1999-10-28 2002-12-10 Networks Associates, Inc. System and method for dynamically sensing an asynchronous network event within a modular framework for network event processing
US6775657B1 (en) 1999-12-22 2004-08-10 Cisco Technology, Inc. Multilayered intrusion detection system and method
US20010005889A1 (en) 1999-12-24 2001-06-28 F-Secure Oyj Remote computer virus scanning
US6832367B1 (en) 2000-03-06 2004-12-14 International Business Machines Corporation Method and system for recording and replaying the execution of distributed java programs
US20010047326A1 (en) 2000-03-14 2001-11-29 Broadbent David F. Interface system for a mortgage loan originator compliance engine
US20080215742A1 (en) 2000-04-28 2008-09-04 German Goldszmidt METHOD AND APPARATUS FOR DYNAMICALLY ADJUSTING RESOURCES ASSIGNED TO PLURALITY OF CUSTOMERS, FOR MEETING SERVICE LEVEL AGREEMENTS (SLAs) WITH MINIMAL RESOURCES, AND ALLOWING COMMON POOLS OF RESOURCES TO BE USED ACROSS PLURAL CUSTOMERS ON A DEMAND BASIS
US20020188887A1 (en) 2000-05-19 2002-12-12 Self Repairing Computers, Inc. Computer with switchable components
US7240364B1 (en) 2000-05-20 2007-07-03 Ciena Corporation Network device identity authentication
US6907396B1 (en) 2000-06-01 2005-06-14 Networks Associates Technology, Inc. Detecting computer viruses or malicious software by patching instructions into an emulator
US7093239B1 (en) 2000-07-14 2006-08-15 Internet Security Systems, Inc. Computer immune system and method for detecting unwanted code in a computer system
WO2002006928A2 (en) 2000-07-14 2002-01-24 Vcis, Inc. Computer immune system and method for detecting unwanted code in a computer system
US20020018903A1 (en) 2000-07-21 2002-02-14 Tadashi Kokubo Anti-thrombogenic material and manufacturing method therefor
US6981279B1 (en) 2000-08-17 2005-12-27 International Business Machines Corporation Method and apparatus for replicating and analyzing worm programs
WO2002023805A2 (en) 2000-09-13 2002-03-21 Karakoram Limited Monitoring network activity
US20020038430A1 (en) 2000-09-13 2002-03-28 Charles Edwards System and method of data collection, processing, analysis, and annotation for monitoring cyber-threats and the notification thereof to subscribers
US7496960B1 (en) 2000-10-30 2009-02-24 Trend Micro, Inc. Tracking and reporting of computer virus information
US20020091819A1 (en) 2001-01-05 2002-07-11 Daniel Melchione System and method for configuring computer applications and devices using inheritance
US20060047665A1 (en) 2001-01-09 2006-03-02 Tim Neil System and method for simulating an application for subsequent deployment to a device in communication with a transaction server
US20020144156A1 (en) 2001-01-31 2002-10-03 Copeland John A. Network port profiling
US20050033960A1 (en) 2001-02-12 2005-02-10 Jukka Vialen Message authentication
US20020166063A1 (en) 2001-03-01 2002-11-07 Cyber Operations, Llc System and method for anti-network terrorism
US20020184528A1 (en) 2001-04-12 2002-12-05 Shevenell Michael P. Method and apparatus for security management via vicarious network devices
US20020162015A1 (en) 2001-04-29 2002-10-31 Zhaomiao Tang Method and system for scanning and cleaning known and unknown computer viruses, recording medium and transmission medium therefor
US7043757B2 (en) 2001-05-22 2006-05-09 Mci, Llc System and method for malicious code detection
US20020194490A1 (en) 2001-06-18 2002-12-19 Avner Halperin System and method of virus containment in computer networks
US7028179B2 (en) 2001-07-03 2006-04-11 Intel Corporation Apparatus and method for secure, automated response to distributed denial of service attacks
US20050021740A1 (en) 2001-08-14 2005-01-27 Bar Anat Bremler Detecting and protecting against worm traffic on a network
US7356736B2 (en) 2001-09-25 2008-04-08 Norman Asa Simulated computer system for monitoring of software performance
US20030074578A1 (en) 2001-10-16 2003-04-17 Richard Ford Computer virus containment
US7007107B1 (en) 2001-10-22 2006-02-28 United Electronic Industries Methods and apparatus for performing data acquisition and control
US20030084318A1 (en) 2001-10-31 2003-05-01 Schertz Richard L. System and method of graphically correlating data for an intrusion protection system
US7080408B1 (en) 2001-11-30 2006-07-18 Mcafee, Inc. Delayed-delivery quarantining of network communications having suspicious contents
US20050210533A1 (en) 2001-11-30 2005-09-22 Copeland John A Packet Sampling Flow-Based Detection of Network Intrusions
US20030115483A1 (en) 2001-12-04 2003-06-19 Trend Micro Incorporated Virus epidemic damage control system and method for network environment
US6895550B2 (en) 2001-12-05 2005-05-17 I2 Technologies Us, Inc. Computer-implemented PDF document management
US7093002B2 (en) 2001-12-06 2006-08-15 Mcafee, Inc. Handling of malware scanning of files stored within a file storage device of a computer network
US20050125195A1 (en) 2001-12-21 2005-06-09 Juergen Brendel Method, apparatus and sofware for network traffic management
US7607171B1 (en) 2002-01-17 2009-10-20 Avinti, Inc. Virus detection by executing e-mail code in a virtual machine
US7100201B2 (en) 2002-01-24 2006-08-29 Arxceo Corporation Undetectable firewall
US7448084B1 (en) 2002-01-25 2008-11-04 The Trustees Of Columbia University In The City Of New York System and methods for detecting intrusions in a computer system by monitoring operating system registry accesses
US20090083855A1 (en) 2002-01-25 2009-03-26 Frank Apap System and methods for detecting intrusions in a computer system by monitoring operating system registry accesses
US7069316B1 (en) 2002-02-19 2006-06-27 Mcafee, Inc. Automated Internet Relay Chat malware monitoring and interception
US20030200460A1 (en) 2002-02-28 2003-10-23 Ntt Docomo, Inc Server apparatus, and information processing method
US7458098B2 (en) 2002-03-08 2008-11-25 Secure Computing Corporation Systems and methods for enhancing electronic communication security
US20030188190A1 (en) 2002-03-26 2003-10-02 Aaron Jeffrey A. System and method of intrusion detection employing broad-scope monitoring
US20030212902A1 (en) 2002-05-13 2003-11-13 Van Der Made Peter A.J. Computer immune system and method for detecting unwanted code in a P-code or partially compiled native-code program executing within a virtual machine
US20040165588A1 (en) 2002-06-11 2004-08-26 Pandya Ashish A. Distributed network security system and a hardware processor therefor
US20030237000A1 (en) 2002-06-19 2003-12-25 International Business Machines Corporation Method, system and program product for detecting intrusion of a wireless network
US20070198275A1 (en) 2002-06-27 2007-08-23 Malden Matthew S Method and system for processing intelligence information
US20040003323A1 (en) 2002-06-29 2004-01-01 Steve Bennett Control over faults occurring during the operation of guest software in the virtual-machine architecture
US7519990B1 (en) 2002-07-19 2009-04-14 Fortinet, Inc. Managing network traffic flow
US20040015712A1 (en) 2002-07-19 2004-01-22 Peter Szor Heuristic detection of malicious computer code by page tracking
US7418729B2 (en) 2002-07-19 2008-08-26 Symantec Corporation Heuristic detection of malicious computer code by page tracking
US7996905B2 (en) 2002-07-23 2011-08-09 Trend Micro Incorporated Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US20080189787A1 (en) 2002-07-23 2008-08-07 International Business Machines Corporation Method and Apparatus for the Automatic Determination of Potentially Worm-Like Behavior of a Program
US7487543B2 (en) 2002-07-23 2009-02-03 International Business Machines Corporation Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US20040019832A1 (en) 2002-07-23 2004-01-29 International Business Machines Corporation Method and apparatus for the automatic determination of potentially worm-like behavior of a program
US7464407B2 (en) 2002-08-20 2008-12-09 Nec Corporation Attack defending system and attack defending method
US20040047356A1 (en) 2002-09-06 2004-03-11 Bauer Blaine D. Network traffic monitoring
US7467408B1 (en) 2002-09-09 2008-12-16 Cisco Technology, Inc. Method and apparatus for capturing and filtering datagrams for network security monitoring
US7159149B2 (en) 2002-10-24 2007-01-02 Symantec Corporation Heuristic detection and termination of fast spreading network worm attacks
US20040083408A1 (en) 2002-10-24 2004-04-29 Mark Spiegel Heuristic detection and termination of fast spreading network worm attacks
US20060173992A1 (en) 2002-11-04 2006-08-03 Daniel Weber Event detection/anomaly correlation heuristics
US20050033989A1 (en) 2002-11-04 2005-02-10 Poletto Massimiliano Antonio Detection of scanning attacks
US20040093513A1 (en) 2002-11-07 2004-05-13 Tippingpoint Technologies, Inc. Active network defense system and method
US20040111531A1 (en) 2002-12-06 2004-06-10 Stuart Staniford Method and system for reducing the rate of infection of a communications network by a software worm
US7428300B1 (en) 2002-12-09 2008-09-23 Verizon Laboratories Inc. Diagnosing fault patterns in telecommunication networks
US20040249911A1 (en) 2003-03-31 2004-12-09 Alkhatib Hasan S. Secure virtual community network system
US6898632B2 (en) 2003-03-31 2005-05-24 Finisar Corporation Network security tap for use with intrusion detection system
US20040255161A1 (en) 2003-04-12 2004-12-16 Deep Nines, Inc. System and method for network edge data protection
US20060150249A1 (en) 2003-05-07 2006-07-06 Derek Gassen Method and apparatus for predictive and actual intrusion detection on a network
US20060075496A1 (en) 2003-05-20 2006-04-06 International Bussiness Machines Corporation Applying blocking measures progressively to malicious network traffic
US7464404B2 (en) 2003-05-20 2008-12-09 International Business Machines Corporation Method of responding to a truncated secure session attack
US20040236963A1 (en) 2003-05-20 2004-11-25 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US20080072326A1 (en) 2003-05-20 2008-03-20 Danford Robert W Applying blocking measures progressively to malicious network traffic
US7308716B2 (en) 2003-05-20 2007-12-11 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US7707633B2 (en) 2003-05-20 2010-04-27 International Business Machines Corporation Applying blocking measures progressively to malicious network traffic
US7231667B2 (en) 2003-05-29 2007-06-12 Computer Associates Think, Inc. System and method for computer virus detection utilizing heuristic analysis
US20040243349A1 (en) 2003-05-30 2004-12-02 Segue Software, Inc. Method of non-intrusive analysis of secure and non-secure web application traffic in real-time
US20050050148A1 (en) 2003-06-18 2005-03-03 Said Mohammadioun System and method for providing notification on remote devices
US20040268147A1 (en) 2003-06-30 2004-12-30 Wiederin Shawn E Integrated security system
US7386888B2 (en) 2003-08-29 2008-06-10 Trend Micro, Inc. Network isolation techniques suitable for virus protection
US7392542B2 (en) 2003-08-29 2008-06-24 Seagate Technology Llc Restoration of data corrupted by viruses using pre-infected copy of data
US7565550B2 (en) 2003-08-29 2009-07-21 Trend Micro, Inc. Automatic registration of a virus/worm monitor in a distributed network
US7523493B2 (en) 2003-08-29 2009-04-21 Trend Micro Incorporated Virus monitor and methods of use thereof
US7287278B2 (en) 2003-08-29 2007-10-23 Trend Micro, Inc. Innoculation of computing devices against a selected computer virus
US20070064689A1 (en) 2003-09-19 2007-03-22 Shin Yong M Method of controlling communication between devices in a network and apparatus for the same
US7644441B2 (en) 2003-09-26 2010-01-05 Cigital, Inc. Methods for identifying malicious software
US7496961B2 (en) 2003-10-15 2009-02-24 Intel Corporation Methods and apparatus to provide network traffic support and physical security support
US20050086523A1 (en) 2003-10-15 2005-04-21 Zimmer Vincent J. Methods and apparatus to provide network traffic support and physical security support
US20050091513A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device, method and program for detecting unauthorized access
US20050091533A1 (en) 2003-10-28 2005-04-28 Fujitsu Limited Device and method for worm detection, and computer product
US20050265331A1 (en) 2003-11-12 2005-12-01 The Trustees Of Columbia University In The City Of New York Apparatus method and medium for tracing the origin of network transmissions using n-gram distribution of data
US20100054278A1 (en) 2003-11-12 2010-03-04 Stolfo Salvatore J Apparatus method and medium for detecting payload anomaly using n-gram distribution of normal data
US7639714B2 (en) 2003-11-12 2009-12-29 The Trustees Of Columbia University In The City Of New York Apparatus method and medium for detecting payload anomaly using n-gram distribution of normal data
US20050114663A1 (en) 2003-11-21 2005-05-26 Finisar Corporation Secure network access devices with data encryption
US20050201297A1 (en) 2003-12-12 2005-09-15 Cyrus Peikari Diagnosis of embedded, wireless mesh networks with real-time, flexible, location-specific signaling
US20050157662A1 (en) 2004-01-20 2005-07-21 Justin Bingham Systems and methods for detecting a compromised network
US8220055B1 (en) 2004-02-06 2012-07-10 Symantec Corporation Behavior blocking utilizing positive behavior system and method
US7530104B1 (en) 2004-02-09 2009-05-05 Symantec Corporation Threat analysis
US20050183143A1 (en) 2004-02-13 2005-08-18 Anderholm Eric J. Methods and systems for monitoring user, application or device activity
US9027135B1 (en) 2004-04-01 2015-05-05 Fireeye, Inc. Prospective client identification using malware attack detection
US9197664B1 (en) 2004-04-01 2015-11-24 Fire Eye, Inc. System and method for malware containment
US8776229B1 (en) 2004-04-01 2014-07-08 Fireeye, Inc. System and method of detecting malicious traffic while reducing false positives
US8689333B2 (en) 2004-04-01 2014-04-01 Fireeye, Inc. Malware defense system and method
US8635696B1 (en) 2004-04-01 2014-01-21 Fireeye, Inc. System and method of detecting time-delayed malicious traffic
US8584239B2 (en) 2004-04-01 2013-11-12 Fireeye, Inc. Virtual machine with dynamic data flow analysis
US8898788B1 (en) 2004-04-01 2014-11-25 Fireeye, Inc. Systems and methods for malware attack prevention
US20160127393A1 (en) 2004-04-01 2016-05-05 Fireeye, Inc. Electronic Message Analysis For Malware Detection
US8984638B1 (en) 2004-04-01 2015-03-17 Fireeye, Inc. System and method for analyzing suspicious network data
US8539582B1 (en) 2004-04-01 2013-09-17 Fireeye, Inc. Malware containment and security analysis on connection
US8528086B1 (en) 2004-04-01 2013-09-03 Fireeye, Inc. System and method of detecting computer worms
US8516593B2 (en) 2004-04-01 2013-08-20 Fireeye, Inc. Systems and methods for computer worm defense
US20130047257A1 (en) 2004-04-01 2013-02-21 Ashar Aziz Systems and Methods for Computer Worm Defense
US20130036472A1 (en) 2004-04-01 2013-02-07 FireEye, Inc Computer Worm Defense System and Method
US9306960B1 (en) 2004-04-01 2016-04-05 Fireeye, Inc. Systems and methods for unauthorized activity defense
US8793787B2 (en) 2004-04-01 2014-07-29 Fireeye, Inc. Detecting malicious network content using virtual environment components
US8561177B1 (en) 2004-04-01 2013-10-15 Fireeye, Inc. Systems and methods for detecting communication channels of bots
US9071638B1 (en) 2004-04-01 2015-06-30 Fireeye, Inc. System and method for malware containment
US20080005782A1 (en) 2004-04-01 2008-01-03 Ashar Aziz Heuristic based capture with replay to virtual machine
US8291499B2 (en) 2004-04-01 2012-10-16 Fireeye, Inc. Policy based capture with replay to virtual machine
US9106694B2 (en) 2004-04-01 2015-08-11 Fireeye, Inc. Electronic message analysis for malware detection
US9282109B1 (en) 2004-04-01 2016-03-08 Fireeye, Inc. System and method for analyzing packets
US20120174186A1 (en) 2004-04-01 2012-07-05 Ashar Aziz Policy Based Capture with Replay to Virtual Machine
US20100192223A1 (en) 2004-04-01 2010-07-29 Osman Abdoul Ismael Detecting Malicious Network Content Using Virtual Environment Components
US8204984B1 (en) 2004-04-01 2012-06-19 Fireeye, Inc. Systems and methods for detecting encrypted bot command and control communication channels
US8171553B2 (en) 2004-04-01 2012-05-01 Fireeye, Inc. Heuristic based capture with replay to virtual machine
US20110314546A1 (en) 2004-04-01 2011-12-22 Ashar Aziz Electronic Message Analysis for Malware Detection
US8881282B1 (en) 2004-04-01 2014-11-04 Fireeye, Inc. Systems and methods for malware attack detection and identification
US20070250930A1 (en) 2004-04-01 2007-10-25 Ashar Aziz Virtual machine with dynamic data flow analysis
US20080307524A1 (en) 2004-04-08 2008-12-11 The Regents Of The University Of California Detecting Public Network Attacks Using Signatures and Fast Content Analysis
US8850060B1 (en) 2004-04-19 2014-09-30 Acronis International Gmbh Network interface within a designated virtual execution environment (VEE)
US20050238005A1 (en) 2004-04-21 2005-10-27 Yi-Fen Chen Method and apparatus for controlling traffic in a computer network
US7779463B2 (en) 2004-05-11 2010-08-17 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US20100281541A1 (en) 2004-05-11 2010-11-04 The Trustees Of Columbia University In The City Of New York Systems and Methods for Correlating and Distributing Intrusion Alert Information Among Collaborating Computer Systems
US7441272B2 (en) 2004-06-09 2008-10-21 Intel Corporation Techniques for self-isolation of networked devices
US20110099633A1 (en) 2004-06-14 2011-04-28 NetForts, Inc. System and method of containing computer worms
US20110093951A1 (en) 2004-06-14 2011-04-21 NetForts, Inc. Computer worm defense system and method
US8549638B2 (en) 2004-06-14 2013-10-01 Fireeye, Inc. System and method of containing computer worms
US8006305B2 (en) 2004-06-14 2011-08-23 Fireeye, Inc. Computer worm defense system and method
US20060010495A1 (en) 2004-07-06 2006-01-12 Oded Cohen Method for protecting a computer from suspicious objects
US20070271446A1 (en) 2004-07-16 2007-11-22 Tomonori Nakamura Application Execution Device and Application Execution Device Application Execution Method
US20060015715A1 (en) 2004-07-16 2006-01-19 Eric Anderson Automatically protecting network service from network attack
US7603715B2 (en) 2004-07-21 2009-10-13 Microsoft Corporation Containment of worms
US20060021054A1 (en) 2004-07-21 2006-01-26 Microsoft Corporation Containment of worms
US20060031476A1 (en) 2004-08-05 2006-02-09 Mathes Marvin L Apparatus and method for remotely monitoring a computer network
US20070006313A1 (en) 2004-09-17 2007-01-04 Phillip Porras Method and apparatus for combating malicious code
US20060070130A1 (en) 2004-09-27 2006-03-30 Microsoft Corporation System and method of identifying the source of an attack on a computer network
US20090083369A1 (en) 2004-10-04 2009-03-26 Netmask (El-Mar) Dynamic content conversion
US20060101516A1 (en) 2004-10-12 2006-05-11 Sushanthan Sudaharan Honeynet farms as an early warning system for production networks
US7849506B1 (en) 2004-10-12 2010-12-07 Avaya Inc. Switching device, method, and computer program for efficient intrusion detection
US20060101517A1 (en) 2004-10-28 2006-05-11 Banzhof Carl E Inventory management-based computer vulnerability resolution system
US20060095968A1 (en) 2004-10-28 2006-05-04 Cisco Technology, Inc. Intrusion detection in a data center environment
US20090328185A1 (en) 2004-11-04 2009-12-31 Eric Van Den Berg Detecting exploit code in network flows
US20060161987A1 (en) 2004-11-10 2006-07-20 Guy Levy-Yurista Detecting and remedying unauthorized computer programs
US7540025B2 (en) 2004-11-18 2009-05-26 Cisco Technology, Inc. Mitigating network attacks using automatic signature generation
US20100281542A1 (en) 2004-11-24 2010-11-04 The Trustees Of Columbia University In The City Of New York Systems and Methods for Correlating and Distributing Intrusion Alert Information Among Collaborating Computer Systems
US7784097B1 (en) 2004-11-24 2010-08-24 The Trustees Of Columbia University In The City Of New York Systems and methods for correlating and distributing intrusion alert information among collaborating computer systems
US20060117385A1 (en) 2004-11-30 2006-06-01 Mester Michael L Monitoring propagation protection within a network
US7996556B2 (en) 2004-12-06 2011-08-09 Cisco Technology, Inc. Method and apparatus for generating a network topology representation based on inspection of application messages at a network device
US20060123477A1 (en) 2004-12-06 2006-06-08 Kollivakkam Raghavan Method and apparatus for generating a network topology representation based on inspection of application messages at a network device
US20060161989A1 (en) 2004-12-13 2006-07-20 Eran Reshef System and method for deterring rogue users from attacking protected legitimate users
US7937761B1 (en) 2004-12-17 2011-05-03 Symantec Corporation Differential threat detection processing
US20060143709A1 (en) 2004-12-27 2006-06-29 Raytheon Company Network intrusion prevention
US20060161983A1 (en) 2005-01-20 2006-07-20 Cothrell Scott A Inline intrusion detection
US20060164199A1 (en) 2005-01-26 2006-07-27 Lockdown Networks, Inc. Network appliance for securely quarantining a node on a network
US7676841B2 (en) 2005-02-01 2010-03-09 Fmr Llc Network intrusion mitigation
US20060179147A1 (en) 2005-02-07 2006-08-10 Veritas Operating Corporation System and method for connection failover using redirection
US20060184632A1 (en) 2005-02-15 2006-08-17 Spam Cube, Inc. Apparatus and method for analyzing and filtering email and for providing web related services
US20060191010A1 (en) 2005-02-18 2006-08-24 Pace University System for intrusion detection and vulnerability assessment in a computer network using simulation and machine learning
US7869073B2 (en) 2005-03-22 2011-01-11 Fuji Xerox Co., Ltd. Image forming system, image forming method and information terminal device
US20060236393A1 (en) 2005-03-31 2006-10-19 Microsoft Corporation System and method for protecting a limited resource computer from malware
US20060221956A1 (en) 2005-03-31 2006-10-05 Narayan Harsha L Methods for performing packet classification via prefix pair bit vectors
US20060251104A1 (en) 2005-03-31 2006-11-09 Fujitsu Limited Service apparatus, method of controlling switching of connection destination of client apparatus by service apparatus, and storage medium readable by machine
US20080098476A1 (en) 2005-04-04 2008-04-24 Bae Systems Information And Electronic Systems Integration Inc. Method and Apparatus for Defending Against Zero-Day Worm-Based Attacks
US7904959B2 (en) 2005-04-18 2011-03-08 The Trustees Of Columbia University In The City Of New York Systems and methods for detecting and inhibiting attacks using honeypots
US20060242709A1 (en) 2005-04-21 2006-10-26 Microsoft Corporation Protecting a computer that provides a Web service from malware
US7480773B1 (en) 2005-05-02 2009-01-20 Sprint Communications Company L.P. Virtual machine use and optimization of hardware configurations
US7930738B1 (en) 2005-06-02 2011-04-19 Adobe Systems Incorporated Method and apparatus for secure execution of code
US20120297489A1 (en) 2005-06-06 2012-11-22 International Business Machines Corporation Computer network intrusion detection
US20060288417A1 (en) 2005-06-21 2006-12-21 Sbc Knowledge Ventures Lp Method and apparatus for mitigating the effects of malicious software in a communication network
US7877803B2 (en) 2005-06-27 2011-01-25 Hewlett-Packard Development Company, L.P. Automated immune response for a computer
US20070006288A1 (en) 2005-06-30 2007-01-04 Microsoft Corporation Controlling network access
US20070016951A1 (en) 2005-07-13 2007-01-18 Piccard Paul L Systems and methods for identifying sources of malware
US20070033645A1 (en) 2005-07-22 2007-02-08 Alcatel DNS based enforcement for confinement and detection of network malicious activities
US20070038943A1 (en) 2005-08-15 2007-02-15 Cisco Technology, Inc. Interactive text communication system
US20070094730A1 (en) 2005-10-20 2007-04-26 Cisco Technology, Inc. Mechanism to correlate the presence of worms in a network
US20090158430A1 (en) 2005-10-21 2009-06-18 Borders Kevin R Method, system and computer program product for detecting at least one of security threats and undesirable computer files
US7698548B2 (en) 2005-12-08 2010-04-13 Microsoft Corporation Communications traffic segregation for security purposes
US20070143827A1 (en) 2005-12-21 2007-06-21 Fiberlink Methods and systems for intelligently controlling access to computing resources
US20070156895A1 (en) 2005-12-29 2007-07-05 Research In Motion Limited System and method of dynamic management of spam
US20090271867A1 (en) 2005-12-30 2009-10-29 Peng Zhang Virtual machine to detect malicious code
US20070157306A1 (en) 2005-12-30 2007-07-05 Elrod Craig T Network threat detection and mitigation
US20070157180A1 (en) 2005-12-30 2007-07-05 Microsoft Corporation Approximating finite domains in symbolic state exploration
US20070174915A1 (en) 2006-01-23 2007-07-26 University Of Washington Detection of spyware threats within virtual machine
US20070171921A1 (en) * 2006-01-24 2007-07-26 Citrix Systems, Inc. Methods and systems for interacting, via a hypermedium page, with a virtual machine executing in a terminal services session
US20070171824A1 (en) 2006-01-25 2007-07-26 Cisco Technology, Inc. A California Corporation Sampling rate-limited traffic
US20070192500A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Network access control including dynamic policy enforcement point
US20070192858A1 (en) 2006-02-16 2007-08-16 Infoexpress, Inc. Peer based network access control
US8381299B2 (en) 2006-02-28 2013-02-19 The Trustees Of Columbia University In The City Of New York Systems, methods, and media for outputting a dataset based upon anomaly detection
US20090193293A1 (en) 2006-02-28 2009-07-30 Stolfo Salvatore J Systems, Methods, and Media for Outputting Data Based Upon Anomaly Detection
US20070240219A1 (en) 2006-04-06 2007-10-11 George Tuvell Malware Detection System And Method for Compressed Data on Mobile Platforms
US8321941B2 (en) 2006-04-06 2012-11-27 Juniper Networks, Inc. Malware modeling detection system and method for mobile platforms
US8312545B2 (en) 2006-04-06 2012-11-13 Juniper Networks, Inc. Non-signature malware detection system and method for mobile platforms
US20070240218A1 (en) 2006-04-06 2007-10-11 George Tuvell Malware Detection System and Method for Mobile Platforms
US20070240220A1 (en) 2006-04-06 2007-10-11 George Tuvell System and method for managing malware protection on mobile devices
US20070240222A1 (en) 2006-04-06 2007-10-11 George Tuvell System and Method for Managing Malware Protection on Mobile Devices
WO2007117636A2 (en) 2006-04-06 2007-10-18 Smobile Systems, Inc. Malware detection system and method for comprssed data on mobile platforms
US20120331553A1 (en) 2006-04-20 2012-12-27 Fireeye, Inc. Dynamic signature creation and enforcement
US8375444B2 (en) 2006-04-20 2013-02-12 Fireeye, Inc. Dynamic signature creation and enforcement
US8566946B1 (en) 2006-04-20 2013-10-22 Fireeye, Inc. Malware containment on connection
US8510827B1 (en) 2006-05-18 2013-08-13 Vmware, Inc. Taint tracking mechanism for computer security
US8365286B2 (en) 2006-06-30 2013-01-29 Sophos Plc Method and system for classification of software using characteristics and combinations of such characteristics
US20090187992A1 (en) 2006-06-30 2009-07-23 Poston Robert J Method and system for classification of software using characteristics and combinations of such characteristics
GB2439806A (en) 2006-06-30 2008-01-09 Sophos Plc Classifying software as malware using characteristics (or "genes")
US8020206B2 (en) 2006-07-10 2011-09-13 Websense, Inc. System and method of analyzing web content
US20080077793A1 (en) 2006-09-21 2008-03-27 Sensory Networks, Inc. Apparatus and method for high throughput network security systems
US8353031B1 (en) 2006-09-25 2013-01-08 Symantec Corporation Virtual security appliance
US20080080518A1 (en) 2006-09-29 2008-04-03 Hoeflin David A Method and apparatus for detecting compromised host computers
WO2008041950A2 (en) 2006-10-04 2008-04-10 Trek 2000 International Ltd. Method, apparatus and system for authentication of external storage devices
US20100017546A1 (en) 2006-10-04 2010-01-21 Trek 2000 International Ltd. Method, apparatus and system for authentication of external storage devices
US7832008B1 (en) 2006-10-11 2010-11-09 Cisco Technology, Inc. Protection of computer resources
US8225373B2 (en) 2006-10-11 2012-07-17 Cisco Technology, Inc. Protection of computer resources
US20080134178A1 (en) 2006-10-17 2008-06-05 Manageiq, Inc. Control and management of virtual systems
US20080141376A1 (en) 2006-10-24 2008-06-12 Pc Tools Technology Pty Ltd. Determining maliciousness of software
US20080120722A1 (en) 2006-11-17 2008-05-22 Caleb Sima Web application assessment based on intelligent generation of attack strings
US20080134334A1 (en) 2006-11-30 2008-06-05 Electronics And Telecommunications Research Institute Apparatus and method for detecting network attack
US20090031423A1 (en) 2006-12-20 2009-01-29 Peng Liu Proactive worm containment (pwc) for enterprise networks
US8286251B2 (en) 2006-12-21 2012-10-09 Telefonaktiebolaget L M Ericsson (Publ) Obfuscating computer program code
US8045094B2 (en) 2006-12-26 2011-10-25 Sharp Kabushiki Kaisha Backlight device, display device, and television receiver
US20080162849A1 (en) * 2006-12-27 2008-07-03 Uday Savagaonkar Providing protected access to critical memory regions
US7996836B1 (en) 2006-12-29 2011-08-09 Symantec Corporation Using a hypervisor to provide computer security
US20080184367A1 (en) 2007-01-25 2008-07-31 Mandiant, Inc. System and method for determining data entropy to identify malware
US20080184373A1 (en) 2007-01-25 2008-07-31 Microsoft Corporation Protection Agents and Privilege Modes
US8069484B2 (en) 2007-01-25 2011-11-29 Mandiant Corporation System and method for determining data entropy to identify malware
US7908660B2 (en) 2007-02-06 2011-03-15 Microsoft Corporation Dynamic risk management
US20080222729A1 (en) 2007-03-05 2008-09-11 Songqing Chen Containment of Unknown and Polymorphic Fast Spreading Worms
US20120222114A1 (en) 2007-03-06 2012-08-30 Vedvyas Shanbhogue Method and apparatus for network filtering and firewall protection on a secure partition
US20080320594A1 (en) 2007-03-19 2008-12-25 Xuxian Jiang Malware Detector
US20080263665A1 (en) 2007-04-20 2008-10-23 Juniper Networks, Inc. Network attack detection using partial deterministic finite automaton pattern matching
US20080295172A1 (en) 2007-05-22 2008-11-27 Khushboo Bohacek Method, system and computer-readable media for reducing undesired intrusion alarms in electronic communications systems and networks
US8402529B1 (en) 2007-05-30 2013-03-19 M86 Security, Inc. Preventing propagation of malicious software during execution in a virtual machine
US8321936B1 (en) 2007-05-30 2012-11-27 M86 Security, Inc. System and method for malicious software detection in multiple protocols
US20080301810A1 (en) 2007-06-04 2008-12-04 Agilent Technologies, Inc. Monitoring apparatus and method therefor
US20090007100A1 (en) 2007-06-28 2009-01-01 Microsoft Corporation Suspending a Running Operating System to Enable Security Scanning
US8584094B2 (en) 2007-06-29 2013-11-12 Microsoft Corporation Dynamically computing reputation scores for objects
US20090013408A1 (en) 2007-07-06 2009-01-08 Messagelabs Limited Detection of exploits in files
US20090036111A1 (en) 2007-07-30 2009-02-05 Mobile Iron, Inc. Virtual Instance Architecture for Mobile Device Management Systems
US20090044024A1 (en) 2007-08-06 2009-02-12 The Regents Of The University Of Michigan Network service for the detection, analysis and quarantine of malicious and unwanted files
US20090044274A1 (en) 2007-08-08 2009-02-12 Vmware, Inc. Impeding Progress of Malicious Guest Software
US20130246370A1 (en) 2007-08-29 2013-09-19 Anthony V. Bartram System, method, and computer program product for determining whether code is unwanted based on the decompilation thereof
US8307443B2 (en) 2007-09-28 2012-11-06 Microsoft Corporation Securing anti-virus software with virtualization
US20090089879A1 (en) 2007-09-28 2009-04-02 Microsoft Corporation Securing anti-virus software with virtualization
US20090126015A1 (en) 2007-10-02 2009-05-14 Monastyrsky Alexey V System and method for detecting multi-component malware
US20090126016A1 (en) 2007-10-02 2009-05-14 Andrey Sobko System and method for detecting multi-component malware
US20090094697A1 (en) 2007-10-05 2009-04-09 Google Inc. Intrusive software management
US20090125976A1 (en) 2007-11-08 2009-05-14 Docomo Communications Laboratories Usa, Inc. Automated test input generation for web applications
US8045458B2 (en) 2007-11-08 2011-10-25 Mcafee, Inc. Prioritizing network traffic
US20090133125A1 (en) 2007-11-21 2009-05-21 Yang Seo Choi Method and apparatus for malware detection
US8010667B2 (en) 2007-12-12 2011-08-30 Vmware, Inc. On-access anti-virus mechanism for virtual machine architecture
US8225288B2 (en) 2008-01-29 2012-07-17 Intuit Inc. Model-based testing using branches, decisions, and options
US20130318073A1 (en) 2008-02-01 2013-11-28 Jason Shiffer Method and System for Collecting and Organizing Data Corresponding to an Event
US20110173213A1 (en) 2008-02-01 2011-07-14 Matthew Frazier System and method for data preservation and retrieval
US20090198651A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for analyzing data related to an event
US20130325872A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Collecting and Organizing Data Corresponding to an Event
US20090199274A1 (en) 2008-02-01 2009-08-06 Matthew Frazier method and system for collaboration during an event
US20090198689A1 (en) 2008-02-01 2009-08-06 Matthew Frazier System and method for data preservation and retrieval
US20130325792A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Analyzing Data Related to an Event
US20090198670A1 (en) 2008-02-01 2009-08-06 Jason Shiffer Method and system for collecting and organizing data corresponding to an event
US20130325791A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Analyzing Data Related to an Event
US20130318038A1 (en) 2008-02-01 2013-11-28 Jason Shiffer Method and System for Analyzing Data Related to an Event
US20130325871A1 (en) 2008-02-01 2013-12-05 Jason Shiffer Method and System for Collecting and Organizing Data Corresponding to an Event
US8595834B2 (en) 2008-02-04 2013-11-26 Samsung Electronics Co., Ltd Detecting unauthorized use of computing devices based on behavioral patterns
US20090199296A1 (en) 2008-02-04 2009-08-06 Samsung Electronics Co., Ltd. Detecting unauthorized use of computing devices based on behavioral patterns
US8201246B1 (en) 2008-02-25 2012-06-12 Trend Micro Incorporated Preventing malicious codes from performing malicious actions in a computer system
US20090228233A1 (en) 2008-03-06 2009-09-10 Anderson Gary F Rank-based evaluation
US20090241187A1 (en) 2008-03-19 2009-09-24 Websense, Inc. Method and system for protection against information stealing software
US20090241190A1 (en) 2008-03-24 2009-09-24 Michael Todd System and method for securing a network from zero-day vulnerability exploits
US8239944B1 (en) 2008-03-28 2012-08-07 Symantec Corporation Reducing malware signature set size through server-side processing
US20090265692A1 (en) 2008-04-21 2009-10-22 Microsoft Corporation Active property checking
US20090300761A1 (en) 2008-05-28 2009-12-03 John Park Intelligent Hashes for Centralized Malware Detection
US8234709B2 (en) 2008-06-20 2012-07-31 Symantec Operating Corporation Streaming malware definition updates
US20090328221A1 (en) 2008-06-30 2009-12-31 Microsoft Corporation Malware detention for suspected malware
US8087086B1 (en) 2008-06-30 2011-12-27 Symantec Corporation Method for mitigating false positive generation in antivirus software
US20100030996A1 (en) 2008-08-01 2010-02-04 Mandiant, Inc. System and Method for Forensic Identification of Elements Within a Computer System
US20100043073A1 (en) 2008-08-13 2010-02-18 Fujitsu Limited Anti-virus method, computer, and recording medium
US20100058474A1 (en) 2008-08-29 2010-03-04 Avg Technologies Cz, S.R.O. System and method for the detection of malware
US20100064044A1 (en) 2008-09-05 2010-03-11 Kabushiki Kaisha Toshiba Information Processing System and Control Method for Information Processing System
US20100077481A1 (en) 2008-09-22 2010-03-25 Microsoft Corporation Collecting and analyzing malware data
US20100083376A1 (en) 2008-09-26 2010-04-01 Symantec Corporation Method and apparatus for reducing false positive detection of malware
US8028338B1 (en) 2008-09-30 2011-09-27 Symantec Corporation Modeling goodware characteristics to reduce false positive malware signatures
US20110047620A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for server-coupled malware prevention
US20110047594A1 (en) 2008-10-21 2011-02-24 Lookout, Inc., A California Corporation System and method for mobile communication device application advisement
US20110145920A1 (en) 2008-10-21 2011-06-16 Lookout, Inc System and method for adverse mobile application identification
US20130263260A1 (en) 2008-10-21 2013-10-03 Lookout, Inc. System and method for assessing an application to be installed on a mobile communication device
US20130291109A1 (en) 2008-11-03 2013-10-31 Fireeye, Inc. Systems and Methods for Scheduling Analysis of Network Content for Malware
US20120222121A1 (en) 2008-11-03 2012-08-30 Stuart Gresley Staniford Systems and Methods for Detecting Malicious PDF Network Content
US20100115621A1 (en) 2008-11-03 2010-05-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious Network Content
US20150180886A1 (en) 2008-11-03 2015-06-25 Fireeye, Inc. Systems and Methods for Scheduling Analysis of Network Content for Malware
US8850571B2 (en) 2008-11-03 2014-09-30 Fireeye, Inc. Systems and methods for detecting malicious network content
US9118715B2 (en) 2008-11-03 2015-08-25 Fireeye, Inc. Systems and methods for detecting malicious PDF network content
US20110247072A1 (en) 2008-11-03 2011-10-06 Stuart Gresley Staniford Systems and Methods for Detecting Malicious PDF Network Content
US8990939B2 (en) 2008-11-03 2015-03-24 Fireeye, Inc. Systems and methods for scheduling analysis of network content for malware
US8997219B2 (en) 2008-11-03 2015-03-31 Fireeye, Inc. Systems and methods for detecting malicious PDF network content
US20100132038A1 (en) 2008-11-26 2010-05-27 Zaitsev Oleg V System and Method for Computer Malware Detection
US20100154056A1 (en) 2008-12-17 2010-06-17 Symantec Corporation Context-Aware Real-Time Computer-Protection Systems and Methods
US20100287260A1 (en) 2009-03-13 2010-11-11 Docusign, Inc. Systems and methods for document management transformation and security
US20100251104A1 (en) 2009-03-27 2010-09-30 Litera Technology Llc. System and method for reflowing content in a structured portable document format (pdf) file
US8370938B1 (en) 2009-04-25 2013-02-05 Dasient, Inc. Mitigating malware
US20100281102A1 (en) 2009-05-02 2010-11-04 Chinta Madhav Methods and systems for launching applications into existing isolation environments
US8233882B2 (en) 2009-06-26 2012-07-31 Vmware, Inc. Providing security in mobile devices via a virtualization software layer
US20110025504A1 (en) 2009-07-31 2011-02-03 Lyon Geoff M USB Hosted Sensor Module
US20110041179A1 (en) 2009-08-11 2011-02-17 F-Secure Oyj Malware detection
US8832829B2 (en) 2009-09-30 2014-09-09 Fireeye, Inc. Network-based binary file extraction and analysis for malware detection
US8935779B2 (en) 2009-09-30 2015-01-13 Fireeye, Inc. Network-based binary file extraction and analysis for malware detection
US20110078794A1 (en) 2009-09-30 2011-03-31 Jayaraman Manni Network-Based Binary File Extraction and Analysis for Malware Detection
US20120117652A1 (en) 2009-09-30 2012-05-10 Jayaraman Manni Network-Based Binary File Extraction and Analysis for Malware Detection
US8713681B2 (en) 2009-10-27 2014-04-29 Mandiant, Llc System and method for detecting executable machine instructions in a data stream
US20140237600A1 (en) 2009-10-27 2014-08-21 Peter J Silberman System and method for detecting executable machine instructions in a data stream
US20110099635A1 (en) 2009-10-27 2011-04-28 Silberman Peter J System and method for detecting executable machine instructions in a data stream
US20110113231A1 (en) 2009-11-12 2011-05-12 Daniel Kaminsky System and method for providing secure reception and viewing of transmitted data over a network
WO2011084431A2 (en) 2009-12-15 2011-07-14 Mcafee, Inc. Systems and methods for behavioral sandboxing
US20110167494A1 (en) 2009-12-31 2011-07-07 Bowen Brian M Methods, systems, and media for detecting covert malware
US8307435B1 (en) 2010-02-18 2012-11-06 Symantec Corporation Software object corruption detection
US20110265182A1 (en) 2010-04-27 2011-10-27 Microsoft Corporation Malware investigation by analyzing computer memory
US20110271342A1 (en) 2010-04-28 2011-11-03 Electronics And Telecommunications Research Institute Defense method and device against intelligent bots using masqueraded virtual machine information
US20110307956A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for analyzing malicious code using a static analyzer
US20110307954A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for improving coverage for web code
US20110307955A1 (en) 2010-06-11 2011-12-15 M86 Security, Inc. System and method for detecting malicious content
US8627476B1 (en) 2010-07-05 2014-01-07 Symantec Corporation Altering application behavior based on content provider reputation
US8584234B1 (en) 2010-07-07 2013-11-12 Symantec Corporation Secure network cache content
US8370939B2 (en) 2010-07-23 2013-02-05 Kaspersky Lab, Zao Protection against malware on web resources
US20120079596A1 (en) 2010-08-26 2012-03-29 Verisign, Inc. Method and system for automatic detection and analysis of malware
US20120084859A1 (en) 2010-09-30 2012-04-05 Microsoft Corporation Realtime multiple engine selection and combining
US20120210423A1 (en) 2010-12-01 2012-08-16 Oliver Friedrichs Method and apparatus for detecting malicious software through contextual convictions, generic signatures and machine learning techniques
US20120144489A1 (en) 2010-12-07 2012-06-07 Microsoft Corporation Antimalware Protection of Virtual Machines
US20120174218A1 (en) 2010-12-30 2012-07-05 Everis Inc. Network Communication System With Improved Security
US20120198279A1 (en) 2011-02-02 2012-08-02 Salesforce.Com, Inc. Automated Testing on Mobile Devices
US8510842B2 (en) 2011-04-13 2013-08-13 International Business Machines Corporation Pinpointing security vulnerabilities in computer software applications
WO2012145066A1 (en) 2011-04-18 2012-10-26 Fireeye, Inc. Electronic message analysis for malware detection
US20120278886A1 (en) 2011-04-27 2012-11-01 Michael Luna Detection and filtering of malware based on traffic observations made in a distributed mobile traffic management system
US20120317644A1 (en) 2011-06-09 2012-12-13 Microsoft Corporation Applying Antimalware Logic without Revealing the Antimalware Logic to Adversaries
US20120330801A1 (en) 2011-06-27 2012-12-27 Raytheon Company Distributed Malware Detection
US20130036470A1 (en) 2011-08-03 2013-02-07 Zhu Minghang Cross-vm network filtering
US20130097706A1 (en) 2011-09-16 2013-04-18 Veracode, Inc. Automated behavioral and static analysis using an instrumented sandbox and machine learning classification for mobile security
US20130160131A1 (en) 2011-12-20 2013-06-20 Matias Madou Application security testing
US20130160130A1 (en) 2011-12-20 2013-06-20 Kirill Mendelev Application security testing
US20130227691A1 (en) 2012-02-24 2013-08-29 Ashar Aziz Detecting Malicious Network Content
US20130247186A1 (en) 2012-03-15 2013-09-19 Aaron LeMasters System to Bypass a Compromised Mass Storage Device Driver Stack and Method Thereof
US20130298243A1 (en) 2012-05-01 2013-11-07 Taasera, Inc. Systems and methods for orchestrating runtime operational integrity
US20140032875A1 (en) 2012-07-27 2014-01-30 James Butler Physical Memory Forensics System and Method
US20140053261A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated On-Line Behavioral Analysis Engine in Mobile Device with Multiple Analyzer Model Providers
US20140053260A1 (en) 2012-08-15 2014-02-20 Qualcomm Incorporated Adaptive Observation of Behavioral Features on a Mobile Device
US20140096229A1 (en) 2012-09-28 2014-04-03 Juniper Networks, Inc. Virtual honeypot
US20140115578A1 (en) 2012-10-21 2014-04-24 Geoffrey Howard Cooper Providing a virtual security appliance architecture to a virtual cloud infrastructure
US20140181131A1 (en) 2012-12-26 2014-06-26 David Ross Timeline wrinkling system and method
US20140189882A1 (en) 2012-12-28 2014-07-03 Robert Jung System and method for the programmatic runtime de-obfuscation of obfuscated software utilizing virtual machine introspection and manipulation of virtual machine guest memory permissions
US20140189687A1 (en) 2012-12-28 2014-07-03 Robert Jung System and Method to Create a Number of Breakpoints in a Virtual Machine Via Virtual Machine Trapping Events
US20140189866A1 (en) 2012-12-31 2014-07-03 Jason Shiffer Identification of obfuscated computer items using visual algorithms
US9159035B1 (en) 2013-02-23 2015-10-13 Fireeye, Inc. Framework for computer application analysis of sensitive information tracking
US9195829B1 (en) 2013-02-23 2015-11-24 Fireeye, Inc. User interface with real-time visual playback along with synchronous textual analysis log display and event/time index for anomalous behavior detection in applications
US9176843B1 (en) 2013-02-23 2015-11-03 Fireeye, Inc. Framework for efficient security coverage of mobile software applications
US9009823B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for efficient security coverage of mobile software applications installed on mobile devices
US9009822B1 (en) 2013-02-23 2015-04-14 Fireeye, Inc. Framework for multi-phase analysis of mobile applications
US8990944B1 (en) 2013-02-23 2015-03-24 Fireeye, Inc. Systems and methods for automatically detecting backdoors
US9225740B1 (en) 2013-02-23 2015-12-29 Fireeye, Inc. Framework for iterative analysis of mobile software applications
US9104867B1 (en) 2013-03-13 2015-08-11 Fireeye, Inc. Malicious content analysis using simulated user interaction without user involvement
US9311479B1 (en) 2013-03-14 2016-04-12 Fireeye, Inc. Correlation and consolidation of analytic data for holistic view of a malware attack
US20140280245A1 (en) 2013-03-15 2014-09-18 Mandiant Corporation System and method to visualize user sessions
US20140283037A1 (en) 2013-03-15 2014-09-18 Michael Sikorski System and Method to Extract and Utilize Disassembly Features to Classify Software Intent
US20140283063A1 (en) 2013-03-15 2014-09-18 Matthew Thompson System and Method to Manage Sinkholes
US20140344926A1 (en) 2013-03-15 2014-11-20 Sean Cunningham System and method employing structured intelligence to verify and contain threats at endpoints
US9251343B1 (en) 2013-03-15 2016-02-02 Fireeye, Inc. Detecting bootkits resident on compromised computers
US20140337836A1 (en) 2013-05-10 2014-11-13 Fireeye, Inc. Optimized resource allocation for virtual machines within a malware content detection system
US20140380473A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. Zero-day discovery system
US20140380474A1 (en) 2013-06-24 2014-12-25 Fireeye, Inc. System and Method for Detecting Time-Bomb Malware
US9300686B2 (en) 2013-06-28 2016-03-29 Fireeye, Inc. System and method for detecting malicious links in electronic messages
US20150007312A1 (en) 2013-06-28 2015-01-01 Vinay Pidathala System and method for detecting malicious links in electronic messages
US9294501B2 (en) 2013-09-30 2016-03-22 Fireeye, Inc. Fuzzy hash of behavioral results
US20150096025A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. System, Apparatus and Method for Using Malware Analysis Results to Drive Adaptive Instrumentation of Virtual Machines to Improve Exploit Detection
US20150096022A1 (en) 2013-09-30 2015-04-02 Michael Vincent Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US20150096023A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Fuzzy hash of behavioral results
US20150096024A1 (en) 2013-09-30 2015-04-02 Fireeye, Inc. Advanced persistent threat (apt) detection center
US9171160B2 (en) 2013-09-30 2015-10-27 Fireeye, Inc. Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US9189627B1 (en) 2013-11-21 2015-11-17 Fireeye, Inc. System, apparatus and method for conducting on-the-fly decryption of encrypted objects for malware detection
US20150186645A1 (en) 2013-12-26 2015-07-02 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US9306974B1 (en) 2013-12-26 2016-04-05 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US9262635B2 (en) 2014-02-05 2016-02-16 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US20150220735A1 (en) 2014-02-05 2015-08-06 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US9241010B1 (en) 2014-03-20 2016-01-19 Fireeye, Inc. System and method for network behavior detection
US9223972B1 (en) 2014-03-31 2015-12-29 Fireeye, Inc. Dynamically remote tuning of a malware content detection system
US20150372980A1 (en) 2014-06-24 2015-12-24 Fireeye, Inc. Intrusion prevention and remedy system
US20160044000A1 (en) 2014-08-05 2016-02-11 Fireeye, Inc. System and method to communicate sensitive information via one or more untrusted intermediate nodes with resilience to disconnected network topology

Non-Patent Citations (66)

* Cited by examiner, † Cited by third party
Title
"Network Security: NetDetector-Network Intrusion Forensic System (NIFS) Whitepaper", ("NetDetector Whitepaper"), (2003).
"Packet", Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page.
"When Virtual is Better Than Real", IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.isp?reload=true&arnumbe- r=990073, (Dec. 7, 2013).
"Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper", ("NetDetector Whitepaper"), (2003).
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108.
Adetoye, Adedayo , et al., "Network Intrusion Detection & Response System", ("Adetoye"), (Sep. 2003).
AltaVista Advanced Search Results. "attack vector identifier". Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- estrator . . . , (Accessed on Sep. 15, 2009).
AltaVista Advanced Search Results. "Event Orchestrator". Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orch- esrator . . . , (Accessed on Sep. 3, 2009).
Aura, Tuomas, "Scanning electronic documents for personally identifiable information", Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006.
Baecher, "The Nepenthes Platform: An Efficient Approach to collect Malware", Springer-verlag Berlin Heidelberg, (2006), pp. 165-184.
Barford, Paul, and Mike Blodgett. "Toward Botnet Mesocosms." HotBots 7 (2007): 6-6.
Bayer, et al., "Dynamic Analysis of Malicious Code", J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77.
Boubalos, Chris , "extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives", available at http://seclists.org/honeypots/2003/q2/319 ("Boubalos"), (Jun. 5, 2003).
Chaudet, C. , et al., "Optimal Positioning of Active and Passive Monitoring Devices", International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82.
Chen, P. M. and Noble, B. D., "When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science", University of Michigan ("Chen") (2001).
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) ("Cisco"), (1992).
Clark, John, Sylvain Leblanc, and Scott Knight. "Risks associated with usb hardware trojan devices used by insiders." Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Clark, John, Sylvian Leblanc,and Scott Knight. "Risks associated with usb hardware trojan devices used by insiders." Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011.
Cohen, M.I. , "PyFlag-An advanced network forensic framework", Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Cohen, M.I. , "PyFlag—An advanced network forensic framework", Digital investigation 5, Elsevier, (2008), pp. S112-S120.
Costa, M. , et al., "Vigilante: End-to-End Containment of Internet Worms", SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005).
Crandall, J.R. , et al., "Minos:Control Data Attack Prevention Orthogonal to Memory Model", 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004).
Crawford, Martin, and Gilbert Peterson. "Insider Threat Detection using Virtual Machine Introspection." System Sciences (HICSS), 2013 46th Hawaii International Conference on. IEEE, 2013. *
Deutsch, P. , "Zlib compressed data format specification version 3.3" RFC 1950, (1996).
Distler, "Malware Analysis: An Introduction", SANS Institute InfoSec Reading Room, SANS Institute, (2007).
Dunlap, George W. , et al., "ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay", Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, ("Dunlap"), (Dec. 9, 2002).
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security ("Kaeo"), (2005).
Filiol, Eric , et al., "Combinatorial Optimisation of Worm Propagation on an Unknown Network", International Journal of Computer Science 2.2 (2007).
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012.
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28.
Hjelmvik, Erik , "Passive Network Security Analysis with NetworkMiner", (IN)Secure, Issue 18, (Oct. 2008), pp. 1-100.
IEEE Xplore Digital Library Sear Results for "detection of unknown computer worms". Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc- &ResultC . . . , (Accessed on Aug. 28, 2009).
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. "Kernel-based behavior analysis for android malware detection." Computational Intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011.
Kaeo, Merike , "Designing Network Security", ("Kaeo"), (Nov. 2003).
Kim, H., et al., "Autograph: Toward Automated, Distributed Worm Signature Detection", Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286.
King, Samuel T., et al., "Operating System Support for Virtual Machines", ("King") (2003).
Korczynski, Maciej, Gilles Berger-Sabbatel, and Andrzej Duda. "Two Methods for Detecting Malware." Multimedia Communications, Services and Security. Springer Berlin Heidelberg, 2013. 95-106.
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) ("Krasnyansky").
Kreibich, C. , et al., "Honeycomb-Creating Intrusion Detection Signatures Using Honeypots", 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003).
Kristoff, J. , "Botnets, Detection and Mitigation: DNS-Based Techniques", NU Security Day, (2005), 23 pages.
Liljenstam, Michael , et al., "Simulating Realistic Network Traffic for Worm Warning System Design and Testing", Institute for Security Technology studies, Dartmouth College ("Liljenstam"), (Oct. 27, 2003).
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti "Detecting environment-sensitive malware." Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011.
Marchette, David J., "Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint", ("Marchette"), (2001).
Margolis, P.E. , "Random House Webster's 'Computer & Internet Dictionary 3rd Edition'", ISBN 0375703519, (Dec. 1998).
Margolis, P.E. , "Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’", ISBN 0375703519, (Dec. 1998).
Moore, D. , et al., "Internet Quarantine: Requirements for Containing Self-Propagating Code", INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910.
Morales, Jose A., et al., ""Analyzing and exploiting network behaviors of malware."", Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34.
Natvig, Kurt , "SANDBOXII: Internet", Virus Bulletin Conference, ("Natvig"), (Sep. 2002).
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987.
Newsome, J. , et al., "Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software", In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005).
Newsome, J. , et al., "Polygraph: Automatically Generating Signatures for Polymorphic Worms", In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005).
Nojiri, D. , et al., "Cooperation Response Strategies for Large Scale Attack Mitigation", DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302.
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doom, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) ("Sailer").
Silicon Defense, "Worm Containment in the Internal Network", (Mar. 2003), pp. 1-25.
Singh, S. , et al., "Automated Worm Fingerprinting", Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004).
Spitzner, Lance , "Honeypots: Tracking Hackers", ("Spizner"), (Sep. 17, 2002).
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/.about.casado/pcap/section1.html, (Jan. 6, 2014).
Thomas H. Ptacek, and Timothy N. Newsham , "Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection", Secure Networks, ("Ptacek"), (Jan. 1998).
U.S. Appl. No. 13/801,573, filed Mar. 13, 2013 Final Office Action dated Dec. 12, 2014.
U.S. Appl. No. 13/801,573, filed Mar. 13, 2013 Final Office Action dated Oct. 13, 2015.
U.S. Appl. No. 13/801,573, filed Mar. 13, 2013 Non-Final Office Action dated Apr. 20, 2016.
U.S. Appl. No. 13/801,573, filed Mar. 13, 2013 Non-Final Office Action dated Jun. 10, 2015.
U.S. Appl. No. 13/801,573, filed Mar. 13, 2013 Non-Final Office Action dated May 13, 2014.
Venezia, Paul , "NetDetector Captures Intrusions", InfoWorld Issue 27, ("Venezia"), (Jul. 14, 2003).
Whyte, et al., "DNS-Based Detection of Scanning Works in an Enterprise Network", Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages.
Williamson, Matthew M., "Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code", ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9.

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11637857B1 (en) 2004-04-01 2023-04-25 Fireeye Security Holdings Us Llc System and method for detecting malicious traffic using a virtual machine configured with a select software environment
US10757120B1 (en) 2004-04-01 2020-08-25 Fireeye, Inc. Malicious network content detection
US10587636B1 (en) 2004-04-01 2020-03-10 Fireeye, Inc. System and method for bot detection
US11082435B1 (en) 2004-04-01 2021-08-03 Fireeye, Inc. System and method for threat detection and identification
US11153341B1 (en) 2004-04-01 2021-10-19 Fireeye, Inc. System and method for detecting malicious network content using virtual environment components
US10567405B1 (en) 2004-04-01 2020-02-18 Fireeye, Inc. System for detecting a presence of malware from behavioral analysis
US10511614B1 (en) 2004-04-01 2019-12-17 Fireeye, Inc. Subscription based malware detection under management system control
US11381578B1 (en) 2009-09-30 2022-07-05 Fireeye Security Holdings Us Llc Network-based binary file extraction and analysis for malware detection
US10572665B2 (en) 2012-12-28 2020-02-25 Fireeye, Inc. System and method to create a number of breakpoints in a virtual machine via virtual machine trapping events
US10929266B1 (en) 2013-02-23 2021-02-23 Fireeye, Inc. Real-time visual playback with synchronous textual analysis log display and event/time indexing
US10467414B1 (en) 2013-03-13 2019-11-05 Fireeye, Inc. System and method for detecting exfiltration content
US10848521B1 (en) 2013-03-13 2020-11-24 Fireeye, Inc. Malicious content analysis using simulated user interaction without user involvement
US11210390B1 (en) 2013-03-13 2021-12-28 Fireeye Security Holdings Us Llc Multi-version application support and registration within a single operating system environment
US10812513B1 (en) 2013-03-14 2020-10-20 Fireeye, Inc. Correlation and consolidation holistic views of analytic data pertaining to a malware attack
US10713358B2 (en) 2013-03-15 2020-07-14 Fireeye, Inc. System and method to extract and utilize disassembly features to classify software intent
US10701091B1 (en) 2013-03-15 2020-06-30 Fireeye, Inc. System and method for verifying a cyberthreat
US10469512B1 (en) 2013-05-10 2019-11-05 Fireeye, Inc. Optimized resource allocation for virtual machines within a malware content detection system
US10637880B1 (en) 2013-05-13 2020-04-28 Fireeye, Inc. Classifying sets of malicious indicators for detecting command and control communications associated with malware
US10505956B1 (en) 2013-06-28 2019-12-10 Fireeye, Inc. System and method for detecting malicious links in electronic messages
US10657251B1 (en) 2013-09-30 2020-05-19 Fireeye, Inc. Multistage system and method for analyzing obfuscated content for malware
US10515214B1 (en) 2013-09-30 2019-12-24 Fireeye, Inc. System and method for classifying malware within content created during analysis of a specimen
US10713362B1 (en) 2013-09-30 2020-07-14 Fireeye, Inc. Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US11075945B2 (en) 2013-09-30 2021-07-27 Fireeye, Inc. System, apparatus and method for reconfiguring virtual machines
US10735458B1 (en) 2013-09-30 2020-08-04 Fireeye, Inc. Detection center to detect targeted malware
US10476909B1 (en) 2013-12-26 2019-11-12 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US10467411B1 (en) 2013-12-26 2019-11-05 Fireeye, Inc. System and method for generating a malware identifier
US11089057B1 (en) 2013-12-26 2021-08-10 Fireeye, Inc. System, apparatus and method for automatically verifying exploits within suspect objects and highlighting the display information associated with the verified exploits
US10740456B1 (en) 2014-01-16 2020-08-11 Fireeye, Inc. Threat-aware architecture
US10534906B1 (en) 2014-02-05 2020-01-14 Fireeye, Inc. Detection efficacy of virtual machine-based analysis with application specific events
US11068587B1 (en) 2014-03-21 2021-07-20 Fireeye, Inc. Dynamic guest image creation and rollback
US11082436B1 (en) 2014-03-28 2021-08-03 Fireeye, Inc. System and method for offloading packet processing and static analysis operations
US10454953B1 (en) 2014-03-28 2019-10-22 Fireeye, Inc. System and method for separated packet processing and static analysis
US11949698B1 (en) 2014-03-31 2024-04-02 Musarubra Us Llc Dynamically remote tuning of a malware content detection system
US11297074B1 (en) 2014-03-31 2022-04-05 FireEye Security Holdings, Inc. Dynamically remote tuning of a malware content detection system
US10757134B1 (en) 2014-06-24 2020-08-25 Fireeye, Inc. System and method for detecting and remediating a cybersecurity attack
US10805340B1 (en) 2014-06-26 2020-10-13 Fireeye, Inc. Infection vector and malware tracking with an interactive user display
US11244056B1 (en) 2014-07-01 2022-02-08 Fireeye Security Holdings Us Llc Verification of trusted threat-aware visualization layer
US10868818B1 (en) 2014-09-29 2020-12-15 Fireeye, Inc. Systems and methods for generation of signature generation using interactive infection visualizations
US10902117B1 (en) 2014-12-22 2021-01-26 Fireeye, Inc. Framework for classifying an object as malicious with machine learning for deploying updated predictive models
US10528726B1 (en) 2014-12-29 2020-01-07 Fireeye, Inc. Microvisor-based malware detection appliance architecture
US10798121B1 (en) 2014-12-30 2020-10-06 Fireeye, Inc. Intelligent context aware user interaction for malware detection
US10339300B2 (en) * 2015-03-23 2019-07-02 Binary Guard Corp. Advanced persistent threat and targeted malware defense
US10666686B1 (en) 2015-03-25 2020-05-26 Fireeye, Inc. Virtualized exploit detection system
US11294705B1 (en) 2015-03-31 2022-04-05 Fireeye Security Holdings Us Llc Selective virtualization for security threat detection
US10417031B2 (en) 2015-03-31 2019-09-17 Fireeye, Inc. Selective virtualization for security threat detection
US11868795B1 (en) 2015-03-31 2024-01-09 Musarubra Us Llc Selective virtualization for security threat detection
US10474813B1 (en) 2015-03-31 2019-11-12 Fireeye, Inc. Code injection technique for remediation at an endpoint of a network
US10728263B1 (en) 2015-04-13 2020-07-28 Fireeye, Inc. Analytic-based security monitoring system and method
US11113086B1 (en) 2015-06-30 2021-09-07 Fireeye, Inc. Virtual system and method for securing external network connectivity
US10726127B1 (en) 2015-06-30 2020-07-28 Fireeye, Inc. System and method for protecting a software component running in a virtual machine through virtual interrupts by the virtualization layer
US10642753B1 (en) 2015-06-30 2020-05-05 Fireeye, Inc. System and method for protecting a software component running in virtual machine using a virtualization layer
US10454950B1 (en) 2015-06-30 2019-10-22 Fireeye, Inc. Centralized aggregation technique for detecting lateral movement of stealthy cyber-attacks
US10715542B1 (en) 2015-08-14 2020-07-14 Fireeye, Inc. Mobile application risk analysis
US10176321B2 (en) 2015-09-22 2019-01-08 Fireeye, Inc. Leveraging behavior-based rules for malware family classification
US10887328B1 (en) 2015-09-29 2021-01-05 Fireeye, Inc. System and method for detecting interpreter-based exploit attacks
US10873597B1 (en) 2015-09-30 2020-12-22 Fireeye, Inc. Cyber attack early warning system
US10817606B1 (en) 2015-09-30 2020-10-27 Fireeye, Inc. Detecting delayed activation malware using a run-time monitoring agent and time-dilation logic
US10601865B1 (en) 2015-09-30 2020-03-24 Fireeye, Inc. Detection of credential spearphishing attacks using email analysis
US10706149B1 (en) 2015-09-30 2020-07-07 Fireeye, Inc. Detecting delayed activation malware using a primary controller and plural time controllers
US11244044B1 (en) 2015-09-30 2022-02-08 Fireeye Security Holdings Us Llc Method to detect application execution hijacking using memory protection
US10834107B1 (en) 2015-11-10 2020-11-10 Fireeye, Inc. Launcher for setting analysis environment variations for malware detection
US10447728B1 (en) 2015-12-10 2019-10-15 Fireeye, Inc. Technique for protecting guest processes using a layered virtualization architecture
US10846117B1 (en) 2015-12-10 2020-11-24 Fireeye, Inc. Technique for establishing secure communication between host and guest processes of a virtualization architecture
US11200080B1 (en) 2015-12-11 2021-12-14 Fireeye Security Holdings Us Llc Late load technique for deploying a virtualization layer underneath a running operating system
US10565378B1 (en) 2015-12-30 2020-02-18 Fireeye, Inc. Exploit of privilege detection framework
US10581898B1 (en) 2015-12-30 2020-03-03 Fireeye, Inc. Malicious message analysis system
US10872151B1 (en) 2015-12-30 2020-12-22 Fireeye, Inc. System and method for triggering analysis of an object for malware in response to modification of that object
US10581874B1 (en) 2015-12-31 2020-03-03 Fireeye, Inc. Malware detection system with contextual analysis
US11552986B1 (en) 2015-12-31 2023-01-10 Fireeye Security Holdings Us Llc Cyber-security framework for application of virtual features
US10476906B1 (en) 2016-03-25 2019-11-12 Fireeye, Inc. System and method for managing formation and modification of a cluster within a malware detection system
US11632392B1 (en) 2016-03-25 2023-04-18 Fireeye Security Holdings Us Llc Distributed malware detection system and submission workflow thereof
US10671721B1 (en) 2016-03-25 2020-06-02 Fireeye, Inc. Timeout management services
US10601863B1 (en) 2016-03-25 2020-03-24 Fireeye, Inc. System and method for managing sensor enrollment
US10785255B1 (en) 2016-03-25 2020-09-22 Fireeye, Inc. Cluster configuration within a scalable malware detection system
US10616266B1 (en) 2016-03-25 2020-04-07 Fireeye, Inc. Distributed malware detection system and submission workflow thereof
US11936666B1 (en) 2016-03-31 2024-03-19 Musarubra Us Llc Risk analyzer for ascertaining a risk of harm to a network and generating alerts regarding the ascertained risk
US10893059B1 (en) 2016-03-31 2021-01-12 Fireeye, Inc. Verification and enhancement using detection systems located at the network periphery and endpoint devices
US11979428B1 (en) 2016-03-31 2024-05-07 Musarubra Us Llc Technique for verifying exploit/malware at malware detection appliance through correlation with endpoints
US10169585B1 (en) 2016-06-22 2019-01-01 Fireeye, Inc. System and methods for advanced malware detection through placement of transition events
US10462173B1 (en) 2016-06-30 2019-10-29 Fireeye, Inc. Malware detection verification and enhancement by coordinating endpoint and malware detection systems
US11240262B1 (en) 2016-06-30 2022-02-01 Fireeye Security Holdings Us Llc Malware detection verification and enhancement by coordinating endpoint and malware detection systems
US10592678B1 (en) 2016-09-09 2020-03-17 Fireeye, Inc. Secure communications between peers using a verified virtual trusted platform module
US10491627B1 (en) 2016-09-29 2019-11-26 Fireeye, Inc. Advanced malware detection using similarity analysis
US10795991B1 (en) 2016-11-08 2020-10-06 Fireeye, Inc. Enterprise search
US12130909B1 (en) 2016-11-08 2024-10-29 Musarubra Us Llc Enterprise search
US10587647B1 (en) 2016-11-22 2020-03-10 Fireeye, Inc. Technique for malware detection capability comparison of network security devices
US10581879B1 (en) 2016-12-22 2020-03-03 Fireeye, Inc. Enhanced malware detection for generated objects
US10552610B1 (en) 2016-12-22 2020-02-04 Fireeye, Inc. Adaptive virtual machine snapshot update framework for malware behavioral analysis
US10523609B1 (en) 2016-12-27 2019-12-31 Fireeye, Inc. Multi-vector malware detection and analysis
US10904286B1 (en) 2017-03-24 2021-01-26 Fireeye, Inc. Detection of phishing attacks using similarity analysis
US11570211B1 (en) 2017-03-24 2023-01-31 Fireeye Security Holdings Us Llc Detection of phishing attacks using similarity analysis
US10554507B1 (en) 2017-03-30 2020-02-04 Fireeye, Inc. Multi-level control for enhanced resource and object evaluation management of malware detection system
US11863581B1 (en) 2017-03-30 2024-01-02 Musarubra Us Llc Subscription-based malware detection
US10791138B1 (en) 2017-03-30 2020-09-29 Fireeye, Inc. Subscription-based malware detection
US11399040B1 (en) 2017-03-30 2022-07-26 Fireeye Security Holdings Us Llc Subscription-based malware detection
US10848397B1 (en) 2017-03-30 2020-11-24 Fireeye, Inc. System and method for enforcing compliance with subscription requirements for cyber-attack detection service
US11997111B1 (en) 2017-03-30 2024-05-28 Musarubra Us Llc Attribute-controlled malware detection
US10902119B1 (en) 2017-03-30 2021-01-26 Fireeye, Inc. Data extraction system for malware analysis
US10798112B2 (en) 2017-03-30 2020-10-06 Fireeye, Inc. Attribute-controlled malware detection
US10503904B1 (en) 2017-06-29 2019-12-10 Fireeye, Inc. Ransomware detection and mitigation
US10601848B1 (en) 2017-06-29 2020-03-24 Fireeye, Inc. Cyber-security system and method for weak indicator detection and correlation to generate strong indicators
US10855700B1 (en) 2017-06-29 2020-12-01 Fireeye, Inc. Post-intrusion detection of cyber-attacks during lateral movement within networks
US10893068B1 (en) 2017-06-30 2021-01-12 Fireeye, Inc. Ransomware file modification prevention technique
US10747872B1 (en) 2017-09-27 2020-08-18 Fireeye, Inc. System and method for preventing malware evasion
US10805346B2 (en) 2017-10-01 2020-10-13 Fireeye, Inc. Phishing attack detection
US11637859B1 (en) 2017-10-27 2023-04-25 Mandiant, Inc. System and method for analyzing binary code for malware classification using artificial neural network techniques
US12069087B2 (en) 2017-10-27 2024-08-20 Google Llc System and method for analyzing binary code for malware classification using artificial neural network techniques
US11108809B2 (en) 2017-10-27 2021-08-31 Fireeye, Inc. System and method for analyzing binary code for malware classification using artificial neural network techniques
US11240275B1 (en) 2017-12-28 2022-02-01 Fireeye Security Holdings Us Llc Platform and method for performing cybersecurity analyses employing an intelligence hub with a modular architecture
US11005860B1 (en) 2017-12-28 2021-05-11 Fireeye, Inc. Method and system for efficient cybersecurity analysis of endpoint events
US11271955B2 (en) 2017-12-28 2022-03-08 Fireeye Security Holdings Us Llc Platform and method for retroactive reclassification employing a cybersecurity-based global data store
US11949692B1 (en) 2017-12-28 2024-04-02 Google Llc Method and system for efficient cybersecurity analysis of endpoint events
US10826931B1 (en) 2018-03-29 2020-11-03 Fireeye, Inc. System and method for predicting and mitigating cybersecurity system misconfigurations
US11856011B1 (en) 2018-03-30 2023-12-26 Musarubra Us Llc Multi-vector malware detection data sharing system for improved detection
US10956477B1 (en) 2018-03-30 2021-03-23 Fireeye, Inc. System and method for detecting malicious scripts through natural language processing modeling
US11003773B1 (en) 2018-03-30 2021-05-11 Fireeye, Inc. System and method for automatically generating malware detection rule recommendations
US11558401B1 (en) 2018-03-30 2023-01-17 Fireeye Security Holdings Us Llc Multi-vector malware detection data sharing system for improved detection
US11075930B1 (en) 2018-06-27 2021-07-27 Fireeye, Inc. System and method for detecting repetitive cybersecurity attacks constituting an email campaign
US11882140B1 (en) 2018-06-27 2024-01-23 Musarubra Us Llc System and method for detecting repetitive cybersecurity attacks constituting an email campaign
US11314859B1 (en) 2018-06-27 2022-04-26 FireEye Security Holdings, Inc. Cyber-security system and method for detecting escalation of privileges within an access token
US11228491B1 (en) 2018-06-28 2022-01-18 Fireeye Security Holdings Us Llc System and method for distributed cluster configuration monitoring and management
US11316900B1 (en) 2018-06-29 2022-04-26 FireEye Security Holdings Inc. System and method for automatically prioritizing rules for cyber-threat detection and mitigation
US11182473B1 (en) 2018-09-13 2021-11-23 Fireeye Security Holdings Us Llc System and method for mitigating cyberattacks against processor operability by a guest process
US11763004B1 (en) 2018-09-27 2023-09-19 Fireeye Security Holdings Us Llc System and method for bootkit detection
US10872164B2 (en) 2018-11-15 2020-12-22 Bank Of America Corporation Trusted access control value systems
US10798105B2 (en) 2018-11-15 2020-10-06 Bank Of America Corporation Access control value systems
US11558397B2 (en) 2018-11-15 2023-01-17 Bank Of America Corporation Access control value systems
US11176251B1 (en) 2018-12-21 2021-11-16 Fireeye, Inc. Determining malware via symbolic function hash analysis
US12074887B1 (en) 2018-12-21 2024-08-27 Musarubra Us Llc System and method for selectively processing content after identification and removal of malicious content
US11743290B2 (en) 2018-12-21 2023-08-29 Fireeye Security Holdings Us Llc System and method for detecting cyberattacks impersonating legitimate sources
US11368475B1 (en) 2018-12-21 2022-06-21 Fireeye Security Holdings Us Llc System and method for scanning remote services to locate stored objects with malware
US11601444B1 (en) 2018-12-31 2023-03-07 Fireeye Security Holdings Us Llc Automated system for triage of customer issues
US11985149B1 (en) 2018-12-31 2024-05-14 Musarubra Us Llc System and method for automated system for triage of cybersecurity threats
US11122081B2 (en) 2019-02-21 2021-09-14 Bank Of America Corporation Preventing unauthorized access to information resources by deploying and utilizing multi-path data relay systems and sectional transmission techniques
US11113396B2 (en) 2019-02-22 2021-09-07 Bank Of America Corporation Data management system and method
US11750618B1 (en) 2019-03-26 2023-09-05 Fireeye Security Holdings Us Llc System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources
US11310238B1 (en) 2019-03-26 2022-04-19 FireEye Security Holdings, Inc. System and method for retrieval and analysis of operational data from customer, cloud-hosted virtual resources
US11677786B1 (en) 2019-03-29 2023-06-13 Fireeye Security Holdings Us Llc System and method for detecting and protecting against cybersecurity attacks on servers
US11636198B1 (en) 2019-03-30 2023-04-25 Fireeye Security Holdings Us Llc System and method for cybersecurity analyzer update and concurrent management system
US12063229B1 (en) 2019-06-24 2024-08-13 Google Llc System and method for associating cybersecurity intelligence to cyberthreat actors through a similarity matrix
US11258806B1 (en) 2019-06-24 2022-02-22 Mandiant, Inc. System and method for automatically associating cybersecurity intelligence to cyberthreat actors
US11556640B1 (en) 2019-06-27 2023-01-17 Mandiant, Inc. Systems and methods for automated cybersecurity analysis of extracted binary string sets
US11392700B1 (en) 2019-06-28 2022-07-19 Fireeye Security Holdings Us Llc System and method for supporting cross-platform data verification
US11886585B1 (en) 2019-09-27 2024-01-30 Musarubra Us Llc System and method for identifying and mitigating cyberattacks through malicious position-independent code execution
US11637862B1 (en) 2019-09-30 2023-04-25 Mandiant, Inc. System and method for surfacing cyber-security threats with a self-learning recommendation engine
US11947669B1 (en) 2019-12-24 2024-04-02 Musarubra Us Llc System and method for circumventing evasive code for cyberthreat detection
US11888875B1 (en) 2019-12-24 2024-01-30 Musarubra Us Llc Subscription and key management system
US11522884B1 (en) 2019-12-24 2022-12-06 Fireeye Security Holdings Us Llc Subscription and key management system
US11436327B1 (en) 2019-12-24 2022-09-06 Fireeye Security Holdings Us Llc System and method for circumventing evasive code for cyberthreat detection
US11838300B1 (en) 2019-12-24 2023-12-05 Musarubra Us Llc Run-time configurable cybersecurity system

Also Published As

Publication number Publication date
US9565202B1 (en) 2017-02-07
US10467414B1 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
US10467414B1 (en) System and method for detecting exfiltration content
US11210390B1 (en) Multi-version application support and registration within a single operating system environment
US10848521B1 (en) Malicious content analysis using simulated user interaction without user involvement
US10505956B1 (en) System and method for detecting malicious links in electronic messages
US9888016B1 (en) System and method for detecting phishing using password prediction
US11741222B2 (en) Sandbox environment for document preview and analysis
US10198574B1 (en) System and method for analysis of a memory dump associated with a potentially malicious content suspect
US10432649B1 (en) System and method for classifying an object based on an aggregated behavior results
US10713362B1 (en) Dynamically adaptive framework and method for classifying malware using intelligent static, emulation, and dynamic analyses
US10666686B1 (en) Virtualized exploit detection system
US10523609B1 (en) Multi-vector malware detection and analysis
US9251343B1 (en) Detecting bootkits resident on compromised computers
US10515214B1 (en) System and method for classifying malware within content created during analysis of a specimen
US10454950B1 (en) Centralized aggregation technique for detecting lateral movement of stealthy cyber-attacks
US20200366694A1 (en) Methods and systems for malware host correlation
US20190121977A1 (en) System and method of detecting a malicious file
US10382468B2 (en) Malware identification via secondary file analysis
US11853425B2 (en) Dynamic sandbox scarecrow for malware management
US8955138B1 (en) Systems and methods for reevaluating apparently benign behavior on computing devices
US11036856B2 (en) Natively mounting storage for inspection and sandboxing in the cloud
Hamed et al. Intrusion detection in contemporary environments
US11487868B2 (en) System, method, and apparatus for computer security

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIREEYE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KINDLUND, DARIEN;WOLF, JULIA;SIGNING DATES FROM 20130424 TO 20130802;REEL/FRAME:042727/0400

AS Assignment

Owner name: FIREEYE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENNETT, JAMES;REEL/FRAME:043800/0811

Effective date: 20130614

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONNECTICUT

Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:FIREEYE SECURITY HOLDINGS US LLC;REEL/FRAME:057772/0791

Effective date: 20211008

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONNECTICUT

Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNOR:FIREEYE SECURITY HOLDINGS US LLC;REEL/FRAME:057772/0681

Effective date: 20211008

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FEPP Fee payment procedure

Free format text: SURCHARGE FOR LATE PAYMENT, LARGE ENTITY (ORIGINAL EVENT CODE: M1554); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: FIREEYE SECURITY HOLDINGS US LLC, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FIREEYE, INC.;REEL/FRAME:063287/0776

Effective date: 20211008

Owner name: MANDIANT, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:FIREEYE, INC.;REEL/FRAME:063287/0771

Effective date: 20211004

AS Assignment

Owner name: STG PARTNERS, LLC, CALIFORNIA

Free format text: SECURITY INTEREST;ASSIGNORS:MUSARUBRA US LLC;SKYHIGH SECURITY LLC;REEL/FRAME:068324/0731

Effective date: 20240730

AS Assignment

Owner name: MUSARUBRA US LLC, TEXAS

Free format text: MERGER;ASSIGNOR:FIREEYE SECURITY HOLDINGS US LLC;REEL/FRAME:068581/0279

Effective date: 20230509

AS Assignment

Owner name: MAGENTA SECURITY HOLDINGS LLC, TEXAS

Free format text: INTELLECTUAL PROPERTY ASSIGNMENT AGREEMENT;ASSIGNOR:MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC;REEL/FRAME:068656/0920

Effective date: 20240814

Owner name: MAGENTA SECURITY HOLDINGS LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC;REEL/FRAME:068657/0843

Effective date: 20240814

Owner name: MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MUSARUBRA US LLC;REEL/FRAME:068657/0764

Effective date: 20240814

Owner name: UBS AG, STAMFORD BRANCH, AS COLLATERAL AGENT, CONNECTICUT

Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:MAGENTA SECURITY HOLDINGS LLC;SKYHIGH SECURITY LLC;REEL/FRAME:068657/0666

Effective date: 20240814

Owner name: MAGENTA SECURITY INTERMEDIATE HOLDINGS LLC, TEXAS

Free format text: INTELLECTUAL PROPERTY ASSIGNMENT AGREEMENT;ASSIGNOR:MUSARUBRA US LLC;REEL/FRAME:068656/0098

Effective date: 20240814

AS Assignment

Owner name: SKYHIGH SECURITY LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STG PARTNERS, LLC;REEL/FRAME:068671/0435

Effective date: 20240814

Owner name: MUSARUBRA US LLC, TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:STG PARTNERS, LLC;REEL/FRAME:068671/0435

Effective date: 20240814