[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US9535199B2 - Polarization film and display device - Google Patents

Polarization film and display device Download PDF

Info

Publication number
US9535199B2
US9535199B2 US13/791,882 US201313791882A US9535199B2 US 9535199 B2 US9535199 B2 US 9535199B2 US 201313791882 A US201313791882 A US 201313791882A US 9535199 B2 US9535199 B2 US 9535199B2
Authority
US
United States
Prior art keywords
polarization
polarizer
groove
grooves
transparent support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/791,882
Other versions
US20130335824A1 (en
Inventor
Jong-Hwan Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Assigned to SAMSUNG DISPLAY CO., LTD reassignment SAMSUNG DISPLAY CO., LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, JONG-HWAN
Publication of US20130335824A1 publication Critical patent/US20130335824A1/en
Application granted granted Critical
Publication of US9535199B2 publication Critical patent/US9535199B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0625Polyvinyl alchohol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • aspects of the present invention relate to a polarization film and a display device.
  • a display device is a device for displaying an image.
  • a display device is an organic light emitting diode (OLED) display.
  • the organic light emitting diode (OLED) display has a self-light emitting characteristic so that a separate light source is not required, which is unlike a liquid crystal display (LCD), a thickness and a weight thereof may be reduced.
  • the organic light emitting diode (OLED) display may include a first substrate, an organic light emitting diode disposed on the first substrate, a second substrate facing the first substrate with the organic light emitting diode interposed therebetween, and a polarization film attached to the second substrate. If the first substrate and the second substrate include a flexible substrate such as a resin, a laminate of the first substrate, the organic light emitting diode, and the second substrate may be implemented to form a flexible display panel that can be bended, folded, or rolled.
  • the polarization film which may be formed of a polarizer for polarizing incident light and a transparent support attached to the polarizer, may have low flexibility as compared to the flexible display panel. Accordingly, the flexibility of the entire display device to which the polarization film is attached may be deteriorated.
  • aspects of the present invention provide for a polarization film and a display device having improved flexibility.
  • An exemplary embodiment of the present invention provides for a polarization film including: a polarizer configured to polarize incident light in a polarization direction, the polarizer having a first polarization groove recessed from an upper surface of the polarizer and extending in a first direction; a first transparent support at the upper surface of the polarizer; and a second transparent support at a lower surface of the polarizer.
  • the polarizer may have a plurality of first polarization grooves that include: the first polarization groove extending in the first direction; and another first polarization groove that is recessed from the upper surface of the polarizer and extends in a second direction crossing the first direction.
  • the polarizer may further have a second polarization groove recessed from the lower surface of the polarizer and extending in the first direction.
  • the polarizer may have a plurality of second polarization grooves that include: the second polarization groove extending in the first direction; and another second polarization groove that is recessed from the lower surface of the polarizer and extends in a second direction crossing the first direction.
  • the second polarization groove may not overlap the first polarization groove.
  • the second polarization groove may overlap the first polarization groove.
  • the polarizer may include polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • At least one of the first transparent support or the second transparent support may include triacetyl cellulose (TAC).
  • TAC triacetyl cellulose
  • a polarization film including: a polarizer configured to polarize incident light in a polarization direction; a first transparent support at one surface of the polarizer and having a first transparent groove, which is recessed from an upper surface of the first transparent support and extends in a first direction; and a second transparent support at another surface of the polarizer.
  • the first transparent support may have a plurality of first transparent grooves including: the first transparent groove extending in the first direction; and another first transparent groove that is recessed from the upper surface of the first transparent support and extends in a second direction crossing the first direction.
  • the first transparent support may further have a second transparent groove, which is recessed from a lower surface of the first transparent support and extends in the first direction.
  • the first transparent support may have a plurality of second transparent grooves including: the second transparent groove extending in the first direction; and another second transparent groove that is recessed from the lower surface of the first transparent support and extends in a second direction crossing the first direction.
  • the second transparent groove may not overlap the first transparent groove.
  • the second transparent groove may overlap the first transparent groove.
  • a display device including: a flexible display panel configured to display an image; and a polarization film on the flexible display panel including: a polarizer configured to polarize incident light in a polarization direction, the polarizer having a first polarization groove recessed from an upper surface of the polarizer and extending in a first direction; a first transparent support at the upper surface of the polarizer; and a second transparent support at a lower surface of the polarizer.
  • a polarization film and a display device having improved flexibility.
  • FIG. 1 is a cross-sectional view showing a polarization film according to a first exemplary embodiment.
  • FIG. 2 is a top view of a polarizer shown in FIG. 1 .
  • FIG. 3 is a cross-sectional view showing a display device according to a second exemplary embodiment.
  • FIG. 4 is a cross-sectional view showing a polarization film according to a third exemplary embodiment.
  • FIG. 5 is a top view of a polarizer shown in FIG. 4 .
  • FIG. 6 is a cross-sectional view showing a polarization film according to a fourth exemplary embodiment.
  • FIG. 7 is a top view of a polarizer shown in FIG. 6 .
  • FIG. 8 is a cross-sectional view showing a polarization film according to a fifth exemplary embodiment.
  • FIG. 9 is a cross-sectional view showing a polarization film according to a sixth exemplary embodiment.
  • FIG. 10 is a cross-sectional view showing a polarization film according to a seventh exemplary embodiment.
  • a constituent element having the same (or substantially similar) configuration will be representatively described in a first exemplary embodiment by using the same reference numeral, and other configurations different from those of the first exemplary embodiment will be described in other exemplary embodiments.
  • an element When an element is referred to as being “on” (e.g., disposed or formed on) another element, it may be directly on the another element or be indirectly on the another element with one or more intervening elements interposed therebetween.
  • FIGS. 1 to 2 a polarization film according to a first exemplary embodiment will be described with reference to FIGS. 1 to 2 .
  • FIG. 1 is a cross-sectional view showing a polarization film according to a first exemplary embodiment.
  • a polarization film 100 which polarizes incident light, includes a polarizer 110 , a first transparent support 120 , and a second transparent support 130 .
  • the polarizer 110 polarizes light that is incident on the polarization film 100 .
  • the polarizer 110 may be formed of polyvinyl alcohol (PVA). Furthermore, the polarizer 110 may be formed by stretching the polyvinyl alcohol, which is the polymer material, adsorbing a pigment such as iodine thereon, and performing alignment.
  • the polarizer 110 includes a first polarization groove 111 (or a plurality of first polarization grooves 111 ) formed on an upper surface 110 a of the polarizer 110 .
  • the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and may extend in a first direction.
  • FIG. 2 is a top view showing of a polarizer shown in FIG. 1 .
  • FIGS. 2( a ) to 2( d ) each show various examples of configuring the first polarization groove 111 .
  • the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and may extend in the first direction.
  • the depth of the first polarization groove 111 may be from about 0.1 ⁇ m to about 10 mm
  • the width of the first polarization groove 111 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 110 a of the polarizer 110
  • the first direction may be a direction that is parallel to a polarization axis of the polarizer 110 .
  • the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and also extend in a second direction crossing the first direction (or, stated another way, another polarization groove 111 (or grooves) of the plurality of polarization grooves 111 may be recessed from the upper surface 110 a of the polarizer 110 and extend in a second direction crossing the polarization groove 111 (or grooves) that extend in the first direction). That is, the first polarization groove 111 may be formed in a matrix form.
  • the second direction refers a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 110 a of the polarizer 110 .
  • first polarization groove 111 has a V-shaped cross-section
  • first polarization groove 111 is not limited thereto, and according to other exemplary embodiments, may have a circular, oval, quadrangular, or other suitable cross-section.
  • the first transparent support 120 is attached to the upper surface 110 a of the polarizer 110
  • the second transparent support 130 is attached to a lower surface 110 b of the polarizer 110 .
  • the first transparent support 120 and the second transparent support 130 may serve to protect the first polarization groove 111 while also reinforcing the strength of the entire polarization film 100 by supporting the polarizer 110 .
  • One or more embodiments of the first transparent support 120 and the second transparent support 130 according to the present invention may be formed of triacetyl cellulose (TAC).
  • TAC triacetyl cellulose
  • the polarization film 100 according to the first exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 100 is manufactured by using the roll to roll process, the first polarization groove 111 may be formed on the polarizer 110 by using a cutter or a laser.
  • the polarizer 110 according to the first exemplary embodiment may be formed of PVA, and one or more of the first transparent support 120 and the second transparent support 130 may be formed of TAC, but embodiments of the present invention are not limited thereto; for example, each of the polarizer, the first transparent support, and the second transparent support according to other exemplary embodiments may be formed of a material selected from PET, PMMA, PC and PEN.
  • a passivation film, an adhesive, and/or a release film may be further attached to each of the first transparent support and the second transparent support.
  • flexibility of the polarizer 110 is improved by including the first polarization groove 111 extending in the first direction in the polarizer 110 or including the first polarization groove 11 extending in the first direction and the second direction in the polarizer 110 . Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110 , flexibility of the entire polarization film 100 is improved to allow the polarization film 100 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 100 having improved flexibility is provided.
  • the display device according to the second exemplary embodiment is a display device to which the polarization film 100 according to the first exemplary embodiment is attached.
  • FIG. 3 is a cross-sectional view showing a display device according to a second exemplary embodiment.
  • a display device 1000 includes a polarization film 100 and a flexible display panel 200 .
  • the flexible display panel 200 may be an organic light emitting diode (OLED) display where the substrate includes a flexible substrate such as a resin to improve flexibility.
  • OLED organic light emitting diode
  • the polarization film 100 having improved flexibility is attached to the flexible display panel 200 .
  • the display device 1000 according to the second exemplary embodiment can be bended, folded, and rolled onto itself if the polarization film 100 having improved flexibility is attached to the flexible display panel 200 to improve flexibility of the entire display device 1000 . That is, the display device 1000 having improved flexibility is provided.
  • FIG. 4 is a cross-sectional view showing a polarization film 103 according to a third exemplary embodiment of the present invention.
  • the polarizer 110 includes a first polarization groove 111 formed on the upper surface 110 a of the polarizer 110 and a second polarization groove 112 formed on the lower surface 110 b of the polarizer 110 .
  • the second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and extends in the first direction.
  • FIG. 5 is a top view of a polarizer shown in FIG. 4 .
  • FIGS. 5( a ) to 5( d ) each show various examples of configuring the first polarization groove 111 and the second polarization groove 112 .
  • the first polarization groove 111 is recessed from the upper surface 110 a of the polarizer 110 and extends in the first direction.
  • the depth of the first polarization groove 111 may be from about 0.1 ⁇ m to about 10 mm, and the width of the first polarization groove 111 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and also extends in the first direction.
  • the depth of the second polarization groove 112 may be from about 0.1 ⁇ m to about 10 mm, and the width of the second polarization groove 112 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 110 a and the lower surface 110 b of the polarizer 110 .
  • the first direction may be a direction that is parallel to a polarization axis of the polarizer 110 .
  • the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and also extend in the second direction crossing the first direction. That is, the first polarization groove 111 may be formed in a matrix form.
  • the second polarization groove 112 may be recessed from the lower surface 110 b of the polarizer 110 and extend in the second direction crossing the first direction. That is, the second polarization groove 112 may be formed in a matrix form.
  • the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 110 a and the lower surface 110 b of the polarizer 110 .
  • the first polarization groove 111 may not overlap the second polarization groove 112 that is positioned in the same direction as the first polarization groove 111 .
  • the second polarization groove 112 may be positioned at the lower surface 110 b of the polarizer 110 corresponding to a portion between adjacent first polarization grooves 111 .
  • the polarization film 103 according to the third exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 103 is manufactured by using the roll to roll process, the first polarization groove 111 and the second polarization groove 112 may be formed on the polarizer 110 by using a cutter or a laser.
  • flexibility of the polarizer 110 is improved by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction in the polarizer or by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction and the second direction in the polarizer 110 . Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110 , flexibility of the entire polarization film 103 is improved to allow the polarization film 103 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 103 having improved flexibility is provided.
  • FIGS. 6 and 7 a polarization film according to a fourth exemplary embodiment will be described referring to FIGS. 6 and 7 .
  • FIG. 6 is a cross-sectional view showing a polarization film 104 according to a fourth exemplary embodiment of the present invention.
  • the polarizer 110 includes a first polarization groove 111 formed on the upper surface 110 a of the polarizer 110 and a second polarization groove 112 formed on the lower surface 110 b of the polarizer 110 .
  • the second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and extends in the first direction.
  • FIG. 7 is a top view of a polarizer shown in FIG. 6 .
  • FIGS. 7( a ) to 7( d ) each show various examples of configuring the first polarization groove 111 and the second polarization groove 112 .
  • the first polarization groove 111 is recessed from the upper surface 110 a of the polarizer 110 and extends in the first direction.
  • the depth of the first polarization groove 111 may be from about 0.1 ⁇ m to about 10 mm, and the width of the first polarization groove 111 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and extends in the first direction.
  • the depth of the second polarization groove 112 may be from about 0.1 ⁇ m to about 10 mm, and the width of the second polarization groove 112 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 110 a and the lower surface 110 b of the polarizer 110 .
  • the first direction may be a direction that is parallel to a polarization axis of the polarizer 110 .
  • the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and also extend in the second direction crossing the first direction. That is, the first polarization groove 111 may be formed in a matrix form.
  • the second polarization groove 112 may be recessed from the lower surface 110 b of the polarizer 110 and also extend in the second direction crossing the first direction. That is, the second polarization groove 112 may be formed in a matrix form.
  • the second direction refers to a direction (e.g., a predetermined) direction crossing the first direction on the upper surface 110 a and the lower surface 110 b of the polarizer 110 .
  • the first polarization groove 111 overlaps the second polarization groove 112 . That is, the second polarization groove 112 is positioned on the lower surface of the polarizer 110 corresponding to the first polarization groove 111 .
  • the polarization film 104 according to the fourth exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 104 is manufactured by using the roll to roll process, the first polarization groove 111 and the second polarization groove 112 may be formed on the polarizer 110 by using a cutter or a laser.
  • flexibility of the polarizer 110 is improved by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction in the polarizer 110 or by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction and the second direction in the polarizer 110 . Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110 , flexibility of the entire polarization film 104 is improved to allow the polarization film 104 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 104 having improved flexibility is provided.
  • FIG. 8 a polarization film according to a fifth exemplary embodiment will be described referring to FIG. 8 .
  • FIG. 8 is a cross-sectional view showing a polarization film according to a fifth exemplary embodiment.
  • the first transparent support 120 is attached to one surface of the polarizer 110
  • the second transparent support 130 is attached to another surface of the polarizer 110 .
  • the first transparent support 120 includes the first transparent groove 121 formed on the upper surface 120 a of the first transparent support 120 .
  • the first transparent groove 121 is recessed from the upper surface 120 a of the first transparent support 120 and extends in the first direction.
  • the depth of the first transparent groove 121 may be from about 0.1 ⁇ m to about 10 mm, and the width of the first transparent groove 121 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 120 a of the first transparent support 120 .
  • the first direction may be a direction that is parallel to a polarization axis of the polarizer 110 .
  • the first transparent groove 121 may be recessed from the upper surface 120 a of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the first transparent groove 121 may be formed in a matrix form.
  • the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 120 a of the first transparent support 120 .
  • first transparent groove 121 according to the fifth exemplary embodiment is illustrated having a V-shaped cross-section, the first transparent groove according to other exemplary embodiments is not limited thereto, and may have a circular, oval, or quadrangular cross-section.
  • the polarization film 105 according to the fifth exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 105 is manufactured by using the roll to roll process, the first transparent groove 121 may be formed on the first transparent support 120 by using a cutter or a laser.
  • flexibility of the first transparent support 120 is improved by including the first transparent groove 121 extending in the first direction, or the first direction and the second direction, in the first transparent support 120 . Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110 , flexibility of the entire polarization film 105 is improved to allow the polarization film 105 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 105 having improved flexibility is provided.
  • FIG. 9 is a cross-sectional view showing a polarization film 106 according to a sixth exemplary embodiment of the present invention.
  • the first transparent support 120 includes the first transparent groove 121 formed on the upper surface 120 a of the first transparent support 120 and the second transparent groove 122 formed on the lower surface 120 b of the first transparent support 120 .
  • the second transparent groove 122 is recessed from the lower surface 120 b of the first transparent support 120 and extends in the first direction.
  • the first transparent groove 121 is recessed from the upper surface 120 a of the first transparent support 120 and extends in the first direction.
  • the depth of the first transparent groove 121 may be from about 0.1 ⁇ m to about 10 mm, and the width of the first transparent groove 121 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the second transparent groove 122 is recessed from the lower surface 120 b of the first transparent support 120 and extends in the first direction.
  • the depth of the second transparent groove 122 may be from about 0.1 ⁇ m to about 10 mm, and the width of the second transparent groove 122 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the first direction refers to a direction (e.g., a predetermined) direction on the upper surface 120 a and the lower surface 120 b of the first transparent support 120 .
  • the first direction may be a direction that is parallel to a polarization axis of the polarizer 110 .
  • first transparent groove 121 may be recessed from the upper surface 120 a of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the first transparent groove 121 may be formed in a matrix form.
  • the second transparent groove 122 may be recessed from the lower surface 120 b of the first transparent support 120 and may extend in the second direction crossing the first direction. That is, the second transparent groove 122 may be formed in a matrix form.
  • the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 120 a and the lower surface 120 b of the first transparent support 120 .
  • the first transparent groove 121 does not overlap the second transparent groove 122 . That is, the second transparent groove 122 is positioned at the lower surface of the first transparent support 120 corresponding to a portion that is between adjacent first transparent grooves 121 .
  • the polarization film 106 according to the sixth exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 106 is manufactured by using the roll to roll process, the first transparent groove 121 and the second transparent groove 122 may be formed on the first transparent support 120 by using a cutter or a laser.
  • flexibility of the first transparent support 120 is improved by including the first transparent groove 121 and the second transparent groove 122 extending in the first direction in the first transparent support 120 or including the first transparent groove 121 and the second transparent groove 122 extending in the first direction and the second direction in the first transparent support 120 . Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110 , flexibility of the entire polarization film 106 is improved to allow the polarization film 106 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 106 having improved flexibility is provided.
  • FIG. 10 is a cross-sectional view showing a polarization film 107 according to a seventh exemplary embodiment.
  • the first transparent support 120 includes the first transparent groove 121 formed on the upper surface 120 a of the first transparent support 120 and the second transparent groove 122 formed on the lower surface 120 b of the first transparent support 120 .
  • the first transparent groove 121 is recessed from the upper surface 120 a of the first transparent support 120 and extends in the first direction.
  • the depth of the first transparent groove 121 may be from about 0.1 ⁇ m to about 10 mm, and the width of the first transparent groove 121 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the second transparent groove 122 is recessed from the lower surface 120 b of the first transparent support 120 and extends in the first direction.
  • the depth of the second transparent groove 122 may be from about 0.1 ⁇ m to about 10 mm, and the width of the second transparent groove 122 may be from about 0.1 ⁇ m to about 100 mm, but the depth and the width are not limited thereto.
  • the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 120 a and the lower surface 120 b of the first transparent support 120 .
  • the first direction may be a direction that is parallel to a polarization axis of the polarizer 110 .
  • first transparent groove 121 may be recessed from the upper surface 120 a of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the first transparent groove 121 may be formed in a matrix form.
  • the second transparent groove 122 may be recessed from the lower surface 120 b of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the second transparent groove 122 may be formed in a matrix form.
  • the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 120 a and the lower surface 120 b of the first transparent support 120 .
  • the first transparent groove 121 overlaps the second transparent groove 122 . That is, the second transparent groove 122 is positioned on the lower surface of the first transparent support 120 corresponding to the first transparent groove 121 .
  • the polarization film 107 according to the seventh exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 107 is manufactured by using the roll to roll process, the first transparent groove 121 and the second transparent groove 122 may be formed on the first transparent support 120 by using a cutter or a laser.
  • flexibility of the first transparent support 120 is improved by including the first transparent groove 121 and the second transparent groove 122 extending in the first direction in the first transparent support 120 or by including the first transparent groove 121 and the second transparent groove 122 extending in the first direction and the second direction in the first transparent support 120 . Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110 , flexibility of the entire polarization film 107 is improved to allow the polarization film 107 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 107 having improved flexibility is provided.
  • the transparent groove may be formed on one or more of the upper surface and the lower surface of the second transparent support 130 , or a groove may be formed on one or more of the upper surface and the lower surface of each of the polarizer 110 , the first transparent support 120 , and the second transparent support 130 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Abstract

A polarization film including a polarizer polarizing incident light in a polarization direction and having a first polarization groove recessed from an upper surface of the polarizer and extending in a first direction; a first transparent support at the upper surface of the polarizer; and a second transparent support at a lower surface of the polarizer.

Description

CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to and the benefit of Korean Patent Application No. 10-2012-0065042 filed in the Korean Intellectual Property Office on Jun. 18, 2012, the entire contents of which are incorporated herein by reference.
BACKGROUND
1. Field
Aspects of the present invention relate to a polarization film and a display device.
2. Description of the Related Art
A display device is a device for displaying an image. One example of a display device is an organic light emitting diode (OLED) display.
Since the organic light emitting diode (OLED) display has a self-light emitting characteristic so that a separate light source is not required, which is unlike a liquid crystal display (LCD), a thickness and a weight thereof may be reduced.
The organic light emitting diode (OLED) display may include a first substrate, an organic light emitting diode disposed on the first substrate, a second substrate facing the first substrate with the organic light emitting diode interposed therebetween, and a polarization film attached to the second substrate. If the first substrate and the second substrate include a flexible substrate such as a resin, a laminate of the first substrate, the organic light emitting diode, and the second substrate may be implemented to form a flexible display panel that can be bended, folded, or rolled.
However, the polarization film, which may be formed of a polarizer for polarizing incident light and a transparent support attached to the polarizer, may have low flexibility as compared to the flexible display panel. Accordingly, the flexibility of the entire display device to which the polarization film is attached may be deteriorated.
While simply reducing a thickness of the polarizer may improve flexibility, an optical characteristic of the polarizer is likely to be deteriorated.
The above information disclosed in this Background section is only for enhancement of understanding of the background of the described technology and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
SUMMARY
Aspects of the present invention provide for a polarization film and a display device having improved flexibility.
An exemplary embodiment of the present invention provides for a polarization film including: a polarizer configured to polarize incident light in a polarization direction, the polarizer having a first polarization groove recessed from an upper surface of the polarizer and extending in a first direction; a first transparent support at the upper surface of the polarizer; and a second transparent support at a lower surface of the polarizer.
The polarizer may have a plurality of first polarization grooves that include: the first polarization groove extending in the first direction; and another first polarization groove that is recessed from the upper surface of the polarizer and extends in a second direction crossing the first direction.
The polarizer may further have a second polarization groove recessed from the lower surface of the polarizer and extending in the first direction.
The polarizer may have a plurality of second polarization grooves that include: the second polarization groove extending in the first direction; and another second polarization groove that is recessed from the lower surface of the polarizer and extends in a second direction crossing the first direction.
The second polarization groove may not overlap the first polarization groove.
The second polarization groove may overlap the first polarization groove.
The polarizer may include polyvinyl alcohol (PVA).
At least one of the first transparent support or the second transparent support may include triacetyl cellulose (TAC).
Another exemplary embodiment according to the present invention provides for a polarization film including: a polarizer configured to polarize incident light in a polarization direction; a first transparent support at one surface of the polarizer and having a first transparent groove, which is recessed from an upper surface of the first transparent support and extends in a first direction; and a second transparent support at another surface of the polarizer.
The first transparent support may have a plurality of first transparent grooves including: the first transparent groove extending in the first direction; and another first transparent groove that is recessed from the upper surface of the first transparent support and extends in a second direction crossing the first direction.
The first transparent support may further have a second transparent groove, which is recessed from a lower surface of the first transparent support and extends in the first direction.
The first transparent support may have a plurality of second transparent grooves including: the second transparent groove extending in the first direction; and another second transparent groove that is recessed from the lower surface of the first transparent support and extends in a second direction crossing the first direction.
The second transparent groove may not overlap the first transparent groove.
The second transparent groove may overlap the first transparent groove.
Yet another exemplary embodiment of the present invention provides for a display device including: a flexible display panel configured to display an image; and a polarization film on the flexible display panel including: a polarizer configured to polarize incident light in a polarization direction, the polarizer having a first polarization groove recessed from an upper surface of the polarizer and extending in a first direction; a first transparent support at the upper surface of the polarizer; and a second transparent support at a lower surface of the polarizer.
Accordingly, there are provided a polarization film and a display device having improved flexibility.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a cross-sectional view showing a polarization film according to a first exemplary embodiment.
FIG. 2 is a top view of a polarizer shown in FIG. 1.
FIG. 3 is a cross-sectional view showing a display device according to a second exemplary embodiment.
FIG. 4 is a cross-sectional view showing a polarization film according to a third exemplary embodiment.
FIG. 5 is a top view of a polarizer shown in FIG. 4.
FIG. 6 is a cross-sectional view showing a polarization film according to a fourth exemplary embodiment.
FIG. 7 is a top view of a polarizer shown in FIG. 6.
FIG. 8 is a cross-sectional view showing a polarization film according to a fifth exemplary embodiment.
FIG. 9 is a cross-sectional view showing a polarization film according to a sixth exemplary embodiment.
FIG. 10 is a cross-sectional view showing a polarization film according to a seventh exemplary embodiment.
DETAILED DESCRIPTION
Hereinafter, the present invention will be described more fully with reference to the accompanying drawings, in which certain exemplary embodiments of the invention are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
Further, in several exemplary embodiments, a constituent element having the same (or substantially similar) configuration will be representatively described in a first exemplary embodiment by using the same reference numeral, and other configurations different from those of the first exemplary embodiment will be described in other exemplary embodiments.
In addition, the size and thickness of each component shown in the drawings are arbitrarily shown for understanding and ease of description, thus, the present invention is not limited thereto.
When an element is referred to as being “on” (e.g., disposed or formed on) another element, it may be directly on the another element or be indirectly on the another element with one or more intervening elements interposed therebetween.
In addition, in the specification, unless explicitly described to the contrary, the words “comprise,” including variations such as “comprises” or “comprising,” and “include,” including variations such as “includes” or “including,” will be understood to imply the inclusion of stated elements but not the exclusion of any other elements.
Hereinafter, a polarization film according to a first exemplary embodiment will be described with reference to FIGS. 1 to 2.
FIG. 1 is a cross-sectional view showing a polarization film according to a first exemplary embodiment.
As shown in FIG. 1, a polarization film 100 according to the first exemplary embodiment, which polarizes incident light, includes a polarizer 110, a first transparent support 120, and a second transparent support 130.
The polarizer 110 polarizes light that is incident on the polarization film 100. The polarizer 110 may be formed of polyvinyl alcohol (PVA). Furthermore, the polarizer 110 may be formed by stretching the polyvinyl alcohol, which is the polymer material, adsorbing a pigment such as iodine thereon, and performing alignment. In FIG. 1, the polarizer 110 includes a first polarization groove 111 (or a plurality of first polarization grooves 111) formed on an upper surface 110 a of the polarizer 110.
The first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and may extend in a first direction.
FIG. 2 is a top view showing of a polarizer shown in FIG. 1. FIGS. 2(a) to 2(d) each show various examples of configuring the first polarization groove 111.
As shown in FIGS. 2(a) and 2(b), the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and may extend in the first direction. In one embodiment, the depth of the first polarization groove 111 may be from about 0.1 μm to about 10 mm, and the width of the first polarization groove 111 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto. Herein, the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 110 a of the polarizer 110, and the first direction may be a direction that is parallel to a polarization axis of the polarizer 110.
Further, as shown in FIGS. 2(c) and 2(d), the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and also extend in a second direction crossing the first direction (or, stated another way, another polarization groove 111 (or grooves) of the plurality of polarization grooves 111 may be recessed from the upper surface 110 a of the polarizer 110 and extend in a second direction crossing the polarization groove 111 (or grooves) that extend in the first direction). That is, the first polarization groove 111 may be formed in a matrix form. Herein, the second direction refers a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 110 a of the polarizer 110.
While, the first polarization groove 111 according to the first exemplary embodiment shown in FIG. 1 has a V-shaped cross-section, the first polarization groove 111 is not limited thereto, and according to other exemplary embodiments, may have a circular, oval, quadrangular, or other suitable cross-section.
Referring back to FIG. 1, the first transparent support 120 is attached to the upper surface 110 a of the polarizer 110, and the second transparent support 130 is attached to a lower surface 110 b of the polarizer 110. The first transparent support 120 and the second transparent support 130 may serve to protect the first polarization groove 111 while also reinforcing the strength of the entire polarization film 100 by supporting the polarizer 110. One or more embodiments of the first transparent support 120 and the second transparent support 130 according to the present invention may be formed of triacetyl cellulose (TAC).
The polarization film 100 according to the first exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 100 is manufactured by using the roll to roll process, the first polarization groove 111 may be formed on the polarizer 110 by using a cutter or a laser.
The polarizer 110 according to the first exemplary embodiment may be formed of PVA, and one or more of the first transparent support 120 and the second transparent support 130 may be formed of TAC, but embodiments of the present invention are not limited thereto; for example, each of the polarizer, the first transparent support, and the second transparent support according to other exemplary embodiments may be formed of a material selected from PET, PMMA, PC and PEN.
Further, in the polarization film according to other exemplary embodiments, a passivation film, an adhesive, and/or a release film may be further attached to each of the first transparent support and the second transparent support.
As described above, in the polarization film 100 according to the first exemplary embodiment, flexibility of the polarizer 110 is improved by including the first polarization groove 111 extending in the first direction in the polarizer 110 or including the first polarization groove 11 extending in the first direction and the second direction in the polarizer 110. Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110, flexibility of the entire polarization film 100 is improved to allow the polarization film 100 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 100 having improved flexibility is provided.
Hereinafter, a display device according to a second exemplary embodiment will be described in reference to FIG. 3. The display device according to the second exemplary embodiment is a display device to which the polarization film 100 according to the first exemplary embodiment is attached.
FIG. 3 is a cross-sectional view showing a display device according to a second exemplary embodiment.
As shown in FIG. 3(a), a display device 1000 according to the second exemplary embodiment includes a polarization film 100 and a flexible display panel 200.
The flexible display panel 200 may be an organic light emitting diode (OLED) display where the substrate includes a flexible substrate such as a resin to improve flexibility. Here, the polarization film 100 having improved flexibility is attached to the flexible display panel 200.
As shown in FIG. 3(b), the display device 1000 according to the second exemplary embodiment can be bended, folded, and rolled onto itself if the polarization film 100 having improved flexibility is attached to the flexible display panel 200 to improve flexibility of the entire display device 1000. That is, the display device 1000 having improved flexibility is provided.
Hereinafter, a polarization film according to a third exemplary embodiment will be described with reference to FIGS. 4 and 5.
Hereinafter, primarily portions that are different from those of the first exemplary embodiment are described in detail, and any remaining portion of the description thereof is given by way of reference to the proceeding description. In addition, in the third exemplary embodiment, for better comprehension and ease of description, the same (or substantially similar) elements are designated by the same reference numerals as the first exemplary embodiment.
FIG. 4 is a cross-sectional view showing a polarization film 103 according to a third exemplary embodiment of the present invention.
The polarizer 110 includes a first polarization groove 111 formed on the upper surface 110 a of the polarizer 110 and a second polarization groove 112 formed on the lower surface 110 b of the polarizer 110.
The second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and extends in the first direction.
FIG. 5 is a top view of a polarizer shown in FIG. 4. FIGS. 5(a) to 5(d) each show various examples of configuring the first polarization groove 111 and the second polarization groove 112.
As shown in FIGS. 5(a) and 5(b), the first polarization groove 111 is recessed from the upper surface 110 a of the polarizer 110 and extends in the first direction. The depth of the first polarization groove 111 may be from about 0.1 μm to about 10 mm, and the width of the first polarization groove 111 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto.
In FIGS. 5(a) and (b), the second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and also extends in the first direction. The depth of the second polarization groove 112 may be from about 0.1 μm to about 10 mm, and the width of the second polarization groove 112 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto. Herein, the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 110 a and the lower surface 110 b of the polarizer 110. The first direction may be a direction that is parallel to a polarization axis of the polarizer 110.
Further, as shown in FIGS. 5(c) and 5(d), the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and also extend in the second direction crossing the first direction. That is, the first polarization groove 111 may be formed in a matrix form.
Also as shown in FIGS. 5(c) and 5(d), the second polarization groove 112 may be recessed from the lower surface 110 b of the polarizer 110 and extend in the second direction crossing the first direction. That is, the second polarization groove 112 may be formed in a matrix form. Herein, the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 110 a and the lower surface 110 b of the polarizer 110.
The first polarization groove 111 may not overlap the second polarization groove 112 that is positioned in the same direction as the first polarization groove 111. For example, the second polarization groove 112 may be positioned at the lower surface 110 b of the polarizer 110 corresponding to a portion between adjacent first polarization grooves 111.
The polarization film 103 according to the third exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 103 is manufactured by using the roll to roll process, the first polarization groove 111 and the second polarization groove 112 may be formed on the polarizer 110 by using a cutter or a laser.
As described above, in the polarization film 103 according to the third exemplary embodiment, flexibility of the polarizer 110 is improved by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction in the polarizer or by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction and the second direction in the polarizer 110. Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110, flexibility of the entire polarization film 103 is improved to allow the polarization film 103 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 103 having improved flexibility is provided.
Hereinafter, a polarization film according to a fourth exemplary embodiment will be described referring to FIGS. 6 and 7.
Hereinafter, primarily portions that are different from those of the previously described exemplary embodiments are described in detail, and any remaining portion of the description thereof is given by way of reference to proceeding embodiments. In addition, in the fourth exemplary embodiment, for better comprehension and ease of description, the same (or substantially similar) elements are designated by the same reference numerals as the first exemplary embodiment.
FIG. 6 is a cross-sectional view showing a polarization film 104 according to a fourth exemplary embodiment of the present invention.
The polarizer 110 includes a first polarization groove 111 formed on the upper surface 110 a of the polarizer 110 and a second polarization groove 112 formed on the lower surface 110 b of the polarizer 110.
The second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and extends in the first direction.
FIG. 7 is a top view of a polarizer shown in FIG. 6. FIGS. 7(a) to 7(d) each show various examples of configuring the first polarization groove 111 and the second polarization groove 112.
As shown in FIGS. 7(a) and 7(b), the first polarization groove 111 is recessed from the upper surface 110 a of the polarizer 110 and extends in the first direction. The depth of the first polarization groove 111 may be from about 0.1 μm to about 10 mm, and the width of the first polarization groove 111 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto.
Also as shown in FIGS. 7(a) and 7(b), the second polarization groove 112 is recessed from the lower surface 110 b of the polarizer 110 and extends in the first direction. The depth of the second polarization groove 112 may be from about 0.1 μm to about 10 mm, and the width of the second polarization groove 112 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto. Herein, the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 110 a and the lower surface 110 b of the polarizer 110. The first direction may be a direction that is parallel to a polarization axis of the polarizer 110.
Further, as shown in FIGS. 7(c) and 7(d), the first polarization groove 111 may be recessed from the upper surface 110 a of the polarizer 110 and also extend in the second direction crossing the first direction. That is, the first polarization groove 111 may be formed in a matrix form.
The second polarization groove 112 may be recessed from the lower surface 110 b of the polarizer 110 and also extend in the second direction crossing the first direction. That is, the second polarization groove 112 may be formed in a matrix form. Herein, the second direction refers to a direction (e.g., a predetermined) direction crossing the first direction on the upper surface 110 a and the lower surface 110 b of the polarizer 110.
In FIG. 7, the first polarization groove 111 overlaps the second polarization groove 112. That is, the second polarization groove 112 is positioned on the lower surface of the polarizer 110 corresponding to the first polarization groove 111.
The polarization film 104 according to the fourth exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 104 is manufactured by using the roll to roll process, the first polarization groove 111 and the second polarization groove 112 may be formed on the polarizer 110 by using a cutter or a laser.
As described above, in the polarization film 104 according to the fourth exemplary embodiment, flexibility of the polarizer 110 is improved by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction in the polarizer 110 or by including the first polarization groove 111 and the second polarization groove 112 extending in the first direction and the second direction in the polarizer 110. Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110, flexibility of the entire polarization film 104 is improved to allow the polarization film 104 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 104 having improved flexibility is provided.
Hereinafter, a polarization film according to a fifth exemplary embodiment will be described referring to FIG. 8.
Hereinafter, primarily portions that are different from those of the previously described exemplary embodiments are described in detail, and any remaining portion of the description thereof is given by way of reference to proceeding embodiments. In addition, in the fifth exemplary embodiment, for better comprehension and ease of description, the same (or substantially similar) elements are designated by the same reference numerals as the first exemplary embodiment.
FIG. 8 is a cross-sectional view showing a polarization film according to a fifth exemplary embodiment.
As shown in FIG. 8, in the polarization film 105 according to the fifth exemplary embodiment, the first transparent support 120 is attached to one surface of the polarizer 110, and the second transparent support 130 is attached to another surface of the polarizer 110.
The first transparent support 120 includes the first transparent groove 121 formed on the upper surface 120 a of the first transparent support 120.
The first transparent groove 121 is recessed from the upper surface 120 a of the first transparent support 120 and extends in the first direction.
The depth of the first transparent groove 121 may be from about 0.1 μm to about 10 mm, and the width of the first transparent groove 121 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto. Herein, the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 120 a of the first transparent support 120. The first direction may be a direction that is parallel to a polarization axis of the polarizer 110.
The first transparent groove 121 may be recessed from the upper surface 120 a of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the first transparent groove 121 may be formed in a matrix form. Herein, the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 120 a of the first transparent support 120.
While, the first transparent groove 121 according to the fifth exemplary embodiment is illustrated having a V-shaped cross-section, the first transparent groove according to other exemplary embodiments is not limited thereto, and may have a circular, oval, or quadrangular cross-section.
The polarization film 105 according to the fifth exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 105 is manufactured by using the roll to roll process, the first transparent groove 121 may be formed on the first transparent support 120 by using a cutter or a laser.
As described above, in the polarization film 105 according to the fifth exemplary embodiment, flexibility of the first transparent support 120 is improved by including the first transparent groove 121 extending in the first direction, or the first direction and the second direction, in the first transparent support 120. Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110, flexibility of the entire polarization film 105 is improved to allow the polarization film 105 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 105 having improved flexibility is provided.
Hereinafter, a polarization film according to a sixth exemplary embodiment will be described referring to FIG. 9.
Hereinafter, primarily portions that are different from those of the fifth exemplary embodiment are described in detail, and any remaining portion of description thereof is given by way of reference to proceeding embodiments. Further, in the sixth exemplary embodiment, for better comprehension and ease of description, the same (or substantially similar) elements are designated by the same reference numerals as the fifth exemplary embodiment.
FIG. 9 is a cross-sectional view showing a polarization film 106 according to a sixth exemplary embodiment of the present invention.
The first transparent support 120 includes the first transparent groove 121 formed on the upper surface 120 a of the first transparent support 120 and the second transparent groove 122 formed on the lower surface 120 b of the first transparent support 120.
The second transparent groove 122 is recessed from the lower surface 120 b of the first transparent support 120 and extends in the first direction.
The first transparent groove 121 is recessed from the upper surface 120 a of the first transparent support 120 and extends in the first direction. The depth of the first transparent groove 121 may be from about 0.1 μm to about 10 mm, and the width of the first transparent groove 121 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto.
The second transparent groove 122 is recessed from the lower surface 120 b of the first transparent support 120 and extends in the first direction. The depth of the second transparent groove 122 may be from about 0.1 μm to about 10 mm, and the width of the second transparent groove 122 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto. Herein, the first direction refers to a direction (e.g., a predetermined) direction on the upper surface 120 a and the lower surface 120 b of the first transparent support 120. The first direction may be a direction that is parallel to a polarization axis of the polarizer 110.
Further, the first transparent groove 121 may be recessed from the upper surface 120 a of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the first transparent groove 121 may be formed in a matrix form.
The second transparent groove 122 may be recessed from the lower surface 120 b of the first transparent support 120 and may extend in the second direction crossing the first direction. That is, the second transparent groove 122 may be formed in a matrix form. Herein, the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 120 a and the lower surface 120 b of the first transparent support 120.
In FIG. 9, the first transparent groove 121 does not overlap the second transparent groove 122. That is, the second transparent groove 122 is positioned at the lower surface of the first transparent support 120 corresponding to a portion that is between adjacent first transparent grooves 121.
The polarization film 106 according to the sixth exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 106 is manufactured by using the roll to roll process, the first transparent groove 121 and the second transparent groove 122 may be formed on the first transparent support 120 by using a cutter or a laser.
As described above, in the polarization film 106 according to the sixth exemplary embodiment, flexibility of the first transparent support 120 is improved by including the first transparent groove 121 and the second transparent groove 122 extending in the first direction in the first transparent support 120 or including the first transparent groove 121 and the second transparent groove 122 extending in the first direction and the second direction in the first transparent support 120. Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110, flexibility of the entire polarization film 106 is improved to allow the polarization film 106 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 106 having improved flexibility is provided.
Hereinafter, a polarization film according to a seventh exemplary embodiment will be described referring to FIG. 10.
Hereinafter, primarily portions that are different from those of the fifth exemplary embodiment are described in detail, and any remaining portion of description thereof is given by way of reference to the fifth exemplary embodiment. Further, in the seventh exemplary embodiment, for better comprehension and ease of description, the same (or substantially similar) elements are designated by the same reference numerals as the fifth exemplary embodiment.
FIG. 10 is a cross-sectional view showing a polarization film 107 according to a seventh exemplary embodiment.
The first transparent support 120 includes the first transparent groove 121 formed on the upper surface 120 a of the first transparent support 120 and the second transparent groove 122 formed on the lower surface 120 b of the first transparent support 120.
The first transparent groove 121 is recessed from the upper surface 120 a of the first transparent support 120 and extends in the first direction. The depth of the first transparent groove 121 may be from about 0.1 μm to about 10 mm, and the width of the first transparent groove 121 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto.
The second transparent groove 122 is recessed from the lower surface 120 b of the first transparent support 120 and extends in the first direction. The depth of the second transparent groove 122 may be from about 0.1 μm to about 10 mm, and the width of the second transparent groove 122 may be from about 0.1 μm to about 100 mm, but the depth and the width are not limited thereto. Herein, the first direction refers to a direction (e.g., a predetermined direction) on the upper surface 120 a and the lower surface 120 b of the first transparent support 120. The first direction may be a direction that is parallel to a polarization axis of the polarizer 110.
Further, the first transparent groove 121 may be recessed from the upper surface 120 a of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the first transparent groove 121 may be formed in a matrix form.
The second transparent groove 122 may be recessed from the lower surface 120 b of the first transparent support 120 and also extend in the second direction crossing the first direction. That is, the second transparent groove 122 may be formed in a matrix form. Herein, the second direction refers to a direction (e.g., a predetermined direction) crossing the first direction on the upper surface 120 a and the lower surface 120 b of the first transparent support 120.
The first transparent groove 121 overlaps the second transparent groove 122. That is, the second transparent groove 122 is positioned on the lower surface of the first transparent support 120 corresponding to the first transparent groove 121.
The polarization film 107 according to the seventh exemplary embodiment may be manufactured by using a roll to roll process, and when the polarization film 107 is manufactured by using the roll to roll process, the first transparent groove 121 and the second transparent groove 122 may be formed on the first transparent support 120 by using a cutter or a laser.
As described above, in the polarization film 107 according to the seventh exemplary embodiment, flexibility of the first transparent support 120 is improved by including the first transparent groove 121 and the second transparent groove 122 extending in the first direction in the first transparent support 120 or by including the first transparent groove 121 and the second transparent groove 122 extending in the first direction and the second direction in the first transparent support 120. Therefore, even though the first transparent support 120 and the second transparent support 130 are attached to the polarizer 110, flexibility of the entire polarization film 107 is improved to allow the polarization film 107 to be capable of being bended, folded, and rolled onto itself. That is, the polarization film 107 having improved flexibility is provided.
While this disclosure has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. For example, in polarization films according to other exemplary embodiments of the present invention, the transparent groove may be formed on one or more of the upper surface and the lower surface of the second transparent support 130, or a groove may be formed on one or more of the upper surface and the lower surface of each of the polarizer 110, the first transparent support 120, and the second transparent support 130.

Claims (6)

What is claimed is:
1. A polarization film comprising:
a polarizer consisting of a single layer configured to polarize incident light in a polarization direction, the polarizer having a plurality of first polarization grooves, a plurality of second polarization grooves, a plurality of another first polarization grooves, and a plurality of another second polarization grooves,
wherein the first and the another first polarization grooves are recessed from an upper surface of the polarizer, the first and the another first polarization grooves extending in a first direction and a second direction, respectively, such that a thickness of the polarizer is reduced at the plurality of the first and the another first polarization grooves, wherein at least one of the first polarization grooves intersects at least one of the another first polarization grooves, and
wherein the second and the another second polarization grooves are recessed from a lower surface of the polarizer, the second and the another second polarization grooves extending in the first direction and the second direction, respectively, such that a thickness of the polarizer is reduced at the plurality of the second and the another second polarization grooves, wherein at least one of the second polarization grooves intersects at least one of the another second polarization grooves;
a first transparent support at the upper surface of the polarizer, the first transparent support having a planar shape and having a lowermost portion that is above an uppermost portion of the polarizer; and
a second transparent support at the lower surface of the polarizer, the second transparent support having a planar shape and having an uppermost portion that is below a lowermost portion of the polarizer,
wherein a portion of the upper surface of the polarizer is flat between the first polarization grooves, and
a portion of the lower surface of the polarizer is flat between the second polarization grooves.
2. The polarization film of claim 1, wherein: one of the second polarization grooves does not overlap any portion of one of the first polarization grooves.
3. The polarization film of claim 1, wherein: one of the second polarization grooves at least partially overlaps one of the first polarization grooves.
4. The polarization film of claim 1, wherein:
the polarizer comprises polyvinyl alcohol (PVA).
5. The polarization film of claim 1, wherein:
at least one of the first transparent support or the second transparent support comprise triacetyl cellulose (TAC).
6. A display device comprising:
a display panel configured to display an image; and
a polarization film on the display panel comprising:
a polarizer consisting of a single layer configured to polarize incident light in a polarization direction, the polarizer having a plurality of first polarization grooves, a plurality of second polarization grooves, a plurality of another first polarization grooves, and a plurality of another second polarization grooves,
wherein the first and the another first polarization grooves are recessed from an upper surface of the polarizer, the first and the another first polarization grooves extending in a first direction and a second direction, respectively, such that a thickness of the polarizer is reduced at the plurality of the first and the another first polarization grooves, wherein at least one of the first polarization grooves intersects at least one of the another first polarization grooves, and
wherein the second and the another second polarization grooves are recessed from a lower surface of the polarizer, the second and the another second polarization grooves extending in the first direction and the second direction, respectively, such that a thickness of the polarizer is reduced at the plurality of the second and the another second polarization grooves, wherein at least one of the second polarization grooves intersects at least one of the another second polarization grooves;
a first transparent support at the upper surface of the polarizer, the first transparent support having a planar shape and having a lowermost portion that is above an uppermost portion of the polarizer; and
a second transparent support at the lower surface of the polarizer, the second transparent support having a planar shape and having an uppermost portion that is below a lowermost portion of the polarizer,
wherein a portion of the upper surface of the polarizer is flat between the first polarization grooves, and
a portion of the lower surface of the polarizer is flat between the second polarization grooves.
US13/791,882 2012-06-18 2013-03-08 Polarization film and display device Active 2033-10-06 US9535199B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0065042 2012-06-18
KR1020120065042A KR101933159B1 (en) 2012-06-18 2012-06-18 Polarization film and display device

Publications (2)

Publication Number Publication Date
US20130335824A1 US20130335824A1 (en) 2013-12-19
US9535199B2 true US9535199B2 (en) 2017-01-03

Family

ID=49755658

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/791,882 Active 2033-10-06 US9535199B2 (en) 2012-06-18 2013-03-08 Polarization film and display device

Country Status (2)

Country Link
US (1) US9535199B2 (en)
KR (1) KR101933159B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466469B1 (en) * 2016-03-28 2019-11-05 Amazon Technologies, Inc. Display device with cover structure
JP6668312B2 (en) * 2017-02-10 2020-03-18 日東電工株式会社 Polarizing film, image display device, and method for manufacturing polarizing film
JP6668310B2 (en) * 2017-02-10 2020-03-18 日東電工株式会社 Polarizing film, image display device, and method for manufacturing polarizing film
US20180231704A1 (en) * 2017-02-10 2018-08-16 Nitto Denko Corporation Polarizing film, image display apparatus, and method of producing polarizing film
US20180231703A1 (en) * 2017-02-10 2018-08-16 Nitto Denko Corporation Polarizing film, image display apparatus, and method of producing polarizing film
KR102421009B1 (en) 2018-01-02 2022-07-14 삼성디스플레이 주식회사 Display device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177398A (en) * 2001-12-12 2003-06-27 Seiko Epson Corp Liquid crystal display device and electronic appliance
JP2004020634A (en) 2002-06-12 2004-01-22 Kuraray Co Ltd Polyvinyl alcohol film for polarizing film
US6882474B2 (en) * 2000-01-13 2005-04-19 Nitto Denko Corporation Optical path changing polarizer
US7136217B2 (en) * 2002-04-25 2006-11-14 Shojiro Kawakami Integrated optical element
US20070244255A1 (en) * 2006-04-13 2007-10-18 Daxon Technology Inc. Pressure sensitive adhesive and method for improving weatherability thereof
JP2008180765A (en) 2007-01-23 2008-08-07 Sumitomo Chemical Co Ltd Manufacturing method of polarizing film
US20100091281A1 (en) * 2007-07-17 2010-04-15 Sharp Kabushiki Kaisha Method for detecting edge on transparent substrate, apparatus for detecting edge on transparent substrate, and processing apparatus
US7753543B2 (en) * 2007-09-17 2010-07-13 Hon Hai Precision Industry Co., Ltd. Prism sheet and backlight module using the same
JP2011123475A (en) 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd Polarizing plate, liquid crystal panel and liquid crystal display apparatus using the polarizing plate
US20120242222A1 (en) 2011-03-24 2012-09-27 Woo-Suk Jung Organic light emitting diode display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787097B2 (en) 2005-02-22 2010-08-31 Fujifilm Corporation Flexible base material and flexible image-displaying device resistant to plastic deformation
JP5213407B2 (en) 2007-10-10 2013-06-19 株式会社ジャパンディスプレイイースト Liquid crystal display device and organic EL display device
JP5487623B2 (en) * 2009-01-15 2014-05-07 大日本印刷株式会社 Method for producing optical film for protecting polarizer, polarizing plate, and display device
JP5146362B2 (en) * 2009-03-04 2013-02-20 株式会社ブイ・テクノロジー Ink for correcting bright spot defect of polarizing plate and polarizing plate correcting method using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882474B2 (en) * 2000-01-13 2005-04-19 Nitto Denko Corporation Optical path changing polarizer
JP2003177398A (en) * 2001-12-12 2003-06-27 Seiko Epson Corp Liquid crystal display device and electronic appliance
US7136217B2 (en) * 2002-04-25 2006-11-14 Shojiro Kawakami Integrated optical element
JP2004020634A (en) 2002-06-12 2004-01-22 Kuraray Co Ltd Polyvinyl alcohol film for polarizing film
US20070244255A1 (en) * 2006-04-13 2007-10-18 Daxon Technology Inc. Pressure sensitive adhesive and method for improving weatherability thereof
JP2008180765A (en) 2007-01-23 2008-08-07 Sumitomo Chemical Co Ltd Manufacturing method of polarizing film
US20100091281A1 (en) * 2007-07-17 2010-04-15 Sharp Kabushiki Kaisha Method for detecting edge on transparent substrate, apparatus for detecting edge on transparent substrate, and processing apparatus
US7753543B2 (en) * 2007-09-17 2010-07-13 Hon Hai Precision Industry Co., Ltd. Prism sheet and backlight module using the same
JP2011123475A (en) 2009-11-16 2011-06-23 Sumitomo Chemical Co Ltd Polarizing plate, liquid crystal panel and liquid crystal display apparatus using the polarizing plate
US20120242222A1 (en) 2011-03-24 2012-09-27 Woo-Suk Jung Organic light emitting diode display
KR20120109081A (en) 2011-03-24 2012-10-08 삼성디스플레이 주식회사 Organic light emitting diode display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chiyoaki Iijima, "Liquid Crystal Display Device and Electronic Appliance", JP2003-177398A, machine translation. *

Also Published As

Publication number Publication date
US20130335824A1 (en) 2013-12-19
KR101933159B1 (en) 2018-12-28
KR20130141921A (en) 2013-12-27

Similar Documents

Publication Publication Date Title
US9535199B2 (en) Polarization film and display device
KR102334807B1 (en) Flexible window and flexible display device
US9128312B2 (en) Flat display device
KR102369943B1 (en) Foldable display
US10295818B2 (en) Flexible display device
US9703013B2 (en) Polarizing plate and optical display including the same
US10034395B2 (en) Flexible display device
CN108279535B (en) Image display device
US20160025912A1 (en) Multifunction packing film and display apparatus
US20150049281A1 (en) Display device and method for fabricating the display device
US20150010742A1 (en) Window for display device and display device including the window panel
KR102618598B1 (en) Flexible Display Device
US20160223722A1 (en) Display device and method of manufacturing the same
US10186688B2 (en) Display device
KR102528299B1 (en) Retardation film and flexible display apparatus comprising the same
KR20130061277A (en) Polarization film, method of manufacturing a polarization film and organic light emitting display device having a polarization film
JP2010078678A (en) Display device
US10217968B2 (en) Electro-optical panel including stretch film
TWI612346B (en) Polarizing plate and liquid crystal display comprising the same
TWI644130B (en) Polarizing plate, image display device, and method for manufacturing polarizing plate
KR102562977B1 (en) Electro-optical Panel
KR102000051B1 (en) The flexible organic light emitting display device and method for fabricating the same
KR20160116118A (en) Optical unit and organic light emitting diode display comprising the same
US20140347576A1 (en) Display device
US20230009733A1 (en) Foldable display device and method for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHO, JONG-HWAN;REEL/FRAME:029968/0001

Effective date: 20130307

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8