US9570987B2 - Method and apparatus for a voltage converter having bidirectional power conversion cells - Google Patents
Method and apparatus for a voltage converter having bidirectional power conversion cells Download PDFInfo
- Publication number
- US9570987B2 US9570987B2 US14/380,126 US201314380126A US9570987B2 US 9570987 B2 US9570987 B2 US 9570987B2 US 201314380126 A US201314380126 A US 201314380126A US 9570987 B2 US9570987 B2 US 9570987B2
- Authority
- US
- United States
- Prior art keywords
- cell
- converter
- circuit
- terminal
- primary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 32
- 230000002457 bidirectional effect Effects 0.000 title claims description 8
- 238000000034 method Methods 0.000 title claims description 5
- 238000004804 winding Methods 0.000 claims description 39
- 230000004913 activation Effects 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000010307 cell transformation Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/0074—Plural converter units whose inputs are connected in series
-
- H02M2001/0074—
Definitions
- the present disclosure relates to D.C.-to-D.C. voltage converters, and more particularly aims at a configurable converter comprising a plurality of elementary conversion cells capable of being individually activated to take part in the provision of an output voltage.
- Converters where the operation of the elementary conversion cells is based on the carrying out of cycles of power transfer between the primary and secondary windings of an insulating transformer are here more particularly considered.
- a configurable voltage converter comprising a plurality of elementary conversion cells having identical or different transformation ratios, the cells being capable of being individually activated to take part in the conversion of a D.C. input voltage into a A.C. output voltage, has already been provided, for example, in patent application US2007/0159862.
- the total transformation ratio of the converter depends on the selection of the activated cells. This type of converter has the advantage of being able of accept a wide variety of input voltage ranges and/or of being able to provide a wide variety of output voltage ranges.
- each elementary cell in a configurable multiple-cell converter, generally comprises an input capacitive element between its input terminals.
- the input capacitive element of this cell tends to discharge, for example, due to leakages inevitably present in its dielectric space, which may result in unwanted voltage or current peaks when the cell is reactivated.
- the input capacitive element of the cell is totally discharged, for example, when the cell has remained disconnected for a long period, it may be impossible to reactivate the cell without inputting power from an external source (cell restarting).
- configurable converters generally comprise at least one secondary power supply, specifically dedicated to maintaining an appropriate charge level in the capacitive input elements of the non-activated cells. More generally, configurable converters comprise at least one secondary power supply to reactivate disconnected cells. This increases the complexity, the bulk, and the cost of converters.
- an object of an embodiment of the present invention is to provide a configurable converter comprising a plurality of elementary conversion cells capable of being individually activated to take part in the provision of an output voltage, such a converter overcoming at least partly some of the disadvantages of known converters.
- An object of an embodiment of the present invention is to provide a converter which does not require using an external power supply source to reactivate cells which have been deactivated.
- An object of an embodiment of the present invention is to provide a converter which does not require using an external power source to solve reconfiguration problems due to the discharge of the input capacitive elements of the elementary conversion cells which do not take part in the provision of the output voltage.
- An object of an embodiment of the present invention is to provide a converter having a structure enabling to satisfactorily optimize the conversion performance, and particularly the quality factor and the power efficiency, whatever the configuration of the converter.
- an embodiment of the present invention provides a voltage converter, comprising: a plurality of bidirectional conversion cells, each cell comprising a primary circuit and a secondary circuit isolated from the primary circuit, and being capable of being individually activated to take part in the provision of an output voltage of the converter; and at least one control circuit configured to, in a first operating mode, simultaneously control activated cells to transfer electric power from the primary circuit to the secondary circuit, and non-activated cells to transfer electric power from the secondary circuit to the primary circuit.
- the primary circuits are series-connected between first and second terminals of the converter and the secondary circuits are connected in parallel between third and fourth terminals of the converter.
- each cell further comprises an input capacitive element between first and second input terminals of the cell, on the primary circuit side.
- each cell comprises activation switches, and a circuit for driving the activation switches powered with the voltage across said input capacitive element.
- each cell further comprises an output capacitive element between first and second output terminals of the cell, on the secondary circuit side.
- the primary circuit of each cell comprises four chopper switches assembled as a full bridge, the primary winding connecting the midpoints of the two arms of the bridge.
- each cell further comprises a circuit for driving the chopper switches of the primary circuit, powered with the voltage across said input capacitive element.
- the secondary circuit of each cell comprises four chopper switches assembled as a full bridge, the secondary winding connecting the midpoints of the two arms of the bridge.
- Another embodiment of the present invention provides a component comprising a plurality of converters of the above-mentioned type, the component having at least four connection elements per converter, respectively connected to first, second, third, and fourth terminals of the converter.
- Another embodiment of the present invention provides a method of controlling a voltage converter comprising a plurality of bidirectional conversion cells, each cell comprising a primary circuit and a secondary circuit isolated from the primary circuit, and being capable of being individually activated to take part in the provision of an output voltage of the converter, the method comprising the step of: simultaneously controlling activated cells to transfer electric power from the primary circuit to the secondary circuit, and non-activated cells to transfer electric power from the secondary circuit to the primary circuit.
- FIG. 1 is a simplified electric diagram of an example of a configurable converter
- FIG. 2 is an electric diagram of another example of a configurable converter
- FIG. 3 is a simplified electric diagram of an embodiment of a configurable converter
- FIG. 4 is a more detailed electric diagram of an embodiment of a configurable converter of the type described in relation with FIG. 3 .
- FIG. 1 is a simplified diagram of an example of a converter 100 of the type described in above-mentioned patent application US2007/0159862, comprising a plurality of elementary D.C.-to-D.C. conversion cells 103 .
- the operation of elementary cells 103 is based on the carrying out of cycles of power transfer between the primary and secondary windings of an isolation transformer.
- Each cell is capable of being individually activated to take part in the conversion of an input voltage v IN applied between input terminals E 1 and E 2 of the converter into an output voltage v OUT delivered between output terminals S 1 and S 2 of the converter.
- Each cell 103 comprises two input terminals e 1 and e 2 , and two output terminals s 1 and s 2 .
- the inputs of cells 103 are series-connected between input terminals E 1 and E 2 of the converter. More particularly, input terminal e 1 of each cell 103 in the series is connected to input terminal e 2 of the previous cell 103 , input terminal e 1 of first cell 103 in the series being connected to input terminal E 1 of the converter, and input terminal e 2 of last cell 103 in the series being connected to input terminal E 2 of the converter.
- the outputs of cells 103 are connected in parallel between output terminals S 1 and S 2 of the converter. More particularly, output terminals s 1 of the elementary cells are connected to output terminal S 1 of the converter, and output terminals s 2 of the elementary cells are connected to output terminal S 2 of the converter.
- Each cell 103 has two associated configuration switches SW 1 and SW 2 arranged as shown in FIG. 1 .
- Switch SW 1 is series-connected with input terminal e 1 of the cell, and more particularly between input terminal e 1 of the cell and input terminal E 1 of the converter for the first cell in the series, and between input terminal e 1 of the cell and input terminal e 2 of the cell of previous rank in the series for the other cells.
- Switch SW 2 is in parallel with the cell input, and more particularly between terminal e 2 and the terminal of switch SW 1 which is not connected to terminal e 1 .
- a cell 103 is activated, and takes part in the provision of output voltage v OUT , when switches SW 1 and SW 2 associated with this cell are respectively on and off.
- a cell 103 is disconnected (or deactivated), and does not take part in the provision of output voltage v OUT , when switches SW 1 and SW 2 associated with this cell are respectively off and on.
- a circuit 105 for controlling the configuration switches is provided to control the activation or the disconnection (deactivation) of cells 103 .
- Circuit 105 may receive as an input one and/or the other of the images of input and output voltages v IN and v OUT of the converter, and activate or dynamically disconnect (in real time) cells to adjust the total converter transformation ratio to regulate output voltage v OUT .
- the converter configuration may be controlled by the levels of v IN and/or v OUT to always respect a given voltage set point.
- each elementary cell generally comprises an input capacitive element between its input terminals e 1 and e 2 .
- each elementary cell generally comprises an input capacitive element between its input terminals e 1 and e 2 .
- FIG. 2 is a diagram illustrating another example of a converter 200 of the type described in the above-mentioned patent application.
- Converter 200 comprises a plurality of input cells 201 coupled to a single output cell 202 .
- Each input cell 201 comprises a primary circuit, this circuit comprising a primary winding Wp and four cut-off switches, respectively SW 3 , SW 4 , SW 5 , and SW 6 assembled as a full bridge between input terminals e 1 and e 2 of the cell.
- Primary winding Wp connects the midpoints of the two arms of the bridge.
- Capacitive and inductive resonance elements may be series-connected with winding Wp between the arms of the bridge to set the resonance frequency of the primary winding.
- Each cell 201 further comprises a capacitive element c in between its input terminals e 1 and e 2 to set the input voltage of the primary circuit.
- Output cell 202 comprises a secondary circuit, this circuit comprising a secondary winding Ws and a rectifying circuit having its input connected to terminals of secondary winding Ws and having its output connected to output terminals s 1 and s 2 of cell 202 .
- Secondary winding Ws is magnetically coupled to primary windings Wp of all converter input cells 201 .
- the rectifying circuit is a circuit with two diodes D 1 and D 2 .
- Output cell 202 further comprises a capacitive element c out between its output terminals s 1 and s 2 .
- Input cells 201 are series-connected between input terminals E 1 and E 2 of the converter (terminals of application of input voltage v IN ). Output terminals s 1 and s 2 of output cell 202 are respectively connected to output terminals S 1 and S 2 of the converter (terminals delivering output voltage v OUT ). Each input cell 201 has two associated configuration switches SW 1 and SW 2 arranged as in the example of FIG. 1 . As in the example of FIG.
- an input cell 201 is activated and takes part in the provision of output voltage v OUT when the switches SW 1 and SW 2 associated with this cell are respectively on and off, and an input cell 201 is disconnected and does not take part in the provision of output voltage v OUT when switches SW 1 and SW 2 associated with this cell are respectively off and on.
- a circuit 205 for controlling configuration switches SW 1 , SW 2 (LADDER SWITCH CONTROLLER) is provided to control the activation or the disconnection of input cells 201 .
- a circuit 206 for controlling chopper switches SW 3 , SW 4 , SW 5 , SW 6 (RESONANT SWITCH CONTROLLER) is provided to control the power transfer from the primary circuit of each activated input cell 201 to the common secondary circuit of output cell 202 .
- converter 200 comprises a plurality of primary circuits capable of being individually activated, coupled to a single secondary circuit. This inevitably results in significantly altering the conversion performance, and particularly the quality factor and the power efficiency, in certain converter configurations.
- FIG. 3 is a simplified electric diagram of an embodiment of a configurable converter 300 comprising a plurality of D.C.-to-D.C. elementary conversion cells 303 , that is, at least two cells 303 , each cell 303 being capable of being individually activated to take part in the conversion of an input voltage v IN applied between input terminals E 1 and E 2 of the converter into an output terminal v OUT delivered between output terminals S 1 and S 2 of the converter.
- Each conversion cell 303 comprises an input cell 301 comprising two input terminals e 1 and e 2 , and one output cell 302 , coupled to input cell 301 , comprising two output terminals s 1 and s 2 .
- Input cell 301 comprises a primary circuit, this circuit comprising a primary winding Wp of a transformer and a circuit 307 capable of converting a D.C. voltage (DC) received between input terminals e 1 and e 2 of the cell into a variable voltage (AC) provided across primary winding Wp.
- Input cell 301 further comprises an input capacitive element c in between its terminals e 1 and e 2 to set the voltage applied to the input of the primary circuit.
- Output cell 302 comprises a secondary circuit, this circuit comprising a secondary winding Ws, coupled to primary winding Wp of input cell 301 , and a circuit 308 capable of rectifying a variable voltage (AC) received across secondary winding Ws into a D.C. voltage (DC) provided across an output capacitive element c out connected between output terminals s 1 and s 2 of cell 302 .
- AC variable voltage
- DC D.C. voltage
- converter 300 comprises a plurality of primary circuits and a plurality of secondary circuits coupled two by two.
- Input cells 301 are series-connected between input terminals E 1 and E 2 of the converter (terminals of application of voltage v IN ) and output cells 302 are connected in parallel between output terminals S 1 and S 2 of the converter (terminals of provision of output voltage v OUT ), for example, as described in the example of FIG. 1 .
- each conversion cell 303 has two associated configuration switches SW 1 and SW 2 arranged as in the example of FIG. 1 .
- a conversion cell 303 is activated to take part in the provision of output voltage v OUT when switches SW 1 and SW 2 associated with this cell are respectively on and off, and a conversion cell 303 is disconnected or deactivated, and does not take part in the provision of output voltage v OUT , when switches SW 1 and SW 2 associated with this cell are respectively off and on.
- switches SW 1 are connected to input terminals e 1 of the corresponding cells.
- it may be provided to connect series switches SW 1 to input terminals e 2 of the cells (that is, on the bottom input branch of the cells in the diagram of FIG. 3 , rather than on the top input branch).
- a circuit 305 for controlling the configuration switches (CONFIG SWITCH CONTROLLER) is provided to control the activation or the disconnection of elementary conversion cells 303 .
- a circuit 306 for controlling the elementary cells (CONVERTING CELL CONTROLLER) is provided to control the power transfer from the primary circuit to the secondary circuit of the activated cells, to take part in the provision of output voltage v OUT .
- elementary conversion cells 303 are bidirectional, that is, each cell 303 can be controlled either to transfer power from the primary circuit to the secondary circuit when a D.C. voltage source is applied between its terminals e 1 and e 2 , or to transfer power from the secondary circuit to the primary circuit when a D.C. voltage source is applied between its terminals s 1 and s 2 .
- circuit 308 of an elementary conversion cell is not only capable of rectifying a variable voltage (AC) received across secondary winding Ws into a D.C. voltage (DC) provided between output terminals s 1 and s 2 of the cell, but may further be controlled to convert a D.C.
- AC variable voltage
- DC D.C. voltage
- circuit 307 of an elementary conversion cell is not only capable of converting a D.C. voltage (DC) received between its terminals e 1 and e 2 into a variable voltage (AC) provided across primary winding Wp, but may further be controlled to rectify a variable voltage (AC) received across primary winding Wp into a D.C. voltage (DC) provided between input terminals e 1 and e 2 of the cell.
- circuit 306 is configured not only to control the activated cells to transfer power from their primary circuit to their secondary circuit, but also to control the disconnected cells to transfer power from their secondary circuit to their primary circuit.
- control circuit 306 is configured to, in a same operating mode, simultaneously control activated cells to transfer electric power from the primary circuit to the secondary circuit, and non-activated cells to transfer electric power from the secondary circuit to the primary circuit.
- An advantage of converter 300 is that it enables to maintain at an appropriate charge (or voltage) level input capacitive elements c in of the elementary cells which do not take part in the provision of the output voltage, which avoids problems of converter reconfiguration, without for all this providing an external power supply specifically dedicated to this function.
- each elementary conversion cell 303 comprises its own primary circuit and its own secondary circuit coupled to each other.
- the conversion performance, and particularly the quality factor and the power efficiency, can thus be optimized cell by cell. This provides, at least in certain configurations of the converter, a much better performance than in a converter of the type described in relation with FIG. 2 , comprising a single secondary circuit coupled to a plurality of primary circuits.
- converter 300 is fully bidirectional.
- a usage mode of converter 300 may be provided where all conversion cells 303 , be they activated or not, are controlled to transfer power from their secondary circuit to their primary circuit, to convert a D.C. input voltage applied between terminals S 1 and S 2 of the converter into a D.C. output voltage provided between terminals E 1 and E 2 of the converter.
- the activated cells take part in the provision of the output voltage and transfer an amount of power which particularly depends on the load (not shown) powered by the converter, and the disconnected cells do not take part in the provision of the output voltage and only transfer the amount of power necessary to maintain the charge of input capacitive element c in .
- configuration switches SW 1 and SW 2 of each cell are integrated on an integrated circuit chip together with other elements of the cell, for example, together with chopper elements of the cell.
- This chip may further comprise amplification circuits to guarantee a sharp switching and with the least possible losses of switches SW 1 to SW 6 .
- the chip may also comprise control circuits implementing functions of control of the cell transformation coefficient, of control of the current level in the cell, and/or of control of the flow direction of the current in the cell, for example, by varying the phase-shift of the cell chopper switches.
- the transformation coefficient of the disconnected converter cells may be selected to maintain the voltage between terminals e 1 and e 2 of the cell deactivated at an optimal value enabling to efficiently reactive the cell (particularly to maintain an optimal biasing of configuration switch SW 2 which short-circuits the primary stage of the cell).
- FIG. 4 is an electric diagram showing in more detailed fashion an embodiment of a configurable converter 400 of the type described in relation with FIG. 3 .
- control circuits 307 and 308 of the primary and secondary stages of the elementary conversion cells have been detailed. The elements already described in relation with FIG. 3 will not be detailed again hereafter.
- primary stage control circuit 307 comprises four chopper switches SW 3 , SW 4 , SW 5 , and SW 6 , assembled as a full bridge between input terminals e 1 and e 2 of the cell.
- Primary winding Wp connects the midpoints of the two arms of the bridge.
- Capacitive and inductive resonance elements may be series-connected with winding Wp to set the resonance frequency of the primary circuit.
- secondary stage control circuit 308 comprises four chopper switches SW 7 , SW 8 , SW 9 , and SW 10 , assembled as a full bridge between output terminals s 1 and s 2 of the cell.
- Secondary winding Ws connects the midpoints of the two arms of the bridge.
- Capacitive and inductive resonance elements may be series-connected with winding Ws to set the resonance frequency of the secondary circuit.
- Switches SW 1 to SW 10 are two-way current switches, for example, MOS transistors.
- Switches SW 3 to SW 6 of circuit 307 may be controlled either to convert a D.C. input voltage applied between terminals e 1 and e 2 of cell 303 into a variable voltage provided across primary winding Wp (power transfer from the primary to the secondary), or to rectify a variable voltage received across primary winding Wp into a D.C. voltage provided between terminals e 1 and e 2 of cell 303 (power transfer from the secondary to the primary).
- switches SW 7 to SW 10 of circuit 308 may be controlled either to rectify a variable voltage received across secondary winding Ws into a D.C.
- control circuit 306 may be configured to vary the phase-shift between the switchings of the switches of the primary and the switchings of the switches of the secondary. Control circuit 306 may also be configured to vary the switching frequency and/or the switching duty cycle of chopper switches SW 3 to SW 10 . It should be noted that by varying one or a plurality of the above-mentioned parameters (phase shift, frequency, and duty cycle), it is possible to adjust the transformation ratio of an elementary cell around a nominal transformation ratio. This provides an additional possibility of setting the converter. In other words, the transformation coefficient or the current ratio of each cell is individually settable.
- a phase reference may be defined for each cell by the secondary circuit of the cell, and the cell may be set by varying the phase shift of the switches of the primary with respect to the switches of the secondary.
- the secondary circuits of the converter may be provided for the secondary circuits of the converter to all operate in phase or, as a variation to operate with a phase shift (which eases possible control signal filtering operations).
- a component comprising a plurality of configurable converters of the type described in relation with FIGS. 3 and 4 , this component comprising two input terminals and two output terminals for each converter, and at least one control circuit for controlling the configuration and chopper switches of the converters.
- the component may comprise one control circuit per converter, or a control circuit common to all converters.
- the control circuit may be external to the component and control converters of one or a plurality of components.
- association may for example be made by soldering contact elements of the component (a contact element may be a connection pad, a contact bump, or any other known connection element).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
Claims (17)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1251601 | 2012-02-22 | ||
FR1251601A FR2987190B1 (en) | 2012-02-22 | 2012-02-22 | VOLTAGE CONVERTER |
PCT/FR2013/050367 WO2013124595A2 (en) | 2012-02-22 | 2013-02-22 | Voltage converter |
Publications (2)
Publication Number | Publication Date |
---|---|
US20150029761A1 US20150029761A1 (en) | 2015-01-29 |
US9570987B2 true US9570987B2 (en) | 2017-02-14 |
Family
ID=48014047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/380,126 Active 2033-08-14 US9570987B2 (en) | 2012-02-22 | 2013-02-22 | Method and apparatus for a voltage converter having bidirectional power conversion cells |
Country Status (5)
Country | Link |
---|---|
US (1) | US9570987B2 (en) |
EP (1) | EP2817875B8 (en) |
JP (1) | JP6216335B2 (en) |
FR (1) | FR2987190B1 (en) |
WO (1) | WO2013124595A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9966842B1 (en) * | 2017-08-16 | 2018-05-08 | Google Llc | Parallel voltage regulator with switched capacitor or capacitor-inductor blocks |
US20200083800A1 (en) * | 2018-09-06 | 2020-03-12 | Abb Schweiz Ag | Artificial stable short circuit failure mode function by using parallel modules for each switching function |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9825545B2 (en) * | 2013-10-29 | 2017-11-21 | Massachusetts Institute Of Technology | Switched-capacitor split drive transformer power conversion circuit |
US10644503B2 (en) * | 2013-10-29 | 2020-05-05 | Massachusetts Institute Of Technology | Coupled split path power conversion architecture |
JP5943952B2 (en) * | 2014-03-26 | 2016-07-05 | 株式会社豊田中央研究所 | Power system |
US9374016B2 (en) * | 2014-06-24 | 2016-06-21 | Fuji Electric Co., Ltd. | AC-DC converter |
US9742272B2 (en) | 2014-06-24 | 2017-08-22 | Fuji Electric Co., Ltd. | AC-DC converter |
US9787175B2 (en) * | 2014-08-07 | 2017-10-10 | Astec International Limited | High voltage power converter with a configurable input |
US9929662B2 (en) | 2014-09-08 | 2018-03-27 | Infineon Technologies Austria Ag | Alternating average power in a multi-cell power converter |
US20160072395A1 (en) * | 2014-09-08 | 2016-03-10 | Infineon Technologies Austria Ag | Multi-cell power conversion method and multi-cell power converter |
US9762134B2 (en) | 2014-09-08 | 2017-09-12 | Infineon Technologies Austria Ag | Multi-cell power conversion method and multi-cell power converter |
US9837921B2 (en) | 2014-09-08 | 2017-12-05 | Infineon Technologies Austria Ag | Multi-cell power conversion method and multi-cell power converter |
US9621070B2 (en) * | 2014-09-17 | 2017-04-11 | Delta Electronics, Inc. | Power supply with multiple converters and averaged feedforward control |
US9520793B2 (en) * | 2014-09-22 | 2016-12-13 | Raytheon Company | Stacked power converter assembly |
US10050438B2 (en) | 2015-10-16 | 2018-08-14 | Raytheon Company | Stacked power converter assembly |
WO2017094047A1 (en) * | 2015-11-30 | 2017-06-08 | 株式会社日立製作所 | Power conversion device |
DE102017213145A1 (en) * | 2017-07-31 | 2019-01-31 | Conti Temic Microelectronic Gmbh | Method for operating a DC-DC converter |
EP3696961A4 (en) * | 2017-10-12 | 2020-12-09 | Mitsubishi Electric Corporation | Power conversion device |
JP6725755B2 (en) * | 2017-11-01 | 2020-07-22 | 三菱電機株式会社 | Power converter |
US10256729B1 (en) * | 2018-03-06 | 2019-04-09 | Infineon Technologies Austria Ag | Switched-capacitor converter with interleaved half bridge |
US10263516B1 (en) * | 2018-03-06 | 2019-04-16 | Infineon Technologies Austria Ag | Cascaded voltage converter with inter-stage magnetic power coupling |
US11228246B1 (en) * | 2018-03-09 | 2022-01-18 | Vicor Corporation | Three-phase AC to DC isolated power conversion with power factor correction |
EP3836377B1 (en) * | 2018-08-06 | 2023-10-18 | Mitsubishi Electric Corporation | Power conversion device |
CN112217406A (en) * | 2019-07-11 | 2021-01-12 | 台达电子工业股份有限公司 | Power supply device applied to solid-state transformer framework and three-phase power supply system |
CN112202340B (en) * | 2020-09-30 | 2021-09-03 | 阳光电源股份有限公司 | Cascaded power electronic transformer and control method thereof |
WO2024214139A1 (en) * | 2023-04-10 | 2024-10-17 | 日立Astemo株式会社 | Power conversion device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19827872A1 (en) | 1998-06-23 | 1999-12-30 | Abb Daimler Benz Transp | Driving switches for rail car with several double converter sections wired in series through choke between contact wire - current collector system and wheel - rail system |
US20050270812A1 (en) * | 2004-02-24 | 2005-12-08 | Patrizio Vinciarelli | Universal AC adapter |
US20060233000A1 (en) * | 2003-08-22 | 2006-10-19 | Hirofumi Akagi | Power converter motor drive btb system and system linking inverter system |
US20100117593A1 (en) * | 2008-11-12 | 2010-05-13 | Ford Global Technologies, Llc | Automotive vehicle power system |
US20100314937A1 (en) | 2009-06-11 | 2010-12-16 | Jacobson Boris S | Reconfigurable multi-cell power converter |
US20110235221A1 (en) * | 2010-03-25 | 2011-09-29 | Abb Schweiz Ag | Bridging unit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3555137B2 (en) * | 2001-10-01 | 2004-08-18 | 日新電機株式会社 | Bidirectional DC-DC converter |
US7170764B2 (en) * | 2004-02-24 | 2007-01-30 | Vlt, Inc. | Adaptively configured voltage transformation module array |
US7212419B2 (en) | 2004-02-24 | 2007-05-01 | Vlt, Inc. | Adaptively configured and autoranging voltage transformation module arrays |
JP4380772B2 (en) * | 2007-10-16 | 2009-12-09 | トヨタ自動車株式会社 | POWER SUPPLY DEVICE, VEHICLE EQUIPPED WITH THE SAME, CONTROL METHOD FOR POWER SUPPLY DEVICE, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE THE CONTROL METHOD |
-
2012
- 2012-02-22 FR FR1251601A patent/FR2987190B1/en active Active
-
2013
- 2013-02-22 US US14/380,126 patent/US9570987B2/en active Active
- 2013-02-22 JP JP2014558188A patent/JP6216335B2/en active Active
- 2013-02-22 WO PCT/FR2013/050367 patent/WO2013124595A2/en active Application Filing
- 2013-02-22 EP EP13712833.6A patent/EP2817875B8/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19827872A1 (en) | 1998-06-23 | 1999-12-30 | Abb Daimler Benz Transp | Driving switches for rail car with several double converter sections wired in series through choke between contact wire - current collector system and wheel - rail system |
US20060233000A1 (en) * | 2003-08-22 | 2006-10-19 | Hirofumi Akagi | Power converter motor drive btb system and system linking inverter system |
US20050270812A1 (en) * | 2004-02-24 | 2005-12-08 | Patrizio Vinciarelli | Universal AC adapter |
US20100117593A1 (en) * | 2008-11-12 | 2010-05-13 | Ford Global Technologies, Llc | Automotive vehicle power system |
US20100314937A1 (en) | 2009-06-11 | 2010-12-16 | Jacobson Boris S | Reconfigurable multi-cell power converter |
US20110235221A1 (en) * | 2010-03-25 | 2011-09-29 | Abb Schweiz Ag | Bridging unit |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9966842B1 (en) * | 2017-08-16 | 2018-05-08 | Google Llc | Parallel voltage regulator with switched capacitor or capacitor-inductor blocks |
TWI668946B (en) * | 2017-08-16 | 2019-08-11 | 美商谷歌有限責任公司 | Power supply comprising parallel voltage regulator with switched capacitor or capacitor-inductor blocks and method for generating power supply |
US20200083800A1 (en) * | 2018-09-06 | 2020-03-12 | Abb Schweiz Ag | Artificial stable short circuit failure mode function by using parallel modules for each switching function |
US10971994B2 (en) * | 2018-09-06 | 2021-04-06 | Abb Schweiz Ag | Artificial stable short circuit failure mode function by using parallel modules for each switching function |
Also Published As
Publication number | Publication date |
---|---|
EP2817875B8 (en) | 2020-06-24 |
EP2817875A2 (en) | 2014-12-31 |
WO2013124595A2 (en) | 2013-08-29 |
US20150029761A1 (en) | 2015-01-29 |
FR2987190A1 (en) | 2013-08-23 |
JP6216335B2 (en) | 2017-10-18 |
FR2987190B1 (en) | 2014-06-27 |
EP2817875B1 (en) | 2020-05-06 |
WO2013124595A3 (en) | 2014-09-12 |
JP2015508277A (en) | 2015-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9570987B2 (en) | Method and apparatus for a voltage converter having bidirectional power conversion cells | |
US10348211B2 (en) | Power conversion device and power conversion system | |
KR102723937B1 (en) | Switched capacitor power converters | |
TWI807250B (en) | Startup of switched capacitor step-down power converter | |
US10224827B1 (en) | Power converter with wide DC voltage range | |
US10389274B2 (en) | Boosted output inverter for electronic devices | |
KR101723094B1 (en) | Power device for sub-module controller of mmc converter | |
US20160006365A1 (en) | High-Frequency, High Density Power Factor Correction Conversion For Universal Input Grid Interface | |
TWI805988B (en) | Auxiliary circuit, power converter, gate driver circuit, converter circuit, method of selecting subcircuits and method of providing power | |
US8817492B2 (en) | DC-DC converter having partial DC input conversion | |
JP2018085801A (en) | Electric power unit, electrical power system and sensor system | |
US11716011B2 (en) | Communication control circuit for power supply chip | |
KR20190025196A (en) | Isolated DC-DC converter and driving method thereof | |
WO2016129758A1 (en) | Three-level sepic converter circuit | |
US10158284B2 (en) | PFC with stacked half-bridges on DC side of rectifier | |
US20240258801A1 (en) | Charging and balancing batteries | |
US20240258803A1 (en) | Charging and balancing batteries | |
TW201513540A (en) | Parallel input serial/parallel output isolation type DC/DC converter for wind power system | |
JP2024087978A (en) | Power storage system | |
KR101356385B1 (en) | Power converting apparatus and control method for power converter | |
CN116760296A (en) | DC/DC converter using multi-level technology | |
WO2024163086A1 (en) | Battery charging system and power converter | |
CN117134615A (en) | power converter | |
KR20240159021A (en) | Switched-capacitor power converters | |
EP1246352A2 (en) | Inverter-type power supply apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INSTITUT POLYTECHNIQUE DE GRENOBLE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRINH, HIEU;ROUGER, NICOLAS;CREBIER, JEAN-CHRISTOPHE;AND OTHERS;SIGNING DATES FROM 20141001 TO 20141017;REEL/FRAME:034006/0365 Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FRAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRINH, HIEU;ROUGER, NICOLAS;CREBIER, JEAN-CHRISTOPHE;AND OTHERS;SIGNING DATES FROM 20141001 TO 20141017;REEL/FRAME:034006/0365 Owner name: UNIVERSITE JOSEPH FOURIER, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TRINH, HIEU;ROUGER, NICOLAS;CREBIER, JEAN-CHRISTOPHE;AND OTHERS;SIGNING DATES FROM 20141001 TO 20141017;REEL/FRAME:034006/0365 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: UNIVERSITE GRENOBLE ALPES, FRANCE Free format text: MERGER;ASSIGNOR:UNIVERSITE JOSEPH FOURIER;REEL/FRAME:061544/0407 Effective date: 20150911 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |