[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US9426887B2 - Wiring board and electronic device using the same - Google Patents

Wiring board and electronic device using the same Download PDF

Info

Publication number
US9426887B2
US9426887B2 US13/927,554 US201313927554A US9426887B2 US 9426887 B2 US9426887 B2 US 9426887B2 US 201313927554 A US201313927554 A US 201313927554A US 9426887 B2 US9426887 B2 US 9426887B2
Authority
US
United States
Prior art keywords
pad
layer region
layer
wiring board
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US13/927,554
Other versions
US20140000946A1 (en
Inventor
Yoshihiro Hosoi
Takayuki Taguchi
Hidetoshi Yugawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Assigned to KYOCERA SLC TECHNOLOGIES CORPORATION reassignment KYOCERA SLC TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAGUCHI, TAKAYUKI, YUGAWA, HIDETOSHI, HOSOI, YOSHIHIRO
Publication of US20140000946A1 publication Critical patent/US20140000946A1/en
Assigned to KYOCERA Circuit Solutions, Inc. reassignment KYOCERA Circuit Solutions, Inc. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KYOCERA SLC TECHNOLOGIES CORPORATION
Assigned to KYOCERA CORPORATION reassignment KYOCERA CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: KYOCERA Circuit Solutions, Inc.
Application granted granted Critical
Publication of US9426887B2 publication Critical patent/US9426887B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09436Pads or lands on permanent coating which covers the other conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09736Varying thickness of a single conductor; Conductors in the same plane having different thicknesses
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/099Coating over pads, e.g. solder resist partly over pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/1034Edge terminals, i.e. separate pieces of metal attached to the edge of the printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated

Definitions

  • the present invention relates to a wiring board and an electronic device using the same which are used in electronic apparatuses such as various types of audio visual devices, household electric appliances, communication devices, computer devices, inspection devices, and peripheral devices thereof.
  • an electronic device in which an electronic component is mounted on a wiring board, and the wiring board is connected to an external circuit is used in electronic apparatuses and the like.
  • Japanese Unexamined Patent Application Publication No. 2009-141229 describes a wiring board provided with an insulating board (relay board), a first pad (chip connection terminal) to which an electrode of an electronic component (semiconductor chip) is electrically connected by wire bonding, and a second pad (outer lead connection terminal) to which a lead terminal (outer lead) is electrically connected through solder.
  • the lead terminal when a lead terminal is connected to a wiring board, the lead terminal is bent in some cases.
  • bending stress applied to the lead terminal reaches the wiring board through the second pad, and the wiring board becomes susceptible to bending.
  • the wiring board is bent, a break in wiring of the wiring board tends to be caused, and, as a result, reliability of the wiring board tends to be reduced.
  • An object of the present invention is to provide a wiring board and an electronic device using the same which respond to a demand for improving reliability.
  • a wiring board of the present invention includes an insulating board; a first pad provided inwardly from a surface of the insulating board and electrically connected to an electrode of an electronic component; a second pad provided on the surface of the insulating board and electrically connected to a lead terminal.
  • the first pad and the second pad include a first layer region made of copper and a second layer region arranged on the first layer region and made of nickel, and a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad.
  • An electronic device of the present invention includes the wiring board; an electronic component including an electrode electrically connected to the first pad of the wiring board; and a lead terminal electrically connected to the second pad of the wiring board.
  • a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad.
  • the thickness of the second layer region of the second pad made of hard nickel can be made larger.
  • the electronic device of the present invention includes the wiring board as described above, and therefore has excellent reliability.
  • FIG. 1( a ) is a top view of an electronic device 1 according to one embodiment of the present invention.
  • FIG. 1( b ) is a cross sectional view of the electronic device 1 taken along a line A-A of the electronic device 1 illustrated in FIG. 1( a ) in a thickness direction thereof;
  • FIG. 2( a ) is an enlarged view of a portion R 1 of the electronic device 1 illustrated in FIG. 1( b ) ;
  • FIG. 2( b ) is a top view of a first pad 9 a of the electronic device 1 illustrated in FIG. 2( a ) ;
  • FIG. 2( c ) is a top view of a second pad 9 b of the electronic device 1 illustrated in FIG. 2( a ) ;
  • FIG. 3 is an enlarged view of a portion R 2 of the electronic device 1 illustrated in FIG. 2( a ) ;
  • FIG. 4 is an enlarged view of a portion R 3 of the electronic device 1 illustrated in FIG. 2( a ) ;
  • FIG. 5 is an enlarged view of a wiring board 4 illustrated in FIG. 2( a ) in a state before connecting an electronic component 2 and a lead terminal 3 ;
  • FIG. 6 is an enlarged view of a portion R 4 of the wiring board 4 illustrated in FIG. 5 ;
  • FIG. 7 is an enlarged view of a portion R 5 of the wiring board 4 illustrated in FIG. 5 ;
  • FIG. 8 is an enlarged view of a core substrate 10 used for preparing the wiring board 4 illustrated in FIG. 5 .
  • An electronic device 1 illustrated in FIGS. 1( a ) and 1( b ) is used in electronic apparatuses such as various types of audio visual devices, household electric appliances, communication devices, computer devices, inspection devices, or peripheral devices thereof.
  • the electronic device 1 includes an electronic component 2 , a lead terminal 3 , and a wiring board 4 to which the electronic component 2 and the lead terminal 3 are connected.
  • the electronic component 2 is a semiconductor element such as a CPU, a memory, or a solid-state image sensing device.
  • One electronic component 2 may be mounted on the wiring board 4 , or a plurality of electronic components 2 may be mounted on the wiring board 4 .
  • the electronic component 2 includes a semiconductor substrate 5 and electrodes 6 formed on the semiconductor substrate 5 .
  • the semiconductor substrate 5 functions as a semiconductor element, and may be made of a semiconductor material such as silicon, germanium, gallium arsenide, gallium arsenide phosphide, gallium nitride, or silicon carbide.
  • the electrodes 6 function as terminals for electrically connecting to internal wiring of the semiconductor substrate 5 , and may be made of a conductive material such as copper, gold, aluminum, nickel, or chrome.
  • the electrodes 6 may be formed of a single layer, or may be formed by laminating a plurality of layers having different compositions.
  • the electronic component 2 has a coefficient of thermal expansion in each direction thereof which is set, for example, to 3 ppm/° C. or larger and 5 ppm/° C. or smaller.
  • the coefficient of thermal expansion of the electronic component 2 is measured according to the measurement method complying with JISK7197-1991 using a commercially available TMA apparatus.
  • the coefficient of thermal expansion of each member is measured in the same manner as that applied to the electronic component 2 .
  • This electronic component 2 is mounted by flip chip bonding on the wiring board 4 through first solder 7 a . Since the electronic component 2 is mounted by flip chip bonding in this way, the electrodes 6 can be arranged in a grid pattern so that the electrodes 6 can be densely arranged in comparison with a case of wire bonding mounting.
  • the first solder 7 a is to be electrically connected to the electrode 6 , and can be made of a conductive material such as lead, tin, silver, gold, copper, zinc, bismuth, indium, or aluminum.
  • the lead terminal 3 is for electrically connecting the wiring board 4 to an external circuit (not illustrated).
  • the lead terminal 3 is formed of, for example, a metal plate having an elongated shape as illustrated in FIGS. 1( a ) and 1( b ) .
  • a plate material made of a conductive material such as copper, a copper alloy, nickel, or a nickel alloy with plating of nickel, palladium, or gold can be used as the metal plate.
  • the lead terminal 3 may be a part of a flexible board, or a part of a lead frame.
  • the lead terminal 3 is connected to the wiring board 4 through second solder 7 b .
  • the second solder 7 b is to be electrically connected to the lead terminal 3 , and can be made of a conductive material such as lead, tin, silver, gold, copper, zinc, bismuth, indium, or aluminum.
  • the wiring board 4 is for electrically connecting the electronic component 2 and the lead terminal 3 to each other.
  • the wiring board 4 includes an insulating board 8 and a plurality of pads 9 .
  • the insulating board 8 includes a core substrate 10 and a pair of built-up layers 11 formed individually on two principal surfaces of the core substrate 10 .
  • the core substrate 10 is purposed for increasing the strength of the wiring board 4 .
  • the core substrate 10 includes a plate-shaped base body 12 , a cylindrical through-hole conductor 13 that penetrates through the base body 12 in a thickness direction thereof, and a columnar insulator 14 arranged inside the through-hole conductor 13 .
  • the base body 12 forms a principal portion of the core substrate 10 to enhance the rigidity thereof.
  • the base body 12 includes a resin such as epoxy resin in which an inorganic insulating filler such as silica filler is dispersed, and a base material such as glass cloth coated by the resin.
  • the base body 12 has a coefficient of thermal expansion in a planar direction thereof set, for example, to 5 ppm/° C. or more and 30 ppm/° C. or less, a coefficient of thermal expansion in a thickness direction thereof set, for example, to 15 ppm/° C. or more and 50 ppm/° C. or less, and a Young's modulus thereof set, for example, to 5 GPa or more and 30 GPa or less.
  • the Young's modulus of the base body 12 is measured using Nano Indenter XP/DCM manufactured by MTS Systems Co. Hereinafter, the Young's modulus of each member is measured in the same manner as that applied to the base body 12 .
  • the through-hole conductor 13 is to electrically connect the built-up layers 11 formed individually on the two principal surfaces of the core substrate 10 to each other, and is formed of, for example, copper which is a conductive material having high conductivity.
  • the insulator 14 is to form a support surface for supporting a via conductor 17 which will be describe later, and may be formed of a resin material such as epoxy resin.
  • each of the built-up layers 11 includes a plurality of insulating layers 15 , a plurality of conductive layers 16 arranged partially on the base body 12 and the insulating layer 15 , and a via conductor 17 which penetrates through the insulating layer 15 in a thickness direction thereof and is connected to the conductive layer 16 .
  • the insulating layers 15 not only function as a support member for supporting the conductive layers 16 but also function as insulating members that prevent a short circuit between the conductive layers 16 .
  • the insulating layer 15 arranged at an uppermost layer (a side of a region on which the electronic component 2 is mounted) among the plurality of insulating layers 15 is to be a first insulating layer 15 a
  • the insulating layer 15 arranged below the first insulating layer 15 a (a side opposite to the region in which the electronic component 2 is mounted) and adjacent to the first insulating layer 15 a is to be a second insulating layer 15 b.
  • a through-hole P penetrating through the first insulating layer 15 a in a thickness direction thereof is formed in the first insulating layer 15 a , and the first solder 7 a is arranged in the through-hole P.
  • This through-hole P has a tapered shape whose upper and lower surfaces are circular and whose diameter becomes smaller toward the core substrate 10 .
  • the insulating layer 15 is formed of a first resin layer 18 a , and a second resin layer 18 b which is arranged closer to the core substrate 10 than the first resin layer 18 a is.
  • the first resin layer 18 a is to increase the rigidity of the insulating layer 15 and reduce a coefficient of thermal expansion in a planar direction, and includes a resin in which an inorganic insulating filler such as silica is dispersed.
  • the first resin layer 18 a has a coefficient of thermal expansion in a planar direction thereof set, for example, to 0 ppm/° C. or more and 30 ppm/° C. or less, a coefficient of thermal expansion in a thickness direction thereof set, for example, to 20 ppm/° C. or more and 50 ppm/° C. or less, and a Young's modulus thereof set, for example, to 2.5 GPa or more and 10 GPa or less.
  • the first resin layer 18 a has the Young's modulus higher than that of the second resin layer 18 b , and the coefficient of thermal expansion in a planar direction smaller than that of the second resin layer 18 b.
  • Examples of a resin contained in the first resin layer 18 a include polyimide resin or the like. In view of reducing the coefficient of thermal expansion in a planar direction, such a resin is preferable in a film form having a structure in which a longer direction of each molecular chain is parallel to a planar direction of the first resin layer 18 a.
  • the second resin layer 18 b includes a resin, adheres to the first resin layers 18 a adjacent in a thickness direction to each other, and is adhered to a side surface and one principal surface of the conductive layer 16 to fix the conductive layer 16 .
  • the second resin layer 18 b may include the inorganic insulating filler.
  • the second resin layer 18 b has a coefficient of thermal expansion in a planar direction and a thickness direction thereof set, for example, to 10 ppm/° C. or more and 100 ppm/° C. or less, and a Young's modulus thereof set, for example, to 0.05 GPa or more and 0.5 GPa or less.
  • Examples of a resin contained that is included in the second resin layer 18 b include epoxy resin, bismaleimide triazine resin, cyanate resin, amide resin, or the like.
  • the conductive layer 16 functions partially as a ground wire, a power supply wire, or a signal wire, and can be formed of, for example, copper which is a conductive material having high conductivity. It is preferable that the conductive layer 16 adhere to the first resin layer 18 a through a metal layer made of titanium, molybdenum, chrome, or a nickel-chromium alloy. As a result, adhesion strength between the conductive layer 16 and the resin layer 18 a can be increased.
  • the via conductor 17 is to connect the conductive layers 16 to each other which are separated from each other in a thickness direction, and can be formed of, for example, copper which is a conductive material having high conductivity. It is preferable that the via conductor 17 adhere to the insulating layer 15 through the metal layer described above, as in the case of the conductive layer 16 .
  • the via conductor 17 has a tapered shape whose diameter becomes smaller toward the core substrate 10 .
  • the pad 9 functions as a terminal to electrically connect the wiring (through-hole conductor 13 , conductive layer 16 , and via conductor 17 ) of the wiring board 4 externally.
  • the pad 9 includes a first layer region 19 a made of copper, and a second layer region 19 b made of nickel and arranged on the first layer region 19 a .
  • the first layer region 19 a is to be connected to the conductive layer 16 or the via conductor 17 and is formed of copper as in the case of the conductive layer 16 or the via conductor 17 .
  • the second layer region 19 b covers at least part of a surface of the first layer region 19 a , and functions as a barrier layer of the first layer region 19 a . Specifically, the second layer region 19 b prevents the first layer region 19 a from diffusing into the first solder 7 a or the second solder 7 b.
  • the pad 9 further includes a third layer region 19 c which is arranged on the second layer region 19 b and made of gold.
  • the third layer region 19 c covers a surface of the second layer region 19 b , and suppresses oxidation of the second layer region 19 b , and facilitates wettability between the second layer region 19 b , and the first solder 7 a or the second solder 7 b .
  • the third layer region 19 c disappears by being diffused into the first solder 7 a or the second solder 7 b.
  • At least one pad 9 is a first pad 9 a that is electrically connected to the electrode 6 of the electronic component 2 through the first solder 7 a .
  • This first pad 9 a is formed on the second insulating layer 15 b that is arranged at the second position from the top (a region on which the electronic component 2 is mounted).
  • a part of the first pad 9 a is arranged and exposed in the through-hole P penetrating through the uppermost first insulating layer 15 a , and is connected to the first solder 7 a in the through-hole P.
  • the first layer region 19 a of the first pad 9 a is arranged between the first insulating layer 15 a and the second insulating layer 15 b , and the second layer region 19 b of the first pad 9 a is arranged in an exposed portion (exposed portion 20 ) in the through-hole P.
  • the third layer region 19 c of the first pad 9 a covers an upper surface of the second layer region 19 b in the through-hole P.
  • the first pad 9 a is circular in plan view.
  • At least one pad 9 among the plurality of pads 9 is a second pad 9 b which is electrically connected to the lead terminal 3 through the second solder 7 b .
  • the second pad 9 b is arranged on the first insulating layer 15 a which is positioned at the uppermost layer of the built-up layer 11 .
  • the second pad 9 b is arranged on the insulating board 8 , and an upper surface and side surfaces of the second pad 9 b are connected to the second solder 7 b.
  • the first layer region 19 a of the second pad 9 b is arranged on the first insulating layer 15 a .
  • the second layer region 19 b of the second pad 9 b covers an upper surface and side surfaces of the first layer region 19 a of the second pad 9 b .
  • the third layer region 19 c of the second pad 9 b covers an upper surface and side surfaces of the second layer region 19 b of the second pad 9 b .
  • the second pad 9 b has a quadrangular shape, and preferably a rectangular shape in a plan view.
  • an end portion of the second pad 9 b is not positioned immediately below the lead terminal 3 , and the second solder 7 b is in a fillet shape at the end portion of the second pad 9 b.
  • the lead terminal 3 when the lead terminal 3 is connected to the wiring board 4 , the lead terminal 3 is bent in some cases.
  • bending stress applied to the lead terminal 3 reaches the wiring board 4 through the second pad 9 b located in a connection portion between the lead terminal 3 and the wiring board 4 , and the wiring board 4 becomes susceptible to bending.
  • the wiring board 4 When the wiring board 4 is bent, a break in wiring of the wiring board 4 tends to be caused.
  • deformation is caused in the via conductor 17 connected to the second pad 9 b , a break in wiring between the via conductor 17 and the conductive layer 16 to which the via conductor 17 is connected tends to be caused.
  • a thickness of the second layer region 19 b of the second pad 9 b is larger than a thickness of the second layer region 19 b of the first pad 9 a .
  • bending of the second pad 9 b itself is suppressed by thickening the second layer region 19 b made of hard nickel, so that bending stress reaching the wiring board 4 from the lead terminal 3 by way of the second pad 9 b can be reduced. Accordingly, it is possible to suppress the bending of wiring board 4 , and increase the reliability of the wiring board 4 .
  • film stress of the second layer region 19 b is reduced by reducing the thickness of the second layer region 19 b made of hard nickel in the first pad 9 a , so that exfoliation between the first layer region 19 a and the second layer region 19 b can be reduced. Therefore, electrical reliability of the first pad 9 a can be increased. As a result, it is possible to miniaturize the first pad 9 a , and arrange the wiring board 4 to be compatible with a narrower pitch of the electrode 6 of the electronic component 2 , while the electrical reliability of the first pad 9 a is maintained.
  • a thickness of the second layer region 19 b be smaller than a thickness of the first layer region 19 a .
  • the exfoliation between the first layer region 19 a and the second layer region 19 b can be satisfactorily reduced.
  • a thickness of the second layer region 19 b be larger than a thickness of the first layer region 19 a .
  • the thickness of the first layer region 19 a of the first pad 9 a is set substantially to the same thickness (error thereof is about ⁇ 10%) as the thickness of the first layer region 19 a of the second pad 9 b.
  • the thickness of the first layer region 19 a of the first pad 9 a is preferably 3 to 8 ⁇ m, and the thickness of the second layer region 19 b of the first pad 9 a is preferably 3 to 5 ⁇ m.
  • the thickness of the first layer region 19 a of the second pad 9 b is preferably 3 to 8 ⁇ m, and the thickness of the second layer region 19 b of the second pad 9 b is preferably 6 to 9 ⁇ m.
  • an upper surface of the first pad 9 a is at least partially exposed in the through-hole P, and is connected to the first solder 7 a arranged in the through-hole P.
  • the first solder 7 a is arranged in the through-hole P of the first insulating layer 15 a , it is possible to suppress a short circuit between the adjacent first solders 7 a , and eventually arrange the wiring board 4 to be compatible with a narrower pitch of the electrode 6 of the electronic component 2 .
  • the first layer region 19 a of the first pad 9 a is arranged between the first insulating layer 15 a and the second insulating layer 15 b , and the second layer region 19 b of the first pad 9 a is arranged in the exposed portion 20 in the through-hole P.
  • a corner portion between an inner wall of the through-hole P and a lower surface of the first insulating layer 15 a is formed at a lower end of the through-hole P, and stress tends to be concentrated on the vicinity of the corner portion. For this reason, stress tends to concentrate on a connecting interface which is positioned in the vicinity of the corner portion and between the exposed portion 20 of the first layer region 19 a and the second layer region 19 b .
  • the thickness of the second layer region 19 b of the first pad 9 a is small as described above, this can reduce the film stress of the second layer region 19 b , and the exfoliation between the exposed portion 20 of the first layer region 19 a and the second layer region 19 b can be satisfactorily reduced.
  • An area of the first pad 9 a in plan view is smaller than an area of the second pad 9 b in plan view.
  • the wiring board 4 can be arranged to be compatible with a narrower pitch of the electrode 6 of the electronic component 2 .
  • the first pad 9 a can be miniaturized while the electrical reliability of the first pad 9 a is maintained.
  • the area of the second pad 9 b in plan view is larger than the area of the first pad 9 a in plan view.
  • the electronic device 1 described above provides a desired function by driving or controlling the electronic component 2 based on power and signals supplied through the wiring board 4 from the lead terminal 3 electrically connected to an external circuit.
  • the core substrate 10 with the conductive layers 16 formed individually on two principal surfaces thereof is prepared as described below.
  • the base body 12 is prepared by laminating a plurality of uncured resin sheets together, laminating a copper foil on an outermost layer, and heating, pressurizing, and thus curing the laminated body.
  • an uncured state is a state of A-stage or B-stage complying with ISO472:1999.
  • a through-hole penetrating through the base body 12 in a thickness direction thereof is formed, for example, by drilling, laser processing, or the like.
  • the through-hole conductor 13 is formed by adhering a conductive material onto the inner wall of the through-hole by, for example, the non-electroplating method and the electroplating method.
  • the insulator 14 is formed by filling a resin or the like in the through-hole conductor 13 . Thereafter, after the conductive material is adhered to the exposed portion of the insulator 14 , the copper foil is subjected to patterning by a conventionally well-known photolithography technique, etching method, or the like to thereby form the conductive layer 16 .
  • a pair of built-up layers 11 are formed individually on two principal surfaces of the core substrate 10 , and the wiring board 4 illustrated in FIG. 5 will be prepared as, for example, described below.
  • the first resin layer 18 a is placed on the core substrate 10 through the second resin layer 18 b which is uncured, and thereafter the second resin layer 18 b is cured by heating and pressurizing the core substrate 10 , the second resin layer 18 b , and the first resin layer 18 a , so that the insulating layer 15 is formed on the core substrate 10 .
  • via holes are formed at desired positions in the insulating layer 15 by laser processing using, for example, the YAG laser device or the carbon dioxide laser device, so that at least part of the conductive layer 16 is exposed in the via hole.
  • a metal film is formed as an underlayer on the insulating layer 15 and on the inner surface of the via hole using the sputtering method.
  • a resist which is patterned in a desired shape is formed on the metal film using the photolithography technique, and thereafter the conductive layer 16 and the via conductor 17 are formed partially on the metal film. Then, after the resist is removed from the metal film, a region where the conductive layer in the metal film is not formed is removed using etching.
  • the first layer region 19 a is formed on the second insulating layer 15 b as in the case of the conductive layer 16 .
  • the first insulating layer 15 a is formed on the second insulating layer 15 b
  • a through-hole P is formed using laser processing as in the case of forming the via hole
  • an upper surface of the first layer region 19 a is partially exposed in the through-hole P
  • the exposed portion 20 is formed.
  • the second layer region 19 b and the third layer region 19 c are sequentially adhered to the exposed portion 20 in the through-hole P using the non-electroplating method, so that the first pad 9 a can be formed.
  • the first layer region 19 a is formed on the first insulating layer 15 a as in the case of the conductive layer 16 .
  • the second layer region 19 b and the third layer region 19 c are sequentially adhered to the first layer region 19 a of the second pad 9 b using the non-electroplating method. In this way, the second pad 9 b can be formed.
  • the thickness of the second layer region 19 b of the first pad 9 a and the thickness of the second layer region 19 b of the second pad 9 b can be adjusted, for example, in the following manner.
  • the first pad 9 a is provided in the through-hole P, and, for example, a plate for blocking a flow of a plating solution is arranged in the vicinity of the through-hole P, an inflow of the plating solution into the through-hole P can be suppressed.
  • the thickness of the second layer region 19 b of the first pad 9 a can be made smaller than the thickness of the second layer region 19 b of the second pad 9 b.
  • this can be adjusted in the following manner. After masking the through-hole P, the second layer region 19 b is adhered to the first layer region 19 a of the second pad 9 b using the non-electroplating. Next, after the mask for the through-hole P is removed, the second layer region 19 b is adhered to the first layer region 19 a of each of the first pad 9 a and the second pad 9 b using the non-electroplating. In this way, the thickness of the second layer region 19 b of the second pad 9 b is made larger than the thickness of the second layer region 19 b of the first pad 9 a.
  • the electronic component 2 and the lead terminal 3 are connected to the wiring board 4 , and the electronic device 1 illustrated in FIGS. 1 and 2 ( a ) is prepared, for example, in the following manner.
  • the electronic component 2 in which the first solder 7 a is adhered to the electrode 6 , and the lead terminal 3 to which the second solder 7 b is adhered are prepared.
  • the first solder 7 a which is adhered to the electrode 6 of the electronic component 2 is arranged in the through-hole P, and the second solder 7 b adhered to the lead terminal 3 is arranged on the second pad 9 b .
  • the first solder 7 a is filled into the through-hole P so that the first solder 7 a is connected to the first pad 9 a , and the second solder 7 b is connected to the second pad 9 b .
  • the third layer region 19 c is dispersed into the first solder 7 a and the second solder 7 b.
  • the electronic device 1 can be prepared.
  • the insulating layer may not be formed of three layers.
  • the insulating layer may be formed of the second resin layer alone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A wiring board according to the present invention includes an insulating board; a first pad provided inwardly from a surface of the insulating board and electrically connected to an electrode of an electronic component; a second pad provided on the surface of the insulating board and electrically connected to a lead terminal. The first pad and the second pad include a first layer region made of copper and a second layer region arranged on the first layer region and made of nickel, and a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a wiring board and an electronic device using the same which are used in electronic apparatuses such as various types of audio visual devices, household electric appliances, communication devices, computer devices, inspection devices, and peripheral devices thereof.
2. Description of Related Art
Conventionally, an electronic device in which an electronic component is mounted on a wiring board, and the wiring board is connected to an external circuit is used in electronic apparatuses and the like.
Japanese Unexamined Patent Application Publication No. 2009-141229 describes a wiring board provided with an insulating board (relay board), a first pad (chip connection terminal) to which an electrode of an electronic component (semiconductor chip) is electrically connected by wire bonding, and a second pad (outer lead connection terminal) to which a lead terminal (outer lead) is electrically connected through solder.
Incidentally, for example, when a lead terminal is connected to a wiring board, the lead terminal is bent in some cases. When the lead terminal is bent, bending stress applied to the lead terminal reaches the wiring board through the second pad, and the wiring board becomes susceptible to bending. When the wiring board is bent, a break in wiring of the wiring board tends to be caused, and, as a result, reliability of the wiring board tends to be reduced.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a wiring board and an electronic device using the same which respond to a demand for improving reliability.
A wiring board of the present invention includes an insulating board; a first pad provided inwardly from a surface of the insulating board and electrically connected to an electrode of an electronic component; a second pad provided on the surface of the insulating board and electrically connected to a lead terminal. The first pad and the second pad include a first layer region made of copper and a second layer region arranged on the first layer region and made of nickel, and a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad.
An electronic device of the present invention includes the wiring board; an electronic component including an electrode electrically connected to the first pad of the wiring board; and a lead terminal electrically connected to the second pad of the wiring board.
According to the wiring board of the present invention, a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad. As a result, the thickness of the second layer region of the second pad made of hard nickel can be made larger. With this arrangement, bending of the second pad is suppressed, so that bending stress reaching the wiring board from the lead terminal through the second pad can be reduced. Consequently, according to the present invention, it is possible to suppress the bending of wiring board, and eventually obtain the wiring board having excellent reliability.
The electronic device of the present invention includes the wiring board as described above, and therefore has excellent reliability.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1(a) is a top view of an electronic device 1 according to one embodiment of the present invention;
FIG. 1(b) is a cross sectional view of the electronic device 1 taken along a line A-A of the electronic device 1 illustrated in FIG. 1(a) in a thickness direction thereof;
FIG. 2(a) is an enlarged view of a portion R1 of the electronic device 1 illustrated in FIG. 1(b);
FIG. 2(b) is a top view of a first pad 9 a of the electronic device 1 illustrated in FIG. 2(a);
FIG. 2(c) is a top view of a second pad 9 b of the electronic device 1 illustrated in FIG. 2(a);
FIG. 3 is an enlarged view of a portion R2 of the electronic device 1 illustrated in FIG. 2(a);
FIG. 4 is an enlarged view of a portion R3 of the electronic device 1 illustrated in FIG. 2(a);
FIG. 5 is an enlarged view of a wiring board 4 illustrated in FIG. 2(a) in a state before connecting an electronic component 2 and a lead terminal 3;
FIG. 6 is an enlarged view of a portion R4 of the wiring board 4 illustrated in FIG. 5;
FIG. 7 is an enlarged view of a portion R5 of the wiring board 4 illustrated in FIG. 5; and
FIG. 8 is an enlarged view of a core substrate 10 used for preparing the wiring board 4 illustrated in FIG. 5.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Hereinafter, an electronic device using a wiring board according to one embodiment of the present invention will be described in detail with reference to the drawings.
An electronic device 1 illustrated in FIGS. 1(a) and 1(b) is used in electronic apparatuses such as various types of audio visual devices, household electric appliances, communication devices, computer devices, inspection devices, or peripheral devices thereof. The electronic device 1 includes an electronic component 2, a lead terminal 3, and a wiring board 4 to which the electronic component 2 and the lead terminal 3 are connected.
The electronic component 2 is a semiconductor element such as a CPU, a memory, or a solid-state image sensing device. One electronic component 2 may be mounted on the wiring board 4, or a plurality of electronic components 2 may be mounted on the wiring board 4.
As illustrated in FIG. 2(a), the electronic component 2 includes a semiconductor substrate 5 and electrodes 6 formed on the semiconductor substrate 5. The semiconductor substrate 5 functions as a semiconductor element, and may be made of a semiconductor material such as silicon, germanium, gallium arsenide, gallium arsenide phosphide, gallium nitride, or silicon carbide. The electrodes 6 function as terminals for electrically connecting to internal wiring of the semiconductor substrate 5, and may be made of a conductive material such as copper, gold, aluminum, nickel, or chrome. The electrodes 6 may be formed of a single layer, or may be formed by laminating a plurality of layers having different compositions.
Further, the electronic component 2 has a coefficient of thermal expansion in each direction thereof which is set, for example, to 3 ppm/° C. or larger and 5 ppm/° C. or smaller. The coefficient of thermal expansion of the electronic component 2 is measured according to the measurement method complying with JISK7197-1991 using a commercially available TMA apparatus. Hereinafter, the coefficient of thermal expansion of each member is measured in the same manner as that applied to the electronic component 2.
This electronic component 2 is mounted by flip chip bonding on the wiring board 4 through first solder 7 a. Since the electronic component 2 is mounted by flip chip bonding in this way, the electrodes 6 can be arranged in a grid pattern so that the electrodes 6 can be densely arranged in comparison with a case of wire bonding mounting. The first solder 7 a is to be electrically connected to the electrode 6, and can be made of a conductive material such as lead, tin, silver, gold, copper, zinc, bismuth, indium, or aluminum.
The lead terminal 3 is for electrically connecting the wiring board 4 to an external circuit (not illustrated). The lead terminal 3 is formed of, for example, a metal plate having an elongated shape as illustrated in FIGS. 1(a) and 1(b). A plate material made of a conductive material such as copper, a copper alloy, nickel, or a nickel alloy with plating of nickel, palladium, or gold can be used as the metal plate. The lead terminal 3 may be a part of a flexible board, or a part of a lead frame.
The lead terminal 3 is connected to the wiring board 4 through second solder 7 b. The second solder 7 b is to be electrically connected to the lead terminal 3, and can be made of a conductive material such as lead, tin, silver, gold, copper, zinc, bismuth, indium, or aluminum.
The wiring board 4 is for electrically connecting the electronic component 2 and the lead terminal 3 to each other. The wiring board 4 includes an insulating board 8 and a plurality of pads 9. The insulating board 8 includes a core substrate 10 and a pair of built-up layers 11 formed individually on two principal surfaces of the core substrate 10.
The core substrate 10 is purposed for increasing the strength of the wiring board 4. The core substrate 10 includes a plate-shaped base body 12, a cylindrical through-hole conductor 13 that penetrates through the base body 12 in a thickness direction thereof, and a columnar insulator 14 arranged inside the through-hole conductor 13.
The base body 12 forms a principal portion of the core substrate 10 to enhance the rigidity thereof. The base body 12 includes a resin such as epoxy resin in which an inorganic insulating filler such as silica filler is dispersed, and a base material such as glass cloth coated by the resin. The base body 12 has a coefficient of thermal expansion in a planar direction thereof set, for example, to 5 ppm/° C. or more and 30 ppm/° C. or less, a coefficient of thermal expansion in a thickness direction thereof set, for example, to 15 ppm/° C. or more and 50 ppm/° C. or less, and a Young's modulus thereof set, for example, to 5 GPa or more and 30 GPa or less. The Young's modulus of the base body 12 is measured using Nano Indenter XP/DCM manufactured by MTS Systems Co. Hereinafter, the Young's modulus of each member is measured in the same manner as that applied to the base body 12.
The through-hole conductor 13 is to electrically connect the built-up layers 11 formed individually on the two principal surfaces of the core substrate 10 to each other, and is formed of, for example, copper which is a conductive material having high conductivity.
The insulator 14 is to form a support surface for supporting a via conductor 17 which will be describe later, and may be formed of a resin material such as epoxy resin.
In addition, the pair of built-up layers 11 are formed individually on the two principal surfaces of the core substrate 10, as described above. As illustrated in FIG. 2(a), each of the built-up layers 11 includes a plurality of insulating layers 15, a plurality of conductive layers 16 arranged partially on the base body 12 and the insulating layer 15, and a via conductor 17 which penetrates through the insulating layer 15 in a thickness direction thereof and is connected to the conductive layer 16.
The insulating layers 15 not only function as a support member for supporting the conductive layers 16 but also function as insulating members that prevent a short circuit between the conductive layers 16. For the sake of convenience, the insulating layer 15 arranged at an uppermost layer (a side of a region on which the electronic component 2 is mounted) among the plurality of insulating layers 15 is to be a first insulating layer 15 a, and the insulating layer 15 arranged below the first insulating layer 15 a (a side opposite to the region in which the electronic component 2 is mounted) and adjacent to the first insulating layer 15 a is to be a second insulating layer 15 b.
A through-hole P penetrating through the first insulating layer 15 a in a thickness direction thereof is formed in the first insulating layer 15 a, and the first solder 7 a is arranged in the through-hole P. This through-hole P has a tapered shape whose upper and lower surfaces are circular and whose diameter becomes smaller toward the core substrate 10.
As illustrated in FIGS. 3 and 4, the insulating layer 15 is formed of a first resin layer 18 a, and a second resin layer 18 b which is arranged closer to the core substrate 10 than the first resin layer 18 a is.
The first resin layer 18 a is to increase the rigidity of the insulating layer 15 and reduce a coefficient of thermal expansion in a planar direction, and includes a resin in which an inorganic insulating filler such as silica is dispersed. The first resin layer 18 a has a coefficient of thermal expansion in a planar direction thereof set, for example, to 0 ppm/° C. or more and 30 ppm/° C. or less, a coefficient of thermal expansion in a thickness direction thereof set, for example, to 20 ppm/° C. or more and 50 ppm/° C. or less, and a Young's modulus thereof set, for example, to 2.5 GPa or more and 10 GPa or less. In addition, the first resin layer 18 a has the Young's modulus higher than that of the second resin layer 18 b, and the coefficient of thermal expansion in a planar direction smaller than that of the second resin layer 18 b.
Examples of a resin contained in the first resin layer 18 a include polyimide resin or the like. In view of reducing the coefficient of thermal expansion in a planar direction, such a resin is preferable in a film form having a structure in which a longer direction of each molecular chain is parallel to a planar direction of the first resin layer 18 a.
The second resin layer 18 b includes a resin, adheres to the first resin layers 18 a adjacent in a thickness direction to each other, and is adhered to a side surface and one principal surface of the conductive layer 16 to fix the conductive layer 16. Although it is preferable that the second resin layer 18 b include no inorganic insulating filler in view of adhesiveness, it may include the inorganic insulating filler. The second resin layer 18 b has a coefficient of thermal expansion in a planar direction and a thickness direction thereof set, for example, to 10 ppm/° C. or more and 100 ppm/° C. or less, and a Young's modulus thereof set, for example, to 0.05 GPa or more and 0.5 GPa or less.
Examples of a resin contained that is included in the second resin layer 18 b include epoxy resin, bismaleimide triazine resin, cyanate resin, amide resin, or the like.
The conductive layer 16 functions partially as a ground wire, a power supply wire, or a signal wire, and can be formed of, for example, copper which is a conductive material having high conductivity. It is preferable that the conductive layer 16 adhere to the first resin layer 18 a through a metal layer made of titanium, molybdenum, chrome, or a nickel-chromium alloy. As a result, adhesion strength between the conductive layer 16 and the resin layer 18 a can be increased.
The via conductor 17 is to connect the conductive layers 16 to each other which are separated from each other in a thickness direction, and can be formed of, for example, copper which is a conductive material having high conductivity. It is preferable that the via conductor 17 adhere to the insulating layer 15 through the metal layer described above, as in the case of the conductive layer 16. The via conductor 17 has a tapered shape whose diameter becomes smaller toward the core substrate 10.
The pad 9 functions as a terminal to electrically connect the wiring (through-hole conductor 13, conductive layer 16, and via conductor 17) of the wiring board 4 externally. The pad 9 includes a first layer region 19 a made of copper, and a second layer region 19 b made of nickel and arranged on the first layer region 19 a. The first layer region 19 a is to be connected to the conductive layer 16 or the via conductor 17 and is formed of copper as in the case of the conductive layer 16 or the via conductor 17. The second layer region 19 b covers at least part of a surface of the first layer region 19 a, and functions as a barrier layer of the first layer region 19 a. Specifically, the second layer region 19 b prevents the first layer region 19 a from diffusing into the first solder 7 a or the second solder 7 b.
As illustrated in FIGS. 5 to 7, before the electronic component 2 and the lead terminal 3 are connected to the wiring board 4, the pad 9 further includes a third layer region 19 c which is arranged on the second layer region 19 b and made of gold. The third layer region 19 c covers a surface of the second layer region 19 b, and suppresses oxidation of the second layer region 19 b, and facilitates wettability between the second layer region 19 b, and the first solder 7 a or the second solder 7 b. When the electronic component 2 and the lead terminal 3 are connected to the wiring board 4, the third layer region 19 c disappears by being diffused into the first solder 7 a or the second solder 7 b.
Among the plurality of pads 9, at least one pad 9 is a first pad 9 a that is electrically connected to the electrode 6 of the electronic component 2 through the first solder 7 a. This first pad 9 a is formed on the second insulating layer 15 b that is arranged at the second position from the top (a region on which the electronic component 2 is mounted). A part of the first pad 9 a is arranged and exposed in the through-hole P penetrating through the uppermost first insulating layer 15 a, and is connected to the first solder 7 a in the through-hole P.
Specifically, the first layer region 19 a of the first pad 9 a is arranged between the first insulating layer 15 a and the second insulating layer 15 b, and the second layer region 19 b of the first pad 9 a is arranged in an exposed portion (exposed portion 20) in the through-hole P. As illustrated in FIG. 6, before the first solder 7 a is connected to the first pad 9 a, the third layer region 19 c of the first pad 9 a covers an upper surface of the second layer region 19 b in the through-hole P. As illustrated in FIG. 2(b), the first pad 9 a is circular in plan view.
At least one pad 9 among the plurality of pads 9 is a second pad 9 b which is electrically connected to the lead terminal 3 through the second solder 7 b. The second pad 9 b is arranged on the first insulating layer 15 a which is positioned at the uppermost layer of the built-up layer 11. The second pad 9 b is arranged on the insulating board 8, and an upper surface and side surfaces of the second pad 9 b are connected to the second solder 7 b.
The first layer region 19 a of the second pad 9 b is arranged on the first insulating layer 15 a. The second layer region 19 b of the second pad 9 b covers an upper surface and side surfaces of the first layer region 19 a of the second pad 9 b. Before the second solder 7 b is connected to the second pad 9 b, the third layer region 19 c of the second pad 9 b covers an upper surface and side surfaces of the second layer region 19 b of the second pad 9 b. As illustrated in FIG. 2(c), the second pad 9 b has a quadrangular shape, and preferably a rectangular shape in a plan view.
In FIG. 2(a), an end portion of the second pad 9 b is not positioned immediately below the lead terminal 3, and the second solder 7 b is in a fillet shape at the end portion of the second pad 9 b.
Incidentally, for example, when the lead terminal 3 is connected to the wiring board 4, the lead terminal 3 is bent in some cases. When the lead terminal 3 is bent, bending stress applied to the lead terminal 3 reaches the wiring board 4 through the second pad 9 b located in a connection portion between the lead terminal 3 and the wiring board 4, and the wiring board 4 becomes susceptible to bending. When the wiring board 4 is bent, a break in wiring of the wiring board 4 tends to be caused. Particularly, since deformation is caused in the via conductor 17 connected to the second pad 9 b, a break in wiring between the via conductor 17 and the conductive layer 16 to which the via conductor 17 is connected tends to be caused.
According to the wiring board 4 of the present invention, a thickness of the second layer region 19 b of the second pad 9 b is larger than a thickness of the second layer region 19 b of the first pad 9 a. As a result, bending of the second pad 9 b itself is suppressed by thickening the second layer region 19 b made of hard nickel, so that bending stress reaching the wiring board 4 from the lead terminal 3 by way of the second pad 9 b can be reduced. Accordingly, it is possible to suppress the bending of wiring board 4, and increase the reliability of the wiring board 4.
In addition, film stress of the second layer region 19 b is reduced by reducing the thickness of the second layer region 19 b made of hard nickel in the first pad 9 a, so that exfoliation between the first layer region 19 a and the second layer region 19 b can be reduced. Therefore, electrical reliability of the first pad 9 a can be increased. As a result, it is possible to miniaturize the first pad 9 a, and arrange the wiring board 4 to be compatible with a narrower pitch of the electrode 6 of the electronic component 2, while the electrical reliability of the first pad 9 a is maintained.
As such a first pad 9 a, it is preferable that a thickness of the second layer region 19 b be smaller than a thickness of the first layer region 19 a. As a result, the exfoliation between the first layer region 19 a and the second layer region 19 b can be satisfactorily reduced. As the second pad 9 b, it is preferable that a thickness of the second layer region 19 b be larger than a thickness of the first layer region 19 a. As a result, bending of the wiring board 4 can be satisfactorily suppressed. In such a case, for example, the thickness of the first layer region 19 a of the first pad 9 a is set substantially to the same thickness (error thereof is about ±10%) as the thickness of the first layer region 19 a of the second pad 9 b.
The thickness of the first layer region 19 a of the first pad 9 a is preferably 3 to 8 μm, and the thickness of the second layer region 19 b of the first pad 9 a is preferably 3 to 5 μm. The thickness of the first layer region 19 a of the second pad 9 b is preferably 3 to 8 μm, and the thickness of the second layer region 19 b of the second pad 9 b is preferably 6 to 9 μm.
According to the wiring board 4 of the present invention, an upper surface of the first pad 9 a is at least partially exposed in the through-hole P, and is connected to the first solder 7 a arranged in the through-hole P. In this way, by arranging the first solder 7 a in the through-hole P of the first insulating layer 15 a, it is possible to suppress a short circuit between the adjacent first solders 7 a, and eventually arrange the wiring board 4 to be compatible with a narrower pitch of the electrode 6 of the electronic component 2.
The first layer region 19 a of the first pad 9 a is arranged between the first insulating layer 15 a and the second insulating layer 15 b, and the second layer region 19 b of the first pad 9 a is arranged in the exposed portion 20 in the through-hole P. A corner portion between an inner wall of the through-hole P and a lower surface of the first insulating layer 15 a is formed at a lower end of the through-hole P, and stress tends to be concentrated on the vicinity of the corner portion. For this reason, stress tends to concentrate on a connecting interface which is positioned in the vicinity of the corner portion and between the exposed portion 20 of the first layer region 19 a and the second layer region 19 b. However, according to the wiring board 4 of the present invention, since the thickness of the second layer region 19 b of the first pad 9 a is small as described above, this can reduce the film stress of the second layer region 19 b, and the exfoliation between the exposed portion 20 of the first layer region 19 a and the second layer region 19 b can be satisfactorily reduced.
An area of the first pad 9 a in plan view is smaller than an area of the second pad 9 b in plan view. As a result, since the first pad 9 a can be miniaturized, the wiring board 4 can be arranged to be compatible with a narrower pitch of the electrode 6 of the electronic component 2. Furthermore, as described above, since the thickness of the second layer region 19 b of the first pad 9 a is small, the first pad 9 a can be miniaturized while the electrical reliability of the first pad 9 a is maintained.
In contrast, the area of the second pad 9 b in plan view is larger than the area of the first pad 9 a in plan view. As a result, since an adhesion area between the second pad 9 b and the second solder 7 b is increased, the connecting strength between the second pad 9 b and the lead terminal 3 can be increased.
Accordingly, the electronic device 1 described above provides a desired function by driving or controlling the electronic component 2 based on power and signals supplied through the wiring board 4 from the lead terminal 3 electrically connected to an external circuit.
Next, a description will be given of a method for manufacturing the electronic device 1 described above.
(1) As illustrated in FIG. 8, the core substrate 10 with the conductive layers 16 formed individually on two principal surfaces thereof is prepared as described below.
First, for example, the base body 12 is prepared by laminating a plurality of uncured resin sheets together, laminating a copper foil on an outermost layer, and heating, pressurizing, and thus curing the laminated body. Here, an uncured state is a state of A-stage or B-stage complying with ISO472:1999. Next, a through-hole penetrating through the base body 12 in a thickness direction thereof is formed, for example, by drilling, laser processing, or the like. Subsequently, the through-hole conductor 13 is formed by adhering a conductive material onto the inner wall of the through-hole by, for example, the non-electroplating method and the electroplating method. Then, the insulator 14 is formed by filling a resin or the like in the through-hole conductor 13. Thereafter, after the conductive material is adhered to the exposed portion of the insulator 14, the copper foil is subjected to patterning by a conventionally well-known photolithography technique, etching method, or the like to thereby form the conductive layer 16.
(2) A pair of built-up layers 11 are formed individually on two principal surfaces of the core substrate 10, and the wiring board 4 illustrated in FIG. 5 will be prepared as, for example, described below.
First, the first resin layer 18 a is placed on the core substrate 10 through the second resin layer 18 b which is uncured, and thereafter the second resin layer 18 b is cured by heating and pressurizing the core substrate 10, the second resin layer 18 b, and the first resin layer 18 a, so that the insulating layer 15 is formed on the core substrate 10. Next, via holes are formed at desired positions in the insulating layer 15 by laser processing using, for example, the YAG laser device or the carbon dioxide laser device, so that at least part of the conductive layer 16 is exposed in the via hole. Then, a metal film is formed as an underlayer on the insulating layer 15 and on the inner surface of the via hole using the sputtering method. Subsequently, a resist which is patterned in a desired shape is formed on the metal film using the photolithography technique, and thereafter the conductive layer 16 and the via conductor 17 are formed partially on the metal film. Then, after the resist is removed from the metal film, a region where the conductive layer in the metal film is not formed is removed using etching.
The above-mentioned steps are repeated to form the pair of built-up layers 11, and then the insulating board 8 can be prepared.
Next, a method for forming the first pad 9 a will be described in detail.
First, when the first pad 9 a is formed on the second insulating layer 15 b, the first layer region 19 a is formed on the second insulating layer 15 b as in the case of the conductive layer 16. Next, after the first insulating layer 15 a is formed on the second insulating layer 15 b, when the via hole is formed in the first insulating layer 15 a, a through-hole P is formed using laser processing as in the case of forming the via hole, an upper surface of the first layer region 19 a is partially exposed in the through-hole P, and the exposed portion 20 is formed. Subsequently, the second layer region 19 b and the third layer region 19 c are sequentially adhered to the exposed portion 20 in the through-hole P using the non-electroplating method, so that the first pad 9 a can be formed.
Next, a method for forming the second pad 9 b will be described in detail.
First, when the conductive layer 16 is formed on the first insulating layer 15 a, the first layer region 19 a is formed on the first insulating layer 15 a as in the case of the conductive layer 16. Next, simultaneously with adhering the second layer region 19 b and the third layer region 19 c in the first pad 9 a, the second layer region 19 b and the third layer region 19 c are sequentially adhered to the first layer region 19 a of the second pad 9 b using the non-electroplating method. In this way, the second pad 9 b can be formed.
Here, the thickness of the second layer region 19 b of the first pad 9 a and the thickness of the second layer region 19 b of the second pad 9 b can be adjusted, for example, in the following manner.
As described above, the first pad 9 a is provided in the through-hole P, and, for example, a plate for blocking a flow of a plating solution is arranged in the vicinity of the through-hole P, an inflow of the plating solution into the through-hole P can be suppressed. As a result, the thickness of the second layer region 19 b of the first pad 9 a can be made smaller than the thickness of the second layer region 19 b of the second pad 9 b.
Alternatively, this can be adjusted in the following manner. After masking the through-hole P, the second layer region 19 b is adhered to the first layer region 19 a of the second pad 9 b using the non-electroplating. Next, after the mask for the through-hole P is removed, the second layer region 19 b is adhered to the first layer region 19 a of each of the first pad 9 a and the second pad 9 b using the non-electroplating. In this way, the thickness of the second layer region 19 b of the second pad 9 b is made larger than the thickness of the second layer region 19 b of the first pad 9 a.
(3) The electronic component 2 and the lead terminal 3 are connected to the wiring board 4, and the electronic device 1 illustrated in FIGS. 1 and 2(a) is prepared, for example, in the following manner.
First, the electronic component 2 in which the first solder 7 a is adhered to the electrode 6, and the lead terminal 3 to which the second solder 7 b is adhered are prepared. Next, the first solder 7 a which is adhered to the electrode 6 of the electronic component 2 is arranged in the through-hole P, and the second solder 7 b adhered to the lead terminal 3 is arranged on the second pad 9 b. Subsequently, by applying heat (solder reflow) at a temperature at which the first solder 7 a and the second solder 7 b melt, the first solder 7 a is filled into the through-hole P so that the first solder 7 a is connected to the first pad 9 a, and the second solder 7 b is connected to the second pad 9 b. During this process, the third layer region 19 c is dispersed into the first solder 7 a and the second solder 7 b.
As described above, the electronic device 1 can be prepared.
The present invention is not limited to the embodiment described above, and various modifications, improvements, combinations, and the like may be made without departing from the spirits and the scope of the present invention.
For example, in the embodiment described above, although an example in which the built-up layer is formed of three layers of insulating layers is described, the insulating layer may not be formed of three layers.
Also, in the embodiment described above, although an example in which the insulating layer includes the first resin layer and the second resin layer is described, the insulating layer may be formed of the second resin layer alone.

Claims (8)

What is claimed is:
1. A wiring board comprising:
an insulating board for mounting an electronic component on a surface thereof, the insulating board including a first insulating layer having a through-hole positioned at an uppermost layer and a second insulating layer positioned in close proximity to the first insulating layer below the first insulating layer;
a first pad provided on the second insulating layer and having an upper surface which is at least partially exposed in the through-hole and electrically connected to an electrode provided on a surface of the electronic component;
a second pad provided on the first insulating layer excluding the through hole and electrically connected to a lead terminal to be connected to an external circuit,
wherein the first pad and the second pad include a first layer region made of copper, and a second layer region arranged on the first layer region and made of nickel, and
a thickness of the second layer region of the second pad is larger than a thickness of the second layer region of the first pad.
2. The wiring board according to claim 1,
wherein the first layer region of the first pad is arranged between the first insulating layer and the second insulating layer, and
the second layer region of the first pad is arranged on an exposed portion of the first layer region which is exposed in the through-hole.
3. The wiring board according to claim 1,
wherein solder is arranged in the through-hole, and
the electrode of the electronic component and the first pad are electrically connected to each other through the solder.
4. The wiring board according to claim 1,
wherein the second layer region of the second pad covers an upper surface and a side surface of the first layer region of the second pad.
5. The wiring board according to claim 1,
wherein an area of the first pad in plan view is smaller than an area of the second pad in plan view.
6. The wiring board according to claim 1,
wherein a thickness of the first layer region of the first pad is larger than the thickness of the second layer region of the first pad, and
a thickness of the first layer region of the second pad is smaller than the thickness of the second layer region of the second pad.
7. The wiring board according to claim 1,
wherein the thickness of the first layer region of the first pad is identical with the thickness of the first layer region of the second pad.
8. An electronic device comprising:
the wiring board according to claim 1;
an electronic component including an electrode electrically connected to the first pad of the wiring board; and
a lead terminal electrically connected to the second pad of the wiring board.
US13/927,554 2012-06-29 2013-06-26 Wiring board and electronic device using the same Expired - Fee Related US9426887B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012146364A JP5868274B2 (en) 2012-06-29 2012-06-29 WIRING BOARD AND ELECTRONIC DEVICE USING THE SAME
JP2012-146364 2012-06-29

Publications (2)

Publication Number Publication Date
US20140000946A1 US20140000946A1 (en) 2014-01-02
US9426887B2 true US9426887B2 (en) 2016-08-23

Family

ID=49776965

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/927,554 Expired - Fee Related US9426887B2 (en) 2012-06-29 2013-06-26 Wiring board and electronic device using the same

Country Status (2)

Country Link
US (1) US9426887B2 (en)
JP (1) JP5868274B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220231198A1 (en) * 2021-01-20 2022-07-21 Gio Optoelectronics Corp Substrate structure and electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109156080B (en) * 2016-05-16 2021-10-08 株式会社村田制作所 Ceramic electronic component
US10342127B2 (en) * 2016-11-14 2019-07-02 Samsung Electronics Co., Ltd Electronic device including a reinforced printed circuit board
JP7105549B2 (en) * 2017-04-28 2022-07-25 日東電工株式会社 WIRED CIRCUIT BOARD AND IMAGING DEVICE
JP6635605B2 (en) 2017-10-11 2020-01-29 国立研究開発法人理化学研究所 Current introduction terminal, pressure holding device and X-ray imaging device having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206926A1 (en) * 2000-09-25 2008-08-28 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
JP2009141229A (en) 2007-12-10 2009-06-25 Panasonic Corp Semiconductor device and method of manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164300A (en) * 1985-01-16 1986-07-24 日立化成工業株式会社 Manufacture of ceramic multilayer interconnection circuit board
JP2986661B2 (en) * 1993-10-05 1999-12-06 松下電器産業株式会社 Method for manufacturing semiconductor device
JPH08255977A (en) * 1995-03-16 1996-10-01 Fujitsu Ltd Mounting circuit board
JPH10229143A (en) * 1997-02-14 1998-08-25 Toppan Printing Co Ltd Composite lead frame
CN1299547C (en) * 2000-07-12 2007-02-07 罗姆股份有限公司 Structure for interconnecting conductors and connecting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080206926A1 (en) * 2000-09-25 2008-08-28 Ibiden Co., Ltd. Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
JP2009141229A (en) 2007-12-10 2009-06-25 Panasonic Corp Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220231198A1 (en) * 2021-01-20 2022-07-21 Gio Optoelectronics Corp Substrate structure and electronic device

Also Published As

Publication number Publication date
JP2014011288A (en) 2014-01-20
US20140000946A1 (en) 2014-01-02
JP5868274B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
TWI452661B (en) Package structure with circuit directly connected to chip
JP3994262B2 (en) Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus
KR101376265B1 (en) Wiring board and its fabricating method
US20100091472A1 (en) Semiconductor package
JP2004343030A (en) Wiring circuit board, manufacturing method thereof, circuit module provided with this wiring circuit board
US9426887B2 (en) Wiring board and electronic device using the same
US20170033036A1 (en) Printed wiring board, semiconductor package, and method for manufacturing printed wiring board
JP4498378B2 (en) Substrate and manufacturing method thereof, circuit device and manufacturing method thereof
US10129980B2 (en) Circuit board and electronic component device
US20160043024A1 (en) Printed wiring board and semiconductor package
US9699920B2 (en) Printed wiring board
US20150008021A1 (en) Printed wiring board and method for manufacturing printed wiring board
JP2004266074A (en) Wiring board
US20160353576A1 (en) Electronic component built-in substrate and electronic device
US20050224934A1 (en) Circuit device
US20200294899A1 (en) Package substrate with partially recessed capacitor
JPH10335528A (en) Semiconductor package and manufacture thereof
JP2016100352A (en) Printed wiring board and manufacturing method of the same
JPH0982751A (en) Mounting structure for device
JP3455602B2 (en) Manufacturing method of semiconductor device mounting substrate
JP2000031319A (en) Substrate carrier for mounting semiconductor element and semiconductor device using the same
KR101543031B1 (en) Printed circuit board and method for manufacturing the same
TWI420989B (en) Printed circuit board and method of manufacturing the same
TWI420996B (en) Printed circuit board and method of manufacturing the same
KR101148494B1 (en) A semiconductor device comprsing a connecting metal layer and a method of manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYOCERA SLC TECHNOLOGIES CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOSOI, YOSHIHIRO;TAGUCHI, TAKAYUKI;YUGAWA, HIDETOSHI;SIGNING DATES FROM 20130527 TO 20130603;REEL/FRAME:030690/0514

AS Assignment

Owner name: KYOCERA CIRCUIT SOLUTIONS, INC., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:KYOCERA SLC TECHNOLOGIES CORPORATION;REEL/FRAME:036344/0749

Effective date: 20141001

ZAAA Notice of allowance and fees due

Free format text: ORIGINAL CODE: NOA

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

AS Assignment

Owner name: KYOCERA CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:KYOCERA CIRCUIT SOLUTIONS, INC.;REEL/FRAME:038806/0631

Effective date: 20160401

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20240823