US9303908B2 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- US9303908B2 US9303908B2 US12/096,806 US9680606A US9303908B2 US 9303908 B2 US9303908 B2 US 9303908B2 US 9680606 A US9680606 A US 9680606A US 9303908 B2 US9303908 B2 US 9303908B2
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- heat exchanger
- utilization
- side heat
- heat source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/005—Arrangement or mounting of control or safety devices of safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0293—Control issues related to the indoor fan, e.g. controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
Definitions
- the present invention relates to a function to judge the adequacy of the refrigerant quantity in a refrigerant circuit of an air conditioner. More specifically, the present invention relates to a function to judge the adequacy of the refrigerant quantity in a refrigerant circuit of an air conditioner configured by the interconnection of a heat source unit and a utilization unit.
- An object of the present invention is to reduce the labor of inputting information on a utilization unit before operating a separate type air conditioner, and at the same time, to enable a highly accurate judgment of the adequacy of the refrigerant quantity in a refrigerant circuit.
- An air conditioner includes a refrigerant circuit, a transmission line, an information obtaining means or section, an operation controlling means or section, a refrigerant quantity judging means or section, and a condition setting means or section.
- the refrigerant circuit is configured by the interconnection of a heat source unit and a utilization unit.
- the transmission line exchanges a signal between the heat source unit and the utilization unit.
- the information obtaining means obtains information on the utilization unit connected to the heat source unit via the transmission line.
- the operation controlling means can perform a refrigerant quantity judging operation.
- the refrigerant quantity judging means judges the adequacy of the refrigerant quantity in the refrigerant circuit by using an operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit in the refrigerant quantity judging operation.
- the condition setting means sets a condition for the refrigerant quantity judging operation according to the information on the utilization unit obtained by the information obtaining means.
- the refrigerant quantity judging operation and judgment of the adequacy of the refrigerant quantity in the refrigerant circuit can be appropriately performed according to the connection condition for the utilization unit. In this way, in this air conditioner, it is possible to judge the adequacy of the refrigerant quantity in the refrigerant circuit with high accuracy while reducing the labor of inputting information on the utilization unit.
- the term “information on the utilization unit” refers to information on the model, capacity, and the like of the utilization unit.
- condition for the refrigerant quantity judging operation refers to a target control value of constituent equipment for the refrigerant quantity judging operation, a relational expression that is used when judging the adequacy of the refrigerant quantity, and the like.
- An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, further including a refrigerant quantity calculating means or section to calculate the refrigerant quantity in the refrigerant circuit from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit in the refrigerant quantity judging operation, by using a relational expression between the refrigerant quantity in the refrigerant circuit and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit.
- the refrigerant quantity judging means judges the adequacy of the refrigerant quantity in the refrigerant circuit by using the refrigerant quantity in the refrigerant circuit calculated by the refrigerant quantity calculating means.
- the condition setting means sets the relational expression as the condition for the refrigerant quantity judging operation, according to the model of the utilization unit obtained by the infolination obtaining means.
- the refrigerant quantity in the refrigerant circuit is calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit in the refrigerant quantity judging operation by using the relational expression between the refrigerant quantity in the refrigerant circuit and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit, and the adequacy of the refrigerant quantity in the refrigerant circuit is judged by using the refrigerant quantity calculated.
- this air conditioner because it is premised that various types of utilization units are connected to the heat source unit, in the case where it is wished to enable a high accurate judgment of the adequacy of the refrigerant quantity when judging the adequacy of the refrigerant quantity in the refrigerant circuit by this approach, it is desirable to set the relational expression according to the model of each utilization unit. Therefore, this air conditioner is configured such that the relational expression can be set according to the information on the utilization units.
- An air conditioner according to a third aspect of the present invention is the air conditioner according to the second aspect of the present invention, wherein the relational expressions are provided separately for the utilization units and the portions other than the utilization units.
- the condition setting means sets the relational expressions provided for the refrigerant quantity in the utilization units according to the models of the utilization units obtained by the information obtaining means.
- the relational expressions are prepared separately for the utilization units and the portions other than the utilization units.
- the relational expressions for the refrigerant quantity in the entire refrigerant circuit according to the models of the utilization units, only the relational expressions for the refrigerant quantity in the utilization units need to be changed.
- the relational expressions for the refrigerant quantity in the entire refrigerant circuit can be used for a diversity of models of the utilization units, and thus a calculation process can be smoothly performed.
- An air conditioner according to a fourth aspect of the present invention is the air conditioner according to any one of the first through third aspects of the present invention, wherein the condition setting means sets a target control value of constituent equipment in the refrigerant quantity judging operation as a condition for the refrigerant quantity judging operation, according to the capacity of the utilization unit.
- this air conditioner it is premised that various types of utilization units are connected to the heat source unit. Consequently, in the case where it is wished to enable a highly accurate judgment of the adequacy of the refrigerant quantity when judging the adequacy of the refrigerant quantity in the refrigerant circuit, it is desirable to set the target control value of constituent equipment for the refrigerant quantity judging operation according to the capacities of the utilization units connected to the heat source unit. Therefore, in this air conditioner, the target control value of constituent equipment for the refrigerant quantity judging operation can be set according to the information on the capacities of the utilization units. In this way, in this air conditioner, it is possible to perform the refrigerant quantity judging operation by using the appropriate target control value according to the capacities of the utilization units connected to the utilization unit.
- An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the fourth aspect of the present invention, wherein the heat source unit includes a compressor and a heat source side heat exchanger.
- the utilization unit includes an expansion mechanism and a utilization side heat exchanger.
- the refrigerant circuit is configured by the interconnection of the compressor, the heat source side heat exchanger, the expansion mechanism, and the utilization side heat exchanger.
- the operation controlling means causes the utilization side heat exchanger to function as an evaporator for the refrigerant, and also controls constituent equipment such that the pressure of the refrigerant sent from the utilization side heat exchanger to the compressor or the operation state quantity equivalent to the aforementioned pressure becomes constant at a target low pressure as the target control value.
- the target low pressure for the refrigerant quantity judging operation can be set according to the information on the capacities of the utilization units. In this way, in this air conditioner, it is possible to perform the refrigerant quantity judging operation by using an appropriate target low pressure according to the capacities of the utilization units connected to the heat source unit.
- An air conditioner according to a sixth aspect of the present invention is the air conditioner according to the fourth aspect of the present invention, wherein the heat source unit includes a compressor and a heat source side heat exchanger.
- the utilization unit includes an expansion mechanism and a utilization side heat exchanger.
- the refrigerant circuit is configured by the interconnection of the compressor, the heat source side heat exchanger, the expansion mechanism, and the utilization side heat exchanger.
- the operation controlling means causes the utilization side heat exchanger to function as an evaporator for the refrigerant, and also controls constituent equipment such that the superheat degree of the refrigerant sent from the utilization side heat exchanger to the compressor becomes constant at a target superheat degree as the target control value.
- the target superheat degree for the refrigerant quantity judging operation can set according to the information on the capacities of the utilization units. In this way, in this air conditioner, it is possible to perform the refrigerant quantity judging operation by using an appropriate target superheat degree according to the capacities of the utilization units connected to the heat source unit.
- An air conditioner according to a seventh aspect of the present invention is the air conditioner according to the fourth aspect of the present invention, wherein the heat source unit includes a compressor and a heat source side heat exchanger.
- the utilization unit includes an expansion mechanism, a utilization side heat exchanger, and a ventilation fan that supplies air to the utilization side heat exchanger.
- the refrigerant circuit is configured by the interconnection of the compressor, the heat source side heat exchanger, the expansion mechanism, and the utilization side heat exchanger.
- the operation controlling means causes the utilization side heat exchanger to function as an evaporator for the refrigerant, and also performs control such that the air flow rate of the ventilation fan becomes constant at a target air flow rate.
- the target air flow rate in the refrigerant quantity judging operation can be set according to the information on the capacity of the utilization units. In this way, in this air conditioner, it is possible to perform the refrigerant quantity judging operation by using an appropriate target air flow rate according to the capacities of the utilization units connected to the heat source unit.
- FIG. 1 is a schematic configuration view of an air conditioner according to an embodiment of the present invention.
- FIG. 2 is a control block diagram of the air conditioner.
- FIG. 3 is a flowchart of a test operation mode.
- FIG. 4 is a flowchart of an automatic refrigerant charging operation.
- FIG. 5 is a schematic diagram to show a state of refrigerant flowing in a refrigerant circuit in a refrigerant quantity judging operation (illustrations of a four-way switching valve and the like are omitted).
- FIG. 6 is a flowchart to show an information obtaining process and a condition setting process in the refrigerant quantity judging operation.
- FIG. 7 is a flowchart to show the information obtaining process and the condition setting process in calculation of the refrigerant quantity.
- FIG. 8 is a flowchart of a pipe volume judging operation.
- FIG. 9 is a Mollier diagram to show a refrigerating cycle of the air conditioner in the pipe volume judging operation for a liquid refrigerant communication pipe.
- FIG. 10 is a Mollier diagram to show a refrigerating cycle of the air conditioner in the pipe volume judging operation for a gas refrigerant communication pipe.
- FIG. 11 is a flowchart of an initial refrigerant quantity judging operation.
- FIG. 12 is a flowchart of a refrigerant leak detection operation mode.
- FIG. 1 is a schematic configuration view of an air conditioner 1 according to an embodiment of the present invention.
- the air conditioner 1 is a device that is used to cool and heat a room in a building and the like by performing a vapor compression-type refrigeration cycle operation.
- the air conditioner 1 mainly includes one outdoor unit 2 as a heat source unit, indoor units 4 and 5 as a plurality (two in the present embodiment) of utilization units connected in parallel thereto, and a liquid refrigerant communication pipe 6 and a gas refrigerant communication pipe 7 as refrigerant communication pipes which interconnect the outdoor unit 2 and the indoor units 4 and 5 .
- the vapor compression-type refrigerant circuit 10 of the air conditioner 1 in the present embodiment is configured by the interconnection of the outdoor unit 2 , the indoor units 4 and 5 , and the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 .
- the indoor units 4 and 5 are installed by being embedded in or hung from a ceiling of a room in a building and the like or by being mounted or the like on a wall surface of a room.
- the indoor units 4 and 5 are connected to the outdoor unit 2 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 , and configure a part of the refrigerant circuit 10 .
- the indoor unit 4 mainly includes an indoor side refrigerant circuit 10 a (an indoor side refrigerant circuit 10 b in the case of the indoor unit 5 ) that configures a part of the refrigerant circuit 10 .
- the indoor side refrigerant circuit 10 a mainly includes an indoor expansion valve 41 as an expansion mechanism and an indoor heat exchanger 42 as a utilization side heat exchanger.
- the indoor expansion valve 41 is an electrically powered expansion valve connected to a liquid side of the indoor heat exchanger 42 in order to adjust the flow rate or the like of the refrigerant flowing in the indoor side refrigerant circuit 10 a.
- the indoor heat exchanger 42 is a cross fin-type fin-and-tube type heat exchanger configured by a heat transfer tube and numerous fins, and is a heat exchanger that functions as an evaporator for the refrigerant during a cooling operation to cool the room air and functions as a condenser for the refrigerant during a heating operation to heat the room air.
- the indoor unit 4 includes an indoor fan 43 as a ventilation fan for taking in room air into the unit, causing the air to heat exchange with the refrigerant in the indoor heat exchanger 42 , and then supplying the air to the room as supply air.
- the indoor fan 43 is a fan capable of varying an air flow rate Wr of the air which is supplied to the indoor heat exchanger 42 , and in the present embodiment, is a centrifugal fan, multi-blade fan, or the like, which is driven by a motor 43 a comprising a DC fan motor.
- a liquid side temperature sensor 44 that detects the temperature of the refrigerant (i.e., the refrigerant temperature corresponding to a condensation temperature Tc during the heating operation or an evaporation temperature Te during the cooling operation) is disposed at the liquid side of the indoor heat exchanger 42 .
- a gas side temperature sensor 45 that detects a temperature Teo of the refrigerant is disposed at a gas side of the indoor heat exchanger 42 .
- a room temperature sensor 46 that detects the temperature of the room air that flows into the unit i.e., a room temperature Tr
- a room air intake side of the indoor unit 4 disposed at a room air intake side of the indoor unit 4 .
- the liquid side temperature sensor 44 , the gas side temperature sensor 45 , and the room temperature sensor 46 comprise thermistors.
- the indoor unit 4 includes an indoor side controller 47 that controls the operation of each portion constituting the indoor unit 4 .
- the indoor side controller 47 includes a microcomputer and a memory and the like disposed in order to control the indoor unit 4 , and is configured such that it can exchange control signals and the like with a remote controller (not shown) for individually operating the indoor unit 4 and can exchange control signals and the like with the outdoor unit 2 via a transmission line 8 a.
- the outdoor unit 2 is installed outside of a building and the like, is connected to the indoor units 4 and 5 via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 , and configures the refrigerant circuit 10 with the indoor units 4 and 5 .
- the outdoor unit 2 mainly includes an outdoor side refrigerant circuit 10 c that configures a part of the refrigerant circuit 10 .
- This outdoor side refrigerant circuit 10 c mainly includes a compressor 21 , a four-way switching valve 22 , an outdoor heat exchanger 23 as a heat source side heat exchanger, an outdoor expansion valve 38 as an expansion mechanism, an accumulator 24 , a subcooler 25 as a temperature adjustment mechanism, a liquid side stop valve 26 , and a gas side stop valve 27 .
- the compressor 21 is a compressor whose operation capacity can be varied, and in the present embodiment, is a positive displacement-type compressor driven by a motor 21 a whose rotation frequency Rm is controlled by an inverter. In the present embodiment, only one compressor 21 is provided, but it is not limited thereto, and two or more compressors may be connected in parallel according to the number of connected units of indoor units and the like.
- the four-way switching valve 22 is a valve for switching the direction of the flow of the refrigerant such that, during the cooling operation, the four-way switching valve 22 is capable of connecting a discharge side of the compressor 21 and a gas side of the outdoor heat exchanger 23 and connecting a suction side of the compressor 21 (specifically, the accumulator 24 ) and the gas refrigerant communication pipe 7 (see the solid lines of the four-way switching valve 22 in FIG.
- the four-way switching valve 22 is capable of connecting the discharge side of the compressor 21 and the gas refrigerant communication pipe 7 and connecting the suction side of the compressor 21 and the gas side of the outdoor heat exchanger 23 (see the dotted lines of the four-way switching valve 22 in FIG.
- the outdoor heat exchanger 23 is a cross-fin type fin-and-tube type heat exchanger configured by a heat transfer tube and numerous fins, and is a heat exchanger that functions as a condenser for the refrigerant during the cooling operation and as an evaporator for the refrigerant during the heating operation.
- the gas side of the outdoor heat exchanger 23 is connected to the four-way switching valve 22 , and the liquid side thereof is connected to the liquid refrigerant communication pipe 6 .
- the outdoor expansion valve 38 is an electrically powered expansion valve connected to a liquid side of the outdoor heat exchanger 23 in order to adjust the pressure, flow rate, or the like of the refrigerant flowing in the outdoor side refrigerant circuit 10 c.
- the outdoor unit 2 includes an outdoor fan 28 as a ventilation fan for taking in outdoor air into the unit, causing the air to exchange heat with the refrigerant in the outdoor heat exchanger 23 , and then exhausting the air to the outside.
- the outdoor fan 28 is a fan capable of varying an air flow rate Wo of the air which is supplied to the outdoor heat exchanger 23 , and in the present embodiment, is a propeller fan or the like driven by a motor 28 a comprising a DC fan motor.
- the accumulator 24 is connected between the four-way switching valve 22 and the compressor 21 , and is a container capable of accumulating excess refrigerant generated in the refrigerant circuit 10 in accordance with the change in the operation load of the indoor units 4 and 5 and the like.
- the subcooler 25 is a double tube heat exchanger, and is disposed to cool the refrigerant sent to the indoor expansion valves 41 and 51 after the refrigerant is condensed in the outdoor heat exchanger 23 .
- the subcooler 25 is connected between the outdoor expansion valve 38 and the liquid side stop valve 26 .
- a bypass refrigerant circuit 61 as a cooling source of the subcooler 25 is disposed. Note that, in the description below, a portion corresponding to the refrigerant circuit 10 excluding the bypass refrigerant circuit 61 is referred to as a main refrigerant circuit for convenience sake.
- the bypass refrigerant circuit 61 is connected to the main refrigerant circuit so as to cause a portion of the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 to branch from the main refrigerant circuit and return to the suction side of the compressor 21 .
- the bypass refrigerant circuit 61 includes a branch circuit 61 a connected so as to branch a portion of the refrigerant sent from the outdoor expansion valve 38 to the indoor expansion valves 41 and 51 at a position between the outdoor heat exchanger 23 and the subcooler 25 , and a merging circuit 61 b connected to the suction side of the compressor 21 so as to return a portion of refrigerant from an outlet on a bypass refrigerant circuit side of the subcooler 25 to the suction side of the compressor 21 .
- the branch circuit 61 a is disposed with a bypass expansion valve 62 for adjusting the flow rate of the refrigerant flowing in the bypass refrigerant circuit 61 .
- the bypass expansion valve 62 comprises an electrically operated expansion valve.
- the refrigerant sent from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 is cooled in the subcooler 25 by the refrigerant flowing in the bypass refrigerant circuit 61 which has been depressurized by the bypass expansion valve 62 .
- performance of the subcooler 25 is controlled by adjusting the opening degree of the bypass expansion valve 62 .
- the liquid side stop valve 26 and the gas side stop valve 27 are valves disposed at ports connected to external equipment and pipes (specifically, the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 ).
- the liquid side stop valve 26 is connected to the outdoor heat exchanger 23 .
- the gas side stop valve 27 is connected to the four-way switching valve 22 .
- various sensors are disposed in the outdoor unit 2 .
- disposed in the outdoor unit 2 are an suction pressure sensor 29 that detects a suction pressure Ps of the compressor 21 , a discharge pressure sensor 30 that detects a discharge pressure Pd of the compressor 21 , a suction temperature sensor 31 that detects a suction temperature Ts of the compressor 21 , and a discharge temperature sensor 32 that detects a discharge temperature Td of the compressor 21 .
- the suction temperature sensor 31 is disposed at a position between the accumulator 24 and the compressor 21 .
- a heat exchanger temperature sensor 33 that detects the temperature of the refrigerant flowing through the outdoor heat exchanger 23 (i.e., the refrigerant temperature corresponding to the condensation temperature Tc during the cooling operation or the evaporation temperature Te during the heating operation) is disposed in the outdoor heat exchanger 23 .
- a liquid side temperature sensor 34 that detects a refrigerant temperature Tco is disposed at the liquid side of the outdoor heat exchanger 23 .
- a liquid pipe temperature sensor 35 that detects the temperature of the refrigerant i.e., a liquid pipe temperature Tlp
- Tlp liquid pipe temperature
- the merging circuit 61 b of the bypass refrigerant circuit 61 is disposed with a bypass temperature sensor 63 for detecting the temperature of the refrigerant flowing through the outlet on the bypass refrigerant circuit side of the subcooler 25 .
- An outdoor temperature sensor 36 that detects the temperature of the outdoor air that flows into the unit (i.e., an outdoor temperature Ta) is disposed at an outdoor air intake side of the outdoor unit 2 .
- the suction temperature sensor 31 , the discharge temperature sensor 32 , the heat exchanger temperature sensor 33 , the liquid side temperature sensor 34 , the liquid pipe temperature sensor 35 , the outdoor temperature sensor 36 , and the bypass temperature sensor 63 comprise thermistors.
- the outdoor unit 2 includes an outdoor side controller 37 that controls the operation of each portion constituting the outdoor unit 2 .
- the outdoor side controller 37 includes a microcomputer and a memory disposed in order to control the outdoor unit 2 , an inverter circuit that controls the motor 21 a , and the like, and is configured such that it can exchange control signals and the like with the indoor side controllers 47 and 57 of the indoor units 4 and 5 via the transmission line 8 a .
- a controller 8 that performs the operation control of the entire air conditioner 1 is configured by the indoor side controllers 47 and 57 , the outdoor side controller 37 , and the transmission line 8 a that interconnects the controllers 37 , 47 , and 57 .
- the controller 8 is connected so as to be able to receive detection signals of sensors 29 to 36 , 44 to 46 , 54 to 56 , and 63 and also to be able to control various equipment and valves 21 , 22 , 24 , 28 a , 38 , 41 , 43 a , 51 , 53 a , and 62 based on these detection signals and the like.
- a warning display 9 comprising LEDs and the like, which is configured to indicate that a refrigerant leak is detected in the below described refrigerant leak detection operation, is connected to the controller 8 .
- FIG. 2 is a control block diagram of the air conditioner 1 .
- the refrigerant communication pipes 6 and 7 are refrigerant pipes that are arranged on site when installing the air conditioner 1 at an installation location such as a building.
- the refrigerant communication pipes 6 and 7 pipes having various lengths and pipe diameters are used according to the installation conditions such as an installation location, combination of an outdoor unit and an indoor unit, and the like. Accordingly, for example, when installing a new air conditioner, in order to calculate the charging quantity of the refrigerant, it is necessary to obtain accurate information regarding the lengths and pipe diameters and the like of the refrigerant communication pipes 6 and 7 . However, management of such information and the calculation itself of the refrigerant quantity are difficult. In addition, when utilizing an existing pipe to renew an indoor unit and an outdoor unit, information regarding the lengths and pipe diameters and the like of the refrigerant communication pipes 6 and 7 may have been lost in some cases.
- the refrigerant circuit 10 of the air conditioner 1 is configured by the interconnection of the indoor side refrigerant circuits 10 a and 10 b , the outdoor side refrigerant circuit 10 c , and the refrigerant communication pipes 6 and 7 .
- this refrigerant circuit 10 is configured by the bypass refrigerant circuit 61 and the main refrigerant circuit excluding the bypass refrigerant circuit 61 .
- controller 8 constituted by the indoor side controllers 47 and 57 and the outdoor side controller 37 allows the air conditioner 1 in the present embodiment to switch and operate between the cooling operation and the heating operation by the four-way switching valve 22 and to control each equipment of the outdoor unit 2 and the indoor units 4 and 5 according to the operation load of each of the indoor units 4 and 5 .
- the operation modes of the air conditioner 1 in the present embodiment include: a normal operation mode where control of constituent equipment of the outdoor unit 2 and the indoor units 4 and 5 is performed according to the operation load of each of the indoor units 4 and 5 ; a test operation mode where a test operation to be performed after installation of constituent equipment of the air conditioner 1 is performed (specifically, it is not limited to after the first installation of equipment: it also includes, for example, after modification by adding or removing constituent equipment such as an indoor unit, after repair of damaged equipment); and a refrigerant leak detection operation mode where, after the test operation is finished and the normal operation has started, whether or not there is a refrigerant leak from the refrigerant circuit 10 is judged.
- the normal operation mode mainly includes the cooling operation for cooling the room and the heating operation for heating the room.
- the test operation mode mainly includes an automatic refrigerant charging operation to charge refrigerant into the refrigerant circuit 10 ; a pipe volume judging operation to detect the volumes of the refrigerant communication pipes 6 and 7 ; and an initial refrigerant quantity detection operation to detect the initial refrigerant quantity after installing constituent equipment or after charging refrigerant into the refrigerant circuit.
- the four-way switching valve 22 is in the state represented by the solid lines in FIG. 1 , i.e., a state where the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23 and also the suction side of the compressor 21 is connected to the gas sides of the indoor heat exchangers 42 and 52 via the gas side stop valve 27 and the gas refrigerant communication pipe 7 .
- the outdoor expansion valve 38 is in a fully opened state.
- the liquid side stop valve 26 and the gas side stop valve 27 are in an opened state.
- the opening degree of each of the indoor expansion valves 41 and 51 is adjusted such that a superheat degree SHr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 (i.e., the gas sides of the indoor heat exchangers 42 and 52 ) becomes constant at a target superheat degree SHrs.
- the superheat degree SHr of the refrigerant at the outlet of each of the indoor heat exchangers 42 and 52 is detected by subtracting the refrigerant temperature (which corresponds to the evaporation temperature Te) detected by the liquid side temperature sensors 44 and 54 from the refrigerant temperature detected by the gas side temperature sensors 45 and 55 , or is detected by converting the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29 to saturated temperature corresponding to the evaporation temperature Te, and subtracting this saturated temperature of the refrigerant from the refrigerant temperature detected by the gas side temperature sensors 45 and 55 .
- a temperature sensor that detects the temperature of the refrigerant flowing through each of the indoor heat exchangers 42 and 52 may be disposed such that the superheat degree SHr of the refrigerant at the outlet of each of the indoor heat exchangers 42 and 52 is detected by subtracting the refrigerant temperature corresponding to the evaporation temperature Te which is detected by this temperature sensor from the refrigerant temperature detected by the gas side temperature sensors 45 and 55 .
- the opening degree of the bypass expansion valve 62 is adjusted such that a superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the subcooler 25 becomes a target superheat degree SHbs.
- the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the subcooler 25 is detected by converting the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29 to saturated temperature corresponding to the evaporation temperature Te, and subtracting this saturated temperature of the refrigerant from the refrigerant temperature detected by the bypass temperature sensor 63 .
- a temperature sensor may be disposed at an inlet on the bypass refrigerant circuit side of the subcooler 25 such that the superheat degree SHb of the refrigerant at the outlet on the bypass refrigerant circuit side of the subcooler 25 is detected by subtracting the refrigerant temperature detected by this temperature sensor from the refrigerant temperature detected by the bypass temperature sensor 63 .
- the refrigerant flowing from the outlet of the bypass expansion valve 62 of the bypass refrigerant circuit 61 toward the suction side of the compressor 21 passes through the subcooler 25 and exchanges heat with high-pressure liquid refrigerant sent from the outdoor heat exchanger 23 on the main refrigerant circuit side to the indoor units 4 and 5 .
- the high-pressure liquid refrigerant that has become subcooled is sent to the indoor units 4 and 5 via the liquid side stop valve 26 and the liquid refrigerant communication pipe 6 .
- the high-pressure liquid refrigerant sent to the indoor units 4 and 5 is depressurized close to the suction pressure Ps of the compressor 21 by the indoor expansion valves 41 and 51 , becomes refrigerant in a low-pressure gas-liquid two-phase state, is sent to the indoor heat exchangers 42 and 52 , exchanges heat with the room air in the indoor heat exchangers 42 and 52 , and is evaporated into low-pressure gas refrigerant.
- This low-pressure gas refrigerant is sent to the outdoor unit 2 via the gas refrigerant communication pipe 7 , and flows into the accumulator 24 via the gas side stop valve 27 and the four-way switching valve 22 . Then, the low-pressure gas refrigerant that flowed into the accumulator 24 is again sucked into the compressor 21 .
- the four-way switching valve 22 is in a state represented by the dotted lines in FIG. 1 , i.e., a state where the discharge side of the compressor 21 is connected to the gas sides of the indoor heat exchangers 42 and 52 via the gas side stop valve 27 and the gas refrigerant communication pipe 7 and also the suction side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23 .
- the opening degree of the outdoor expansion valve 38 is adjusted so as to be able to depressurize the refrigerant that flows into the outdoor heat exchanger 23 to a pressure where the refrigerant can evaporate (i.e., evaporation pressure Pe) in the outdoor heat exchanger 23 .
- the liquid side stop valve 26 and the gas side stop valve 27 are in an opened state.
- the opening degree of the indoor expansion valves 41 and 51 is adjusted such that a subcooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 becomes constant at the target subcooling degree SCrs.
- a subcooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 is detected by converting the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30 to saturated temperature corresponding to the condensation temperature Tc, and subtracting the refrigerant temperature detected by the liquid side temperature sensors 44 and 54 from this saturated temperature of the refrigerant.
- a temperature sensor that detects the temperature of the refrigerant flowing through each of the indoor heat exchangers 42 and 52 may be disposed such that the subcooling degree SCr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 is detected by subtracting the refrigerant temperature corresponding to the condensation temperature Tc which is detected by this temperature sensor from the refrigerant temperature detected by the liquid side temperature sensors 44 and 54 .
- the bypass expansion valve 62 is closed.
- the high-pressure gas refrigerant sent to the indoor units 4 and 5 exchanges heat with the room air in the indoor heat exchangers 42 and 52 and is condensed into high-pressure liquid refrigerant. Subsequently, it is depressurized according to the opening degree of the indoor expansion valves 41 and 51 when passing through the indoor expansion valves 41 and 51 .
- the refrigerant that passed through the indoor expansion valves 41 and 51 is sent to the outdoor unit 2 via the liquid refrigerant communication pipe 6 , is further depressurized via the liquid side stop valve 26 , the subcooler 25 , and the outdoor expansion valve 38 , and then flows into the outdoor heat exchanger 23 . Then, the refrigerant in a low-pressure gas-liquid two-phase state that flowed into the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied by the outdoor fan 28 , is evaporated into low-pressure gas refrigerant, and flows into the accumulator 24 via the four-way switching valve 22 . Then, the low-pressure gas refrigerant that flowed into the accumulator 24 is again sucked into the compressor 21 .
- Such operation control as described above in the normal operation mode is performed by the controller 8 (more specifically, the indoor side controllers 47 and 57 , the outdoor side controller 37 , and the transmission line 8 a that connects between the controllers 37 , 47 and 57 ) that functions as a normal operation controlling means or section to perform the normal operation that includes the cooling operation and the heating operation.
- the controller 8 more specifically, the indoor side controllers 47 and 57 , the outdoor side controller 37 , and the transmission line 8 a that connects between the controllers 37 , 47 and 57 ) that functions as a normal operation controlling means or section to perform the normal operation that includes the cooling operation and the heating operation.
- FIG. 3 is a flowchart of the test operation mode.
- the test operation mode first, the automatic refrigerant charging operation in Step S 1 is performed. Subsequently, the pipe volume judging operation in Step S 2 is performed, and then the initial refrigerant quantity detection operation in Step S 3 is performed.
- the outdoor unit 2 in which the refrigerant is charged in advance and the indoor units 4 and 5 are installed at an installation location such as a building, and the outdoor unit 2 , the indoor units 4 , 5 are interconnected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 to configure the refrigerant circuit 10 , and subsequently additional refrigerant is charged into the refrigerant circuit 10 whose refrigerant quantity is insufficient according to the volumes of the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 .
- Step S 1 Automatic Refrigerant Charging Operation
- the liquid side stop valve 26 and the gas side stop valve 27 of the outdoor unit 2 are opened and the refrigerant circuit 10 is filled with the refrigerant that is charged in the outdoor unit 2 in advance.
- FIG. 4 is a flowchart of the automatic refrigerant charging operation.
- Step S 11 Refrigerant Quantity Judging Operation
- the refrigerant circuit 10 When a command to start the automatic refrigerant charging operation is issued, the refrigerant circuit 10 , with the four-way switching valve 22 of the outdoor unit 2 in the state represented by the solid lines in FIG. 1 , becomes a state where the indoor expansion valves 41 and 51 of the indoor units 4 and 5 and the outdoor expansion valve 38 are opened. Then, the compressor 21 , the outdoor fan 28 , and the indoor fans 43 and 53 are started, and the cooling operation is forcibly performed in all of the indoor units 4 and 5 (hereinafter referred to as “all indoor unit operation”).
- the high-pressure gas refrigerant compressed and discharged in the compressor 21 flows along a flow path from the compressor 21 to the outdoor heat exchanger 23 that functions as a condenser (see the portion from the compressor 21 to the outdoor heat exchanger 23 in the hatching area indicated by the diagonal line in FIG. 5 ); the high-pressure refrigerant that undergoes phase-change from a gas state to a liquid state by heat exchange with the outdoor air flows in the outdoor heat exchanger 23 that functions as a condenser (see the portion corresponding to the outdoor heat exchanger 23 in the hatching area indicated by the diagonal line and the black-lacquered hatching area in FIG.
- the high-pressure liquid refrigerant flows along a flow path from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 including the outdoor expansion valve 38 , the portion corresponding to the main refrigerant circuit side of the subcooler 25 and the liquid refrigerant communication pipe 6 , and a flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62 (see the portions from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 and to the bypass expansion valve 62 in the area indicated by the black hatching in FIG.
- the low-pressure refrigerant that undergoes phase-change from a gas-liquid two-phase state to a gas state by heat exchange with the room air flows in the portions corresponding to the indoor heat exchangers 42 and 52 that function as evaporators and the portion corresponding to the bypass refrigerant circuit side of the subcooler 25 (see the portions corresponding to the indoor heat exchangers 42 and 52 and the portion corresponding to the subcooler 25 in the area indicated by the lattice hatching and the hatching indicated by the diagonal line in FIG.
- FIG. 5 is a schematic diagram to show a state of the refrigerant flowing in the refrigerant circuit 10 in a refrigerant quantity judging operation (illustrations of the four-way switching valve 22 and the like are omitted).
- the indoor expansion valves 41 and 51 are controlled such that the superheat degree SHr of the indoor heat exchangers 42 and 52 that function as evaporators becomes constant (hereinafter referred to as “super heat degree control”); the operation capacity of the compressor 21 is controlled such that an evaporation pressure Pe becomes constant (hereinafter referred to as “evaporation pressure control”); the air flow rate Wo of outdoor air supplied to the outdoor heat exchanger 23 by the outdoor fan 28 is controlled such that a condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 becomes constant (hereinafter referred to as “condensation pressure control”); the operation capacity of the subcooler 25 is controlled such that the temperature of the refrigerant sent from the subcooler 25 to the indoor expansion valves 41 and 51 becomes constant (hereinafter referred to as “liquid pipe temperature control”); and the air flow rate Wr of room air supplied
- the reason to perform the evaporation pressure control is that the evaporation pressure Pe of the refrigerant in the indoor heat exchangers 42 and 52 that function as evaporators is greatly affected by the refrigerant quantity in the indoor heat exchangers 42 and 52 where low-pressure refrigerant flows while undergoing a phase change from a gas-liquid two-phase state to a gas state as a result of heat exchange with the room air (see the portions corresponding to the indoor heat exchangers 42 and 52 in the area indicated by the lattice hatching and hatching indicated by the diagonal line in FIG. 5 , which is hereinafter referred to as “evaporator portion C”).
- the control of the evaporation pressure Pe by the compressor 21 in the present embodiment is achieved in the following manner: the refrigerant temperature (which corresponds to the evaporation temperature Te) detected by the liquid side temperature sensors 44 and 54 of the indoor heat exchangers 42 and 52 is converted to saturation pressure; the operation capacity of the compressor 21 is controlled such that the saturation pressure becomes constant at a target low pressure Pes (in other words, the control to change the rotation frequency Rm of the motor 21 a is performed); and then a refrigerant circulation flow rate Wc flowing in the refrigerant circuit 10 is increased or decreased.
- the refrigerant temperature which corresponds to the evaporation temperature Te
- the operation capacity of the compressor 21 is controlled such that the saturation pressure becomes constant at a target low pressure Pes (in other words, the control to change the rotation frequency Rm of the motor 21 a is performed)
- a refrigerant circulation flow rate Wc flowing in the refrigerant circuit 10 is increased or decreased.
- the operation capacity of the compressor 21 may be controlled such that the suction pressure Ps of the compressor 21 detected by the suction pressure sensor 29 , which is the operation state quantity equivalent to the pressure of the refrigerant at the evaporation pressure Pe of the refrigerant in the indoor heat exchangers 42 and 52 , becomes constant at the target low pressure Pes, or the saturation temperature (which corresponds to the evaporation temperature Te) corresponding to the suction pressure Ps becomes constant at a target low pressure Tes.
- the operation capacity of the compressor 21 may be controlled such that the refrigerant temperature (which corresponds to the evaporation temperature Te) detected by the liquid side temperature sensors 44 and 54 of the indoor heat exchangers 42 and 52 becomes constant at the target low pressure Tes.
- gas refrigerant distribution portion D the state of the refrigerant flowing in the refrigerant pipes from the indoor heat exchangers 42 and 52 to the compressor 21 including the gas refrigerant communication pipe 7 and the accumulator 24 (see the portion from the indoor heat exchangers 42 and 52 to the compressor 21 in the hatching area indicated by the diagonal line in FIG. 5 , which is hereinafter referred to as “gas refrigerant distribution portion D”) becomes stabilized, creating a state where the refrigerant quantity in the gas refrigerant distribution portion D changes mainly by the evaporation pressure Pe (i.e., the suction pressure Ps), which is the operation state quantity equivalent to the pressure of the refrigerant in the gas refrigerant distribution portion D.
- the evaporation pressure Pe i.e., the suction pressure Ps
- the reason to perform the condensation pressure control is that the condensation pressure Pc of the refrigerant is greatly affected by the refrigerant quantity in the outdoor heat exchanger 23 where high-pressure refrigerant flows while undergoing a phase change from a gas state to a liquid state as a result of heat exchange with the outdoor air (see the portions corresponding to the outdoor heat exchanger 23 in the area indicated by the diagonal line hatching and the black hatching in FIG. 5 , which is hereinafter referred to as “condenser portion A”).
- the condensation pressure Pc of the refrigerant in the condenser portion A greatly changes due to the effect of the outdoor temperature Ta.
- the air flow rate Wo of the room air supplied from the outdoor fan 28 to the outdoor heat exchanger 23 is controlled by the motor 28 a , and thereby the condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 is maintained constant and the state of the refrigerant flowing in the condenser portion A is stabilized, creating a state where the refrigerant quantity in condenser portion A changes mainly by a subcooling degree SCo at the liquid side of the outdoor heat exchanger 23 (hereinafter regarded as the outlet of the outdoor heat exchanger 23 in the description regarding the refrigerant quantity judging operation).
- the discharge pressure Pd of the compressor 21 detected by the discharge pressure sensor 30 which is the operation state quantity equivalent to the condensation pressure Pc of the refrigerant in the outdoor heat exchanger 23 , or the temperature of the refrigerant flowing through the outdoor heat exchanger 23 (i.e., the condensation temperature Tc) detected by the heat exchanger temperature sensor 33 is used.
- the high-pressure liquid refrigerant flows along a flow path from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 including the outdoor expansion valve 38 , the portion on the main refrigerant circuit side of the subcooler 25 , and the liquid refrigerant communication pipe 6 and a flow path from the outdoor heat exchanger 23 to the bypass expansion valve 62 of the bypass refrigerant circuit 61 ; the pressure of the refrigerant in the portions from the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 and to the bypass expansion valve 62 (see the area indicated by the black hatching in FIG. 5 , which is hereinafter referred to as “liquid refrigerant distribution portion B”) also becomes stabilized; and the liquid refrigerant distribution portion B is sealed by the liquid refrigerant, thereby becoming a stable state.
- the reason to perform the liquid pipe temperature control is to prevent a change in the density of the refrigerant in the refrigerant pipes from the subcooler 25 to the indoor expansion valves 41 and 51 including the liquid refrigerant communication pipe 6 (see the portion from the subcooler 25 to the indoor expansion valves 41 and 51 in the liquid refrigerant distribution portion B shown in FIG. 5 ).
- Performance of the subcooler 25 is controlled by increasing or decreasing the flow rate of the refrigerant flowing in the bypass refrigerant circuit 61 such that the refrigerant temperature Tlp detected by the liquid pipe temperature sensor 35 disposed at the outlet on the main refrigerant circuit side of the subcooler 25 becomes constant at a target liquid pipe temperature Tlps, and by adjusting the quantity of heat exchange between the refrigerant flowing through the main refrigerant circuit side and the refrigerant flowing through the bypass refrigerant circuit side of the subcooler 25 .
- the flow rate of the refrigerant flowing in the bypass refrigerant circuit 61 is increased or decreased by adjustment of the opening degree of the bypass expansion valve 62 . In this way, the liquid pipe temperature control is achieved in which the refrigerant temperature in the refrigerant pipes from the subcooler 25 to the indoor expansion valves 41 and 51 including the liquid refrigerant communication pipe 6 becomes constant.
- the reason to perform the superheat degree control is because the refrigerant quantity in the evaporator portion C greatly affects the quality of wet vapor of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 .
- the superheat degree SHr of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 is controlled such that the superheat degree SHr of the refrigerant at the gas sides of the indoor heat exchangers 42 and 52 (hereinafter regarded as the outlets of the indoor heat exchangers 42 and 52 in the description regarding the refrigerant quantity judging operation) becomes constant at the target superheat degree SHrs (in other words, the gas refrigerant at the outlets of the indoor heat exchangers 42 and 52 is in a superheat state) by controlling the opening degree of the indoor expansion valves 41 and 51 , and thereby the state of the refrigerant flowing in the evaporator portion C is stabilized.
- Step S 11 the above described various target control values are set to the most appropriate values according to the information on the indoor units 4 and 5 connected to the outdoor unit 2 (Steps S 14 to S 16 ).
- Step S 14 the controller 8 that functions as an information obtaining means or section (more specifically, the outdoor side controller 37 ) obtains information on the capacities of the indoor units 4 and 5 from the indoor units 4 and 5 via the transmission line 8 a.
- Step S 15 the controller 8 that functions as a condition setting means or section calculates the total capacity of the indoor units 4 and 5 by adding the capacity of the indoor unit 4 and the capacity of the indoor unit 5 , and sets various target control values (specifically, the target low pressure Pes, the target superheat degree SHrs, or a target air flow rate Wrs) according to the total capacity.
- target control values specifically, the target low pressure Pes, the target superheat degree SHrs, or a target air flow rate Wrs
- the target low pressure Pes is set such that its value becomes higher as the total capacity of the indoor units 4 and 5 is larger so as to follow the tendency.
- Step S 16 equipment control is performed which includes the condensation pressure control, liquid pipe temperature control, superheat degree control in which the target superheat degree SHrs set in Step S 15 is used, evaporation pressure control in which the target low pressure Pes set in Step S 15 is used, and air flow rate Wr control of the indoor fans 43 and 53 in which the target air flow rate Wrs set in Step S 15 is used.
- refrigerant quantity judging operation when refrigerant starts to be charged into the refrigerant circuit 10 by additional refrigerant charging, which is subsequently performed, it is possible to create a state where a change in the refrigerant quantity in the refrigerant circuit 10 mainly appears as a change of the refrigerant quantity in the outdoor heat exchanger 23 (hereinafter this operation is referred to as “refrigerant quantity judging operation”).
- Step S 11 Such control as described above is performed as the process in Step S 11 by the controller 8 (more specifically, by the indoor side controllers 47 and 57 , the outdoor side controller 37 , and the transmission line 8 a that connects between the controllers 37 , 47 and 57 ) that functions as a refrigerant quantity judging operation controlling means or section for performing the refrigerant quantity judging operation.
- the controller 8 that functions as the information obtaining means and the condition setting means obtains information on the indoor units 4 and 5 from the indoor units 4 and 5 via the transmission line 8 a .
- the process in Steps S 14 and S 15 is performed in which the target control values are set as the conditions for refrigerant quantity judging operation.
- Step S 11 when refrigerant is not charged in advance in the outdoor unit 2 , it is necessary prior to Step S 11 to charge refrigerant until the refrigerant quantity reaches a level where constituent equipment will not abnormally stop during the above described refrigerant quantity judging operation.
- Step S 12 Refrigerant Quantity Calculation
- the controller 8 that functions as a refrigerant quantity calculating means or section calculates the refrigerant quantity in the refrigerant circuit 10 from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 during additional refrigerant charging in Step S 12 .
- the refrigerant quantity calculating means divides the refrigerant circuit 10 into a plurality of portions, calculates the refrigerant quantity for each divided portion, and thereby calculates the refrigerant quantity in the refrigerant circuit 10 . More specifically, a relational expression between the refrigerant quantity in each portion and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 is set for each divided portion, and the refrigerant quantity in each portion can be calculated by using these relational expressions.
- the four-way switching valve 22 is represented by the solid lines in FIG.
- the refrigerant circuit 10 is divided into the following portions and a relational expression is set for each portion: a portion corresponding to the compressor 21 and a portion from the compressor 21 to the outdoor heat exchanger 23 including the four-way switching valve 22 (not shown in FIG.
- high-pressure gas pipe portion E a portion corresponding to the outdoor heat exchanger 23 (i.e., the condenser portion A); a portion from the outdoor heat exchanger 23 to the subcooler 25 and an inlet side half of the portion corresponding to the main refrigerant circuit side of the subcooler 25 in the liquid refrigerant distribution portion B (hereinafter referred to as “high temperature side liquid pipe portion B 1 ”); an outlet side half of a portion corresponding to the main refrigerant circuit side of the subcooler 25 and a portion from the subcooler 25 to the liquid side stop valve 26 (not shown in FIG.
- liquid refrigerant communication pipe portion B 3 a portion from the liquid refrigerant communication pipe 6 in the liquid refrigerant distribution portion B to the gas refrigerant communication pipe 7 in the gas refrigerant distribution portion D including portions corresponding to the indoor expansion valves 41 and 51 and the indoor heat exchangers 42 and 52 (i.e., the evaporator portion C) (hereinafter referred to as “indoor unit portion F”); a portion corresponding to the gas refrigerant communication pipe 7 in the gas refrigerant distribution portion D (hereinafter referred to as “gas refrigerant communication pipe portion G”); a portion from the gas side stop valve 27 (not shown in FIG.
- low-pressure gas pipe portion H a portion from the high temperature side liquid pipe portion B 1 in the liquid refrigerant distribution portion B to the low-pressure gas pipe portion H including the bypass expansion valve 62 and a portion corresponding to the bypass refrigerant circuit side of the subcooler 25 (hereinafter referred to as “bypass circuit portion I”).
- the volume Vog 1 of the high-pressure gas pipe portion E is a value that is known prior to installation of the outdoor unit 2 at the installation location and is stored in advance in the memory of the controller 8 .
- a density pd of the refrigerant in the high-pressure gas pipe portion E is obtained by converting the discharge temperature Td and the discharge pressure Pd.
- the compressor discharge superheat degree SHm is a superheat degree of the refrigerant at the discharge side of the compressor, and is obtained by converting the discharge pressure Pd to refrigerant saturation temperature and subtracting this refrigerant saturation temperature from the discharge temperature Td.
- a saturated liquid density ⁇ c of the refrigerant is obtained by converting the condensation temperature Tc.
- a density ⁇ co of the refrigerant at the outlet of the outdoor heat exchanger 23 is obtained by converting the condensation pressure Pc which is obtained by converting the condensation temperature Tc and the refrigerant temperature Tco.
- the volume Vol 1 of the high-pressure liquid pipe portion B 1 is a value that is known prior to installation of the outdoor unit 2 at the installation location and is stored in advance in the memory of the controller 8 .
- the volume Vol 2 of the low temperature liquid pipe portion B 2 is a value that is known prior to installation of the outdoor unit 2 at the installation location and is stored in advance in the memory of the controller 8 .
- the density ⁇ lp of the refrigerant in the low temperature liquid pipe portion B 2 is the density of the refrigerant at the outlet of the subcooler 25 , and is obtained by converting the condensation pressure Pc and the refrigerant temperature Tlp at the outlet of the subcooler 25 .
- the volume Vlp of the liquid refrigerant communication pipe 6 because the liquid refrigerant communication pipe 6 is a refrigerant pipe arranged on site when installing the air conditioner 1 at an installation location such as a building, a value calculated on site from the information regarding the length, pipe diameter and the like is input, or information regarding the length, pipe diameter and the like is input on site and the controller 8 calculates the volume Vlp from the input information of the liquid refrigerant communication pipe 6 . Or, as described below, the volume Vlp is calculated by using the operation results of the pipe volume judging operation.
- the parameters kr 1 to kr 5 in the above described relational expression are derived from a regression analysis of results of tests and detailed simulations and are stored in advance in the memory of the controller 8 .
- the above described relational expressions for the refrigerant quantity Mr in the indoor unit portion F is set to the most appropriate relational expression in Step S 12 according to the information on the indoor units 4 and 5 connected to the outdoor unit 2 (Steps S 17 to S 19 ).
- Step S 17 the controller 8 that functions as the information obtaining means obtains information on the models of the indoor units 4 and 5 from the indoor units 4 and 5 via the transmission line 8 a connected to the outdoor unit 2 .
- Step S 18 the controller 8 that functions as the condition setting means sets the above described relational expression for the refrigerant quantity Mr according to the model of each of the indoor units 4 and 5 .
- the values of the parameters kr 1 to kr 5 in the relational expression for the refrigerant quantity Mr in the indoor unit portion F are provided by being stored in advance in the memory of the outdoor side controller 37 that configures the controller 8 in a manner such that these values are collected for each model of the indoor unit, and are set in Step S 18 by being selected according to the model of each of the indoor units 4 and 5 .
- Steps S 17 and S 18 may be simultaneously performed with the process in Steps S 14 and S 15 for setting various target control values in the above described refrigerant quantity judging operation.
- the volume Vgp of the gas refrigerant communication pipe 7 is a refrigerant pipe arranged on site when installing the air conditioner 1 at an installation location such as a building, a value calculated on site from the information regarding the length, pipe diameter and the like is input, or information regarding the length, pipe diameter and the like is input on site and the controller 8 calculates the volume Vgp from the input information of the gas refrigerant communication pipe 7 .
- the volume Vgp is calculated by using the operation results of the pipe volume judging operation.
- the density ⁇ gp of the refrigerant in the gas refrigerant communication pipe portion G is an average value between a density ⁇ s of the refrigerant at the suction side of the compressor 21 and a density ⁇ eo of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 (i.e., the inlet of the gas refrigerant communication pipe 7 ).
- the density ⁇ s of the refrigerant is obtained by converting the suction pressure Ps and the suction temperature Ts
- a density ⁇ eo of the refrigerant is obtained by converting the evaporation pressure Pe, which is a converted value of the evaporation temperature Te, and an outlet temperature Teo of the indoor heat exchangers 42 and 52 .
- the volume Vog 2 of the low-pressure gas pipe portion H is a value that is known prior to shipment to the installation location and is stored in advance in the memory of the controller 8 .
- the volume Vob of the bypass circuit portion I is a value that is known prior to installation of the outdoor unit 2 at the installation location and is stored in advance in the memory of the controller 8 .
- the saturated liquid density ⁇ e at the portion corresponding to the bypass circuit side of the subcooler 25 is obtained by converting the suction pressure Ps or the evaporation temperature Te.
- one outdoor unit 2 is provided.
- the refrigerant quantity in the outdoor unit such as Mog 1 , Mc, Mol 1 , Mol 2 , Mog 2 , and Mob
- the relational expression for the refrigerant quantity in each portion is set for each of the plurality of outdoor units, and the entire refrigerant quantity in the outdoor units is calculated by adding the refrigerant quantity in each portion of the plurality of the outdoor units.
- relational expressions for the refrigerant quantity in each portion having parameters with different values will be used when a plurality of outdoor units with different models and capacities are connected.
- the refrigerant quantity in each portion is calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the refrigerant quantity judging operation, and thereby the refrigerant quantity in the refrigerant circuit 10 can be calculated.
- the refrigerant quantity Mr in the indoor unit portion F is calculated in Step S 19 by using the relational expression set according to the model of each of the indoor units 4 and 5 .
- Step S 12 is repeated until the condition for judging the adequacy of the refrigerant quantity in the below described Step S 13 is satisfied. Therefore, in the period from the start to the completion of additional refrigerant charging, the refrigerant quantity in each portion is calculated from the operation state quantity during refrigerant charging by using the relational expressions for each portion in the refrigerant circuit 10 .
- a refrigerant quantity Mo in the outdoor unit 2 and the refrigerant quantity Mr in each of the indoor units 4 and 5 i.e., the refrigerant quantity in each portion in the refrigerant circuit 10 excluding the refrigerant communication pipes 6 and 7 ) necessary for judgment of the adequacy of the refrigerant quantity in the below described Step S 13 are calculated.
- the refrigerant quantity Mo in the outdoor unit 2 is calculated by adding Mog 1 , Mc, Mol 1 , Mol 2 , Mog 2 , and Mob described above, each of which is the refrigerant quantity in each portion in the outdoor unit 2 .
- Step S 12 the process in Step S 12 is performed by the controller 8 that functions as the refrigerant quantity calculating means for calculating the refrigerant quantity in each portion in the refrigerant circuit 10 from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the automatic refrigerant charging operation.
- the controller 8 that functions as the information obtaining means and condition setting means obtains information on the indoor units 4 and 5 from the indoor units 4 and 5 via the transmission line 8 a .
- the process in Steps S 17 and S 18 is performed in which the relational expression as the condition for the refrigerant quantity judging operation is set.
- Step S 13 Judgment of the Adequacy of the Refrigerant Quantity
- the refrigerant quantity in the refrigerant circuit 10 gradually increases.
- the refrigerant quantity that should be charged into the refrigerant circuit 10 after additional refrigerant charging cannot be prescribed as the refrigerant quantity in the entire refrigerant circuit 10 .
- the focus is placed only on the outdoor unit 2 and the indoor units 4 and 5 (i.e., the refrigerant circuit 10 excluding the refrigerant communication pipes 6 and 7 ), it is possible to know in advance the optimal refrigerant quantity in the outdoor unit 2 in the normal operation mode by tests and detailed simulations.
- additional refrigerant can be charged by the following manner: a value of this refrigerant quantity is stored in advance in the memory of the controller 8 as a target charging value Ms; the refrigerant quantity Mo in the outdoor unit 2 and a refrigerant quantity Mr in the indoor units 4 and 5 are calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the automatic refrigerant charging operation by using the above described relational expressions; and additional refrigerant is charged until a value of the refrigerant quantity obtained by adding the refrigerant quantity Mo and the refrigerant quantity Mr reaches the target charging value Ms.
- Step S 13 is a process to judge the adequacy of the refrigerant quantity charged into the refrigerant circuit 10 by additional refrigerant charging by judging whether or not the refrigerant quantity, which is obtained by adding the refrigerant quantity Mo in the outdoor unit 2 and the refrigerant quantity Mr in the indoor units 4 and 5 in the automatic refrigerant charging operation, has reached the target charging value Ms.
- Step S 13 when a value of the refrigerant quantity obtained by adding the refrigerant quantity Mo in the outdoor unit 2 and the refrigerant quantity Mr in the indoor units 4 and 5 is smaller than the target charging value Ms and additional refrigerant charging has not been completed, the process in Step S 13 is repeated until the target charging value Ms is reached. In addition, when a value of the refrigerant quantity obtained by adding the refrigerant quantity Mo in the outdoor unit 2 and the refrigerant quantity Mr in the indoor units 4 and 5 reaches the target charging value Ms, additional refrigerant charging is completed, and Step S 1 as the automatic refrigerant charging operation process is completed.
- the target charging value Ms may be set as a value corresponding to only the refrigerant quantity Mo in the outdoor unit 2 but not the outdoor unit 2 and the indoor units 4 and 5 , or may be set as a value corresponding to the refrigerant quantity Mc in the outdoor heat exchanger 23 , and additional refrigerant may be charged until the target charging value Ms is reached.
- Step S 13 the process in Step S 13 is performed by the controller 8 that functions as the refrigerant quantity judging means for judging the adequacy of the refrigerant quantity in the refrigerant circuit 10 in the refrigerant quantity judging operation of the automatic refrigerant charging operation (i.e., for judging whether or not the refrigerant quantity has reached the target charging value Ms).
- Step S 2 Pipe Volume Judging Operation
- Step S 2 the process proceeds to the pipe volume judging operation in Step S 2 .
- the process from Step S 21 to Step S 25 as shown in FIG. 8 is performed by the controller 8 .
- FIG. 8 is a flowchart of the pipe volume judging operation.
- Steps S 21 , S 22 Pipe Volume Judging Operation for Liquid Refrigerant Communication Pipe and Volume Calculation
- Step S 21 as is the case with the above described refrigerant quantity judging operation in Step S 11 of the automatic refrigerant charging operation, the pipe volume judging operation for the liquid refrigerant communication pipe 6 , including the all indoor unit operation, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control, is performed.
- the target liquid pipe temperature Tlps of the temperature Tlp of the refrigerant at the outlet on the main refrigerant circuit side of the subcooler 25 under the liquid pipe temperature control is regarded as a first target value Tlps 1
- the state where the refrigerant quantity judging operation is stable at this first target value Tlps 1 is regarded as a first state (see the refrigerating cycle indicated by the lines including the dotted lines in FIG. 9 ).
- FIG. 9 is a Mollier diagram to show the refrigerating cycle of the air conditioner 1 in the pipe volume judging operation for the liquid refrigerant communication pipe.
- the first state where the temperature Tlp of the refrigerant at the outlet on the main refrigerant circuit side of the subcooler 25 in liquid pipe temperature control is stable at the first target value Tlps 1 is switched to a second state (see the refrigerating cycle indicated by the solid lines in FIG. 9 ) where the target liquid pipe temperature Tlps is changed to a second target value Tlps 2 different from the first target value Tlps 1 and stabilized without changing the conditions for other equipment controls, i.e., the conditions for the condensation pressure control, superheat degree control, and evaporation pressure control (i.e., without changing the target superheat degree SHrs and the target low pressure Tes).
- the second target value Tlps 2 is a temperature higher than the first target value Tlps 1 .
- the conditions for other equipment controls other than the liquid pipe temperature control are not changed, and therefore the refrigerant quantity Mog 1 in the high-pressure gas pipe portion E, the refrigerant quantity Mog 2 in the low-pressure gas pipe portion H, and the refrigerant quantity Mgp in the gas refrigerant communication pipe portion G are maintained substantially constant, and the refrigerant whose quantity has decreased in the liquid refrigerant communication pipe portion B 3 will move to the condenser portion A, the high temperature liquid pipe portion B 1 , the low temperature liquid pipe portion B 2 , the indoor unit portion F, and the bypass circuit portion I.
- the refrigerant quantity Mc in the condenser portion A, the refrigerant quantity Mol 1 in the high temperature liquid pipe portion B 1 , the refrigerant quantity Mol 2 in the low temperature liquid pipe portion B 2 , the refrigerant quantity Mr in the indoor unit portion F, and the refrigerant quantity Mob in the bypass circuit portion I will increase by the quantity of the refrigerant that has decreased in the liquid refrigerant communication pipe portion B 3 .
- Such control as described above is performed as the process in Step S 21 by the controller 8 (more specifically, by the indoor side controllers 47 and 57 , the outdoor side controller 37 , and the transmission line 8 a that connects between the controllers 37 , 47 and 57 ) that functions as pipe volume judging operation controlling means for performing the pipe volume judging operation to calculate the refrigerant quantity Mlp of the liquid refrigerant communication pipe 6 .
- Step S 22 the volume Vlp of the liquid refrigerant communication pipe 6 is calculated by utilizing a phenomenon that the refrigerant quantity in the liquid refrigerant communication pipe portion B 3 decreases and the refrigerant whose quantity has decreased moves to other portions in the refrigerant circuit 10 because of the change from the first state to the second state.
- this ⁇ Mlp value is divided by a density change quantity ⁇ lp of the refrigerant between the first state and the second state in the liquid refrigerant communication pipe 6 , and thereby the volume Vlp of the liquid refrigerant communication pipe 6 can be calculated.
- the refrigerant quantity Mog 1 and the refrigerant quantity Mog 2 may be included in the above described function expression.
- Vlp ⁇ Mlp/ ⁇ lp
- ⁇ Mc, ⁇ Mol 1 , ⁇ Mol 2 , ⁇ Mr, and ⁇ Mob can be obtained by calculating the refrigerant quantity in the first state and the refrigerant quantity in the second state by using the above described relational expression for each portion in the refrigerant circuit 10 and further by subtracting the refrigerant quantity in the first state from the refrigerant quantity in the second state.
- the density change quantity ⁇ lp can be obtained by calculating the density of the refrigerant at the outlet of the subcooler 25 in the first state and the density of the refrigerant at the outlet of the subcooler 25 in the second state and further by subtracting the density of the refrigerant in the first state from the density of the refrigerant in the second state.
- the volume Vlp of the liquid refrigerant communication pipe 6 can be calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the first and second states.
- the refrigerant quantity Mr in each of the indoor units 4 and 5 is calculated.
- the process in Step S 17 in which information on the indoor units 4 and 5 is obtained and the process in Step S 18 in which the relational expression for the refrigerant quantity is set are performed, as is the case with the calculation of the refrigerant quantity in Step S 12 of the automatic refrigerant charging operation.
- the state is changed such that the second target value Tlps 2 in the second state becomes a temperature higher than the first target value Tlps 1 in the first state and therefore the refrigerant in the liquid refrigerant communication pipe portion B 3 is moved to other portions in order to increase the refrigerant quantity in the other portions; thereby the volume Vlp in the liquid refrigerant communication pipe 6 is calculated from the increased quantity.
- the state may be changed such that the second target value Tlps 2 in the second state becomes a temperature lower than the first target value Tlps 1 in the first state and therefore the refrigerant is moved from other portions to the liquid refrigerant communication pipe portion B 3 in order to decrease the refrigerant quantity in the other portions; thereby the volume Vlp in the liquid refrigerant communication pipe 6 is calculated from the decreased quantity.
- Step S 22 is performed by the controller 8 that functions as the pipe volume calculating means for the liquid refrigerant communication pipe, which calculates the volume Vlp of the liquid refrigerant communication pipe 6 from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the pipe volume judging operation for the liquid refrigerant communication pipe 6 .
- Steps S 23 , S 24 Pipe Volume Judging Operation and Volume Calculation for the Gas Refrigerant Communication Pipe
- Step S 23 the pipe volume judging operation for the gas refrigerant communication pipe 7 , including the all indoor unit operation, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control, is performed in Step S 23 .
- the target low pressure Pes of the suction pressure Ps of the compressor 21 under the evaporation pressure control is regarded as a first target value Pes 1
- the state where the refrigerant quantity judging operation is stable at this first target value Pes 1 is regarded as a first state (see the refrigerating cycle indicated by the lines including the dotted lines in FIG. 10 ).
- FIG. 10 is a Mollier diagram to show the refrigerating cycle of the air conditioner 1 in the pipe volume judging operation for the gas refrigerant communication pipe.
- the first state where the target low pressure Pes of the suction pressure Ps in the compressor 21 under evaporation pressure control is stable at the first target value Pes 1 is switched to a second state (see the refrigerating cycle indicated by only the solid lines in FIG. 10 ) where the target low pressure Pes is changed to a second target value Pes 2 different from the first target value Pes 1 and stabilized without changing the conditions for other equipment controls, i.e., without changing the conditions for the liquid pipe temperature control, the condensation pressure control, and the superheat degree control (i.e., without changing target liquid pipe temperature Tlps and target superheat degree SHrs).
- the second target value Pes 2 is a pressure lower than the first target value Pes 1 .
- the density of the refrigerant in the gas refrigerant communication pipe 7 decreases, and therefore the refrigerant quantity Mgp in the gas refrigerant communication pipe portion G in the second state decreases compared to the refrigerant quantity in the first state. Then, the refrigerant whose quantity has decreased in the gas refrigerant communication pipe portion G will move to other portions in the refrigerant circuit 10 .
- the conditions for other equipment controls other than the evaporation pressure control are not changed, and therefore the refrigerant quantity Mog 1 in the high pressure gas pipe portion E, the refrigerant quantity Mol 1 in the high-temperature liquid pipe portion B 1 , the refrigerant quantity Mol 2 in the low temperature liquid pipe portion B 2 , and the refrigerant quantity Mlp in the liquid refrigerant communication pipe portion B 3 are maintained substantially constant, and the refrigerant whose quantity has decreased in the gas refrigerant communication pipe portion G will move to the low-pressure gas pipe portion H, the condenser portion A, the indoor unit portion F, and the bypass circuit portion I.
- the refrigerant quantity Mog 2 in the low-pressure gas pipe portion H, the refrigerant quantity Mc in the condenser portion A, the refrigerant quantity Mr in the indoor unit portion F; and the refrigerant quantity Mob in the bypass circuit portion I will increase by the quantity of the refrigerant that has decreased in the gas refrigerant communication pipe portion G.
- Such control as described above is performed as the process in Step S 23 by the controller 8 (more specifically, by the indoor side controllers 47 and 57 , the outdoor side controller 37 , and the transmission line 8 a that connects between the controllers 37 and 47 , and 57 ) that functions as the pipe volume judging operation controlling means for performing the pipe volume judging operation to calculate the volume Vgp of the gas refrigerant communication pipe 7 .
- Step S 24 the volume Vgp of the gas refrigerant communication pipe 7 is calculated by utilizing a phenomenon that the refrigerant quantity in the gas refrigerant communication pipe portion G decreases and the refrigerant whose quantity has decreased moves to other portions in the refrigerant circuit 10 because of the change from the first state to the second state.
- this ⁇ Mgp value is divided by a density change quantity ⁇ gp of the refrigerant between the first state and the second state in the gas refrigerant communication pipe 7 , and thereby the volume Vgp of the gas refrigerant communication pipe 7 can be calculated.
- the refrigerant quantity Mog 1 , the refrigerant quantity Mol 1 , and the refrigerant quantity Mol 2 may be included in the above described function expression.
- Vgp ⁇ Mgp/ ⁇ gp
- ⁇ Mc, ⁇ Mog 2 , ⁇ Mr and ⁇ Mob can be obtained by calculating the refrigerant quantity in the first state and the refrigerant quantity in the second state by using the above described relational expression for each portion in the refrigerant circuit 10 and further by subtracting the refrigerant quantity in the first state from the refrigerant quantity in the second state.
- the density change quantity ⁇ gp can be obtained by calculating an average density between the density ⁇ s of the refrigerant at the suction side of the compressor 21 in the first state and the density ⁇ eo of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 in the first state and by subtracting the average density in the first state from the average density in the second state.
- the volume Vgp of the gas refrigerant communication pipe 7 can be calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the first and second states.
- the refrigerant increase/decrease quantity ⁇ Mr the refrigerant quantity Mr in each of the indoor units 4 and 5 is calculated.
- the process in Step S 17 in which information on the indoor units 4 and 5 is obtained and the process in Step S 18 in which the relational expression for the refrigerant quantity is set are performed, as is the case with the calculation of the refrigerant quantity in Step S 12 of the automatic refrigerant charging operation.
- the state is changed such that the second target value Pes 2 in the second state becomes a pressure lower than the first target value Pes 1 in the first state and therefore the refrigerant in the gas refrigerant communication pipe portion G is moved to other portions in order to increase the refrigerant quantity in the other portions; thereby the volume Vlp of the gas refrigerant communication pipe 7 is calculated from the increased quantity.
- the state may be changed such that the second target value Pes 2 in the second state becomes a pressure higher than the first target value Pes 1 in the first state and therefore the refrigerant is moved from other portions to the gas refrigerant communication pipe portion G in order to decrease the refrigerant quantity in the other portions; thereby the volume Vlp in the gas refrigerant communication pipe 7 is calculated from the decreased quantity.
- Step S 24 is performed by the controller 8 that functions as the pipe volume calculating means for the gas refrigerant communication pipe, which calculates the volume Vgp of the gas refrigerant communication pipe 7 from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the pipe volume judging operation for the gas refrigerant communication pipe 7 .
- Step S 25 Adequacy Judgment of the Pipe Volume Judging Operation Result
- Step S 25 is performed to judge whether or not a result of the pipe volume judging operation is adequate, in other words, whether or not the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculating means are adequate.
- ⁇ 1 and ⁇ 2 are values that are changed based on the minimum value and the maximum value of the pipe volume ratio in feasible combinations of the heat source unit and the utilization units.
- Step S 2 of the pipe volume judging operation is completed.
- the process for the pipe volume judging operation and volume calculation in Step S 21 to Step S 24 is performed again.
- Step S 25 is performed by the controller 8 that functions as the adequacy judging means for judging whether or not a result of the above described pipe volume judging operation is adequate, in other words, whether or not the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculating means are adequate.
- the pipe volume judging operation (Steps S 21 , S 22 ) for the liquid refrigerant communication pipe 6 is first performed and then the pipe volume judging operation for the gas refrigerant communication pipe 7 (Steps S 23 , S 24 ) is performed.
- the pipe volume judging operation for the gas refrigerant communication pipe 7 may be performed first.
- Step S 25 when a result of the pipe volume judging operation in Steps S 21 to S 24 is judged to be inadequate for a plurality of times, or when it is desired to more simply judge the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 , although it is not shown in FIG.
- Step S 25 after a result of the pipe volume judging operation in Steps S 21 to S 24 is judged to be inadequate, it is possible to proceed to the process for estimating the lengths of the refrigerant communication pipes 6 and 7 from the pressure loss in the refrigerant communication pipes 6 and 7 and calculating the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 from the estimated pipe lengths and an average volume ratio, thereby obtaining the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 .
- the pipe volume judging operation is performed to calculate the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 is described on the premise that there is no information regarding the lengths, pipe diameters and the like of the refrigerant communication pipes 6 and 7 and the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 are unknown.
- the pipe volume calculating means has a function to calculate the volumes Vlp, Vgp of the refrigerant communication pipes 6 and 7 by inputting information regarding the lengths, pipe diameters and the like of the refrigerant communication pipes 6 and 7 , such function may be used together.
- the above described adequacy judging means may be used to judge whether or not the input information regarding the lengths, pipe diameters and the like of the refrigerant communication pipes 6 and 7 is adequate.
- Step S 3 Initial Refrigerant Quantity Detection Operation
- Step S 3 the process in Step S 31 and Step S 32 shown in FIG. 11 is performed by the controller 8 .
- FIG. 11 is a flowchart of the initial refrigerant quantity detection operation.
- Step S 31 Refrigerant Quantity Judging Operation
- Step S 31 as is the case with the above described refrigerant quantity judging operation in Step S 11 of the automatic refrigerant charging operation, the refrigerant quantity judging operation, including the all indoor unit operation, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control, is performed.
- the refrigerant quantity judging operation including the all indoor unit operation, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control.
- values that are the same as the target values in the refrigerant quantity judging operation in Step S 11 of the automatic refrigerant charging operation are used for the target liquid pipe temperature Tlps in the liquid pipe temperature control, the target superheat degree SHrs in the superheat degree control, and the target low pressure Pes in the evaporation pressure control.
- Step S 14 the process in Step S 14 in which information on the indoor units 4 and 5 is obtained and the process in Step S 15 in which various target control values are set are performed.
- Step S 31 the process in Step S 31 is performed by the controller 8 that functions as the refrigerant quantity judging operation controlling means for performing the refrigerant quantity judging operation, including the all indoor unit operation, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control.
- Step S 32 Refrigerant Quantity Calculation
- the refrigerant quantity in the refrigerant circuit 10 is calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant quantity judging operation in Step S 32 by the controller 8 that functions as the refrigerant quantity calculating means while performing the above described refrigerant quantity judging operation.
- Calculation of the refrigerant quantity in the refrigerant circuit 10 is performed by using the above described relational expressions between the refrigerant quantity in each portion in the refrigerant circuit 10 and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 .
- the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 which were unknown at the time of after installation of constituent equipment of the air conditioner 1 , have been calculated and the values thereof are known by the above described pipe volume judging operation.
- the refrigerant quantities Mlp, Mgp in the refrigerant communication pipes 6 and 7 can be calculated, and further by adding the refrigerant quantity in the other each portion, the initial refrigerant quantity in the entire refrigerant circuit 10 can be detected.
- the refrigerant quantity Mr in each of the indoor units 4 and 5 is calculated. Also at this time, the process in Step S 17 in which information on the indoor units 4 and 5 is obtained and the process in Step S 18 in which the relational expressions for the refrigerant quantity is set are performed, as is the case with the calculation of the refrigerant quantity in Step S 12 of the automatic refrigerant charging operation.
- This initial refrigerant quantity is used as a reference refrigerant quantity Mi of the entire refrigerant circuit 10 , which serves as the reference for judging whether or not there is a refrigerant leak from the refrigerant circuit 10 in the below described refrigerant leak detection operation. Therefore, it is stored as a value of the operation state quantity in the memory of the controller 8 as state quantity storing means.
- Step S 32 is performed by the controller 8 that functions as the refrigerant quantity calculating means for calculating the refrigerant quantity in each portion in the refrigerant circuit 10 from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant quantity detecting operation.
- FIG. 12 is a flowchart of the refrigerant leak detection operation mode.
- Step S 41 Refrigerant Quantity Judging Operation
- the normal operation mode when operation in the normal operation mode such as the above described cooling operation and heating operation has gone on for a certain period of time (for example, half a year to a year), the normal operation mode is automatically or manually switched to the refrigerant leak detection operation mode, and as is the case with the refrigerant quantity judging operation of the initial refrigerant quantity detection operation, the refrigerant quantity judging operation, including the all indoor unit operation, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control, is performed.
- values that are the same as the target values in Step S 31 of the refrigerant quantity judging operation of the initial refrigerant quantity detection operation are used for the target liquid pipe temperature Tlps in the liquid pipe temperature control, the target superheat degree SHrs in the superheat degree control, and the target low pressure Pes in the evaporation pressure control.
- the refrigerant quantity judging operation in Step S 11 of the automatic refrigerant charging operation the process in Step S 14 in which information on the indoor units 4 and 5 is obtained and the process in Step S 15 in which various target control values are set are performed.
- this refrigerant quantity judging operation is performed for each time the refrigerant leak detection operation is performed. Even when the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 fluctuates due to the different operating conditions, for example, such as when the condensation pressure Pc is different or when there is a refrigerant leak, the refrigerant temperature Tlp in the liquid refrigerant communication pipe 6 is maintained constant at the same target liquid pipe temperature Tlps by the liquid pipe temperature control.
- Step S 41 the process in Step S 41 is performed by the controller 8 that functions as the refrigerant quantity judging operation controlling means for performing the refrigerant quantity judging operation, including the all indoor unit operation, condensation pressure control, liquid pipe temperature control, superheat degree control, and evaporation pressure control.
- Step S 42 Refrigerant Quantity Calculation
- the refrigerant quantity in the refrigerant circuit 10 is calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the refrigerant leak detection operation in Step S 42 by the controller 8 that functions as the refrigerant quantity calculating means while performing the above described refrigerant quantity judging operation.
- Calculation of the refrigerant quantity in the refrigerant circuit 10 is performed by using the above described relational expression between the refrigerant quantity in each portion in the refrigerant circuit 10 and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 .
- the volumes Vlp and Vgp of the refrigerant communication pipes 6 and 7 which were unknown at the time of after installation of constituent equipment of the air conditioner 1 , have been calculated and the values thereof are known by the above described pipe volume judging operation.
- the refrigerant quantities Mlp, Mgp in the refrigerant communication pipes 6 and 7 can be calculated, and further by adding the refrigerant quantity in the other each portion, the refrigerant quantity M in the entire refrigerant circuit 10 can be calculated.
- the refrigerant quantity Mr in each of the indoor units 4 and 5 is calculated. Also at this time, the process in Step S 17 in which information on the indoor units 4 and 5 is obtained and the process in Step S 18 in which the relational expression for the refrigerant quantity is set are performed, as is the case with the calculation of the refrigerant quantity in Step S 12 of the automatic refrigerant charging operation.
- the refrigerant temperature Tlp in the liquid refrigerant communication pipe 6 is maintained constant at the target liquid pipe temperature Tlps by the liquid pipe temperature control. Therefore, regardless the difference in the operating conditions for the refrigerant leak detection operation, the refrigerant quantity Mlp in the liquid refrigerant communication pipe portion B 3 will be maintained constant even when the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 changes.
- Step S 42 is performed by the controller 8 that functions as the refrigerant quantity calculating means for calculating the refrigerant quantity at each portion in the refrigerant circuit 10 from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the refrigerant leak detection operation.
- Steps S 43 , S 44 Adequacy Judgment of the Refrigerant Quantity, Warning Display
- the refrigerant quantity in the refrigerant circuit 10 decreases. Then, when the refrigerant quantity in the refrigerant circuit 10 decreases, mainly, a tendency of a decrease in the subcooling degree SC o at the outlet of the outdoor heat exchanger 23 appears. Along with this, the refrigerant quantity Mc in the outdoor heat exchanger 23 decreases, and the refrigerant quantities in other portions tend to be maintained substantially constant.
- the refrigerant quantity M of the entire refrigerant circuit 10 calculated in the above described Step S 42 is smaller than the reference refrigerant quantity Mi detected in the initial refrigerant quantity detection operation when there is a refrigerant leak from the refrigerant circuit 10 ; whereas when there is no refrigerant leak from the refrigerant circuit 10 , the refrigerant quantity M is substantially the same as the reference refrigerant quantity Mi.
- Step S 43 whether or not there is a refrigerant leak is judged in Step S 43 .
- Step S 43 that there is no refrigerant leak from the refrigerant circuit 10 , the refrigerant leak detection operation mode is finished.
- Step S 43 when it is judged in Step S 43 that there is a refrigerant leak from the refrigerant circuit 10 , the process proceeds to Step S 44 , and a warning indicating that a refrigerant leak is detected is displayed on the warning display 9 . Subsequently, the refrigerant leak detection operation mode is finished.
- Steps S 42 to S 44 the process from Steps S 42 to S 44 is performed by the controller 8 that functions as the refrigerant leak detection means, which is one of the refrigerant quantity judging means, and which detects whether or not there is a refrigerant leak by judging the adequacy of the refrigerant quantity in the refrigerant circuit 10 while performing the refrigerant quantity judging operation in the refrigerant leak detection operation mode.
- the controller 8 that functions as the refrigerant leak detection means, which is one of the refrigerant quantity judging means, and which detects whether or not there is a refrigerant leak by judging the adequacy of the refrigerant quantity in the refrigerant circuit 10 while performing the refrigerant quantity judging operation in the refrigerant leak detection operation mode.
- the controller 8 functions as the refrigerant quantity judging operation means, the refrigerant quantity calculating means, the refrigerant quantity judging means, the pipe volume judging operation means, the pipe volume calculating means, the adequacy judging means, information obtaining means, the condition setting means, and the state quantity storing means, and thereby configures the refrigerant quantity judging system for judging the adequacy of the refrigerant quantity charged into the refrigerant circuit 10 .
- the air conditioner 1 in the present embodiment has the following characteristics.
- the information on the indoor units 4 and 5 as the utilization units connected to the outdoor unit 2 as the heat source unit via the transmission line 8 a is obtained, and the condition for the refrigerant quantity judging operation is set according to the information on the indoor units 4 and 5 .
- the refrigerant quantity judging operation and judgment of the adequacy of the refrigerant quantity in the refrigerant circuit can be appropriately performed according to the connection condition for the indoor units 4 and 5 . In this way, in this air conditioner 1 , it is possible to judge the adequacy of the refrigerant quantity in the refrigerant circuit 10 with high accuracy while reducing the labor of inputting information on the indoor units 4 and 5 .
- the refrigerant quantity in the refrigerant circuit 10 is calculated from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the refrigerant quantity judging operation by using the relational expressions between the refrigerant quantity in the refrigerant circuit 10 and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 ; and the adequacy of the refrigerant quantity in the refrigerant circuit 10 is judged by using the refrigerant quantity calculated.
- this air conditioner 1 because it is premised that various types of indoor units 4 and 5 are connected to the outdoor unit 2 , in the case where it is wished to enable a highly accurate judgment of the adequacy of the refrigerant quantity when judging the adequacy of the refrigerant quantity in the refrigerant circuit 10 by this approach, it is desirable to set the relational expressions according to the models of the indoor units 4 and 5 . Therefore, this air conditioner 1 is configured such that the relational expression (specifically, the relational expression for the refrigerant quantity Mr in the indoor unit portion F) can be set according to the models of the indoor units 4 and 5 .
- the relational expression specifically, the relational expression for the refrigerant quantity Mr in the indoor unit portion F
- this air conditioner 1 it is possible to judge the adequacy of the refrigerant quantity in the refrigerant circuit 10 by using the appropriate relational expressions between the refrigerant quantity in the refrigerant circuit 10 and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 , according to the models of the indoor units 4 and 5 connected to the outdoor unit 2 .
- the relational expressions to calculate the refrigerant quantity are provided separately for the indoor units 4 and 5 and the portions other than the indoor units 4 and 5 .
- the relational expressions for the refrigerant quantity in the entire refrigerant circuit 10 can be used for a diversity of models of the indoor units 4 and 5 , and thus a calculation process can be smoothly performed.
- the air conditioner 1 in the present embodiment it is premised that various types of indoor units 4 and 5 are connected to the outdoor unit 2 . Consequently, in the case where it is wished to enable a highly accurate judgment of the adequacy of the refrigerant quantity when judging the adequacy of the refrigerant quantity in the refrigerant circuit 10 , it is desirable to set the target control values of constituent equipment in the refrigerant quantity judging operation (specifically, the refrigerant quantity judging operation in the automatic refrigerant charging operation, the initial refrigerant quantity detection operation, and the refrigerant leak detection operation) according to the total capacity of the indoor units 4 and 5 connected to the outdoor unit 2 .
- the target control values of constituent equipment in the refrigerant quantity judging operation specifically, the refrigerant quantity judging operation in the automatic refrigerant charging operation, the initial refrigerant quantity detection operation, and the refrigerant leak detection operation
- the target control values (specifically, the target low pressure Pes, the target superheat degree SHrs, and the target air flow rate Wrs) of constituent equipment in the refrigerant quantity judging operation can be set according to the information on the capacities of the indoor units 4 and 5 . In this way, in this air conditioner 1 , it is possible to perform the refrigerant quantity judging operation by using appropriate target control values according to the capacities of the indoor units 4 and 5 connected to the outdoor unit 2 .
- the refrigerant circuit 10 is divided into a plurality of portions, and the relational expression between the refrigerant quantity and the operation state quantity is set for each portion. Consequently, compared to the conventional case where a simulation of characteristics of a refrigerating cycle is performed, the calculation load can be reduced, and the operation state quantity that is important for calculation of the refrigerant quantity in each portion can be selectively incorporated as a variable of the relational expression, thus improving the calculation accuracy of the refrigerant quantity in each portion. As a result, the adequacy of the refrigerant quantity in the refrigerant circuit 10 can be judged with high accuracy.
- the controller 8 as the refrigerant quantity calculating means can quickly calculate the refrigerant quantity in each portion from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the automatic refrigerant charging operation in which the refrigerant is charged into the refrigerant circuit 10 .
- the controller 8 as the refrigerant quantity judging means can judge with high accuracy whether or not the refrigerant quantity in the refrigerant circuit 10 (specifically, a value obtained by adding the refrigerant quantity Mo in the outdoor unit 2 and the refrigerant quantity Mr in the indoor units 4 and 5 ) has reached the target charging value Ms.
- the controller 8 can quickly calculate the initial refrigerant quantity as the reference refrigerant quantity Mi by calculating the refrigerant quantity in each portion from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the initial refrigerant quantity detection operation in which the initial refrigerant quantity after constituent equipment is installed or after the refrigerant is charged into the refrigerant circuit 10 is detected. Moreover, it is possible to detect the initial refrigerant quantity with high accuracy.
- the controller 8 can quickly calculate the refrigerant quantity in each portion from the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 in the refrigerant leak detection operation in which whether or not there is a refrigerant leak from the refrigerant circuit 10 is judged. Moreover, the controller 8 can judge with high accuracy whether or not the refrigerant is leaking from the refrigerant circuit 10 by comparison between the calculated refrigerant quantity in each portion and the reference refrigerant quantity Mi that serves as a reference for judging whether or not the refrigerant is leaking.
- the subcooler 25 is disposed as the temperature adjustment mechanism capable of adjusting the temperature of the refrigerant sent from the outdoor heat exchanger 23 as a condenser to the indoor expansion valves 41 and 51 as expansion mechanisms. Performance of the subcooler 25 is controlled such that the temperature Tlp of the refrigerant sent from the subcooler 25 to the indoor expansion valves 41 and 51 as expansion mechanisms is maintained constant during the refrigerant quantity judging operation, thereby preventing a change in the density ⁇ lp of the refrigerant in the refrigerant pipes from the subcooler 25 to the indoor expansion valves 41 and 51 .
- the effect of the temperature difference of the refrigerant as described above will remain only within the refrigerant pipes from the outlet of the outdoor heat exchanger 23 to the subcooler 25 , and the error in judgment due to the difference in the temperature Tco of the refrigerant at the outlet of the outdoor heat exchanger 23 (i.e., the difference in the density of the refrigerant) can be reduced when judging the refrigerant quantity.
- the outdoor unit 2 as a heat source unit and the indoor units 4 and 5 as utilization units are interconnected via the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 , the lengths, pipe diameters and the like of the refrigerant communication pipes 6 and 7 that connect between the outdoor unit 2 and the indoor units 4 and 5 are different depending on conditions such as installation location.
- the difference in the refrigerant temperature Tco at the outlet of the outdoor heat exchanger 23 will be the difference in the temperature of the refrigerant in the liquid refrigerant communication pipe 6 that configures a large portion of the refrigerant pipes from the outlet of the outdoor heat exchanger 23 to the indoor expansion valves 41 and 51 and thus the error in judgment tends to increase.
- performance of the subcooler 25 is controlled such that the temperature Tlp of the refrigerant in the liquid refrigerant communication pipe 6 is constant during the refrigerant quantity judging operation, thereby preventing a change in the density ⁇ lp of the refrigerant in the refrigerant pipes from the subcooler 25 to the indoor expansion valves 41 and 51 .
- the error in judgment due to the difference in the temperature Tco of the refrigerant at the outlet of the outdoor heat exchanger 23 i.e., the difference in the density of the refrigerant
- the difference in the density of the refrigerant can be reduced when judging the refrigerant quantity.
- the initial refrigerant quantity detection operation in which the initial refrigerant quantity after constituent equipment is installed or after the refrigerant is charged into the refrigerant circuit 10 is detected, the initial refrigerant quantity can be detected with high accuracy.
- the refrigerant leak detection operation in which whether or not there is a refrigerant leak from the refrigerant circuit 10 is judged, whether or not there is a refrigerant leak from the refrigerant circuit 10 can be judged with high accuracy.
- a change in the density ⁇ gp of the refrigerant sent from the indoor heat exchangers 42 and 52 to the compressor 21 is prevented by controlling constituent equipment such that the pressure (for example, the suction pressure Ps and the evaporation pressure Pe) of the refrigerant sent from the indoor heat exchangers 42 and 52 as evaporators to the compressor 21 or the operation state quantity (for example, the evaporation temperature Te) equivalent to the aforementioned pressure becomes constant during the refrigerant quantity judging operation.
- the pressure for example, the suction pressure Ps and the evaporation pressure Pe
- the error in judgment due to the difference i.e., the difference in the density of the refrigerant
- the difference in the density of the refrigerant in the pressure of the refrigerant at the outlets of the indoor heat exchangers 42 and 52 or the operation state quantity equivalent to the aforementioned pressure can be reduced when judging the refrigerant quantity.
- the pipe volume judging operation is performed in which two states are created where the density of the refrigerant flowing in the refrigerant communication pipes 6 and 7 is different between the two states. Then, the increase/decrease quantity of the refrigerant between these two states is calculated from the refrigerant quantity in the portions other than the refrigerant communication pipes 6 and 7 , and the increase/decrease quantity of the refrigerant is divided by the density change quantity of the refrigerant in the refrigerant communication pipes 6 and 7 between the first state and the second state, thereby the volumes of the refrigerant communication pipes 6 and 7 are calculated.
- the volumes of the refrigerant communication pipes 6 and 7 can be detected. Accordingly, the volumes of the refrigerant communication pipes 6 and 7 can be obtained while reducing the labor of inputting information of the refrigerant communication pipes 6 and 7 .
- the adequacy of the refrigerant quantity in the refrigerant circuit 10 can be judged by using the volumes of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculating means and the operation state quantity of constituent equipment or refrigerant flowing in the refrigerant circuit 10 . Therefore, even when the volumes of the refrigerant communication pipes 6 and 7 are unknown at the time of after installation of constituent equipment, the adequacy of the refrigerant quantity in the refrigerant circuit 10 can be judged with high accuracy.
- the refrigerant quantity in the refrigerant circuit 10 in the initial refrigerant quantity judging operation can be calculated by using the volumes of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculating means.
- the refrigerant quantity in the refrigerant circuit 10 in the refrigerant leak detection operation can be calculated by using the volumes of the refrigerant communication pipes 6 and 7 calculated by the pipe volume calculating means.
- the volume Vlp of the liquid refrigerant communication pipe 6 and the volume Vgp of the gas refrigerant communication pipe 7 are calculated from the information regarding the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 (for example, operation results of the pipe volume judging operation and information regarding the lengths, pipe diameters and the like of the refrigerant communication pipes 6 and 7 , which is input by the operator and the like).
- the volume Vlp of the liquid refrigerant communication pipe 6 and the volume Vgp of the gas refrigerant communication pipe 7 can be accurately obtained; whereas when it is judged to be inadequate, it is possible to handle the situation by, for example, re-inputting appropriate information regarding the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7 , re-performing the pipe volume judging operation, and the like.
- such judgment method is not to judge the adequacy by individually checking the volume Vlp of the liquid refrigerant communication pipe 6 and the volume Vgp of the gas refrigerant communication pipe 7 obtained by the calculation, but to judge the adequacy by checking whether or not the volume Vlp of the liquid refrigerant communication pipe 6 and the volume Vgp of the gas refrigerant communication pipe 7 satisfy a predetermined relation. Therefore, an appropriate judgment can be made which also takes into consideration a relative relation between the volume Vlp of the liquid refrigerant communication pipe 6 and the volume Vgp of the gas refrigerant communication pipe 7 .
- the present invention is applied to an air conditioner capable of switching and performing the cooling operation and heating operation.
- the present invention may be applied to different types of air conditioners such as a cooling only air conditioner and the like.
- an example in which the present invention is applied to an air conditioner including a single outdoor unit is described.
- the present invention may be applied to an air conditioner including a plurality of outdoor units.
- the present invention When the present invention is used, the labor of inputting information on the utilization unit before operating a separate type air conditioner is reduced, and at the same time, the adequacy of the refrigerant quantity in the refrigerant circuit can be judged with high accuracy.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
Mog1=Vog1×ρd,
which is a function expression in which a volume Vog1 of the high-pressure gas pipe portion E in the
Mc=kc1×Ta+kc2×Tc+kc3×SHm+kc4×Wc+kc5×ρc+kc6×ρco+kc7,
which is a function expression of the outdoor temperature Ta, the condensation temperature Tc, a compressor discharge superheat degree SHm, the refrigerant circulation flow rate Wc, the saturated liquid density ρc of the refrigerant in the
Mol1=Vol1×ρco,
Mol2=Vol2×ρlp,
which is a function expression in which a volume Vol2 of the low temperature liquid pipe portion B2 in the
Mlp=Vlp×ρlp,
Mr=kr1×Tlp+kr2×ΔT+kr3×SHr+kr4×Wr+kr5,
which is a function expression of the refrigerant temperature Tlp at the outlet of the
Mgp=Vgp×ρgp,
which is a function expression in which a volume Vgp of the gas
Mog2=Vog2×ρs,
Mob=kob1×ρco+kob2×ρs+kob3×Pe+kob4,
which is a function expression of a density ρco of the refrigerant at the outlet of the
Mob=Vob×ρe×kob5,
which is a function expression in which a volume Vob of the bypass circuit portion I is multiplied by the saturated liquid density ρe at the portion corresponding to the bypass circuit side of the
ΔMlp=−(ΔMc+ΔMol1+ΔMol2+ΔMr+ΔMob)
Vlp=ΔMlp/Δρlp
Note that, ΔMc, ΔMol1, ΔMol2, ΔMr, and ΔMob can be obtained by calculating the refrigerant quantity in the first state and the refrigerant quantity in the second state by using the above described relational expression for each portion in the
ΔMgp=−(ΔMc+ΔMog2+ΔMr+ΔMob).
Then, this ΔMgp value is divided by a density change quantity Δρgp of the refrigerant between the first state and the second state in the gas
Vgp=ΔMgp/Δρgp
Note that, ΔMc, ΔMog2, ΔMr and ΔMob can be obtained by calculating the refrigerant quantity in the first state and the refrigerant quantity in the second state by using the above described relational expression for each portion in the
ε1<Vlp/Vgp<ε2
Here, ε1 and ε2 are values that are changed based on the minimum value and the maximum value of the pipe volume ratio in feasible combinations of the heat source unit and the utilization units.
Claims (15)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-363736 | 2005-12-16 | ||
JP2005363736A JP4120676B2 (en) | 2005-12-16 | 2005-12-16 | Air conditioner |
PCT/JP2006/324727 WO2007069587A1 (en) | 2005-12-16 | 2006-12-12 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090151374A1 US20090151374A1 (en) | 2009-06-18 |
US9303908B2 true US9303908B2 (en) | 2016-04-05 |
Family
ID=38162895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/096,806 Active 2033-02-17 US9303908B2 (en) | 2005-12-16 | 2006-12-12 | Air conditioner |
Country Status (8)
Country | Link |
---|---|
US (1) | US9303908B2 (en) |
EP (1) | EP1970655B1 (en) |
JP (1) | JP4120676B2 (en) |
KR (1) | KR20080081946A (en) |
CN (1) | CN101331370B (en) |
AU (1) | AU2006324602B2 (en) |
ES (1) | ES2734899T3 (en) |
WO (1) | WO2007069587A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11927377B2 (en) | 2014-09-26 | 2024-03-12 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US11953239B2 (en) | 2018-08-29 | 2024-04-09 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7412842B2 (en) | 2004-04-27 | 2008-08-19 | Emerson Climate Technologies, Inc. | Compressor diagnostic and protection system |
US7275377B2 (en) | 2004-08-11 | 2007-10-02 | Lawrence Kates | Method and apparatus for monitoring refrigerant-cycle systems |
US8590325B2 (en) | 2006-07-19 | 2013-11-26 | Emerson Climate Technologies, Inc. | Protection and diagnostic module for a refrigeration system |
US20080216494A1 (en) | 2006-09-07 | 2008-09-11 | Pham Hung M | Compressor data module |
US20090037142A1 (en) | 2007-07-30 | 2009-02-05 | Lawrence Kates | Portable method and apparatus for monitoring refrigerant-cycle systems |
US9140728B2 (en) | 2007-11-02 | 2015-09-22 | Emerson Climate Technologies, Inc. | Compressor sensor module |
JP5130910B2 (en) * | 2007-12-28 | 2013-01-30 | ダイキン工業株式会社 | Air conditioner and refrigerant quantity determination method |
US20110005254A1 (en) * | 2009-07-10 | 2011-01-13 | Lin Guang Shun | Environmental Protection and Energy Saving Heater |
JP5116739B2 (en) * | 2009-09-09 | 2013-01-09 | 三菱電機株式会社 | Air conditioner and air conditioner remote controller |
CN103597292B (en) | 2011-02-28 | 2016-05-18 | 艾默生电气公司 | For the heating of building, surveillance and the supervision method of heating ventilation and air-conditioning HVAC system |
JP5594267B2 (en) * | 2011-09-12 | 2014-09-24 | ダイキン工業株式会社 | Refrigeration equipment |
US8964338B2 (en) | 2012-01-11 | 2015-02-24 | Emerson Climate Technologies, Inc. | System and method for compressor motor protection |
JP5940378B2 (en) * | 2012-06-01 | 2016-06-29 | 株式会社東芝 | MRI apparatus unit cooling apparatus and MRI apparatus |
US9310439B2 (en) | 2012-09-25 | 2016-04-12 | Emerson Climate Technologies, Inc. | Compressor having a control and diagnostic module |
CN103912968B (en) * | 2013-01-04 | 2016-06-08 | 广东美的制冷设备有限公司 | A kind of conditioner permanent wind amount output control method and device |
US9803902B2 (en) | 2013-03-15 | 2017-10-31 | Emerson Climate Technologies, Inc. | System for refrigerant charge verification using two condenser coil temperatures |
US9551504B2 (en) | 2013-03-15 | 2017-01-24 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
US9638436B2 (en) | 2013-03-15 | 2017-05-02 | Emerson Electric Co. | HVAC system remote monitoring and diagnosis |
EP2981772B1 (en) | 2013-04-05 | 2022-01-12 | Emerson Climate Technologies, Inc. | Heat-pump system with refrigerant charge diagnostics |
JP2014213609A (en) * | 2013-04-22 | 2014-11-17 | 株式会社デンソー | Vehicle heat management apparatus |
KR102242777B1 (en) * | 2014-03-20 | 2021-04-20 | 엘지전자 주식회사 | Air Conditioner |
CN105333638B (en) * | 2014-05-26 | 2018-09-21 | 大金工业株式会社 | Air-conditioning device and its control method |
JP6443177B2 (en) * | 2015-03-30 | 2018-12-26 | ダイキン工業株式会社 | Air conditioner |
JP6723077B2 (en) | 2016-06-02 | 2020-07-15 | サンデン・オートモーティブクライメイトシステム株式会社 | Vehicle air conditioner |
JP2019011899A (en) * | 2017-06-30 | 2019-01-24 | 株式会社富士通ゼネラル | Air conditioning device |
CN108224644A (en) * | 2018-02-12 | 2018-06-29 | 深圳市亿凌捷科技有限公司 | All weather refrigeration system and its control method |
KR102110915B1 (en) * | 2018-04-26 | 2020-05-14 | 히타치 존슨 컨트롤즈 쿠쵸 가부시키가이샤 | Air conditioner |
JP6911883B2 (en) * | 2019-03-29 | 2021-07-28 | ダイキン工業株式会社 | Performance deterioration diagnosis system for refrigeration cycle equipment |
JP7037087B2 (en) * | 2020-03-27 | 2022-03-16 | ダイキン工業株式会社 | Refrigeration cycle device |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62158966A (en) | 1986-01-08 | 1987-07-14 | 株式会社日立製作所 | Air conditioner with detector for quantity of refrigerant |
US5035119A (en) * | 1984-08-08 | 1991-07-30 | Alsenz Richard H | Apparatus for monitoring solenoid expansion valve flow rates |
JPH03186170A (en) | 1989-12-13 | 1991-08-14 | Hitachi Ltd | Refrigerating machine and refrigerant amount indicating method in refrigerating machine |
JPH04148170A (en) | 1990-10-12 | 1992-05-21 | Mitsubishi Electric Corp | Refrigerant sealing amount operating device |
US5241833A (en) * | 1991-06-28 | 1993-09-07 | Kabushiki Kaisha Toshiba | Air conditioning apparatus |
US5271238A (en) * | 1990-09-14 | 1993-12-21 | Nartron Corporation | Environmental control system |
JPH06174289A (en) | 1992-12-07 | 1994-06-24 | Matsushita Seiko Co Ltd | Separation type air-conditioning machine |
JPH08200905A (en) | 1995-01-20 | 1996-08-09 | Hitachi Ltd | Indicator for amount of refrigerant |
US5630324A (en) * | 1993-09-20 | 1997-05-20 | Hitachi Ltd. | Multiple type air conditioner system and address setting method thereof |
US5860286A (en) * | 1997-06-06 | 1999-01-19 | Carrier Corporation | System monitoring refrigeration charge |
JPH1163745A (en) | 1997-08-08 | 1999-03-05 | Hitachi Ltd | Refrigerant feeding amount indicating device for air conditioner and monitoring device |
JPH11211292A (en) | 1998-01-26 | 1999-08-06 | Matsushita Electric Ind Co Ltd | Refrigerant leakage detector and refrigerant leakage detection method for freezer |
JP2000283521A (en) | 1999-03-31 | 2000-10-13 | Fujitsu General Ltd | Air conditioner |
JP2001027461A (en) | 1999-07-15 | 2001-01-30 | Zexel Valeo Climate Control Corp | Method for detecting quantity of refrigerant in vapor compression refrigeration cycle |
JP2001317790A (en) | 2000-05-11 | 2001-11-16 | Matsushita Refrig Co Ltd | Diagnostic unit for air conditioner |
US6318097B1 (en) | 1999-07-27 | 2001-11-20 | Daimlerchrysler Ag | Method for monitoring the refrigerant level in an air conditioner |
JP2002039649A (en) | 2000-07-24 | 2002-02-06 | Funai Electric Co Ltd | Operation alarm device of air conditioner |
US20020139128A1 (en) * | 2001-04-03 | 2002-10-03 | Takahisa Suzuki | Vapor compression type refrigeration apparatus including leak detection and method for detecting refrigerant leaks |
US20030019221A1 (en) * | 2001-05-11 | 2003-01-30 | Rossi Todd M. | Estimating operating parameters of vapor compression cycle equipment |
JP2005098642A (en) | 2003-09-26 | 2005-04-14 | Hitachi Ltd | Refrigeration air conditioner and refrigeration air conditioning system |
US20060086111A1 (en) * | 2004-10-25 | 2006-04-27 | Carrier Corporation | Method for estimating inlet and outlet air conditions of an HVAC system |
JP2006129282A (en) * | 2004-10-29 | 2006-05-18 | Fujitsu General Ltd | Gateway device |
US20060243815A1 (en) * | 2005-04-28 | 2006-11-02 | Lg Electronics Inc. | Air conditioning system and method for controlling the same |
US20070089440A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring compressor performance in a refrigeration system |
US20070204635A1 (en) * | 2005-02-24 | 2007-09-06 | Mitsubishi Denki Kabushiki Kaisha | Air Conditioning Apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002267232A (en) * | 2001-03-12 | 2002-09-18 | Hitachi Ltd | Service system and service-providing device for air conditioner |
JP2002350014A (en) * | 2001-05-22 | 2002-12-04 | Daikin Ind Ltd | Refrigerating equipment |
-
2005
- 2005-12-16 JP JP2005363736A patent/JP4120676B2/en active Active
-
2006
- 2006-12-12 WO PCT/JP2006/324727 patent/WO2007069587A1/en active Application Filing
- 2006-12-12 ES ES06834482T patent/ES2734899T3/en active Active
- 2006-12-12 US US12/096,806 patent/US9303908B2/en active Active
- 2006-12-12 KR KR1020087016046A patent/KR20080081946A/en not_active Application Discontinuation
- 2006-12-12 AU AU2006324602A patent/AU2006324602B2/en active Active
- 2006-12-12 EP EP06834482.9A patent/EP1970655B1/en active Active
- 2006-12-12 CN CN2006800474730A patent/CN101331370B/en active Active
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5035119A (en) * | 1984-08-08 | 1991-07-30 | Alsenz Richard H | Apparatus for monitoring solenoid expansion valve flow rates |
JPS62158966A (en) | 1986-01-08 | 1987-07-14 | 株式会社日立製作所 | Air conditioner with detector for quantity of refrigerant |
JPH03186170A (en) | 1989-12-13 | 1991-08-14 | Hitachi Ltd | Refrigerating machine and refrigerant amount indicating method in refrigerating machine |
US5214918A (en) | 1989-12-13 | 1993-06-01 | Hitachi, Ltd. | Refrigerator and method for indicating refrigerant amount |
US5271238A (en) * | 1990-09-14 | 1993-12-21 | Nartron Corporation | Environmental control system |
JPH04148170A (en) | 1990-10-12 | 1992-05-21 | Mitsubishi Electric Corp | Refrigerant sealing amount operating device |
US5241833A (en) * | 1991-06-28 | 1993-09-07 | Kabushiki Kaisha Toshiba | Air conditioning apparatus |
JPH06174289A (en) | 1992-12-07 | 1994-06-24 | Matsushita Seiko Co Ltd | Separation type air-conditioning machine |
US5630324A (en) * | 1993-09-20 | 1997-05-20 | Hitachi Ltd. | Multiple type air conditioner system and address setting method thereof |
JPH08200905A (en) | 1995-01-20 | 1996-08-09 | Hitachi Ltd | Indicator for amount of refrigerant |
US5860286A (en) * | 1997-06-06 | 1999-01-19 | Carrier Corporation | System monitoring refrigeration charge |
JPH1163745A (en) | 1997-08-08 | 1999-03-05 | Hitachi Ltd | Refrigerant feeding amount indicating device for air conditioner and monitoring device |
JPH11211292A (en) | 1998-01-26 | 1999-08-06 | Matsushita Electric Ind Co Ltd | Refrigerant leakage detector and refrigerant leakage detection method for freezer |
JP2000283521A (en) | 1999-03-31 | 2000-10-13 | Fujitsu General Ltd | Air conditioner |
JP2001027461A (en) | 1999-07-15 | 2001-01-30 | Zexel Valeo Climate Control Corp | Method for detecting quantity of refrigerant in vapor compression refrigeration cycle |
US6318097B1 (en) | 1999-07-27 | 2001-11-20 | Daimlerchrysler Ag | Method for monitoring the refrigerant level in an air conditioner |
JP2001317790A (en) | 2000-05-11 | 2001-11-16 | Matsushita Refrig Co Ltd | Diagnostic unit for air conditioner |
JP2002039649A (en) | 2000-07-24 | 2002-02-06 | Funai Electric Co Ltd | Operation alarm device of air conditioner |
US20020139128A1 (en) * | 2001-04-03 | 2002-10-03 | Takahisa Suzuki | Vapor compression type refrigeration apparatus including leak detection and method for detecting refrigerant leaks |
US20030019221A1 (en) * | 2001-05-11 | 2003-01-30 | Rossi Todd M. | Estimating operating parameters of vapor compression cycle equipment |
JP2005098642A (en) | 2003-09-26 | 2005-04-14 | Hitachi Ltd | Refrigeration air conditioner and refrigeration air conditioning system |
US20060086111A1 (en) * | 2004-10-25 | 2006-04-27 | Carrier Corporation | Method for estimating inlet and outlet air conditions of an HVAC system |
JP2006129282A (en) * | 2004-10-29 | 2006-05-18 | Fujitsu General Ltd | Gateway device |
US20070204635A1 (en) * | 2005-02-24 | 2007-09-06 | Mitsubishi Denki Kabushiki Kaisha | Air Conditioning Apparatus |
US20060243815A1 (en) * | 2005-04-28 | 2006-11-02 | Lg Electronics Inc. | Air conditioning system and method for controlling the same |
US20070089440A1 (en) * | 2005-10-21 | 2007-04-26 | Abtar Singh | Monitoring compressor performance in a refrigeration system |
Non-Patent Citations (5)
Title |
---|
ANSI/ARI Standard 540-1999; Positive Displacement Refrigerant Compressors and Compressor Units; Virginia; 1999. |
European Search Report of corresponding EP Application No. 06 83 4482.9 dated Jun. 25, 2014. |
Kenichi Hashizume; Flow pattern and void ratio of refrigerant; Transactions of the Japan Society of Mechanical Engineers; Series B, vol. 49, No. 437, pp. 189-196; Japan;1983. |
Korean Office Action of the corresponding Korean Application No. 10-2008-7016046 dated Jun. 17, 2010. |
Minoru Shiotani et al.; Multivariate statistical analysis theory; Kyoritsu Shuppan; Series A, 5-3; Japan; 1967. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11927377B2 (en) | 2014-09-26 | 2024-03-12 | Waterfurnace International, Inc. | Air conditioning system with vapor injection compressor |
US11953239B2 (en) | 2018-08-29 | 2024-04-09 | Waterfurnace International, Inc. | Integrated demand water heating using a capacity modulated heat pump with desuperheater |
Also Published As
Publication number | Publication date |
---|---|
CN101331370A (en) | 2008-12-24 |
ES2734899T3 (en) | 2019-12-12 |
EP1970655A4 (en) | 2014-07-23 |
EP1970655B1 (en) | 2019-04-24 |
WO2007069587A1 (en) | 2007-06-21 |
KR20080081946A (en) | 2008-09-10 |
US20090151374A1 (en) | 2009-06-18 |
AU2006324602A1 (en) | 2007-06-21 |
CN101331370B (en) | 2010-11-03 |
EP1970655A1 (en) | 2008-09-17 |
JP4120676B2 (en) | 2008-07-16 |
AU2006324602B2 (en) | 2009-11-19 |
JP2007163103A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9303908B2 (en) | Air conditioner | |
US7946121B2 (en) | Air conditioner | |
AU2006324596B2 (en) | Air conditioner | |
US7980086B2 (en) | Air conditioner | |
US7954333B2 (en) | Air conditioner | |
AU2007264431B2 (en) | Air conditioner | |
US7997093B2 (en) | Air conditioner | |
AU2007244357B2 (en) | Air conditioner | |
US8069682B2 (en) | Air conditioner that corrects refrigerant quantity determination based on refrigerant temperature | |
US8033123B2 (en) | Air conditioner | |
US20090031739A1 (en) | Air conditioner | |
US7878010B2 (en) | Air conditioner | |
JP2007163102A (en) | Air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIKIN INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KASAHARA, SHINICHI;REEL/FRAME:021070/0267 Effective date: 20070111 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |