US9397610B2 - Photovoltaic module and control method thereof - Google Patents
Photovoltaic module and control method thereof Download PDFInfo
- Publication number
- US9397610B2 US9397610B2 US13/427,163 US201213427163A US9397610B2 US 9397610 B2 US9397610 B2 US 9397610B2 US 201213427163 A US201213427163 A US 201213427163A US 9397610 B2 US9397610 B2 US 9397610B2
- Authority
- US
- United States
- Prior art keywords
- voltage
- solar cell
- power
- maximum power
- power value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title description 13
- 239000003990 capacitor Substances 0.000 claims abstract description 43
- 238000001514 detection method Methods 0.000 claims description 20
- 238000004364 calculation method Methods 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims 2
- 238000007789 sealing Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 108010039893 pacifastin Proteins 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- SJWPTBFNZAZFSH-UHFFFAOYSA-N pmpp Chemical compound C1CCSC2=NC=NC3=C2N=CN3CCCN2C(=O)N(C)C(=O)C1=C2 SJWPTBFNZAZFSH-UHFFFAOYSA-N 0.000 description 4
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 239000005341 toughened glass Substances 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
- H02S40/345—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes with cooling means associated with the electrical connection means, e.g. cooling means associated with or applied to the junction box
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H02J3/385—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S50/00—Monitoring or testing of PV systems, e.g. load balancing or fault identification
- H02S50/10—Testing of PV devices, e.g. of PV modules or single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y02E10/58—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
Definitions
- the present disclosure relates to a photovoltaic module (or a solar module) and a control method thereof and, more particularly, to a photovoltaic module capable of outputting maximum power when a hot spot occurs, and a control method thereof.
- a photovoltaic module refers to a device in which solar cells for photovoltaic power generation are connected in series or in parallel, and the photovoltaic module may include a junction box collecting electricity produced by the solar cells.
- One aspect provides a photovoltaic module capable of outputting maximum power when a hot spot occurs, and a control method thereof.
- Another aspect provides a photovoltaic module which can be easily installed and is advantageous for increasing capacity in constituting a system.
- a photovoltaic module including: a solar cell module including a plurality of solar cells; a junction box including a capacitor unit to store DC power supplied from the solar cell module, a dc/dc converter unit to level-convert the stored DC power and output the level-converted DC power; and a controller to control a voltage or current based on the supplied DC power from the solar cell module among a plurality of sections, calculate a local maximum power point in each of the sections using the controlled voltage or controlled current, determine a maximum power value among a plurality of calculated local maximum power points, and to control the dc/dc converter unit to output the level-converted Dc power based on the determined maximum power value when a hot spot occurs in the solar cell module.
- a photovoltaic module including: a plurality of solar cells; a capacitor unit to store DC power supplied from the solar cell module; a dc/dc converter unit to level-convert the stored DC power and output the level-converted DC power; and a controller to determine whether a hot spot has occurred, wherein when the controller determines that the hot spot has not occurred, the controller applying a first maximum power point tracking (MPPT) algorithm to control a voltage or current based on the supplied DC power from the solar cell module in a section where the section is a voltage range or a current range, determine a maximum power value using the controlled voltage or controlled current, and to control the dc/dc converter unit to output the level-converted DC power based on the determined maximum power value, and when the controller has determined that the hot spot has occurred, the controller applying a second maximum power point tracking (MPPT) algorithm to control the voltage or current based on the supplied DC power from the solar cell module among a plurality of sections, calculate a local maximum power point
- MPPT maximum power point
- a method for controlling a photovoltaic module including: detecting at least one of a DC voltage and a DC current supplied from a solar cell module; determining by a controller whether or not a hot spot has occurred based on the at least one of the detected DC voltage and the detected DC current; when a hot spot has occurred, dividing by the controller at least one of the supplied DC voltage and DC current into a plurality of sections and calculating a local maximum power point in each of the sections; and determining by the controller a maximum value from among a plurality of calculated local maximum power points.
- FIG. 1 is a front view of a photovoltaic module according to an embodiment of the present invention.
- FIG. 2 is a rear view of the photovoltaic module of FIG. 1 .
- FIG. 3 is an exploded perspective view of the photovoltaic module of FIG. 1 .
- FIG. 4 is a view showing an example of bypass diodes of the photovoltaic module of FIG. 1 .
- FIG. 5 is a graph showing a curved line representing current over voltage of the photovoltaic module of FIG. 1 .
- FIG. 6 is a graph showing a curved line representing power over voltage of the photovoltaic module of FIG. 1 .
- FIG. 7 shows an example of shadow occurring in the photovoltaic module of FIG. 1 .
- FIGS. 8A and 8B are graphs of curved lines representing various power over voltage when the shadow of FIG. 7 occurs.
- FIG. 9 shows an example of an internal circuit diagram of a junction box of the photovoltaic module according to an embodiment of the present invention.
- FIGS. 10 to 11B are graphs referred to in explaining the operation of the circuit diagram of FIG. 9 .
- FIG. 12 is a flow chart illustrating a process of a control method of a photovoltaic module according to an embodiment of the present invention.
- FIG. 13 shows another example of an internal circuit diagram of a junction box of the photovoltaic module according to an embodiment of the present invention.
- FIG. 14 is a view showing an example of the configuration of a solar photovoltaic system according to an embodiment of the present invention.
- FIG. 15 is a view showing another example of the configuration of a solar photovoltaic system according to an embodiment of the present invention.
- FIGS. 16A and 16B are schematic diagrams referred to in explaining power optimizing of the solar photovoltaic system according to an embodiment of the present invention.
- FIG. 1 is a front view of a photovoltaic module according to an embodiment of the present invention.
- FIG. 2 is a rear view of the photovoltaic module of FIG. 1 .
- FIG. 3 is an exploded perspective view of the photovoltaic module of FIG. 1 .
- a photovoltaic module 50 includes a solar cell module 100 and a junction box 200 positioned on one surface of the solar cell module 100 .
- the solar cell module 100 may further include a heat releasing member (not shown) disposed between the solar cell module 100 and the junction box 200 .
- the solar cell module 100 may include a plurality of solar cells 130 . Also, the solar cell module 100 may further include a first sealing member 120 and a second sealing member 150 positioned on lower and upper surfaces of the plurality of solar cells 130 , a rear substrate 110 positioned on a lower surface of the first sealing member 120 , and a front substrate 160 positioned on an upper surface of the second sealing member 150 .
- Each of the solar cells 130 is a semiconductor device converting solar energy into electric energy and may be a silicon solar cell, a compound semiconductor solar cell, a tandem solar cell, a dye-sensitized solar cell, a CdTe or CIGS type solar cell, or the like.
- Each of the solar cells 130 is configured to have a light receiving face to which solar light is made incident and a rear face, which is opposite to the light receiving face.
- each of the solar cells 130 may include a silicon substrate having a first conductivity type, a semiconductor layer formed on the silicon substrate and having a second conductivity type which is opposite to the first conductivity type, an anti-reflective film formed on the second conductivity type semiconductor layer, a front electrode in contact with a portion of the second conductivity type semiconductor layer through the anti-reflective film, and a rear electrode formed on a rear surface of the silicon substrate.
- the respective solar cells 130 may be electrically connected in series, in parallel, or in series and parallel.
- the plurality of solar cells 130 may be electrically connected by a ribbon 133 .
- the ribbon 133 may be bonded to the front electrode formed on a light receiving face of a solar cell and to the rear electrode formed on a rear surface of an adjacent solar cell 130 .
- the ribbons 133 are formed in two rows, and the solar cells 130 are connected in a row by the ribbons 133 , forming solar cell strings 140 . Accordingly, six strings 140 a , 140 b , 140 c , 140 d , 140 e , and 140 f are formed, and each string includes ten solar cells.
- various modifications may be made, unlike that of the drawing.
- FIG. 1 illustrates that the second solar cell string 140 b and the third solar cell string 140 c , and the fourth solar cell string 140 d and the fifth solar cell string 140 e are electrically connected by bus ribbons 145 b and 145 d disposed at an upper portion of the solar cell module 100 , respectively.
- the ribbon connected to the first string, the bus ribbons 145 b and 145 d , and the ribbon connected to the sixth string are electrically connected to the first to fourth conductive lines 135 a , 135 b , 135 c , and 135 d , respectively, and the first to fourth conductive lines 135 a , 135 b , 135 c , and 135 d are connected with bypass diodes Da, Db, and Dc (see, for example, FIG. 4 ) within the junction box 200 disposed on the rear surface of the solar cell module 100 .
- the first to fourth conductive lines 135 a , 135 b , 135 c , and 135 d extend to the rear surface of the solar cell module 100 through openings formed on the solar cell module 100 .
- the junction box 200 is disposed to be adjacent to be closer to an end portion, among both end portions of the solar cell module 100 , where conductive lines extend.
- the first to fourth conductive lines 135 a , 135 b , 135 c , and 135 d extend from the upper portion of the solar cell module 100 to the rear surface of the solar cell module 100 , so that the junction box 200 is illustrated to be positioned at the upper portion of the rear surface of the solar cell module 100 . Accordingly, the length of the conductive lines may be reduced, and thus, a power loss may be reduced.
- the junction box 200 may be positioned at a lower portion of the rear surface of the solar cell module 100 .
- the rear substrate 110 as a back sheet, performs functions such as waterproofing, insulating, and filtering of ultraviolet rays.
- the rear substrate 110 may be a TPT (Tedlar/PET/Tedlar) type rear substrate, but is not meant to be limited thereto.
- the rear substrate 110 has a rectangular shape but it may be fabricated to have various shapes such as a circular shape, a semi-circular shape, or the like, according to an environment in which the solar cell module 100 is installed.
- the first sealing member 120 may have the same size as that of the rear substrate 110 and attached to the rear substrate 110 , and the plurality of solar cells 130 may be positioned to adjoin each other in several number of rows on the first sealing member 120 .
- the second sealing member 150 is positioned on the solar cells 130 and may be bonded to the first sealing member 120 through lamination.
- first sealing member 120 and the second sealing member 150 may enable respective elements of the solar cells to be chemically bonded.
- the first sealing member 120 and the second sealing member 150 may be, for example, an ethylene vinyl acetate (EVA) film, or the like.
- the front substrate 160 is positioned on the second sealing member 150 to allow solar light to be transmitted therethrough, and may be tempered glass in order to protect the solar cells 130 against external impact, or the like. Also, more preferably, in order to prevent a reflection of solar light and increase transmittance of solar light, the front substrate may be a low iron tempered glass including a amount of iron.
- the junction box 200 is attached on the rear surface of the solar cell module 100 , and may convert power by using DC power supplied from the solar cell module 100 .
- the junction box 200 may include a capacitor unit ( 520 in FIG. 9 ) for storing DC power.
- the junction box 200 may further include a dc/dc converter unit ( 530 in FIG. 9 ).
- the junction box 200 may further include bypass diodes Da, Db, and Dc ( 510 in FIG. 9 ) for preventing a back flow of current among solar cell strings.
- the junction box 200 may further include an inverter unit ( 540 in FIG. 9 ) for converting DC power into AC power. This will be described later with reference to FIG. 9 .
- the junction box 200 may include at least the bypass diodes Da, Db, and Dc, the capacitor unit for storing DC power, and the dc/dc converter unit.
- junction box 200 When the junction box 200 is integrally formed with the solar cell module 100 , a loss of DC power generated by each solar cell module 100 may be minimized and effectively managed, like a solar photovoltaic system of FIG. 14 or 15 . Meanwhile, the integrally formed junction box 200 may be called an MIC (Module Integrated Converter).
- MIC Mode Integrated Converter
- the interior of the junction box may be coated with silicon, or the like.
- openings are formed on the junction box 200 in order to allow the foregoing first to fourth conductive lines 135 a , 135 b , 135 c , and 135 d to be connected with the bypass diodes Da, Db, and Dc in the junction box 200 .
- junction box 200 When the junction box 200 operates, heat having a high temperature is generated from the bypass diodes Da, Db, and Dc, or the like. The generated heat may reduce the efficiency of particular solar cells 130 arranged at the position where the junction box 200 is attached.
- the photovoltaic module 50 may further include a heat releasing member (not shown) disposed between the solar cell module 100 and the junction box 200 .
- the heat releasing member may have a larger sectional area than that of a plate also disposed between the solar cell module and the junction box 200 .
- the heat releasing member may be formed on the entirety of the rear surface of the solar cell module 100 .
- the heat releasing member is made of a metal material such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), tungsten (W), or the like.
- An external connection terminal (not shown) may be formed at one side of the junction box 200 in order to output power-converted DC power or AC power to the outside.
- FIG. 4 is a view showing an example of a bypass diode of the photovoltaic module of FIG. 1 .
- the bypass diodes Da, Db, Dc may be connected correspondingly according to the six solar cell strings 140 a , 140 b , 140 c , 140 d , 140 e , and 140 f .
- the first bypass diode Da is connected between the first solar cell string and the first bus ribbon 145 b to bypass the first solar cell string 140 a and the second solar cell string 140 b when a reverse voltage is generated in the first solar cell string 140 a or the second solar cell string 140 b.
- a reverse voltage (about 15V), not the voltage of about 0.6V, is generated from a solar cell. Accordingly, the potential of the anode electrode of the first bypass diode Da is higher by about 15V than that of the cathode electrode. Then, the first bypass diode Da performs a bypassing operation. Thus, the voltage generated in the solar cells in the first solar cell string 140 a and the second solar cell string 140 b is not supplied to the junction box 200 . In this manner, when a reverse voltage is generated in some of the solar cells, it is bypassed, thus preventing the corresponding solar cells, or the like, from being damaged. Also, generated DC power may be supplied, except for the hot spot area.
- the second bypass diode Db is connected between the first bus ribbon 145 b and the second bus ribbon 145 d , and when a reverse voltage is generated in the third solar cell string 140 c or the fourth solar cell string 140 d , the second bypass diode Db bypasses the third solar cell string 140 c and the fourth solar cell string 140 d.
- the third bypass diode Dc is connected between the sixth solar cell string and the second bus ribbon 145 d , and when a reverse voltage is generated in the fifth solar cell string 140 e or the sixth solar cell string 140 f , the third bypass diode Dc bypasses the fifth solar cell string and the sixth solar cell string.
- bypass diodes may be connected correspondingly according to six solar cell strings, and various other modifications may also be implemented.
- FIG. 5 is a graph showing a curved line representing current over voltage of the photovoltaic module of FIG. 1
- FIG. 6 is a graph showing a curved line representing power over voltage of the photovoltaic module of FIG. 1 .
- maximum power Pmpp supplied from the solar cell module 100 may be calculated by a maximum power point tracking (MPPT) algorithm.
- MPPT maximum power point tracking
- power of each voltage is calculated (or arithmetically operated) while the open circuit voltage Voc is being reduced starting from a maximum voltage V 1 , and whether or not the calculated power is maximum power is determined. Because power is increased from voltage V 1 to voltage Vmpp, the calculated power is updated and stored. And, because power is reduced from voltage Vmpp to voltage V 2 , power Pmpp corresponding to the voltage Vmpp is resultantly determined as maximum power.
- the maximum power may be simply calculated by exploring the section from V 1 to V 2 .
- FIG. 7 shows an example of shadow occurring in the photovoltaic module of FIG. 1 .
- a hot spot occurs when shadow occurs at the first solar cell string 140 a in the solar cell module 100 .
- the first bypass diode D 1 is turned on by a reverse voltage. Accordingly, DC power generated in the solar cell strings 140 c , 140 d , 140 e , and 140 f , other than the first and second solar cell strings 140 a and 140 b , in the solar cell module 100 is outputted. For example, when about 0.6V is generated in one solar cell, DC voltage of about 24V is outputted.
- FIGS. 8A and 8B are graphs of curved lines representing various power over voltage when the shadow of FIG. 7 occurs.
- FIG. 8A shows a case in which one of three bypass diodes Da, Db, and Dc is turned on.
- a first local maximum power point Lmpp 1 corresponding to a first voltage VLmpp 1 may be generated.
- a second local maximum power point Lmpp 2 corresponding to a second voltage VLmpp 2 may be generated.
- FIG. 8B shows a case in which two of the three bypass diodes Da, Db, and Dc are turned on.
- a third local maximum power point Lmpp 3 corresponding to a third voltage VLmpp 3 may be generated.
- a fourth local maximum power point Lmpp 4 corresponding to a fourth voltage VLmpp 4 may be generated.
- FIG. 9 shows an example of an internal circuit diagram of a junction box of the photovoltaic module according to an embodiment of the present invention
- FIGS. 10 to 11B are graphs referred to in explaining the operation of the circuit diagram of FIG. 9 .
- the junction box 200 may include a bypass diode unit 510 , the capacitor unit 520 , the dc/dc converter unit 530 , the inverter unit 540 , and a controller 550 .
- the junction box 200 outputs AC power.
- Such a junction box 200 may be called a micro-inverter.
- the bypass diode unit 510 includes first to third bypass diodes Da, Db, and Dc disposed between a, b, c, and d nodes which correspond to the first to fourth conductive lines 135 a , 135 b , 135 c , and 135 d , respectively.
- the capacitor unit 520 stores DC power supplied from the solar cell module 100 .
- FIG. 9 it is illustrated that three capacitors Ca, Cb, and Cc are connected in parallel, but the capacitor unit is not limited thereto and the three capacitors may be connected in series or may be connected in series and parallel.
- the dc/dc converter unit 530 performs conversion of DC power level by using the DC power stored in the capacitor unit 520 .
- FIG. 9 a flyback converter using a turn-on timing of a switching element S 1 and a winding ratio of a transformer T is illustrated. Accordingly, voltage boosting of a dc level may be performed.
- a boost converter, a buck converter, a forward converter, or the like may also be used as the dc/dc converter unit 530 , or a combination thereof (e.g., a cascaded buck-boost converter, or the like) may also be used as the dc/dc converter unit 530 .
- the inverter unit 540 converts the level-converted DC power into AC power.
- FIG. 9 a full-bridge inverter is illustrated. Namely, upper arm switching elements Sa and Sb connected in series and lower arm switching elements S′a and S′b connected in series are paired, and a total of two pairs of upper and lower arm switching elements are connected in parallel (Sa&S′a, Sb&S′b). Diodes are connected reversely parallel to the respective switching elements Sa, S′a, Sb, and S′b.
- the switching elements in the inverter unit 540 are turned on or off based on an inverter switching control signal from an inverter controller (not shown). Accordingly, AC power having a certain frequency is outputted.
- the AC power has the same frequency (about 60 Hz) as an AC frequency of grid.
- a capacitor unit (not shown) for storing the level-converted dc power may be further provided between the dc/dc converter unit 530 and the inverter unit 540 .
- the capacitor unit (not shown) may include a plurality of capacitors, like the foregoing capacitor unit 520 .
- the junction box 200 includes the capacitor unit storing DC power, the dc/dc converter unit for converting the level of the stored DC power and outputting the same, and the inverter unit for converting the level-converted DC power into AC power and outputting the same, AC power may be simply supplied through the junction box 200 . Also, the installation of the photovoltaic module 50 may be facilitated, and the capacitor may be easily increased in configuring a solar photovoltaic system including a plurality of photovoltaic modules.
- An input current detection unit (A) detects current ic 1 supplied to the capacitor unit 520
- an input voltage detection unit (B) detects voltage vc 1 input to the dc/dc converter 530 , namely, stored in the capacitor unit 520 .
- the detected current ic 1 and the voltage vc 1 are inputted to the controller 550 .
- An output current detection unit (C) detects a current ic 2 outputted from the dc/dc converter 530
- an output voltage detection unit (D) detects voltage vc 2 outputted from the dc/dc converter 530 .
- the detected current ic 2 and voltage vc 2 are inputted to the controller 550 .
- the controller 550 may calculate input power by using the detected input power ic 1 or vc 1 . Since the input power ic 1 or vc 1 is DC, the controller 550 may calculate input power by multiplying the input current and the input voltage.
- the controller 550 may calculate output power by using the detected output power ic 2 or vc 2 . Since the output power ic 2 or vc 2 is DC, the controller 550 may calculate the output power of the dc/dc converter 530 by multiplying the output current and the output voltage.
- the switching element S 1 may be turned off so as to prevent DC power from being supplied from the solar cell module 100 .
- the controller 550 may output a converter control signal S S1 for controlling the switching element S 1 of the dc/dc converter unit 530 in FIG. 9 .
- the controller 550 may output an inverter control signal (not shown) for controlling the switching elements of the inverter unit 540 .
- the controller 550 may output the turn-on timing signal S S1 of the switching element S 1 in the dc/dc converter 530 based on the detected input current ic 1 , input voltage vc 1 , output current ic 2 , and output voltage vc 2 .
- the controller 550 may turn off the switching element S 1 so that a dc/dc conversion may not be performed.
- the controller 550 may turn on the switching element S 1 so that the detected input voltage vc 1 may correspond to the voltage section (i.e., the section of V 1 to V 2 ) in FIG. 6 or may correspond to a plurality of voltage sections A 1 , A 2 , and A 3 illustrated in FIGS. 10 to 11B .
- the controller 550 may turn on the switching element S 1 such that the voltage vc 1 may be reduced. Meanwhile, when the detected input voltage vc 1 continues to be reduced, passing through the voltage Vmpp which corresponds to the maximum power point mpp, the controller 550 may turn off the switching element S 1 such that the voltage vc 1 may be increased again. Since the switching element S 1 is turned off, a dc/dc level is not changed, and because the DC power is continuously supplied to the solar cell module 100 , the detected voltage vc 1 may be increased.
- the controller 550 may apply a first maximum power point tracking (MPPT) algorithm.
- MPPT maximum power point tracking
- the controller 550 may perform power calculation by using the detected input voltage vc 1 and the detected input current ic 1 .
- the controller 550 continuously compares the calculated power value with a previously stored power value, stores the greater of the power values, calculates power based on a next detected voltage, and then compares the calculated power value with the stored power value. Because the controller 550 stores a greater of the power values according to the comparison, it calculates a finally stored power value as a maximum power value Pmpp and calculates a point corresponding to the maximum power value, as a maximum power point mpp. Namely, the controller 550 may calculate a point of inflection at the power versus voltage curved line in FIG. 6 , as a maximum power point.
- the power versus voltage curved lines PV 2 or PV 3 may be divided into a voltage section A 3 in which a hot spot does not occur and sections A 1 and A 2 in which a hot spot occurs.
- the controller 550 performs power calculation while varying the detected input voltage vc 1 .
- the controller 550 continuously compares the calculated power value with the existing stored power value, stores a greater of the power values, calculates power based on a next detected voltage, and continues to compare the calculated power value with the stored power value. Since the controller 550 stores a greater of the power values according to the comparison, it may calculate a finally stored power value as a local maximum power value (Lmpp 1 of PV 2 or Lmpp 3 of PV 3 ) in the corresponding section A 3 .
- Lmpp 1 of PV 2 or Lmpp 3 of PV 3 a local maximum power value
- a maximum input voltage vc 1 when one bypass diode is turned on may be about 24V, and a maximum input voltage vc 1 when two bypass diodes are turned on may be about 12V.
- the controller 550 may perform power calculation while varying the detected input voltage vc 1 in the pre-set sections A 1 and A 2 . And, the controller 550 may calculate a local maximum power value (Lmpp 2 of PV 2 ) in section A 2 and a local maximum power value (Lmpp 4 of PV 3 ) in section A 1 , respectively.
- the controller 550 determines a maximum value, among the calculated local maximum values, as a maximum power value. Namely, the controller 550 determines a maximum power point at the corresponding voltage-power curved line. By doing that, maximum power may be outputted even when a hot spot occurs.
- This method may be called a second MPPT, which is different from the first MPPT.
- FIG. 11A which corresponds to FIG. 8A , illustrates that when one bypass diode is turned on, local maximum power values Lmpp 0 , Lmpp 2 , and Lmpp 1 are calculated in the plurality of sections A 1 , A 2 , and A 3 , respectively, and the second local maximum power value Lmpp 2 , a maximum value among them, is calculated as a maximum power value.
- FIG. 11B which corresponds to FIG. 8B , illustrates that when two bypass diodes are turned on, local maximum power values Lmpp 4 , Lmpp 5 , and Lmpp 3 are calculated in the plurality of sections A 1 , A 2 , and A 3 , respectively, and the third local maximum power value Lmpp 3 , a maximum value among them, is calculated as a maximum power value.
- FIG. 12 is a flow chart illustrating a process of a control method of a photovoltaic module according to an embodiment of the present invention.
- a DC voltage and current supplied from the solar cell module is detected (S 910 ).
- the input current detection unit (A) in FIG. 9 detects the input current ic 1 supplied to the capacitor unit 520
- the input voltage detection unit (B) detects the input voltage vc 1 stored in the capacitor unit 520 .
- the detected input current ic 1 and the input voltage vc 1 are inputted to the controller 550 .
- step S 930 the controller 550 determines a maximum power point according to the first MPPT algorithm (S 960 ).
- the controller 550 detects the maximum power point mpp while changing the detected input voltage vc 1 between the first voltage V 1 and the second voltage V 2 .
- the controller provides control to output the maximum power Pmpp from the solar cell module 100 according to the maximum power point mpp.
- step S 930 the controller 550 determines a maximum power point according to the second MPPT algorithm (S 940 ).
- the controller 550 determines that a hot spot has occurred when the level of the detected input voltage vc 1 is about 24V (in FIG. 8A or FIG. 11A ) or about 12 V (in FIG. 8B or FIG. 11B ).
- the controller 550 may provide control to detect local maximum power by limiting the exploring range to the plurality of sections A 1 , A 2 , and A 3 for maximum power detection.
- the sections A 1 , A 2 , and A 3 may be those that were previously calculated with respect to the solar cell module 100 , and previously stored by the controller 550 .
- the controller 550 compares the respective local maximum power values to finally determine the maximum power.
- step S 940 or step S 960 After step S 940 or step S 960 is performed, current and voltage according to the determined maximum power point are outputted (S 950 ).
- the controller 550 controls the switch S 1 of the dc/dc converter unit 550 so that the calculated maximum power (Lmpp 2 in FIG. 11A and Lmpp 3 in FIG. 11B ) may be outputted from the solar cell module. And, the dc/dc converter unit 550 may level-convert the maximum power and output the same. And, the inverter unit 540 may output AC power.
- FIG. 13 shows another example of an internal circuit diagram of the junction box of the photovoltaic module according to another embodiment of the invention.
- the junction box 200 may include the bypass diode unit 510 , the capacitor unit 520 , the dc/dc converter unit 530 , and the controller 550 .
- the internal circuit diagram of FIG. 13 does not include the inverter unit 540 .
- the junction box 200 may be able to output DC power.
- a power optimizer when the junction box 200 executes a power optimizing function, and such a junction box 200 may be called a power optimizer.
- the junction box 200 includes the capacitor unit storing DC power and the dc/dc converter unit converting the level of the stored DC power and outputting the same, the DC power may be simply supplied through the junction box 200 . Also, the installation of the photovoltaic module 50 may be facilitated, and the capacitor may be easily increased in configuring a solar photovoltaic system including a plurality of photovoltaic modules.
- the junction box 200 may include only the bypass diode unit 510 and the capacitor unit 520 .
- the dc/dc converter unit 530 and the inverter unit 540 may be disposed at an outer side of the junction box 200 .
- the input current detection unit (A) may detect current input to the dc/dc converter unit 530 .
- the input current detection unit (A) may be disposed between the junction box 200 and the dc/dc converter unit 530 .
- the input voltage detection unit (B) may detect voltage of both ends of an input terminal of the dc/dc converter unit 530 .
- the detected input current ic 1 and the input voltage vc 1 may be inputted to the controller 550 and processed in such a manner as described above. Namely, the MPPT algorithm may be changed according to whether or not a hot spot occurs.
- the input current detection unit (A) and the input voltage detection unit (B) may be disposed at the corresponding positions as shown in FIGS. 9 and 13 to detect the current ic 1 and the voltage vc 1 , respectively, and the detected input current ic 1 and the input voltage vc 1 may be inputted to the controller 550 at the outside of the junction box 200 .
- FIG. 14 is a view showing an example of the configuration of a solar photovoltaic system according to an embodiment of the present invention.
- the solar photovoltaic system may include a plurality of photovoltaic modules 50 a , 50 b , . . . , 50 n .
- the photovoltaic modules 50 a , 50 b , . . . , 50 n may include junction boxes 200 a , 200 b , . . . , 200 n outputting AC power, respectively.
- the junction boxes 200 a , 200 b , . . . , 200 n may be micro-inverters, and AC power output from the respective junction boxes 200 a , 200 b , . . . , 200 n is supplied to a grid.
- the internal circuit of the junction box 200 illustrated in FIG. 9 may be applied to the micro-inverter of FIG. 14 .
- FIG. 15 is a view showing another example of the configuration of a solar photovoltaic system according to an embodiment of the present invention.
- the solar photovoltaic system may include a plurality of photovoltaic modules 50 a , 50 b , . . . , 50 n .
- the photovoltaic modules 50 a , 50 b , . . . , 50 n may include junction boxes 1200 a , 1200 b , . . . , 1200 n outputting DC power, respectively.
- an inverter unit 1210 for converting DC power output from the respective photovoltaic modules 50 a , 50 b , . . . , 50 n into AC power may be further provided.
- the junction boxes 1200 a , 1200 b , . . . , 1200 n may perform power optimizing in order to effectively output DC power.
- the internal circuit of the junction box 200 of FIG. 13 may be applied to the power optimizer of FIG. 15 .
- FIGS. 16A and 16B are schematic diagrams referred to in explaining power optimizing of the solar photovoltaic system according to an embodiment of the present invention.
- the controller 550 of the solar cell module 1320 in which a power loss is made may provide control such that a turn-on timing of the switching element S 1 of the dc/dc converter 530 is shorter than a turn-on timing of the switching element S 1 of the dc/dc converter 530 connected to the different normal solar cell module 1310 . Accordingly, the dc/dc converter 530 connected to the solar cell module 1320 50 may supply smaller output power.
- a power loss (e.g., 70 W power supply) is made in the solar cell modules 1320 in which a hot spot occurs, there is no power loss in the normal solar cell module 1310 (e.g., 100 W power supply). Thus, power totaling 1340 W may be supplied.
- the voltage supplied from a solar cell module in which a hot spot occurs may be adjusted according to the current supplied from a different solar cell module.
- each of the solar cell modules may control a voltage output, or the like, of its own upon receiving a current value or a voltage value supplied from a different solar cell module.
- junction box 200 illustrated in FIG. 13 can be applicable to the power optimizing of FIG. 16B .
- a supplied DC voltage is divided into a plurality of sections, a local maximum power point in each of the sections is calculated, and a maximum value, among a plurality of calculated local maximum power points, is determined as a maximum power point.
- maximum power may be outputted when a hot spot occurs.
- the junction box includes the capacitor unit storing DC power and the dc/dc converter unit level-converting the stored DC power and outputting the same, power may be easily supplied through the junction box.
- the photovoltaic module having such a junction box may be easily installed, and when a solar photovoltaic system including a plurality of photovoltaic modules is configured, the capacity may be easily increased.
- the junction box includes the capacitor unit storing DC power, the dc/dc converter unit level-converting the stored DC power and outputting the same, and the inverter unit converting the level-converted DC power into AC power and outputting the same, AC power may be simply supplied through the junction box.
- the photovoltaic module according to the embodiments of the present disclosure is not limited in its application of the configurations and methods, but the entirety or a portion of the embodiments may be selectively combined to be configured into various modifications.
- the control method of the photovoltaic module may be implemented as codes that may be read by a processor in a processor-readable recording medium.
- the processor-readable recording medium includes various types of recording devices in which data read by a process is stored.
- the processor-readable recording medium may include a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
- the processor-readable recording medium also includes implementations in the form of carrier waves or signals (e.g., transmission via the Internet). Also, codes which are distributed in computer system connected to a network and may be read by a processor in a distributed manner are stored and executed in the processor-readable recording medium.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electrical Variables (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
Claims (15)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110033730A KR101732984B1 (en) | 2011-04-12 | 2011-04-12 | Photovoltaic module and method for controlling the same |
KR10-2011-0033730 | 2011-04-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120262949A1 US20120262949A1 (en) | 2012-10-18 |
US9397610B2 true US9397610B2 (en) | 2016-07-19 |
Family
ID=46935697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/427,163 Active 2035-03-17 US9397610B2 (en) | 2011-04-12 | 2012-03-22 | Photovoltaic module and control method thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US9397610B2 (en) |
KR (1) | KR101732984B1 (en) |
DE (1) | DE102012007253B4 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150101761A1 (en) * | 2013-05-12 | 2015-04-16 | Solexel, Inc. | Solar photovoltaic blinds and curtains for residential and commercial buildings |
CN106533360A (en) * | 2016-11-01 | 2017-03-22 | 常州天合光能有限公司 | Portable outdoor power test device and test method for photovoltaic assemblies |
WO2020181342A1 (en) * | 2019-03-14 | 2020-09-17 | Maré Brasil Energia E Equipamentos Ltda | Optimized junction box |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014011409A (en) * | 2012-07-02 | 2014-01-20 | Sony Corp | Power generation control device and power generation control method |
CN103401451A (en) * | 2013-08-02 | 2013-11-20 | 金海新源电气江苏有限公司 | Switching power supply for combiner box |
CN104615187B (en) * | 2013-11-01 | 2016-06-29 | 上海岩芯电子科技有限公司 | A kind of solar energy photovoltaic system hot spot detection and optimal control method |
US9735699B2 (en) | 2014-01-15 | 2017-08-15 | Lg Electronics Inc. | Integral inverter and solar cell module including the same |
CN106062654B (en) * | 2014-02-27 | 2017-10-24 | 松下知识产权经营株式会社 | Output control device and power governor |
CN104950983B (en) * | 2015-06-30 | 2016-12-14 | 广东美的制冷设备有限公司 | Solaode maximum power point tracking device and tracking |
KR102000062B1 (en) * | 2016-03-15 | 2019-10-01 | 엘지전자 주식회사 | Photovoltaic module |
KR20180024169A (en) * | 2016-08-29 | 2018-03-08 | 엘에스산전 주식회사 | Photovoltaic inverter |
JP6536552B2 (en) * | 2016-12-12 | 2019-07-03 | トヨタ自動車株式会社 | Solar power system |
CN108233870A (en) * | 2018-01-31 | 2018-06-29 | 华南师范大学 | The photovoltaic system hot spot fault test set and method of CTCT structures |
JP6979692B2 (en) * | 2018-02-16 | 2021-12-15 | 学校法人幾徳学園 | Operating voltage controller for solar cells |
CN109244187A (en) * | 2018-09-21 | 2019-01-18 | 北京恒信卓元科技有限公司 | A kind of manufacturing method of highly reliable photovoltaic module |
CN113517369A (en) * | 2020-04-10 | 2021-10-19 | 苏州阿特斯阳光电力科技有限公司 | Photovoltaic module |
KR102223450B1 (en) | 2020-05-18 | 2021-03-05 | 에이펙스인텍 주식회사 | Optimized Control Method in Missmatch for Solar Power System |
KR102520478B1 (en) * | 2020-09-18 | 2023-04-10 | 한화솔루션 주식회사 | Photovoltaic system, device and method for monitoring thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7042195B2 (en) * | 2004-09-13 | 2006-05-09 | Daihen Corporation | Method of controlling photovoltaic power generation system |
US20060231132A1 (en) * | 2005-04-18 | 2006-10-19 | Thomas Neussner | Photovoltaic generator with thermo switch element |
US20070221267A1 (en) | 2006-03-23 | 2007-09-27 | Pvi Solutions Inc. | Method and apparatus for converting direct current to alternating current |
US20080238195A1 (en) | 2007-03-27 | 2008-10-02 | Shaver Argil E | Distributed maximum power point tracking system, structure and process |
US20110083733A1 (en) * | 2009-10-12 | 2011-04-14 | SolarBridge Technologies | Power inverter docking system for photovoltaic modules |
US20110264288A1 (en) * | 2010-04-26 | 2011-10-27 | Sayed Ali Khajehoddin | Maximum Power Point Tracking for a Power Generator |
US20120043818A1 (en) * | 2010-08-18 | 2012-02-23 | Volterra Semiconductor Corporation | Switching Circuits For Extracting Power From An Electric Power Source And Associated Methods |
US20120318318A1 (en) * | 2011-06-17 | 2012-12-20 | Solopower, Inc. | Cigs based thin film solar cells having shared bypass diodes |
US20130041511A1 (en) * | 2010-03-31 | 2013-02-14 | Hitachi, Ltd. | Solar Power System and Control System |
US20140077608A1 (en) * | 2012-09-18 | 2014-03-20 | Panasonic Corporation | Power generation control device, photovoltaic power generation system and power generation control method |
US8963369B2 (en) * | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US20150144176A1 (en) * | 2013-11-22 | 2015-05-28 | Massachusetts Institute Of Technology | Photovoltaic power balancing and differential power processing |
US9209707B2 (en) * | 2012-10-09 | 2015-12-08 | Lg Electronics Inc. | Three-level photovoltaic inverter configured for asymmetric control of DC-link voltages for separate MPPT driving |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006134118A (en) | 2004-11-08 | 2006-05-25 | Daihen Corp | Method for controlling solar photovoltaic system |
KR101543772B1 (en) | 2009-09-25 | 2015-08-11 | 한국전자통신연구원 | Network access device and packet transmission method in the device |
-
2011
- 2011-04-12 KR KR1020110033730A patent/KR101732984B1/en active IP Right Grant
-
2012
- 2012-03-22 US US13/427,163 patent/US9397610B2/en active Active
- 2012-04-11 DE DE102012007253.8A patent/DE102012007253B4/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7042195B2 (en) * | 2004-09-13 | 2006-05-09 | Daihen Corporation | Method of controlling photovoltaic power generation system |
US20060231132A1 (en) * | 2005-04-18 | 2006-10-19 | Thomas Neussner | Photovoltaic generator with thermo switch element |
US20070221267A1 (en) | 2006-03-23 | 2007-09-27 | Pvi Solutions Inc. | Method and apparatus for converting direct current to alternating current |
US20080238195A1 (en) | 2007-03-27 | 2008-10-02 | Shaver Argil E | Distributed maximum power point tracking system, structure and process |
US8963369B2 (en) * | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US20110083733A1 (en) * | 2009-10-12 | 2011-04-14 | SolarBridge Technologies | Power inverter docking system for photovoltaic modules |
US20130041511A1 (en) * | 2010-03-31 | 2013-02-14 | Hitachi, Ltd. | Solar Power System and Control System |
US20110264288A1 (en) * | 2010-04-26 | 2011-10-27 | Sayed Ali Khajehoddin | Maximum Power Point Tracking for a Power Generator |
US20120043818A1 (en) * | 2010-08-18 | 2012-02-23 | Volterra Semiconductor Corporation | Switching Circuits For Extracting Power From An Electric Power Source And Associated Methods |
US20120318318A1 (en) * | 2011-06-17 | 2012-12-20 | Solopower, Inc. | Cigs based thin film solar cells having shared bypass diodes |
US20140077608A1 (en) * | 2012-09-18 | 2014-03-20 | Panasonic Corporation | Power generation control device, photovoltaic power generation system and power generation control method |
US9209707B2 (en) * | 2012-10-09 | 2015-12-08 | Lg Electronics Inc. | Three-level photovoltaic inverter configured for asymmetric control of DC-link voltages for separate MPPT driving |
US20150144176A1 (en) * | 2013-11-22 | 2015-05-28 | Massachusetts Institute Of Technology | Photovoltaic power balancing and differential power processing |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150101761A1 (en) * | 2013-05-12 | 2015-04-16 | Solexel, Inc. | Solar photovoltaic blinds and curtains for residential and commercial buildings |
US11867431B2 (en) | 2013-05-12 | 2024-01-09 | Sigmagen, Inc. | Solar photovoltaic blinds and curtains for residential and commercial buildings |
US20240191909A1 (en) * | 2013-05-12 | 2024-06-13 | Sigmagen, Inc. | Solar photovoltaic blinds and curtains for residential and commercial buildings |
CN106533360A (en) * | 2016-11-01 | 2017-03-22 | 常州天合光能有限公司 | Portable outdoor power test device and test method for photovoltaic assemblies |
WO2020181342A1 (en) * | 2019-03-14 | 2020-09-17 | Maré Brasil Energia E Equipamentos Ltda | Optimized junction box |
Also Published As
Publication number | Publication date |
---|---|
DE102012007253A1 (en) | 2012-10-18 |
KR20120116154A (en) | 2012-10-22 |
KR101732984B1 (en) | 2017-05-08 |
DE102012007253B4 (en) | 2022-11-03 |
US20120262949A1 (en) | 2012-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9397610B2 (en) | Photovoltaic module and control method thereof | |
US10270387B2 (en) | Photovoltaic module | |
US9577573B2 (en) | Photovoltaic module | |
US10277165B2 (en) | Photovoltaic module | |
US9281759B2 (en) | Power converting apparatus and photovoltaic module | |
US11005267B2 (en) | Photovoltaic module | |
US10715054B2 (en) | Power conversion device and photovoltaic module including the same | |
KR20130027900A (en) | Solar cell module and photovoltaic module including the same | |
KR101824983B1 (en) | Photovoltaic module, photovoltaic system and method for controlling the same | |
KR20120140023A (en) | Photovoltaic module | |
KR101954194B1 (en) | Power converting apparatus, and photovoltaic module | |
KR101889773B1 (en) | Photovoltaic module and photovoltaic system including the same | |
KR101788013B1 (en) | Photovoltaic module | |
KR101906196B1 (en) | Photovoltaic module | |
KR101959302B1 (en) | Photovoltaic module, and photovoltaic system | |
KR20120129112A (en) | Combined photovoltaic and photovoltaic thermal system | |
KR20120134810A (en) | Photovoltaic module | |
KR20130137926A (en) | Photovoltaic module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAN, DONGHO;REEL/FRAME:027910/0075 Effective date: 20120315 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SHANGRAO JINKO SOLAR TECHNOLOGY DEVELOPMENT CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LG ELECTRONICS INC.;REEL/FRAME:061571/0764 Effective date: 20220914 |
|
AS | Assignment |
Owner name: SHANGRAO XINYUAN YUEDONG TECHNOLOGY DEVELOPMENT CO. LTD, CHINA Free format text: CHANGE OF NAME;ASSIGNOR:SHANGRAO JINKO SOLAR TECHNOLOGY DEVELOPMENT CO., LTD;REEL/FRAME:065725/0706 Effective date: 20230816 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: JINGAO SOLAR CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHANGRAO XINYUAN YUEDONG TECHNOLOGY DEVELOPMENT CO. LTD;REEL/FRAME:067330/0415 Effective date: 20240419 |