[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

US9212564B2 - Annular anti-wear shim for a turbomachine - Google Patents

Annular anti-wear shim for a turbomachine Download PDF

Info

Publication number
US9212564B2
US9212564B2 US13/761,458 US201313761458A US9212564B2 US 9212564 B2 US9212564 B2 US 9212564B2 US 201313761458 A US201313761458 A US 201313761458A US 9212564 B2 US9212564 B2 US 9212564B2
Authority
US
United States
Prior art keywords
stator
annular
casing
shim
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/761,458
Other versions
US20130209249A1 (en
Inventor
Arnaud Langlois
Kamel Benderradji
Alain Marc Lucien Bromann
Vincent Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Assigned to SNECMA reassignment SNECMA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENDERRADJI, KAMEL, BROMANN, ALAIN MARC LUCIEN, LANGLOIS, ARNAUD, ROY, VINCENT
Publication of US20130209249A1 publication Critical patent/US20130209249A1/en
Application granted granted Critical
Publication of US9212564B2 publication Critical patent/US9212564B2/en
Assigned to SAFRAN AIRCRAFT ENGINES reassignment SAFRAN AIRCRAFT ENGINES CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SNECMA
Assigned to SAFRAN AIRCRAFT ENGINES reassignment SAFRAN AIRCRAFT ENGINES CORRECTIVE ASSIGNMENT TO CORRECT THE COVER SHEET TO REMOVE APPLICATION NOS. 10250419, 10786507, 10786409, 12416418, 12531115, 12996294, 12094637 12416422 PREVIOUSLY RECORDED ON REEL 046479 FRAME 0807. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SNECMA
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/042Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector fixing blades to stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/171Steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity

Definitions

  • the invention relates to an annular anti-wear shim for a turbomachine, in particular for an annular hook of a turbomachine stator, nozzle, or casing.
  • a guiding stator or nozzle in a turbomachine comprises an annular row of stationary vanes extending radially between an inner annular platform and an outer annular platform, the outer platform having two annular hooks, one upstream and the other downstream, that co-operate with corresponding hooks of a casing or of a shroud carried by the casing of the turbomachine.
  • the hooks of the stator and of the shroud or casing can become worn by rubbing against each other.
  • the shim is made of a material that wears more easily in rubbing than the materials of the hooks, and it is intended to be replaced during a maintenance operation once it has becomes too worn.
  • An object of the invention is to provide a solution to this problem that is simple, effective, and inexpensive.
  • the invention provides a turbomachine compressor or turbine having an annular casing with at least one stator or nozzle fastened therein, the stator or nozzle having upstream and downstream annular hooks co-operating with corresponding hooks of the casing or of a shroud carried by the casing, annular anti-wear shims being mounted against the upstream and downstream hooks of the stator, each shim being substantially of channel section, defining an annular groove for engaging on a hook with two substantially parallel annular side walls extending one inside the other and connected together by a middle annular wall or “web”, wherein the shim mounted against the downstream hook bears axially via its web on the stator, or on the casing, and one of its side walls includes bearing means at its end remote from the web for bearing against the casing or the stator, respectively, which bearing means are elastically deformable in an axial direction so as to urge the stator upstream.
  • the anti-wear shim of the invention may then be prestressed axially against the downstream hook of a stator or a nozzle, with the thrust force that results from this prestress being sufficient to urge the stator upstream and to keep it bearing axially against an upstream shroud, thereby providing sealing in a radial direction in this bearing plane.
  • the anti-wear shim also incorporates a resilient thrust function when it is axially prestressed. This function is provided by the resilient means carried by one of the side walls of the shim.
  • These resilient means are preferably formed integrally with the shim, which is shaped for example by stamping, and which may be sectorized, i.e. made up of a plurality of shim sectors arranged circumferentially end to end.
  • the shim may have thickness lying in the range 0.1 millimeters (mm) to 0.5 mm, e.g. in the range 0.2 mm to 0.3 mm. It may be made of steel or of inconel.
  • the above-mentioned side wall includes an annular rim at its end remote from the web, which rim extends outwards from the groove and co-operates with the outer annular face of said side wall to define an angle lying in the range 30° to 150°, preferably in the range 90° to 140°, and more preferably in the range 100° to 130°.
  • the annular rim has a free peripheral edge that is of shape that is rounded in section, with its convex surface facing away from the web and defining a bearing surface. This avoids a sharp edge of the rim bearing against the casing or the stator, and thus limits any risk of the casing or the stator being damaged as a result of this bearing surface.
  • the annular rim of the shim may be sectorized.
  • a plurality of slots may be formed in the rim, these slots extending substantially along the entire axial dimension of the rim and defining between them rim sectors that are elastically deformable independently of one another. This makes it possible to make the rim more flexible in the axial direction, i.e. to reduce the force needed for elastically deforming the rim in the axial direction.
  • the bearing means may be carried by the inner side wall or by the outer side wall of the shim. When they are carried by the inner wall, these resilient means extend radially inwards from the inner wall. When they are carried by the outer wall, the resilient means extend radially outwards from the outer wall.
  • the present invention also provides a turbomachine compressor or turbine having an annular casing with at least one stator or nozzle fastened therein, the stator or nozzle having upstream and downstream annular hooks co-operating with corresponding hooks of the casing or of a shroud carried by the casing, annular anti-wear shims being mounted against the upstream and downstream hooks of the stator, wherein the annular shim mounted against the downstream hook is as defined above, said shim bearing axially via its web against the stator or against the casing, and via its bearing means against the casing, or against the stator, respectively, so as to urge the stator upstream.
  • the shim may be engaged on the downstream hook of the stator and it may bear axially via its bearing means against the stator.
  • the shim is also received in an annular groove of the casing or of the shroud carried by the casing, and its web bears against the bottom of the groove.
  • the shim is engaged on a downstream hook of the casing or of the shroud carried by the casing and bears axially via its bearing means against the casing or the shroud.
  • the shim is also received in an annular cavity of the stator with the web of the shim bearing against the bottom of the cavity.
  • the present invention provides a turbomachine such as an airplane turboprop or turbojet, including a compressor or a turbine as described above.
  • FIG. 1 is a fragmentary diagrammatic half-view in axial section of a prior art compressor of a turbomachine
  • FIG. 1 a is a larger-scale view showing a detail I of FIG. 1 ;
  • FIG. 2 is a fragmentary diagrammatic half-view in axial section of another prior art compressor of a turbomachine
  • FIG. 3 is a diagrammatic perspective view of a sector of an annular anti-wear shim of the invention.
  • FIGS. 4 and 5 are fragmentary diagrammatic views in axial section of turbomachine stators, each fitted with an anti-wear shim of the invention.
  • FIG. 6 is a diagrammatic view in perspective of a variant embodiment of an anti-wear shim sector of the invention.
  • FIG. 1 shows a portion of a high pressure compressor 10 of a turbomachine that has a plurality of compression stages mounted in a casing 12 .
  • Each stage comprises a wheel carrying an annular row of movable blades 14 and a downstream stator comprising an annular row of stationary vanes 16 .
  • the wheels of the compression stages have disks 18 that are connected to the compressor shaft 10 of the turbomachine.
  • the stationary vanes 16 of each stator extend radially between an inner platform 20 and an outer platform 22 .
  • the inner platforms 20 of the stators carry an abradable material 24 on their inner surfaces, which material co-operates with wipers 26 carried by the rotor of the compressor.
  • each stator has an upstream annular hook 28 that is engaged in an annular groove 30 that faces downstream and that is formed in a shroud 32 carried by the casing 12 .
  • the outer platform 20 also has a downstream annular hook 34 that is engaged in an annular groove 36 facing upstream in another shroud 32 carried by the casing 12 ( FIG. 1 a ).
  • Each shroud 32 carried by the casing 12 surrounds a wheel of the compressor and includes on its radially inner face a layer 38 of abradable material for co-operating with the ends of the movable blades 14 of the corresponding wheel.
  • Each annular groove 30 , 36 co-operates with the inner face of the corresponding shroud 32 to define an annular hook 40 around which there extends a hook 28 , 34 of the stator.
  • An annular anti-wear shim 42 of channel section is mounted on each of the upstream and downstream hooks 28 and 38 of each stator so as to eliminate any direct contact between the hooks 28 , 38 and the corresponding shroud 32 , thereby increasing the lifetime of the stators and of the shrouds.
  • the anti-wear shims 42 in the prior art do not guarantee sealing between the stators and the shrouds, and in particular they do not guarantee radial sealing upstream from the stators between their upstream hooks and the corresponding shrouds, thereby creating air recirculation zones upstream from the stators.
  • an undulating ring 44 that is elastically deformable in the axial direction is mounted with prestress in the bottom of the groove 36 of each shroud 32 and bears respectively against the downstream end of the downstream hook 34 and against the bottom of the groove 36 in order to exert a thrust force on the stator and urge it axially upstream.
  • the axial force exerted by the ring 44 on the stator is sufficient to keep the upstream end of the platform 22 bearing axially at C against the downstream end of the shroud 32 situated upstream from the stator.
  • the invention enables that problem to be remedied by incorporating a resilient return function in an anti-wear shim of the above-mentioned type.
  • FIGS. 3 and 4 show a first embodiment of the annular anti-wear shim of the invention.
  • This shim 50 is substantially of channel section and has two side walls extending one inside the other, respectively an inner wall 52 and an outer wall 54 , these walls defining between them an annular groove 56 for engaging a hook, and being connected together at one of their axial extends by a middle wall or “web” 58 .
  • each stator is associated with a single shim 50 of the invention that is mounted on its downstream hook 34 , while its upstream hook 28 is associated with a conventional shim 42 of the prior art.
  • the downstream hook 34 of the FIG. 4 stator is engaged on an upstream annular hook 40 of a shroud 32 carried by the casing 12 , this hook 40 extending in an annular cavity 60 of the stator that is defined between the hook 34 and the outer platform 22 of the stator and that opens out downstream.
  • the inner wall 52 of the shim 50 is interposed between the inner cylindrical face of the hook 40 of the shroud 32 and an outer cylindrical surface of the outer platform 22 of the stator, which surface is the inner cylindrical surface of the cavity 60 in the stator.
  • the inner wall 52 of the shim 50 has bulges 62 projecting towards the inside of the channel-section and regularly distributed around the longitudinal axis of the shim.
  • the bulges 62 bear radially against the inner cylindrical surface of the hook 40 of the shroud, and the remainder of the inner wall 52 of the shim 50 bears against the inner cylindrical surface of the cavity 60 , thereby enabling the inner wall 52 to be clamped radially, and enabling the shim to be held in position.
  • the web 58 of the shim bears axially upstream against the bottom of the cavity 60 of the stator.
  • the outer wall 54 of the shim is interposed between the outer cylindrical face of the hook 40 of the shroud 32 and an inner cylindrical surface of the hook 34 of the stator, which surface constitutes the outer cylindrical surface of the cavity 60 .
  • the wall 54 has an annular rim 64 at its downstream end projecting radially outwards, this rim 64 being elastically deformable in the axial direction and including at its outer periphery a downstream annular surface 68 for bearing against a radial annular surface 66 of the shroud 32 .
  • the rim 64 is inclined outwards on going from upstream to downstream and it co-operates with the outer face of the wall 54 of the shim 50 to define an angle ⁇ lying in the range 90° to 140°, and preferably in the range 100° to 130° (at rest).
  • the outer peripheral edge of the shim 50 is curved upstream and outwards and presents a curved C-shape in section, with its convex annular surface facing downstream and forming the above-mentioned bearing surface 68 .
  • the shim 50 is engaged in the cavity 60 of the stator by moving in axial translation from downstream until its web 58 comes to bear axially against the bottom of the cavity 60 .
  • the stator is then attached to the shroud 32 of the casing by engaging its downstream hook 34 on the upstream hook 40 of the shroud.
  • the hook 40 of the shroud engages in the groove 56 of the shim, and the rim 64 of the shim comes to bear via its downstream bearing surface 68 against the radial wall 66 of the shroud.
  • the axial distance d between the bottom of the cavity 60 of the stator and the radial surface 66 of the shroud 32 is less than the length or axial dimension of the shim 50 at rest, this length being measured between the upstream annular bearing surface of the web 58 and the downstream bearing surface 68 of the rim 66 when the rim is not axially stressed.
  • the rim 64 of the shim deforms elastically, with its bearing surface 68 being moved upstream relative to the remainder of the shim as this surface 68 slides over the radial surface 66 of the shroud.
  • the shim is thus mounted with axial prestress against the downstream hook 34 of the stator.
  • the shim 50 which bears upstream via its web 58 against the stator and downstream via its rim 64 against the shroud, thus exerts an upstream axial force on the stator having the upstream end of its outer platform 22 held to bear axially at C against the downstream end of the shroud situated upstream from the stator.
  • This axial force is equal to the resilient return force generated by the rim 64 of the shim as a result of being deformed, and by way of example it may be at most 580 newtons (N).
  • the shim 50 may be sectorized in order to make it easier to put into place, the shim then comprising a plurality of shim sectors that, in the mounted position, are arranged circumferentially end to end, or slightly spaced apart circumferentially from one another.
  • These shim sectors may be prevented from moving circumferentially relative to the stator and the shroud by bolts interposed between two adjacent sectors and co-operating with the stator or the shroud.
  • these bolts may be the bolts that are used for preventing the stator sectors from turning relative to the shroud.
  • the anti-wear shim 150 mounted against the downstream hook 134 of the stator has elastically deformable bearing means that are carried by the inner wall 152 of the shim.
  • These bearing means are similar to those described above. They are formed by an annular rim that extends radially inwards and upstream from the upstream end of the inner wall 152 that co-operates with the outer wall 154 to define a groove 156 that opens out upstream.
  • the shim 150 is engaged in an annular groove 136 of the shroud that opens out upstream by being moved axially from upstream until the web 158 of the shim comes to bear axially against the bottom of the groove 160 .
  • the stator is then attached to the shroud 132 of the casing by engaging its downstream hook 134 in the groove 156 of the shim 150 and on the upstream hook 140 of the shroud. During this engagement, the rim 164 of the shim comes to bear via its upstream bearing surface against the bottom of the cavity 160 of the stator and it deforms elastically.
  • the shim 150 which is bearing upstream via its rim 164 on the stator and downstream via its web 158 on the shroud, exerts an upstream axial force on the stator, with the upstream end of its outer platform being held to bear axially at C against the downstream end of the shroud situated upstream from the stator.
  • the shim 250 of the variant embodiment shown in FIG. 6 differs from that shown in FIG. 3 essentially in that its rim 264 is sectorized.
  • the rim 264 has a plurality of slots 270 that are regularly distributed around the axis of the shim and that define between them rim sectors 272 that are elastically deformable in the axial direction independently from one another.
  • the slots 270 extend over substantially the entire axial dimension of the rim.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A turbomachine compressor or turbine including annular anti-wear shims mounted against hooks of a stator, each shim being substantially of channel-section defining an annular groove for engaging on a hook, the shim mounted against the downstream hook bearing axially via its middle annular wall on the stator, or on the casing, and one of its side walls includes a bearing device at its end remote from the middle annular wall for bearing against the casing or the stator, respectively, which bearing device is elastically deformable in an axial direction so as to urge the stator upstream.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to an annular anti-wear shim for a turbomachine, in particular for an annular hook of a turbomachine stator, nozzle, or casing.
2. Description of the Related Art
A guiding stator or nozzle in a turbomachine comprises an annular row of stationary vanes extending radially between an inner annular platform and an outer annular platform, the outer platform having two annular hooks, one upstream and the other downstream, that co-operate with corresponding hooks of a casing or of a shroud carried by the casing of the turbomachine.
In operation, as a result of micromovements generated by vibration and by differential thermal expansion of the parts, the hooks of the stator and of the shroud or casing can become worn by rubbing against each other. In order to remedy the problem of the hooks suffering wear by rubbing, it is known to engage an annular anti-wear shim of channel section on each of the hooks so as to eliminate any direct contact between the hooks. The shim is made of a material that wears more easily in rubbing than the materials of the hooks, and it is intended to be replaced during a maintenance operation once it has becomes too worn.
Applications FR 2 938 872 and FR 10/59696 in the name of the Applicant describe annular anti-wear shims of this type.
In order to optimize the performance of the turbomachine, it is important to provide good radial sealing upstream from the stators of the compressor (or the nozzles of the turbine) between the upstream end of the outer platform of each stator and the facing downstream end of the shroud of the casing situated upstream from the stator. This makes it possible to avoid recirculation upstream from the stator, where such recirculation would reduce the performance and the operability of the turbomachine.
In the prior art, it is known to provide such sealing by having the upstream end of the outer platform of the stator bear axially against the downstream end of the shroud situated upstream, this axial bearing being maintained by an undulating ring that is elastically deformable in the axial direction and that is mounted downstream from the downstream hook of the stator. The ring is mounted with prestress in the axial direction in a housing of the casing or of a shroud and it bears axially against the downstream hook of the stator in order to urge the stator upstream and to keep it bearing in sealed axial manner against the upstream shroud.
However, that technology cannot be used in all engines, in particular in engines of small size, since it is too bulky. This applies in particular when the location in the downstream shroud that is to receive a ring of this type is already occupied by other elements such as vibration dampers.
BRIEF SUMMARY OF THE INVENTION
An object of the invention is to provide a solution to this problem that is simple, effective, and inexpensive.
To this end, the invention provides a turbomachine compressor or turbine having an annular casing with at least one stator or nozzle fastened therein, the stator or nozzle having upstream and downstream annular hooks co-operating with corresponding hooks of the casing or of a shroud carried by the casing, annular anti-wear shims being mounted against the upstream and downstream hooks of the stator, each shim being substantially of channel section, defining an annular groove for engaging on a hook with two substantially parallel annular side walls extending one inside the other and connected together by a middle annular wall or “web”, wherein the shim mounted against the downstream hook bears axially via its web on the stator, or on the casing, and one of its side walls includes bearing means at its end remote from the web for bearing against the casing or the stator, respectively, which bearing means are elastically deformable in an axial direction so as to urge the stator upstream.
The anti-wear shim of the invention may then be prestressed axially against the downstream hook of a stator or a nozzle, with the thrust force that results from this prestress being sufficient to urge the stator upstream and to keep it bearing axially against an upstream shroud, thereby providing sealing in a radial direction in this bearing plane.
As a result, in addition to its anti-wear function, the anti-wear shim also incorporates a resilient thrust function when it is axially prestressed. This function is provided by the resilient means carried by one of the side walls of the shim.
These resilient means are preferably formed integrally with the shim, which is shaped for example by stamping, and which may be sectorized, i.e. made up of a plurality of shim sectors arranged circumferentially end to end. The shim may have thickness lying in the range 0.1 millimeters (mm) to 0.5 mm, e.g. in the range 0.2 mm to 0.3 mm. It may be made of steel or of inconel.
In a preferred embodiment of the invention, the above-mentioned side wall includes an annular rim at its end remote from the web, which rim extends outwards from the groove and co-operates with the outer annular face of said side wall to define an angle lying in the range 30° to 150°, preferably in the range 90° to 140°, and more preferably in the range 100° to 130°.
Preferably, the annular rim has a free peripheral edge that is of shape that is rounded in section, with its convex surface facing away from the web and defining a bearing surface. This avoids a sharp edge of the rim bearing against the casing or the stator, and thus limits any risk of the casing or the stator being damaged as a result of this bearing surface.
The annular rim of the shim may be sectorized. For this purpose, a plurality of slots may be formed in the rim, these slots extending substantially along the entire axial dimension of the rim and defining between them rim sectors that are elastically deformable independently of one another. This makes it possible to make the rim more flexible in the axial direction, i.e. to reduce the force needed for elastically deforming the rim in the axial direction.
The bearing means may be carried by the inner side wall or by the outer side wall of the shim. When they are carried by the inner wall, these resilient means extend radially inwards from the inner wall. When they are carried by the outer wall, the resilient means extend radially outwards from the outer wall.
The present invention also provides a turbomachine compressor or turbine having an annular casing with at least one stator or nozzle fastened therein, the stator or nozzle having upstream and downstream annular hooks co-operating with corresponding hooks of the casing or of a shroud carried by the casing, annular anti-wear shims being mounted against the upstream and downstream hooks of the stator, wherein the annular shim mounted against the downstream hook is as defined above, said shim bearing axially via its web against the stator or against the casing, and via its bearing means against the casing, or against the stator, respectively, so as to urge the stator upstream.
The shim may be engaged on the downstream hook of the stator and it may bear axially via its bearing means against the stator. The shim is also received in an annular groove of the casing or of the shroud carried by the casing, and its web bears against the bottom of the groove.
In a variant, the shim is engaged on a downstream hook of the casing or of the shroud carried by the casing and bears axially via its bearing means against the casing or the shroud. The shim is also received in an annular cavity of the stator with the web of the shim bearing against the bottom of the cavity.
Finally, the present invention provides a turbomachine such as an airplane turboprop or turbojet, including a compressor or a turbine as described above.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
The invention can be better understood and other details, advantages, and characteristics of the invention appear more clearly on reading the following description made by way of non-limiting example and with reference to the accompanying drawings, in which:
FIG. 1 is a fragmentary diagrammatic half-view in axial section of a prior art compressor of a turbomachine;
FIG. 1 a is a larger-scale view showing a detail I of FIG. 1;
FIG. 2 is a fragmentary diagrammatic half-view in axial section of another prior art compressor of a turbomachine;
FIG. 3 is a diagrammatic perspective view of a sector of an annular anti-wear shim of the invention;
FIGS. 4 and 5 are fragmentary diagrammatic views in axial section of turbomachine stators, each fitted with an anti-wear shim of the invention; and
FIG. 6 is a diagrammatic view in perspective of a variant embodiment of an anti-wear shim sector of the invention.
DETAILED DESCRIPTION OF THE INVENTION
Reference is made initially to FIG. 1, which shows a portion of a high pressure compressor 10 of a turbomachine that has a plurality of compression stages mounted in a casing 12. Each stage comprises a wheel carrying an annular row of movable blades 14 and a downstream stator comprising an annular row of stationary vanes 16. The wheels of the compression stages have disks 18 that are connected to the compressor shaft 10 of the turbomachine. The stationary vanes 16 of each stator extend radially between an inner platform 20 and an outer platform 22. The inner platforms 20 of the stators carry an abradable material 24 on their inner surfaces, which material co-operates with wipers 26 carried by the rotor of the compressor.
The outer platform 22 of each stator has an upstream annular hook 28 that is engaged in an annular groove 30 that faces downstream and that is formed in a shroud 32 carried by the casing 12. The outer platform 20 also has a downstream annular hook 34 that is engaged in an annular groove 36 facing upstream in another shroud 32 carried by the casing 12 (FIG. 1 a).
Each shroud 32 carried by the casing 12 surrounds a wheel of the compressor and includes on its radially inner face a layer 38 of abradable material for co-operating with the ends of the movable blades 14 of the corresponding wheel.
Each annular groove 30, 36 co-operates with the inner face of the corresponding shroud 32 to define an annular hook 40 around which there extends a hook 28, 34 of the stator.
An annular anti-wear shim 42 of channel section is mounted on each of the upstream and downstream hooks 28 and 38 of each stator so as to eliminate any direct contact between the hooks 28, 38 and the corresponding shroud 32, thereby increasing the lifetime of the stators and of the shrouds.
The anti-wear shims 42 in the prior art do not guarantee sealing between the stators and the shrouds, and in particular they do not guarantee radial sealing upstream from the stators between their upstream hooks and the corresponding shrouds, thereby creating air recirculation zones upstream from the stators.
In order to remedy that drawback, proposals have already been made to urge the upstream end of the outer platform 22 of each stator to bear axially against the downstream end of the corresponding shroud 32, with this axial bearing sufficing to guarantee radial sealing upstream from the stators.
For this purpose, and as shown in FIG. 2, an undulating ring 44 that is elastically deformable in the axial direction is mounted with prestress in the bottom of the groove 36 of each shroud 32 and bears respectively against the downstream end of the downstream hook 34 and against the bottom of the groove 36 in order to exert a thrust force on the stator and urge it axially upstream. The axial force exerted by the ring 44 on the stator is sufficient to keep the upstream end of the platform 22 bearing axially at C against the downstream end of the shroud 32 situated upstream from the stator.
Nevertheless, that technology cannot always be applied, in particular in engines of small size.
The invention enables that problem to be remedied by incorporating a resilient return function in an anti-wear shim of the above-mentioned type.
FIGS. 3 and 4 show a first embodiment of the annular anti-wear shim of the invention. This shim 50 is substantially of channel section and has two side walls extending one inside the other, respectively an inner wall 52 and an outer wall 54, these walls defining between them an annular groove 56 for engaging a hook, and being connected together at one of their axial extends by a middle wall or “web” 58.
As shown in FIG. 4, each stator is associated with a single shim 50 of the invention that is mounted on its downstream hook 34, while its upstream hook 28 is associated with a conventional shim 42 of the prior art.
The downstream hook 34 of the FIG. 4 stator is engaged on an upstream annular hook 40 of a shroud 32 carried by the casing 12, this hook 40 extending in an annular cavity 60 of the stator that is defined between the hook 34 and the outer platform 22 of the stator and that opens out downstream.
The inner wall 52 of the shim 50 is interposed between the inner cylindrical face of the hook 40 of the shroud 32 and an outer cylindrical surface of the outer platform 22 of the stator, which surface is the inner cylindrical surface of the cavity 60 in the stator. As can be seen in FIG. 3, the inner wall 52 of the shim 50 has bulges 62 projecting towards the inside of the channel-section and regularly distributed around the longitudinal axis of the shim.
The bulges 62 bear radially against the inner cylindrical surface of the hook 40 of the shroud, and the remainder of the inner wall 52 of the shim 50 bears against the inner cylindrical surface of the cavity 60, thereby enabling the inner wall 52 to be clamped radially, and enabling the shim to be held in position.
The web 58 of the shim bears axially upstream against the bottom of the cavity 60 of the stator.
The outer wall 54 of the shim is interposed between the outer cylindrical face of the hook 40 of the shroud 32 and an inner cylindrical surface of the hook 34 of the stator, which surface constitutes the outer cylindrical surface of the cavity 60.
The wall 54 has an annular rim 64 at its downstream end projecting radially outwards, this rim 64 being elastically deformable in the axial direction and including at its outer periphery a downstream annular surface 68 for bearing against a radial annular surface 66 of the shroud 32.
In the example shown, the rim 64 is inclined outwards on going from upstream to downstream and it co-operates with the outer face of the wall 54 of the shim 50 to define an angle α lying in the range 90° to 140°, and preferably in the range 100° to 130° (at rest).
The outer peripheral edge of the shim 50 is curved upstream and outwards and presents a curved C-shape in section, with its convex annular surface facing downstream and forming the above-mentioned bearing surface 68.
The shim 50 is engaged in the cavity 60 of the stator by moving in axial translation from downstream until its web 58 comes to bear axially against the bottom of the cavity 60. The stator is then attached to the shroud 32 of the casing by engaging its downstream hook 34 on the upstream hook 40 of the shroud. During this engagement, the hook 40 of the shroud engages in the groove 56 of the shim, and the rim 64 of the shim comes to bear via its downstream bearing surface 68 against the radial wall 66 of the shroud.
In the mounted position, the axial distance d between the bottom of the cavity 60 of the stator and the radial surface 66 of the shroud 32 is less than the length or axial dimension of the shim 50 at rest, this length being measured between the upstream annular bearing surface of the web 58 and the downstream bearing surface 68 of the rim 66 when the rim is not axially stressed.
During the above-mentioned engagement, the rim 64 of the shim deforms elastically, with its bearing surface 68 being moved upstream relative to the remainder of the shim as this surface 68 slides over the radial surface 66 of the shroud. The shim is thus mounted with axial prestress against the downstream hook 34 of the stator. In its prestressed position, the shim 50, which bears upstream via its web 58 against the stator and downstream via its rim 64 against the shroud, thus exerts an upstream axial force on the stator having the upstream end of its outer platform 22 held to bear axially at C against the downstream end of the shroud situated upstream from the stator. This axial force is equal to the resilient return force generated by the rim 64 of the shim as a result of being deformed, and by way of example it may be at most 580 newtons (N).
As can be seen in FIG. 3, the shim 50 may be sectorized in order to make it easier to put into place, the shim then comprising a plurality of shim sectors that, in the mounted position, are arranged circumferentially end to end, or slightly spaced apart circumferentially from one another. These shim sectors may be prevented from moving circumferentially relative to the stator and the shroud by bolts interposed between two adjacent sectors and co-operating with the stator or the shroud. When the stator is sectorized, these bolts may be the bolts that are used for preventing the stator sectors from turning relative to the shroud.
In the variant embodiment of the invention shown in FIG. 5, the anti-wear shim 150 mounted against the downstream hook 134 of the stator has elastically deformable bearing means that are carried by the inner wall 152 of the shim. These bearing means are similar to those described above. They are formed by an annular rim that extends radially inwards and upstream from the upstream end of the inner wall 152 that co-operates with the outer wall 154 to define a groove 156 that opens out upstream.
The shim 150 is engaged in an annular groove 136 of the shroud that opens out upstream by being moved axially from upstream until the web 158 of the shim comes to bear axially against the bottom of the groove 160. The stator is then attached to the shroud 132 of the casing by engaging its downstream hook 134 in the groove 156 of the shim 150 and on the upstream hook 140 of the shroud. During this engagement, the rim 164 of the shim comes to bear via its upstream bearing surface against the bottom of the cavity 160 of the stator and it deforms elastically. In the prestressed position, the shim 150, which is bearing upstream via its rim 164 on the stator and downstream via its web 158 on the shroud, exerts an upstream axial force on the stator, with the upstream end of its outer platform being held to bear axially at C against the downstream end of the shroud situated upstream from the stator.
The shim 250 of the variant embodiment shown in FIG. 6 differs from that shown in FIG. 3 essentially in that its rim 264 is sectorized. The rim 264 has a plurality of slots 270 that are regularly distributed around the axis of the shim and that define between them rim sectors 272 that are elastically deformable in the axial direction independently from one another. The slots 270 extend over substantially the entire axial dimension of the rim.

Claims (12)

The invention claimed is:
1. A turbomachine compressor or turbine comprising:
an annular casing with at least one stator or nozzle fastened therein, the stator or nozzle having upstream and downstream annular hooks at an outer annular platform thereof co-operating with corresponding hooks of the casing or of a shroud carried by the casing, an inner annular platform, and an annular row of stationary vanes extending between the inner and outer platforms; and
annular anti-wear shims being mounted against the upstream and downstream hooks of the stator, each shim being substantially of channel section, defining an annular groove for engaging on a hook of the casing or the shroud carried by the casing with annular inner and outer side walls which are substantially parallel and connected together by a middle annular wall,
wherein the middle annular wall bears axially on the stator or on the nozzle when the shim is mounted against the downstream hook of the stator, and one of the inner and outer side walls includes bearing means at an end remote from the middle annular wall for bearing against the casing or the stator, respectively, which bearing means are elastically deformable in an axial direction so as to urge the stator upstream.
2. A compressor or turbine according to claim 1, wherein the one of the inner and outer side walls includes an annular rim at the end remote from the middle annular wall, which rim extends outwards from the groove and cooperates with the outer annular face of said side wall to define an angle (α) lying in the range 90° to 140°.
3. A compressor or turbine according to claim 2, wherein the annular rim has a free peripheral edge that is of shape that is rounded in section, with a convex surface facing away from the middle annular wall and defining a bearing surface.
4. A compressor or turbine according to claim 2, wherein the annular rim is sectorized.
5. A compressor or turbine according to claim 2, wherein an axial distance between a bottom of a cavity of the stator or the nozzle and a radial surface of the shroud is less than an axial distance between an upstream bearing surface of the middle wall and a downstream surface of the rim when the shim is at rest.
6. A compressor or turbine according to claim 2, wherein the angle (α) lies in the range 100° to 130°.
7. A compressor or turbine according to claim 1, wherein a portion of the shim is sectorized.
8. A compressor or turbine according to claim 1, wherein the bearing means are carried by the inner side wall or by the outer side wall.
9. A compressor or turbine according to claim 1, wherein the shim is engaged on the downstream hook of the stator or the nozzle and bears axially via the bearing means against the stator or the nozzle, and is also housed in an annular groove of the casing or of the shroud carried by the casing, the middle annular wall of the shim bearing against the bottom of the groove of the casing or of the shroud carried by the casing.
10. A compressor or turbine according to claim 1, wherein the shim is engaged on a downstream hook of the casing or of the shroud carried by the casing and bears axially via the bearing means against the casing or the shroud, and is also received in an annular cavity of the stator or the nozzle with the middle annular wall of the shim bearing against the bottom of the annular cavity of the stator or the nozzle.
11. A turbomachine including a compressor or a turbine according to claim 1.
12. A compressor or turbine according to claim 1, wherein the one of the inner and outer side walls is sandwiched between one of the hooks of the outer platform and a corresponding hook of the casing or of the shroud carried by the casing.
US13/761,458 2012-02-09 2013-02-07 Annular anti-wear shim for a turbomachine Active 2034-04-07 US9212564B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1251249 2012-02-09
FR1251249A FR2986836B1 (en) 2012-02-09 2012-02-09 ANTI-WEAR ANNULAR TOOL FOR A TURBOMACHINE

Publications (2)

Publication Number Publication Date
US20130209249A1 US20130209249A1 (en) 2013-08-15
US9212564B2 true US9212564B2 (en) 2015-12-15

Family

ID=46598631

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/761,458 Active 2034-04-07 US9212564B2 (en) 2012-02-09 2013-02-07 Annular anti-wear shim for a turbomachine

Country Status (2)

Country Link
US (1) US9212564B2 (en)
FR (1) FR2986836B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140294573A1 (en) * 2012-08-02 2014-10-02 Snecma Axisymmetrical intermediate case part including an insert positioned in an annular groove
US20170067355A1 (en) * 2014-03-07 2017-03-09 Siemens Aktiengesellschaft Sealing arrangement for sealing a gap between two components which bear flat against one another on the gap side at room temperature
US20220025783A1 (en) * 2018-12-13 2022-01-27 Siemens Energy Global GmbH & Co. KG Seal arrangement for a split housing
US11454117B2 (en) * 2019-03-08 2022-09-27 Safran Aircraft Engines Rotor for a contrarotating turbine of a turbine engine

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353649B2 (en) * 2013-01-08 2016-05-31 United Technologies Corporation Wear liner spring seal
US9796055B2 (en) * 2013-02-17 2017-10-24 United Technologies Corporation Turbine case retention hook with insert
US10801342B2 (en) * 2014-04-10 2020-10-13 Raytheon Technologies Corporation Stator assembly for a gas turbine engine
CN104329124A (en) * 2014-11-28 2015-02-04 哈尔滨广瀚燃气轮机有限公司 Novel positioning structure of turbine engine guider
US10273819B2 (en) * 2016-08-25 2019-04-30 United Technologies Corporation Chamfered stator vane rail
FR3060051B1 (en) * 2016-12-14 2018-12-07 Safran Aircraft Engines TURBINE FOR TURBOMACHINE
EP3412871B1 (en) 2017-06-09 2021-04-28 Ge Avio S.r.l. Sealing arrangement for a turbine vane assembly
FR3076852B1 (en) * 2018-01-16 2020-01-31 Safran Aircraft Engines TURBOMACHINE RING
FR3113923B1 (en) * 2020-09-04 2023-12-15 Safran Aircraft Engines Turbine for turbomachine including thermal protection foils

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199151A (en) * 1978-08-14 1980-04-22 General Electric Company Method and apparatus for retaining seals
GB2249356A (en) 1990-11-01 1992-05-06 Rolls Royce Plc Shroud liner
US5333995A (en) * 1993-08-09 1994-08-02 General Electric Company Wear shim for a turbine engine
WO1997044570A1 (en) 1996-05-20 1997-11-27 Pratt & Whitney Canada Inc. Gas turbine engine shroud seals
US6076835A (en) * 1997-05-21 2000-06-20 Allison Advanced Development Company Interstage van seal apparatus
US6299178B1 (en) * 1999-04-29 2001-10-09 Jetseal, Inc. Resilient seals with inflection regions and/or ply deformations
US6568903B1 (en) * 2001-12-28 2003-05-27 General Electric Company Supplemental seal for the chordal hinge seals in a gas turbine
EP1323898A2 (en) 2001-12-28 2003-07-02 General Electric Company Supplemental seal for the chordal hinge seal in a gas turbine
US20040041351A1 (en) * 2002-07-03 2004-03-04 Alexander Beeck Gap seal for sealing a gap between two adjacent components
US20050242522A1 (en) * 2004-03-26 2005-11-03 Snecma Moteurs Seal between the inner and outer casings of a turbojet section
US20060045745A1 (en) * 2004-08-24 2006-03-02 Pratt & Whitney Canada Corp. Vane attachment arrangement
US20060159549A1 (en) * 2005-01-14 2006-07-20 Pratt & Whitney Canada Corp. Gas turbine engine shroud sealing arrangement
US7201381B2 (en) * 2003-07-29 2007-04-10 American Seal And Engineering Company, Inc. Metallic seal
US7207771B2 (en) * 2004-10-15 2007-04-24 Pratt & Whitney Canada Corp. Turbine shroud segment seal
US20080053107A1 (en) * 2006-08-03 2008-03-06 Siemens Power Generation, Inc. Slidable spring-loaded transition-to-turbine seal apparatus and heat-shielding system, comprising the seal, at transition/turbine junction of a gas turbine engine
US20090243228A1 (en) * 2008-03-27 2009-10-01 United Technologies Corp. Gas Turbine Engine Seals and Engines Incorporating Such Seals
US20100068050A1 (en) * 2008-09-12 2010-03-18 General Electric Company Gas turbine vane attachment
FR2938872A1 (en) 2008-11-26 2010-05-28 Snecma ANTI-WEAR DEVICE FOR AUBES OF A TURBINE DISPENSER OF AERONAUTICAL TURBOMACHINE
US20100247286A1 (en) * 2009-03-31 2010-09-30 General Electric Company Feeding film cooling holes from seal slots
US20110049812A1 (en) * 2009-08-26 2011-03-03 Muzaffer Sutcu Seal System Between Transition Duct Exit Section and Turbine Inlet in a Gas Turbine Engine
GB2477825A (en) 2010-09-23 2011-08-17 Rolls Royce Plc Anti-fret liner for a turbine engine
US8038389B2 (en) * 2006-01-04 2011-10-18 General Electric Company Method and apparatus for assembling turbine nozzle assembly
US20120119449A1 (en) * 2010-11-11 2012-05-17 General Electric Company Transition Piece Sealing Assembly With Seal Overlay
US20130113168A1 (en) * 2011-11-04 2013-05-09 Paul M. Lutjen Metal gasket for a gas turbine engine
US20130177400A1 (en) * 2012-01-05 2013-07-11 Mark David Ring Stator vane integrated attachment liner and spring damper

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199151A (en) * 1978-08-14 1980-04-22 General Electric Company Method and apparatus for retaining seals
GB2249356A (en) 1990-11-01 1992-05-06 Rolls Royce Plc Shroud liner
US5333995A (en) * 1993-08-09 1994-08-02 General Electric Company Wear shim for a turbine engine
WO1997044570A1 (en) 1996-05-20 1997-11-27 Pratt & Whitney Canada Inc. Gas turbine engine shroud seals
US5738490A (en) * 1996-05-20 1998-04-14 Pratt & Whitney Canada, Inc. Gas turbine engine shroud seals
US5988975A (en) * 1996-05-20 1999-11-23 Pratt & Whitney Canada Inc. Gas turbine engine shroud seals
US6076835A (en) * 1997-05-21 2000-06-20 Allison Advanced Development Company Interstage van seal apparatus
US6299178B1 (en) * 1999-04-29 2001-10-09 Jetseal, Inc. Resilient seals with inflection regions and/or ply deformations
US6568903B1 (en) * 2001-12-28 2003-05-27 General Electric Company Supplemental seal for the chordal hinge seals in a gas turbine
EP1323898A2 (en) 2001-12-28 2003-07-02 General Electric Company Supplemental seal for the chordal hinge seal in a gas turbine
US20040041351A1 (en) * 2002-07-03 2004-03-04 Alexander Beeck Gap seal for sealing a gap between two adjacent components
US7201381B2 (en) * 2003-07-29 2007-04-10 American Seal And Engineering Company, Inc. Metallic seal
US20050242522A1 (en) * 2004-03-26 2005-11-03 Snecma Moteurs Seal between the inner and outer casings of a turbojet section
US20060045745A1 (en) * 2004-08-24 2006-03-02 Pratt & Whitney Canada Corp. Vane attachment arrangement
US7238003B2 (en) * 2004-08-24 2007-07-03 Pratt & Whitney Canada Corp. Vane attachment arrangement
US7207771B2 (en) * 2004-10-15 2007-04-24 Pratt & Whitney Canada Corp. Turbine shroud segment seal
US7217089B2 (en) * 2005-01-14 2007-05-15 Pratt & Whitney Canada Corp. Gas turbine engine shroud sealing arrangement
US20060159549A1 (en) * 2005-01-14 2006-07-20 Pratt & Whitney Canada Corp. Gas turbine engine shroud sealing arrangement
US8038389B2 (en) * 2006-01-04 2011-10-18 General Electric Company Method and apparatus for assembling turbine nozzle assembly
US20080053107A1 (en) * 2006-08-03 2008-03-06 Siemens Power Generation, Inc. Slidable spring-loaded transition-to-turbine seal apparatus and heat-shielding system, comprising the seal, at transition/turbine junction of a gas turbine engine
US8016297B2 (en) * 2008-03-27 2011-09-13 United Technologies Corporation Gas turbine engine seals and engines incorporating such seals
US20090243228A1 (en) * 2008-03-27 2009-10-01 United Technologies Corp. Gas Turbine Engine Seals and Engines Incorporating Such Seals
US20100068050A1 (en) * 2008-09-12 2010-03-18 General Electric Company Gas turbine vane attachment
FR2938872A1 (en) 2008-11-26 2010-05-28 Snecma ANTI-WEAR DEVICE FOR AUBES OF A TURBINE DISPENSER OF AERONAUTICAL TURBOMACHINE
US20100247286A1 (en) * 2009-03-31 2010-09-30 General Electric Company Feeding film cooling holes from seal slots
US8092159B2 (en) * 2009-03-31 2012-01-10 General Electric Company Feeding film cooling holes from seal slots
US20110049812A1 (en) * 2009-08-26 2011-03-03 Muzaffer Sutcu Seal System Between Transition Duct Exit Section and Turbine Inlet in a Gas Turbine Engine
US8491259B2 (en) * 2009-08-26 2013-07-23 Siemens Energy, Inc. Seal system between transition duct exit section and turbine inlet in a gas turbine engine
GB2477825A (en) 2010-09-23 2011-08-17 Rolls Royce Plc Anti-fret liner for a turbine engine
US8419361B2 (en) * 2010-09-23 2013-04-16 Rolls-Royce Plc Anti fret liner assembly
US20120119449A1 (en) * 2010-11-11 2012-05-17 General Electric Company Transition Piece Sealing Assembly With Seal Overlay
US20130113168A1 (en) * 2011-11-04 2013-05-09 Paul M. Lutjen Metal gasket for a gas turbine engine
US20130177400A1 (en) * 2012-01-05 2013-07-11 Mark David Ring Stator vane integrated attachment liner and spring damper
US8899914B2 (en) * 2012-01-05 2014-12-02 United Technologies Corporation Stator vane integrated attachment liner and spring damper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
French Preliminary Search Report issued Nov. 19, 2012, in French 1251249, filed Feb. 9, 2012 (with English Translation of Categories of Cited Documents).

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140294573A1 (en) * 2012-08-02 2014-10-02 Snecma Axisymmetrical intermediate case part including an insert positioned in an annular groove
US9677425B2 (en) * 2012-08-02 2017-06-13 Snecma Axisymmetrical intermediate case part including an insert positioned in an annular groove
US20170067355A1 (en) * 2014-03-07 2017-03-09 Siemens Aktiengesellschaft Sealing arrangement for sealing a gap between two components which bear flat against one another on the gap side at room temperature
US10202861B2 (en) * 2014-03-07 2019-02-12 Siemens Aktiengesellschaft Sealing arrangement for sealing a gap between two components which bear flat against one another on the gap side at room temperature
US20220025783A1 (en) * 2018-12-13 2022-01-27 Siemens Energy Global GmbH & Co. KG Seal arrangement for a split housing
US11859504B2 (en) * 2018-12-13 2024-01-02 Siemens Energy Global GmbH & Co. KG Seal arrangement for a split housing
US11454117B2 (en) * 2019-03-08 2022-09-27 Safran Aircraft Engines Rotor for a contrarotating turbine of a turbine engine

Also Published As

Publication number Publication date
US20130209249A1 (en) 2013-08-15
FR2986836A1 (en) 2013-08-16
FR2986836B1 (en) 2016-01-01

Similar Documents

Publication Publication Date Title
US9212564B2 (en) Annular anti-wear shim for a turbomachine
US9051846B2 (en) Ring segment positioning member
US9726033B2 (en) Rotor wheel for a turbine engine
US7789619B2 (en) Device for attaching ring sectors around a turbine rotor of a turbomachine
US8113771B2 (en) Spring system designs for active and passive retractable seals
EP2710231B1 (en) Seals for a gas turbine combustion system transition duct
US8100644B2 (en) Sealing a rotor ring in a turbine stage
US8939712B2 (en) External segmented shell capable of correcting for rotor misalignment in relation to the stator
JP5345370B2 (en) Turbine or compressor stage for turbomachine
US9709072B2 (en) Angular diffuser sector for a turbine engine compressor, with a vibration damper wedge
JPS5838616B2 (en) Turbine blade centambum seal
US9644640B2 (en) Compressor nozzle stage for a turbine engine
US8147189B2 (en) Sectorized nozzle for a turbomachine
US20130315716A1 (en) Turbomachine having clearance control capability and system therefor
US11193382B2 (en) Turbine engine turbine including a nozzle stage made of ceramic matrix composite material
US9829007B2 (en) Turbine sealing system
GB2465279A (en) Reinforced turbine bearing housing
US20110182721A1 (en) Sealing arrangement for a gas turbine engine
US10871079B2 (en) Turbine sealing assembly for turbomachinery
US20180347576A1 (en) Deflection spring seal
CN111051649B (en) Turbine assembly with ring segment
US11879341B2 (en) Turbine for a turbine engine
US8038403B2 (en) Turbomachine rotor wheel
US10934884B2 (en) Assembly for a turbine engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: SNECMA, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANGLOIS, ARNAUD;BENDERRADJI, KAMEL;BROMANN, ALAIN MARC LUCIEN;AND OTHERS;REEL/FRAME:030085/0285

Effective date: 20130304

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: SAFRAN AIRCRAFT ENGINES, FRANCE

Free format text: CHANGE OF NAME;ASSIGNOR:SNECMA;REEL/FRAME:046479/0807

Effective date: 20160803

AS Assignment

Owner name: SAFRAN AIRCRAFT ENGINES, FRANCE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE COVER SHEET TO REMOVE APPLICATION NOS. 10250419, 10786507, 10786409, 12416418, 12531115, 12996294, 12094637 12416422 PREVIOUSLY RECORDED ON REEL 046479 FRAME 0807. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SNECMA;REEL/FRAME:046939/0336

Effective date: 20160803

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8